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ABSTRACT 
Recent studies on evaporation of carbon dioxide in micro-

channels reported that the heat transfer coefficient decreased 
drastically with increasing quality. To improve the evaporating 
heat transfer characteristics a grooved multi-channel micro-tube 
was suggested in this study, and the evaporating heat transfer 
characteristics have been experimentally investigated. The 
multi-channel aluminum tube, which is directly heated by the 
electricity, has 8 channels with a diameter of 0.8mm and a 
length of 1.1m. Each channel has eight micro-grooves with the 
width of 0.2mm and depth of 0.1mm. The heat transfer 
coefficients were measured in the range of heat fluxes from 12 
to 18 kW/m2; mass fluxes 400 – 800 kg/m2s; evaporative 
temperature 5℃; and qualities from zero to superheated state. 
The measured values were compared with those in the plain 
multi-channel micro-tubes with the same diameter. The heat 
transfer coefficient was found to be increased at low qualities 
(x < 0.4). At high qualities, the sudden drop of the HTC due to 
the dry-out phenomena was not improved. In the evaporation 
process of CO2, the grooves applied to microchannels have a 
noticeable effect only in low quality regions. 

 
INTRODUCTION 

Recently, the natural refrigerant carbon dioxide has been 
spotlighted as a possible vapour compression working fluid. 
Carbon dioxide has many advantages as a refrigerant such as 
environmentally benign, safe, low cost, high volumetric 
capacity, and good transport characteristics. Because of high 
working pressure, CO2 is suitable for micro channel tubes, and 
a number of researches have been carried out to find the heat 
transfer characteristics in the micro channel evaporators. 

Petterson [1] investigated carbon dioxide evaporative heat 
transfer in a multi-channel micro tube and observed the flow 
vaporization of CO2. Study of flow pattern was performed in 
separate test rig, using a 0.98mm heated glass tube. In this 
paper, the heat transfer and pressure drop measurements were 
performed at varing vapor fraction for temperatures from 0℃ to 
25℃, mass flux 190-570 kg/m2s, and heat flux 5-20 kW/m2s. 

He summarized that heat transfer was significantly influenced 
by dryout, particularly at high mass flux and high temperature. 
And he observed increasing entrainment at higher mass flux 
and dominance of annular flow. 

Yun. et al.[2] researched on flow boiling heat transfer 
coefficient of CO2 in stainless steel tube with inner diameters of 
0.98 - 2.0mm. The HTC is measured at mass fluxs in the range 
from 500 to 3750 kg/m2s; heat fluxs from 7 to 48 kW/m2; 
evaporative temperature 0, 5 and 10℃. They concluded that the 
effect of heat flux on HTC before critical vapour quality is very 
strong at all mass fluxes. The influence of mass flux on the heat 
transfer coefficient before critical quality is only significant 
when the mass flux is less than 500kg/m2s. 

In a study of the authors [3], it was also found that the HTC 
dropped rapidly if the quality is higher than 0.4~0.5. In order to 
enhance the HTC, grooved surface have been successfully 
applied to conventional tubes and refrigerants [4,5].  

Therefore, the application of grooves to the micro-channel 
tubes came to the authors’ mind to improve the evaporation 
HTC of CO2. 

The effect of the grooved heat transfer surface for CO2 in 
conventional tube has been seldom investigated. Moreover, that 
in the micro-tubes has never been investigated. In this study, 
therefore, experiments have been conducted to evaluate the 
possibility of the application of grooves to multi-channel 
micro-tubes. 

NOMENCLATURE 
 
A [m2] Cross section area 
D [mm] Diameter 
G [kg/m2s] Mass flux 
h [W/m2K] Heat transfer coefficient 
I [A] Current 
k [kW/mK] Thermal conductivity 
l  [m] Distance from the inlet 
L [m] Length of test tube 
P [MPa] Pressure 
△P [kPa] Pressure drop between inlet and exit 
q&&  [kW/m2] Heat flux  

    



R [Ω] Resistance  
T [K] Temperature 
△t [m] Wall thickness 
x [-] Quality 
 
Subscripts 
wi  Inner wall 
wo  Outer wall 
sat  Saturated state 
 

EXPERIMENT 
 
Experimental Apparatus 

Test-Section 

Pre-Heater 

Heat-Exchanger 
Accumulator 

Data Acquisition  

Mass Flow Meter 

Relief Valve Gear Pump 

Sight  
Glass 

DP 
AP 

Thermostat 

The schematic diagram of experimental apparatus is shown 
in Figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1 Schematic diagram of experimental apparatus 

The sub-cooled liquid state refrigerant is circulated by a 
magnetic gear pump, and the mass flow rate is measured by a           
coriolis mass flow meter. The inlet quality of refrigerant is 
controlled by a pre-heater, and the state of the refrigerant flow 
is conformed at sight glass. Inlet and outlet refrigerant pressure 
is detected by absolute and differential pressure transmitter. In 
the test section, liquid state carbon dioxide is heated and 
evaporated by the Joule heat of the tube. Experiments were 
performed for a smooth and a grooved micro tube. The smooth 
tube is an extruded aluminum tube with 6 circular channels 
whose diameter is 0.8mm. The grooved tube is also an extruded 
aluminum tube with 8 grooved channels. The groove depth is 
0.1mm and the width is 0.2mm. The details of the test section 
are shown in Figure 2 and Figure 3. And Figure 4 shows the 
photo of the cross section of the grooved tube. 

 
 
 
 
 
 
 
 
 
 

Figure 2  Schematic of the test section 
 

Since the resistance of the aluminum microchannel tube 
was quite low, a high current power supply system was 
required. So 5V-1500A rectifier was used. To ensure the even 
heating of the test section, it was assembled to the jig as tightly 
as possible.  

The entire system including the test section is well 
insulated from the surroundings. The thermostat is controlled to 
adjust the cooling capacity. The refrigerant is cooled down in 
the heat-exchanger and the liquid, which is separated in the 
accumulator, is supplied to the gear pump.  
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Figure 3  Cross secti
 

 
Figure 4  Photo of the cr
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Figure 5  Effect of heat & mass flux on the HTC in the smooth tube     Figure 6  Effect of heat & mass flux on the HTC in the grooved tube 
 
 

Table 1  Comparison between the smooth tube and grooved tube regarding HTC ( x < 0.3) 
Heat flux (kW/m²) 12 15 18 

Micro Channel Tube 
HTC 

smooth MCT 

HTC 

grooved MCT

HTC 

smooth MCT

HTC 

grooved MCT

HTC 

smooth MCT 

HTC 

grooved MCT

400 8.39  14.81  9.63  11.59      

600 8.73  14.95  10.13  12.46  11.40  11.55  
Mass flux 

(kg/m²s) 

800 8.65  10.50  9.71  9.61  10.83  12.46  
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Test Condition 
A series of test was performed in the smooth microchannel 

tube. The combination of three evaporating temperatures (0, 5, 
10℃), four heat fluxes (0, 12, 15, 18 kW/m2), and four mass 
fluxes (400, 600, 800, 1000 kg/m2s) resulted in 36 cases for 
heat transfer.  

Another series of test was done in the grooved 
microchannel tube. Experiments were conducted for various 
evaporation temperatures (5℃), heat fluxes (12, 15, 18 kW/m2), 
and mass fluxes (400, 600, 800 kg/m2s).  

The calculation of heat and mass flux in the grooved 
microchannel is based on the smooth tube with a diameter of 
0.8mm.  
 
Data Reduction 

The heat flux was calculated by the electric current and 
resistance of the test section.  

 
 

 
The inner wall temperature was calculated from the 

measured outer wall temperature using the steady state heat 
conduction equation. 

 
 

 
The heat transfer coefficient was calculated as follows: 
 
 

 
 

where  Tsat  was determined from the property relation of 
CO2.  
 
 
 
 

The saturation pressure ( ) and the pressure drop 
(

satP
P∆ ) were measured with an absolute and differential 

pressure transmitter respectively. The properties of carbon 
dioxide were calculated with REFPROP (ver. 6.01). 
 

RESULT AND DISCUSSION 
 
Figure 5 shows the effect of heat and mass flux on the HTC 

for the smooth tube. For high qualities, the HTC suddenly 
decreases with the quality which can be attributed to partial 
dry-out in the channel. At low quality regime, HTCs are 
increased with increasing heat flux due to the activated nucleate 
boiling. Regardless of mass flux, HTCs are maintained up to 
the quality of 0.3-0.4. 

Figure 6 shows the effect of heat and mass flux on the HTC 
for the grooved tube. At low quality domain, HTCs are 
enhanced by grooved surface in almost all operating conditions. 
At high quality region, however, HTCs of grooved tube are also 

The HTCs of quality domain lower than 0.3 were averaged 
and the mean HTCs in each case are shown in Table 1. At 

decreased similarly with the smooth tube. A peak HTC point is 
observed between the quality of 0.1 and 0.3 in the grooved tube. 
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lities lower than 0.3, the HTCs of the grooved tubes are 
higher than that of the smooth tubes in almost all operating 
conditions. Among these, in case of 12 heat flux, HTCs are 
significantly improved in the grooved micro-tube. The HTCs in 
the smooth tube are increased with the heat flux. In contrast, the 
HTCs in the grooved tube have a tendency to decrease with the 
heat flux. In comparison with the smooth tube, the mass flux 
greatly influences on the HTC in the grooved microchannel. 
The mass flux change brings about considerable HTC 
difference. It is thought that the increment of heat transfer area 
and activated nucleate boiling which are caused by grooved 
surface result in these phenomena. For those reasons, the 
system has a tendency to reach the peak HTC rapidly and high 
mass flux becomes relatively favorable with regard to HTC as 
the heat flux is increased.  
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- In the grooved tube, the HTC is considerably depends on the 
mass flux in contrast with the 

- At low quality regime, the HTCs are increased as the heat flux 
is increased for the smooth tube. But in the 
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