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ABSTRACT

Low dimensional POD-Galerkin model is developed for a fully
developed turbulent channel flow. This model is based on
the extraction of the Proper Orthogonal Decomposition (POD)
eigenfunctions from a DNS data set of a channel flow atReτ =
150. The POD eigenfunctions are optimal in energy sense and
ordered with the first eigenfunction represents the most ener-
getic structure. POD analysis shows that, POD mode 1, 2
and 3 capture 63 %, 18% and 8.5% of total kinetic energy,
respectively. Stream-wise mode zero (stream-wise rolls) con-
tains about 22% of total energy. A Galerkin projection is then
used to drive dynamical systems. To investigate coherent struc-
tures near the wall in a low dimensional system, only energetic
modes are considered. The coupling of stream-wise and wall-
normal velocity components is sustained by the implicit cou-
pling in the POD eigenfunctions. Statistics of the flow which
is generated by the model compare fairly well with the corre-
sponding POD reconstruction of DNS data from which POD
basis are extracted.

INTRODUCTION

Because of its simple geometry and intensive industrial use,
fully developed channel flow figure 1 has been investigated in-
tensively both numerically and experimentally.

The quantitative analysis of low dimensional dynamical sys-
tems has been an active area of research in the last 20 years.
Most work has concentrated on the analysis of time series data
from laboratory experiments or numerical simulations. This pa-
per takes up earlier work begun by Aubry et al. [1], they used
a POD basis from previous experimental work and constructed
a 10-D model for the wall region of a turbulent boundary layer
0 ≤ y+ ≤ 60. Sanghi and Aubry [2] extended Aubry’s study
and used 2 stream-wise modes. Berkooz et al. [3], Berkooz et
al. [4] used uncoupled velocity components model which per-
mitted the stream-wise and cross-stream components to evolve
independently. This recovers the correct long-time behavior of
a flow lacking stream-wise variations. Juttijudata et al. [5] ap-
plied POD in Squire’s coordinate system to obtain basis for low

dimensional model. However, in Aubry’s model, an inhomoge-
neous pressure term from outside the theory is needed. To over-
come this problem Zhou and Sirovich [6], Webber, Handler and
Sirovich [7], Omurtag and Sirovich [8] developed a relatively
higher dimensional model by introducing a linear transforma-
tion of the full channel eigenfunctions so that they represent
the wall eigenfunctions in the wall region. In this paper we
combine Aubry’s and Sirovich’s works by developing a low
dimensional model for full channel by using a sub domain in
horizontal directions (x , z).

NOMENCLATURE
an POD coefficient
i-D i dimensions
h half channel width
k1, k3 stream-wise, cross-stream wave numbers
l cross-stream mode
Lx, Lz size of space domain inx, z directions
m stream-wise mode
n POD mode (wall-normal mode)
Reτ Reynolds number =u∗h

ν
Rij space correlation tensor
Sij cross-spectra tensor
ui i velocity component
u∗ friction velocity
U mean velocity

Greek letters

α bifurcation parameter
λ eigenvalue
ν viscosity
νt eddy viscosity
φi i eigenfunction component
Φ eigenfunction vector
â Fourier transform of the parametera
a time average ofa
< a > space average ofa
< ·, ·′ > inner product



PROPER ORTHOGONAL DECOMPOSITION

Suppose we have a random velocity field,ui(·). We seek to find
a deterministic vector fieldφi(·) which has the maximum pro-
jection on our random vector fieldui; in a mean square sense.
We would like to find a whole new deterministic field repre-
sented byφi(·) for which< |γ|2 >=< |ui(·)φ∗i (·)|2 > is max-
imized, i.e.,

< |γ|2 >=
〈(φi(·), ui(·))2〉
(φi(·), φi(·)) =

=
〈∫

D

∫
D

ui(·)φ∗i (·)u∗j (·′)φj(·′)d(·)d(·′)〉∫
D

φi(·)φ∗i (·)d(·)
or
∫ ∫

D

Rij(·, ·′)φ∗i (·)φj(·′)d(·)d(·′) = λ

∫

D

φi(·)φ∗i (·)d(·) (1)

Whereλ =< |γ2| >. So, if φi(·) maximizes (1), it means that
if the flow field is “projected” alongφi(·), the average energy
content (λ) is larger than if the flow field is “projected” along
any other mathematical structure, e.g. a Fourier mode. In the
space orthogonal to thisφi(·) the maximization process can be
repeated, and in this way a whole set of orthogonal functions
φi(·) can be determined. This method is called proper orthogo-
nal decomposition, or POD. The power of POD lies in the fact
that the decomposition of the flow field in the POD eigenfunc-
tions converge optimally fast inL2-sense. Most importantly,
the decomposition is based on the flow field itself: if the flow
field is inhomogeneous of finite extent, then Hilbert-Scmidt the-
ory applies and the obtained eigenfunctions (optimal basis) are
empirical, while if the flow field is homogenous or periodic
of infinite extent the eigenfunctions are analytical (sines and
cosines).

A necessary condition forφi(·) to maximize expression (1) is
that it is a solution of the following Fredholm integral equation
of the second type

∫

D

Rij(·, ·′)φj(·′)d(·′) = λφi(·) (2)

where, Rij is the space-correlation tensor. This space-
correlation tensor is symmetric and positive definite. Therefore,
according to the Hilbert-Schmidt theory, equation (2) has a de-
numerable set of orthogonal solutionsφi(·) with corresponding
real and positive eigenvaluesλ. The eigenvalue with the largest
magnitude is the maximum which is achieved in the maximiza-
tion problem (1). The second largest eigenvalue is the maxi-
mum of the maximization problem restricted to the space or-
thogonal to the first eigenfunction and so on. The eigenfunc-
tions of (2) have some interesting mathematical properties. The
eigenfunctions are orthogonal as mentioned, and can be nor-
malized:

〈
φk

i (·), φl
i(·)

〉
= δkl. The closure of the span of the

POD eigenfunctions is equal to the set of all realizable flow
fields. Therefore we can use it as a basis for the flow field.

ui(·) =
∞∑

n=0

anφn
i (·) (3)

The random coefficientsan are determined by projection back
onto the velocity field i.e.

an =
∫

D

ui(·)φ(n)∗
j (·)d(·) (4)

Figure 1: Sketch of the flow geometry

They are uncorrelated and their mean values are the eigenvalues
λ

λn =< anam > δnm (5)

The eigenvalues are ordered (meaning that the lowest order
eigenvalue is bigger than the next, and so on); i.e,λ1 > λ2 >
λ3 · · · . Thus the representation is optimal in the sense that the
fewest number of terms is required to capture the energy.

APPLICATION OF POD TO CHANNEL FLOW

Figure 1 shows sketch of the flow geometry. Since the flow is
periodic inx, homogenous inz and inhomogeneous bounded
in y. Fourier transforming equations (2) inx andz directions,
space correlation tensorRij(x, x′, y, y′, z, z′) becomes cross
spectra tensorSij(y, y′; k1, k3) and equations (2) can be rewrit-
ten as:

∫
Sijk1k3

(y, y′)φjk1k3
(y′)dy′ = λk1k3φik1k3

(y) (6)

which can be formulated as an eigenvalue problem:

Aijk1k3
φjk1k3

= λk1k3φik1k3
(7)

solving these equations numerically for each pair of wave num-

bers
(
k1 = 2πm

Lx
, k3 = 2πl

Lz

)
yields POD basisφ1, φ2 andφ3

and eigenspectraλ. This process was done for three different
integration domains:D1 (256×130×256) which covers all the
flow field, D2 (256× 130× 32) which covers all the flow field
in stream-wise and wall-normal directions and 32 data points in
cross-stream direction picked at the middle of the channel, and
D3 (32× 130× 32). Figure 2 shows an approximate boundary
sketch of these integration domains.

Eigenfunctions:

The eigenfunctions are functions ofy in addition to (k1, k3).
Thus they contain the information about how the energy is dis-
tributed in the wall-normal direction for the various modes.
Moreover, they contain implicitly the coupling information of
various velocity component.



Kinetic Energy:

The total kinetic energyξt is the sum over all POD modes,
stream-wise modes and cross-stream modes.

ξt =
∑

n

∑
m

∑

l

λ
(n)
ml (8)

from which, energy percentage as a function of stream-wise
mode indexm, wall-normal mode indexn and cross-stream
mode indexl is given by:

ξ(n) =
∑

m

∑
l λ

(n)
ml∑

n

∑
m

∑
l λ

(n)
ml

; ξl =
∑

n

∑
m λ

(n)
ml∑

n

∑
m

∑
l λ

(n)
ml

ξm =
∑

n

∑
l λ

(n)
ml∑

n

∑
m

∑
l λ

(n)
ml

; ξ
(1)
m =

∑
l λ

(1)
ml∑

n

∑
m

∑
l λ

(n)
ml

Figure 3:a shows the energy distribution among the first 13
POD modes forD1, D2, andD3. About 90% of the energy
is recovered from the first three POD modes in the three cases.
Figures 3:b, c, and d show the energy distribution among the
first 16 cross-stream modes, first 16 stream-wise modes, and
first 16 stream-wise modes for POD mode 1 only. Kinetic
energy distribution in stream-wise and cross-stream directions
changes drastically whenD2 or D3 is used rather thanD1.
This change in kinetic energy is due to the fact that a single
eddy pair is contained inD2 andD3, and about 9 eddy pairs
are contained inD1 in cross-stream direction. When more than
one eddy pair is included in the integration domain, POD dis-
tribute the energy over the number of eddy pairs for each mode.

In the present study, the POD eigenspectra has an off origin
peak corresponding to cross-stream wavelength 144 wall units;
this corresponds to the wavelength for recurrence of eddy pairs.
So, this justifies that D1 contains about 9 eddy pairs and con-
sequently D2 and D3 contain a single eddy pair. There is no
mathematical or physical justification for a recurrence period
for coherent structure in the stream-wise direction.

Figure 4 shows the total kinetic energy sum as a function of
number of modes for the three integration domainsD1, D2,
andD3. ForD3 150 modes are sufficient to recover more than
90% of total kinetic energy (POD mode 1, 2, and 3, stream-wise
mode0,±1, and±2, cross-stream mode0,±1,±2,±3,±4,
and±5). Energy recovery is highly dependent on the size of
integration domain, to illustrate this, the zoom-in box in figure
4 shows total energy sum for modes index1 to 150.

Reconstruction of the instantaneous velocity field

To understand how the POD represents the original veloc-
ity signal, the instantaneous velocity field was reconstructed.
The doubly Fourier transformed random velocity component,
ˆ̂uik1k3(y, t), can be reconstructed from the eigenfunctions as
follow:

ˆ̂uik1k3(y, t) =
∞∑

n=1

a
(n)
k1k3

(t)φi
(n)
k1k3

(y) (9)

Sijk1k3
(y, y′) =

∞∑
n=1

λ
(n)
k1k3

φi
(n)
k1k3

(y)φj
(n)∗
k1k3

(y′) (10)

< uiuj >=
∑

n

∑
m

∑

l

λ
(n)
ml φi

(n)
ml (y)φj

(n)∗
ml (y) (11)

Figure 2: Surface plot of stream-wise vorticity inx − z and
y+−z planes. An approximate boundary sketch of 2 integration
domainsD2 andD3 are shown.
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Figure 3: Kinetic energy distribution among cross-stream
modes, POD modes, and stream-wise modes for integration do-
mainsD1 , D2 , andD3 .
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Figure 5: Isosurface of stream-wise vorticity reconstructed using
modes(0, 1, l). Red+ve, blue−ve

FORMULATION OF THE MODEL

momentum equations:

∂ũi

∂t
+ ũj

∂ũi

∂xj
= −1

ρ

∂p̃

∂xi
+ ν

∂2ũi

∂x2
j

ũi = Ui(y, t) + ui(x, y, z, t)
define space average as:

Fi(y, t) =< f̃i >=
1

LxLz

∫ Lx

0

∫ Lz

0

f̃i(x, y, z, t)dzdx

mean momentum equation:

∂U

∂y
=

u2
∗

ν
(1− y

h
) +

1
ν

< uv >

U(y, t) =
u2
∗

ν
(y − y2

2h
) +

1
ν

∫
< uv > dy

fluctuation equations:

∂ui

∂t
+ Uj

∂ui

∂xj
+ uj

∂Ui

∂xj
+

∂uiuj

∂xj
− ∂< uiuj >

∂xj
=

= −1
ρ

∂p

∂xi
+ ν

∂2ui

∂x2
j

substitute from mean momentum equation and rearrange the
terms:

∂ui

∂t
+

1
ρ

∂p

∂xi
= l(ui) + q(ui, uj) + c(ui, < uv >) (12)

where,l is a linear term,q is a quadratic term andc is a cubic
term given by:

l(ui) ≡ ν
∂2ui

∂x2
j

−
[
u2
∗

ν
(y − y2

2h
)
]

∂ui

∂x
− δi1

[
u2
∗

ν
(1− y

h
)
]

v

q(ui, uj) ≡ −∂uiuj

∂xj
+ <

∂uiuj

∂xj
>

c(ui, < uv >) ≡ −
[

1
ν

∫
< uv > dy

]
∂ui

∂x
−δi1

[
1
ν

< uv >

]
v

ui expansion from POD basisφi:

ui =
1√

LxLz

∞∑
n=1

∞∑

k1,k3=−∞
a
(n)
k1k3

e(ik1x+ik3z)φ
(n)
ik1k3

(13)

ˆ̂uik1k3(y, t) =
∞∑

m=1

a
(m)
k1k3

(t)φi
(m)
k1k3

(y) (14)

Reynolds stress can be formulated as follow:

< uv >=
1

LxLz

∑

r,q,k1,k3

a
(r)
k1k3

a
(q)∗
k1k3

φ1
(r)
k1k3

φ2
(q)∗
k1k3

(15)

Fourier transforming equations (12) in the horizontal directions
yields a new equations (12∗), substitute (14) forˆ̂uik1k3 and
(15) for < uv > into (12∗), applying Galerkin projection and
rearranging the terms yields a general dynamical equations as
follow: (hereafter, we will use modes index (m, l) rather than
wave-numbers (k1 = 2πm

Lx
, k3 = 2πl

Lz
))

d

dt
a
(n)
ml =

∑
p

Lnp
mla

(p)
ml +

∑

r,q,m′,l′
Qnrq

mlm′l′a
(r)
m′l′a

(q)
m−m′l−l′ +

+
∑

r,q,s,m′,l′
Cnrqs

mlm′l′a
(s)
mla

(r)
m′l′a

(q)∗
m′l′

Lnp
ml =

(1 + ανt)
Reτ

{−4π2(
m2

L2
x

+
l2

L2
z

)δpn +

+
∫ 1

−1

(
d2

dy2
φi

(p)
ml )φi

(n)∗
ml dy} −

−u2
∗

ν
(
2πim

Lx
)
∫ 1

−1

(y − y2

2h
)φi

(p)
mlφi

(n)∗
ml dy −

−u2
∗

ν

∫ 1

−1

(1− y

h
)φ2

(p)
mlφi

(n)∗
ml δi1dy

Qnrq
mlm′l′ = − (1− δk0)√

LxLz

∫ 1

−1

[2πi
(m−m′)

Lx
φ1

(r)
m′l′φi

(q)
m−m′l−l′ +

+φ2
(r)
m′l′

d

dy
φi

(q)
m−m′l−l′ + 2πi

(l − l′)
Lz

φ3
(r)
m′l′φi

(q)
m−m′l−l′ ]φi

(n)∗
ml dy

Cnrqs
mlm′l′ = − Reτ

LxLz

∫ 1

−1

φ2
(s)
mlφ1

(n)∗
ml

[
φ1

(r)
m′l′φ2

(q)∗
m′l′

]
dy −

−2πim

Lx

Reτ

LxLz

∫ 1

−1

φi
(s)
mlφi

(n)∗
ml

[∫
φ1

(r)
m′l′φ2

(q)∗
m′l′dy

]
dy

Modeling of higher modes:

In Low dimensional models a few modes (lower modes) are
resolved and higher modes are ignored. The higher modes rep-
resent dissipation. Hence, ignoring them makes the system be-
have more energetically. To model a real flow, higher modes
should be accounted for by means of an eddy viscosity model
which assumes that the higher order stress is proportional to
the lower order rate of strain and proportionality constant is the
eddy viscosityνt.



Symmetries of POD basis and modal coefficients:

POD eigenfunctions and coefficients have the following sym-
metries:

• a
(n)
ml = a

(n)∗
−m−l

• Φ(n)
−ml = (φ1

(n)∗
ml , φ2

(n)∗
ml ,−φ3

(n)∗
ml )

• Φ(n)
m−l = (φ1

(n)
ml , φ2

(n)
ml ,−φ3

(n)
ml )

• Φ(n)
−m−l = (φ1

(n)∗
ml , φ2

(n)∗
ml , φ3

(n)∗
ml )

which implies that it is only necessary to solve for positive
mode index, since the negative mode index (wave number)
can be obtained using the above symmetries. For example
if we want to solve 11 modes model like{(m = 0), (l =
0,±1,±2,±3,±4,±5), and (n = 1)}, practically only 6 equa-
tions will be solved. In this case, we discounta

(1)
00 correspond-

ing to mean flow. Furthermore, when computing cross-spectra
tensor and solving POD eigenvalue problem for each pair of
wave numbers (k1, k3), solving for positive wave number only
is sufficient to produce eigenfunctions for the model.

MODEL BEHAVIOR

Numerical experiments were carried out with low dimensional
model using the following set of modes; stream-wise: (m = 0),
cross-stream: (l = 0,±1,±2,±3, ±4, ±5), wall-normal:
(n = 1), constructing a 5-D model based on integration domain
2 (D2). These modes contains approximately22% of total ki-
netic energy, the remaining higher modes are accounted for us-
ing the eddy viscosity model (νt = 2.4). This set of modes
were selected based on figure 3:D2. A fourth-order Runge-
Kutta method was used to solve the system of equations with
initial time step0.02 (the code reduces the time step system-
atically if it does not guarantee convergence). Different val-
ues of the bifurcation parameterα were used to examine model
behavior when we overestimate and underestimate the dissipa-
tion. It is well known that, in the theory of dynamical systems,
the so-called butterfly effect denotes sensitive dependence of
nonlinear differential equations on initial conditions. However,
initial conditions must be supplied to the dynamical systems
model. In Aubry’s work, initial conditions were selected to rep-
resent the various invariant subspaces in the system of ODE’s.
In the present study we reconstructed POD coefficients from
DNS data using equation (4), then we used a set of values at a
single snapshot to be initial conditions for our model.

Figure 6 shows samples time histories of the obtained solu-
tions forα = 1.67, 1.45, 1.17, and0.83. To make sure transient
solutions are not adopted, the first30, 000 data points of the so-
lutions were removed from time histories. Projections of the so-
lutions into the(<(a02),=(a02)) and(<(a02),<(a04)) Phase-
planes are shown in figures 7 and 8, which show periodic mo-
tion (α = 1.67) and quasi-periodic motion (α = 1.45, 1.17 and
0.83). Figure 9 shows comparison of POD eigenvalues and the
corresponding eigenvalues calculated from modal coefficients

using:
(
λ

(1)
0l = a

(1)
0l a

(1)∗
0l

)
. When POD and model eigenvalues

are not comparable to each other solutions were rejected. Fig-
ure 10 shows how modelurms compares to the corresponding
PODurms.

300 350
−1

0

1

t

a 02

α = 1.67

300 350
−1

0

1

t

a 02

α = 1.45

300 350
−1

0

1

t

a 02

α = 1.17

300 350

−0.5

0

0.5

t

a 02

α = 0.83

Figure 6: Time histories of real part ofa02 for different values
of α.
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Figure 7: Projections of the solutions into the(<(a02),=(a02))
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CONCLUSION

We have modeled the rolling mode in the wall region of a
fully developed channel flow, by means of a low dimensional
model. The behavior of the resulting model equations include
periodic and quasi-periodic motions. The key to a rapid con-
vergence of POD modes is the integration domain size. Since
there is a justified recurrence of eddy pairs in cross-stream di-
rection, we minimized the flow domain to contain a single eddy
pair. Kinetic energy changed drastically. This study shows that,
rolling mode has a dominating contributions to various turbu-
lence statistical profiles near the walls. POD analysis shows
that, stream-wise modes (0,±1 and±2), POD modes (1 and
2), and cross-stream modes (0,±1,±2,±3,±4,±5) of integra-
tion domain 2,D2, reconstructurms favorably. This analysis
open the door for further investigation of dynamical equations
using this set of modes. The dynamical equations coefficients
L, Q, andC are function of POD basis, these basis depend on
the flow domain and geometry from which they are extracted.
This property of POD basis limits the capability of this method
to model flow with differentRe and geometry and it is the only
condition one should care about when applying this method as
a feed back tool for control of flow or heat transfer.
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