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ABSTRACT 
Steady laminar free convection in air from an inclined array 

of parallel circular cylinders, is studied numerically. SIMPLE-C 
algorithm is used for the solution of the mass, momentum, and 
energy transfer governing equations. Simulations are performed 
for tube-arrays consisting of 3 to 7 cylinders equally-spaced at 
a center-to-center separation distance of 2 cylinder-diameters, 
tilting angles from 0° to 90° (which correspond to the vertical 
and horizontal settings, respectively), and Rayleigh numbers in 
the range between 102 and 106. It is found that the thermal 
performance of the whole array increases (a) with increasing 
both the Rayleigh number and the tilting angle, and (b) as the 
number of cylinders either decreases at small inclinations or 
increases at large inclinations. 

 
INTRODUCTION 

Buoyancy-induced heat transfer from inclined tube-arrays 
has received a small degree of attention, despite the numerous 
possible engineering applications, e.g., heat exchangers, just to 
cite one.  

In fact, besides a first experimental work conducted by 
Liebermann and Gebhart [1], who investigated the thermal 
behavior of an array of ten widely-spaced long wires at a very 
low Grashof number, only another paper on this topic was 
readily found in the literature. However, this study, which was 
performed experimentally by Sparrow and Boessneck [2], is 
related to a simple two-cylinder geometry, and to a narrow 
range of the Rayleigh number.  

In this background, the aim of the present paper is to 
investigate free convection in air from a tube-array inclined 
with respect to the gravity vector, with the main objective to 
highlight the main effects of the tilting angle on the flow and 
temperature fields, and on the amount of heat exchanged by any 
individual element of the array and by the whole tube-assembly. 
The study is conducted numerically under the assumption of 
isothermal surfaces, and two-dimensional steady laminar flow. 
Simulations are performed for tube-arrays consisting of 3 to 7 
circular cylinders equally-spaced at an assigned center-to-center 

separation distance of 2 cylinder-diameters, inclination angles 
of the array in the range between 0° and 90°, which correspond 
to the vertical and horizontal configurations, respectively, and 
Rayleigh numbers in the range between 102 and 106.  

 
PROBLEM FORMULATION 

A tube-array consisting of N horizontal circular cylinders 
set parallel to one another in a plane inclined of an angle ϕ with 
respect to the gravity vector, is considered. The diameter D of 
the cylinders, and their centre-to-centre separation distance S, 
are assigned. Free convection heat transfer occurs between each 
cylinder surface, kept at uniform temperature tw, and the 
surrounding undisturbed fluid reservoir, assumed at uniform 
temperature t∞.  

The buoyancy-induced flow is considered to be steady, two-
dimensional, and laminar. The fluid is assumed incompressible, 
with constant physical properties and negligible viscous 
dissipation and pressure work. Buoyancy effects on momentum 
transfer are taken into account through the Boussinesq 
approximation.  
 
Governing equations 

Once the above assumptions are employed in the 
conservation equations of mass, momentum, and energy, the 
following set of dimensionless governing equations is obtained: 

0=⋅∇ V                      (1) 

( )
g

T
Pr
Rap gVVV −∇+−∇=∇⋅ 2                             (2) 
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Pr

T 2∇=∇⋅
1V                     (3) 

where V is the velocity vector having dimensionless velocity 
components (U,V) normalized with (ν/D), T is the dimension-
less temperature excess over the uniform temperature of the 
undisturbed   fluid  reservoir  normalized  with  the temperature  
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Figure 1 – Geometry, coordinate systems and integration domain 

difference (tw − t∞), p is the dimensionless pressure normalized 
with (ρ∞ν2/D2), Ra is the Rayleigh number based on the 
cylinder-diameter, g is the gravity vector, and Pr is the Prandtl 
number.  

The related boundary conditions are T = 1 and V = 0 at any 
cylinder surface, and T = 0 and V = 0 at very large distance 
from the cylinders.  
 
Computational domain and discretization grid system 

The finite-difference solution of equations (1)−(3) with the 
boundary conditions stated above requires that a discretization 
grid system is established across the whole two-dimensional 
integration domain, which is taken as a rectangle which 
includes all the cylinders and extends sufficiently far from 
them. A cylindrical polar grid is employed in the proximity of 
any cylinder, while a Cartesian grid is used to fill the remainder 
of the integration domain, as sketched in Fig. 1, where the (r, θ) 
and (X, Y) coordinate systems adopted are also represented. In 
the polar systems, U is the radial velocity component, and V is 
the tangential velocity component. In the Cartesian system, 
whose origin is taken at the bottom left corner of the integration 
domain, U and V are the X-wise and Y-wise components of the 
velocity vector, respectively. According to the discretization 
scheme originally proposed by Launder and Massey [3], the 
cylindrical polar grids and the Cartesian grid, which are entirely 
independent of one another, overlap with no attempt of node-
matching. Their connection is provided by two sets of false 

nodes, one for each neighboring grid, located beyond their 
intersection, as described in more details in a recent paper by 
Corcione [4]. 

 
Boundary conditions 

The boundary conditions required for the numerical solution 
of the governing equations (1)−(3) have to be specified at any 
cylinder surface, and at the four boundary lines which enclose 
the two-dimensional integration domain defined above. In 
particular, once such boundary lines are placed sufficiently far 
from the cylinders, the motion of the fluid entering or leaving 
the computational domain may reasonably be assumed to occur 
normally to them. The entering fluid is assumed at the 
undisturbed free field temperature. As regards the leaving fluid, 
whose temperature is unknown, a zero temperature gradient 
normal to the boundary line is assumed.  

The following boundary conditions are then applied: 
a) at any cylinder surface 

0=U , 0=V , 1=T                                 (4) 

b) at boundary line A−B  

0=
∂
∂
X
U , 0=V , T = 0  if  U ≥ 0  or 0=

∂
∂
X
T  if  U < 0     (5) 

c) at boundary line B−C  

0=U , 0=
∂
∂
Y
V , T = 0  if  V < 0  or 0=

∂
∂
Y
T  if  V ≥ 0     (6) 

d) at boundary line C−D  

0=
∂
∂
X
U , 0=V , T = 0  if  U < 0  or 0=

∂
∂
X
T  if  U ≥ 0     (7) 

e) at boundary line A−D  

0=U , 0=
∂
∂
Y
V , T = 0  if  V > 0  or 0=

∂
∂
Y
T  if  V ≤ 0     (8) 

As far as the intersections between polar and Cartesian grids 
are concerned, the value of each of the dependent variables at 
any false node of one of the two neighbouring grids is obtained 
by a linear interpolation of the values of the same variable at 
the four surrounding real nodes of the other grid.  

 
Solution algorithm 

The set of equations (1)−(3) with the b.c.’s (4)−(8) is solved 
through a control-volume formulation of the finite-difference 
method. The pressure-velocity coupling is handled by the 
SIMPLE−C algorithm by Van Doormaal and Raithby [5]. The 
advection fluxes across the surfaces of the control volumes are 
evaluated by the QUICK discretization scheme by Leonard [6].  

Fine uniform mesh-spacings are used for the discretization 
of both the polar grid regions and the Cartesian grid region. 

Starting from first-approximation fields of the dependent  
variables, the discretized governing equations are solved 
iteratively through a line-by-line application of the Thomas 
algorithm, enforcing under-relaxation to ensure convergence. 



    

 

Table 1 - Comparison of the present results with the benchmark solutions of Saitoh et al. 

                  Nu0(θ)  
                        Ra  θ = 0° 30° 60° 90° 120° 150° 180° Nu0 
                    103 Present 3.789 3.755 3.640 3.376 2.841 1.958 1.210 3.023 
 Saitoh et al. [7] 3.813 3.772 3.640 3.374 2.866 1.975 1.218 3.024 
          104 Present 5.986 5.931 5.756 5.406 4.716 3.293 1.532 4.819 
 Saitoh et al. [7] 5.995 5.935 5.750 5.410 4.764 3.308 1.534 4.826 
          105 Present 9.694 9.595 9.297 8.749 7.871 5.848 1.989 7.886 
 Saitoh et al. [7] 9.675 9.577 9.278 8.765 7.946 5.891 1.987 7.898 
           

The solution is considered to be converged when the maximum 
absolute values of both the mass source and the percent 
changes of the dependent variables at any grid-node from 
iteration to iteration are smaller than prescribed values, i.e., 10-4 
and 10-6, respectively.  

After convergence is attained, the local and average Nusselt 
numbers Nui(θ) and Nui for the i-th cylinder in the array are 
calculated: 
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where q is the heat flux and Q is the heat transfer rate. The 
temperature gradients at any cylinder surface are evaluated by 
assuming a second-order temperature profile among each wall-
node and the next two fluid-nodes. The integrals are 
approximated by the trapezoid rule. The average Nusselt 
number of the whole assembly Nu is then obtained as the 
arithmetic mean value of the average Nusselt numbers Nui of 
the individual cylinders. 

 
Validation of the numerical procedure 

Tests on the dependence of the results obtained on the 
mesh-spacing of both the polar and the Cartesian discretization 
grids, as well as on the thickness of the polar grid regions, and 
on the extent of the whole computational domain, have been 
performed for several combinations of values of N, ϕ and Ra. 
In particular, the optimal grid-size values, and the optimal 
positions of the polar/Cartesian interfaces and the outer pseudo-
boundary lines used for computations (representing a good 
compromise between solution accuracy and computational 
time), are such that further grid refinements or boundary 
displacements do not yield for noticeable modifications neither 
in the heat transfer rates nor in the flow field, that is, the 
percent changes of Nui(θ) and Nui, and the percent changes of 
the maximum value of the tangential velocity components at θ 
= (90°+ϕ) and θ = (270°+ϕ) for any cylinder, are smaller than 
prescribed accuracy values, i.e., 1% and 2%, respectively. 
Typical features of the integration domain may be summarized 

as follows: (a) the number of nodal points (r×θ) of the polar 
grids lies in the range between 45×72 and 180×108, (b) the 
thickness of the polar grid regions varies between one-fifth and 
one-half of the cylinder-diameter, and (c) the extent of the 
whole integration domain ranges between 4 and 10 diameters 
upwards, between 2 and 4 diameters downwards, and between 
3 and 6 diameters sidewards, depending on the Rayleigh 
number, the number of cylinders, and the tilting angle.  

As far as the validation of both the numerical code and the 
meshing procedure is specifically concerned, a comparison 
between the local and average Nusselt numbers Nu0(θ) and Nu0 
obtained for a single cylinder at several Rayleigh numbers and 
the corresponding benchmark results by Saitoh et al. [7], is 
reported in Table 1. Moreover, in order to test the reliability of 
the composite polar/Cartesian grid system used, a comparison 
between the overall results obtained for a two-cylinder array 
and the corresponding experimental data by Sparrow and 
Boessneck [2], are reported in Table 2. Many more details on 
the code validation are available in reference [4].  

Table 2 - Comparison with the experimental data of Sparrow et al. 

  Nu/Nu0 

Ra S/D φ Sparrow and 
Boessneck [2] Present 

6 x 104 2.0 0° 0.84 0.86 
 2.1 14° 0.93 0.94 
 2.2 27° 1.04 1.03 
 5.0 0° 1.13 1.16 
 5.1 11° 1.04 1.04 
 5.4 22° 1.03 1.04 

1 x 105 2.0 0° 0.85 0.88 
 2.1 14° 0.93 0.96 
 2.2 27° 1.03 1.04 
 5.0 0° 1.18 1.18 
 5.1 11° 1.04 1.04 
 5.4 22° 1.03 1.04 

2 x 105 2.0 0° 0.87 0.90 
 2.1 14° 0.94 0.97 
 2.2 27° 1.03 1.04 
 5.0 0° 1.21 1.20 
 5.1 11° 1.04 1.05 
 5.4 22° 1.03 1.04 



    

                                      
                                        (a) ϕ = 5°        (b) ϕ = 10°          (c) ϕ = 20° 
 

 
                       (d) ϕ = 30°                   (e) ϕ = 60° 

 

Figure 2 – Isotherm contour plots for N = 5, Ra = 104 and different tilting angles 
 
  



    

RESULTS AND DISCUSSION  
Numerical simulations are performed for Pr = 0.71, which 

corresponds to air, and for different values of (a) the Rayleigh 
number Ra in the range between 102 and 106, (b) the tilting 
angle of the array ϕ with respect to the gravity vector, in the 
range between 0° and 90°, which correspond to the vertical and 
horizontal configurations, respectively, and (c) the number of 
cylinders in the range between 3 and 7. A dimensionless center-
to-center separation distance S/D = 2 is assumed throughout the 
simulations, as such close cylinder-spacing is deemed of more 
interest under the point of view of the engineering applications.   

Effects of the tilting angle 
Isotherm contour plots for a 5-cylinder assembly at Ra = 104 

are reported in Figs. 2(a)−2(e) for tilting angles ϕ = 5°, 10°, 
15°, 30°, and 60°, respectively. It may be seen that the mutual 
interactions among the cylinders give rise to a “suction effect” 
which increases with increasing the tilting angle of the array. 
Owing to the consequent airflow through the gaps between the 
cylinders, the plume generated by any cylinder is more or less 
deflected, which implies that the lower and upper stagnation 
points of any cylinder rotate with respect to the vertical plane 
passing through the cylinder-axis. This is, e.g., shown in Fig. 3, 
where the polar distributions of the local Nusselt number Nui(θ) 
for any individual cylinder (numbered from N1 to NN from the 
bottom to the top of the tube-array) are shown for N = 5, Ra = 
104, and ϕ = 60°. It may be noticed that the rear stagnation 
point of the bottom cylinder is rotated clockwise by an angle of 
15°, whilst that of the top cylinder is rotated anticlockwise by 
an angle of nearly 30°. 

The effects of the tilting angle ϕ on the heat transfer rate 
from the i-th cylinder of a 5-cylinder array at, e.g., Ra = 104, 
are shown in Fig. 4, where the results are expressed in terms of 
the ratio Nui/Nu0 in order to highlight in what measure the 
convective interactions among the cylinders either enhance or 
degrade the heat transfer performance of any cylinder with 
respect to that of a single cylinder at same Rayleigh number.   

It may be observed that when the tube-array is set 
vertically, the heat transfer performance of the first cylinder is 
substantially identical to that for a single cylinder. In contrast, 
the amount of heat exchanged by any downstream cylinder 
decreases with elevation along the array. In fact, since the 
buoyant airstream which washes the downstream cylinders gets 
warmer whilst moving upwards, the temperature difference 
between the cylinder surface and the adjacent fluid becomes 
progressively smaller. However, since the buoyant airstream 
becomes faster as it moves upwards, such “forced convection” 
effect tends to mitigate the negative temperature-effect cited 
above, which implies that the degree of degradation of the heat 
transfer rate with elevation is progressively less pronounced. 

As the tube-array is tilted of an angle ϕ with respect to the 
gravity vector, two positive situations occur, which enhance the 
heat transfer performance of the cylinders. First, the negative 
washing-effect discussed above decreases progressively with 
increasing ϕ, up to vanishing when the plume generated by any 
cylinder does not impinge anymore upon the cylinder located 
downstream in the array. Secondly, a sort of “chimney effect” 
arises between the cylinders, which drives an increased mass 

flow rate of fresh air between them; the more the tube-array is 
inclined, the higher is the through-flow airstream between the 
cylinders. Accordingly, also the heat transfer performance of 
the whole assembly relative to that of a single cylinder Nu/Nu0 
increases with ϕ, as shown in Fig. 5 for a 5-cylinder array at 
different Rayleigh numbers.  
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Figure 3 –Nui(θ) vs. θ for N = 5, Ra = 104 and ϕ = 60° 
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Figure 4 –Nui/Nu0 for N = 5, Ra = 104 and different values of ϕ  
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Figure 5 –Nu/Nu0 vs. ϕ for N = 5 and different values of Ra  



    

                         
      (a) N = 3      (b) N = 5        (c) N = 7 

Figure 6 – Isotherm contour plots for ϕ = 5°, Ra = 104 and N = 3, 5, and 7 

 
            (a) N = 3                      (b) N = 5                                                           (c) N = 7 

Figure 7 – Isotherm contour plots for ϕ = 50°, Ra = 104 and N = 3, 5, and 7 



    

Effects of the number of cylinders 
Isotherm contour plots are depicted in Figs. 6(a)−(c) and in 

Figs. 7(a)−(c) for Ra = 104, N = 3, 5, and 7, and ϕ = 5° and 50°.  
The effects of the number of cylinders on the relative heat 

transfer performance of the whole tube-array are pointed out in 
Fig. 8, where the distributions of Nu/Nu0 vs. ϕ are reported for 
Ra = 104 and different values of N. It may be noticed that the 
relative heat transfer performance of the array either decreases 
or increases with increasing N, according as ϕ is small or large, 
i.e., ϕ is smaller than nearly 10° or larger than 15−20°. In fact, 
for quasi-vertical configurations, the amount of heat exchanged 
by any cylinder is smaller than that exchanged by the preceding 
cylinder, thus implying that any element added to the array 
worsens the whole heat transfer performance. In contrast, for 
more inclined configurations, in which the mutual convective 
interactions between the cylinders are governed exclusively by 
the chimney effect, the higher is the number of cylinders, the 
more pronounced is the chimney effect generated by the array. 
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Figure 8 – Nu/Nu0 vs. ϕ for Ra = 104 and different values of N 
 

 
                  (a) Ra = 102                            (b) Ra = 104                  (c) Ra = 106 

Figure 9 – Isotherm contour plots for ϕ = 45°, N = 3 and Ra = 102, 104, and 106 

 
Effects of the Rayleigh number 

Isotherm contour plots for a 3-cylinder array are depicted in 
Figs. 9(a)−(c) for ϕ=45° and Ra=102, 104 and 106, respectively. 

It seems worth pointing out that, for small values of Ra, the 
thermal behavior of the whole tube-array resembles that of an 
inclined plate, whereas, for larger values of Ra, the plumes 
spawned by the cylinders tend to retain their individuality. 

Moreover, as expected, it is evident how the increase in 
Rayleigh number brings to an increase in the chimney effect, 
and then in the amount of heat exchanged, as shown in  Fig. 10, 
where the distributions of Nu vs. Ra for N = 3 are reported for 
different values of ϕ. 
 
CONCLUSIONS 

Free convection in air from a inclined tube-arrays consisting 
of 3−7 circular cylinders equally-spaced at a center-to-center 
separation  distance  of  2 cylinder-diameters, has  been  studied 
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Figure 10 –Nu vs. Ra for N = 3 and different values of ϕ 



    

numerically for tilting angles from 0° to 90° (corresponding to 
the vertical and horizontal settings, respectively), and Rayleigh 
numbers in the range between 102 and 106. 

Among the several results obtained, it has been found that 
the heat transfer performance of the whole tube-array increases 
with increasing both the Rayleigh number and the tilting angle, 
and as the number of cylinders in the array either decreases at 
very small tilting angles, i.e., for angles ϕ smaller than nearly 
10°, or increases at inclination angles larger than about 15−20°. 
 
NOMENCLATURE 
D diameter of the cylinders  
g gravity vector  
g gravitational acceleration 
k thermal conductivity of the fluid 
N number of cylinders 
Nu average Nusselt number of the whole array 
Nui average Nusselt number of the i-th cylinder  
Nui(θ) local Nusselt number of the i-th cylinder  
Nu0 average Nusselt number of the single cylinder 
p dimensionless pressure 
Pr Prandtl number = ν/α 
Q heat transfer rate 
q heat flux 
r dimensionless radial coordinate normalized with D 
Ra Rayleigh number based on the cylinder diameter =  
 = gβ(tw – t∞)D3/αν 
S centre-to-centre cylinder spacing 
T dimensionless temperature  
t temperature 
U dimensionless radial or X-wise velocity component  
V dimensionless velocity vector 
V dimensionless tangential or Y-wise velocity component  
X, Y dimensionless Cartesian coordinates normalized with D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Greek symbols 
α thermal diffusivity of the fluid 
β coefficient of volumetric thermal expansion of the fluid 
ϕ tilting angle of the array with respect to gravity 
ν kinematic viscosity of the fluid 
θ dimensionless polar coordinate 
ρ density of the fluid 

Subscripts 
i i-th cylinder in the array 
w cylinder surface 
∞ undisturbed fluid 
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