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Summary 

In this paper, we describe the use of epidemiological methods to understand and reduce honey bee morbidity and mortality. Essential terms 

are presented and defined and we also give examples for their use. Defining such terms as disease, population, sensitivity, and specificity, 

provides a framework for epidemiological comparisons. The term population, in particular, is quite complex for an organism like the honey bee 

because one can view “epidemiological unit” as individual bees, colonies, apiaries, or operations. The population of interest must, therefore, 

be clearly defined. Equations and explanations of how to calculate measures of disease rates in a population are provided. There are two 

types of study design; observational and experimental. The advantages and limitations of both are discussed. Approaches to calculate and 

interpret results are detailed. Methods for calculating epidemiological measures such as detection of rare events, associating exposure and 

disease (Odds Ratio and Relative Risk), and comparing prevalence and incidence are discussed. Naturally, for beekeepers, the adoption of any 

management system must have economic advantage. We present a means to determine the cost and benefit of the treatment in order 

determine its net benefit. Lastly, this paper presents a discussion of the use of Hill’s criteria for inferring causal relationships. This framework 

for judging cause-effect relationships supports a repeatable and quantitative evaluation process at the population or landscape level. Hill’s 

criteria disaggregate the different kinds of evidence, allowing the scientist to consider each type of evidence individually and objectively, using 

a quantitative scoring method for drawing conclusions. It is hoped that the epidemiological approach will be more broadly used to study and 

negate honey bee disease. 

 

Métodos estándar epidemiológicos para entender y mejorar la 

salud de Apis mellifera 

Resumen  

En este trabajo se detalla el uso de métodos epidemiológicos para entender y reducir la morbilidad y la mortalidad de las abejas. Se presentan 

y definen algunos términos esenciales y también se ponen ejemplos de su uso. La definición de términos tales como enfermedad, población, 
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sensibilidad y especificidad, proporciona un marco de referencia para las comparaciones epidemiológicas. El término población, en particular, 

es muy complejo en un organismo como la abeja de la miel, porque uno puede ver la "unidad epidemiológica" como las abejas individuales, 

las colonias, los colmenares o incluso, determinadas operaciones. La población de interés debe, por lo tanto, estar claramente definida. Se 

proporcionan además ecuaciones y explicaciones sobre cómo calcular las medidas de la tasas de enfermedad en una población. 

 

研究和改善西方蜜蜂健康的标准流行病学研究方法 

本文详述了如何应用流行病学的研究方法，探明和降低蜜蜂发病率及死亡率。同时还对一些关键术语进行了定义，并举例和说明了它们的用途。

定义了诸如：疾病、群体、敏感性和特异性等术语，为流行病学比较研究提供了框架。“群体”的含义在蜜蜂学研究中是比较复杂的，研究者可将

一个蜜蜂的个体、一个蜂群、一个蜂场或某项实验定义为一个 “流行病学研究单位”。所以，在开展流行病学研究时必须对所研究的群体加以明

确定义。本文还阐述了如何评价群体的发病程度，并给出了相关的计算公式和注解。 
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Hills Criteria 

1. Basic epidemiological terms and 

calculations 
Epidemiology is traditionally defined as the study of the distribution 

and determinants of disease within a human population (Woodward, 

2005). To accomplish this, epidemiological studies attempt to identify 

factors which may explain or contribute to disease outbreak. Once 

identified, these factors not only inform future clinical etiological 

studies, but also, and perhaps more importantly, they inform disease 

prevention and control programmes (Mausner and Kramer, 1985). 

The success of epidemiologists in reducing the occurrence of human 

disease over the last century is undeniable. The identification of 

factors that contribute to the occurrence of diseases such as lung 

cancer (smoking), sexually transmitted diseases (unprotected sex), 

and cardiovascular disease (high blood pressure) have permitted 

targeted community health initiatives aimed at preventing or 

controlling risk factor exposure. These initiatives, in turn, have helped 

reduce the rate of disease in targeted populations (Mausner and 

Kramer, 1985; Koepsell and Weiss, 2003; Woodward, 2005).  

Considering the success of human epidemiology, it is not 

surprising that epidemiological methods have been adopted by those 

wishing to understand and reduce disease outbreak in non-human 

animals (epizootiology) (Nutter, 1999). The term epidemiology is now 

widely adopted by those studying disease and disease determinants in 

non-human organisms, including honey bees, and will be the term 

used in this paper. Nutter (1999) argued that the application of 

epidemiological methods for understanding disease occurrence in 

plant, human, and animal populations involves the implementation of 

six common steps which include defining disease in quantitative terms 

and quantifying state and rate variables of the disease system. An 

alternative way to look at this process is to consider the "virtuous 

epidemiological cycle" (Fig. 1) which outlines the various steps 

involved in quantifying disease in a population, determining risk 

factors contributing to disease occurrence, determining methods to 

reduce disease occurrence and then evaluating the effectiveness of 

these methods (Toma et al., 1991). 

A comprehensive review of all of these steps is well beyond the 

scope of this paper. Similarly, much of the data used by 

epidemiologists are derived from surveillance efforts, a discussion of 

which is also beyond the scope of this paper, but has received 

attention in other recent work (Hendrikx et al., 2009, vanEngelsdorp 

et al., 2013). Instead, we focus on presenting and defining the 

vocabulary needed to implement epidemiological studies, and then 

outline study design, analysis and interpretation. It is also the intent 

of this paper to present a framework for understanding and initiating 

ongoing and future studies of honey bee health. Unless otherwise 

noted, the following terms and concepts have been adapted from 

Koepsell and Weiss (2003).  

Fig. 1. The virtuous circle of epidemiology: Step 1. describe health 

characteristics of the population in space and time (descriptive 

epidemiology); Step 2. analyse data and mechanisms of development 

of the disease to understand behaviour (analytical epidemiology); 

Step 3. produce, select and apply control or preventive measures 

(operational epidemiology); Step 4. give necessary information that 

permits the follow up of measures (evaluative epidemiology); In 

addition, changing epidemiological methods should be supported by 

theoretical epidemiology (modelling). 



1.1. Disease 

To successfully develop tools which either quantify the rate of disease 

development in a population or quantify the factors which may 

contribute to disease occurrence, the “disease” of interest must be 

clearly defined. Broadly speaking, disease is any departure from 

perfect health. When applied to specific studies, a precise definition - 

the case definition - must be developed which unambiguously allows 

subjects to be classified as a case or not.  

 

1.1.1. Case definition 

The case definition is the operating definition of a disease for study 

purposes. Aristotle identified two crucial components that made for a 

good case definition: 1. it specifies characteristics common to all 

diseased individuals; and 2. it specifies how diseased individuals differ 

from non-diseased individuals (Koepsell and Weiss, 2003). Ideally, the 

characteristics used to identify the disease should be simple and 

recognizable by independent observers in different geographies. 

Because characteristics cannot always be recognized in the field, case 

confirmation by laboratory analyses is sometimes necessary. Case 

definitions, especially for emerging or newly identified diseases, often 

suffer from having limited specificity. Further, case definitions for a 

disease can evolve as understanding of a disease changes and / or 

the diagnostic tests performed to determine a diagnosis are refined.  

An outline of different classifications of case definitions has been 

provided by the World Health Organization (WHO, 1999). When 

applied to apiculture, it is important to define the “epidemiological 

unit” for which the case definition is being applied (discussed in 

greater detail in section 1.2). Epidemiological units are the groups 

which make up the population of interest, and can range from 

individual bees, colonies, apiaries, and operations.   

 

1.1.2. Test sensitivity and specificity 

Many case definitions are based on laboratory or clinical tests, but 

tests in themselves are prone to errors either by misidentifying 

disease positive cases, i.e. individuals that have the disease, 

incorrectly as negative cases, or disease-free, or disease negative 

cases as positive cases. The accuracy of a test is primarily given as 

sensitivity and specificity.  

  

Sensitivity 

Sensitivity is the probability that a human or animal will have a 

positive test result if indeed the human or animal does have a 

disease.  This is expressed as: P(T+|D+),  where P is the probability, 

T+ is a  positive test result and D+ is a disease being present.  In 

applied epidemiology, sensitivity is often expressed as a proportion, 

and thus expressed as equation 1.1.2.a. 

Equation 1.1.2.a  
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Specificity 

Similarly, specificity is the probability that a human/animal will have a 

negative test result if indeed it is disease free. This is expressed as: P

(T-|D-),  where P is the probability, T- is a negative test result and D- 

is the disease not being present. In applied epidemiology, specificity is 

often expressed as the proportion of non-diseased (healthy) animals 

that test negative, expressed as equation 1.1.2.b. 

Equation 1.1.2.b  

 

 

 

1.1.2.1. Calculating confidence intervals for a proportion 

Sensitivity and specificity are based upon a sample of test results 

around which there is uncertainty. In epidemiology, uncertainty can 

be expressed as a confidence interval (CI). Typically, they are 

expressed as a 95% confidence interval (95% CI). Briefly, confidence 

intervals indicate the precision of the estimate where a wide 

confidence interval indicates that the estimate is not very precise. In 

statistical terms, if we were to repeat the procedure using 100 

different samples of the same size from the same population, the true 

proportion would be expected to lie within 95 of the 100 resulting 

confidence intervals. Implicit in presenting 95% CI is the assumption 

that the sample from which the CI is derived is representative of the 

population from which the sample was drawn. Representativeness is 

best achieved when the sample is randomly drawn from the 

population of interest. As long as the sample size is greater than 30, 

the 95% CI can be calculated using equation 1.1.2.c. 

Equation 1.1.2.c  

 

Where Zα is the (1-α/2) percentile of the standard normal distribution 

(Zα = 1.96 for 95% CI) and s.e. is the standard error.  

 

 

 

In cases where the sample size is smaller than 30, where np < 5, 

n(1-p) < 5  or the proportion estimate is close to 0 or 1.0, standard 

statistical software tools (e.g. SAS JMP) will use the binomial 

distribution to calculate the CI.  Estimates can also be determined by 

replacing Zα in equation 1.1.2.c above with the critical value from a 

published binomial statistical table.  

 

1.1.3. Positive and negative predictive values 

While sensitivity and specificity primarily measure a test’s accuracy, 

epidemiologists use two other measures, positive and negative 

predictive values, to help describe the certainty of a specific test 

result. A Positive Predictive Value (PPV) is the probability that a 

person/animal with a positive test result truly has a disease P(D+/T+). 

PPV is typically expressed as a proportion (Equation 1.1.3.a). 

Equation 1.1.3.a  
Number of disease positives testing positive ______________________________________ 

Number of disease positives testing positive +  
Number of disease positives testing negative 

Sensitivity =  

_______________________________________ Number of disease negatives testing negative 

Number of disease negatives testing negative +  
Number of disease negatives testing positive 

Specificity =  

____________________________________ Number of disease positives testing positive 

Total number testing positive 
PPV =  
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A Negative Predictive Value (NPV) is the probability that a person/

animal with a negative test result truly does not have disease P (D-/T-). 

NPV is typically expressed as a proportion (Equation 1.1.3.b). 

Equation 1.1.3.b 

 

 

If sensitivity and specificity remain constant, as the prevalence of 

a disease increases so does the PPV while the NPV decreases. 

 

1.2. Population 

Defining the population under study is a critical component of all 

epidemiological studies. Like case definitions, the population under 

study must have characteristics which set its members apart from non

-members. These members can then be categorized into smaller 

groups for the purposes of comparing disease levels between different 

sub-groups within the study population. Defining the population of 

interest in apiculture represents a unique challenge as there is a 

hierarchy of population units, each of which could be considered 

“individual members” (Table 1). In apicultural terms there are several 

levels of potential interest, thus there are several different definitions 

for what makes up the individual of interest. 

 

 Individual bees within a colony 

 A group of colonies located within one area make up an 

apiary 

 One or more groups of apiaries owned or managed by one 

beekeeper make up an operation 

 Apiaries contained within a defined geography make up a 

region 

 

Characteristics that commonly define sub-groups within any of 

these given populations often differ according to hierarchal 

classification of the population, but broadly include individual 

attributes, such as: age (i.e. bee cohort at the colony level (Giray et al., 

2000); genetics (i.e. patriline at the colony level (Estoup et al., 1994), 

queen type at the apiary level); size of operations; production 

objectives; and management style (at the regional level) (Table 1). 

Once the defining criteria for a population have been established, the 

membership (epidemiological unit) of that population can be 

quantified. However, size may change over time because new 

members are added or existing members are removed. 

 

1.3. Measures of disease in a population 

Comparing frequency of disease between sub-groups of a population 

underpins most epidemiological research (see study design in Section 

2.0). As such, various ways to quantify disease frequency have been 

developed.  

 

 Box 1. 
 

Over the inspection season of 2004 and 2005, Pennsylvania state bee 

inspectors preformed 107 Holst’s milk tests on suspect cases of clinical 

American foulbrood disease (for more information about this test, see 

the BEEBOOK paper on American foulbrood (de Graaf et al., 2013)). 

Ninety samples tested positive with the Holst’s milk test (Holst, 

1945), of which 89 were confirmed in the laboratory to be AFB infection. 

Confirmation of diagnosis was performed by culturing a smear of 

diseased larvae sampled from the same colony. The Holst’s milk test 

resulted in 14 negative and three inconclusive results. The latter were 

discarded. Six of the negative samples were later diagnosed to have 

had AFB when companion samples were cultured (vanEngelsdorp, 

unpublished data). The sensitivity and specificity as well as the positive 

and negative predictive value of this test can be calculated as follows: 

 

In summary: 

 

 

    
Condition (as determined  
by AFB Culture)   

    Positive Negative Total 

Holst's 

Milk 

Test 

Test Positive 89 1 90 

Test Negative 6 8 14 

  Total 95 9 104 

Therefore:      

Thus, when a Holst’s milk test is performed and comes back positive 

we are 99% certain the sample does contain American Foulbrood 

spores, while if the Holst’s milk test comes back negative we are 

53% sure that the sample does not have American foulbrood spores. 

Because the denominator is less than 30, the normal approximation 

of the binomial distribution cannot be assumed and for the calculation 

of the 95% CI we used the binomial tables. Thus, the 

  

And  

 

And 

 

Number of disease negatives testing negative _____________________________________ 
Total number testing negative 

NPV =  

Specificity 



1.3.1. Point prevalence  

Point prevalence is the frequency of ongoing disease in a defined 

population at a certain point in time (Equation 1.3.1). 

Equation 1.3.1 

 

 

The method for calculating the 95% confidence interval for point 

prevalence is outlined in section 1.1.2.1. Again, it is important to 

stress that calculating the CI assumes the sample pool is 

representative of the population as a whole, this is best achieved if 

the sample was randomly drawn from the population. The estimate of 

the point prevalence is affected by the likelihood that a disease will be 

detected during a given inspection. Diseases which occur for only 

short periods of time are less likely to be observed during an 

inspection than are diseases that are more chronic (Box 2). 

 

1.3.1.1. True versus apparent prevalence. 

As can be inferred from the discussion above, the reported point 

prevalence of disease is influenced by the case definition and the test 

employed to determine a case’s outcome. It is conceivable that for 

some diseases, in-field examination for phenotypic expression of 

disease may be negative while laboratory tests determine disease 

presence (i.e. deformed wing virus). In such cases, two types of 

prevalence can be specified; true prevalence with all cases of disease 

existing at a specific point in time, and apparent prevalence that is 

determined by test results (i.e. in-field examination, molecular test, 

etc.). The apparent prevalence is subject to the accuracy of the test 

(sensitivity and specificity). 

 

1.3.2. Incidence rate 

Incidence is the occurrence of a new case if a disease and is best 

calculated if the exact period of time at risk for each participant is 

known. The incidence rate is the proportion of incident cases in a 

population at risk of becoming an incident case during a specified 

period of time (Equation 1.3.2.a). 

Equation 1.3.2.a 

5 

 

The incidence rate (IR) accounts for the fact that the number of 

incident cases is dependent on the size of the population observed 

and the time period over which individuals were observed. Because 

IRs are measured over time, the population under observation may 

change. Where precise data on the population at risk of becoming an 

incident case over the period is not available, the average population 

of individuals at risk for the time period is commonly used as the 

denominator. This technique is particularly useful when attempting to 
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Table 1. Hierarchy of possible populations of interest, types of members, and common groupings or sub-categories for comparing members 

within the same population in honey bee epidemiological studies. 

Population Members 
Common groupings / 
subcategories for comparisons 

Colony Bees 
Caste (worker vs drone) 
Cohort (foragers, nurses, pupae, etc.) 

Apiary Colonies 
Queen stock 
Treatment groups 
Micro –environment (shade vs full sun) 

Operation Apiaries 
Region/microclimate 
Management system 
Disease history 

Region Operations 
Operation size 
Management practices 
Geographic region 

Box 2. 

In the summer of 2006 apiary inspectors in Pennsylvania inspected a 

sub-set of beekeeping operations in the state. In total, 1,706 apiaries 

were inspected containing 11,285 colonies. Clinical signs of Chalkbrood 

(CB) disease were found in a total of 384 colonies located in 156 

apiaries (vanEngelsdorp, unpublished data). 

 

 

 

 

 

 

  

 

  

 

 

  

 

 

 

 

Thus, assuming that the inspected apiaries were representative of 

the entire Pennsylvanian population, Chalkbrood was present in 9% 

of all apiaries (95% CI: 7.6 - 10.4%) while 3.4% (95% CI 3.1 – 3.7%)  

of all colonies had clinical signs of the disease. 

Number of cases ______________ 
Size of population 

Prevalence =                            x 100%  

Number of incident cases 
_______________________ 

Number at risk of experience 
Incidence Rate =                                             x 100%  

 



calculate the incidence rate of a condition which is very likely to be 

self-reported in a large population. IRs are presented as a proportion  

per time, or per unit-time if the exact time at risk is known for each 

member of the population.  

 

1.3.2.1. Calculating confidence intervals for incidence rates 

The confidence interval for an IR can be calculated for a population 

with the same time at risk using the method described in section 

1.3.3.2.1 below, where Z∝ is based on the Poisson distribution and n is 

an individual-time constant. In reality the IR is often not homogenous 

within a population. For instance, a random sample of honey bee 

colonies would express hygienic behaviour differently. As highly 

hygienic colonies are more likely to resist brood diseases, these 

colonies would be less likely to be diagnosed with the condition. 

Conversely, it is conceivable that the diagnosis of a certain brood 

disease in a given colony is a marker for increased susceptibility for 

the disease. Therefore, in comparison to disease-free colonies, a 

second diagnosis is more likely to occur in colonies that were 

previously diseased. This phenomenon is referred to as extra-Poisson 

variation and if left uncorrected will result in a confidence interval that 

is too narrow. To address this, a multivariate logistic regression model 

with terms for previous disease should be employed.   

Just as the IR is not the same for all individuals in a population, it 

is also not likely to be constant over time. The prevalence of many 

bee diseases changes over time, thus affecting 95% CI calculation. 

This problem can be overcome by restricting analysis to sub-periods 

or “time bands” so that differences in IR over time are not a factor. 

Alternatively, time itself can be used as a predictor of disease when 

performing a multivariate analysis (Koepsell and Weiss, 2003). 

 

1.3.3. Special cases of incidence 

Over the last few years considerable effort has been placed on 

documenting winter losses in different regions of the world. As a 

result, different methods to calculate and report winter losses have 

been developed including Total Loss and Average Loss (vanEngelsdorp  

et al., 2011).    

 

1.3.3.1. Total colony loss (TL) (the cumulative incidence of 

mortality) 

This is the percentage of colonies lost in a specific group over a fixed 

period of time. This figure is the most accurate snap shot of loss in a 

defined group, such as in an operation or geographic region. If all 

colonies in a region were enumerated it would give a precise figure 

for the proportion of all colonies that died in that region. However, 

within the population of interest, operations with large numbers of 

colonies will have a greater influence on the total colony loss metric 

than will the operations with only few colonies. Total Colony Loss in 

an operation or in a defined group is calculated by dividing the total 

number of colonies that died over a given time period (Tdead) by the 

total number of colonies at risk of dying in a given time period  

(TColonies at risk) and multiplying the quotient by 100% (Equation 1.3.3.1). 
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Equation 1.3.3.1  

 

 

Where the total number of colonies at risk of dying (TColonies at risk of 

dying) over a period was calculated by adding the number of colonies at 

the start of the period (TStart) with the number of splits made by the 

beekeepers over the period (TSplits) and the number of colonies 

purchased over the period (TPurchased) and then subtracting the number 

of colonies removed (sold or given away) over the period (TRemoved). 

 

 

And where the total number of colonies that died (TDead) was 

calculated by subtracting the total number of colonies at the end of a 

period (TEnd) from the total number of colonies at risk of dying for the 

period (Tcolonies at risk of dying). 

 

 

Where period was the defined period of time for which colony loss 

was analysed. The unit of time, is the period defined by the time 

between TStart and TEnd. This unit is often not reported and is often 

loosely defined by the season encompassed by that time period (e.g. 

winter). 

And where, respondents in a specific group are the group of 

respondents for whom valid loss data was collected. 

 

1.3.3.1.1. 95% CI for total loss 

Because total loss is a proportion, theoretically its confidence interval 

can be calculated using equation 1.1.2.c. This approach is valid when 

calculating a 95% CI for losses within one operation. However, if all 

the colonies in an operation are measured, one’s sample is the whole 

population, there is no need to calculate the CI. When total losses are 

calculated for a region, the losses of several operations are being 

combined, using the previously mentioned equation to calculate the 

95% CI is inappropriate because the assumption of independence is 

not meet. Across operations the chances that a colony will die is not 

the same for every colony. In such cases the quasi-binomial family is 

introduced to take into account the increased standard error 

introduced by dependence within the data (vanEngelsdorp et al., 2011). 

An R script example which calculates both the corrected CI from the 

quasi-binomial model and the uncorrected CI from the Wald model 

(equation 1.1.2.c.) are given in Box 3.  

 

1.3.3.2. Average loss (AL) 

Average loss is the mean % of the total colony loss experienced by 

respondents in a defined group over a defined period of time. This 

metric is most appropriately used to compare groups partitioned by 

different risk factor exposures (see study design  in Section 2.1.1.3). 

Usually average loss calculations are heavily influenced by smaller 

beekeeper operations as they often compose a larger portion of the 

response population. Average Loss is calculated by dividing the 

summed total colony loss of respondents (TLi) within a specified 

________________ T Dead 

TColonies at risk of dying 
Total Loss =                              x 100%  

TColonies at risk of dying = TStart + TSplits + TPurchased - TRemoved 

TDead =  TColonies at risk of dying - TEnd 



group by the number of respondents in that group (N) and then 

multiplying the quotient by 100%. Equation 1.3.3.2 

Equation 1.3.3.2  

 

 

1.3.3.2.1. 95% CI for average loss 

Like other proportions, average loss confidence intervals can be 

calculated using equation 1.1.2.c. As mentioned previously, average 

losses are often skewed by smaller operations resulting in a Poisson 

distribution of losses rather than a normal distribution. When the 

number of respondents exceeds 100, the Poisson distribution 

resembles a normal distribution so adjustment in the equation 1.1.2.c 

is not needed.  However, when the number of respondents is less 

than 100, the rate multiplier for the 95% CI can be determined by 

looking up the lower and higher rate multiplier in an appropriate table  

(e.g. Paoli et al., 2002) (Box 3.). 

 

2. Study design 

Epidemiologists endeavour to reduce disease occurrence in a 

population. To achieve this one must quantify disease at the 

population level and determine risk factors that contribute to disease 

occurrence. Two study designs can be used to determine the 

association of exposure with a health outcome: observational and 

experimental. In an experimental design, the exposure is determined 

by the investigator, whereas in an observational design, the exposure 

is not determined by the investigator or the study (i.e. exposure is 

under the control of the study participants or the participant’s 

environment). For example, if an investigator determines which hives 

are treated for Nosema and which are not, then the study design 

would be considered an experimental design. In an observational 

study, the investigator would observe the Nosema responses for 

beekeepers who applied and who did not apply treatment for 

Nosema, wherein this case, the application of the treatment is 

determined by the beekeeper. 

 

2.1. Observational study designs 

2.1.1. Cross-sectional studies 

Cross-sectional studies are a point-in-time study, such as a one-time 

disease surveillance survey, and are typically used to estimate disease 

prevalence or the simultaneous association between a risk factor and 

a disease. In this design, the exposure and outcome for each subject 

in the study are ascertained simultaneously. This simultaneity often 

leads to difficulty in conclusively establishing the temporal relationship 

between the exposure and the outcome. It is also important to note 

that chronic conditions are more likely to be identified in a survey 

because they are more likely to persist in a population and are more 
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 Box 3.  

In the dialogue below, text starting with # describes the R script 
which follows. Text in bold is R script and text in italics is output 
 

## R code to calculate losses and CI 
 

# import data (format csv) 
 
ruchers = read.csv("ruchers.CSV") 
 

summary(ruchers) 
  
    Rucher            nCol             nDead             nAlive        
Min.   :  1.00   Min.   :   1.00   Min.   :   0.00   Min.   :   0.00   
1st Qu.: 44.75   1st Qu.:   2.75   1st Qu.:   1.00   1st Qu.:   0.00   
Median : 88.50   Median :   5.00   Median :   3.00   Median :   2.00   
Mean   : 88.50   Mean   :  96.51   Mean   :  33.60   Mean   :  62.91   
3rd Qu.:132.25   3rd Qu.:  12.00   3rd Qu.:   8.25   3rd Qu.:   5.00   
Max.   :176.00   Max.   :6000.00   Max.   :2000.00   Max.   :5000.00   
 

attach(ruchers) 
 

# general linear model, family quasi-binomial 
 
ruchers.glm1 <- glm(cbind(nDead, nAlive)~1, family=  
quasibinomial, data=ruchers) 
 
# generate confidence intervals via quasi-binomial model 
 

require(boot) 
 CI_GLM = inv.logit(coef(ruchers.glm1)+c(-1,1)*1.96*sqrt
(vcov(ruchers.glm1))) 
 

# Verification : 'raw' confidence intervals (Wald formula as in equa-
tion 1.1.2.c) 
# For Total Loss: based on the number of colonies (this approach 
underestimates the 95% CI) 
 

nColonies = sum(ruchers$nCol) 
prop = with(ruchers, sum(nDead)/sum(nCol)) 
CI_Wald=prop+(c(-1,1)*1.96*sqrt(prop*(1-prop)/
nColonies)) 
 

#The output generates 1. total loss, 2. the standard error (based on 
the quasi-binomial),  
#3. the CI from the quasi-binomial model and 4. the CI from the 
Wald formula. 
  
titles=c("Total Loss","SE") 
titles2=c("           Model-based Conf. Int.","") 
titles3=c("                Wald Conf. Int.","") 
stats=c(prop,sqrt(vcov(ruchers.glm1))) 
output=rbind(titles,stats,titles2,CI_GLM,titles3,CI_Wald) 
print(output) 
 

         [,1]                                 [,2]                 
titles  "Total Loss"                "SE"                 
stats    "0.348110208406923"          "0.0794099959221504" 
titles2  "       Model-based Conf. Int."   ""                   
CI_GLM  "0.31367368043281"               0.384210926105528"  
titles3  "             Wald Conf. Int."     ""                   
CI_Wald "0.340946201742426"             0.355274215071421"  
 

Thus this table states the total loss was 34.8% with a standard error 

of 7.9%, giving a 95% CI of 31.4-38.4%.  



common. Therefore this study design is less useful for studies of rare 

exposures and rare outcomes. However, cross-sectional studies can 

be inexpensive, relatively quick to conduct, and are used to identify 

potential associations between exposures and outcomes that warrant 

further research with more rigorous population-based study designs. 

An example of a cross-sectional study is when a bee inspector 

examines hives in an apiary for characteristics, such as size, strength, 

activity, and disease and then uses these data to generate estimates 

of the prevalence of hives with a particular disease (e.g., Chalkbrood) 

in a region. 

 

2.1.1.1 Detection of rare events 

Epidemiological surveys are often designed to detect (or not detect) 

relatively rare events in a population. It is often impractical or 

impossible to prove that a disease or pest organism is not found in a 

region with 100% certainty. However, a properly designed disease 

surveillance system can give a set level of confidence that a disease 

or pest species is not present in a defined population at a predefined 

prevalence level. These results, by extension, can help to declare a 

region as free from a particular disease or parasite which may have 

important implications for policy makers.  

In most cases, disease prevalence in individual members (i.e. 

colonies) will be categorical, that is the disease will either be present 

or absent (Fosgate, 2009). The number of individuals that would need 

to be examined (n) in an infinite population (where the number of 

individuals exceeds 1,000 members) given a minimum disease 

prevalence (P) is given by equation 2.1.1.1.a (Fosgate, 2009). 

Equation 2.1.1.1.a  
 

  

Where α is the 1-confidence with which one wants to be certain 

the disease is detected. In finite populations (< 1,000) with a 

population size of N, the number of individuals that need to be 

examined (n) to be certain to detect at least one positive case at a 

defined 1-confidence (α), where the minimum  prevalence of disease 

in the population (P) is given by equation 2.1.1.1.b. 

Equation 2.1.1.1.b 

Both of these approaches assume tests which are 100% sensitive, 

which is often unrealistic. In cases where sensitivity is imperfect but 

known (S), the number of individuals that would need to be examined 

(n) in an infinite population to be 1-confident (α) of detecting at least 

one diseased case with a disease prevalence of  P is given by equation 

2.1.1.1.c (Fosgate, 2009). 

Equation 2.1.1.1.c 
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Box 4. 

The bump technique is a new method meant to detect the presence 

of Tropilaelaps  mites (Anderson et al., 2013).  This test, when  

applied to colonies that have an average infestation of 4.6 ± 0.06 

mites per 100 brood cells, has a sensitivity of 36% (Pettis, Rose, and 

vanEngelsdorp, unpublished data). How many colonies need to be 

tested in a region with more than 1,000 colonies in order to detect 

one infected colony with 95% Confidence, assuming that 5% of  

colonies are infested? 

 

     

Thus, 165 randomly selected colonies would need to be tested to be 

95% confident of detecting at least one positive colony given a 5% 

infestation rate. 

 

2.1.1.2 Data analysis and interpretation: making associations 

between exposure and disease in cross-sectional studies 

When cross-sectional studies collect information on disease 

prevalence and simultaneous exposure to factors that may contribute 

to disease, Odds Ratios (ORs) can be used to calculate the degree of 

association between concurrent exposure and disease state. We can 

calculate the odds of exposure among cases compared to the odds of 

exposure among non-cases (controls). The OR is the odds of 

exposure in an individual who was diseased divided by the odds of 

exposure in an individual who was disease free.  

Equation 2.1.1.2.a 

 

 

 

Where a,b,c,d are defined by the Table 2. The Confidence 

Intervals for Odds Ratio can be calculated using Equation 2.1.1.2 b. 

Equation 2.1.1.2.b 

 

 

 

2.1.1.3. Significance of odds ratio measures 

Generally speaking OR (and Relative Risk see below) values greater 

than 1 indicates that a disease is more likely to occur in an exposed 

group as compared to an unexposed group. Conversely, an OR value  

less than 1 means that a disease event is less likely to occur in an 

exposed groups compared to unexposed group. An OR that has a 95% 

CI that overlaps with 1 is indicative of an OR that is not a significant 

(Box 5). 

  Disease   

Exposure Present Absent All Individuals 

Yes a b a+b 

No c d c+d 

Table 2. Structure of data for calculation of odds ratio. 

Where 



2.1.1.3 Comparing prevalence / incidence rates 

Some cross sectional studies may collect information on presumptive 

risk factors as well as health outcomes.  For instance, winter loss 

surveys may collect information on management practices utilized in 

addition to health outcome (mortality). When the study permits the 

population to be divided based on different “exposures”, the measures 

of disease outcomes (prevalence or incidence rates) can be 

compared. When prevalence is the measure of comparison, 

differences in exposure between two groups separated by risk factor 

exposure can be compared using a Chi-Square test, or in cases where 

fewer than 5 cases were expected in a given cell, the Fisher’s exact 

test.  Resulting from this approach is a p value, which simply provides 

a goal post by which we can assert that the populations differ 

significantly (typically when a p ≤ 0.05 is calculated, the prevalence 

rates in two populations are considered to be significantly different).  

However, this approach does not give any indication as to the size of 

the effect of exposure to the risk factor. The magnitude of this effect 

can be gleaned by comparing the 95% CI of the point prevalence 

estimates. Generally speaking, populations that have point estimates 

with overlapping 95% CI are not significantly different, while those 

who do not have overlapping populations are.  More importantly, the 

95% CI aid in the interpretation of any exposure effect in that it puts 
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Box 5. 

Between 1996 and 2007 the apiary inspection programme in the Commonwealth of Pennsylvania inspected 19,933 apiaries for clinical signs 

of chalkbrood and sacbrood disease. Over all inspections, 1,831 apiaries were found to have at least one colony with chalkbrood, and 547 

colonies were found to have sacbrood.  212 apiaries had colonies infected with chalkbrood and sacbrood at the same time (vanEngelsdorp, 

unpublished data). Was there an association between the presence of chalkbrood and sacbrood? 

 

 

  

 

Thus, apiaries infected with chalkbrood are 6.9 times more likely to be infected with sacbrood when compared to apiaries not infected with 

chalkbrood. 

  

The 95 % confidence interval for the Odds Ratio =  

 

Where s.e. =  

 

Thus, the 95% confidence interval in this example is = 5.8 - 8.3. The confidence interval does not include 1.0, therefore the relationship 

between Sacbrood and Chalkbrood is statistically significant, and is unlikely due to chance. 

    sacbrood   

  apiaries positive negative total 

chalkbrood positive 212 1,619 1,831 

negative 335 17,767 18,102 

  total 547 19,386 19,933 

the upper and lower bounds on possible magnitude of any effect 

(Gardner and Altman, 1986).  

 When cross sectional studies result in incidence rates (e.g. 

from winter loss surveys), rates between groups separated by 

exposure can be compared using ANOVA and other basic parametric 

tests. As is the case for the non-parametric tests mentioned in the 

above paragraph, these will result in a P value which indicates if the 

incidence rates in the populations differ. This result is of limited value 

because not only is it of interest that the populations are different; 

the magnitude of the difference is of note. Calculating and comparing 

95% CI for the point estimate of Incidence rates has more meaning 

than stating that the two groups within a population are different or 

not based on a statistical test (Box 6). 

 

2.1.1.4 Multiple regression models 

While comparing exposure prevalence in sub-groups of a population 

may have benefits in elucidating exposures that have pronounced 

effects on disease, often, several factors may contribute to disease 

outcomes.  In these cases, multivariate regression analysis can be 

conducted to highlight exposure factors that differ between groups.  

If the outcome is at the individual level, a multivariate logit or probit 

may be appropriate.  If the outcome is at a group level, a multivariate 

In (OR) ± 1.96 x s.e. 



logistic regression may be preferred, although if most ratios or 

percentages range between 0.3 and 0.7, a linear regression can often 

give a good fit.  Standard statistical packages (SAS, R, etc.) permit 

fairly straightforward disease modelling for datasets that are 

complete, that is have all the needed exposure measures present for 

each "diseased" and "non-diseased" epidemiological unit. However, 

frequently, cross sectional studies have incomplete data.  

 

2.1.1.5. Classification and regression tree (CART) analysis 

This analysis is useful for modelling diseases that have multiple 

contributing factors and an incomplete data set for quantifying 

possible risk factors in both the disease and disease-free populations. 

The CART analysis is a non-linear and non-parametric model, fitted by 

binary recursive partitioning of multidimensional co-variate space 

(Breiman et al., 1984, Saegerman et al., 2004, Speybroeck et al., 2004). 

Using CART 6.0 software (Salford Systems; San Diego, USA), the 

analysis successively splits the data set into increasingly 

homogeneous subsets until it is stratified and meets specified criteria. 

The Gini index is normally used as the splitting method, and a ten-fold 

cross-validation is used to test the predictive capacity of the trees 

obtained. The CART analysis performs cross-validation by growing 

maximal trees on subsets of data, then calculating error rates based 

on unused portions of the data set. 

The consequence of this complex process is a set of fairly reliable 

estimates of the independent predictive accuracy of the tree, even 

when some data for independent variables are incomplete and/or 

comparatively scarce. Further details about CART are presented in 

previously published articles (Saegerman et al., 2011). 

 

2.1.2 Cohort studies 

Cohort studies allow an investigator to estimate the disease incidence 

rate because the study measures the time that participants don’t have 

the disease. As compared to cross-sectional studies, cohort studies 

are better able to assess causality because the temporal relationship 

of exposure preceding outcome is not subject to question. This design 

is implemented through three steps. First, exposed and unexposed 

individuals who are free of the outcome of interest are identified and 

become the cohort. Next, each cohort is observed for a minimum 

period of time to determine if the outcome of interest develops. The 

risk of developing the outcome is calculated separately for the 

exposed group and for the unexposed group. Finally, the risk for the 

exposed and unexposed study subjects is compared, often by 

estimating the relative risk. Essentially, the incidence of disease over 

time is measured in exposed and unexposed individuals to determine 

the risk of disease in relation to exposure to a factor of interest. These 

studies can be performed retrospectively, where a post-hoc study is 

executed on previously collected data, or prospectively, where study 

subjects who do not have the outcome of interest are followed 

forward through time. Examples of cohort studies in honey bees  
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Box 6. 

A winter loss survey was conducted to determine the winter 

mortality (Oct 1 – April 1) of US beekeepers over the winter of 2010

-2011 (vanEngelsdorp et al., 2012).  A subset of these respondents 

also answered various questions regarding their management 

practices. In all 1,074 beekeepers indicated they had used a known 

varroa mite control product in a majority of their hives over the 

previous year, while 1,675 responding beekeepers reported not 

using any known varroa mite control product in any of their hives. 

Beekeepers who used a known varroa mite control product suffered 

an average loss of 29.5% (95% CI 27.5 - 31.4%) of their colonies, 

while those who did not indicate they used a known varroa mite 

control product suffered an average loss of 36.7% (95% CI 34.9 - 

38.55) (BeeInformed.org Report 30). 

 

 
 

As the two confidence intervals do not overlap we know the two 

populations are different, we can say that beekeepers who treated 

with a known varroa control product lost 7 fewer overwintering 

colonies per 100 than those who did not; in other words beekeepers 

who treated with a known varroa control product lost 20% 

(difference in average loss rate / average loss rate in those not 

treating = 7/37*100 %) fewer colonies than those who did not. 

include Genersch et al. (2010), Gisder et al. (2010) and 

vanEngelsdorp et al. (2013). 

 

2.1.2.1 Data analysis and interpretation: making associations 

between exposure and disease in cohort studies 

If the investigator knows the exact time that each participant was at 

risk, it is possible to calculate the incidence rate. Incidence rates can 

be compared between different groups within a population in the 

same way as prevalence rates can, that is using standard statistical 

tests, and/or, (perhaps more appropriately) comparing 95% CI 

between two groups in a population. Another valuable tool that can 

be used to highlight possible associations between disease outcome 

and risk factor exposure is the calculation of relative risk. 



2.1.2.2. Relative risk  

The Relative risk is a  measure of the chance of developing a disease 

after a particular exposure. It is calculated by dividing the incidence 

rate in an exposed population (Ie) by the incidence rate in an 

unexposed population (Io).   

Equation 2.1.2.2 

 

 

 

Where a, b, c, d are determined by Table 3. 

 

2.1.2.3. The confidence intervals for relative risk  

The Confidence Intervals for Relative Risk can be calculated using the 

equation given in Equation 2.1.2.3. 

Equation 2.1.2.3. 

 

 

There are numerous online RR calculators (e.g. http://

faculty.vassar.edu/lowry/VassarStats.html). Common statistical 

packages often give RR and associated CI when performing tests on 

2x2 contingency tables. Caution should be used, however, to ensure 

that the data entered in such packages are in keeping with the layout 

presented in Table 3. 

 

2.1.2.4. Significance of relative risk measures 

Generally speaking RR (and Odds Ratio) values greater than 1 

indicates that a disease is more likely to occur in an exposed group as 
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compared to an unexposed group. Conversely, a RR value less than 1 

means that a disease event is less likely to occur in an exposed group 

compared to unexposed group. The confidence that a RR value is a 

measure of a real increased measurable risk, and not a consequence 

of chance, is dependent on several factors: 1. the size of the 

population; 2. the variability in the responding population; and 3. the 

intensity of the effect.  All of these attributes are accounted for in the 

calculation of the 95% CI. Thus, to gauge if a RR measure truly does 

indicate an increase or decrease in risk of disease after exposure, one 

should examine a RR 95% CI. If the interval overlaps with 1, the RR 

cannot be considered significant (Box 7).   

 

2.1.3. Case-control studies 

In contrast to cohort studies where participants are identified by 

exposure status, participants in case-control studies are identified by 

their disease or outcome status. Cases are participants who have 

developed the outcome of interest. Controls are subjects who do not 

have the outcome of interest and provide an estimate of the 

frequency of exposure in the population at risk. In this retrospective 

study design, cases and controls are first identified. Subsequently, the 

Box 7. 

A longitudinal study was set up to monitor colonies for mortality and other factors as they moved up and down the east coast to pollinate 

crops.  Forty nine colonies were examined in June of 2007, and 20 of them were found to have entombed pollen during the examination.   

In January 2008,  15 of the colonies that had entombed pollen were dead, as compared to the 6 colonies that died in the cohort without 

entombed pollen (vanEngelsdorp et al., 2009a). 

 

 

  

 

95% CI = 1.68 - 7.61 

 

As the RR is greater than 1 and the 95% CI do not overlap with 1, we can say that the increased risk of mortality associated with entombed 

pollen is significant.  For every colony that died by January that did not have entombed pollen in June, 3.6 colonies died that did have  

entombed pollen. 

 

    Outcome (January 2008)   

  Colonies Dead Alive Total 

Entombed pollen (June 

2007) 

Positive 15 5 20 

Negative 6 23 29 

  Total 21 28 49 

  Outcome   

Exposure Present Absent All Individuals 

Yes a b a+b 

No c d c+d 

Table 3. Structure of data for calculation of Relative Risk. Both disease 

outcome and risk factor exposure are dichotomous. 



exposure to the factor of interest is ascertained, for each case and 

control. Lastly, an odds ratio for the outcome of interest (in relation to 

exposure status) is calculated. Case-control studies are retrospective 

because they seek to determine previous exposure after the outcome 

has been established. Thus, they are subject to recall or information 

bias. Case-control studies are also subject to sampling bias because it 

is difficult to select controls which are (ideally) perfectly similar to 

cases, with the exception of outcome status. However, techniques 

such as matching controls to cases and stratified analysis can improve 

the precision of estimates from case-control studies.  

Case-control studies are useful when attempting to isolate a cause 

or causes for an emerging disease condition. Most recently this 

approach was used in attempts to determine the factors contributing 

to Colony Collapse Disorder (CCD) (vanEngelsdorp et al., 2009b, 2010; 

Dainat et al., 2012)  

 

2.1.3.1. Data analysis and interpretation  

The data analysis is similar to that presented in cross-sectional study 

designs above. However, the results from case-control studies have 

more importance in determination etiology because exposure status is 

ascertained at a time prior to case and control status are determined. 

 

2.2. Experimental study designs 

In contrast to observational studies, an experimental study assigns 

subjects to different treatment or exposure levels. This type of study 

design can be used to investigate the change in health status due to 

disease screening programs, prevention plans, interventions, diagnostic 

techniques or treatment procedures. Ultimately, a research team 

decides who will be treated or exposed, which consequently results in 

experimental intervention, not just observation of natural events.   

Randomized studies are very powerful for investigating cause and 

effect because of the random assignment of study subjects to two or 

more intervention strategies, which leads to a compelling test of 

causality. The most simple randomized trial design consists of 

participants being randomly assigned to one of two treatment arms, 

the experimental arm (receive treatment of interest) or the control 

arm (receive no, placebo or standard treatment). Data from 

randomized trials can be utilized to calculate incidence of outcomes 

per treatment arm and then compare the incidence using the relative 

risk or risk differences.  Randomization helps protect against bias, 

because it is likely that potential confounders are equally distributed 

across the treatment and control study groups. The scope of 

randomized studies is limited because these studies aim to confirm or 

disprove a specific hypothesis. Additionally, the cost and time needed 

to conduct trials are two primary disadvantages of this study design. A 

third concern is that the results from a controlled randomized trial 

may not be generalizable to uncontrolled real-world settings. There 

are many different variations on the simple randomized study design 

in which randomization schemes are modified and researchers are 

blinded to study conditions.    
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3. Economic considerations 
 

Understanding those factors that are associated with a lower rate of 

loss may provide potential treatment options for beekeepers. 

However, just because a practice appears to be effective in reducing 

loss does not mean that it is necessarily in the beekeeper’s best 

interest to adopt it. An additional piece of information for apiary 

managers is how much the treatment will cost and how much money 

the producer will likely save with its application. 

Calculating the costs of practices in beekeeping is relatively 

straight forward, in that it includes the purchase cost of treatment and 

any labour or materials costs associated with its application. While 

each producer can calculate their costs, accurate aggregate data are 

more difficult to obtain, particularly for labour costs, or for 

applications where producers use their own recipe. Thus, the true 

costs of treatment may vary from producer to producer, and individual 

managers can be guided to compare their own costs to the average 

for a better cost estimate. 

Calculating the benefit from reducing disease is more nuanced. 

One simple approach is to use the replacement cost of a hive as an 

estimate for the benefit of losing one less colony. To be as close as 

possible to the actual cost, one would like to find the replacement 

process that most closely replicates the scenario of having not lost the 

colony in the first place, such as a nuclear colony. Thus, one would 

not simply want to use the cost of splitting a hive, but would want a 

replacement that would be as productive as quickly as an existing 

colony while not reducing the productivity of surviving colonies. The 

true replacement costs would include extra feeding and labour costs 

associated with getting that colony to productivity (Equations 3.0). 

Equation 3.0.a 

Benefit of saving one colony = Replacement cost 

 

Where replacement cost = cost of nuclear colony + cost of feed + 

cost of labour 

Once one has a measure of the benefit of saving one colony, one 

can determine the expected net benefit of treatment for a disease.  

 

Equation 3.0.b  

Expected net benefit of treatment =  

Replacement cost x (mean survival of untreated colonies – mean 

survival of treated colonies) 

 

Where mean survival = 100 - Average Loss 

If the cost of treatment exceeds the expected benefit, generating 

a negative expected net benefit, then despite the fact that the 

treatment may reduce colony loss, it may not be in the producer’s 

best interest to use that treatment. 

 

 

 



Note that the above calculation, even if all treatment and 

replacement costs are included, will tend to underestimate the 

benefits associated with treatment.  Disease not only affects mortality, 

it also affects productivity, which is not captured in the above 

calculation. Thus, the above calculation should be thought of as 

generating a lower bound on expected net benefit. A more nuanced 

approach would be to estimate the effect of treatment on disease 

load, and the effect of disease load on productivity of honey 

production, pollination or other revenue-generating activities. Further, 

some beekeepers may place personal value on not losing a colony, 

and for them, their expected benefit of treatment may be higher still. 

These data are more difficult to collect, and will likely vary greatly 

from producer to producer.  Nonetheless, giving beekeepers an 

estimate of the net benefit of treatment should allow them to 

compare the pure monetary costs and benefits to any other 

idiosyncratic costs of colony loss and help them in their management 

decisions. 

 

 

4. Inferring causal relationships 

using Hill’s Criteria 
To diagnose the cause of a disease in honey bees, scientists typically 

compare observed symptoms with a list of exposures in colonies that 

implicate a particular pathogen, toxin or other detrimental aspect of 

the environment. Confirming the cause of the particular instance of 

these symptoms is relatively straightforward – the scientist either 

tests for the presence of the diagnosed causal agent itself or removes 

it and checks for amelioration of the symptoms. These approaches are 

feasible when the symptoms occur at the level of the individual or 

colony, because effects on growth, short-term survival or reproduction 

are readily measured (see the BEEBOOK paper on measuring colony 

strength parameters (Delaplane et al., 2013)). In principle, it is 

possible to estimate the impact of the disease on the population’s 

dynamics by using demographic models that quantify the effect on 

population growth (Varley et al., 1973). 

There are some cases, however, that are problematic for two 

reasons. First, the symptom is itself a population-level attribute; for 

instance, a general population decline. Second, the normal procedure 

is reversed because the causal agent is already identified, albeit as a 

hypothesis. An example is the supposed role of trace dietary 

pesticides in causing honey bee declines. In this case, scientists are 

asked whether dietary exposure to the pesticide is capable of causing 

the observed population decline. Studying impacts at the population 

level by experiments with replicated comparisons presents a severe 

logistical challenge because the required manipulations are at the 

landscape scale. Some alternative tools are available, such as the 

classic ‘life table’ method of insect population ecology (Varley et al., 

1973), but these can be applied only if detailed census data are 

The COLOSS BEEBOOK: epidemiological methods 13 

available that precisely identify causes of death over extended time 

periods. Where such resorts are stymied, scientists must use the 

available circumstantial evidence to pass an expert judgement. Hill’s 

criteria (Hill, 1965) provide a valuable framework that supports a 

repeatable and quantitative evaluation process. 

Sir Austin Bradford Hill, a leading 20th century epidemiologist, 

identified nine types of information that provide ‘viewpoints’ from 

which to judge a proposed cause-effect relationship (Hill, 1965). The 

nine criteria include not only experimental evidence, but also eight 

kinds of circumstantial evidence that fall into two categories (Table 4). 

For each criterion, scientists survey the available evidence and 

then formally describe the level of conviction with which they 

subsequently hold the proposed cause-effect hypothesis to be true: 

slight; reasonable; substantial; clear; and certain (Weiss, 2006). The 

descriptors are then associated with numerical values to produce a 

quantitative score of certainty (Cresswell et al., 2012). Specifically, an 

eleven-point scale for each criterion returns a positive value  

Box 8. 
 

Using the numbers from the average winter loss determined by a 

management survey given in Box 6, we observed that beekeepers 

that used a known varroa mite control product lost 7.2 percentage 

points (or 20%) fewer colonies than beekeepers that did not use a 

product. To calculate the 95% CI for the difference in the mean, we 

need to add and subtract 1.96 × sed, where sed is the standard error 

of the difference in means. 

 

The standard error of the difference, sed is defined as  

where se1 is the standard error of the mean for sample 1, and se2 is 

the standard error of the mean for sample 2. (The standard error 

calculations come from the confidence interval calculations in box 6 

above.) The standard error for the sample using treatment is 1.02 

and the standard error for the control sample (or no-treatment sample) 

is 0.92. Thus, the standard error of the difference in means is 

                                . Thus, we get a 95% confidence interval of 

the difference in means of 7.2 plus or minus 1.96 × 1.37, or 4.51 to 

9.89. 

  

If the replacement costs of a hive, including labor and feeding are 

$150, then the expected benefit of the treatment is the change in 

probability of loss times the replacement costs, or 0.07 × $150 = $10.80 

(with a 95% CI of $6.77 to $14.83). Assume the cost of treatment is 

$7.50 per colony. Thus the expected net benefits would be $10.80 - 

$7.50 = $3.30 (with a 95% CI of -$0.78 to $7.33) per hive. 

 

Thus, on average the producer is expected to benefit from the treat-

ment, but could in fact lose from treatment.  Net gains are expected 

to range from a loss of $0.78 per colony to a gain of $7.33 per colony, 

95 times out of 100.  



 

(maximum five) if the evidence suggests that the agent certainly 

causes population decline, a negative value (maximum minus five) if 

the factor certainly does not and a zero if the evidence is equivocal or 

lacking.  For example, if the evidence for a criterion gives a 

reasonable indication that an agent does not cause the symptom, the 

score for that criterion would be -2, etc. 

One major value of the criteria is that they disaggregate the 

different kinds of evidence, requiring the scientist to consider each 

kind carefully, separately and explicitly. Once the scores are given, 

there is no a priori reason either to give equal weight to the nine 

criteria or to calculate an average score. It is important, moreover, to 

consider whether any large scores have arisen principally on the 

theoretical criteria, because it is conventional in science to favour 

material evidence (i.e. associational criteria) over conjecture. For 

example, an evaluation by Hill’s criteria (Cresswell et al., 2012) 

revealed that the proposition that dietary pesticides cause honey bee 

declines was a substantially justified conjecture in the context of 

current knowledge (positive scores on the theoretical criteria), but 

was substantially contraindicated by a wide variety of circumstantial 

evidence (negative scores on the associational criteria). The disparity 

in the scores on the two categories of criteria explains in part the 

controversy over this question, because different constituencies make 

differential use of the two kinds of evidence. Hill (1965) himself 

refused to weight the criteria because the evaluation of circumstantial 

evidence cannot be made algorithmic. 

The use of Hill’s criteria formalizes the evaluation of cause-

consequence associations and applies a quantitative scoring method 

which makes the conclusions both apparent and repeatable. Since 

their inception over 40 years ago and subsequent widespread use, no 

criterion has been abandoned and none added, which means that 

they provide a stable and well-established infrastructure in which to 

process scientific evidence.    
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Table 4. The nine criteria established by Hill (1965), each with a brief 

description. 

Criterion Brief description 

1. Experimental evidence   

2. Coherence Fails to contradict established knowledge 

3. Plausibility Probable given established knowledge 

4. Analogy Similar examples known 

5. Temporality Cause precedes effect 

6. Consistency Cause is widely associated with effect 

7. Specificity Cause is uniquely associated with effect 

8. Biological gradient Monotonic dose-response relationship 

9. Strength 
Cause is associated with a substantive 

effect 

5. Conclusions 

The general aim of all scientists studying honey bee health is the 

same; preservation of the bees.  However, without common methods 

and shared terminology, it is difficult to confidently compare reported 

results. In an effort to standardize the efforts of those interested in 

improving honey bee health and make studies comparable, we have 

introduced epidemiological terminology, experimental design, and 

methods of calculation that are often different enough to facilitate 

comparisons between studies. 
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