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ABSTRACT 
Combined conduction-free convection heat transfer in 

vertical eccentric annuli is numerically investigated using a 
finite-difference technique. Numerical results, representing the 
heat transfer parameters such as annulus walls temperature, 
heat flux, and heat absorbed in the developing region of the 
annulus, are presented for a Newtonian fluid of Prandtl number 
0.7, fluid-annulus radius ratio 0.5, solid-fluid thermal 
conductivity ratio 10, inner and outer wall dimensionless 
thicknesses 0.1 and 0.2, respectively, and dimensionless 
eccentricities 0.1, 0.3, 0.5, and 0.7. The annulus walls are 
subjected to thermal boundary conditions, which are obtained 
by heating one wall isothermally whereas keeping the other 
wall at inlet fluid temperature. In the present paper, the annulus 
heights required to achieve thermal full development for 
prescribed eccentricities are obtained. Furthermore, the 
variation in the height of thermal full development as function 
of the geometrical parameter, i.e., eccentricity is also 
investigated. 

 
INTRODUCTION 

The study of combined conduction-natural convection heat 
transfer in vertical eccentric annuli is of great importance 
because of its many engineering applications in electrical, 
nuclear, solar and thermal storage fields. A typical application 
is that of the drilling operations of oil and gas wells. During 
drilling operations liquid mud is pumped from a surface mud 
tank via the drill pipe (several kilometers in length), through 
nozzles in the rotating drill bit, and back to the mud tank 
through the annular space between the well bore wall and the 
drill pipe. Natural convection may occur during idle periods 
and it can contribute to passive cooling of the drill pipe.  

In spite of many studies in the literature for the conventional 
case of either forced or free convection in the developing 
region of eccentric annuli [1-6], there are few research papers 

available for the conjugate case in vertical eccentric annuli. The 
first is that of El-Shaarawi and Haider [7] for the forced 
convection case. They presented forced convection results for a 
fluid of Prandtl number 0.7 flowing in a fluid annulus of radius 
ratio 0.5 with eccentricities 0.1, 0.3, 0.5 and 0.7. Second and 
third papers by El-Shaarawi et al. [8, 9] investigated the 
conjugate and geometry effects on steady laminar natural/free 
convection in open-ended vertical eccentric annuli, 
respectively. Fourth paper by Jamal et al. [10] studied the effect 
of thermal boundary conditions on conjugate natural convection 
in eccentric annuli. 

Extensive literature survey revealed that thermally 
developing conjugate natural convection has not been 
investigated yet. The present paper presents a boundary-layer 
model for the problem of developing steady laminar conjugate 
natural convection heat transfer in vertical eccentric annuli. A 
numerical algorithm, employing finite-difference technique, is 
developed to solve the obtained model. Numerical results are 
presented to show the variation of the geometrical parameter, 
i.e., eccentricity (E) affecting the height of thermal full 
development and heat transfer parameters such as annulus walls 
temperature, heat flux, and heat absorbed in the developing 
region of the eccentric annulus. The annulus walls are subjected 
to thermal boundary conditions of first kind [11], which are 
obtained by heating one wall isothermally whereas keeping the 
other wall at inlet fluid temperature.  

NOMENCLATURE 
 
AVHFi [-] Dimensionless average heat flux on the inner solid-fluid 

interface 
AVHFo [-] Dimensionless average heat flux on the outer solid-fluid 

interface 
E [-] Dimensionless eccentricity 
F [-] Dimensionless volumetric flow rate 
H [-] Dimensionless coordinate transformation scale factor 
i [-] Unit vector in the η and R directions 
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j [-] Unit vector in the ξ and φ directions   
KR [-] Solid-fluid thermal conductivity ratio 
L [-] Dimensionless height of channel (value of Z at channel 

exit) 
M [-] No. of intervals in each of the ξ & φ-directions 
N [-] Number of intervals in the η-direction 
NR1 [-] Ratio between inner radius of inner cylinder and inner 

radius of outer cylinder 
NR2 [-] Ratio between outer radius of inner cylinder and inner 

radius of outer cylinder (Fluid annulus radius ratio) 
NR3 [-] Dimensionless inner radius of outer cylinder 
NR4 [-] Ratio between outer radius of outer cylinder and inner 

radius of outer cylinder 
P [-] Dimensionless Pressure defect of fluid inside the 

channel at any cross section 
Pr [-] Prandtl number 
Q [-] Dimensionless heat absorbed from the entrance up to 

any particular elevation 
Q  [-] Dimensionless heat absorbed up to the annulus exit, i.e., 

values of Q at Z = l 
rii [m] Inner radius of inner cylinder 
roi [m] Outer radius of inner cylinder 
rio [m] Inner radius of outer cylinder 
roo [m] Outer radius of outer cylinder 
R [-] Dimensionless radial coordinate 
To [K] Ambient or fluid entrance temperature 
Tw [K] Isothermal temperature of heated wall 
U  [-] Dimensionless mean axial velocity 

U [-] Dimensionless axial velocity at any point 
Uo [-] Dimensionless axial velocity at annulus entrance 
V [-] Dimensionless η-velocity component 
W [-] Dimensionless ξ-velocity component 
Z [-] Dimensionless axial coordinate in both the Cartesian and 

bipolar coordinate systems 
 
Special characters 
η [-] First transverse bi-polar coordinate 
θ [-] Dimensionless temperature 
θf [-] Value of θ  in the fluid annulus 
θi [-] Circumferential value of θ  on inner solid-fluid interface 
θm [-] Mean bulk temperature 
θm,fd [-] Fully developed value of θm   
θo [-] Circumferential value of θ  on outer solid-fluid interface 
θsi [-] Value of  θ in the inner solid wall 
θso [-] Value of  θ in the outer solid wall 
δi [-] Dimensionless thickness of inner cylinder wall 
δo [-] Dimensionless thickness of outer cylinder wall 
φ [-] Dimensionless circumferential coordinate 
ξ [-] Second transverse bi-polar point 
Ψ [-] Normalized value of ξ 
 
Subscripts 
f  Fluid 
i  Inner wall 
fd  Fully developed 
o  Outer wall 
s  Solid 
 

PROBLEM FORMULATION 
The vertical eccentric annulus of finite height and thickness, 

as shown in Fig. 1, is open at both ends and is immersed in a 
stagnant Newtonian fluid maintained at constant temperature 
(To). Free convection flow is induced inside this annular 
channel as a result of heating one of the channel walls 
isothermally while keeping the other wall at inlet fluid 
temperature, commonly known as boundary condition of first 
kind. It is evident from Fig. 1 that the eccentric annular 

geometry is symmetric about line AB, therefore, only the half 
symmetric section is taken for the analysis. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 The geometry and grid points 

 
     The flow is steady, laminar, enters the eccentric annulus 
with a uniform velocity distribution (Uo). Body forces in other 
than the vertical direction, viscous dissipation (Φ), internal heat 
generation ( Q ′′′ ) and radiation heat transfer are absent. The 
governing equations describing flow and heat transfer through 
the eccentric annulus are the conservation equations of mass, 
momentum and energy given in a general orthogonal 
curvilinear coordinate system by Hughes and Gaylord [12]. 

The bipolar coordinate system is more suitable to express 
the partial differential equations describing the flow and heat 
transfer through the vertical eccentric annulus, shown in Fig. 1. 
On the other hand, the cylinder walls have uniform thickness. 
Hence, the cylindrical coordinate system is more appropriate 
for the solid walls. Some parabolic-flow assumptions by El-
Shaarawi and Mokheimer [3] will be used to simplify the 
governing equations. The assumptions include: the pressure is a 

function of the axial coordinate only ( 0=
∂
∂

=
∂
∂

ξη
pp ), the axial 



    

diffusions of momentum and energy are neglected ( 0
2

2
=

∂

∂

z
), 

and the η-velocity component (v) is much smaller than the ξ 
and z-velocity components (w and u). Introducing the 
dimensionless parameters given in the nomenclature, carrying 
out the order of magnitude analysis and taking into 
consideration that the latter assumption results in dropping the 
η-momentum equation, the governing equations are: 
 
Continuity Equation 
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Momentum Equation in Z-Direction 
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Momentum Equation in ξ-Direction 
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Energy Equation for Fluid 
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Energy Equation for Solid 
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The thermal boundary conditions considered in this 
investigation are:  

For outer cylinder, θs = θso & R vary from NR3=1 to NR4 
For inner cylinder, θs = θsi & R vary from NR1 to NR2  

Integral Form of the Continuity Equation 
( )
( ) ∫ ∫+
−

=
π η

η

ξη
π 0

2

2

2

1
18 i

o

ddUH
NR
NR

U  (6) 

Having the governing equations for the fluid in bipolar 
coordinates and the energy equations for the solid walls in 
cylindrical coordinates generates unmatched grid points on both 

the interfaces. Therefore, these points are linked to determine 
the temperatures at the two interfaces by applying the principles 
of continuity of temperature and continuity of heat flux at these 
interfaces. Equations (1-6), subject to boundary conditions of 
first kind, have been numerically solved as indicated in [9]. 

NUMERICAL MODEL 
Numerical results have been obtained under thermal 

boundary conditions of first kind for dimensionless 
eccentricities, E=0.1, 0.3, 0.5, and 0.7 at given annulus radius 
ratio, NR2=0.5, solid-fluid thermal conductivity ratio, KR=10, 
cylinder wall thicknesses, δi and δo= 0.1 and 0.2, and Prandtl 
number, Pr=0.7.  

In the present analysis, a grid of 25 segments in each η and 
ξ directions in the fluid annulus whereas 20 and 10 segments in 
the r-direction in the outer and inner cylinder walls, 
respectively, and 25 segments in φ-direction in each of the 
cylinder walls are used (Jamal [13]).  

VALIDATION OF NUMERICAL MODEL 
To check the adequacy of the present computer code, 

special runs were carried out simulating the two different 
limiting cases of conventional and conjugate convection for the 
given eccentric annuli. The results of these special computer 
code experimentations are as follows. 

First, a graphical comparison was obtained for the axial 
development of the mean bulk temperature at different 
eccentricities for the conventional forced convection as shown 
in Fig. 2. The maximum percentage difference was found to be 
0.032 % depicting that the results obtained by the present 
computer code are in excellent agreement with that of El-
Shaarawi et al. [2]. 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 Comparison of results for conventional forced 
convection obtained from present computer code and 

previously reported work [2] for mean bulk temperature against 
Z at various values of eccentricity 

 
Secondly, the present computer code was validated for the 

conjugate forced convection case in eccentric annuli by 
comparing the results obtained from a pertaining special run 
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with the corresponding developing and fully developed 
temperature profiles across the widest gap (Ψ=0) of El-
Shaarawi and Haider [7]; excellent agreement was observed as 
the maximum deviation between the obtained results and those 
of [7] never exceeded 0.23%. 

RESULTS AND DISCUSSION 
Figure 3 presents the important variation of induced flow 

rate (F) with the channel height (L) for different values of the 
eccentricity (E). For a given radius ratio (NR2), conductivity 
ratio (KR) and channel height, increasing the eccentricity 
increases the induced flow rate.  A large value of eccentricity 
increases the velocity asymmetry, which causes the resistance 
of flow to increase/decrease on the narrowest (ψ=1)/widest 
(ψ=0) gap side of the annulus. The axial velocity profile 
develops with increasing/decreasing values on the widest 
(ψ=0)/narrowest (ψ=1) gap side of the annulus resulting in a 
net increase in average velocity and a higher heat transfer 
coefficient. Consequently the mean bulk temperature increases 
leading to an increase in F. However, for very short channels, a 
reverse trend occurs, i.e., increasing the eccentricity decreases 
the induced flow rate. The reason is that for short channels with 
a large eccentricity, the axial velocity and temperature profiles 
do not develop sufficiently. This consequently reduces the 
mean bulk temperature (i.e., reduction of the buoyancy forces) 
and the induced flow rate. 

Figures 4(a) and 4(b) represents the circumferential 
variation of temperatures on inner and outer solid-fluid 
interfaces (θi and θo) at an axial (vertical) location (Z) of 
1.99x10-3 at different values of E. Small value of E shows little 
non-uniformity in the interface temperatures along the 
circumference. The increase of E causes the temperature level 
to decrease on the inner solid-fluid interface at the narrowest 
gap (ψ=1) and increase on the outer interface at the same gap, 
as can be seen in Figs. 4(a) and 4(b) thus causing the non-
uniformity of θi and θo on the interfaces to enhance. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Variation of flow rate with channel height for 
different values of eccentricity 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4(a) Variation of θi at an axial (vertical) location of 

1.99 x 10-3 at different values of eccentricity 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4(b) Variation of θo at an axial (vertical) location of 
1.99 x 10-3 at different values of eccentricity 

 
Figures 5(a) and 5(b) present the development of 

circumferential temperature profiles along Z on the inner and 
outer interfaces, respectively for a specific dimensionless 
induced flow rate, F=0.00675 and E=0.5. One can clearly see 
that the inner interface circumferential temperature profile 
becomes stable earlier (Z=4.16x10-4) than the outer interface 
temperature profile (Z=1.37x10-3). Figures 6(a) and 6(b) show 
the effect of eccentricity on average heat flux on inner and 
outer solid-fluid interfaces, respectively. It is observed that 
increasing E raises the average heat flux on both interfaces. The 
negative sign of AVHFo is due to sign convention. It is also 
noticeable that the values of AVHFi and AVHFo decay and 
elevate sharply, respectively, close to the channel exit until 
these become stable after certain distance indicating that fully 
developed conditions have been reached. 
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Figure 5(a) Development of θi along the annulus channel 
axial (vertical) locations 

(1) 1.000x10-10 (2) 4.251x10-9 (3) 2.291x10-7 (4) 5.479x10-7 (5) 
1.191x10-6 (6) 2.411x10-6 (7) 4.622x10-6 (8) 8.478x10-6 (9) 1.499x10-5 

(10) 4.157x10-4 (11) 1.366x10-3 (12) 2.863x10-3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5(b) Development of θo along the annulus channel 
axial (vertical) locations 

(1) 1.000x10-10 (2) 5.479x10-7 (3) 1.499x10-5 (4) 1.764x10-4 (5) 
4.157x10-4 (6) 1.366x10-3 (7) 1.988x10-3 (8) 2.863x10-3 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6(a) Axial variation of AVHFi at different values of 
eccentricity 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6(b) Axial variation of AVHFo at different values of 
eccentricity 

 
The height needed to achieve full development has been 

arbitrary defined as that height at which the heat absorbed by 
the fluid (Q) differs by no more than 1% from the 
corresponding value of heat absorbed at channel exit. 
According to this definition, the heights for full development at 
different eccentricities, presented in Fig. 7, are also given in 
Table 1 for a specific induced flow rate, F=0.00675. It is 
obvious from the figure that higher the values of E, greater the 
height required for full development. In this connection, the 
total heat gained ( Q ) by the annulus fluid versus channel 
height (L) at different values of E is also investigated and 
presented in Fig. 8. It is observed from the figure that for a 
given channel height, the amount of Q  continues to increase 
with E.              

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 Annulus axial heights required for thermal full 
development at different values of eccentricity 
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Table 1 Thermal full development heights for different 
eccentricities 

 
E 0.1 0.3 0.5 0.7 

Height required 
to achieve 

thermal full 
development 

1.2x10-3 1.4x10-3 1.8x10-3 1.9x10-3 

Heat absorbed 
corresponding to 
full development 

height 

2.85x10-3 2.81x10-3 2.76x10-3 2.70x10-3 

Heat absorbed at 
channel exit 2.88x10-3 2.84x10-3 2.79x10-3 2.72x10-3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8 Total heat absorption versus channel height at 
different values of eccentricity 

CONCLUSION  
Combined conduction-laminar free convection heat transfer 

in vertical eccentric annuli has been numerically investigated. 
A finite-difference algorithm has been developed to solve the 
model comprising of equations in both bipolar and cylindrical 
coordinate systems. Numerical results are presented for a fluid 
of Prandtl number, Pr=0.7 in an eccentric annulus of radius 
ratio, NR2=0.5. The effect of geometrical parameter, i.e., 
eccentricity (E) on the variations of the induced flow rate (F), 
circumferential temperatures, average heat fluxes, height for 
full development, and total heat absorbed ( Q ) has been 
investigated under thermal boundary conditions of first kind. 

The results show that, for a given channel height (L), 
increasing the eccentricity causes an increase in the induced 
flow rate (F). Similar trend is observed for the total heat 
absorbed by the fluid ( Q ) with eccentricity. Furthermore, the 
non-uniformity of circumferential temperature and the values of 
average heat flux on the interfaces increases with eccentricity. 
Finally, the obtained results have also shown that for a specific 
desired fluid suction and heat transfer with full development to 

achieve in the channel, higher channel must be designed, which 
possesses inherent larger eccentricity as compared to that 
having smaller eccentricity. 
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