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Abstract 

The study evaluates the performance of small scale maize producers in Nigeria using 

stochastic input distance function (SIDF) and variable returns to scale data 

envelopment analysis (VRS DEA). Further, it examines the determinants of technical 

efficiency using the double-bounded Tobit regression model. Results show that maize 

farmers are operating below the frontier. Technical efficiency estimates from SIDF 

and VRS DEA models are 86.7% and 85.5% respectively. The efficiency estimates 

obtained from the two models are positively and significantly correlated. Given the 

high correlation between the two models in our analysis, and for individual variance 

and bias reduction, the efficiency scores from these models for each farmer are further 

combined into a single index using the principal component analysis (PCA) approach. 

Technical efficiency from the integrated model is 86.2%. Our findings show that 

maize production could still be raised by improving farm efficiency. Age, education, 

household size, membership of a farmer group, access to credit and market were 

found to be statistically significant in explaining technical efficiency thus 

emphasizing the need for policy intervention in improving farm efficiency. 
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1. Introduction 

Despite the oil revenue, majority of Nigerians live below the poverty line.  

About 64.4% of the population lives below the $1.25 a day poverty line (UNDP, 

2009). This poverty situation is worse in the rural areas where over 70% of the people 

reside and earn their living through agriculture. Therefore, the persistence of hunger 

and poverty in Nigeria must be to a large extent, the failure of the agricultural sector 

to fully impact positively on the people. Agricultural productivity in Nigeria has been 

very low.  

Maize is one of Nigeria‟s important staples which is highly demanded for 

food, feed and commercial purposes. However, its productivity has been low with an 

average of 1.5 tonnes/ha. Theoretically, productivity increase can be achieved through 

land expansion, efficiency improvement and use of improved technologies. However, 

population growth and the consequent pressure on land resources coupled with 

frequent crop failures due to weather, pests, and diseases have led to greater land use 

intensification. Therefore, expansion of land is obviously not a likely option in 

Nigeria‟s case. The most probable options then are technological innovations and 

resource use efficiency. Most often, low agricultural productivity has been attributed 

mainly to farmers‟ inefficiency. In microeconomic theory, the primal production 

frontier, describes the maximum output that may be obtained from given inputs. A 

firm that operates at the production frontier has a technical efficiency of 100%. Any 

deviation from the maximal output is typically considered technical inefficiency. 

Two broad approaches are usually followed in efficiency analysis in the 

literatures; parametric and non-parametric approaches with each having its strengths 

and weaknesses. The parametric approach requires a specification of the underlying 

technology and or assumption about the distribution of the inefficiency term. The 
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non-parametric approach neither requires a specific functional form nor an 

assumption about the inefficiency term. A huge number of studies have used either of 

these approaches (see for example Ito, 2002; Haji, 2006; Madhoo, 2007; Mitra and 

Sato, 2007; Okoye et al., 2007; Purohit, 2008; Solis et al., 2009). Minimizing error in 

the calculation of efficiency scores is very important and necessary for effective 

policy making. Most studies have attempted to achieve this goal by comparing 

various methods of measuring efficiency and subsequently the correlation between 

these models has been calculated (Coelli and Perelman, 1999; Sharma et al., 1997; 

1999; Wadud and White, 2000; Wadud, 2003; Alene and Manfred, 2005; Herrero, 

2005; Alene et al., 2006; Ajibefun, 2008; Cuesta et al., 2009). Borrowing the idea 

from time-series forecasting literature where many authors contend that the average of 

the predictions from a number of models will often outperform any one particular 

predictive model, Coelli and Perelman (1999) proposed a combination of efficiency 

measures from parametric and non-parametric models. Herrero (2005) averaged 

efficiency scores from alternative approaches. Alene et al. (2006) also combined 

efficiency scores from two models using geometric mean (GM). The GM approach 

assumes equal weight for each of the models. Assumption of equal weights ignores 

the relative importance of each indicator in the final index. 

In this study, our objectives are first to evaluate the performance of maize 

farmers in Nigeria by estimating their efficiency levels. This is achieved using a 

parametric model, specifically, the stochastic input distance function (SIDF) and a 

non-parametric model, variable returns to scale data envelopment analysis (VRS 

DEA). The SIDF is preferred to the conventional stochastic frontier production 

function (SFPF) because the later has been critiqued for potential endogeniety 

problem as input factors in a production function might be jointly determined with the 
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output produced. In other words, a production function is estimated when one is 

clearly assuming that the input quantities are decision variables thus leaving the 

approach to criticism that simultaneous equation bias may afflict the production 

frontier, and efficiency estimates may be biased (Coelli et al., 2003; Alene and 

Hassan, 2005; Sanford, 2010; Shee and Stefanou, 2011). The stochastic distance 

function avoids the endogeniety problem (Coelli et al., 2003; Berg, 2010). 

Admittedly, the distance function does not completely avoid endogeniety as pointed 

out by Kumbhakar (2011) especially when outputs are not exogenously determined as 

in some cases (e.g. manufacturing firms and agricultural farms except when there are 

explicit quotas on outputs), however, the problem is less obvious for distance 

functions than for production functions because input ratios (rather than inputs) are 

used as regressors in the former (Kumbhakar, 2011). 

Secondly, we combine efficiency scores from the two models into a single 

efficiency index using the principal component analysis (PCA). The combination is 

justified based on Palm and Zellner (1992) and similar previous efficiency studies 

listed above. In a paper discussing methods of combining time-series forecasts, Palm 

and Zellner (1992 observe that “In many situations a simple average of forecasts will 

achieve a substantial reduction in variance and bias through averaging out individual 

bias”. The PCA approach is preferred to the GM approach for building the integrated 

model because the weight of each indicator is considered when computing the final 

index.  Moreover, the PCA approach is considered appropriate for this study as the 

efficiency scores from the two frontier models are highly correlated. Although, the 

PCA approach is not a new analytical tool in agriculture, but its application to farm 

efficiency analysis is unique to this study. Third, we examine the determinants of 
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efficiency using a double-bounded (two-limit) Tobit model since efficiency scores are 

bounded between zero and one.  

 

2. Data 

A multistage stratified random sampling procedure was employed in selecting 

the respondents for this study. A total of 240 farmers were interviewed from four 

local government areas of Benue State, Nigeria. Data on output and input quantities 

were collected. The description of the variables used in estimating the frontier models 

is presented in Table 1. The output variable, PROD is the quantity of maize produced 

by a farm household during 2008/2009 farming  

Table 1: Summary statistics of variables in the frontier functions  

Variables Mean Std. deviation Minimum Maximum 

Quantities     

PROD (kg) 1320.38 656.308 300.000 3780.000 

LAND (ha) 1.208 0.490 0.400 2.520 

LABOUR (man-days) 111.195 101.891 23.000 720.000 

FERT (kg) 115.185 69.207 0.000 360.000 

OTHER (index) 56.343 49.035 1.865 310.020 

 

season and is measured in kilograms. LAND is measured as the area of land in 

hectares cultivated with maize. LABOUR is measured as the amount of both family 

and hired labour in man-days used by a farm household. FERT is the amount of 

inorganic fertilizer in kilograms used by a farm household. OTHER is the Fisher 

quantity index of seed, herbicides and pesticides used by a farm household.  
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 For examining determinants of efficiency, data was collected on farmers‟ 

socioeconomic characteristics and other policy and or institutional variables. The 

mean and description of these variables are presented in Table 2. 

Table 2: Description and Mean of variables used in theTobit regression  

 

Variable name Mean Description 

Gender 0.888 1 =  the household head is a male; 0 otherwise 

Age 47.167 Age of the household head in years 

Education 8.433 Number of years of formal education completed  

by the household head 

Household size 11.742 Number of persons in the household 

Land 1.208 Area of land in hectares cultivated with maize 

Off farm work 0.675 1 = engagement in off-farm work; 0 otherwise 

Membership of 

Farmer group 

0.454 1 =  the household head is a member of any 

 farmer organization; 0 otherwise 

Extension 2.546 Number of extension visits during the cropping period 

Credit 0.138 1 = if farmer had access to credit; 0 otherwise 

Market 6.278 Distance to the nearest market in km 

 

 

3. Econometric Methodology 

In this section, the two distance function frontier models used in estimating 

farm efficiency levels are described. The integrated model and the Tobit model are 

also specified. 

 

3.1 The parametric stochastic input distance function  

The Cobb-Douglas (CD) parametric stochastic input distance function is 

assumed for this study. The specification is admittedly restrictive in terms of the 

maintained properties of the underlying production technology. However, a likelihood 

ratio test was conducted to test the inappropriateness of the CD form. The test 
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revealed that the CD input distance function is indeed an adequate representation of 

the data for maize farmers in Benue State given the specification of the more flexible 

Translog (TL) form. For the case of single output, K inputs, N farms, the empirical 

model is specified as: 





4

1

,lnlnln
j

jijii XYD   ,240,...1i      (1) 

where iY  is the observed maize output for the ith farmer and jiX = is the jth input 

quantity for the ith farmer, namely land, labour, inorganic fertilizer and an index of 

other inputs such as seed, pesticide and herbicides. ln  represents a natural logarithm, 

and , and j  are unknown parameters to be estimated. 

The value of the distance function is not observed so that imposition of a 

functional form does not permit its direct estimation. A convenient way of handling 

this problem was suggested by Lovell et al. (1994) who exploit the property of linear 

homogeneity of the input distance function. Imposing the restriction for homogeneity 

of degree +1 in inputs upon equation (1) implies
1
, 

1
4

1


j

j ,          (2) 

Thus, equation (1) is transformed to: 

 





14

1

,ln/lnlnln
j

ikijijiki DXXYX      (3) 

The unobservable distance term “ iDln  ” represents a random term and can 

be interpreted as the traditional stochastic frontier analysis composed disturbance 

term, i . Thus equation (3) can be rewritten as: 

                                                
1 It should be noted that imposition of linear homogeneity in the case of distance function does not 

connote constant returns to scale as is the case with production function. For SIDF, returns to scale is 

computed as the negative of the inverse of the output coefficient (Estache et al., 2004; Coelli et al., 

2005). 
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 





14

1

,/lnlnln
j

iikijijiki uvXXYX      (4) 

The statistical noise ( iv ) is assumed to be iid ),0(
2

vN   and independent of  iu . For 

this study, iu  is assumed to be independently distributed with a half-normal 

distribution ),0(
2

vN   given that a preliminary test rejected the alternative of 

truncated normal distribution at 5% level of significance.  

The input-orientated technical efficiency scores are predicted using the conditional 

expectation predictor: 

)])[exp(ˆ
iii uEET  ,       (5) 

The technical efficiency measure takes a value between zero and one, with a value of 

one, indicating full efficiency. 

 

3.2 The non-parametric input distance function 

The study considers variable returns to scale DEA model. This is selected to 

maintain consistency with the SIDF which is also a variable returns to scale model. 

The VRS DEA input-oriented model is used to obtain the technical efficiency scores. 

For N farms which produce maize using K inputs (land, labour, fertilizer and other) 

and for the ith farm who produces iy  units of maize by applying jix  units of kth 

input, the KxN input matrix, X , and the 1xN output matrix, Y , represent the data for 

all N farms in the sample.  The input-oriented VRS DEA model is specified as: 

,min ,   

st  ,0 Yyi  

 ,0  Xx ji                      (6) 

 11  N  
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 ,0  

 

where   is the input technical efficiency measure having a value 10  . The 

resultant efficiency measure depicts the distance of each farm unit from the frontier. If 

the score is equal to one, it implies that the farmer is on the frontier. The vector  is 

an Nx1 vector of weights which defines the linear combination of the peers of the ith 

farmer. X  and Y  are efficient projections on the frontier. 1N  is an Nx1 vector of 

ones and 11  N is the convexity constraint which makes the model a variable 

returns to scale model and it ensures that an inefficient farm is only benchmarked 

against farms of similar size. The linear programming problem is solved N times, 

providing a value for each farmer in the sample. 

The DEA problem in equation (6) has an intuitive interpretation. The problem 

takes the ith farm and then seeks to radially contract the input vector, ix , as much as 

possible, while remaining within the feasible input set. The radial contraction of the 

input vector, ix  , produces a projected point, ( X , Y ), on the surface of the 

production technology. This projected point is a linear combination of these observed 

data points. The constraints in equation (6) ensure that this projected point cannot lie 

outside the feasible set.  

 

3.3 The integrated model 

The principal component analysis (PCA) is used for integrating the efficiency 

scores from the two models described above into a single index. It is a widely used 

non-parametric statistical tool. The PCA technique has been applied in a number of 

studies both within and outside agriculture (Zhu, 1998; Azadeh and Jalal, 2001; Essa 

and Nieuwoudt, 2003; Jollans et al., 2004; Azadeh and Ghaderi 2005; Azadeh et al., 
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2009). However, no study in agriculture has extended the PCA to obtain farm 

efficiency index. 

The goal of PCA is to decompose a data table with correlated measurements 

into a new set of uncorrelated variables called principal components. Each principal 

component is calculated as a linear combination of the standardized values of the 

original variables used for the definition of the index. The weight given to each of 

these variables corresponds to its statistical correlation with the latent dimension that 

the index attempts to measure. The number of principal components to retrieve 

depends on the correlation of the initial variables. If they are strongly correlated with 

each other, one factor will be sufficient to explain most of their variance. However, if 

the correlation is weak, several factors will be required in order to explain a 

significant percentage of their variance. In this case, one will get a set of intermediate 

indicators, as many as there were common factors, and the final index will be 

calculated as their weighted sum. The importance of each factor is given by the 

proportion of the total variance explained. The first new variable  1y  accounts for the 

maximum variance in the sample data and so on. PCA is performed by identifying 

eigen structure of the covariance or singular value decomposition of the original data. 

In this study, there are two efficiency indexes (one from parametric approach 

and the other from non-parametric approach) and 240 farm households. Suppose 

224021 ),( xxxX   is a 240 x 2 matrix composed by  sxij ' defined as the value of  the jth 

index for the ith farm  household, therefore, ).2,1(),...( 2401  mxxx T

mmm  Again, 

suppose 224021 )ˆ,ˆ(ˆ
xxxX   is the standardized matrix of  224021 ),( xxxX   with sxij 'ˆ  

defined as the value of the jth standardized index for the ith farm household and 

therefore 
T

mmm xxx )ˆ,...ˆ(ˆ
2401 . PCA is performed to identify new independent 
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variables or principal components (defined as jY  for j= 1, 2), which are, respectively, 

different linear combination of 1x̂ and 2x̂ . This is achieved by identifying the eigen 

structure of the covariance of the original data. The principal component is defined by 

240 x 2 matrix 224021 ),( xyyY   composed by syij '  shown by: 

2121111
ˆˆ xlxly   

2221212
ˆˆ xlxly          (8) 

                   

 

where mjl  is the coefficient of jth variable for the mth principal component. slmj '  are 

estimated such that the following conditions are satisfied: 

1. 1y  accounts for the maximum variance in the data, 2y  accounts for the maximum 

variance that has not been accounted for by 1y  . 

2. 1
2

2

2

1  mm ll ,                   (9) 

3. 0.. 2211  nmnm llll  for all nm   2,1n                          (10) 

The eigenvectors ),( 21 mm ll  )2,1( m  are calculated and the components in 

eigenvectors are respectively the coefficients in each corresponding principal 

component, iY : 





2

1

ˆ
j

ijmjm xlY  for 2,1m  and 240,...,1i                          (11) 

where ijx̂  are the values of the standardized indexes for the farm households.  

The weights and PCA scores are estimated as follows: 

2//
2

1

j

j

jjjw   


, 2,1j                           (12) 
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j

j

ji Ywz 



2

1

,   240,...,1i                            (13) 

where jw is the share of jth eigenvalue in the population variance, jY is the value of 

the jth  principal component and iz  is the PCA score.  

The ranking of the farm households is done on the basis of iZ  and therefore it 

is important to recognize the elements of iZ so as to explore and analyze the impact of 

each indicator in determining the rank of each farm household. Since iZ  is obtained 

from equation (13) and jY  is computed from equation (11), following Azadeh et al. 

(2009), it can be proved that 














 



2

1

2

1

2

1

ˆ
j

ijmj

j

jj

j

ji xlwYwZ  

   
 
















2

1

2

1

2

1

ˆˆˆ
j

mij

j

mj

j

jij wxlwx                             (14) 

where mj

j

jm lww 



2

1

ˆ , 2,1m  

The value of jŵ  for each indicator shows the importance of that indicator in overall 

ranking of the farm households. That means, a high value of an indicator jŵ  has 

positive impact on the value of iZ . To calculate efficiency score related to each farm 

household, the values of sw j 'ˆ  are transformed such that they are bounded between 

zero and one. This is done so that these values demonstrate the differences in each 

indicators importance. To achieve this, each of the values of jŵ  is divided by the sum 

of the value of the indicators importance. The final efficiency score of ith farm 

household is calculated as follows: 
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j

j

iji wx ~
2

1




 ,  240,...,1i ; 2,1j                            (15) 

where ijx  is the efficiency score generated by the jth model for the ith farm household 

and jw~  is the value of  jŵ  that has been placed in [0, 1]. i  is the weighted sum of 

the efficiency scores generated by the SIDF and VRS DEA models.  

 

3.4 The Tobit Model 

We examine the determinants of efficiency using a double-bounded (two-limit) Tobit 

model since efficiency scores are bounded between zero and one. The model is 

specified as:  

 

ii

k

ki uXEFF  


10

1

0

*    if 




 


iii

k

ki UuXL
10

1

0     (16) 

 

where *

iEFF  is a latent variable representing the efficiency measure for each farm 

household, iX  is a 1kx  vector of explanatory variables for the ith farm,  k  is a 1kx  

vectors of unknown parameters to be estimated, iu  are residuals that are 

independently and normally distributed, with mean zero and a constant variance σ
2
, 

and iL  and iU  are the distribution‟s lower and upper censoring points, respectively. 

Denoting iEFF  as the observed dependent variable, 0iEFF  if ;0* iEFF  

*

ii EFFEFF   if ;10 *  iEFF and 1iEFF  if 1* iEFF . 

 

4. Results and discussions 

4.1 Estimates of the parametric stochastic input distance function  

The maximum likelihood (ML) and the ordinary least square (OLS) estimates 

of the Cobb-Douglas SIDF are presented in Table 3. In order to qualify as a well-

behaved model, SIDF needs to be non-decreasing in inputs and decreasing in outputs 
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(Färe et al., 1994). Result shows that all variables are significant at 1% and have 

expected signs and therefore satisfies the required conditions for monotonicity. For 

the parametric stochastic input distance function, the return to scale is computed as 

the inverse of the negative of the output coefficient (Estache et al., 2004; Coelli et al., 

2005). The estimated coefficient of output is less than one in absolute terms indicating 

increasing returns to scale (i.e., -1/-0.740=1.351).  

The estimate of the variance parameter, , is 0.83 and is significant at 1% 

implying that 83% of the total variation in output is due to inefficiency. This result is 

confirmed by conducting a likelihood ratio test which tests the hypothesis of OLS 

model versus input distance frontier model. LR test statistic is 13.23 and this is 

significant when compared with the mixed chi-square value of 5.412 at one degree of 

freedom. Therefore, the adequacy of the OLS model in representing the data is 

rejected.  

Table 3: The OLS and maximum likelihood estimates of the SIDF  

Variable Mean Parameter OLS estimates ML estimates 

INTERCEPT    3.718*** 

(0.200) 

3.883*** 

(0.216) 

PROD 1320.38   -0.729*** 

(0.021) 

-0.740*** 

(0.021) 

LAND 1.208 
1  0.679*** 

(0.022) 

0.667*** 

(0.024) 

LAB 111.195 
2  0.219*** 

(0.021) 

0.233*** 

(0.023) 

FERT 115.185 
3  0.036*** 

 

0.038*** 

(0.003) 

OTHER 56.343 
4  0.067 0.061

a
 

SIGMA-SQUARED  222

vu    
 

0.043*** 

(0.006) 

GAMMA  22 / u  
 

0.825*** 

(0.060) 

LLF   125.479 132.274 

***significant at 1% level. standard errors are shown in parenthesis. 
a 
the estimate 

of 4 is computed by the homogeneity condition 
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4.2 Comparison of efficiency scores from the alternative approaches  

The descriptive statistics of efficiency scores from the two models are 

presented in Table 4.  The mean technical efficiency score from the SIDF model is 

86.7. This implies that farmers are operating 13.4% below the frontier. Therefore, 

based on the SIDF result, farmers can still improve their production of maize by 

13.4% given the available resources. The mean technical efficiency from the VRS 

DEA is 85.5.  This implies that farmers are operating 14.5% below the frontier. 

Therefore, based on the VRS DEA result, farmers can still improve their production 

of maize by 14.5% given the available resources. The efficiency estimates from the 

non-parametric model are slightly lower than that of the parametric model. This is 

because the non-parametric approach attributes all deviations from the frontier to 

inefficiency. Further, the efficiency estimates from the parametric distance function is 

less variable than that of the non-parametric approach.  

 

Table 4: Efficiency estimates from alternative models 

Efficiency index (%) SIDF VRS DEA 

Mean 86.7 85.5 

Min 64.3 51.5 

Max 97.1 100.0 

SD 7.6 12.9 

CV 8.8 15.1 

CV = coefficient of variation; Min = minimum; Max = maximum; SD = standard 

deviation 

 

To assess the overall consistency of the two models in ranking individual 

farms in terms of efficiency, the coefficient of Spearman rank-order correlation was 

calculated.  Results are presented in Table 5. The Spearman‟s rank correlation 
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coefficients for technical efficiency from the two models are positive and highly 

significant suggesting that the different farm  households rank similarly when they are 

ordered according to either their parametric or nonparametric efficiency scores. 

Herrero (2005) and Cuesta et al. (2009) obtained similar high correlation between 

technical efficiency estimates from parametric stochastic and non-parametric distance 

functions. The consistency of results from these alternative approaches provides a 

justification for an integrated approach.  

Table 5: Spearman’s rank correlations among efficiency scores  

 SIDF VRS DEA 

SIDF 1.000 0.705*** 

VRS DEA  1.000 

*** significant at 1% level 

 

4.3 Efficiency scores and distribution from the integrated model 

The results of efficiency distributions and some descriptive statistics from the 

PCA model are presented in Table 6. The mean technical efficiency index is 86.2. 

This implies that farmers are operating 13.8% below the frontier. Therefore, based on 

the integrated model result, farmers can still improve their production of maize by 

13.8% given the available resources. On the other hand,  if the average farm  

household in the sample was to achieve the technical efficiency level of its most 

efficient counterpart, then the average farm household could realize a 14.87% cost 

savings (i.e., 1-[84.2/98.9]). A similar calculation for the most technically inefficiency 

farm household reveals a cost saving of 47.8% (i.e., 1- [56.6/98.9]).  
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Table 6: Efficiency estimates from the integrated model 

Efficiency index (%) Number Percent 

≤ 50 0 0 

51-60 3 1.25 

61-70 17 7.08 

71-80 30 12.50 

81-90 108 45.00 

91-100 82 34.17 

Mean 86.20  

Min 59.71  

Max 98.31  

SD 9.11  

CV 10.57  

CV = coefficient of variation; Min = minimum; Max = maximum; SD = standard 

deviation 

 

4.4 Determinants of technical efficiency 

 The Tobit estimates of the determinants of technical efficiency from the 

integrated model are reported in Table 7. The significance of the likelihood ratio (LR) 

test in each model implies the joint significance of all variables included in the model. 

The effect of age on efficiency could be ambiguous, depending on whether older 

farmers are more experienced or more likely to stick to farming traditions and less 

likely to adopt new technologies. Age has a positive sign and significant impact on 

technical efficiency. Thus, the variable indexes experience and serve as a proxy for 
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human capital showing that farmers with greater farming experience will have better 

management skills and thus higher efficiency than younger farmers. The positive and 

significant impact of age is consistent with the findings of Khai et al. (2008). The 

second human capital variable, education has positive and significant impact on 

technical efficiency implying that the more educated a farmer is the more he is able to 

produce at or near the frontier. The result is consistent with those of Wadud and 

White (2000) and Oyewo and Fabiyi (2008).  

 

Table 7: Determinants of technical efficiency 

Variable Coefficient Standard Error 

Gender -0.014 0.013 

Age 0.003*** 0.000 

Education 0.003*** 0.001 

Household size 0.001** 0.001 

Land -0.004 0.009 

Off farm work -0.014 0.009 

Membership of Farmer group 0.053*** 0.015 

Extension -0.002 0.002 

Credit 0.031** 0.012 

Market -0.001* 0.001 

Intercept 0.685*** 0.026 

LLF 323.564  

LR Test 190.74***  
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Household size was found to be positively and significantly related to 

technical efficiency. This finding indicates the importance of abundant labour supply 

especially for labour intensive farming. Membership in a farmer group indexes social 

capital and affords the farmers opportunity of sharing information on modern maize 

practices by interacting with others as well as provides farmers with bargaining power 

in the input, output and credit markets. As expected, this variable was found to be c 

positive and significant. The positive and significant impact is consistent with the 

findings of Ogunyinka and Ajibefun (2004). Credit has a positive and significant 

effect on technical efficiency. This is as expected since the availability of credit loses 

the production constraints thus facilitating timely purchase of inputs and therefore 

increases productivity via efficiency. The result is consistent with the findings of 

Muhammad (2009) but contrast with that of Haji (2006) who rather found a negative 

though not significant impact of credit access to technical efficiency.  

Market was included to capture farmers‟ access to market. It serves as a proxy 

for the development of road and market infrastructures. It is generally believed that 

farms located closer to the market are more efficient than the farms located farther 

from the market. This expectation was satisfied in this study as the market was 

correctly signed and had significant impact on technical efficiency. 

 

5. Conclusion and policy implications 

The study evaluated the performance of small scale maize producers in 

Nigeria using three alternative approaches, namely parametric  stochastic input 

distance function (SIDF) and two non-parametric distance functions (VRS DEA and 

CRS DEA).  Results show that maize farmers are operating below the frontier. 

Technical efficiency estimates from SIDF, VRS DEA and CRS DEA models are 
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86.7%, 85.5% and 80.1% respectively. The efficiency estimates obtained from the 

three models are positively and significantly correlated. Given the high correlation 

between the two models in our analysis, and for individual variance and bias 

reduction, the efficiency scores from these models for each farmer are further 

combined into a single index using the principal component analysis (PCA) approach. 

Technical efficiency from the integrated model is 86.2%. This implies that the 

production of maize could be increased by 13.8% by improving farm efficiency. The 

result that farmers have achieved high technical efficiency supports Schultz‟s 

(Schultz, 1964) „„poor but efficient‟‟ hypothesis, which implies that opportunities for 

production gains through efficiency improvement are limited and hence new 

technologies must be introduced to enhance the productivity of such systems. 

Complementary policy interventions to enhance the success of any technological 

package may include access to credit, market, formal education among others. In 

general, agriculture in Nigeria needs total transformation.  
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