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Summary: The improvement of data management and data capturing techniques has led to the
availability of large amounts of data for analysis. This is especially true in the field of spatial data,
where data is indexed by location. Traditionally, spatially correlated data has been analysed using
methods that rely on the spatial component of the data. This article will compare the results of
using traditional spatial methods such as Kriging and geographically weighted regression against
the use of other statistical data mining methods, given the large amount of data available. Using a
dataset containing property values for the Tshwane Metropolitan area, different spatial and statistical
models will be applied for predictive purposes in order to determine which model represents the data
most accurately. Finally, these methods will be combined using stacking, to determine whether the
combination of models has better predictive abilities than the single models.

1. Introduction

The improvement of data capturing and storing techniques has led to an increase in the amount
of information available for analysis. This improvement has also been seen in the field of spatial
data, leading to high dimensional datasets with many observations that are indexed by location. In
this paper, methods that have been used in the analysis of large amounts of data will be compared to
spatial statistical methods in which the spatial aspect of an observation is taken as the most important
variable. This paper will also consider combining the two approaches using the method of stacking,
which results in a model that performs relatively well in all regions.

2. Dataset

The data that will be used in this application is property valuation data of the Tshwane Metropolitan.
The dataset has approximately 400 000 observations (after cleaning the dataset) and has variables
regarding the value of the property, size of the property, the land rights, land use, whether the owner
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is private and whether the property can be charged rates. The dependent variable is property value.
In order to account for the high variability in the scale, the dependent variable was transformed into
the log of rand per area (calculated by dividing the property value by the size of the property). The
models will be used to predict property value, and will be compared on the basis of how well they
predict the property value.

3. Data Mining Models

Three statistical models commonly used in data mining were considered, Classification and Re-
gression Trees (CART), Artificial Neural Networks (ANN) and Multivariate Adaptive Regression
Splines (MARS).

3.1. Artificial Neural Networks

An artificial neural network is comprised of many interconnected neurons. These neurons simul-
taneously receive inputs and evaluate their outputs. In the first “training” phase the weights are
determined using a subset of the data, and in the second “recognition” phase these weights are tested
on another subset. The network is evaluated based on the sum of squared error between the out-
put and true property value. ANN are most commonly used in applications involving speech or
image recognition, classification and prediction problems. This method is also used to model high
dimensional time series data (Gardner and Dorling, 1998). In this case, due to the high number of
observations, a sample of size 30 000 from the dataset was used to build the network. The network
had 30 hidden layers, in order to account for the number of observations and variables. When this
model was used to classify the entire dataset, an R? of 0.7264 was achieved.

3.2. C(lassification and Regression Trees

Classification and regression trees (CART) refers to a method of classification commonly used for
high dimension data. This method is particularly relevant in situations where the data is of mixed
type (both qualitative and quantitative) or does not conform to usual assumptions. CART is a popular
method in practice due to its lack of prior assumptions regarding the data. This method differs from
cluster analysis in that it allows for a quantitative response variable (Breiman, Friedman, Olshen and
Stone, 1984). The aim of CART is to classify the data into J mutually exclusive classes, contained in
the set C in terms of a dependent variable. The classification is based on a set of predictor variables
and is done in such a way that within group variance Y .;,ses Ve Ve is minimised, where N, is the
number of observations in class ¢ and V, is the variance of class ¢. The process begins with all
observations in a single group and then splits this group into classes in a stepwise fashion, based
on the predictor variables, in order to minimise this variance (Shalizi, 2009). The classification
and regression tree identified the binary variable separating development types (sectional schemes
against single properties) as the most important discriminator. The remainder of the discriminators
were location based. This model resulted in an R? of 0.7627.
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3.3. Multivariate Adaptive Regression Splines

Multivariate adaptive regression splines, or MARS, refers to a regression method that is used as
a solution to nonlinearity (Izenman, 2008). It is often applied in situations when there are many
variables for a large number of observations (Izenman, 2008). The model involves recursive par-
titioning, separating the entire dataset into smaller segments to which regression models (splines)
can be fitted. The model itself is a weighted sum of basis functions, which in turn are comprised of
the products between the splines. The basis functions to be included are determined in a stepwise
fashion, in which terms are added to the model in order to reduce the sum of squares. This results in
a highly flexible model. It can also be considered as an expansion of the piecewise linear regression
method (Leathwick, Rowe, Richardson, Elith and Hastie, 2005).

The MARS model used in this case was limited to second degree interaction (that is, it limited
the basis function to be comprised of the product of no more than 2 splines). Again, the binary
variable indicating development type was the most significant variable, followed by a binary variable
indicating whether the property had residential rights, and finally the location of the property. The
MARS model performed the best of the statistical methods, resulting in an R? 0f 0.821.

4. Spatial Models

There were two spatial methods considered in this study, namely geographically weighted regression
(GWR) and Kriging.

4.1. Geographically Weighted Regression

As a special form of weighted regression, geographically weighted regression is commonly used
to deal with serial correlation that arises when the assumption of stationarity in the data does not
hold. The stationarity assumption implies that if the explanatory variables are the same for any
observations, the response will also be the same. Models in which the stationarity assumption is
valid are often termed global models, as the model can be applied over the entire dataset. If these
global models are fitted to datasets in which stationarity is not present (that is, in datasets where the
relationships between observations cannot be expected to be homogenous over the entire dataset),
the result is serial correlation — as a result of the spatial dependence between observations (Charlton
and Fotheringham, 2009).

Geographically weighted regression is a specific form of weighted regression, in which the
weighting matrix is based on the distance of the observations from one another. The weights are
generally Gaussian based and the parameters may be estimated using the formula:

B(u) = (X"W(u)X) 'X"W(u)Y

where W(u) represents the weights matrix at location w. Thus parameters are estimated for each
specific location u.

This flexible model allows the relationships between variables to change based on location —
thus allowing for a spatial relationship in which observations that are close to each other are more
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(a) ANN Errors (b) Kriging Errors (c) Population Density

influential than observations which are far apart (Charlton and Fotheringham, 2009). When all ob-
servations are included in the geographically weighted regression model, the model becomes very
computationally expensive, due to the construction of the weights matrix. When a subset of the data
is used, the model performs relatively well with an R of 0.77.

4.2. Kriging

Kriging is one of the most popular methods for analysing spatially correlated data. This method is
appropriate for Geostatistical data or discrete point data as it essentially considers the impact of an
observation on surrounding observations. It is also a form of weighted regression, which uses the
spatial covariance as weights. Thus it essentially weights observations based on their relationship to
neighboring observations. This method could also be considered as a data driven method, since the
weights are based on observed values (Bohling, 2005).

In order to determine which Kriging model should be used, the semi-variogram (which measures
he correlation between 2 points as a function of distance) was drawn and examined. The data was
most appropriately modeled by universal Kriging (that is, a second order trend is removed and Krig-
ing is performed on the residuals) using an exponential model of the form y(h)=c(1 — e ), where h
is the the distance between 2 points, a is the maximum range of influence from a point and c is the
value of the semi-variogram function at distance a (Oliver and Webster, 1990) . The Kriging model
performed the best of all models, with an R? of 0.8.

5. Analysis Results

The fact that the Kriging model resulted in the highest R?, when Kriging uses only the location of the
observation in the model and does not consider any other variables, is testament to the importance
of spatial correlation in this case. Even in the statistical models, the location variable was found
to be one of the most significant variables. Upon examining the spatial representation of the error
terms in each model, a pattern is evident. The error maps for the CART and MARS method were not
included, however they also performed better in regions with higher population density. The map
for GWR is not shown since the method did not use the entire dataset and thus is not comparable.
The figures show the difference between the regions that are well predicted using spatial methods
and those using data mining methods. Specifically, spatial methods (Kriging- shown in[I(b)) perform
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well in regions with lower population density (I(c)), that is rural and farming regions, where the
neighbouring properties are all relatively similar. Conversely, the data mining models perform best
in regions of high disparity (ANN error model shown in[I(a)), with many different types of properties
in one area. Since the data mining models make use of variables other than the spatial location, they
are more successful in these areas.

6. Combinining the Models

In order to create a model that could model both types of regions relatively well, stacking was
considered as a method to combine spatial and statistical models (Breiman, 1996). The method of
stacking involves 2 levels, namely level O and level 1. In level 0, a training dataset is used to fit
the methods in question to the data. Predictions are calculated for each of the methods and these
predictions are then used as inputs into a new model. In this case the methods of Kriging, MARS
and ANN will be combined. There were different areas in which each of these methods excelled
(although MARS and ANN both performed well in regions with high disparities, there were some
differences in between the models within those regions), and so the combination of the methods
should provide a model with relatively good predictions for each region. These predictions will then
be combined into a new MARS model. CART predictions were not included since they performed
well in the same regions as MARS and ANN and GWR was not included since the model was
not built on the entire dataset. Although one of the major concerns of stacking is the presence
of multicollinearity (since all predicted values are trying to predict the same output) this may not
be as much of a problem in this analysis, since there are specific regions that are well predicted
by one model but not by the other model. Thus the observations with good predictions for one
model will differ from the observations with good predictions for another model. In order to test
for multicollinearity, the variance inflation factors (VIF) were calculated for all inputs. As a rule of
thumb, a VIF of greater than 10 is an indicator of a high degree of multicollinearity (Gujarati and
Porter, 2009) . However, VIF values of the inputs were not high enough to indicate multicollinearity.
This may be due to the fact that all of these methods complement each other, and do not perform
well in the same regions. The final stacked model is shown in Table 1.

Table 1
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The interpretation of the coefficients is difficult (which is one of the disadvantages of the stacking
method) since the input variables are in fact outputs of other models. MARS appears to be the least
important of the predictors and features only once in an interaction term. The results of the analysis
are promising. When the entire dataset is used in the analysis, the R is 0.90122. Under cross
validation, the model results in an R> of 0.899. Thus even the testing set provides a higher R? than
the best performing single model (Kriging, with an R” of 0.88). Although the results of the analysis
are very positive, more research into the method of stacking is required. The cross validation results
shows that the model can be considered as a more “general” model for the region of Tshwane,
which is a good result. Analysis has also been done on the residuals of the model, and it was found
that there is no serial correlation and they are uncorrelated with the input values. Aerial photographs
may be used to compare the results of the MARS model, ANN mode, Kriging model and the stacked
model. The errors for each model have been plotted over the aerial photograph for various regions.
The same legend has been used for all models. Again, a green dot indicates the prediction error is
low and a red dot indicates that the prediction error is high.

(d) Kriging Region 1 (e) MARS Region 1

(f) ANN Region 1 (g) Stacking Region 1

The first region has a relatively small amount of development. When the Kriging model is applied
(a), it predicts the value of properties very well. However the MARS (b) and ANN (c) models predict
the values very poorly. The stacked model (d) is able to perform as well as Kriging in this case.

The second region shows higher disparities between properties. Although the Kriging model (e)
does not give very bad predictions, there is a set of properties within the neighbourhoods that has
been poorly predicted. Comparatively, the MARS (f) and ANN (g) models manage to predict these
areas well. The stacked model (h) predictive ability is comparable to that of MARS and ANN.
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(h) Kriging Region 2 (i) MARS Region 2

(j) ANN Region 2 (k) Stacking Region 2

(I) Kriging Region 3 (m) MARS Region 3

(n) ANN Region 3 (o) Stacked Region 3

The third region shows an area of plots, or agricultural holdings. The Kriging model (i) predicts
the uniform properties exceptionally well. The MARS model (j) does not predict the uniform prop-
erties to the same accuracy as the Kriging model, but manages to predict results with some degree
of accuracy. The ANN model (k) offers the worst predictions for this area. Again the stacked model
(1) is comparable to the better of the 3 models.
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7. Conclusion

Spatial methods and data mining methods result in relatively good models for spatially indexed
property value data. However, these models perform well in different regions based on the degree of
disparity present between the properties. Spatial methods such as Kriging perform well in regions
with low levels of disparity, where properties are similar whilst statistical methods such as ANN and
MARS perform well in regions of high disparity. Using the method of stacking, these methods may
be combined into a new model. This new model has the ability to predict both types of regions well,
as it uses both spatial and data mining methods. The stacked model has an R* value of 0.901.

References

BOHLING, G. (2005). Kriging. Last accessed: 2013-03-10.

URL: http://people.ku.edu/"gbohling/cpe940/Kriging.pdf

BREIMAN, L. (1996). Stacked regressions. Machine Learning, 24, 49 — 64.

BREIMAN, L., FRIEDMAN, J., OLSHEN, R., AND STONE, C. (1984). Classification and Regression
Trees. Wadsworth International Group.

CHARLTON, M. AND FOTHERINGHAM, A. (2009). Geographically weighted regression. National
Centre for Geocomputation| White Paper].

GARDNER, S. AND DORLING, M. (1998). Artificial neural networks (the multilayer perceptron)-
a review of applications in the atmospheric sciences. Atmospheric Environment, 32(14-15),
2627-2636.

GUJARATI, D. N. AND PORTER, D. C. (2009). Basic Econometrics. McGraw-Hill Irwin, New
York.

IZENMAN, A. (2008). Modern Multivariate Statistical Techniques. Springer.

LEATHWICK, J., ROWE, J., RICHARDSON, J., ELITH, J., AND HASTIE, T. (2005). Using mul-
tivariate adaptive regression splines to predict the distributions of New Zealand’s freshwater
diadromous fish. Freshwater Biology, 50, 2034-2052.

OLIVER, M. AND WEBSTER, R. (1990). Kriging: A method of interpolation for geographical
information systems. International Journal of Geographical Information Systems, 4 (3), 313—
332.

SHALI1ZI, C. (2009). Classification and regression trees. Last accessed: 2013-03-10.

URL: http://www.stat.cmu.edu/ cshalizi


http://people.ku.edu/~gbohling/cpe940/Kriging.pdf
http://www.stat.cmu.edu/~cshalizi

