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ABSTRACT 
Steady laminar natural convection heat transfer inside air-

filled square cavities cooled at one side and partially heated at 
the opposite side, is studied numerically. A computational code 
based on SIMPLE-C algorithm is used for the solution of the 
mass, momentum, and energy transfer equations. Simulations 
are performed for different values of the dimensionless size and 
location of the heater, and the Rayleigh number, whose effects 
on the temperature and velocity fields, and on the heat transfer 
rate across the cavity, are analyzed and discussed.  

 
INTRODUCTION 

Natural convection heat transfer inside rectangular cavities 
with differentially heated sides has been extensively studied, 
being of interest in diverse engineering applications, e.g., heat 
removal from electronic equipment, solar energy collection, 
and heat transfer in buildings. However, in many practical cases 
heating takes place just over a portion of one of the sidewalls, 
whose size and location may affect significantly the amount of 
heat transferred across the enclosure. 

Natural convection inside air-filled rectangular enclosures 
partially heated at one side was studied first by Chu et al. [1], 
who conducted a parametric investigation aimed at determing 
the effects of the heater size and location, as well as those of 
the aspect ratio of the cavity, on the rate of heat transfer and 
fluid circulation. More recently, three-dimensional numerical 
studies were conducted by Frederick and Quiroz [2], on air-
filled cubical enclosures with a cold vertical wall and a hot 
square sector located in the center of the opposite wall, and by 
He et al. [3], on liquid-filled cubical enclosures with a cold 
vertical wall and two square isothermal heaters located one 
above the other on the opposite wall. In addition, recent papers 
with a bearing on this topic are those performed by Deng et al. 
[4], and by Chen and Chen [5], on air-filled square cavities 
cooled at one side and discretely heated at the opposite side and 
at the bottom. 

Actually, since none of these studies contains a general 
correlating-equation for predicting the thermal performance of 
the system, the scope of the present paper is to carry out a study 
of natural convection inside square cavities cooled at one side 
and partially heated at the other side by an isothermal heater of 
variable length and position, in order to derive a heat transfer 
correlation spanning across ranges of the independent variables 
sufficiently wide to be of interest for applications. 

The study is conducted numerically under the assumption of 
two-dimensional laminar flow. A computer code based on the 
SIMPLE-C algorithm is employed for the solution of the mass, 
momentum and energy conservation equations. Simulations are 
performed for air and different values of the dimensionless size 
and location of the heater, and the Rayleigh number based on 
the cavity width, whose effects on the flow and temperature 
fields, as well as on the heat transfer rates, are analyzed in full 
detail and discussed.  
 
MATHEMATICAL FORMULATION 

An air-filled square enclosure of width W is considered. The 
coordinate system is defined so that the x-axis is horizontal, 
while the y-axis is vertical and pointing upwards.  

The cavity is cooled at one side, and partially heated at the 
opposite side. The discrete heat source, of length L, whose 
center is located at a distance d from the bottom endwall of the 
enclosure, is kept at uniform temperature TH, while the cooled 
side is maintained at temperature TC. The remaining upper and 
lower parts of the heated sidewall, as well as the top and bottom 
endwalls of the cavity, are considered perfectly insulated, as 
depicted in Fig. 1, where the (x,y) coordinate system adopted is 
also represented.  

The flow is assumed to be two-dimensional, laminar and 
incompressible, with constant fluid properties and negligible 
viscous dissipation and pressure work. The buoyancy effects on 
momentum transfer are taken into account by the Boussinesq 
approximation.  
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Figure 1 – Sketch of the geometry and coordinate system 
 

Once the above assumptions are used in the conservation 
equations of mass, momentum and energy, and the following 
dimensionless variables are introduced: 
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the following set of governing equations is obtained: 
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In the above equations u and v are the velocity components 
along x and y, respectively, i.e., horizontal and vertical; t is the 
time; T is the temperature; p is the pressure; ρ is the density; g 
is the acceleration of gravity; ν is the kinematic viscosity; Pr is 
the Prandtl number; and Ra is the Rayleigh number defined as: 
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Other parameters which enter into this study are: 
(a)  the dimensionless size of the heater  

W
LE =    0.2 ≤ E ≤ 1          (9) 

(b)  the dimensionless location of the heater  

W
dD =    E/2 ≤ D ≤ 1 − E/2       (10) 

The boundary conditions assumed are the no-slip condition 
U = V = 0 at the four boundary walls, and θ = 1 and θ = 0 at the 
heated and cooled surfaces, respectively.  

The initial conditions assumed are fluid at rest, i.e., U = V = 
0, and uniform temperature θ = 0 throughout the whole cavity. 
 
COMPUTATIONAL PROCEDURE 

The set of governing equations (4)−(7) with the boundary 
and initial conditions stated above is solved through a control-
volume formulation of the finite-difference method.  

The coupling of velocity and pressure is handled through 
the SIMPLE-C algorithm by Van Doormaal and Raithby [6]. 
The QUICK discretization scheme by Leonard [7] is used for 
the evaluation of the interface advection fluxes. A second-order 
backward scheme is used for time stepping.  

Starting from the assigned initial fields of the dependent 
variables across the cavity, at each time-step the discretized 
governing equations are solved iteratively through a line-by-
line application of the Thomas algorithm, enforcing under-
relaxation for convergence.  

The computational spatial domain is covered with a non-
uniform grid, having a concentration of grid lines near the 
boundary walls and both ends of the heat source, and a uniform 
spacing throughout the remainder interior of the cavity. Time 
discretization is chosen uniform. Within each time step, the 
spatial solution is considered to be fully converged when the 
maximum absolute values of both the mass source and the 
percentage changes of the dependent variables at any grid-node 
from iteration to iteration are smaller than the prescribed 
values, i.e., 10−4 and 10−5, respectively.  

Time-integration is stopped once steady-state is reached. 
This means that the simulation procedure ends when the 
percentage difference between the incoming and outgoing heat 
transfer rates, and the percentage changes of the time-
derivatives of the dependent variables at any grid-node between 
two consecutive time-steps, are smaller than the prescribed 
values, i.e., 10−6 and 10−7, respectively.  

Once steady-state is reached, the average Nusselt numbers 
NuH and NuC of the heater and the cooled wall, respectively, are 
calculated: 
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where hH and hC are the average coefficients of convection of 
the heater and the cooled sidewall, respectively, and Qin and 
Qout are the overall incoming and outgoing heat transfer rates 
added to the fluid by the heater and withdrawn from the fluid 
by the cooled sidewall, respectively. The temperature gradients 
at any active boundary surface are evaluated by a second-order 
profile among each wall-node and the next two corresponding 
fluid-nodes.  

Of course, since at steady-state the incoming and outgoing 
heat transfer rates are the same, that is, Qin = −Qout = Q, the 
following relationship between NuH and NuC holds: 

E
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Tests on the dependence of the results on both grid-size and 
time-step have been performed for several combinations of the 
independent variables E, D and Ra. The optimal grid-size and 
time-step used for computations, which represent a good 
compromise between solution accuracy and computational time 
required, are such that further refinements do not yield for 
noticeable modifications neither in the heat transfer rates nor in 
the flow field, that is, the percentage difference between the 
first and the second members of eq. (13), and the percentage 
changes of the maximum horizontal and vertical velocity 
components on the midplanes of the enclosure, are smaller than 
the prescribed accuracy values, i.e., 1% and 2%, respectively. 
Typically, the number of nodal points and the time step used for 
computations lie in the ranges between 40×40 and 80×400, and 
between 10−6 and 10−3, respectively.  

Moreover, some test runs have also been executed with the 
initial uniform dimensionless temperature of the fluid set to 0.5 
or 1, in order to determine the effect of the initial conditions on 
the steady-state flow and temperature fields. Indeed, solutions 
practically identical to those obtained for θ = 0 were obtained 
for all the configurations examined. 

Finally, in order to validate the numerical code used for the 
present study, the steady-state solutions obtained for τ → ∞ in a 
square cavity with differentially heated sidewalls and adiabatic 
top and bottom endwalls for Rayleigh numbers from 103 to 106, 
have been compared with the benchmark data of de Vahl Davis 
[8]. In particular, the average Nusselt numbers as well as the 
maximum horizontal and vertical velocity components, on the 
vertical and horizontal midplanes, respectively, are well within 
1% of the benchmark data, as reported in Table 1. It is worth 
noticing that our dimensionless velocity results have been 
multiplied by the Prandtl number before being inserted in Table 
1, so as to account for the choice of the ratio between kinematic 
viscosity and characteristic length of the cavity as scale factor 
for the velocity, instead of the ratio between thermal diffusivity 
and characteristic length, used in ref. [8]. More details on the 
code validation are available in Cappelli D’Orazio et al. [9]. 

Table 1 – Comparison of thermally-driven square cavity solutions 
 

Ra  Umax Vmax Nuav 
103 Present 3.654 3.708 1.116 
 Benchmark [8] 3.649 3.697 1.118 
     

104 Present 16.242 19.714 2.254 
 Benchmark [8] 16.178 19.617 2.243 
     

105 Present 35.008 68.109 4.506 
 Benchmark [8] 34.722 68.590 4.519 
     

106 Present 65.226 221.598 8.879 
 Benchmark [8] 64.630 219.360 8.800 

 

RESULTS AND DISCUSSION 
Numerical simulations are performed for Pr = 0.71, which 

corresponds to air, and different values of the dimensionless 
size of the heater, E, in the range between 0.2 and 1, the 
dimensionless location of the heater, D, in the range between 
E/2 and (1 − E/2), and the Rayleigh number of the enclosure, 
Ra, in the range between 103 and 107. 

A selection of local results is presented in Figs. 2−11, where 
isotherm contours, corresponding to equispaced values of θ in 
the range between 0 and 1, are plotted for different sets of 
values of E, D, and Ra, in order to highlight the effects of any 
independent variable on the temperature field, and then on the 
amount of heat exchanged at the heater surface. In particular, 
the effects of E and Ra are pointed out in Figs. 2−6, which are 
referred to D = 0.5, while those of D and Ra are illustrated in 
Figs. 7−11, which are referred to E = 0.2.  

As regards the fluid motion, the corresponding streamline 
plots are omitted for the sake of brevity. Indeed, as expected, 
for all the configurations examined the flow field consists of a 
single roll-cell which derives from the rising of the hot fluid 
adjacent to the heater and its descent along the opposite cooled 
sidewall. Indications on the rate of fluid circulation are reported 
in Tables 2−3 in terms of ⎪ψ⎪max, i.e., the maximum absolute 
value of the dimensionless stream function, defined as usual 
through U = ∂Ψ/∂Y and V = −∂Ψ/∂X.  

As far as the overall results are concerned, the heat transfer 
performance of the cavity is expressed in terms of the average 
Nusselt number of the cooled wall NuC, which is considered 
more suitable for this purpose than that of the heater NuH. In 
fact, once both Ra and D are assigned, the amount Q of heat 
transferred across the cavity obviously increases as the length E 
of the heater increases. Correspondingly, a Nusselt number 
which would represent the thermal behavior of the cavity “at a 
glance” should increase with increasing E. On the other hand, 
according to eq. (11), it is NuH ∼ Q/E, thus implying that NuH 
may either increase or decrease with increasing E, depending 
on whether ∂Q/∂E is positive or negative. In contrast, based on 
eq. (12), it is NuC ∼ Q, which means that NuC unequivocally 
increases with E. Moreover, the Nusselt number NuC coincides 
with the average Nusselt number of the heater Nu* when its 
size L is used as characteristic length instead of the width W of 
the cavity:  



    

 

         
Figure 2 – Isotherm lines for Ra = 103, D = 0.5, and E = 0.2, 0.4, 0.6, 0.8, 1.0 

 

         
Figure 3 – Isotherm lines for Ra = 104, D = 0.5, and E = 0.2, 0.4, 0.6, 0.8, 1.0 

 

         
Figure 4 – Isotherm lines for Ra = 105, D = 0.5, and E = 0.2, 0.4, 0.6, 0.8, 1.0 

 

         
Figure 5 – Isotherm lines for Ra = 106, D = 0.5, and E = 0.2, 0.4, 0.6, 0.8, 1.0 

 

         
Figure 6 – Isotherm lines for Ra = 107, D = 0.5, and E = 0.2, 0.4, 0.6, 0.8, 1.0 

 



    

 

         
Figure 7 – Isotherm lines for Ra = 103, E = 0.2, and D = 0.1, 0.3, 0.5, 0.7, 0.9 

 

         
Figure 8 – Isotherm lines for Ra = 104, E = 0.2, and D = 0.1, 0.3, 0.5, 0.7, 0.9 

 

         
Figure 9 – Isotherm lines for Ra = 105, E = 0.2, and D = 0.1, 0.3, 0.5, 0.7, 0.9 

 

         
Figure 10 – Isotherm lines for Ra = 106, E = 0.2, and D = 0.1, 0.3, 0.5, 0.7, 0.9 

 

         
Figure 11 – Isotherm lines for Ra = 107, E = 0.2, and D = 0.1, 0.3, 0.5, 0.7, 0.9 

 



    

Table 2 –⎪Ψ⎪max for D = 0.5, Ra = 103 to 107 and E = 0.2 to 1 

D = 0.5  ⏐ψ⏐max         
Ra    E = 0.2 0.4 0.6 0.8 1 

103 1.26 1.46 1.57 1.62 1.64 

104 5.47 6.19 6.68 6.98 7.09 

105 10.16 11.33 12.33 13.12 13.45 

106 20.66 21.77 21.79 22.56 23.53 

107 39.69 40.24 38.21 39.81 42.23 
 

Table 3 –⎪Ψ⎪max for E = 0.2, Ra = 103 to 107 and D = 0.1 to 0.9 

E = 0.2  ⏐ψ⏐max         
Ra   D = 0.1 0.3 0.5 0.7 0.9 

103 1.02 1.47 1.26 1.08 0.82 

104 5.93 6.35 5.47 4.30 3.38 

105 14.81 13.43 10.16 8.00 6.38 

106 29.82 26.17 20.66 13.93 10.12 

107 59.73 49.44 39.69 27.96 16.03 
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which actually delivers a better information on the effectiveness 
of heat removal from the heater rather than NuH.  
Distributions of Nu* ≡ NuC are plotted against the Rayleigh 
number Ra in Figs. 12 and 13, for D = 0.5 and E = 0.2, 0.6, and 
1, and for E = 0.2 and D = 0.1, 0.5, and 0.9, respectively. It may 
be noticed that the heat transfer performance of the enclosure 
increases with Ra and E, while showing a peak for intermediate 
values of D, as pointed out in Fig. 14, where the distributions of 
Nu*≡ NuC  vs. D are reported for E = 0.2 (that may be considered 
of major interest for applications, since usually the size of the 
heater is sufficiently smaller than the characteristic length of its 
enclosure) and different values of Ra. 

The existence of an optimum position of the heater for 
maximum heat removal may be explained by considering that 
when the heater is located too close to either the bottom or the 
top wall of the enclosure, the amount of heat exchanged by its 
lower portion or upper portion, respectively, is smaller than that 
correspondingly exchanged when the heater is located in the 
middle of the wall, as the rising jet of fluid cannot wash the 
entire surface of the heater. This is, e.g., shown in Fig. 15 where 
the distributions of the local Nusselt number along the heater 
surface [−(∂θ/∂X)]X=0 are plotted for Ra = 105, E = 0.2, and 
different values of D.  

All the values obtained for the optimum position Dopt of the 
heater for E ≤ 0.6 and 103 ≤ Ra ≤ 107 may be correlated to E 
and Ra through the following monomial equation: 
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Figure 12 – Distributions of Nu* vs. Ra for D = 0.5 and different 

values of the dimensionless size of the heater E 
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Figure 13 – Distributions of Nu* vs. Ra for E = 0.2 and different 

values of the dimensionless location of the heater D 
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Figure 14 – Distributions of Nu* vs. D for E = 0.2 and different 

values of the Rayleigh number Ra 
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Figure 15 – Distributions of the local Nusselt number along the heater 

for Ra = 105, E = 0.2 and different values of D 
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Figure 16 – Comparison between equation (15) and the numerical 
results obtained for Dopt 
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Figure 17 – Comparison between the Nusselt numbers predicted by 

equations (16)−(19) and those derived from the numerical simulations. 

with a 3.6% standard deviation of error and a ±6.4% range of 
error, as shown in Fig. 16. 

Finally, the numerical results obtained for Nu* ≡ NuC may 
be expressed as a function of the independent variables Ra, E 
and D through the following semi-empirical correlations: 

 for D ≤ Dopt and E ≤ 0.6, and 103 ≤ Ra ≤ 107  

[ ]( ) 25.05.1
DD

2
D ERa C)Ra(logB)Ra(logA*Nu ⋅++=       (16) 

where 

005.0)DD(03.0A optD −−=                    (17) 

06.0)DD(3.0B optD +−−=          (18) 

1.0)DD(5.0C optD +−=           (19) 

with a 5.9% standard deviation of error and a range of error 
from  −9.5% to + 7.3%, as shown in Fig. 17; 

 for (D > Dopt and E ≤ 0.6) or E > 0.6, and 103 < Ra ≤ 107 

[ ]( ) 25.05.101.0
opt

027.0 ERa Ra)DD(68.0Ra19.0*Nu ⋅−−= −   (20) 

with a 4.6% standard deviation of error and a range of error 
from  −8.6% to + 10%, as shown in Fig. 18. 

Note that the value for Dopt to be employed in eqs. (17)−(20) 
is the one obtained by eq. (15). In particular, this holds true also 
for E > 0.6, which implies the use of eq. (20), although eq. (15) 
is applicable only for E ≤ 0.6 − it is plain that the value of Dopt 
derived from eq. (15) for E > 0.6 has the only scope to calculate 
Nu* through eq. (20), ceasing completely to have the meaning 
of optimum position of the heater for maximum heat removal. 
 
CONCLUSIONS 

Steady laminar natural convection heat transfer inside air-
filled square cavities cooled at one side and partially heated at 
the  opposite side, has  been  studied  numerically.  Simulations 
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Figure 18 – Comparison between the Nusselt numbers predicted by 

equation (20) and those derived from the numerical simulations. 



    

have been performed for different values of the dimensionless 
size of the heater E (i.e., the ratio between the length of the 
heater and the width of the cavity) in the range between 0.2 and 
1, the dimensionless location of the heater D (i.e. the ratio 
between the distance of the center of the heater from the bottom 
endwall of the cavity and the width of the cavity) in the range 
between E/2 and (1 − E/2), and the Rayleigh number Ra of the 
cavity, based on its width, in the range between 103 and 107. 

It has been found that the heat transfer performance of the 
cavity increases with increasing the Rayleigh number and the 
size of the heater. As far as the heater location is concerned, the 
amount of heat transferred across the enclosure has a peak for 
intermediate positions, the higher is the Rayleigh number, the 
closer to the bottom endwall of the enclosure is such optimum 
location of the heater for maximum heat removal.  
 
NOMENCLATURE 
D dimensionless location of the heater = d/W 
d distance of the center of the heater from the bottom wall  
E dimensionless size of the heater = L/W 
g gravitational acceleration  
h average coefficient of convection 
L length of the heater 
Nu average Nusselt number based on W = hW/k 
Nu* average Nusselt number based on L = hL/k 
P dimensionless pressure 
p pressure 
Pr Prandtl number = ν/α  
Q heat transfer rate 
Ra Rayleigh number = gβ(TH – TC)W3Pr/ν2 
T temperature 
t time 
U dimensionless horizontal velocity component 
u horizontal velocity component 
V dimensionless vertical velocity component 
v vertical velocity component 
W width of the cavity 
X dimensionless horizontal coordinate  
x horizontal coordinate 
Y dimensionless vertical coordinate  
y vertical coordinate 

Greek symbols 
α thermal diffusivity of the fluid 
β coefficient of volumetric thermal expansion of the fluid 
 

 

 

 

 

 
 
 
 

ν kinematic viscosity of the fluid 

θ dimensionless temperature 
ρ density of the fluid 
τ  dimensionless time 
ψ dimensionless stream function 

Subscripts 
C cold 
H hot 
max maximum value  
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