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ABSTRACT 
Steady laminar natural convection heat transfer inside air-

filled rectangular cavities with differentially heated horizontal 
and vertical opposite walls, is studied numerically. Both cases 
of bottom endwall either at higher or lower temperature than 
the top endwall are considered. A computer code based on the 
SIMPLE-C algorithm is employed for the solution of the mass, 
momentum, and energy conservation equations. Simulations are 
performed for different values of the aspect ratio of the cavity 
from 0.25 to 4, and the Rayleigh number based on the cavity 
height in the range between 103 and 106, whose effects on the 
flow and temperature fields, and on the heat transfer rate across 
the enclosure, are analyzed in details.  

 
INTRODUCTION 

Most of the scientific work conducted in the past on natural 
convection inside rectangular enclosures has been substantially 
oriented to study the unidirectional heat flows which originate 
when the imposed heat flux or temperature difference is either 
simply horizontal or vertical. 

Actually, much more complex boundary conditions may be 
encountered in practical cases, which has motivated a number 
of researchers to carry out studies on situations wherein a 
multi-directional heat flow is established across the enclosure.  

This is, e.g., the case of the studies performed by: Kimura 
and Bejan [1], on enclosures heated from one side and cooled 
from below; November and Nansteel [2], and Aydin et al. [3], 
on enclosures heated from below and cooled at a single side, or 
heated at one side and cooled from the top; Ganzarolli and 
Milanez [4], and Basak et al. [5], on enclosures heated from 
below and cooled at both sidewalls; Ostrach and Raghavan [6], 
Shiralkar and Tien [7], and Cianfrini et al. [8], on enclosures 
with differentially heated horizontal and vertical opposite walls.  

With specific reference to the last configuration cited above, 
in which a horizontal and a vertical temperature gradients are 
simultaneously imposed across the cavity, most of the interest 
has been addressed to the square geometry, mainly with the aim 

of evaluating the effects of either stabilizing or destabilizing 
vertical temperature differences on the horizontal heat transfer. 
In contrast, despite the importance in a number of applications, 
a much smaller degree of attention has been paid to the role 
played by the aspect ratio of the enclosure. 

In this context, the aim of the present paper is to study the 
behavior of air-filled shallow and tall cavities, whose opposite 
walls are differentially heated, under the assumption that the 
horizontal and vertical temperature differences are the same, 
and that the mean temperature level of the horizontal walls is 
the same as that of the vertical sidewalls, which means that two 
adjacent walls of the enclosure are heated at same temperature 
TH, while the other two walls are cooled at same temperature 
TC. Both thermal configurations of bottom wall either heated or 
cooled with respect to the opposite top wall are examined.  

The study is carried out numerically under the assumption 
of two-dimensional laminar flow. A computer code based on 
the SIMPLE-C algorithm is used for the solution of the mass, 
momentum and energy conservation equations. Simulations are 
executed for different values of the height-to-width aspect ratio 
of the cavity in the range between 0.25 and 4, and the Rayleigh 
number based on the cavity height in the range between 103 and 
106, whose effects on the flow and temperature fields, as well 
as on the heat transfer rates, are analyzed in full detail and 
discussed. Dimensionless heat transfer correlating equations are 
also proposed. 

 
MATHEMATICAL FORMULATION 

An air-filled rectangular enclosure of height H and width L, 
is considered. The cavity is heated at one side, and cooled at the 
other side, maintained at temperatures TH and TC, respectively. 
The same temperature differential (TH − TC) is imposed at the 
horizontal walls. Both cases of enclosure with bottom endwall 
either heated or cooled are analyzed, the former case being 
denoted as configuration BH, the latter as configuration BC, as 
sketched in Fig. 1, where the (x,y) coordinate system adopted is 
also represented.  
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Figure 1 – Sketch of the geometry and coordinate system 

 
The flow is assumed to be two-dimensional, laminar and 

incompressible, with constant fluid properties and negligible 
viscous dissipation and pressure work. The buoyancy effects on 
momentum transfer are taken into account by the Boussinesq 
approximation.  

Once the above assumptions are used in the conservation 
equations of mass, momentum and energy, and the following 
dimensionless variables are introduced: 
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the following set of governing equations is obtained: 
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In the above equations u and v are the velocity components 
along x and y, respectively, i.e., horizontal and vertical; t is the 
time; T is the temperature; p is the pressure; ρ is the density; g 
is the acceleration of gravity; ν is the kinematic viscosity; Pr is 
the Prandtl number; and Ra is the Rayleigh number defined as: 
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The boundary conditions assumed are the no-slip condition 
U = V = 0 at the four boundary walls, and θ = 1 at the heated 
walls and θ = 0 at the cooled walls.  

The initial conditions assumed are fluid at rest, i.e., U = V = 
0, and uniform temperature θ = 0 throughout the whole cavity. 
 
COMPUTATIONAL PROCEDURE 

The set of governing equations (4)−(7) with the boundary 
and initial conditions stated above is solved by a control-
volume formulation of the finite-difference method.  

The coupling of velocity and pressure is handled through 
the SIMPLE-C algorithm by Van Doormaal and Raithby [9]. 
The QUICK discretization scheme by Leonard [10] is used for 
the evaluation of the interface advection fluxes. A second-order 
backward scheme is used for time stepping. Starting from the 
assigned initial fields of the dependent variables across the 
cavity, at each time-step the discretized governing equations are 
solved iteratively through a line-by-line application of the 
Thomas algorithm, enforcing under-relaxation for convergence.  

The computational spatial domain is covered with a non-
uniform grid, having a concentration of grid lines near the 
boundary walls, and a uniform spacing across the remainder 
interior of the enclosure. Time discretization is chosen uniform. 
Within each time step, the spatial solution is considered to be 
fully converged when the maximum absolute values of both the 
mass source and the percentage changes of the dependent 
variables at any grid-node from iteration to iteration are smaller 
than the prescribed values, i.e., 10−4 and 10−5, respectively. 
Time-integration is stopped once steady-state is reached. This 
means that the simulation procedure ends when the percentage 
difference between the incoming and outgoing heat transfer 
rates, and the percentage changes of the time-derivatives of the 
dependent variables at any grid-node between two consecutive 
time-steps, are smaller than the prescribed values, i.e., 10−6 and 
10−7, respectively.  

Once steady-state is reached, the average Nusselt numbers 
of the heated and cooled sidewalls NuH and NuC, and those of 
the bottom and top endwalls NuB and NuT, are calculated: 
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where A = H/L is the height-to-width aspect ratio of the cavity, 
and the temperature gradients are evaluated by a second-order 
profile among each wall-node and the next two corresponding 
fluid-nodes.  



    

It is worth noticing that, for all the configurations analyzed, 
the centro-symmetry of the system has brought to the following 
results: 

CH NuNu =                              (13) 

TB NuNu =                              (14) 

which means that whatever heat is transferred to the fluid at the 
heated sidewall, the same amount of heat is withdrawn from the 
fluid at the opposite cooled sidewall; a similar situation exists 
for the horizontal walls. This implies that, at steady-state, the 
Nusselt numbers NuH and NuC may be interpreted as the 
average Nusselt number across the cavity along the x-direction, 
i.e., the horizontal average Nusselt number Nuh, while the 
Nusselt numbers NuB and NuT represent the vertical average 
Nusselt number Nuv: 

CHh NuNuNu ==                              (15) 

TBv NuNuNu ==                              (16) 

The overall thermal performance of the enclosure is then 
expressed in terms of the average Nusselt number Nu of the 
whole cavity, which is calculated as: 
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Tests on the dependence of the results on both grid-size and 
time-step have been performed for several combinations of A 
and Ra, for both configurations BH and BC. The optimal grid-
size and time-step used for computations, representing a good 
compromise between solution accuracy and computational time 
required, are such that further refinements do not yield for any 
noticeable modification neither in the heat transfer rates nor in 
the flow field at steady-state, that is, the percentage changes of 
Nuh and Nuv, as well as those of the maximum horizontal and 
vertical velocity components U and V on the two midplanes of 
the enclosure, are smaller than the prescribed accuracy values, 
i.e., 1% and 2%, respectively. Typically, the number of nodal 
points and the time stepping used for computations lie in the 
ranges between 40×40 and 80×400, and between 10−6 and 10−3, 
respectively.  

Moreover, some test runs have also been executed with the 
initial uniform dimensionless temperature of the fluid set to 0.5 
or 1, in order to determine the effect of the initial conditions on 
the steady-state flow and temperature fields. Indeed, solutions 
practically identical to those obtained for θ = 0 were obtained 
for all the configurations examined. 

Finally, in order to validate the numerical code used for the 
present study, the steady-state solutions obtained for τ → ∞ in a 
square cavity with differentially heated sidewalls and adiabatic 
top and bottom endwalls for Rayleigh numbers from 103 to 106, 
have been compared with the benchmark data of de Vahl Davis 
[11]. In particular, the average Nusselt numbers as well as the 
maximum horizontal and vertical velocity components, on the 
vertical and horizontal midplanes, respectively, are well within 
1% of the benchmark data, as reported in Table 1. It is worth 
noticing that our dimensionless velocity results have been 

multiplied by the Prandtl number before being inserted in Table 
1, so as to account for the choice of the ratio between kinematic 
viscosity and characteristic length of the cavity as scale factor 
for the velocity, instead of the ratio between thermal diffusivity 
and characteristic length, used in ref. [11]. More details on the 
code validation are available in Cappelli D’Orazio et al. [12]. 

 
Table 1 – Comparison of thermally-driven square cavity solutions 

 

Ra  Umax Vmax Nuav 
103 Present 3.654 3.708 1.116 
 Benchmark [11] 3.649 3.697 1.118 
     

104 Present 16.242 19.714 2.254 
 Benchmark [11] 16.178 19.617 2.243 
     

105 Present 35.008 68.109 4.506 
 Benchmark [11] 34.722 68.590 4.519 
     

106 Present 65.226 221.598 8.879 
 Benchmark [11] 64.630 219.360 8.800 

 
RESULTS AND DISCUSSION 

Numerical simulations are performed for Pr = 0.71, which 
corresponds to air, and different values of the height-to-width 
aspect ratio of the enclosure in the range between 0.25 and 4, 
and the Rayleigh number of the cavity in the range between 103 
and 106, for both configurations BH and BC. 

A selection of local results is presented in Figs. 2−7 and in 
Figs. 8−13 for configurations BH and BC, respectively. In these 
figures, isotherms and streamlines are plotted for different sets 
of values of A and Ra, in order to highlight the effects of any 
independent parameter on the temperature and flow fields.  

In the isotherm plots, the contours correspond to equispaced 
values of the dimensionless temperature θ in the range between 
0 and 1. In the streamline plots, the contours correspond to 
equispaced values of the normalized dimensionless stream 
function ⎪Ψ⎪/⎪Ψ⎪max in the range between 0 and 1, where Ψ is 
defined as usual through U=∂Ψ/∂Y and V=−∂Ψ/∂X. The values 
of ⎪Ψ⎪max for different combinations of values of A and Ra, for 
both configurations BH and BC, are reported in Table 2. 

 
Table 2 – Values of ⎪Ψ⎪max for different combinations of A and Ra, in 

              both cases of heating from below and heating from above  

Ra config.  ⏐ψ⏐max 
    A = 0.25 0.5 1 2 4 
103 BH 1.16 1.01 1.59 0.42 0.05 
 BC 0.71 0.81 1.21 0.41 0.05 
       

104 BH 25.23 13.06 11.40 4.18 0.55 
 BC 3.80 4.51 5.50 3.49 0.55 
       

105 BH 86.81 45.85 35.96 19.61 5.49 
 BC 11.72 11.93 12.02 13.33 5.30 
       

106 BH 246.30 128.40 61.88 44.57 29.12 
  BC 25.64 23.88 22.63 21.87 25.15 
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Figure 2 – Isotherms of BH model for A = 4 and Ra = 103−106 
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Figure 3 – Isotherms of BH model for A = 1 and Ra = 103−106 
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Figure 4 – Isotherms of BH model for A = 0.25 and Ra = 103−106 
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Figure 5 – Streamlines of BH model for A = 4 and Ra = 103−106 
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Figure 6 – Streamlines of BH model for A = 1 and Ra = 103−106 
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Figure 7 – Streamlines of BH model for A = 0.25 and Ra = 103−106 
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Figure 8 – Isotherms of BC model for A = 4 and Ra = 103−106 
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Figure 9 – Isotherms of BC model for A = 1 and Ra = 103−106 
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Figure 10 – Isotherms of BC model for A = 0.25 and Ra = 103−106 
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Figure 11 – Streamlines of BC model for A = 4 and Ra = 103−106 
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Figure 12 – Streamlines of BC model for A = 1 and Ra = 103−106 
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Figure 13 – Streamlines of BC model for A = 0.25 and Ra = 103−106 
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Figure 14 – Distributions of Nu vs. Ra for different values of A in the 

range between 0.25 and 4 (configuration BH) 
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Figure 15 – Distributions of Nu vs. Ra for different values of A in the 

range between 0.25 and 4 (configuration BC) 
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Figure 16 – Distributions of the ratio between the Nusselt numbers for 

configurations BH and BC vs. Ra for different values of A   

It is worth noticing that the effect of the geometry of the 
cavity on the intensity of the fluid motion (which obviously 
increases as the Rayleigh number increases) is quite different 
according as the cavity is heated from below or from above, as 
shown in Table 2. As regards configuration BH, a remarkable 
increase in the rate of the fluid circulation occurs as the cavity 
aspect ratio A decreases. In fact, the upward-imposed vertical 
temperature gradient has a significant destabilizing effect on the 
temperature and velocity fields which would establish inside 
the enclosure if only the horizontal temperature gradient were 
applied, thus preventing the formation of the vertical thermal 
stratification typical of enclosures with differentially heated 
sides and perfectly insulated top and bottom walls. However, 
such effect is definitely more pronounced for shallow rather 
than for slender geometries. In contrast, for configuration BC 
the effect of the aspect ratio on the circulation rate inside the 
enclosure is smaller, since the downward-imposed temperature 
gradient has a stabilizing effect, which induces a well defined 
vertical stratification across the cavity, whatever is its geometry. 
Of course, the facts discussed above are clearly reflected by the 
isotherm and streamline patterns depicted in Figs. 2−13. 

As far as the heat transfer performance of the enclosure is 
concerned, the distributions of the average Nusselt number Nu 
of the whole cavity vs. the Rayleigh number for different values 
of the aspect ratio of the enclosure are plotted in Figs. 14 and 
15, for configurations BH and BC, respectively. Moreover, the 
distributions of the ratio (Nu)BH/(Nu)BC between the average 
Nusselt numbers for configurations BH and BC vs. Ra are 
plotted in Fig. 16 for different values of A. It may be noticed 
that the different types of heating condition considered, either 
from below or from above, have a significant effect on the heat 
transfer rate across the enclosure only for square and shallow 
cavities, due to the larger thermal contribution of the horizontal 
walls to the fluid motion. This may be clearly put in evidence 
by comparing Figs. 2 and 8, for A = 4, and Figs. 4 and 10 for A 
= 0.25. It may be observed that for A = 4 the isotherms have 
patterns not too different, with a weak vertical stratification in 
the middle of the cavity, whereas for A = 0.25 their distributions 
are completely different. In fact, in such case the heating from 
above produces a strongly stratified field, thus implying that, 
leaving aside the layers adjacent to both sidewalls, conduction 
is the dominat mode of heat transfer across the enclosure. In 
contrast, the heating from below produces the breakdown of 
such density stratification, which brings to the formation of a 
multi-cellular flow structure.  

The results obtained for the average Nusselt number Nu, for 
both heating configurations BH and BC, may be expressed as a 
function of the independent variables Ra and A through the 
following dimensionless correlating-equations: 

configuration BH – heating from below 

515206.0183.055.0 ])RaA54.0()A6.3[(Nu +=         (18) 

configuration BC – heating from above 

515172.0435.055.0 ])RaA60.0()A6.3[(Nu +=         (19) 
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Figure 17 – Comparison between the Nusselt numbers predicted by 

equation (18) and those derived from the numerical simulations. 
 

for 0.25 ≤ A ≤ 4 and 103 ≤ Ra ≤ 106, both with a ≅5% standard 
deviation of error and a ±10% range of error, as shown in Figs. 
17 and 18. 
 
CONCLUSIONS 

Steady laminar natural convection heat transfer inside air-
filled rectangular cavities with differentially heated horizontal 
and vertical opposite walls, has been studied numerically. Both 
cases of heating from the bottom and from the top, denoted as 
configurations BH and BC, respectively, have been considered.   
Simulations have been performed for different values of the 
height-to-width aspect ratio of the cavity in the range between 
0.25 and 4, and the Rayleigh number based on the height of the 
cavity in the range between 103 and 106. 

It has been found that the heat transfer performance of the 
cavity increases with increasing the Rayleigh number and the 
aspect ratio. In addition, the two types of heating condition 
considered, either from below or from above, have a significant 
effect on the amount of heat transferred across the cavity only 
for square and shallow geometries. In particular, for the shallow 
cavity with aspect ratio A = 0.25 at Ra = 105−106, the average 
Nusselt number of configuration BH is more than the double 
than that of configuration BC, whereas for the tall cavity with 
aspect ratio A = 4 such Nusselt numbers are practically the 
same, even at the largest Rayleigh number investigated. 
 
NOMENCLATURE 
A height-to-width aspect ratio of the enclosure 
g gravitational acceleration  
H height of the enclosure 
L width of the enclosure 
Nu average Nusselt number  
P dimensionless pressure 
p pressure 
Pr Prandtl number = ν/α  
Ra Rayleigh number = gβ(TH – TC)H3Pr/ν2 

T temperature 
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Figure 18 – Comparison between the Nusselt numbers predicted by 

equation (19) and those derived from the numerical simulations. 
 

t time 
U dimensionless horizontal velocity component 
u horizontal velocity component 
V dimensionless vertical velocity component 
v vertical velocity component 
X dimensionless horizontal coordinate  
x horizontal coordinate 
Y dimensionless vertical coordinate  
y vertical coordinate 

Greek symbols 
α thermal diffusivity of the fluid 
β coefficient of volumetric thermal expansion of the fluid 
ν kinematic viscosity of the fluid 

θ dimensionless temperature 
ρ density of the fluid 
τ dimensionless time 
ψ dimensionless stream function 

Subscripts 
B bottom  
C cold 
H hot 
h horizontal 
max maximum value  
T top 
v vertical 
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