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ABSTRACT 
Steady laminar natural convection heat transfer from tilted 

thin plates with both sides heated at uniform temperature, is 
studied numerically. A computer code based on the SIMPLE-C 
algorithm is used for the solution of the mass, momentum, and 
energy conservation equations. Simulations are performed for 
different values of the inclination angle of the plate in the range 
between 0deg and 75deg, the Rayleigh number in the range 
between 101 and 108, and the Prandtl number in the range 
between 0.7 and 70, whose effects on the flow and temperature 
fields, and on the heat transfer rate, are analyzed in detail. In 
addition, comparisons with the case of heating at a single side 
of the plate are executed and discussed. 

 
INTRODUCTION 

Convection induced by buoyancy above or below a finite-
size heated plate of arbitrary inclination is one of the basic 
classic problems in free convection heat transfer, as it appears 
in a number of engineering applications, as well as in several 
natural circumstances.  

Experimental studies on either upward or downward facing 
inclined plates were performed by Kierkus [1], Hassan and 
Mohamed [2], Fujii and Imura [3], and Al-Arabi and Sakr [4], 
for the case of uniform wall temperature, and by Vliet [5], Vliet 
and Ross [6], Fussey and Warneford [7], Shaukatullah and 
Gebhart [8], and King and Reible [9], for the case of uniform 
heat flux. The working fluids were either air − used in [1], [2], 
[4], and [6] − or water − used in [3], [5], [7], [8], and [9]. The 
results were reported in terms of either the average Nusselt 
number − in [3], [4], [8], and [9] − or the local Nusselt number 
− in [1], [2], [5], [6], and [7]. 

Theoretical solutions were obtained by Kierkus [1], and by 
Hasan and Eichhorn [10], for isothermal surfaces facing both 
upwards and downwards, as well as by Chen et al. [11], for 
upward-facing, semi-infinite flat plates in both cases of uniform 
wall temperature and uniform heat flux.  

However, all the above papers deal with plates heated at a 
single side. In contrast, although in applications the situation in 
which both sides of the plate are simultaneously heated may 
occur, a definitely smaller degree of attention has been devoted 
to this problem, which was treated only by Wei et al. [12], who 
executed a numerical study under the assumption of uniform 
heat generation.  

In this background, the aim of the present paper is to carry 
out a study of free convetion from an inclined thin plate whose 
both sides are heated at uniform temperature, with the scope to 
highlight in what measure the heat transfer performance of any 
side of the plate is affected by the simultaneous heating of the 
opposite side of the plate. 

The study is conducted numerically under the assumption of 
steady, two-dimensional laminar flow. A computer code based 
on the SIMPLE-C algorithm is employed for the solution of the 
mass, momentum and energy governing equations. Simulations 
are performed for different values of the angle of inclination of 
the plate from 0deg to 75deg, the Rayleigh number from 101 to 
108, and the Prandtl number from 0.7 to 70, whose effects on 
the flow and temperature fields, as well as on the heat transfer 
rate, are analyzed in detail and discussed.  
 
PROBLEM FORMULATION 

A plate of length L, inclined of an angle ϕ with respect to 
gravity, is suspended in free space. The plate thickness d is set 
at 1/50 of its length. Both sides of the plate are kept at uniform 
temperature tp, whereas both ends are assumed to be perfectly 
insulated. Free convection takes place from the heated sides of 
the plate to the surrounding undisturbed fluid reservoir, which 
is assumed at uniform temperature t∞. 

The flow is assumed steady, two-dimensional, laminar, and 
incompressible, with constant fluid properties and negligible 
viscous dissipation and pressure work. The buoyancy effects on 
momentum transfer are taken into account by the Boussinesq 
approximation.  
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Figure 1 – Geometry, coordinate system and integration domain 

 

Governing equations 
Once the above assumptions are used in the conservation 

equations of mass, momentum and energy, the following set  of 
dimensionless governing equations is obtained: 

0=⋅∇ V                      (1) 

( )
g

T
Pr
Rap gVVV −∇+−∇=∇⋅ 2                             (2) 

( ) T
Pr
1T 2∇=∇⋅V                     (3) 

where V is the dimensionless velocity vector with components 
U and V parallel and perpendicular to the plate, respectively, 
normalized with ν/L; T is the dimensionless temperature excess 
over the temperature of the undisturbed fluid normalized with 
the temperature difference (tp − t∞); p is the dimensionless 
pressure normalized with ρ∞ν2/L2; Ra is the Rayleigh number 
based on the length of the plate; and Pr is the Prandtl number. 

Besides the simultaneous heating of both sides of the plate, 
also the case of heating at a single side (the other side of the 
plate being adiabatic) is studied for comparison, in order to 
evaluate how much the heat transfer rate at any side of the plate 
is affected by the concurrent heating of the opposite side of the 
plate. Therefore, the boundary conditions are (a) T = 1 and V = 
0 at any heated side of the plate, (b) ∂T/∂n = 0 and V = 0 at any 
perfectly insulated surface (n denotes the direction normal to 
the surface), and (c) T = 0 and V = 0 at very large distance from 
the plate. 
 
Computational domain and boundary conditions 

The finite-difference solution of equations (1)−(3) with the 
boundary conditions stated above requires that a computational 
domain is established. The two-dimensional integration domain 

is taken as a rectangle which includes the plate and extends 
sufficiently far from it, as sketched in Fig. 1, in which the (x,y) 
Cartesian coordinate system adopted is also represented. Such 
integration domain is filled with a non-uniform grid, having a 
concentration of grid lines near the plate. As regards the 
boundary conditions to be assigned at the four lines which 
enclose the rectangular integration domain, once these lines are 
set sufficiently far from the plate, the motion of the fluid which 
enters or leaves the computational domain may reasonably be 
assumed to occur normally to them. The entering fluid is 
assumed at the undisturbed free field temperature. In contrast, 
for the leaving fluid, whose temperature is not known a priori, a 
zero temperature gradient along the normal to the boundary line 
is assumed. Accordingly, the following boundary conditions are 
applied (see Fig. 1): 
a) at any heated side of the plate 

0=U , 0=V , 1=T   (4) 

b) at the insulated side of the plate, when the case of heating at 
a single side is considered 

0=U , 0=V , 0
Y
T
=

∂
∂             (5) 

c) at both ends of the plate  

0=U , 0=V , 0
X
T
=

∂
∂             (6) 

d) at boundary line A−B  

0=
∂
∂
X
U , 0=V , T = 0  if  U ≥ 0  or 0=

∂
∂
X
T  if  U < 0     (7) 

e) at boundary line B−C  

0=U , 0=
∂
∂
Y
V , T = 0  if  V < 0  or 0=

∂
∂
Y
T  if  V ≥ 0     (8) 

f) at boundary line C−D  

0=
∂
∂
X
U , 0=V , T = 0  if  U < 0  or 0=

∂
∂
X
T  if  U ≥ 0     (9) 

g) at boundary line A−D  

0=U , 0=
∂
∂
Y
V , T = 0  if  V ≥ 0  or 0=

∂
∂
Y
T  if  V < 0   (10) 

in which X and Y are the dimensionless Cartesian coordinates, 
normalized with L. 

 
Solution algorithm 

The set of equations (1)−(3) with the boundary conditions 
(4)−(10) is solved numerically by a control-volume formulation 
of the finite-difference method. The pressure-velocity coupling 
is handled through the SIMPLE-C algorithm by Van Doormaal 
and Raithby [13]. The advection fluxes are evaluated by the 
QUICK discretization scheme by Leonard [14]. Starting from 
first-approximation distributions of the dependent variables, the 



    

discretized governing equations are solved iteratively via a line-
by-line application of the Thomas algorithm, enforcing under-
relaxation to ensure convergence. The solution is considered to 
be converged when the maximum absolute values of the mass 
source and the percentage changes of the dependent variables at 
any grid-node between two consecutive iterations are smaller 
than the prescribed values, i.e., 10-4 and 10-6, respectively.  

 
Data reduction 

After convergence is attained, the local Nusselt numbers 
(Nux)U and (Nux)D, and the average Nusselt numbers (Nu)U and 
(Nu)D, of the upward-facing and downward-facing sides of the 
plate, respectively, are calculated: 
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where q is the heat flux and Q is the heat transfer rate, and the 
subscripts U and D refer to the upward-facing and downward- 
facing heated sides of the plate, respectively. The temperature 
gradients at any heated surface are evaluated by a second-order 
profile among each wall-node and the next two fluid-nodes. 
The integrals are approximated by the trapezoid rule.  

In addition, the average Nusselt number of the whole plate, 
Nu, is calculated as the arithmetic mean value of the average 
Nusselt numbers of any side of the plate, i.e., (NuU + NuD)/2. 

 
Validation of the numerical procedure 

Tests on the dependence of the results on the mesh-spacing, 
as well as on the extent of the computational domain, have been 
performed for several combinations of values of Ra, ϕ, and Pr. 
This has brought to set the grid-spacings and the extents of the 
integration domain used for computations, which are such that 
further grid refinements or extensions of the computational 
domain do not yield for noticeable modifications neither in the 
heat transfer rates nor in the flow field, that is, the percentage 
changes of Nux and Nu for both sides of the plate and the 
percentage changes of the maximum value of the velocity 
component U at X = L/4, L/2 and 3L/4, are smaller than the 
prescribed accuracy values, i.e., 1% and 2%, respectively.  

Typical features of the integration domain are as follows: (a) 
the number of nodal points lies in the range between 50×100 
and 100×400, (b) the extent of the integration domain ranges 
between 2L and 8L upwards, between L and 3L downwards, 
and between L and 5L sidewards, depending on Ra, ϕ, and Pr. 

As far as the validation of the numerical code is concerned, 
reference is made to literature data relevant to plates heated at a 
single side. For the vertical setting, a comparison between the 
average Nusselt numbers obtained at different Rayleigh and 
Prandtl numbers and the corresponding values derived from the 
Churchill-Chu correlation based on experimental data by other 
authors [15] and the Raithby-Hollands theoretical equation 
[16], is reported in Table 1. For the inclined plate, the average 
Nusselt numbers obtained for air at Ra = 1.7×106 are compared 
with the corresponding values derived by the Hassan-Mohamed 
correlation based on their experimental data [2], as shown in 
Tables 2 and 3 for positive and negative inclinations angles, 
respectively. It may be seen that the Churchill-Chu correlation 
at low and moderate Rayleigh numbers, as well as the Hassan-
Mohamed correlation, underpredict slightly the present Nusselt 
numbers, whereas the Raithby-Hollands equation tends to over-
predict them. However, this was expected, as, at the Rayleigh 
numbers considered, the Churchill-Chu and Hassan-Mohamed 
correlations fall slightly below the data upon which they were 
based, while the predictions of the Raithby-Hollands equation 
are somewhat higher than several literature experimental data.  

In addition, also the velocity distributions − not reported for 
the sake of brevity − have shown a substantially good degree of 
agreement with the experimental data by Kierkus [1] for tilting 
angles in the range between −45deg and +45deg. 

Table 1 – Comparison of the present solutions for the average Nusselt 
number of a vertical plate and literature data  

Ra ϕ = 0°   Nu     
    Pr = 0.7 7 70 
102 Present 2.52 2.79 2.88 
 Churchill-Chu eqn [15] 2.30 2.62 2.74 
 Raithby-Hollands eqn [16] 2.81 3.14 3.28 
     

104 Present 5.88 6.68 7.05 
 Churchill-Chu eqn [15] 5.81 6.80 7.20 
 Raithby-Hollands eqn [16] 6.43 7.43 7.84 
     

106 Present 17.47 19.67 20.76 
 Churchill-Chu eqn [15] 16.92 20.04 21.30 
  Raithby-Hollands eqn [16] 17.55 20.67 21.93 

Table 2 – Comparison of the present solutions for the average Nusselt 
number of a positively inclined plate and the Hassan-Mohamed data  

Ra = 1.7×106, Pr = 0.7   Nu       
(upper-side heating)  ϕ = +15° +30° +45° +60° 
Present 19.02 18.60 17.82 16.61 
Hassan-Mohamed eqn [2] 18.14 17.65 16.78 15.39 

Table 3 – Comparison of the present solutions for the average Nusselt 
number of a negatively inclined plate and the Hassan-Mohamed data  

Ra = 1.7×106, Pr = 0.7   Nu       
(lower-side heating) ϕ = −15° −30° −45° −60° 
Present 18.91 18.38 17.46 16.06 
Hassan-Mohamed eqn [2] 18.14 17.65 16.78 15.39 



    

 

            
ϕ = 0deg             ϕ = 15deg         ϕ = 30deg 

                                   
ϕ = 45deg             ϕ = 60deg         ϕ = 75deg 

Figure 2 – Effects of the tilting angle: isotherm lines for Ra = 104, Pr = 0.7, and ϕ from 0deg to 75deg step 15deg 

                       
   Ra = 102     Ra = 104    Ra = 106 

Figure 3 – Effects of the Rayleigh number: isotherm lines for Pr = 0.7, ϕ = 75deg and Ra = 102, 104, and 106 

            
   Pr = 0.7         Pr = 7      Pr = 70 

Figure 4 – Effects of the Prandtl number: isotherm lines for Ra = 104, ϕ = 75deg and Pr = 0.7, 7, and 70 
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Figure 5 – Distributions of (Nux)U and (Nux)D along the plate 

 for Pr = 0.7, Ra = 103, and ϕ = 15deg 
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Figure 6 – Distributions of (Nux)U and (Nux)D along the plate 
 for Pr = 0.7, Ra = 103, and ϕ = 45deg 
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Figure 7 – Distributions of (Nux)U and (Nux)D along the plate 
 for Pr = 0.7, Ra = 103, and ϕ = 75deg 
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Figure 8 – Distributions of (Nux)U and (Nux)D along the plate 
 for Pr = 0.7, Ra = 107, and ϕ = 15deg 
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Figure 9 – Distributions of (Nux)U and (Nux)D along the plate 

 for Pr = 0.7, Ra = 107, and ϕ = 45deg 
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Figure 10 – Distributions of (Nux)U and (Nux)D along the plate 

 for Pr = 0.7, Ra = 107, and ϕ = 75deg 
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Figure 11 – Distributions of (Nux)U along the plate for Ra = 104, 

 ϕ = 45deg, and different Prandtl numbers (0.7 and 70) 
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Figure 12 – Distributions of (Nux)D along the plate for Ra = 104, 

 ϕ = 45deg, and different Prandtl numbers (0.7 and 70) 
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Figure 13 – Distributions of Nu/Nuvert vs. ϕ (in deg) for Pr = 0.7  

and different Rayleigh numbers (102, 104 and 106) 

DISCUSSION OF THE RESULTS 
Numerical simulations are performed for different values of 

the Rayleigh number, Ra, in the range between 101 and 108, the 
inclination angle, ϕ, in the range between 0deg and 75deg, and 
the Prandtl number, Pr, in the range between 0.7 and 70.  

Isotherm contours are plotted in Figs. 2−4 for: (a) Ra = 104, 
Pr = 0.7, and ϕ = 0deg to 75deg; (b) Pr = 0.7, ϕ = 75deg, and 
Ra =102 to 106; and (c) Ra = 104, ϕ = 75deg, and Pr = 0.7 to 70. 

It is apparent how the effect of the angle ϕ is to thicken the 
plume and decrease its velocity. In addition, for tilting angles 
above 45deg, the buoyant plume is not anymore rooted in the 
trailing edge of the plate. As regards the effect of the Rayleigh 
number, the well-known decrease in thickness of the boundary 
layer with increasing Ra may be observed, whereas the plume 
shrinks and rotates slightly outwards; moreover, at large tilting 
angles, the root of the plume shifts towards the trailing edge of 
the plate. Finally, as far as the increase of the Prandtl number is 
concerned, it may be noticed that, owing to the increasing effect 
of viscosity, the wall jet flowing over the plate is compressed 
towards the heated surface, thus leading to a shrinking of the 
plume, which, additionally, rotates inwards.  

Of course, the effects discussed above have direct influence 
upon the local heat fluxes, as shown: (a) in Figs. 5−7, where the 
distributions of (Nux)U and (Nux)D along the plate for Pr = 0.7, 
and Ra = 103, are reported for ϕ = 15deg, 45deg, and 75deg; (b) 
in Figs. 8−10, where the distributions of (Nux)U and (Nux)D 
along the plate for Pr = 0.7, and Ra = 107, are reported for ϕ = 
15deg, 45deg, and 75deg; and (c) in Figs. 11 and 12, where the 
distributions of (Nux)U and (Nux)D along the plate, respectively, 
are reported for Ra = 104, ϕ = 45deg, and Pr = 0.7 and 70. 

As far as the overall heat transfer performance of the plate 
is concerned, an overview of the effects of the inclination angle 
on the amount of heat exchanged is reported in Fig. 13, where 
the distributions of Nu/Nuvert, i.e., the ratio between the average 
Nusselt numbers for the inclined plate and for the vertical plate 
at same Rayleigh and Prandtl numbers, are plotted vs. ϕ for Pr 
= 0.7 and Ra = 102, 104, and 106. In accordance with what has 
been discussed above, it may be seen that the heat transfer rate 
decreases as the inclination angle of the plate increases, at a 
rate which increases with both ϕ, due to the widening of the 
stagnation region at the upper side of the plate, and Ra. 

Moreover, with the scope to highlight in what measure the 
heat transfer performance of any side of the plate is affected by 
the simultaneous heating of the opposite side, the distributions 
of Nux/(Nux)0, i.e., the ratio between the local Nusselt numbers 
of any side of the plate for the case of concurrent heating of the 
opposite side and for the case of perfectly insulated opposite 
side, are plotted vs. X in Figs. 14−16, where the effects of ϕ, 
Ra, and Pr, respectively, are pointed out.  

It may be noticed that the effect of the heating of the upper 
side of the plate on the amount of heat locally transferred at the 
lower side of the plate is almost neglible, due to the fact that the 
fluid flow below the plate is promoted mainly by the thermal 
contribution of its lower side, at least for not too low Rayleigh 
numbers and leaving aside the proximities of the leading and 
trailing edges (where a non-negligible increase in the thickness 
of the boundary layer occurs owing to the upper-side heating). 
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Figure 14 – Distributions of Nux/(Nux)0 vs. X for Pr = 0.7, Ra = 104, and ϕ = 30deg to 75deg 
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Figure 15 – Distributions of Nux/(Nux)0 vs. X for Pr = 0.7, ϕ = 70deg, and Ra = 101 and 107 
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Figure 16 – Distributions of Nux/(Nux)0 vs. X for Ra = 104, ϕ = 70deg, and Pr = 0.7 and 70 
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Figure 17 – Correlating equation for the overall heat transfer 

 
In contrast, the effect of the heating of the lower side of the 

plate on the thermal performance of the upper side is much 
more significant, at least as long as the orientation of the plate 
is not too close to the vertical setting. In fact, owing to the 
heating of its lower side, the whole plate is embedded in an 
upward-moving convection field whose effect is to decrease the 
temperature difference between its upper side and the adjacent 
fluid, and therefore to lessen the local heat transfer. The only 
exception is represented by the stagnation region, i.e., the 
region where the plume is rooted, whose thermal performance 
improves. In fact, owing to the viscous effect of the fluid flow 
induced by the heating of the lower side of the plate, the plume 
tends to shrink and get faster. Of course, such enhancement of 
the relative heat transfer performance becomes higher as the 
inclination of the plate increases, which is due to the tendency 
of the stagnation region to widen progressively out (see Fig. 
14). A result of the same type is produced also by the increase 
of the Rayleigh or Prandtl numbers, as a consequence of the 
faster fluid motion or the larger viscosity effect, respectively 
(see Figs. 15 and 16). 

Finally, the results obtained for the average Nusselt number 
of the plate may be correlated to the independent variables Ra, 
ϕ, and Pr, through the following equation, whose functional 
structure is directly derived from the expression originally 
proposed for vertical plates by Churchill and Usagi [17]: 

( )[ ] ( ) 25.0
209 169

cosRa
Pr/537.01

669.06.0Nu ϕ
+

+=                  (15) 

for 0deg ≤ ϕ ≤ 75deg, 101 ≤ Ra ≤ 108, and 0.7 ≤ Pr ≤ 70, with a 
2.9% standard deviation of error, and error ranges of ±9% and 
±5%, with levels of confidence of 100% and 92%, respectively, 
as shown in Fig. 17.  
 
CONCLUSIONS 

Steady natural convection from tilted thin plates with both 
sides heated at uniform temperature, is studied numerically for 
the laminar regime. A SIMPLE-C algorithm has been used for 

the solution of the mass, momentum, and energy governing 
equations. Simulations have been performed for tilting angles 
of the plate from 0deg to 75deg, Rayleigh numbers from 101 to 
108, and Prandtl numbers from 0.7 to 70. The heating at a single 
side, the other being adiabatic, has also been considered. 

It has been found that the heat transfer performance of the 
whole plate heated at both sides increases as the Rayleigh and 
Prandtl numbers increase, while decreases as the tilting angle of 
the plate increases, at a rate which increases with ϕ and Ra.  

In addition, the heat transfer performance of the lower side 
of the plate is practically independent of the thermal boundary 
condition imposed at the opposite side of the plate, i.e., heated 
at same temperature or adiabatic. On the contrary, the amount 
of heat exchanged at the upper side of the plate decreases when 
the opposite lower side is heated rather than insulated, with the 
only exception of the stagnation region, i.e., the region where 
the plume is rooted, whose relative heat transfer performance 
increases with increasing ϕ, Ra and Pr. 

Finally, a dimensionless correlation of the Churchill-Usagi 
type has also been developed for the heat transfer performance 
of the whole plate. 

However, due to the assumption of steady, two-dimensional 
laminar flow, the present paper should be regarded as a first-
stage paper on the subject, which deserves further investigation 
in order to take into account the influence of three-dimensional 
effects, e.g., unsteady longitudinal rolls, which in a 2D study 
are necessarily neglected.  
 
NOMENCLATURE 
d thickness of the plate 
g gravity vector  
g gravitational acceleration  
k thermal conductivity of the fluid 
L length of the plate 
Nux local Nusselt number = qL/k(tp − t∞) 
Nu average Nusselt number = Q/k(tp − t∞) 
p dimensionless pressure 
Pr Prandtl number = ν/α  
Q heat transfer rate 
q heat flux 
Ra Rayleigh number = gβ(tp – t∞)L3Pr/ν2 
T dimensionless temperature 
t temperature 
U dimensionless X-wise velocity component 
V dimensionless velocity vector 
V dimensionless Y-wise velocity component 
X dimensionless coordinate parallel to the plate 
x coordinate parallel to the plate 
Y dimensionless coordinate normal to the plate  
y coordinate normal to the plate 

Greek symbols 
α thermal diffusivity of the fluid 
β coefficient of volumetric thermal expansion of the fluid 
ϕ tilting angle of the plate with respect to gravity 
ν kinematic viscosity of the fluid 

ρ density of the fluid 



    

Subscripts 
D downward-facing surface, lower side of the plate 
p plate surface 
U upward-facing surface, upper side of the plate 
0 relevant to the case of opposite side perfectly insulated 
∞ undisturbed fluid 
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