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“The last word in ignorance is the man who says of an animal or plant, "What good is it?"
If the land mechanism as a whole is good, then every part is good, whether we understand
it or not. If the biota, in the course of aeons, has built something we like but do not
understand, then who but a fool would discard seemingly useless parts? To keep every cog

and wheel is the first precaution of intelligent tinkering.”

— Aldo Leopold, Round River: From the Journals of Aldo Leopold

i



Dedication

To my parents, Bruce and Renee Trimble.

il



Biodiversity in Human-Modified Landscapes:
Case Studies, the State of Research, and
Implications for Conservation

Student: Morgan Jayne Trimble

Supervisor: Professor Rudi J. van Aarde
Conservation Ecology Research Unit
Department of Zoology & Entomology
University of Pretoria
Pretoria
0002

rjvaarde@zoology.up.ac.za

Degree: Doctor of Philosophy (Zoology)

Abstract

Protected areas (PAs) cover 12.9% of Earth’s land, while just 5.8% has strict protection for
biodiversity (Earth’s variety of ecosystems, species, and genetic variation). Constraints of
size and configuration, mismanagement, anthropogenic pressure, and climate change
hamstring the capacity of PAs to conserve biodiversity. Increasingly, studies of
biodiversity in human-modified landscapes provide an evidence base to support policies to
make land outside of PAs as amenable as possible for biodiversity persistence.

I reviewed research on biodiversity in sub-Saharan Africa’s human-modified

landscapes within four ecosystem categorizations: rangelands, tropical forest, Cape
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Floristic Region, and urban and rural built environment. I found potential for human-
modified landscapes to contribute to conservation across ecosystems. Available research
could guide policy-making; nonetheless, several issues require further investment, e.g.
research deficiencies, implementation strategies, and conflict with biodiversity.

I also conducted case studies that could support land-use planning in South Africa’s
coastal forest, part of a biodiversity hotspot. By comparing herpetofaunal communities
over a land-use gradient, I found old-growth forest harbored the highest richness and
abundance. Richness was low in sugar cane cultivation and degraded forest but substantial
in acacia woodland and eucalyptus plantation. Composition differed between natural and
anthropogenic vegetation types. Functional group richness decreased monotonically along
the gradient, driven by sensitivity of fossorial herpetofauna and vegetation-dwelling frogs.
Environmental variables were good predictors of frog abundance, but less so for reptiles.
Maintaining forest and preventing degradation is important for herpetofaunal conservation
while restoration and plantations have more value than cultivation.

Old-growth remnants and post-disturbance regenerating vegetation also provide
habitat for birds. However, occurrence does not ensure persistence. I calculated population
trends for 37 bird species and general trends in overall bird density in different vegetation
types. Seventy-six percent of species assessed have declined, 57% significantly so at an
average rate of 13.9% per year. Overall, bird density fell at 12.2% per year across
vegetation types. Changes in rainfall, habitat area, and survey coverage may partly explain
trends. However, species with larger range extents declined more sharply than others and
may be responding to environmental changes on a broad scale. These results cast doubt on

the future persistence of birds in this human-modified landscape and justify further study.



Such studies can support sensible land-use management; however, biases in study
topics should not lead to gaps in the evidence base. By reviewing the global literature, I
demonstrated clear geographical bias among biomes and geopolitical regions and
taxonomic bias among species groups. Furthermore, distribution of published papers did
not generally reflect threats of low PA coverage, high land conversion, and high human
population density. Forests were the subject of 87% of papers, and 75% focused on the
Americas and Europe, while Africa and Asia were critically understudied.

This thesis highlights that managing human-modified landscapes for biodiversity
could contribute to conservation. However, responses to land uses are complex, location-
and species-specific, and often poorly understood, hindering integration of information into
policy recommendations. Further research is needed to elucidate what, where, and how
biodiversity persists alongside humans to enhance conservation efficacy, especially in

understudied regions.
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Chapter 1. General Introduction

Conservation biology has flourished as a discipline over the past four decades in step with
the threat humanity’s activities pose to biodiversity, the variety of genetic material, species,
and ecosystems on Earth. The so-called biodiversity crisis has ethical, aesthetic, and
utilitarian consequences, the relative importance of which, if any, can be argued ad
infinitum. Beyond question, however, is the unprecedented scale of human influence on
nature and dominance over other species. Humanity has commandeered more than 40% of
Earth’s land surface for crops and pastures alone, and demand will grow (Millennium
Ecosystem Assessment 2005). Already by 1995, 83% of land on Earth was directly
influenced by humans as indicated by significant human population density, conversion to
agriculture, proximity to transport networks, and nighttime light visible to satellites
(Sanderson et al. 2002, Kareiva et al. 2007). This pervasive human footprint “suggests that
human beings are stewards of nature, whether we like it or not” (Sanderson et al. 2002).
The declaration of protected areas to maintain slices of the wild has been the
backbone of the conservation movement. Formally, a protected area is: “a clearly defined
geographical space, recognized, dedicated and managed, through legal or other effective
means, to achieve the long-term conservation of nature with associated ecosystem services
and cultural values” (Dudley 2008). Often, conservation of biodiversity within protected
areas is achieved by strict control over human access (Dudley 2008). However, a persistent
undercurrent encouraging a greater integration of conservation efforts within landscapes
dominated by humans has long inspired many conservation biologists. Perhaps Aldo

Leopold’s “Land Ethic” from 4 Sand County Almanac is the most famous early example
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(Leopold 1949), but the sentiment of managing landscapes where humans live, work, and
extract resources in a manner that attempts to cater for biodiversity persistence has been
repeated with urgency (for the foundational literature of this renewal, see Daily 1999,
Daily et al. 2001, Rosenzweig 2003) in more recent publications (e.g. Ranganathan et al.
2008, DeClerck et al. 2010, Koh and Gardner 2010).

Scientific interest in the biodiversity of human-modified landscapes has recently
escalated for two predominant reasons. First, there is increasing recognition that protected
areas alone are far from sufficient to conserve much of the world’s biodiversity in the long
term (Mora and Sale 2011). At the species level of biodiversity, species—area relationships
indicate that as people make increasing areas of land inhospitable to other species, they
inflict a linear reduction on the number of species Earth can support (Rosenzweig 2003).
That is, if we protect some benchmark percentage of land for nature, e.g. 10% of Earth’s
terrestrial surface (see Brooks et al. 2004), and species cannot persist in the unprotected
90%, we can expect global species loss of 90% of the original steady-state diversity
(Rosenzweig 2003). Richness above the predicted levels maintained in protected areas
would be temporary, representative of an unpaid extinction debt (Kuussaari et al. 2009).
Mismatches between priority areas in need of conservation and the actual configuration of
the world’s protected areas create problems (Joppa and Pfaff 2009, Jenkins et al. 2013);
moreover, protected areas might not even conserve the meager percentage of species we
expect them to given their area. Ill-conceived management interventions (e.g. Konvicka et
al. 2008), inadequate protection from outside influences (Joppa et al. 2008, Newmark
2008), and climate change (Loarie et al. 2009) could all result in extinctions, even within

protected areas (see Newmark 2008).



1. General Introduction

Second, evidence suggests that encouraging the persistence of biodiversity beyond
protected areas will be important for maintaining ecosystem function, and thus, ecosystem
services valuable to society (Balvanera et al. 2006, Cardinale et al. 2012). Pollination, pest
control, decomposition, and nutrient cycling are examples of ecosystem services which are
important in production landscapes and contribute to economic value yet depend to varying
degrees on biodiversity maintenance (Tscharntke et al. 2005). Globally, too, humanity
depends on important services provided by nature including waste treatment, and water and
climate regulation (Turner et al. 2007).

Research on what, why, and how different components of biodiversity are able to
persist in different human land uses, under different management regimes, and in various
ecosystem types could support land-use planners and land managers that seek to make the
best possible decisions in support of biodiversity in a framework of evidence-based
conservation (Sutherland 2004). This is especially relevant in rapidly developing
landscapes where human activities are both extensifying and intensifying to support
growing populations and economies and could have dramatic consequences for
biodiversity. Such is the case in Africa, and thus, in Chapter 2, I aim to qualitatively
discuss the current state of research on biodiversity of human-modified landscapes in sub-
Saharan Africa in relation to predominant land uses in four major ecosystem types: the
extensive rangelands, the relatively well researched tropical forests, the biologically rich
Cape Floristic Region, and the rapidly developing urban and rural built environment. This
review paper presents the available research and discusses opportunities and constraints for

further research and implementation.
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In Chapter 3 (currently under review for publication), I present a case study
detailing patterns of herpetofauna occurrence over a land-use intensification gradient from
relatively undisturbed, old-growth coastal forest to degraded forest, regenerating forest (i.e.
acacia woodlands), eucalyptus plantations, and sugar cane cultivation. Besides traditional
metrics (i.e. abundance, richness, diversity, and community composition), I also categorize
frog and reptile species into trait-based functional groups to better understand community
responses to land use.

However, species occurrence in human-modified landscapes is not necessarily
indicative of persistence. For example, research suggests that “ecological traps”, highly
attractive habitats that are of low quality, may be relatively common in human-modified
landscapes (Battin 2004). Although they result in low fecundity and survival, they attract
individuals from surrounding high quality habitats through mismatched environmental cues
with the predicted consequence of near certain population extinction (Battin 2004).
Therefore, simply recording a species in a given land-use type may lead to the incorrect
assumption that the human-modified land provides suitable habitat for the species. It is
important, then, to assess species’ likelihood for persistence through more thorough
assessment of reproduction and survival, or their consequence, population trend. Therefore,
in Chapter 4 (published in January 2011 in the journal PLoS ONE) I aim to provide a case
study that assesses trends for bird populations in a human-modified coastal dune forest
landscape in South Africa. I assess population trends for 37 bird species and general trends
in overall bird density in different vegetation types based on a 13-year monitoring database.

I also assess species’ characteristics as potential covariates for population trends.
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These two case studies are examples of the type of research that can support
evidence-based conservation by indicating the consequences of particular land uses within
a given ecosystem for specific components of biodiversity. On a global scale, conservation
efforts beyond protected areas could benefit from a reliable, relevant evidence base, so in
Chapter 5 (published in December 2012 in the journal Ecosphere), 1 present a systematic
review of the global literature on biodiversity in human-modified landscapes. The intent of
this assessment is to illustrate whether the evidence base is biased geographically among
biomes or geopolitical regions and taxonomically among species groups. Furthermore, I
assess how biases relate to geographic characteristics (i.e. area, biome type, species
richness, human population density, proportion of transformed land, and an index of
conservation importance) and, taxonomically, to the number of described species per
group. Chapter 6 presents a general discussion of the thesis and its outcomes and, along
with Chapter 5, includes ideas for future work.

As a PhD student at the University of Pretoria, I have had the opportunity to work
on several projects beyond my formal thesis chapters. In part, my interest in the topic of
conservation beyond protected areas was sparked by a controversial article published in
BioScience (Licht et al. 2010) promoting the use of South African predator conservation
tactics to protect wolves Canis lupus in the United States. The journal published my
response, which encouraged greater consideration for the ecological consequences of
fencing (Trimble and Aarde 2010); fencing continues to be a controversial topic within the
conservation community (Creel et al. 2013, Packer et al. 2013). Given the relevance, I
include this response here as Appendix 1. In conducting the field research for Chapter 3, I

carried out a preliminary investigation into the use of polyvinyl chloride pipes for trapping
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African vegetation-dwelling frogs and showed for the first time on the continent that it
could be successful, although capture rate was low. A note on the study is included as
Appendix 2 and was published in the African Journal of Ecology (Trimble and van Aarde
2013). I was also first author on a paper that adapted age assessment techniques for Africa
elephants Loxodonta africana to aerial based surveys; it was published in October 2011in
PLoS ONE (Trimble et al. 2011). With coauthors Robert Guldemond and Matthew
Grainger, I published a response article in Restoration Ecology discussing the evidence
base for ecological restoration projects in South Africa (Guldemond et al. 2011). I also
coauthored a paper with Kim Young and Professor van Aarde on density dependence in

elephant populations, which is currently under review.
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Chapter 2. Supporting Conservation with Biodiversity
Research in Sub-Saharan Africa’s Human-Modified

Landscapes

Publication Details

Trimble, M.J. & van Aarde, R.J. 2013. Supporting conservation with biodiversity research
in sub-Saharan Africa’s human-modified landscapes. Agriculture, Ecosystems &

Environment. In preparation.

Abstract

Protected areas cover 12% of terrestrial sub-Saharan Africa. However, given the inherent
inadequacies of these protected areas to cater for all species in conjunction with the effects
of climate change and human pressures on protected areas, the future of biodiversity
depends heavily on the 88% of land that is unprotected. The study of biodiversity patterns
and the processes that maintain them in human-modified landscapes can provide a valuable
evidence base to support science-based policy-making that seeks to make land outside of
protected areas as amenable as possible for biodiversity persistence. I discuss the literature
on biodiversity in sub-Saharan Africa’s human-modified landscapes as it relates to four
broad ecosystem categorizations (i.e. rangelands, tropical forest, the Cape Floristic Region,
and the urban and rural built environment) within which I expect similar patterns of

biodiversity persistence in relation to specific human land uses and land management
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actions. Available research demonstrates the potential contribution (and potential failures)
of biodiversity conservation in human-modified landscapes within all four ecosystem types
and goes some way towards providing general conclusions that could support policy-
making. Nonetheless, conservation success in human-modified landscapes is hampered by
constraints requiring further scientific investment, e.g. deficiencies in the available
research, uncertainties regarding implementation strategies, and difficulties of coexisting
with biodiversity. However, information currently available can and should support efforts
at individual, community, provincial, national, and international levels to support

biodiversity conservation in human-modified landscapes.

Introduction

Conservation of biodiversity in Africa, like elsewhere, has historically focused on the
fortress model, whereby most protected areas (PAs) were declared to the exclusion of
people (see Adams and Hulme 2001, Siurua 2006, Carruthers 2009). Though PAs are
essential for conservation success, they are unlikely to be sufficient (Rosenzweig 2003).
For example, large mammal populations have been reduced by half in some African PAs
since 1970 (Craigie et al. 2010), probably due, in part, to increasing isolation of PAs
(Newmark 2008). Weak enforcement and ineffective management plague many of Africa’s
current PAs (Kiringe et al. 2007, Metzger et al. 2010, Pare et al. 2010), and many also fail
to cater to species with extensive spatial requirements, e.g. migratory animals (Thirgood et
al. 2004, Kirby et al. 2008, Western et al. 2009, Holdo et al. 2010) and elephants
Loxodonta africana (van Aarde and Jackson 2007). Even small-bodied species are not

necessarily safe-guarded (Pauw 2007). Additionally, the configuration of PAs within the
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continent neglects key areas for biodiversity (Chown et al. 2003, Fjeldsa et al. 2004,
Fjeldsa and Burgess 2008, Eardley et al. 2009, Beresford et al. 2011), a problem that may
escalate if climate change makes PAs inhospitable to species they once protected (Loarie et
al. 2009). If species’ ranges shift with shifting climate, the areas crucial for their
persistence will be transient (Hole et al. 2011). Furthermore, the scale of beta-diversity and
habitat heterogeneity often extends far beyond that of individual PAs (Gardner et al. 2007),
and human activities beyond PAs influence biodiversity within them (Hansen and DeFries
2007).

Therefore, there are calls for an increased focus on biodiversity beyond African
PAs (e.g. Eardley et al. 2009) on two fronts. First, conservation of some biodiversity
elements depends on how well the matrices outside of PAs cater for persistence. At the
species level, for example, the Blue Crane Anthropoides paradiseus in South Africa
(McCann et al. 2007), Ethiopia’s critically endangered Sidamo lark Heteromirafra
sidamoensis (Spottiswoode et al. 2009, Donald et al. 2010), and the last giraffes Giraffa
camelopardalis peralta in West Africa (Ciofolo 1995) all depend on human-modified
landscapes. At the ecosystem level, three biomes fall below the threshold 10% protection
status within the Afrotropic realm, i.e. tropical and subtropical dry broadleaf forests (6%),
montane grasslands and shrublands (8%), and deserts and xeric shrublands (9%), while
several ecoregions are < 5% protected, especially when limited to the TUCN I-IV
categories, e.g. Southern Congolian forest-savanna mosaic (0%), Angolan montane forest-
grassland mosaic (0%), and highveld grasslands (<1%) (Jenkins and Joppa 2009). Second,
there are important links between biodiversity and ecosystem function, ecosystem services,

and human livelihoods in working landscapes (Daily et al. 2001, Rosenzweig 2003). For
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example, maintaining natural habitat in and around farms can enhance pollination and,
thus, has an economic value to production landscapes (Carvalheiro et al. 2010, Munyuli
2012), and natural systems in Africa provide economic and nutritional benefits to both rural
and urban dwellers (Schreckenberg 1999, Vanderpost 2006, Tabuti et al. 2009).

Even though, globally, scientists have neglected the biogeography of human-
modified landscapes in sub-Saharan Africa, ecologists are increasingly studying the
capacity of such landscapes to support biodiversity (Trimble and van Aarde 2012). Such
studies are required in order for policy-makers to make defensible decisions regarding land
use in relation to biodiversity conservation in the face of rapid economic development in
Africa. Agriculture in Africa has been characterized by traditional, labor-intensive,
smallholder enterprise; production has been low and has remained relatively stagnant
(Abate et al. 2000, Deininger et al. 2011). However, economic development and population
growth are driving change in African landscapes; several Africa nations sit among the
world’s fastest growing economies (IMF 2013). In 2009, the population reached 1 billion
and is predicted to double by 2050 (UN-HABITAT 2010). Urbanization is a strong force in
Africa; 40% of the current population is city-dwelling, and by 2050, 60% will be urban
(UN-HABITAT 2010). Even so, the rural population will also grow substantially, predicted
to increase by nearly 50% by mid-century (UN Population Division 2012), while growing
urban centers will depend heavily on rural resources. To meet this demand, and in the
interest of improving food security, there are calls for both intensifying smallholder
agriculture (Muriuki et al. 2005, Baiphethi and Jacobs 2009, Snapp et al. 2010, Baudron et

al. 2011) and extensifying production (Muriuki et al. 2005).
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Therefore, the interest in biodiversity in human-modified lands is timely. Although
Africa’s natural ecosystems are more intact than many other regions’, a proactive approach
to biodiversity conservation that strives for the most prudent management of the
unprotected matrices between PAs is clearly preferable to trying to reconnect and restore
already degraded ecosystems (Gardner et al. 2010). Thus, as policy-makers chart the future
course of development in Africa, they should consider the effects of different choices on
biodiversity in human-modified lands, what steps can be taken to prevent biodiversity loss,
and the benefits and costs of biodiversity persistence to people. Studies of biodiversity
patterns and the processes that maintain them in human-modified landscapes provide an
evidence base to support defensible management decisions that meet the needs of people
and biodiversity simultaneously. The evidence base should, furthermore, provide for
relevant ecological contexts. For example, management standards for timber plantations
aim to minimize impact on biodiversity in surrounding natural forests. Yet, the same
standards have been applied in plantations embedded in grasslands with dubious efficacy
for minimizing impacts on grassland biodiversity (Pryke and Samways 2003, Lipsey and
Hockey 2010).

This scientific focus on biodiversity in human-modified landscapes is distinct from
Africa’s thirty-some-year experiment in community-based conservation (CBC, but also
known as Integrated Conservation and Development Projects, Community-Based Natural
Resource Management, and others), but these two fields can and should be amalgamated.
Promoters of CBC claim that it increases the chance of conservation success and
simultaneously reduces rural poverty by allowing community involvement in management

and profit from natural resources, especially large mammals (see Hackel 1999). The
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philosophy of linking wildlife conservation and rural economic development and the
practical successes and failures therein have been discussed in a large body of literature
(e.g. Hackel 1999, Songorwa et al. 2000, Torquebiau and Taylor 2009). However, the
discussion has focused on socioeconomics and politics with fleeting consideration for
assessing actual biodiversity persistence under different CBC models, a problem pointed
out by Caro (1999) and subsequently largely ignored.

In this review, I aimed to elucidate the current state of knowledge regarding
biodiversity in sub-Saharan Africa’s human-modified landscapes. I separate the discussion
into four major ecosystem types (see Fig. 2.1) within which I expect similar patterns to
emerge. 1) Rangelands attract the bulk of the attention as Africa’s biggest ecosystem type,
and rangeland biodiversity is perhaps the most compatible with human land-uses, so
biodiversity-conscious land-use planning in rangelands could yield huge benefits. 2)
Tropical forests are discussed briefly with a focus on Central and East African forests, and
I refer readers to an excellent review of the abundant literature from West Africa (Norris et
al. 2010). 3) The Cape Floristic Region, though small, is extremely rich in species yet
threatened by extensive commercial development, and I discuss a growing body of
literature on land-use management in the region. Finally, 4) the urban and rural built
environment will become an increasingly important concern for biodiversity conservation
in Africa where the increase of urban land cover is predicted to be the highest in the world
at nearly 600% in the first three decades of the 21% century (Seto et al. 2012); proper
management and infrastructure development could attenuate the consequences for
biodiversity. Furthermore, I discuss the constraints and opportunities for future progress of

biodiversity conservation in human-modified landscapes of Africa.
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Methods

Literature search
I searched the ISI Web of Knowledge (up to 2012) with keywords “Africa” and
“biodiversity or conservation” and each of the following terms: “agricultur®”,

2 13

“agroforestry”, “communal”, “farm*”, “game farm”, “game ranch”, “human-modified”,

“multiple-use management”, “peri$urban”, “private nature reserve”, “range$land”, “rural”,

“suburban”, and ‘“urban”. I also searched for the terms “countryside biography”,
»

“reconciliation ecology”, “off-reserve conservation” (see Daily et al. 2001, Rosenzweig

2003). Additionally, I included relevant papers found coincidentally or in reference lists.

Biodiversity in Human-Modified Landscapes of African

Ecosystems

Rangelands

Two-thirds of sub-Saharan Africa is composed of rangelands (Fig. 2.1), consisting of arid
and semi-arid grasslands, woodlands, savannas, shrublands, and deserts. The rural people
inhabiting rangelands are typically agropastoralists, combining small-scale farming and
livestock keeping, or specializing in either farming or herding. Some agricultural practices
in rangelands may be harmful to biodiversity, e.g. overcultivation, overgrazing (Kerley et
al. 1995), bush fires, cultivation of marginal and easily eroded land, and widespread use of
chemicals and pesticides (Darkoh 2003). Many people in rangelands also depend heavily
on wild resources, e.g. via hunting and gathering or by profiting from wildlife tourism
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(Homewood 2004). Game ranching is an increasingly popular land-use option across
African rangelands (McGranahan 2008), and so are “eco-estates” (Grey-Ross et al. 2009a)
as people choose to live amongst the natural beauty of African rangelands and their
considerable species diversity, especially charismatic large mammals.

The ecological mechanisms that maintain different rangeland types in different
locations, e.g. grassland versus woodland, are not fully understood though interactions
between soils, climate, fire, herbivory, and human disturbance are thought to be important
(see Bond and Parr 2010) . The biggest threats to grasslands include afforestation or bush
encroachment and clearing for agriculture (Bond and Parr 2010), while threats to the
woodlands include woodcutting, clearing for agriculture, and over-use (Schreckenberg
1999, Tabuti 2007). Many perceive that biodiversity is declining in rangeland systems; they
blame poor agricultural practices, land conversion, and over-utilization of wild resources
by rural people and worry that these patterns will increase with population growth (e.g.
Darkoh 2003, Thiollay 2006). However, documented evidence of biodiversity loss in rural
rangelands is sparse. Of course, many areas have likely lost some species, but surprisingly,
long-inhabited regions lacking formal PAs, e.g. Kenya’s Laikipia district, maintain
abundant wildlife including large carnivores and elephants (Gadd 2005, Kinnaird and
O'Brien 2012) that might seem at odds with human occupation (Woodroffe et al. 2007).
Rangeland systems are often characterized by disturbances such as fire, unpredictable
rainfall, grazing and browsing pressure, and physical disturbance. Therefore, rangeland
biodiversity may be relatively resilient to anthropogenic disturbance due to the ability to

disperse, colonize, and persist in patchy and fluctuating environments (Homewood 2004).
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Thus, human-modified landscapes have the potential to maintain a relatively large portion
of rangeland biodiversity (see Scholes and Biggs 2005).

Nonetheless, conservation in rangelands has traditionally excluded people from
designated PAs. In South Africa, for example, conservation planning often dichotomizes
“human land-use” and conservation with little consideration for different land-use options
that may be variably amenable to biodiversity (e.g. Chown et al. 2003, Wessels et al.
2003). On the other hand, some authors have called to “mainstream” conservation into
human-modified lands (e.g. Soderstrom et al. 2003, Pote et al. 2006). O’Connor and Kuyler
(2009) used expert opinion to rank the impact of land uses in moist grasslands on overall
biodiversity integrity (in order from least to most impact: conservation, game farming,
livestock, tourism, crops, rural, dairy, timber, and urban). Empirical studies are amassing to
assess such assertions, which could support land-use planning for conservation. Here I
discuss emerging research on biodiversity in several of the most common rangeland land

uscs.

Grazing

Grazing is important to the maintenance of grassland and savanna habitats, economic
development, and management for biodiversity. However, plant responses to grazing are
idiosyncratic and incompletely understood (see Watkinson and Ormerod 2001, Rutherford
et al. 2012). Overgrazing can lead to degradation and bush encroachment (the slow
proliferation of woody plants at the expense of grasses), while too little grazing can result
in succession to woodland (Watkinson and Ormerod 2001). Of course, grazing effects on

vegetation can affect higher trophic levels as well, so it is important to understand
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vegetation responses to grazing, not only for livestock production, but also because
vegetation dynamics affect many other species. However, not all grazing landscapes are
alike; unique vegetation dynamics in different ecosystems mean that different landscapes
respond differently to grazing pressure (Todd and Hoffman 2009).

Research is emerging that investigates aspects of grazing management and
biodiversity in Africa; I summarize 30 such studies in Table S.2.1. Generally, these studies
look at grazing intensity, or proxies such as bush encroachment, and show that many wild
species may be maintained depending on management and location. For example,
traditional pastoral practices, i.e. burning and boma creation, may even be necessary to
maintain avian diversity in some East African savanna areas (Gregory et al. 2010).
Contrastingly, bush encroachment due to overgrazing in Ethiopia may provoke Africa’s
first avian extinction (Spottiswoode et al. 2009, Donald et al. 2010).

Table S.2.1 shows that only about a third of studies compared biodiversity of
livestock grazing landscapes to controls with indigenous grazers such as PAs. Most studies
came from South Africa (67%) and most assessed grazing effects on plants (43%) or
insects (27%). Many areas of investigation remain open, such as the role of vegetation
structure including keystone, isolated trees in maintaining biodiversity in human land-use
areas; such trees are important for maintaining diversity in natural systems (Dean et al.
1999). A common conclusion with regards to plant diversity is that spatial heterogeneity in
grazing management that includes PAs will enhance gamma diversity because different

species thrive at different grazing intensities (e.g. Fabricius et al. 2003).

20



2. Biodiversity in Africa’s Human-Modified Land

Agricultural mosaic

While extensive grazing is common in arid-savannas and xeric shrublands, an agricultural
land-use mosaic of grazing and cropping interspersed with settlements is common in more
mesic savannas and grasslands. This mosaic effect may have important consequences for
the maintenance of biodiversity, and studies of biodiversity in agricultural mosaics (24
studies summarized in Table S.2.2) identify some common themes. Compared to strict
PAs, agricultural mosaics may actually be beneficial to some species groups. For example,
Caro (2001) illustrated greater diversity and abundance of the small mammal assemblage in
the agricultural matrix outside Katavi National Park, Tanzania than inside, a pattern that
also holds for Niokolo Koba National Park, Senegal (Konecny et al. 2010). Richness of
birds, amphibians, small mammals, butterflies, and trees is similar at 41 sites across a land-
use gradient from Katavi National Park to non-intensive agricultural land; however,
composition changes along the gradient, and although the PA holds some unique species,
some species found outside the PA are absent within (Gardner et al. 2007). Thus,
agricultural mosaics may contribute to greater gamma diversity at the landscape scale;
nonetheless understanding the conservation implications of higher gamma diversity may
require a regional or global perspective on species rarity and commonness.

It is a common finding that agricultural intensification (e.g. mechanization of
agriculture, shortening fallows, destruction of remnant habitat patches, and introduction of
cash crops) can have detrimental effects on the biodiversity value of agricultural mosaics.
The mosaic effect of traditionally managed farms in KwaZulu-Natal, South Africa may
support, and even enhance, bird diversity (Ratcliffe and Crowe 2001), but intensification

results in species declines due to loss of “edge” habitats. In Burkina Faso, common
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butterfly species occur in cultivated areas, while specialists are more common in old
fallows and grazed areas, probably because grazing maintains host plants and, thus,
diversity (Gardiner et al. 2005). In this case, an agricultural mosaic of shifting fallows
could support butterfly meta-populations that allow species persistence, while
intensification could be detrimental (Gardiner et al. 2005). In Ethiopian grasslands, low-
intensity agriculture supports moderate plant diversity, while larger-scale, mechanized
farms reduce tree cover and diversity (Reid et al. 1997). Similarly, In the Serengeti-Mara
ecosystem, commercial mechanized agriculture is associated with declining wildlife

populations (Homewood et al. 2001, Homewood 2004).

Cropping

Cropping is perhaps more at odds with biodiversity than grazing is because cropping
involves the direct removal of indigenous vegetation and planting of, generally, non-
indigenous species. Nonetheless, crops can still harbor or support wild species, and their
conservation value may depend on the crops planted, the farming methods employed, and
the arrangement of fields with respect to natural habitat. I found relatively few studies that
assessed biodiversity in cultivated areas only (10 studies summarized in Table S.2.3), as
opposed to agricultural mosaics (Table S.2.2). This perhaps reflects the current state of
African agriculture, where most farms are smallholder or subsistence based rather than
expansive, commercial cultivation; although there are exceptions, average farm size is just
2 to 3 ha (Deininger et al. 2011). Where commercial cultivation does occur, loss of
biodiversity may be seen as a foregone conclusion not worth investigating (see Thiollay

2006). Many of the studies of biodiversity in cultivation were concerned primarily with the
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benefits of that diversity for production via pest control, fertility enhancement, or
pollination services, rather than for its value to conservation (e.g. Midega et al. 2008,

Tchabi et al. 2008, Carvalheiro et al. 2010).

Agroforestry
Agroforestry, the integration of trees into agriculturally productive landscapes, has
garnered much attention in the global conservation community because it has been shown
to provide habitat for relatively high levels of forest species diversity (see Bhagwat et al.
2008). In African rangelands, agroforestry can be divided into two types: technological and
traditional. Technological agroforestry deals with the expertise to plant and maintain tree
species that will increase productivity in agricultural production systems. Kenyan farmers,
for example, plant crops of fodder trees, which raise milk yields of cows and goats (Pye-
Smith 2010a). Government programs in Niger, Zambia, Malawi, and Burkina Faso support
large-scale “evergreen agriculture” projects to plant indigenous trees such as Faidherbia
albida among crops, which maintain green cover year-round, increase yields by improving
soil fertility, and provide fodder and firewood (Garrity et al. 2010). Evergreen agriculture
and other technological agroforestry projects are touted by proponents as having greater
biodiversity value than do monoculture crops (see Garrity et al. 2010, Kalaba et al. 2010,
Pye-Smith 2010a, b). Yet, evidence to support these claims remains mostly anecdotal,
warranting further research because plans are underway to expand technological
agroforestry projects throughout Africa (Garrity et al. 2010).

Traditional agroforestry, on the other hand, is a millennia-old practice, particularly

evident in the parkland savannas of West Africa, of people maintaining savanna tree
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species in pastures, fields, and villages. These trees provide shade, food, wood, and even
cash when commercially traded (e.g. shea, baobab), and traditional agroforestry may
contribute to the maintenance of tree species in addition to species for which trees provide
habitat. Many studies have enumerated tree diversity in farmlands (Table S.2.4). Even so,
the conservation value of agroforestry varies. Augusseau et al. (2006) report that in
Burkina Faso, on a farm scale, few indigenous species are important to farmers and none
are planted. Even where tree richness is maintained at a relatively high level, the
persistence of trees in traditional agroforestry can be compromised if the economic value of
totally clearing the land, e.g. for mechanized, intensive agriculture or firewood, outpaces
the value of non-timber products (Tabuti et al. 2009). Additionally, based on demographic
profiles of tree species, tree regeneration appears to be problematic in many human-
modified landscapes (e.g. Fandohan et al. 2010, Schumann et al. 2010, Venter and
Witkowski 2010). For example, a study in Benin shows that the largest shea trees are often
in villages or fields, but seedling survival is low compared to nearby PAs (Djossa et al.
2008). Regeneration potential can also be diminished when harvesting tree products affects
recruitment, as is the case for Khaya senegalensis in Benin (Gaoue and Ticktin 2008).
Where natural regeneration potential is compromised, intervention may be required to
ensure rejuvenation (Kindt et al. 2008, Ouinsavi and Sokpon 2008), especially if traditional
rotational land-use systems such as long fallow, where trees are often most capable of
regenerating, are abandoned (Schreckenberg 1999, Raebild et al. 2007).

Fortunately, agroforestry management in rangeland ecosystems is an active area of
research with regards to developing strategies to encourage tree persistence (Augusseau et

al. 2006, Kindt et al. 2008, Tabuti et al. 2009). Yet, there is a surprising lack of research to
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assess the value of savanna agroforests for faunal diversity or even non-tree plant diversity
(Table S.2.4), aspects that have been more thoroughly studied in the tropical forest context

(Bhagwat et al. 2008), and this dearth should be remedied.

Game ranching and private nature reserves

The wildlife industry, including game ranching, game farming, and private nature reserves,
has become big business, especially in southern and East African rangelands. These land-
use options involve profiting from consumptive (e.g. trophy hunting, live animal sales,
meat) or non-consumptive (e.g. tourism, aesthetic value) use of wildlife on communal or
private land. South Africa alone has an estimated 9,000 private game ranches, covering
20.5 million ha, many of which were converted from traditional livestock ranches (NAMC
2006). Ranching game rather than domestic livestock may ameliorate effects of
overgrazing because indigenous species have coevolved with indigenous vegetation
(Kerley et al. 1995), and indigenous browsers may help control bush encroachment (Taylor
and Walker 1978, McGranahan 2008). Thus, the wildlife industry may be a boon to
biodiversity conservation; however, very few studies have actually assessed impacts on
biodiversity, which may be positive or negative and likely depend on management actions
(Cousins et al. 2008).

Occurrence and abundance of mammal species on private land has increased due to
game ranching (Lindsey et al. 2009). Nonetheless, some aspects of the wildlife industry are
worrying. Privatization of wildlife (and sometimes legislative requirements) begets
ubiquitous game fencing (McGranahan 2008, Lindsey et al. 2009) with substantial

ecological consequences including the interruption of natural movements, inbreeding, and
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overstocking (Hayward and Kerley 2009, Lindsey et al. 2009). Ranches are often quite
small (South African provincial averages range from 8.2 to 49.2 km®), and smaller ranches
necessitate more intensive management interventions (Bothma 2002, Lindsey et al. 2009).
Additionally, the industry’s focus on trophies may skew natural communities in favor of
valuable species and induce semi-domestication (Mysterud 2010), and it has resulted in
extra-limital introductions, questionable breeding practices, and persecution of predators
(Lindsey et al. 2009). Even within the mammal community, generally the focus of game
ranching, the full complement of species of a given ecosystem may not be maintained on
ranches despite deliberate re-introductions (Grey-Ross et al. 2009b).

Thus, much more research is needed on the biodiversity value of the wildlife
industry and what measures, e.g. promoting conservancies over single game ranches
(Lindsey et al. 2009), can improve this value. Best-practice management in terms of
grazing pressure, fire regimes, bush encroachment, wildlife ownership policies, and fencing
needs more attention (McGranahan 2008). Furthermore, surprisingly little is known about
the impacts of game ranching on species other than large mammals. Even so, game ranches
are likely more amenable to most indigenous biodiversity than are many other commercial
land-use options. For example, large eagles in South Africa’s Karoo shrublands are much
more common in areas stocking indigenous mammals than in areas with domestic livestock

and cultivation (Machange et al. 2005).

Tropical forests
Though rangelands cover the majority of Africa, tropical forests also make up a

considerable portion (~20% (Brink and Eva 2009)) (Fig. 2.1), particularly rich in
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biodiversity. Research on biodiversity in human-modified landscapes is biased towards
tropical forests (Trimble and van Aarde 2012). Nonetheless, biodiversity in human-
modified tropical forest landscapes in Africa has received much less scientific attention
than in other regions, especially South and Central America (Gardner et al. 2010). African
tropical forests tend to be in less conflict with high human population densities than
elsewhere (e.g. Southeast Asia and Brazilian Atlantic forests) (Gardner et al. 2010),
although in West Africa 80% of the original forest extent is now an agricultural-forest
mosaic home to 200 million people (Norris et al. 2010).

I do not attempt a comprehensive review of African tropical forest biodiversity in
human-modified landscapes and refer readers to Norris et al. (2010) for an excellent
treatment of the West African scenario. They lament the lack of data regarding biodiversity
in African agricultural-forest mosaics but are able to reach some general conclusions. Land
uses that maintain tree cover are more amendable to forest biodiversity than those that do
not. Species richness increases in some modified habitats, such as logged and secondary
forest, for some species groups, but endemic forest species are often lost. Additionally,
relatively high species richness in modified habitats comprises, in part, species not present
in the baseline forest comparison, so species richness alone likely overestimates the value
of modified habitats for forest species. Furthermore, habitat modification seems to affect
richness of forest plant species more negatively than of some animal groups.

Although logically, it seems more difficult to encourage the persistence of
biodiversity in human-modified landscapes embedded in tropical forests than in
rangelands, research can indicate best practices for land-use planning. In contrast to West

Africa, Central Africa still maintains large tracts of relatively undisturbed forest that are
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becoming increasingly threatened by development, and lessons learned from studying
African forest biodiversity in human-modified landscapes should be incorporated into
development policy for the region (Norris et al. 2010).

The tropical forest biome extends to East and southern Africa where forests are less
extensive; they are confined largely to high altitudes inland and a linear belt along the
coast. These geographic constraints present unique challenges for conservation and
heighten the importance of maintaining endemic species and retaining connectivity in
fragmented forests. Fewer studies consider East and southern African tropical forests than
West African forests, but work is emerging to support land-use planning in the region, and
results largely conform to those found for West Africa. Agroforestry in Ethiopian and
Tanzania supports less diversity than forests but more than other land uses (Hemp 2006,
Gove et al. 2008, Hall et al. 2011, Negash et al. 2012). While Schmitt et al. (2010) found
higher overall plant richness in Ethiopian coffee agroforests than natural forests, richness
of typical forest species was lower. In Kenya, connectivity of coastal forest fragments for
primates may be influenced by matrix structure (Anderson et al. 2007). Farmland outside
tropical forest remnants, especially structurally complex subsistence farms, support higher
bird richness than forests; however, many forest species are lost, highlighting the
importance of maintaining the forest remnants but also supporting traditional farming
techniques over commercial monocultures (Laube et al. 2008, Mulwa et al. 2012).
Furthermore, structurally diverse farmland surrounding forest remnants may enhance forest
pollinator communities (Hagen and Kraemer 2010). Similarly, South African forest
remnants embedded in various matrix types have similar bird species richness, but

abundance is highest in fragments in agricultural matrices due to the presence of forest
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generalists and open-habitat species, while forest specialists are rare (Neuschulz et al.
2011). Forest fragments and grasslands in the agricultural mosaic outside a PA in southern
Mozambique have more beetle species and higher abundance, while endemic beetle species

are better represented inside the PA (Jacobs et al. 2010).

Cape Floristic Region

While small in area (approximately 90,000 km®, see Fig. 2.1), the Cape Floristic Region
(CFR) of South Africa is a biodiversity hotspot of global significance (Myers et al. 2000)
consisting of a Mediterranean-type ecosystem with high species turnover across the
landscape and high endemicity. In-depth conservation assessments and systematic planning
have been conducted for the region and generally focused on pristine habitat that could be
formally protected (see Cowling and Pressey 2003). Because spatial turnover of species is
so high, however, successful conservation will depend heavily on efforts in human-
modified landscapes beyond PAs (Cox and Underwood 2011). Based on species-area
curves for plants and vertebrates in the CFR, practicing biodiversity friendly management
on just 25% of the land that is beyond PAs, but still in a natural or semi-natural state, might
add an additional 541 species to the 7,340 estimated to occur in PAs (Cox and Underwood
2011).

However, in contrast to many areas of Africa dominated by subsistence agriculture,
the CFR is characterized by large areas of intensively managed agricultural monocultures
with low biodiversity value (Giliomee 2006). Overall, only 26% of the CFR has been
transformed, but the CFR is made up of different habitat types, and some, especially in the

fertile lowlands, have lost much more of their area to cultivation, urbanization, and heavy
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invasion of exotic plants; for example, coast renosterveld is more than 80% transformed
(Rouget et al. 2003a). Transformation threatens not only the CFR’s plants but also
endemic and vulnerable animals such as the Black Harrier Circus Maurus, which has been
displaced from the inland plains by cereal agriculture and now breeds, less successfully, in
the coastal strip and inland mountain habitats (Curtis et al. 2004). Though the Black Harrier
can forage in cultivated areas, it relies on intact vegetation to breed (Curtis et al. 2004).
PAs within the CFR are concentrated in areas of low agricultural value (e.g.
mountains and coastlines), so biodiversity in fertile areas depends on conservation on
privately owned land (Rouget et al. 2003b, Giliomee 2006). To increase the biodiversity
value of agricultural areas, the primary focus should be on conserving remnants of natural
vegetation on farms (Giliomee 2006). This is being attempted with some success though
incentive-driven stewardship agreements that protected almost 70,000 ha of vegetation on
private land between 2003 and 2007 (Von Hase et al. 2010). Additionally, farm
management practices may be variably amenable to biodiversity. For example, though
vineyards have very different arthropod communities than those in natural vegetation,
organic vineyards support greater diversity than do more intensively managed vineyards
(Gaigher and Samways 2010). However, these effects may be taxon dependent; for
instance, organic vineyard management benefits richness of monkey beetles (crucial
pollinators), but not bees (Kehinde and Samways 2012). Similarly, apple orchards support
less arthropod diversity than natural vegetation does, but orchards that are not sprayed with
pesticides have a higher diversity than sprayed sites (Witt and Samways 2004). On the
other hand, farms with a mixture of different crops and remnants of natural vegetation

maintain most fynbos bird species and attract several additional species, while single crop
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sites without remnant vegetation have much less bird diversity and lose many fynbos
species (Mangnall and Crowe 2003). Clearly, maintaining remnant vegetation and
connectivity in agricultural areas of the CFR is crucial, but more research is needed to

tailor agricultural practices to better conserve CFR species in production landscapes.

Urban and rural built environment
Plant and vertebrate species richness and endemism are correlated with human population
density and human infrastructure in sub-Saharan Africa (Balmford et al. 2001, Burgess et
al. 2007, Fjeldsa and Burgess 2008), which is substantial in many regions (see Fig. 2.1).
That the pattern endures in relatively developed South Africa means either that species
persist to some degree with humans in disturbed habitats at current levels, that human-
disturbed habitats actually attract more species, or that a major extinction debt is yet to be
paid (Chown et al. 2003, Fairbanks 2004). Regardless, areas with high human density,
which in Africa, are predicted to increase dramatically, outpacing growth in all other
regions in the coming decades (Seto et al. 2012), require appropriate regulations to ensure
they remain as amenable as possible to biodiversity conservation. This will be especially
important in some of Africa’s most biologically rich yet rapidly urbanizing regions; by
2030 for example, the urban area within the Eastern Afromontane and Guinean Forests of
West Africa hotspots is forecasted to be 1,900% and 920% of 2000 levels respectively
(Seto et al. 2012).

Some obvious steps include discouraging urban sprawl; providing appropriate
housing for low income populations while controlling illegal settlements in biodiversity

sensitive areas; designing relevant green spaces that include aquatic habitats and
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indigenous plants; and managing invasive species, waste, and pollutants (Muriuki et al.
2011, Puppim de Oliveira et al. 2011). Research on managing Africa’s urban and rural built
environments for biodiversity is in its infancy and is mostly constrained to South Africa.
Clearly, more research is needed, yet several studies provide pertinent information for
planners.

While urban environments might not seem particularly hospitable to biodiversity,
even small home gardens in African cities can harbor a remarkable number of species,
especially in the tropics, both intentionally cultivated and otherwise (Cumming and
Wesolowska 2004, Lubbe et al. 2010, Bigirimana et al. 2012). In South Africa,
socioeconomics, urbanicity, and ecological factors influence plant diversity and the
proportion of invasive species in home gardens (Lubbe et al. 2010, Molebatsi et al. 2010).
Gardens with a high number of non-indigenous species contribute to biotic homogenization
and pose the risk of new introductions that could prove detrimental to indigenous
ecosystems. Therefore, invasive species in the urban landscape need to be controlled
through regulation and removal, especially in threatened and fragile ecosystems (Alston
and Richardson 2006, Cilliers et al. 2008, Dures and Cumming 2010, Bigirimana et al.
2012).

Green spaces such as city parks, tree-lined streets, and even golf courses in urban
environments can support certain species. Dures and Cumming (2010) show that bird
diversity in sand fynbos in an urban gradient in Cape Town is more affected by habitat
quality than by patch metrics such as area. Thus, controlling invasive species even in high-
density housing areas may be more beneficial for birds than expanding the low quality

network of urban reserves. Alien pine tree removal helps restore invertebrate species
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diversity in Cape Town, and fragments of natural vegetation and gardens with indigenous
plants help maintain it (Pryke and Samways 2009). In the Durban Metropolitan Open
Space System, complex habitats (i.e. with trees and shrubs) support higher invertebrate
diversity than simplified habitats (i.e. mown lawns); however, simple habitats might cater
for certain rare species (Whitmore et al. 2002). Green spaces in urban Pretoria contribute to
butterfly and moth diversity (McGeoch and Chown 1997) and also support indigenous
birds (van Rensburg et al. 2009), while maintaining urban riparian vegetation is necessary
for dragonfly conservation in Pietermaritzburg (Samways and Steytler 1996). Better
ecological planning for developments such as golf courses or estates could increase the
likelihood for biodiversity persistence and minimize negative consequences, even in the
CFR (Fox and Hockey 2007). Additionally, habitat engineering, e.g. creating biotopes for
dragonflies (Steytler and Samways 1995), might be a useful tool in the urban context to
promote biodiversity, although continual management of these habitats may be necessary
to ensure persistence of species (Suh and Samways 2005).

When species are range-restricted such that a single metropolitan area may affect
most of their range, special attention is required. For example, two small forest parks in
Durban suburbs are home to the last remnant populations of the rare tree Oxyanthus
pyriformis whose specialist pollinators, the long-tongued hawkmoths, appear unable to
tolerate suburban living. Hand pollination and planting of seedlings will be necessary to
maintain the species (Johnson et al. 2004). Similarly, conservation of plants in Cape Town
is hampered by apparent sensitivity of specialist pollinator birds to urbanization, which is
concerning given the increasing urbanization in the CFR (Seto et al. 2012). Durban covers

a large portion of the range of the black-headed dwarf chameleon Bradypodion
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melanocephalum, and translocations from sites demarcated for development to sites
reserved for conservation have proven somewhat successful, dependent on adequate alien-
plant-control and restoration of indigenous habitat (Armstrong 2008). Unique landscape
features within urban areas may also require special attention. For example, Table
Mountain in Cape Town harbors endemic species whose conservation depends not only on
the PA of Table Mountain but also on management of lower elevation suburban woodlands
(Pryke and Samways 2010).

On the rural end of the settlement spectrum, less attention has been given to
biodiversity persistence. Some agricultural mosaic studies consider rural settlements, but a
few studies treat it explicitly. For example, similar to shifting cultivation, some cultures
practice shifting settlement, and abandoned settlements have been shown to provide
valuable seasonal resources, e.g. fruit trees, to chimpanzees Pan troglodytes in Mali
(Duvall 2008). Even road verges may provide for some species. For example, verges in the
Karoo support some plant species not found in adjacent grazing lands, though many species
from pastures are not found in verges (O'Farrell and Milton 2006). Verges also support
invertebrates and could prove valuable to conservation because verges are public spaces
that can be managed for biodiversity (Tshiguvho et al. 1999).

Understanding more about urban settlement and biodiversity may even benefit
conservation in once remote PAs where rural sprawl and infrastructure for wildlife tourism
can be dramatic (Wittemyer et al. 2008). For example, recent decades have seen substantial
increases in rural sprawl along with the construction of 60 tourist lodges, 1,200 boreholes,
and 540 km of roads in the Okavango Delta, one of Botswana’s premiere conservation

areas (Vanderpost 2006).
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Constraints and Opportunities

The science of biodiversity in human-modified landscapes
As others have pointed out, understanding the value of human-modified landscapes for
biodiversity, especially in Africa, is hampered by data constraints (Norris et al. 2010,
Pettorelli et al. 2010, Waltert et al. 2011, Trimble and van Aarde 2012). Many studies are
limited in temporal and spatial scale, and poor study design may result in insufficient
sampling of habitats. The focus on species richness of certain habitat types while failing to
account for the importance of species from other habitats in assigning conservation value to
different land-use options may neglect the bigger picture; Bond and Parr (2010), for
example, call for more collaboration between forest conservationists and others. More
consideration for the value of different species in terms of commonness and rarity also
needs to be developed because this review, like others highlights that human-modified
landscapes often fail to cater for endemic and specialist species (Waltert et al. 2011), and a
better understanding of beta and gamma diversity at a landscape scale is necessary.
Additionally, further investigation into the relationship between occurrence and
persistence is required, as are more studies that delve beyond species richness into the
processes that support the observed patterns of biodiversity. For example, studies of
demographic processes (e.g. Djossa et al. 2008, Schumann et al. 2010, Venter and
Witkowski 2010) and population trends (e.g. Stoner et al. 2007, Trimble and van Aarde
2011) for species inhabiting human-modified landscapes can provide insight beyond mere

patterns of occurrence. Furthermore, umbrella species are not necessarily informative for
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other taxa. As elsewhere (Gardner et al. 2010), studies of biodiversity in African human-
modified landscapes is biased towards certain taxa—and the patterns exhibited by these
species might not apply to others (Caro 2001). Also, genetic diversity, has not generally
been considered though it may be important in terms of traits valuable to humans and
valuable for conservation (Ashley et al. 2006). Conservation in human-modified
landscapes may be particularly important in conserving genetic diversity because the
traditional fortress PA model may encompass relatively little, especially for plants (Atta-
Krah et al. 2004).

Many authors lament erosion of ecological knowledge to maintain species,
especially trees, medicinal plants, and wild food plants, and urge more effort towards
domestication, cultivation, and marketing to provide farmers with the means to conserve
species while easing pressure on wild stock and improving food security and economic
stability (Leakey and Tchoundjeu 2001, Dold and Cocks 2002, Dovie et al. 2007, Kindt et
al. 2008, Ntupanyama et al. 2008, Tabuti et al. 2009, Khumalo et al. 2012). However, care
must be taken to ensure that genetic diversity is maintained in the process (Lengkeek et al.
2006, Muchugi et al. 2008). Development of domestication and cultivation methods could
promote the use of native species in human-dominated lands, and these native plants may
contribute to conservation of other taxa (Dovie et al. 2007), but more research is clearly

required.

Implementing policies
Given the limitations of the available science, it is difficult to develop strategies to

encourage land uses that are of the highest conservation value. The effect of policy on
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biodiversity conservation in human-modified landscapes under different land tenure
systems and different settlement patterns needs more research because decisions are largely
opinion driven and not evidence based (Homewood 2004, Duvall 2008). Perhaps the
community-based conservation literature, which has focused heavily on implementation
and policy, could lend some insight. A review of this literature stresses that better
implementation results are achieved when there is quality governance, resilient local
institutions with local power and accountability, consideration for local context, integration
across social and ecological systems, and mutual learning involving communities and other
involved parties, e.g. outside experts (Balint and Mashinya 2008). NGO’s and foreign aid
are more likely to encourage successful conservation when projects are flexible, small-
scale, and targeted at local interests, and when they prioritize innovation, learning, and
experimentation (Nelson 2009). Conservationists must also take cognizance of perspectives
and needs of local communities in both rural and urban settings in order to better engage
them in conservation management (Ferketic et al. 2010). CBC projects that are independent
of PAs are excellent opportunities to maintain biodiversity on human-modified land of
marginal use for agriculture; and expert opinion, monitoring, and ecological modeling tools
can help communities manage their natural resources (Du Toit 2002).

I have indicated several gaps in the literature on biodiversity in African human-
modified landscapes, and while much more work is required to create sensible policies that
meet conservation needs and those of governments and people (Ashley et al. 2006), as it
stands, current research can go some way towards supporting policy-making. Studies of
biodiversity persistence in different land-use options for a given region can be incorporated

into scenario modeling for future development. For example, Turpie et al. (2007)
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amalgamated studies of plants, invertebrates, birds, and mammals in human-modified
landscapes to predict how varying levels of afforestation or dairy production in the
Drakensberg grasslands of South Africa would influence alpha diversity.

Some generalities emerge from the literature that may be helpful in working
towards sensible policies. Generally, diversifying human-modified landscapes at all levels,
e.g. polyculture cropping, diverse agroforestry, and maintaining farmlands with high
heterogeneity in terms of both crops and vegetation structure, is likely to support more
species than do more homogenous land uses, while potentially also providing economic
stability against a background of fluctuating markets for specific crops (Franzen and
Mulder 2007). It is apparent that, often, endemic and specialist species cannot persist in
human-modified landscapes; thus, protected area expansion and development should be
focused within areas rich in such species (see Jenkins et al. 2013). Past and present
implementation strategies are beyond the scope of this review, yet there is literature dealing
with such strategies in Africa that may be of use, e.g. certification of sustainable and

biodiversity friendly products (Lilicholm and Weatherly 2010).

Living with nature

Maintaining biodiversity in landscapes where humans live, work, and extract resources
implies that humans will have to coexist with other species. While the consequences of
living without nature may be worse than the difficulties of living with it, certain issues
present considerable obstacles for promoting conservation beyond PAs, especially for
mammals. Human-wildlife conflict is particularly troublesome for conservation of large

mammals in human-dominated landscapes, e.g. carnivores threaten livelihoods by
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predating livestock and, occasionally, people. However, specific and practical actions can
greatly reduce the probability of carnivore attacks. For example, in Kenyan communal
lands, having a domestic dog accompany herds can reduce the risk of a carnivore attack by
63%; conversely each additional boma gate increases the risk of attack by 40% (Woodroffe
et al. 2007). However, carnivores are not the only concern. Other animals, such as baboons
and bush pigs, can damage structures and destroy crops while larger herbivores, such as
elephants, also threaten human lives. Knowledge of attitudes of people employing different
land uses can help land-use planners develop strategies to reduce conflict and negative
attitudes towards conservation. For example, crop agriculture should not be encouraged in
predominantly pastoral areas where elephants and people coexist relatively peacefully
(Gadd 2005). Furthermore, land-use planning that incorporates knowledge of which crops
are most likely to generate conflict could allow creation of buffer zones in areas with high
potential for conflict (Hockings and McLennan 2012).

The risk of disease transmission poses an additional difficulty. Diseases of domestic
animals threaten wildlife. For example, domestic dogs are carriers of canid diseases
transmissible to wild carnivores (Butler et al. 2004) and were partly responsible for
extinction of the African wild dog Lycaon pictus and decimation of lions Panthera leo in
areas of the Serengeti (see Woodroffe 1999). Additionally, livestock can transmit animal
diseases (e.g. bovine tuberculosis) to wildlife with negative conservation outcomes, while
wildlife can also transmit diseases (e.g. foot and mouth) to livestock with immense
economic consequences (Michel et al. 2006, Thomson 2009).

Fencing has been heavily used in Africa to assist people in their ability to coexist

with nature—to reduce direct conflict and disease transmission. Laws regarding fencing
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differ by country; for example, Zambia requires game fences while Namibia encourages
large-scale cooperation between game-farmers to discourage fencing (McGranahan 2008).
Obviously, fencing has serious ecological consequences (Hayward and Kerley 2009,
Trimble and van Aarde 2010) and is anathema in many ways to the goals of conservation,
especially conservation beyond PAs (Trimble and van Aarde 2010). However, non-
traditional fencing technologies (see Hayward and Kerley 2009), such as fences targeted at
particular problem species (e.g. elephant fences that allow other species to pass), virtual
barriers, or fencing wildlife out of villages and fields instead of into PAs, may be
acceptable compromises. The effect of fences on the persistence of species in human-
modified landscapes certainly deserves more investigation.

Economically, wild animals provide an important resource for many people in
Africa (Bharucha and Pretty 2010), which may threaten species persistence. “Sustainable
use” is frequently discussed with relation to bushmeat hunting, but food scarcity and
population growth dictate that it will likely be impossible to enforce rules for sustainable
use unless food security issues are addressed (Fa et al. 2003). Sustainable harvesting is also
an issue for plants (Sambou et al. 2002). Community forests must be carefully managed,
e.g. by restricting harvesting of pole-sized stems to certain species, to ensure that species
are not used to extinction (Obiri et al. 2002). Additionally, rules must be assessed to ensure
that they achieve the desired goals; for example, in the Republic of Guinea, tax to the
forestry administration for harvesting palm wine counterproductively encourages
harvesters to employ lethal yet profitable methods of harvesting to compensate for the

initial investment (Sambou et al. 2002).
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Conclusion

There is clearly both necessity and great potential for human-modified land in sub-Saharan
Africa to contribute to the conservation of the continent’s biodiversity. While PAs will
remain essential, and are especially important for protecting species sensitive to human
disturbance (Devineau et al. 2009), a greater focus on biodiversity conservation beyond
their boundaries could be complementary to overall conservation goals. The information
gleaned from studies of biodiversity in human-modified landscapes in Africa discussed in
this review goes some way toward providing policy-makers with evidence to support
defensible decisions for land-use planning and conservation management beyond PAs.
Improving the amenity of human-modified landscapes for biodiversity can be encouraged
at all levels from individuals’ choices to plant indigenous home gardens, to grass roots
endeavors to manage communal resources, to communities deciding to share their land
with wildlife, to commercial farms going organic and maintaining patches of natural
habitat. Governmental intervention at the level of the city (e.g. green space planning),
region (e.g. extension agencies demonstrating biodiversity friendly agricultural practices),
nation (e.g. policy-setting for control of invasive species, pesticide or poison usage, and
land-use zoning), or even internationally (e.g. cooperative removal of boundary fences) are
also warranted.

Although several factors including lack of knowledge, implementation challenges,
and problems of coexistence with wildlife may constrain successful implementation of
biodiversity conservation in human-modified landscapes, given each constraint,
opportunity exists for progress. On the bright side, scientific interest in the topic is

increasing (Trimble and van Aarde 2012), and as research accumulates, it will allow for
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systematic reviews useful for policy decisions. Additionally, many issues associated with
human-wildlife coexistence are primarily related to large mammals and efforts to solve
these problems should continue. Meanwhile, the barriers to implementing strategies to
conserve other species groups in human-modified landscapes are far from insurmountable

and such strategies should be prioritized.
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