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GLOBAL FINITE-TIME OBSERVERS
FOR A CLASS OF NONLINEAR SYSTEMS

Yunyan Li, Yanjun Shen and Xiaohua Xia

Global finite-time observers are designed for a class of nonlinear systems with bounded
varying rational powers imposed on the increments of the nonlinearities whose solutions exist
and are unique for all positive time. The global finite-time observers designed in this paper
are with two homogeneous terms. The global finite-time convergence of the observation error
system is achieved by combining global asymptotic stability and local finite-time stability.
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1. INTRODUCTION

Nonlinear observers have received a great deal of attraction since the formal introduc-
tion of the concept and the Lyapunov based approach of design as proposed in [27].
Quite a number of early works have been devoted to establishing link between nonlin-
ear observability and linear observers [10, 12] by linearizing nonlinear systems through
making change of coordinates [9, 10, 12]. In the past decades, a series of nonlinear
observer design methods for various nonlinear systems are developed, for example, the
extended Luenberger observer for nonlinear systems [30], the nonlinear observer pro-
posed by observer error linearization [29], the observer design based on the Lyapunov
based approach [20, 27], the observer canonical form approach [1, 10] and the high-
gain approach [6, 7] and so on. For nonlinear systems with nonlinear terms satisfying
Lipschitz conditions, over the years, a lot of works have investigated observer design
for this kind of nonlinear systems. For example, necessary and su�cient conditions
on the stability matrix that ensure asymptotic stability of the observer are presented
in [21]. The observer synthesis for Lipschitz nonlinear systems is carried out using H1
optimization [18]. And [4] designs a robust nonlinear observer for Lipschitz nonlinear
systems subject to disturbances and so on. Then, in [19], a globally asymptotically
stable observer is designed for nonlinear systems with output dependent incremental
rate while [11] develops a global high-gain-based observer for nonlinear systems with
generalized output-feedback canonical form including output dependent diagonal terms.

Recently, since systems with finite-settling-time dynamics possess better disturbance
rejection and robustness properties [28], finite-time convergent observers of nonlinear
systems have become an active subject with the advance in finite-time stability and
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stabilization [2, 15, 16]. Based on finite-time stability, a lot of finite-time observers [5,
14, 17, 23, 24] are proposed. In particular, [17] introduces a finite-time observer relying
on the homogeneity properties of nonlinear systems [3]. Then, [14, 24] and [23] make
considerable progress in finite-time high-gain observer design. [24] proposes a semi-global
finite-time observer for single output nonlinear systems that are uniformly observable
and globally Lipschitz. Then for the same class of nonlinear systems, two di↵erent kinds
of global finite-time observers are proposed by [14] and [23], respectively. Later, semi-
global finite-time observers are studied in [25] for the following nonlinear systems whose
solutions exist for all positive time
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ẋ

2

= x
3

+ f
2

(y, x
2

, u),
...
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semi-global finite-time observers for nonlinear systems (1) when q�i
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(2 
j  i  n) [25] (where q > n is a positive number satisfying some conditions related
to the homogeneity degree, refer to [25] for details). In [25], semi-global finite-time
observers are also designed for systems (1) where the nonlinear terms have mixed and
varying incremental rational powers
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Then in [26], global asymptotic and finite-time stability are studied for a class of

homogeneous nonlinear systems and the best possible lower bound � 1

n of the degree of
the homogeneity is obtained. Motivated by the result in [26], for the rational and mixed
rational powers with smaller lower bound satisfying n�i

n�j+1

< �ij < i
j�1

and n�i
n�j+1

<

�
1,ij < 1, 1 < �

2,ij < i
j�1

(2  j  i  n) in conditions (2) and (3) of nonlinear
systems (1) for n � 3, there are still no related results on asymptotic and finite-time
observer design till now. In this paper, we aim to solve the problem of designing global
finite-time observers. And we restrict our attention to estimating the states only for
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those nonlinear systems (1) whose solutions globally exist and are unique for all positive
time.

In order to solve the problem of designing global finite-time observer, we will employ
homogeneity properties [3] and the argument method of [14] together. Under exactly the
same gain update law as that in semi-global finite-time results [25], the global finite-time
observers we will design are with two homogeneous terms, one of degree smaller than
1, the other of degree greater than 1. Moreover, the global finite-time convergence of
the observation error system is derived based on two di↵erent homogeneous Lyapunov
functions. The derivatives of the Lyapunov functions are calculated by splitting the
whole space into three di↵erent sets to obtain global asymptotic stability and local
finite-time stability.

The paper is organized as follows. The main results are presented in Section 2: the
global finite-time observers for nonlinear systems (1) for n � 3 with conditions (2) and (3)
where the rational and mixed rational powers satisfy n�i

n�j+1

< �ij < i
j�1

and n�i
n�j+1

<

�
1,ij < 1, 1 < �

2,ij < i
j�1

(2  j  i  n), respectively. In Section 3, two examples
are given to illustrate the validity of the proposed design method. Finally, the paper is
concluded in Section 4. Then, in the Appendix, an explicit proof of a useful lemma is
included for the completeness of the paper.

2. GLOBAL FINITE-TIME OBSERVERS FOR A CLASS OF NONLINEAR
SYSTEMS

In this section, we will design global finite-time converging observers for nonlinear system
(1) for n � 3 with the conditions (2) and (3) where the rational and mixed rational
powers satisfy n�i

n�j+1

< �ij < i
j�1

and n�i
n�j+1

< �
1,ij < 1, 1 < �

2,ij < i
j�1

(2  j  i 
n), respectively.

Before we give the explicit form of the global finite-time observers we will propose in
the paper, let us review a semi-global finite-time observer designed in [25] for nonlinear
system (1) with conditions (2) and (3) where the rational and mixed rational powers
in the nonlinearities satisfy q�i

q�j+1

< �ij < i
j�1

and q�i
q�j+1

< �
1,ij < 1, 1 < �

2,ij < i
j�1

(2  j  i  n) (where q > n is a positive real number), respectively. The semi-global
finite-time observer is shown in the following:
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that �ij < i��

j�1+� , vj < 1�2�
j�1+� holds,  (u, y, x̂) = �(u, y)(1 +
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n , 1) and ai > 0 (i = 1, . . . , n) are the coe�cients
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of Hurwitz polynomial

sn + a
1

sn�1 + . . . + an�1

s + an. (5)

The observer gain L(t) in (4) satisfies the following properties.

Lemma 2.1. (Shen and Xia [25]) For the observer gain L(t) defined in (4), there exists
an M > 0 such that L(t) < M, t 2 [0, T ], 8T 2 (0,1).

In this paper, we are interested in designing global finite-time observers for system (1)
for n � 3 with the rational power satisfying n�i

n�j+1

< �ij < i
j�1

(2  j  i  n) in
condition (2) and with the mixed rational powers satisfying n�i

n�j+1

< �
1,ij < 1, 1 <

�
2,ij < i

j�1

(2  j  i  n) in condition (3). Under the same gain update law (4), the
global finite-time observers can be constructed as:
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where �i = i� � (i� 1) (i = 0, 1, . . . , n), � > 1+�
� , 0 < � < 1, 0 < ⌘ < 1� ↵ < 1.

Definition 2.2. Denote the solutions of systems (1), (6) with respect to the correspond-
ing input functions and passing through x

0

and x̂
0

as x(t) and x̂(t), respectively. If there
exists an open neighborhood U ⇢ Rn of the origin such that e

0

= x
0

� x̂
0

2 U implies
x(t)� x̂(t) 2 U and a function T : U \ {0}! (0,1), such that

kx(t)� x̂(t)k ! 0, as t ! T (e
0

), (7)

then, the system (6) with dynamic high gain (4) is called a finite-time observer of the
system (1). In this case, all points e

0

= x
0

� x̂
0

such that (7) holds constitute a domain
of observer attraction. If the open set U can be chosen as the whole space Rn, then
system (6) with dynamic high gain (4) is called a global finite-time observer.

In paper [13], two homogeneous observers with di↵erent degrees are constructed for
global output feedback stabilization problem of a class of nonlinear systems. The fol-
lowing remark summarizes the di↵erences between the homogeneous observer (6) we
designed and the homogeneous observers proposed in [13].

Remark 2.3. Note that in [13], a dual observer is employed to solve the problem of
global output feedback stabilization for a class of nonlinear systems whose nonlinearities
are bounded by both low-order and high-order terms. Compared the results in [13]
with the global finite-time observer (6) we proposed in this paper, we have the following
statements.

• The dual observer [13] is comprised of two seperate homogeneous observers, one
estimating the low-order part of unmeasurable states and the other estimating the
high-order components. However, here, two homogeneous terms one of degree less
than 1 and the other greater than 1 are introduced in the design of the global
finite-time observer simultaneously.
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• In [13], either the low-order or the high-order observer, can only estimate those
states in a limited region either close to or far away from the origin, but not all
the states in the space. However, the observer we designed can estimate the states
in the whole space.

• Both the low-order observer and high-order observer as well as the coe�cients in
the observers are derived by a recursive method in [13]. In this paper, we will see
that the global finite-time stability of the proposed observer will be proved based
on Lyapunov theory and all the coe�cients in the observer are given explicitly.

For ↵i (1  i  n) and �ij (2  j  i  n) in (2), they satisfy the following properties.

Lemma 2.4. For �ij (2  j  i  n) being given by (2), if i
j�1

> �ij > n�i
n�j+1

, we
have �↵i�1

+ �ij↵j�1

� ↵ + 1 > 0 (2  j  i  n). Moreover, select 0 < � < 1 such
that � > 1+�

� , then we have �ij�j�1

� �i�1

< � � 1 (2  j  i  n).

P r o o f . The proof of this lemma is simple, and thus it is omitted here. ⇤

In what follows, for n � 3, we will prove that system (6) is a global finite-time
observer for nonlinear system (1) with conditions (2) and (3) where the rational and
mixed rational powers satisfy n�i

n�j+1

< �ij < i
j�1

and n�i
n�j+1

< �
1,ij < 1, 1 < �

2,ij <
i

j�1

(2  j  i  n). It is in three parts. First we will make change of coordinates of
the error system and introduce a useful lemma. Then we will show that the observer (6)
we proposed can render the error system globally finite-time stable for system (1) with
condition (2) where the rational powers satisfy n�i

n�j+1

< �ij < i
j�1

(2  j  i 
n). Finally, it will be verified that system (1) is also a global finite-time observer for
nonlinear system with condition (3) where the mixed rational powers in its nonlinearities
satisfy n�i

n�j+1

< �
1,ij < 1, 1 < �

2,ij < i
j�1

(2  j  i  n).

2.1. Pre-treatment of the system

The dynamics of the observation error e = x� x̂ is given by
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Then, (8) can be expressed as
8
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Before we investigate the global finite-time convergence of the observation error sys-
tem (9), first let us consider the following homogeneous nonlinear system
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), �i = i� � (i � 1) (i = 0, 1, . . . , n), � > 1 � 1

n ,
0 < � < 1, ai > 0 (1  i  n) are given in (5).

In the following, we will see that under a new homogeneous Lyapunov function,
nonlinear system (10) is finite-time stable for � 2 (1 � 1

n , 1) and asymptotically stable
for � � 1. Before we give this result for system (10), let us first list some conditions
under which the result holds.

We suitably choose ai (1  i  n) in (10) such that there exists a matrix P 2
Rn⇥n, PT = P > 0 satisfying
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I  D
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 h
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�a1 1 . . . 0
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, h
2
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two real constants.

The following lemma summarizes some results for nonlinear system (10) where a new
homogeneous Lyapunov function is proposed and some inequalities for system (10) are
obtained based on this new Lyapunov function.

Lemma 2.5. Construct the following function as in [22]
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V̄ (") = "T P", P satisfies condition (11), q > 0 is a positive integer. Then
(i) V (") is a positive definite function homogeneous of degree q with respect to the

weights {�i�1

}
1in. V (") is called a q h-Lyapunov function of V̄ (") w.r.t. �, ⇢, (�

0

, �
1

,
. . . , �n�1

).
(ii) If ai(1  i  n) are chosen to satisfy condition (11), then there exist w

1

, w
2

> 0
such that

w
1

V (")  @V (")
@"

T

D
1

"  w
2

V ("). (12)

(iii) For 1 � 1

n < � < 1, if q > 1 + max{�i}0in, ai(1  i  n) and P satisfy
condition (11), dV (")

dt

�

�

�
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3

> 0 such that

dV (")
dt
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�

�

�

(10)

 �w
3

⇢1��V (")� , (13)

where � = q+��1

q .

(iv) For � � 1, n � 3, if q > 1 + max{�i}0in, ai(1  i  n) and P satisfy
condition (11), anP

1n > 0 (where P
1n is the element of P at the first line and nth
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The p r o o f s of (i) and (ii) are quite easy. And the proofs of (iii) and (iv) are
very similar. The main ideas of proofs (iii) and (iv) are to construct a compact set
containing the origin on which the derivative of the constructed homogeneous Lyapunov
function satisfies some key inequalities. Then inequality (13) and (14) are derived by
use of the homogeneity properties of both the Lyapunov function and the system (10).
The detailed proof is given in the Appendix.
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by Lemma 2.5, there exist c
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,↵
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), q
1

, q
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are two positive real numbers, V̄�(") = V̄↵(") = "T P", P satisfies condition (11), �

1

=
q1+��1

q1
, �

2

= q2+↵�1

q2
.

2.2. Global finite-time observers for nonlinear system (1) for n � 3 with

condition (2) where the rational powers in the nonlinearities satisfy

n�i
n�j+1

< �ij < i
j�1

(2  j  i  n)

In this subsection, the global finite-time convergence of the error system (8) between
the observer (6) we designed and the nonlinear system (1) for n � 3 with condition (2)
(where the rational powers satisfy n�i

n�j+1

< �ij < i
j�1

(2  j  i  n)) is proved.

Theorem 2.6. If n�i
n�j+1

< �ij < i
j�1

(2  j  i  n), then for n � 3, any ↵ 2 (1� 1

n , 1),
there exist 'i > 0 (i = 1, 2, 3), 0 < � < 1, � > 1+�

� and 0 < ⌘ < 1 � ↵ such that the
system (6) with the observer gain (4) is a global finite-time observer for the nonlinear
system (1) under the condition (2).

P r o o f . From [8] and [14], we know that global asymptotic stability and local finite-
time stability mean global finite-time stability. Here, in this paper, we will employ this
principle and divide the proof of the global finite-time convergence of the observation
error system into global asymptotic stability and local finite-time stability.

First of all, for n � 3, by suitably choosing ai (1  i  n) such that there ex-
ists PT = P > 0 satisfying condition (11) and anP

1n > 0, which is always possible.
For � > 0, define BV↵,�

�= {" : V↵(") < �}, BV� ,�
�= {" : V�(") < �}. As shown in

the following figure, we have BV� ,�3 ⇢ BV� ,�1 ⇢ BV� ,1 by choosing 1 > �
1

> �
3

> 0
(where �

1

, �
3

will be given in the proof). The proof is in three parts. First, we
use V�(") to derive dV�(")

dt < 0 for " 2 Rn \ BV� ,1 and " 2 BV� ,1 \ BV� ,�1 , respec-
tively. When " 2 BV� ,�3 , V↵(") is employed to prove the finite-time stability of the
system (9). Finally, when " 2 BV� ,�1 \ BV� ,�3 , for 8 ✏ > 0, there exist 'i > 0 (i =
1, 2, 3) such that �

1

� �
3

< ✏, then by continuity of dV↵(")
dt , we obtain dV↵(")

dt < 0.

&%
'$
⇢⇡
�⇠mBV�,�1 -

� BV�,�3

� BV�,1
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Part I: When " 2 P = Rn \ BV� ,1, let us consider the q
1

h-Lyapunov function V�(").
Based on (17), calculating the derivative of V�(") along the solution of the system (9),
we have

dV�(")
dt

�

�

�

�

(9)

=
dV�(")

dt

�

�

�

�

(15)

+ '
1

(L1�� � '
2

)
@V�(")

@"

T

D
1

"� '
3

 (u, y, x̂)
@V�(")

@"

T

⇥D
1

" +
@V�(")

@"

T

G̃
1

+
@V�(")

@"

T

F̃  �c
1

L1�⌘�V�(")�1 + c̄
1

'
1

(L1�� � '
2

)V�(")

�c
1

'
3

 (u, y, x̂)V�(") +
@V�(")

@"

T

G̃
1

+
@V�(")

@"

T

F̃ , (19)

where G̃
1

= (�L(↵1�1)�+1a
1

d"
1

c↵1 , . . . , �L(↵n�1)�+1and"1

c↵n)T , F̃ = (0,
˜f2

L1+� , . . . ,
˜fn

Ln�1+� )T .

For @V�(")
@"

T
G̃

1

, by Lemma 4.2 in [3], we have

@V�(")
@"

T

G̃
1

 L1�(1�↵)�a⇤
n
X

i=1

�

�

�

�

@V�(")
@"i

�

�

�

�

|"
1

|↵i  L1�(1�↵)�a⇤k
1

⇥
n
X

i=1

V�(")
q1��i�1+↵i

q1  L1�(1�↵)�a⇤k
1

nV�("), (20)

where k
1

= max{z:V�(z)=1}

�

�

�

@V�(z)

@zi

�

�

�

|z
1

|↵i , a⇤ = max
1in{ai}.

For @V�(")
@"

T
F̃ , we can obtain that @V�(")

@"

T
F̃   (u, y, x̂)

Pn
i=2

Pi
j=2

�

�

�

@V�(")
@"i

�

�

�

|ej |
Li�1+� +

l
Pn

i=2

Pi
j=2

�

�

�

@V�(")
@"i

�

�

�

|ej |�ij

Li�1+� . Note that under the condition �ij < i
j�1

, there exists a

�
1

> 0 such that �ij < i
j�1+�1

, vj < 1��1
j�1+�1

(2  j  i  n), and let 0 < � <

�
1

. Because L(t) > '
2

> 1, we have L(j�1+�)�ij�(i�1+�) < L1��. Then, similarly by
Lemma 4.2 in [3], we have

@V�(")
@"

T

F̃   (u, y, x̂)
n
X

i=2

i
X

j=2

�

�

�

�

@V�(")
@"i

�

�

�

�

|"j |+ lL1��
n
X

i=2

i
X

j=2

�

�

�

�

@V�(")
@"i

�

�

�

�

|"j |�ij

 k
2

 (u, y, x̂)
n
X

i=2

i
X

j=2

V�(")
q1��i�1+�j�1

q1 + lk
3

L1��
n
X

i=2

i
X

j=2

V�(")
q1��i�1+�ij�j�1

q1

 k
2

n2 (u, y, x̂)V�(") + lk
3

n2L1��V�(")
q1+�̄

q1 , (21)

where �̄ = max
2jin{�ij�j�1

� �i�1

}, k
2

= max{z:V�(z)=1}

�

�

�

@V�(z)

@zi

�

�

�

|zj |, k
3

=

max{z:V�(z)=1}

�

�

�

@V�(z)

@zi

�

�

�

|zj |�ij .
Then, by substituting (20) and (21) into (19), we have

dV�(")
dt

�

�

�

(9)

 �c
1

L1�⌘�V�(")�1 + c̄
1

'
1

L1��V�(")� c̄
1

'
1

'
2

V�(")� c
1

'
3

 (u, y, x̂)V�(")

+ L1�(1�↵)�a⇤k
1

nV�(") + k
2

n2 (u, y, x̂)V�(") + lk
3

n2L1��V�(")
q1+�̄

q1 . (22)
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From Lemma 2.4, we know that �
1

> q1+¯�
q1

. Then, for all " 2 P, there exist d
11

> 0,
d
21

> 1, d
31

> 0 such that when 0 < '
1

< d
11

, '
2

> d
21

, '
3

> d
31

, we have

dV�(")
dt

�

�

�

�

(9)

 �c̄
1

'
1

'
2

V�("), " 2 P, (23)

where d
11

= c1
3c̄1

, d
21

= max{( 3a⇤k1n
c1

)
1

(1�↵�⌘)� , ( 3lk3n2

c1
)

1
(1�⌘)� }, d

31

= k2n2

c1
.

When " 2 BV� ,1, we again use the q
1

h-Lyapunov function V�("). First, we have

@V�(")
@"

T

G̃
1

 L1�(1�↵)�a⇤k
1

nV�(")
q1��n�1+↵n

q1 ,

@V�(")
@"

T

F̃  k
2

n2 (u, y, x̂)V�(")
q1��n�1+�

q1 + lk
3

n2L1��V�(")
q1+�

q1 . (24)

Then from (19) and (24), we obtain
dV�(")

dt

�

�

�

(9)

 �c
1

L1�⌘�V�(")�1 + c̄
1

'
1

(L1�� � '
2

)V�(")� c
1

'
3

 (u, y, x̂)V�(") + a⇤k
1

n

⇥ L1�(1�↵)�V�(")
q1��n�1+↵n

q1 + k
2

n2 (u, y, x̂)V�(")
q1��n�1+�

q1 + lk
3

n2L1��V�(")
q1+�

q1 ,
where � = min

2jin{�ij�j�1

� �i�1

}. There exists a d
22

> 1 such that 0 < g
11

<
g
13

< 1, 0 < g
12

, g
14

< 1 when 0 < '
1

< d
11

, '
2

> d
22

, '
3

> d
31

. Then we have

dV�(")
dt

�

�

�

�

(9)

 �c̄
1

'
1

'
2

V�("), " 2 BV� ,1 \ BV� ,�1 , (25)

where �
1

= max{g
12

, g
13

, g
14

}, g
11

= ( 3c̄1'1
c1

)
q1

��1 '
2

� (1�⌘)�q1
��1 , g

12

= (3lk3n2

c1
)

q1
����1

'
2

� (1�⌘)�q1
����1 , g

13

= (3a⇤k1n
c1

)
q1

�n�↵n '
2

� (1�↵�⌘)�q1
�n�↵n , g

14

= (k2n2

c1
)

q1
�n�1�� '

� q1
�n�1��

3

.
Thus, from (23) and (25), we can derive

ddV�(")
dt

�

�

�

�

(9)

 �c̄
1

'
1

'
2

V�("), " 2 Rn \ BV� ,�1 . (26)

Part II: In this part, we will consider " 2 BV� ,�1 . Here, we use the q
2

h-Lyapunov
function V↵("). Because V�("), V↵(") are homogeneous of degrees q

1

and q
2

, respectively,
we have V↵(")  k⇤V�(")

q2
q1 , where k⇤ = max{z:V�(z)=1} V↵(z). Then there exist d

23

> 1,

d
32

> 0 such that k⇤�
q2
q1
1

 1, i. e., V↵(")  1 when '
2

> d
23

, '
3

> d
32

. Under
this condition, based on (18), calculating the derivative of V↵(") along the solution of
system (9), using the same method as that in part I, we have

dV↵(")
dt

�

�

�

�

(9)

 �c
2

L1��V↵(")�2 + c̄
2

'
1

(L1�� � '
2

)V↵(")� c
2

'
3

 (u, y, x̂)V↵(")

+
@V↵(")

@"

T

G̃
2

+
@V↵(")

@"

T

F̃ , (27)

where G̃
2

= (�L(�1�1)⌘�+1a
1

d"
1

c�1 , . . . ,�L(�n�1)⌘�+1and"1

c�n)T .
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For @V↵(")
@"

T
G̃

2

and @V↵(")
@"

T
F̃ , similarly, we have

@V↵(")
@"

T

G̃
2

 L(�n�1)⌘�+1a⇤k
4

nV↵("),

@V↵(")
@"

T

F̃  k
5

n2 (u, y, x̂)V↵(") + lk
6

n2L1��V↵(")
q2+↵

q2 , (28)

where ↵ = min
2jin{�ij↵j�1

� ↵i�1

}, k
4

= max{z:V↵(z)=1}

�

�

�

@V↵(z)

@zi

�

�

�

|z
1

|�i , k
5

=

max{z:V↵(z)=1} |@V↵(z)

@zi
||zj |, k

6

= max{z:V↵(z)=1} |@V↵(z)

@zi
||zj |�ij .

Then by substituting (28) into (27), we have

dV↵(")
dt

�

�

�

�

(9)

 �c
2

L1��V↵(")�2 + c̄
2

'
1

(L1�� � '
2

)V↵(")� c
2

'
3

 (u, y, x̂)V↵(")

+L(�n�1)⌘�+1a⇤k
4

nV↵(") + k
5

n2 (u, y, x̂)V↵(") + lk
6

n2L1��V↵(")
q2+↵

q2 .

From Lemma 2.1 and Lemma 2.4, we know �
2

< q2+↵
q2

, '
2

< L(t) < M . And because
0 < '

1

< d
11

, there exists a d
24

> 0 such that g
22

< g
21

, g
22

< g
23

when L(t) > '
2

>
d
24

. Moreover, there exists a d
33

> 0 such that when '
3

> d
33

, '
2

> d
24

, we have

dV↵(")
dt

�

�

�

�

(9)

 �1
4
c
2

L1��V↵(")�2 , " 2 BV↵,�2 \ {0},

where �
2

= g
22

, d
33

= k5n2

c2
, g

21

= ( c2
4c̄2'1

)
q2

1�↵ , g
22

= ( c2
4a⇤k4n )

q2
1�↵ '

��(1+(�n�1)⌘)q2
1�↵

2

, g
23

=

( c2
4lk6n2 )

q2
↵�↵+1 .

Then, by Theorem 4.2 in [2], the system (9) is locally finite-time stable on BV↵,�2 .
From V↵(")  k⇤V�(")

q2
q1 , we can obtain BV� ,�3 ⇢ BV↵,�2 , where �

3

= ( g22
k⇤ )

q1
q2 =

'
��(1+(�n�1)⌘)q1

1�↵

2

( 1

k⇤ )
q1
q2 ( c2

4a⇤k4n )
q1

1�↵ . Then, BV� ,�3 is a domain of observer attraction,
i. e.,

dV↵(")
dt

�

�

�

�

(9)

 �1
4
c
2

L1��V↵(")�2 , " 2 BV� ,�3 \ {0}. (29)

Part III: For any ✏ > 0, there exist su�ciently large '
2

, '
3

and 0 < '
1

< d
11

, '
2

>

d
2i (1  i  4), '

3

> d
3j (1  j  3) such that 0 < �

1

� �
3

< ✏. Because dV↵(")
dt

�

�

�

(9)

is

continuous on Rn, we have

dV↵(")
dt

�

�

�

�

(9)

< 0, " 2 BV� ,�1 \ BV� ,�3 . (30)

Thus, from (26), (29) and (30), by combining global asymptotic stability and local finite-
time stability, we get that the system (9) is globally finite-time stable, i. e., there exists
a T

1

> 0 such that "i(t) = 0 when t > T
1

.
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From Lemma 2.1, there exists an M⇤ > 0 such that Li�1+�  M⇤ (i = 1, . . . , n).
Then, we have ei(t)

M⇤  ei(t)
Li�1+� = "i(t) = 0 (t > T

1

), i. e., ei(t) = 0 (t > T
1

) (i =
1, . . . , n), which means system (6) is a global finite-time observer for system (1) under
the condition (2).

This completes the proof. ⇤

2.3. Global finite-time observers for nonlinear system (1) for n � 3 with

condition (3) where the mixed rational powers in the nonlinearities

satisfy

n�i
n�j+1

< �
1,ij < 1, 1 < �

2,ij < i
j�1

(2  j  i  n)

Similarly to what is done in [25], we can extend the results to the system (1) with condi-
tion (3) for n � 3 which is with mixed rational powers in the nonlinearities: system (6)
is a global finite-time observer for this kind of nonlinear system.

Theorem 2.7. If n�i
n�j+1

< �
1,ij < 1, 1 < �

2,ij < i
j�1

(2  j  i  n), then for n � 3,
any ↵ 2 (1� 1

n , 1), there exist 0 < � < 1, � > 1+�
� and 0 < ⌘ < 1� ↵ such that global

finite-time observers in the form (6) with the observer gain (4) can be designed for the
nonlinear systems (1) with the condition (3).

P r o o f . The proof is similar to Theorem 2.6 and thus is omitted here. ⇤

3. EXAMPLE

In this section, two examples are given to illustrate the e↵ectiveness of the results as
proposed in Theorem 2.6 and Theorem 2.7, respectively.

Example 3.1. Consider nonlinear system
8

>

>

<

>

>

:

ẋ
1

= x
2

,
ẋ

2

= x
3

,

ẋ
3

= x
3
2
3

� x
3

,
y = x

1

.

(31)

It can be verified that the following type of nonlinear condition holds: |(x
3
2
3

�x
3

)�(x̂
3
2
3

�
x̂

3

)|  (1+ 3

2

|x̂
3

| 12 )|x
3

� x̂
3

|+ |x
3

� x̂
3

| 32 . Following the result in this paper, an observer
can be designed as follows:

8

>

>

>

<

>

>

>

:

˙̂x
1

= x̂
2

+ 3Ldy � x̂
1

c↵ + 3L1�(��1)(1�⌘)�dy � x̂
1

c� ,
˙̂x
2

= x̂
3

+ 3L2dy � x̂
1

c2↵�1 + 3L2�2(��1)(1�⌘)�dy � x̂
1

c2��1,

˙̂x
3

= x̂
3
2
3

� x̂
3

+ L3dy � x̂
1

c3↵�2 + L3�3(��1)(1�⌘)�dy � x̂
1

c3��2,

L̇ = �L['
1

(L1�� � '
2

)� '
3

(1 + 3

2

|x̂
2

| 12 )].

Condition I
Parameters: ↵ = 0.95, � = 105, � = 0.01, ⌘ = 0.01, '

1

= 0.1, '
2

= 1.2, '
3

= 0.2.
The initial values: x

1

(0) = 0.6, x
2

(0) = 0.1, x
3

(0) = 0.2, x̂
1

(0) = 0.2, x̂
2

(0) =
0.4, x̂

3

(0) = 0.1, L(0) = 1.5.
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Condition II

Parameters: ↵ = 0.95, � = 105, � = 0.01, ⌘ = 0.01, '
1

= 0.1, '
2

= 1.2, '
3

= 0.2.
The initial values: x

1

(0) = 0.6, x
2

(0) = 0.1, x
3

(0) = 0.2, x̂
1

(0) = 0.2, x̂
2

(0) =
0.4, x̂

3

(0) = 0.1, L(0) = 15.
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Fig. 1. Trajectories of the observation error of system (31) under

condition I and II without noise.

Figure 1 shows the simulation results.

Example 3.2. For the following nonlinear system

8

>

>

<

>

>

:

ẋ
1

= x
2

,
ẋ

2

= x
3

,

ẋ
3

= �x
3
5
3

+ x
5
3
3

,
y = x

1

,

(32)

from Lemma A.4 in [13], we have that nonlinear condition with mixed rational powers
|(�x

3
5
3

+x
5
3
3

)� (�x̂
3
5
3

+ x̂
5
3
3

)|  (|x
3
5
3

� x̂
3
5
3

|+ |x
5
3
3

� x̂
5
3
3

|)  5

3

|x̂
3

| 23 |x
3

� x̂
3

|+2 2
5 |x

3

� x̂
3

| 35 +
|x

3

� x̂
3

| 53 holds.
From Theorem 2.7, the observer dynamics is designed as follows
8

>

>

>

<

>

>

>

:

˙̂x
1

= x̂
2

+ 3Ldy � x̂
1

c↵ + 3L1�(��1)(1�⌘)�dy � x̂
1

c� ,
˙̂x
2

= x̂
3

+ 3L2dy � x̂
1

c2↵�1 + 3L2�2(��1)(1�⌘)�dy � x̂
1

c2��1,

˙̂x
3

= �x̂
3
5
3

+ x̂
5
3
3

+ L3dy � x̂
1

c3↵�2 + L3�3(��1)(1�⌘)�dy � x̂
1

c3��2,

L̇ = �L['
1

(L1�� � '
2

)� 5

3

'
3

|x̂
3

| 23 ].

Condition I

Parameters: ↵ = 0.9, � = 0.1, ⌘ = 0.01, � = 104, '
1

= 0.2, '
2

= 1.5, '
3

= 2.
The initial values: x

1

(0) = 1, x
2

(0) = 0.1, x
3

(0) = 0.2, x̂
1

(0) = 0.5, x̂
2

(0) =
0.2, x̂

3

(0) = 0.1, L(0) = 2.
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Condition II
Parameters: ↵ = 0.8, � = 0.2, ⌘ = 0.1, � = 103, '

1

= 0.1, '
2

= 5, '
3

= 4.
The initial values: x

1

(0) = 0.5, x
2

(0) = 0.4, x
3

(0) = 0.3, x̂
1

(0) = 0.6, x̂
2

(0) =
0.1, x̂

3

(0) = 0.5, L(0) = 20.
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Fig. 2. Trajectories of the observation error of system (32) under

condition I and II with noise added on x̂1, x̂2 and L.

In both example 3.1 and example 3.2, we choose a
1

= a
2

= 3, a
3

= 1, i. e.,

A =

 �3 1 0
�3 0 1
�1 0 0

!

and P =

 

5 �3 0.2
�3 4 �3
0.2 �3 7

!

> 0. It can be verified that A and P

satisfy AT P + PA  �I and a
3

P
13

= 0.2 > 0.
The simulations (without noise in Example 3.1 and with uniform random number

noise imposed on x̂
1

, x̂
2

in Example 3.2) in Figure 1 and Figure 2 show the dynamics
of the observation errors of Example 3.1 and Example 3.2, respectively. The simulation
results show the e↵ectiveness of the proposed observers which can render the error
systems converge in finite time. And we can see that although the observation errors
converge faster with a bigger high gain, but they are a bit more noise-sensitive. Thus,
in future work, the design of finite-time adaptive observer can be an interesting topic.

4. CONCLUSION

This paper has addressed the problem of global finite-time observer design for a class of
nonlinear systems for n � 3 with the rational powers in the increments of nonlinearities
satisfying n�i

n�j+1

< �ij < i
j�1

(2  j  i  n) and the mixed rational powers satisfying
n�i

n�j+1

< �
1,ij < 1, 1 < �

2,ij < i
j�1

(2  j  i  n) where semi-global finite-time
observers exist for this kind of nonlinear systems with the rational and mixed rational
powers satisfying q�i

q�j+1

< �ij < i
j�1

(2  j  i  n) and q�i
q�j+1

< �
1,ij < 1, 1 < �

2,ij <
i

j�1

(2  j  i  n) (where q > n is a positive real number). We have shown that, under
the same gain update law, by introducing two di↵erent homogeneous terms of degrees
↵� 1 < 0 and � � 1 > 0 with respect to the weights {↵i}1in and {�i}1in , we can
design global finite-time observers by combining global asymptotical stability and local
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finite-time stability. Moreover, through two examples, the validity of the observers we
designed was shown.

A. APPENDIX

In this section, the detailed proof of Lemma 2.5 is included. Before we give the explicit
proof of Lemma 2.5, let us introduce a useful result first.

Lemma A.1. If ai (1  i  n) in (5) are chosen such that condition (11) holds, then,
for any x = (0, x

2

, . . . , xn)T , y = (x
2

, . . . , xn, 0)T 2 Rn, we have xT Py + yT Px 
�
Pn

i=2

x2

i .

The following is the detailed proof of Lemma 2.5.

P r o o f . First, let us introduce some definitions. For ⇡ > 0, 0 < � < 1, define

F⇡
�= {" : |"

1

| = ⇡},

B
1,⇡

�= {" : "T "  ⇡},

B
1,⇡

�= {" : "T " < ⇡},

B
2,⇡

�=
n

("
1

, ⇢�(�n�1)�1�"
2

, . . . , ⇢�(�n�1)�n�1�"n)T :
n
X

i=2

"2

i  ⇡2

o

,

B
3,⇡

�=
n

("
1

, ⇢��n�1�"
2

, . . . , ⇢��n�n�1�"n)T :
n
X

i=2

"2

i  ⇡2},

B
3,⇡

�= {("
1

, ⇢��n�1�"
2

, . . . , ⇢��n�n�1�"n)T :
n
X

i=2

"2

i < ⇡2}, P⇡
�= {" : |"

1

|  ⇡
o

,

B
4,⇡

�=
n

("
1

, ⇢�2�1�"
2

, . . . , ⇢�2�n�1�"n)T :
n
X

i=2

"2

i  ⇡2},

B
4,⇡

�= {("
1

, ⇢�2�1�"
2

, . . . , ⇢�2�n�1�"n)T :
n
X

i=2

"2

i < ⇡2}, P⇡
�= {" : |"

1

| < ⇡
o

and
S⇡

�= {" : "T " = ⇡}.

It is not di�cult to get that V (") is C1 for " 2 Rn.
The proofs of (i) and (ii) are quite easy. For (i), by change of integration, it is

very easy to verify that V (") is homogeneous of degree q with respect to the weights
{�i}0in�1

. From condition (11), it is also not di�cult to derive the inequality (12)
in (ii).

The proofs of (iii) and (iv) are a bit complicated, but the main ideas are the same.
Thus, in the following, we only give the proof of (iv), but the main di↵erence between
the proofs of (iii) and (iv) will also be stated.

First, it is not di�cult to verify that for n = 2, there does not exist such a
1

, a
2

> 0
and P > 0 which satisfy the condition (11) and a

2

P
12

> 0. And for n � 3, it is always
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possible to find ai > 0 (1  i  n) such that there exists PT = P > 0 satisfying the
condition (11) and anP

1n > 0.
The proof is divided into two parts. The first part is to construct a compact set A

(where A will be given later) encircling the origin where some inequalities are obtained.
Actually, the compact set is constructed in four parts. In each part, dV (")

dt

�

�

�

(10)

and

V (") satisfy some inequalities on a certain set. Then, the compact set A is derived by
combination of the four sets. In the second part, for any " 2 Rn \ {0}, the relationship
between dV (")

dt

�

�

�

(10)

and dV ("0)

dt

�

�

�

(10)

, "
0

2 A is established by use of the homogeneity

theory. Then, we get the inequality (14) in (iv).

Part I: This part is divided into six parts. In the first four parts, we will show
that dV (")

dt

�

�

�

(10)

satisfies some inequalities on the following sets S
1

\P⇢�� , (P
(1+⇡1)⇢�� \

P
(1�⇡1)⇢�� )\B

3,⇡1 , F⇢�h� \(B
1,1\B3,⇡1) and (P⇢�� \P⇢�h� )\(B

3,⇡1 \B3,⇡1), separately,
where ⇡

1

> 0, h > {h̄
1

, h̄
2

}, ⇢ > {⇢
1

, ⇢
2

} will be given later. Then in the fifth part,
V (") admits some inequalities for " belonging to each of these four sets. Finally, in the
sixth part, by combination of these four sets, we derive the compact set A.

(1) Let l
1

be the largest l>0 such that max{vl} max{"2B1,2\B1, 1
2
} V̄ (v"

1

, . . . , v�n�1"n)

 1. Let l
2

be the smallest l > 0 such that min{v�l} min{"2B1,2\B1, 1
2
} V̄ (v"

1

, . . . , v�n�1"n)

� 2. Then we have V (") =
R l2

l1
1

vq+1 (� � V̄ (v"
1

, . . . , v�n�1"n)) dv + 1

qlq2
, " 2 B

1,2 \ B
1, 1

2
.

And

dV (")
dt

�

�

�

�

(10)

= 2⇢

Z l2

l1

�0(V̄ (v"
1

, . . . , v�n�1"n))
vq+�

K(v, "
1

, . . . , "n) dv, " 2 B
1,2 \ B

1, 1
2
, (A.1)

where

K(v, "
1

, . . . , "n) =

2

6

6

6

4

0
v�1"

2

...
v�n�1"n

3

7

7

7

5

T

P

2

6

6

6

4

v�1"
2

...
v�n�1"n

0

3

7

7

7

5

+

2

6

6

6

4

v"
1

0
...
0

3

7

7

7

5

T

P

2

6

4

�a
1

⇢(�1�1)�dv"
1

c�1

...
�an⇢(�n�1)�dv"

1

c�n

3

7

5

+

2

6

6

6

4

v"
1

0
...
0

3

7

7

7

5

T

P

2

6

6

6

4

v�1"
2

...
v�n�1"n

0

3

7

7

7

5

+

2

6

6

6

4

0
v�1"

2

...
v�n�1"n

3

7

7

7

5

T

P

2

6

4

�a
1

⇢(�1�1)�dv"
1

c�1

...
�an⇢(�n�1)�dv"

1

c�n

3

7

5

. (A.2)

When " 2 S
1

\P⇢�� , from Lemma A.1, equations (A.1) and (A.2), there exists ⇢
1

> 2
such that when ⇢ > ⇢

1

, we have dV (")
dt

�

�

�

(10)

< �⇢
2

R l2
l1

1

vq+�

Pn
i=2

v2�i�1"2

i �
0(V̄ (v"

1

, . . .

. . . , v�n�1"n)) dv, " 2 S
1

\ P⇢�� , where a⇤ = max{1in} ai, p̄ = max{1i, jn} |Pij |.

And clearly, we have (S
1

\ P
0

) ⇢ (S
1

\ P⇢�� ) ⇢ (S
1

\ P
2

�� ). Let l
3

be the largest
l > 0 such that max{vl} max{"2S1\P0} V̄ (v", . . . , v�n�1"n)  1. Let l

4

be the smallest
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l > 0 such that min{v�l} min{"2S1\P0} V̄ (v", . . . , v�n�1"n) � 2. It is not di�cult to get
l
3

� l
1

, l
4

 l
2

. Then we have

dV (")
dt

�

�

�

�

(10)

< �⇢d
1

, " 2 S
1

\ P⇢�� , (A.3)

where d
1

= 1

2

min{"2S1\P2��}
R l4

l3
1

vq+�

Pn
i=2

v2�i�1"2

i �
0(V̄ (v"

1

, . . . , v�n�1"n)) dv.

(2) For " = (±1, 0, . . . , 0)T , from Lemma A.1, (A.1) and (A.2), we have dV (")
dt

�

�

�

(10)

=

�2⇢
R l2

l1

�0( ¯V (±v,...,0))
vq+�

Pn
i=1

aiP1i⇢
(�i�1)�|v|1+�i dv. Because a

1

P
11

> 0, anP
1n > 0, �n >

�i (1  i  n) when � > 1, there exist ⇡
1

2 (0, 1) and ⇢
2

> 1 such that when ⇢ > ⇢
2

, we
have dV (")

dt

�

�

�

(10)

< �⇢1��
R l2

l1

anP1n|v|1+�n

vq+� �0(V̄ (±v, 0, . . . , 0)) dv, " 2 (P
1+⇡1 \ P1�⇡1) \

B
2,⇡1 .

Because dV (")
dt

�

�

�

(10)

is homogeneous of degree q + � � 1 with respect to the weights

{�i}0in�1

, we get

dV (")
dt

�

�

�

�

(10)

< �d
2

⇢1�(q+�)�, " 2 (P
(1+⇡1)⇢�� \ P

(1�⇡1)⇢�� ) \ B
3,⇡1 , (A.4)

where d
2

=
R l2

l1
anP1nv1+�n

vq+� �0(V̄ (±v, 0, . . . , 0)) dv.

(3) Let l
5

be the largest l > 0 such that max{vl} max{"2P(1+⇡1)⇢��\(B1,1\B3,⇡1 )} V̄ (v"
1

,

. . . , v�n�1"n)  1. And let l
6

be the smallest l > 0 such that

min
{v�l}

min
{"2P(1+⇡1)⇢��\(B1,1\B3,⇡1 )}

V̄ (v"
1

, . . . , v�n�1"n) � 2.

Then for " 2 P
(1+⇡1)⇢�� \ (B

1,1 \ B3,⇡1), we have

V (") =
Z l6

l5

1
vq+�

(� � V̄ (v"
1

, . . . , v�n�1"n)) dv +
1

qlq
6

and
dV (")

dt

�

�

�

�

(10)

= 2⇢

Z l6

l5

1
vq+�

�0(V̄ (v"
1

, . . . , v�n�1"n))K(v, "
1

, . . . , "n) dv.

And for any " 2 P
(1+⇡1)⇢��\(B

1,1\B3,⇡1), there exists ⇢̃ � 1 such that " = (⇢̃�(⇢̃��⇢��"
1

),
⇢̃�1�⇢��n�1�"

2

, . . . , ⇢̃�n�1�⇢��n�n�1�"n)T , |"
1

|  1 + ⇡
1

,
Pn

i=2

"2

i = ⇡2

1

. By use of the
boundedness of the compact set " 2 P

(1+⇡1)⇢�� \ (B
1,1 \ B3,⇡1), we can get that ⇢̃ is

upper bounded with respect to ⇢.
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For any " 2 F⇢�h� \ (B
1,1 \ B3,⇡1), there exists h̄

1

> �n�n�1

such that when h � h̄
1

,
we have

dV (")
ddt

�

�

�

�

(10)

< �⇢

2

Z l6

l5

�0(V̄ (v⇢�h�, . . . , v�n�1 ⇢̃�n�1�⇢��n�n�1�"n))
vq+�

n
X

i=2

⇢̃2�i�1�⇢�2�n�i�1�v2�i�1"2

i dv.

And for any " 2 F⇢�h� \ (B
1,1 \B3,⇡1), let l

7

(") and l
8

(") be such that 5

4

 V̄ (v"
1

, . . . ,
v�n�1"n)  7

4

when l
7

(")  l  l
8

(") (without loss of generality, it is assumed that
0  l

7

(")  l
8

(")). Note that from the definition of �(s), 1  �0(s)  2 for 5

4

 s  7

4

.
Then, there exists h̄

2

> �n�n�1

such that when h > h̄
2

we can have

dV (")
dt

�

�

�

�

(10)

< �⇢

2

Z l8(")

l7(")

Pn
i=2

⇢̃2�i�1�⇢�2�n�i�1�v2�i�1"2

i

vq+�
dv

< � 5⇢

16�̄(q + �� 1)
l
8

(")q+��1 � l
7

(")q+��1

l
7

(")q+��1l
8

(")q+��1

,

where �̄ = �
max

(P ).

It is clear that {z : zT Pz = 5

4

} \ {z : zT Pz = 7

4

} = ;, thus, we can derive the

following inequality M
1

<
Pn

i=1

(z1

i

q+��1
�i�1 � z2

i

q+��1
�i�1 )2, where M

1

> 0 is a positive real
number, z1 = (z1

1

, . . . , z1

n)T 2 {z : zT Pz = 7

4

} and z2 = (z2

1

, . . . , z2

n)T 2 {z : zT Pz = 5

4

}.
Because

(l
8

(")⇢̃�(⇢̃��⇢�h�"
1

), l
8

(")�1 ⇢̃�1�⇢��n�1�"
2

, . . . , l
8

(")�n�1 ⇢̃�n�1�⇢��n�n�1�"n)T

2 {z : zT Pz =
7
4
},

(l
7

(")⇢̃�(⇢̃��⇢�h�"
1

), l
7

(")�1 ⇢̃�1�⇢��n�1�"
2

, . . . , l
7

(")�n�1 ⇢̃�n�1�⇢��n�n�1�"n)T

2 {z : zT Pz =
5
4
},

we can get M
1

 ⇢̃2(q+��1)�⇢�2�n(q+��1)�(l
8

(")q+��1�l
7

(")q+��1)2(1+
Pn

i=2

"
2(q+��1)

�i�1
i ),

Pn
i=2

"2

i = ⇡2

1

.

Note that {z : 1  zT Pz  2} is a bounded compact set. Then, there exist M
2

, M
3

>

0 such that M
2

<
Pn

i=2

z
2(q+��1)

�i�1
i < M

3

, z 2 {z : 1  zT Pz  2}. It is clear to get that
there exist "j 2 P

(1+⇡1)⇢�� \ (B
1,1 \ B3,⇡1) such that

(lj(")⇢̃�(⇢̃��⇢�h�"j
1

), lj(")�1 ⇢̃�1�⇢��n�1�"j
2

, . . . , lj(")�n�1

⇢̃�n�1�⇢��n�n�1�"j
n)T 2 {z : 1  zT Pz  2}, j = 7, 8.

And,

M
3

> ⇢̃2(q+��1)� ⇢�2�n(q+��1)�lj(")2(q+��1)

n
X

i=2

"j
i

2(q+��1)
�i�1 , j = 7, 8,

n
X

i=2

"j
i

2

= ⇡2

1

.
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Thus, we get

l
8

(")q+��1 � l
7

(")q+��1 > min
{":

Pn
i=2 "2

i =⇡2
1}

v

u

u

t

⇢2�n(q+��1)�M
1

⇢̃2(q+��1)�(
Pn

i=2

"
2(q+��1)

�i�1
i + 1)

and

1
lj(")q+��1

> min
{":

Pn
i=2 "2

i =⇡2
1}

v

u

u

t ⇢̃2(q+��1)�
Pn

i=2

"
2(q+��1)

�i�1
i

⇢2�n(q+��1)�M
3

, j = 7, 8.

Therefore, we have

dV (")
dt

�

�

�

�

(10)

< �⇢1��n(q+��1)�⇢̃(q+��1)�d
3

, " 2 F⇢�h� \ (B
1,1 \ B3,⇡1), (A.5)

where d
3

= min{":
Pn

i=2 "2
i =⇡2

1}
5

p
M1

Pn
i=2 "

2(q+��1)
�i�1

i

16

¯�(q+��1)M3

s
Pn

i=2 "

2(q+��1)
�i�1

i +1

.

(4) Fourthly, when " 2 (P⇢�� \P⇢�h� )\(B
3,⇡1 \B3,⇡1), because for any "1 = ("1

1

, "1

2

, . . . ,

"1

n)T 2 (P⇢�� \P⇢�h� )\(B
3,⇡1 \B3,⇡1) and any "2 = (±⇢��, "1

2

, . . . , "1

n)T 2 F⇢��\(B
3,⇡1 \

B
3,⇡1), we have k"1 � "2k2

2

 4⇢�2�. Because of the continuity of dV (")
dt

�

�

�

(10)

on " 2 Rn,

we have

dV (")
dt

�

�

�

�

(10)

< �d
2

2
⇢1�(q+�)� < 0, " 2 (P⇢�� \ P⇢�h� ) \ (B

3,⇡1 \ B3,⇡1). (A.6)

(5) From (A.3), we can select ⇢ > max{1i2}{2, ⇢i} such that

V (")�� � d��
4

, " 2 S
1

\ P⇢�� , (A.7)

where d
4

= maxPn
i=2 "2

i =1

V (").

When " 2 F⇢�� \ B
3,⇡1 , we can have V (±⇢��, ⇢��n�1�"

2

, . . . , ⇢��n�n�1�"n) =

= ⇢�q�V (±1, ⇢�(�n�1)�1�"
2

, . . . , ⇢�(�n�1)�n�1�"n)  d
5

⇢�q�,

where d
5

= maxPn
i=2 "2

i⇡2
1
V (±1, "

2

, . . . , . . . "n). Then, we have

V (")�� > d��
5

⇢�(q+��1), " 2 F⇢�� \ B
3,⇡1 . (A.8)

When " 2 F⇢�h� \ (B
1,1 \ B3,⇡1),

V (±⇢̃�⇢̃��⇢�h�, ⇢̃�1�⇢��n�1�"
2

, . . . , ⇢̃�n�1�⇢��n�n�1�"n) =
= ⇢̃q�⇢��nq�V (±⇢̃��⇢�(h��n)�, "

2

, . . . , "n)  d
6

⇢̃q�⇢��nq�,

where d
6

= max|"1|1,
Pn

i=2 "2
i⇡2

1
V ("

1

, "
2

, . . . , "n). Then the following inequality holds:

V (")�� > d��
6

⇢�n(q+��1)�⇢̃�(q+��1)�, " 2 F⇢�h� \ (B
1,1 \ B3,⇡1). (A.9)
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When " 2 (P⇢�� \ P⇢�h� ) \ (B
3,⇡1 \ B3,⇡1),

V (±⇢�(1+(h�1)s)�, ⇢��n�1�"
2

, . . . , ⇢��n�n�1�"n) =
= ⇢�q�V (±⇢�(h�1)s�, ⇢�(�n�1)�1�"

2

, . . . , ⇢�(�n�1)�n�1�"n)  d
6

⇢�q�,

where 0 < s < 1. Therefore, we have

V (")�� > d��
6

⇢(q+��1)�, " 2 (P⇢�� \ P⇢�h� ) \ (B
3,⇡1 \ B3,⇡1). (A.10)

(6) Thus, selecting h > {h̄
1

, h̄
2

} and ⇢ > {⇢
1

, ⇢
2

}, from the above inequalities (A.3),
(A.7); (A.4), (A.8); (A.5), (A.9) and (A.6), (A.10), we can obtain a compact set which
encircles the origin A �= (S

1

\P⇢�h� )[(F⇢�� \B
3,⇡1)[(F⇢�h� \(B

1,1 \B3,⇡1))[((P⇢�� \
P⇢�h� ) \ (B

3,⇡1 \ B3,⇡1)). And

dV (")
dt

�

�

�

�

(10)

V (")��  �w
4

⇢1��, " 2 A, (A.11)

where w
4

= min{d
1

d��
4

, d
2

d��
5

, d
3

d��
6

,
d2d��

6
2

} > 0.

Part II: It is clear that V (") and dV (")
dt

�

�

�

(10)

are homogeneous of degrees q and q+��1

with respect to the weights {�i}0in�1

. For any " 2 Rn \ {0}, there exist v
0

> 0 and
"0 2 A such that " = ("

1

, . . . , "n)T = (v
0

"0

1

, . . . , v
�n�1
0

"0

n)T . Then we have dV (")
dt

�

�

�

(10)

=

vq+��1

0

dV ("0
)

dt

�

�

�

(10)

and V (") = vq
0

V ("0).

Finally, from (A.11), we obtain

dV (")
dt

�

�

�

�

(10)

= V (")�� dV ("0)
dt

�

�

�

�

(10)

V ("0)��  �w
4

⇢1��V (")�� , " 2 Rn \ {0}. (A.12)

As for the proof of (iii), it follows the same procedure as the proof of (iv). The main
di↵erence compared with the proof (iv) is that in the proof of (iii), the compact set
is constructed from the following four parts: S

1

\ P⇢�� , (P
(1+⇡2)⇢�� \ P

(1�⇡2)⇢�� ) \
B

4,⇡2 , F⇢�h⇤� \ (B
1,1 \B4,⇡2) and (P⇢�� \P⇢�h⇤� )\ (B

4,⇡2 \B4,⇡2), where ⇡
2

> 0, h⇤ > 2
are two positive numbers.

This completes the proof. ⇤
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