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ABSTRACT 
The problem of aerodynamic heating, along with some 

other topics, are lacking in most, if not all, heat transfer 
textbooks that are used for undergraduate and graduate 
education.  There are many issues in the aerodynamic heating 
problem that are indeed very important from a convective heat 
transfer point of view.  Although this topic is very important 
in any low or high speed application, the lack of analytical 
solutions in heat transfer, compressible flow and/or hypersonic 
flow textbooks has prompted this study. In practice, poor 
design and manufacture have led to undesired results, such as 
space shuttle disasters.  Since, over the years, analysis has 
given way to numerical studies, the instructors do not take the 
necessary time to go through details.  Thus the students just 
use the results without any awareness of how to get them and 
the inherent limitations of the analytical solution. The only 
intent of this paper, therefore, is to present the detailed 
analytical study that is shown step by step that could be used 
by heat transfer instructors in their courses and by students in 
their studies. 

 
INTRODUCTION 

The topic of high speed aerodynamic heating in a heat 
transfer course is important.  References to this material are 
very limited [1] and a sampling of graduate heat transfer 
textbooks [2-4] do not address this subject effectively or not at 
all although the fundamental work was done over a century 
ago [5-8].  Aerospace engineers have utilized these concepts 
but none have presented detailed analytical results that can be 
used by the student of heat transfer [9-11].  In some recent 
heat transfer textbooks, [12-14], limited remarks reference the 
topic but without a robust mathematical analysis.  This paper 
develops the appropriate high speed aerodynamic heat transfer 
equations through a rigorous analytical study by simplifying 
the general forms of the conservation equations and the 
equation of state for the case under consideration.  

NOMENCLATURE 
A [m2] Area 
a [-] Constant; an arbitrary function of x 
b [-] Constant; an arbitrary function of x 
C [-] Constant of integration 
c [kJ/(kg-K)] Specific heat 
D [-] Substantial or material derivative 
e [kJ/kg] Specific energy 
EC [-] ECKERT number, { ( )[ ]}∞∞ −TTcU wp/2  

F
r

 [kN/kg] Force vector 
f [-] Free stream function 
g [m/s2] Gravitational acceleration 
i [kJ/kg] Specific enthalpy 
k [W/(m-K)] Thermal conductivity 
NU [-] NUSSELT number, ( )[ ]khx /  

( )[ ]υ/xU∞

V

p [kPa] Pressure 
PÉ [-] PÉCLET number,[RE PR= (U∞x)/α] 
PR [-] PRANDTL number, [α/υ] 
q [W] Heat transfer rate 
R [-] Recovery factor 
RE [-] REYNOLDS’ number,  
T [K] Temperature 
t [s] Time 
U [m/s] Velocity 
u [m/s] x-direction velocity; an arbitrary function of x 
v [m/s] y-direction velocity; an arbitrary function of x 
w [m/s] z-direction velocity 
r

 [m/s] Velocity vector 
x [m] Cartesian axis direction  
y [m] Cartesian axis direction  
z [m] Cartesian axis direction  
Special characters 
α [m2/s] Thermal diffusivity  
β [-] Integration coordinate 
Φ [W/m3] Viscous dissipation function 
η [-] Similarity coordinate 
μ [(N-s)/m2] Dynamic viscosity 
ρ [kg/m3] Density 
θ [-] Dimensionless temperature for no frictional heating 
Θ [-] Dimensionless temperature for frictional heating 
υ [m2/s] Kinematic viscosity 
Φ [N/(s-m2)] Viscous dissipation 
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ξ [-] Integration coordinate 
Ψ [m2/s] Similarity free stream function 
ζ [-]] Derivative of dimensionless temperature, [Θ'] 
Subscripts and Superscripts 
AW [-] Adiabatic wall 
b [-] Body 
L [-] Based on length 
p [kPa] Pressure 
w [-] Wall 
∞ [-] Free stream 
‘ [1/m] First derivative 
“ [1/m2] Second derivative 
 

The four principles that establish a system of 
determinable equations are: 

 
1. NEWTON’s Second Law of Motion-Conservation 

of Momentum 
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2. Continuity Equation-Conservation of Mass 
 

0=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
•∇+

∂
∂ →

V
t

ρ
ρ               (2) 

 
3. First Law of Thermodynamics-Conservation of 

Energy 
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Alternatively, conservation of energy can be expressed as 

Φ+∇•∇+= )( Tk
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with 

i = e + p/ρ                                                         (6) 

4. The Equation of State 
 

),( Tpp ρ=                                (7) 

These four equations must be solved simultaneously for an 
exact solution.  Since mathematical analysis will not permit an 
exact solution, certain assumptions must be made to continue 
with the analysis. 
 
ASSUMPTIONS AND ANALYSIS 

In general, three methods apply to obtaining the 
fundamental solution to convective heat transfer problems: 

1. Solve the governing equations using the concept of 
the boundary layer and suitable similarity 
parameters. 

2. Perform dimensional analysis coupled with 
extensive experimental data and curve fitting 
techniques. 

3. Use the approximate integral method. 
 
The boundary layer solution to the convection problem is 

normally demonstrated under the assumptions of steady flow 
of an incompressible fluid, constant dynamic viscosity and 
thermal conductivity, and constant specific heats for the case 
of an ideal gas.  Under these assumptions, conservation of 
mass, equation (2), reduces to equation (8). 
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Conservation of momentum, equation (1), reduces to equation 
(9). 
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Conservation of energy, equation (3), reduces to equation (10) 
 

r
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where Φ  is obtained from equation (4) with the last term 
eliminated as a result of equation (8).  The equation of state 
remains unchanged. 
 

Applying order of magnitude analysis [15] and assuming 
two-dimensional flow reduce conservation of mass, equation 
(8), to equation (11). 
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Conservation of momentum, equation (9), reduces to equation 
(12) for the x-direction and to equation (13) for the y-direction, 
respectively. 
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As a consequence of order of magnitude analysis for these, the 
additional restriction that REL ≥ 100 at the end of the plate 
follows. Conservation of energy, equation (3), reduces to 
equation (14). 
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Again as a consequence of order of magnitude analysis, the 

additional restrictions that 
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 must have an order 

of magnitude of one (O(1)) and PÉ  100 follow.  If the 
pressure is uniform, then the conservation of energy reduces to 
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Figure 1.   The Fundamental Problem 

  
Consider first an adiabatic flat plate as shown in Figure 1.   

The desired quantity is the value of the temperature of the 
adiabatic wall, TAW.  Thus, the boundary conditions of the 
thermal problem are 
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Using similarity variables as 
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equation (15) transforms into 
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with the transformed boundary conditions of 
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Letting '= Θζ , the order of Equation (22) can be reduced by 
one to give 
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which is a differential equation with linear second term of the 
type 
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To solve this equation, assume a solution of the type 
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However, the transformed conservation of momentum 
equation for no body or pressure forces is + =fff .   The 
numerical solution for this is given in Table 1 in the 
APPENDIX.   Therefore, 
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which simplifies to 
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Upon substitution into equation (31), 
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Using the boundary condition, equation (23), C2 = 0.  Thus, 
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Upon integration, 
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Using equation (23) again,  
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or 
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For 0=η , the boundary condition of an adiabatic wall, 
equation (21) reduces to equation (39). 
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Combining equations (38) and (39), equation (40) results, 
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which is called the recovery factor, RAW, of the adiabatic wall.  
Thus, the temperature of the adiabatic wall becomes, 
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For <PR )0(, Θ  may be approximated by <
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or calculated exactly from equation (40) for a known free 
stream function f.  From the steady flow energy equation of an 
ideal gas, 
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if  U .  Therefore, RAW is a measure of how close the 
wall temperature is to the stagnation temperature.  Thus, for 
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The usual definition for the convective heat transfer 
coefficient is 
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However, in this case =q 0)( ≠− ∞TTAW while  which implies 
that the usual definition of the convective heat transfer 
coefficient does not hold when frictional heating is present.  
Therefore, a new definition is necessary.  For this consider the 
case of the heated or cooled plate at a uniform temperature, 
TW.  For the case of no frictional heating, ( )
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Solving for T, 
 

                             (46) 
 
A general solution for T may be written as  
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for an adiabatic plate, there is a particular solution of the form, 
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which gives the complete solution, using equations (47) and 
(48), as 
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or using (41) 
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Thus the general solution becomes, 
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The heat transfer is given by 
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since .  Defining the convective heat transfer 
coefficient as  

0)0(' =Θ
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then the NUSSELT number becomes 
 

)0('θ−=
x

x

RE

NU                              (57) 

 
which is the same result as obtained in the case of heat transfer 
with no friction.  Thus, the solution for no frictional heating 
applies to the frictional heating problem by replacing T∞ by 
TAW in the definition of the convective heat transfer coefficient.  
The magnitude of  predicts the importance 

of frictional heating since 
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Simplified, this is expressed as  
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 and must be considered.  The heat flux is 

reduced for and increased for .   
 

In summary, for high speed flow across a flat plate, the 
ordinary external laminar and turbulent flow relations  
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apply provided the new definition of the convective heat 
transfer coefficient is used as given in equation (56).  For 
turbulent flow, 
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CONCLUSION 

The problem of aerodynamic heat transfer is presented in 
a complete analytical form.  The student can understand how 
this problem is solved and its correct and precise use in the 
design of systems.  It is indeed very important that these 
details are followed carefully.  The mathematical analysis is 
definitely not beyond the capabilities of students at the 
graduate level, for sure, and even at the undergraduate level.  
By not using analysis, we are depriving our students the 
opportunities of applying their mathematical skills that we so 
strongly emphasize but neglect to use in our courses.  The 
importance of this problem, of course, cannot be 
underestimated as tragic events have resulted due to poor 
design or manufacture. 
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1 η  

0 0 0 0.33206 0 
0.2 0.00664 0.06641 0.33199 0.00332 
0.4 0.02656 0.13277 0.33147 0.01327 
0.6 0.05974 0.19894 0.33008 0.02981 
0.8 0.10611 0.26471 0.32739 0.05283 
1.0 0.16557 0.32979 0.32301 0.08211 
1.2 0.23795 0.39378 0.31659 0.11729 
1.4 0.32298 0.45627 0.30787 0.15790 
1.6 0.42032 0.51676 0.29667 0.20325 
1.8 0.52952 0.57477 0.28293 0.25253 
2.0 0.65003 0.62977 0.26675 0.30476 
2.2 0.78120 0.68132 0.24835 0.35885 
2.4 0.92230 0.72899 0.22809 0.41364 
2.6 1.07252 0.77246 0.20646 0.46794 
2.8 1.23099 0.81152 0.18401 0.52063 
3.0 1.39682 0.84605 0.16136 0.57067 
3.2 1.56911 0.87609 0.13913 0.61719 
3.4 1.74696 0.90177 0.11788 0.65953 
3.6 1.92954 0.92333 0.09809 0.69722 
3.8 2.11605 0.94112 0.08013 0.73010 
4.0 2.30576 0.95552 0.06424 0.75816 
4.2 2.49806 0.96696 0.05052 0.78159 
4.4 2.69238 0.97587 0.03897 0.80072 
4.6 2.88826 0.98269 0.02948 0.81606 
4.8 3.08534 0.98779 0.02187 0.82803 
4.91755  0.99000  0.83384 
5.0 3.28329 0.99155 0.01591 0.83723 
5.2 3.48189 0.99425 0.01134 0.84410 
5.4 3.68094 0.99616 0.00793 0.84916 
5.6 3.88031 0.99748 0.00543 0.85279 
5.8 4.07990 0.99838 0.00365 0.85535 
6.0 4.27964 0.99898 0.00240 0.85712 
6.2 4.47948 0.99937 0.00155 0.85831 
6.4 4.67938 0.99961 0.00098 0.85906 
6.6 4.87931 0.99977 0.00061 0.85959 
6.8 5.07928 0.99987 0.00037 0.85992 
7.0 5.27926 0.99992 0.00022 0.86009 
7.2 5.47925 0.99996 0.00013 0.86023 
7.4 5.67924 0.99998 0.00007 0.86031 
7.6 5.87924 0.99999 0.00004 0.86034 
7.8 6.07923 1.00000 0.00002 0.86039 
8.0 6.27923 1.00000 0.00001 0.86039 
8.2 6.47923 1.00000 0.00001 0.86039 
8.4 6.67923 1.00000 0.00000 0.86039 
8.6 8.87923 1.00000 0.00000 0.86039 
8.8 7.07923 1.00000 0.00000 0.86039 
 
 
 
 
 
 

 


