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Abstract 
 
Distribution-free (nonparametric) control charts can be useful to the quality practitioner when the underlying 
distribution is not known. A Phase II nonparametric CUSUM chart based on the exceedance statistics, called 
the exceedance CUSUM chart, is proposed here for detecting a shift in the unknown location parameter of a 
continuous distribution. The exceedance statistics can be more efficient than rank-based methods when the 
underlying distribution is heavy-tailed and/or right-skewed, which may be the case in some applications, 
particularly with certain lifetime data. Moreover, exceedance statistics can save testing time and resources as 
they can be applied as soon as a certain order statistic of the reference sample is available. Guidelines and 
recommendations are provided for the chart’s design parameters along with an illustrative example. The in- 
and out-of-control performance of the chart are studied through extensive simulations on the basis of the 
average run-length (ARL), the standard deviation of run-length (SDRL), the median run-length (MDRL) and 
some percentiles of run-length. Further, a comparison with a number of existing control charts, including the 
parametric CUSUM  chart and a recent nonparametric CUSUM chart based on the Wilcoxon rank-sum 
statistic, called the rank-sum CUSUM chart, is made. It is seen that the exceedance CUSUM chart performs 
well in many cases and thus can be a useful alternative chart in practice. A summary and some concluding 
remarks are given. 
 
Keywords: Binomial; CUSUM chart; Exceedance statistic; Markov chain; Nonparametric; Precedence 
statistic; Quality control; Robust; Simulation. 
 
Subject Classifications: 62G99, 62P30. 
 

1. INTRODUCTION 

 Woodall and Montgomery (1999, page 380) pointed out the increasing role for nonparametric 

methods in Statistical Quality Control (SQC) or Statistical Process Control (SPC) problems, particularly as 

data availability increases. Since that time, there has been a lot of interest in and a significant amount of work 

on nonparametric control charts. Chakraborti et al. (2001), Chakraborti and Graham (2007) and most recently 

Chakraborti et al. (2011) provide thorough overviews of the area. If the in-control (IC) run-length distribution 

of a control chart is the same for every continuous distribution, the chart is called nonparametric or 

distribution-free. Chakraborti et al. (2001) summarized the advantages of nonparametric control charts as 

follows: (i) simplicity, (ii) no need to assume a particular parametric distribution for the underlying process, 

(iii) the IC run-length distribution is the same for all continuous distributions (the same is true for the false 

alarm rate (FAR) and the IC average run-length (ARL0); and thus different nonparametric charts can be 

compared more easily), (iv) more robust and outlier resistant and (v) more efficiency in detecting changes 

when the true distribution is markedly non-normal, particularly with heavier tails. 
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 Several nonparametric charts currently exist for monitoring the location parameter (mean, median, 

etc.) of a continuous distribution. In a process control setting, the location parameter of interest can be 

specified and hence known, say because of the existing standards or specifications, or it may be unknown as 

in a start-up situation. In this paper we consider nonparametric Phase II CUSUM control charts for monitoring 

an unknown location parameter based on the exceedance statistic. 

Precedence/Exceedance Charts 

 Phase II nonparametric charts are constructed by adapting suitable two-sample nonparametric tests. 

Among these, the Wilcoxon-Mann-Whitney (WMW) test, also known as the rank-sum test (see Gibbons and 

Chakraborti (2003)), is perhaps the most popular. Chakraborti and Van de Wiel (2008) considered a class of 

Shewhart-type charts based on the WMW statistics. Following this line of research, Li et al. (2010) considered 

a class of cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts 

based on the WMW statistics. Another useful two-sample nonparametric test is the precedence (or the 

exceedance) test. The precedence test was developed in Nelson (1963) to meet the “demand for a statistical 

test that could give an early indication of the difference between two samples placed simultaneously on life 

test,” (Nelson, 1993, page 140). While the rank-sum statistic is based on the sum of ranks of the observations 

from one sample in the combined sample, the precedence statistic is based on the number of observations 

from one of the samples that precede a specified (say the rth) order statistic of the other sample. The 

precedence statistic is linearly related to the exceedance statistic, which is the number of observations from 

one of the samples that exceed the rth order statistic of the other sample, so that precedence and exceedance 

tests are equivalent. Exceedance tests have been found to be useful in a number of applications including 

quality control and reliability studies with lifetime data where the exceedance probability can be associated 

with the so-called ‘warranty time’ of a product (see, for example, Chakraborti and Van der Laan (2000)). The 

reader is referred to Balakrishnan and Ng (2006) for the vast literature on precedence/exceedance tests. In 

particular, they noted that (page 51) “Wilcoxon’s rank-sum test performs better than the precedence tests if the 

underlying distributions are close to symmetry, such as the normal distribution, gamma distribution with large 

values of shape parameter, and lognormal distribution with small values of shape parameter.  However, under 

some right-skewed distributions such as the exponential distribution, gamma distribution with shape 

parameter 2.0, and lognormal distribution with shape parameter 0.5, the precedence tests have higher power 

values than the Wilcoxon’s rank-sum test for small values of r. It is evident that the more right-skewed the 

underlying distribution is, the more powerful the precedence test is.”   

 Chakraborti et al. (2004) studied a class of nonparametric Phase II Shewhart-type charts based on the 

precedence statistics, called the Shewhart precedence charts. This paper has been the starting point for a 

number of papers in this area. They showed that the precedence charts perform admirably compared to their 

normal theory counterparts and hence can be legitimate competitors in practice. However, while the Shewhart 

charts are most widely known and used in practice, it is well known that the CUSUM charts are useful for 

detecting smaller and persistent shifts more quickly. Moreover, the CUSUM charts can be more natural in a 

process control environment because of the sequential nature of data collection.  The reader is referred to 
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Hawkins and Olwell (1998) for a general overview on CUSUM charts.  Motivated by these facts, we consider 

a class of Phase II CUSUM control charts based on exceedance statistics, called exceedance CUSUM charts, 

in this paper. Recently, Graham et al. (2012) considered a Phase II EWMA control chart based on exceedance 

statistics which performs better than Li et al. (2010)’s EWMA rank-sum chart; particularly for distributions 

that are heavier-tailed and more peaked than the normal distribution. Subsequently, in this paper we show that 

the exceedance CUSUM chart outperforms Li et al. (2010)’s CUSUM rank-sum chart for most of the heavy-

tailed distributions under consideration irrespective of the peakedness of the distribution. 

 This article is organized as follows: In Section 2 the nonparametric exceedance CUSUM chart is 

introduced. In particular we consider exceedances over the median and call the resulting chart the exceedance 

CUSUM median chart.  In Section 3 the implementation of the chart is discussed in terms of the chart design 

parameters. In Section 4 the run-length distribution is studied. The IC and out-of-control (OOC) chart 

performance are studied in Section 5 and compared with a number of existing Phase II charts including the 

CUSUM  chart and the nonparametric rank-sum CUSUM chart based on the Wilcoxon rank-sum statistic 

considered by Li et al. (2010). In Section 6 we discuss an example showing application of the proposed chart. 

We conclude with a summary and some recommendations for future research in Section 7. 

2. EXCEEDANCE CUSUM CHART 

 Assume that a (Phase I) reference sample , , … ,  is available from an IC process with an 

unknown continuous cumulative distribution function (cdf) . Let	 , , … , , 1,2, …, denote the 

 test (Phase II) sample of size	 . Let  denote the cdf of the distribution of the  Phase II sample. 

Both  and  are unknown continuous distribution functions and the process is IC when . For detecting 

a change in the location, we use the location model	 ) where 0,∞  is the unknown 

location parameter. It is often the case that the Phase II samples (subgroups) are all of the same size, n, so that 

the subscript  in  can be suppressed. 

 Let ,  denote the number of exceedances, that is, the number of  observations in the  Phase II 

sample that exceeds	 , the  ordered observation in the reference sample. The statistic ,  is called an 

exceedance statistic and the probability 	 |	  is called an exceedance probability. The 

number of  observations in the  Phase II sample that precede  is called a precedence statistic and has 

been used by Chakraborti et al. (2004) to study a nonparametric Shewhart-type chart called the Shewhart 

precedence chart. In this paper we work with the exceedances as they seem more natural to consider while 

detecting a shift to the right (increase) in the location parameter . For inference purposes, the exceedance and 

precedence tests are equivalent in the sense that they are linearly related and provide the same amount of 

information about . 

 Construction of an exceedance CUSUM chart is straightforward. Given	 , it can be shown 

(see Result A.1 in Appendix A) that the ,  follows a binomial distribution with parameters	 , ) and thus, 

conditionally on ,		we can use a binomial-type CUSUM chart based on the , ’s to monitor the process 
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location (via the exceedance probabilities). Based on this idea, an upper one-sided exceedance CUSUM chart, 

to detect an increase in the location, may be based on 

max 0, , ,  1,2,3, …,   

where the starting value 0, ,  and 0 is the so-called reference value. Since 

the conditional probability  is unknown, we replace it by its unconditional (averaging over the distribution 

of ) IC value 
	 	 	 	

	 	 	
	 (see Result A.4 in Appendix A). Hence the proposed upper one-sided 

exceedance CUSUM plotting statistic is defined as 

 max	0, , , say, for 1,2,3, … (1)  

with starting value 0.  

 It can be shown that (see Result A.3 in Appendix A) the unconditional joint distribution of the 

exceedance statistics is distribution-free and hence the proposed exceedance CUSUM chart is unconditionally 

distribution-free. However, note that unconditionally, the proposed chart is not a binomial CUSUM chart. 

The chart signals a possible OOC situation for the first  such that , where 0, may be 

looked upon as the Upper Control Limit (UCL), and at that point a search for assignable causes is started; the 

Lower Control Limit (LCL) is 0 by default. Otherwise, the process is considered IC and process monitoring 

continues without interruption. We study the upper one-sided chart here but a lower one-sided as well as a 

two-sided exceedance CUSUM chart can be studied along similar lines. Note that the CUSUM statistic in (1) 

actually gives a class of control charts for various choice of r. From a practical point of view, and as used in 

Chakraborti et al. (2004), we take θ to be the median and  to be the median of the reference sample. In this 

case,  is taken to be equal to 0.5. The reasons for focusing on the median are clear; it is robust and a better 

representative of the central reference value. However, in general, the precedence/exceedance chart can be 

used to monitor other parameters, for example, the 1st quartile or the 70th percentile.  

3. IMPLEMENTATION OF THE CHART: CHOICE OF DESIGN PARAMETERS 

Implementation of the proposed nonparametric exceedance CUSUM chart requires specifying the 

following quantities: (i) m: the size of the IC Phase I reference sample, (ii) n: the size of each Phase II test 

sample (the subgroup size), (iii) t: the desired ARL0, (iv) : the reference value, essentially a rational number 

and (v) : the decision interval/UCL depending on m, n, r, t and k. It is up to the experimenter to specify the 

parameters m, n and t in a given situation. The choice of the IC Phase I reference sample size can be profound 

and is discussed in detail in Appendix B. The design parameters (k, H) are chosen so that the chart has a 

specified nominal ARL0 = t, say, and is capable of detecting a shift, specially a small shift, as soon as possible. 

The first step is to choose k. Under the normal distribution, the choice of k has been discussed, for example, in 

Montgomery (2009). Let us consider the traditional CUSUM chart for monitoring of normal mean with 

individual data (n = 1) with no reference sample. To examine the impact of , we examine the OOC ARL 

(denoted , where  represents the shift in the mean) for the normal distribution in Figure 1, taking the IC 

mean 0 and standard deviation 1 (without loss of generality) and setting t = 500, for  = 0.1, 0.25, 
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0.5 and 1.0. Note that  represents the increased value of  to be detected “quickly” from 0; hence  

represents the true shift in the mean, that is, .  

< Figure 1 > 

  From Figure 1 several interesting observations can be made. When the shift is small (see panels A and 

B of Figure 1) and a larger value of  is chosen, the  values become unacceptably high. On the other 

hand, if the shift is large (see panels C and D of Figure 1) and a smaller value of  is chosen, the  values 

are also high, but not as high as in the latter case. This suggests that when there is little or no a-priori 

information regarding the size of the shift, a smaller value of  is the safest choice (to protect against any 

unnecessary delays in detection). Later we shall see that similar conclusions can be drawn about the proposed 

chart and that can be seen from the Tables 4.A to 4.E while comparing the  values under 0 with 

0. Note that although we are considering an unknown shift, we are primarily interested in detecting a 

smaller and moderate shift with a CUSUM chart. Therefore, we recommend using 0 (or letting  tend to 

0). Hence the upper one-sided exceedance CUSUM median chart based on the reference sample median, is 

given by the plotting statistic 

 max	0, , /2 ,   for 1,2,3, …  (2) 

with a starting value 0.   

 The next step is to choose H, in conjunction with the chosen , so that a desired nominal ARL0 is 

attained. Tables 1.A and 1.B  in Section 5 lists different values of H with 0 for the industry standard ARL0 

values of 370 and 500 and for m = 1000, 500 and n = 5, 11 and 25, respectively. These tables should be useful 

for implementing the exceedance CUSUM chart for location in practice.  It is seen that the proposed chart can 

attain ARL0 values of 370 and 500 almost exactly. To this end, however, we discuss the run-length distribution 

and the performance of the chart first.  

4. RUN-LENGTH DISTRIBUTION 

 There are two main approaches to studying the run-length distribution of a CUSUM chart. For 

continuous observations, Page (1954) described an integral equation approach. An alternative method based 

on Markov chain theory was developed by Brook and Evans (1972). Since the proposed chart is a binomial 

CUSUM chart conditionally on , we can use the results of Gan (1993) to derive the conditional run-length 

distribution. Then the unconditional run-length distribution is obtained by simply averaging over the 

distribution of .  

 In order to implement the Markov chain approach, we introduce some new notations. Write ∗ 

such that ∗ ∗, say, so that ∗ . Note that when 0, ∗ . Thus the 

plotting statistic in (1) can be expressed as   

max	0, ,
∗ ,  for  1,2,3,… 

with 0.  

 Now, as in Gan (1993), in general, suppose that, ∗ /  and / 	 where ,  and  are all 

positive integers. Then, again as in Gan (1993), it is easy to see that when the process is declared to be IC the 
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possible values of  are given by 0, 1/ , 2/ , . . . , / ; these are the transient states of the Markov 

chain. If 	 / , then the process is declared to be OOC and 	 is said to be in the absorbing state. Using 

the simplified notation structure of Gan (1993) by labeling the transient states as 1, 2, . . . , 	 	1  

corresponding to 	 ; 	 	 	0,1, 2, . . . , , respectively, and by denoting the 2 th state as the 

absorbing state, we can write the one-step transition probability matrix in a partitioned form 

1
	

		
…
…	
…
…	

, ,

, ,…
…												

…
…									

…
…

, ,

0 0	
… , ,

0 1

 

where  denotes the one-step transition probability from state i to state j; the essential transition probability 

sub-matrix  contains all the probabilities of going from one transient state to another; the column vector  

contains all the probabilities of going from each transient state to the absorbing state;  a row vector of zeros 

which contains all the probabilities of going from the absorbing state to each transient state and the scalar 

value 1 is the probability of going from the absorbing state to the absorbing state. The elements of the 

essential transition probability sub-matrix  may be calculated from the conditional distribution of Y given 

	 	 . It is easy to see that, for 	1, 2, . . . , 1, 

	 	 	 	0	 	 	
1
; 		 	 	  

 

, 	 	
	 	 	1

	 	 		if					
	 	1

0

0 otherwise
	. 

 

Similarly for 	1, 2, . . . , 1,  and for  	2, 3, . . . , 1, we have that 

 

	 	 	 	
1

	 	
1
; 		 	 	  

 

, 	 	
	 	 	

	 	 			if						
	 	 	

0,1, … ,

0 otherwise
	. 

 

 Note that the conditional probabilities can be calculated directly using result A.1, that is, given	

, ,  follows a binomial distribution with parameters	 , ) where 	 |	 . For the 

proposed exceedance CUSUM median chart based on the reference sample median, we may substitute n and 2 

for a and b, respectively (so that 0.5). Note that when the process is IC, 	1 , where 

 follows a beta distribution with parameters r and m – r + 1 whatever the continuous F may be. Now 
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defining  as the run-length variable with a starting value equal to 1 ⁄ , i.e.  and 

|	 ) as the conditional average run-length for 	1, 2, . . . , 1,	we have, from the properties of 

Markov chains,  

 																			 , 	, … , ′ 1.                                                                          (3) 

The unconditional ARL is given by averaging this over the probability distribution of .		 Thus, the 

unconditional average run-length is given by 

           										 ∗ 	 |	 	 |	 	 	 	 .                   (4) 

 Expressions for the conditional and unconditional run-length distributions can be obtained similarly 

using properties and results of Markov chains from which other run-length distribution characteristics such as 

the standard deviation and the percentiles can be found.  

 Note that using Eq. (4), one can approximate the unconditional ARL0, replacing the integral in Eq. (4) 

by a sum, which yields 

∗ IC lim → ∑ | , IC
,

1 ,                        (5) 

where  ranges from /2	to	 /2 in steps of ;  is a small positive proper fraction;  and  are such 

that 0 1, satisfying  

≅ 0		 	 ≅ 0. 

The IC conditional mean, | 	 , IC , can be calculated by using the Markov chain formula in (3). Let us 

consider an example.  Suppose m = 1000, n = 5, H = 15 and we consider exceedance over the median. For 

even m, the quantity r is not unique but approximately take r = 500.5. Hence the IC distribution of   is 

(approximately) a	 	 500.5,500.5 . Take a value of	 , say 0.35. In the IC case,	 0.35|IC

3.963355 10 .	 Further, using (3), we find  | 0.35, IC 9.39 10 .	  Since	 0.35|IC

0, the contribution of | 0.35, IC 	 ∈ ∆ . ,  is of the order 10  and is therefore negligible, 

where ∆ . ,  is an -neighbourhood (  close to zero) containing 0.35.  

Similarly 0.65|	 	 500.5,500.5 0. The main point is that for calculating the unconditional 

ARL0 using (5), it is sufficient to consider values for  in the interval 0.3, 0.7  as other values of  do not 

contribute any significant amounts in the sum. This interval, however, will vary with m as well as r and has to 

be determined with care.  For example, for m = 1000, n = 5, H = 15 we may set 0.3, 0.0001 and 

0.7.  Thus we find from (5) 

∗ |
. . .

	
.

.
, 

where  is the pdf of the 	 550.5,500.5  distribution. This yields ∗ 352.359	(the ARL0). If on the 

other hand, we set 0.00005, that is, if we use a smaller partition of the interval, we get a slightly better 

approximation ∗ 	352.3584. However, these two results are pretty close for all practical proposes. 
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Therefore, we use l = 0.0001 and calculate ARL0 for m = 1000, n = 5, for H = 15.5, 16, 16.5 and 17, 

respectively, m = 1000, n = 5, H = 15 employing the above technique. The results obtained are 388.7368, 

429.1888, 474.3201 and 524.8474, respectively. Note that these findings are very similar to the results in 

Table 1.A obtained via Monte-Carlo simulation, in course of finding H under a nominal  ARL0 of 370 and 500, 

for m = 1000 and n = 5. Moreover, matrix inversion is often troublesome when  is close to 0 or 1 and hence 

this process is not very efficient if m is small.  Thus in this paper we use Monte-Carlo simulations to evaluate 

the run-length distribution instead of the above method, which requires extreme care and large m, to work 

efficiently.  The free software R.2.11.0 is used and the results are verified using SAS® v 9.1.3. Although the 

values of the run-length percentiles are found to be very stable under the two methods (the reader is referred to 

the tables in Section 5 for the values of the percentiles under discussion), slight sampling fluctuations were 

observed. We used 100,000 Monte-Carlo simulations to achieve reasonably small standard error of the 

estimated values. 

 

5. PERFORMANCE OF THE CHART 

 Performance of a control chart is examined based on the run-length distribution and some associated 

characteristics such as the first two moments and some percentiles.    

IC and OOC Performance 

 In this section, we examine the performance of the proposed exceedance CUSUM median chart in 

both the IC and the OOC cases. We also present a comparison between the proposed chart with some of its 

competitors based on the ARL, SDRL, the 5th, the 25th, the median, the 75th and the 95th percentiles. The 

competitors include the parametric CUSUM  chart and the rank-sum CUSUM chart considered in Li et al. 

(2010). The IC performance of a chart is typically used to assess its robustness (as it relates to the FAR) to 

different distributional assumptions whereas the OOC performance of the chart is examined to assess its 

efficacy in detecting a shift in the underlying process. Along with normal distribution, our study includes a 

collection of non-normal distributions and considers heavy-tailed, symmetric and asymmetric distributions. 

Specifically, the distributions considered in the study are: (a) the standard normal distribution, N(0,1), (b) the 

Student’s t-distribution, t(v), with degrees of freedom (d.f.) v = 3, which is symmetric about 0 but with heavier 

tails than the N(0,1), (c) the gamma distribution, GAM( , ), with parameters (α, β) = (3,1) which is right-

skewed but bell-shaped, (d) the exponential distribution with mean 1, which is GAM(1,1) and (e) the Laplace 

(or double exponential  DE(0,1)) distribution with mean 0 and variance 2 which is also symmetric but highly 

leptokurtic and has heavier tails. 

IC Robustness 

Because the exceedance CUSUM chart is nonparametric, the IC run-length distribution and the 

associated characteristics should remain the same for all continuous distributions. However, this is not true for 

the parametric charts. The values of the ARL0, the SDRL0 and the IC 5th, 25th, 50th, 75th and 95th percentiles (in 
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this order) for the proposed chart are shown in Tables 1.A and 1.B for m = 1000 and 500, respectively, for 

different values of n (n = 5, 11 and 25). 

<Tables 1.A and 1.B> 

Implementation 

 Tables 1A and 1B provide useful information for implementing the exceedance CUSUM median 

chart. First, it is seen that the IC run-length characteristics of the proposed chart are approximately the same 

for all continuous distributions for fixed m and n which confirms its nonparametric characteristics. Secondly, 

the proposed chart can attain the industry standard ARL0 values of 370 and 500 almost exactly. Note however 

that the ARL0 values in Tables 1.A and 1.B were obtained for relatively large reference samples m (= 1000 and 

500, respectively) and using k = 0.  While these m values seem large, note that m = 500 means 100 samples 

each of size 5 from Phase I, which is reasonable.  Several authors have discussed and made recommendations 

about the size of the reference sample and the consensus seems to be around 300 to 500. For smaller reference 

sample sizes, the calculations are rather difficult and need special care. A modified approach based on 

winsorization is discussed in Appendix C for this case.  For small fixed m and n, as H increases, the Monte-

Carlo simulations start producing some extreme runs and, consequently, estimating ARL0 values accurately 

becomes difficult after a certain stage. Thus while for larger values of m one can easily reach a nominal ARL0 

of 500, it is not so easy for small m, especially when 0 (so that ∗) and in such cases, higher values 

of ∗ may be preferable. However, when ∗ is taken to be marginally higher, say 0.51 (in place of 0.50), much 

higher ARL0 values may not be attainable. Nevertheless, if ∗ is further increased to 0.52 or 0.53, the ARL0 

increases.    

 Keeping in mind the needs in practice, in Table 2, we compute some ARL0 values for different values 

of ∗ when m is not too large. Note that specifying ∗ is equivalent to specifying  as they are linearly related 

through the relationship	 ∗ . We consider m to be small to moderate and an odd number, equal to 

49, 99 and 149, respectively, so that the reference sample median is a unique order statistic. The subgroup size 

n is taken to be 5 and 11, respectively. Table 2 shows the ARL0 values for ∗  0.50, 0.51, 0.52 and 0.53 and 

for various values of H. This is helpful to implement the exceedance CUSUM median chart for small to 

moderate reference sample sizes. For example, when m = 49, n = 5, 0.5 and ∗ 0.53, the upper one-

sided exceedance CUSUM median plotting statistic is given by 

       max	0, , 2.65 	 , for   1,2,3, …;  0,  

Note that, 5 0.53 0.5 0.15, so this is just an equivalent form given by (1) as 2.5. Now from 

Table 2, using H = 4.5, the ARL0 is found to be equal to 394.7. It is easy to see from Table 2 that higher ARL0 

values may be obtained by either increasing H to a desirable level or by increasing ∗ to a certain extent. 

< Table 2 > 

OOC Performance 

 While the IC robustness is a key factor in a performance comparison, it is also important to examine 

the OOC performance for a more complete comparison. In five Tables 3.A to 3.E, we show the OOC 
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characteristics of the run-length distribution for different values of n with m = 1000 and d = 0.5 for the 

normal, exponential, two-parameter gamma, t with d.f. = 3 and Laplace distributions, respectively.  

< Tables 3.A, 3.B, 3.C, 3.D and 3.E > 

< Figures 2.A to 2.E > 

 Note that the ARL0 values of all the charts under comparison are fixed at or close to the industry 

standard values of 370 and 500, respectively. Denote, the IC mean and the standard deviation by  and 

	respectively, and the OOC mean by . The ARLδ values are calculated for a range of positive shifts in 

the mean ( ) where /√  to facilitate appropriate comparisons among different distributions and 

different test sample sizes (n), for  0.25(0.25)1, 1.50, 2.0 and 3.0.  For an efficient control chart the ARL0 

should be large and the ARLδ should be small. From Figures 2.A to 2.E we see that the shift detection 

capability of the chart increases as n increases for all distributions under consideration, which is to be 

expected. From Tables 3.A to 3.E we see that the chart performance is very similar for the DE(0,1) and t(3) 

distributions where the chart has the best shift detection capability. Following this, the chart performs much 

better under the EXP(1) distribution than the GAM(3,1) distribution. This is expected as the EXP(1) (which is 

also GAM(1,1)) is more highly skewed than the GAM(3,1) distribution (the skewness of the GAM( , ) 

distribution increases as  decreases). The proposed chart is not so efficient under the N(0,1) distribution, but 

this is very common with exceedance  statistics. Similar results for  the above five distributions for m =100 

with n = 5 and d = 0.5 as well as d > 0.5 are presented in Tables 4.A to 4.E along with other existing charts 

which we shall discuss in the next subsection. 

Comparison with other charts 

 Next we study the performance of the exceedance CUSUM median chart relative to a number of 

existing CUSUM charts, both parametric and nonparametric. These charts include the parametric CUSUM  

chart and the rank-sum CUSUM chart. These charts are candidates to monitor small shifts in the location. The 

comparisons are based on the  with a given . These are shown in Tables 4.A to 4.E and also 

graphically represented in Figures 3.A to 3.E and Figures 4.A to 4.E for m = 100, n = 5 and 0 and 0, 

for each distribution under consideration. Note that as above, (i) the ARL0 values of all the charts under 

comparison are fixed at or close to 500 and (ii) the ARLδ values are calculated for a range of positive values of 

the parameter  0.25(0.25)1, 1.50, 2.0 and 3.0; the chart with the smaller ARLδ value is preferred. For the 

parametric CUSUM  chart the standards (parameters) are estimated from a Phase I reference sample duly 

taking care of the issues related to estimation. 

< Tables 4.A to 4.E > 

< Figures 3.A to 3.E > 

< Figures 4.A to 4.E > 

 From Figures 3.A and 4.A we see that for all  and when the underlying process distribution is N(0,1), 

the CUSUM  chart outperforms the other charts, which is not surprising, since it is natural for parametric 
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methods to outperform their nonparametric counterparts when all assumptions are satisfied. We also find that 

the proposed chart outperforms the rank-sum CUSUM chart for larger ( 1.5) magnitutes of shifts. 

 From Figures 3.B and 4.B we see that when the underlying process distribution is EXP(1), although 

the proposed chart and the CUSUM  chart have a very similar performance for 0, the proposed chart 

outperforms the CUSUM  chart for 0. In addition, for all k and for shifts of moderately larger ( 0.75) 

magnitudes, the proposed chart outperforms the rank-sum CUSUM chart. 

 From Figures 3.C and 4.C we see that for all  and when the underlying process distribution is 

GAM(3,1), the proposed chart and the CUSUM  chart have a very similar performance. In addition, for all k 

and for shifts of moderately larger ( 0.75) magnitudes, the proposed chart outperforms the rank-sum 

CUSUM chart. 

 From Figures 3.D and 4.D we see that when the underlying process distribution is t(3), the proposed 

chart outperforms the competing charts for shifts of moderate (0.25 2.00)  magnitudes for 0 and 

the superiority is even more visible for 0. Our proposed chart is the best for the DE(0,1) distribution. It 

outperforms the competing charts for all  and for shifts all magnitudes for the DE(0,1) distribution and this 

can be observed from Figures 3.E and 4.E.  

 In summary, it is seen that in comparison with the CUSUM  chart, the proposed exceedance 

CUSUM median chart is outperformed only when the underlying distribution is normal.   In all other cases the 

performances of the two charts are either similar or the exceedance CUSUM median chart has superior 

performance. Finally, the proposed exceedance CUSUM median chart outperforms the rank-sum CUSUM 

chart in all instances.  

 

6. EXAMPLE    

 We illustrate the exceedance CUSUM median chart using a well-known dataset from Montgomery 

(2001; Tables 5.1 and 5.2) on the inside diameters of piston rings manufactured by a forging process. The data 

given in Table 5.1 contains twenty-five retrospective or Phase I samples, each of size five, that were collected 

when the process was thought to be IC, i.e. m = 125. These data are considered to be the Phase I reference 

data for which a goodness of fit test for normality is not rejected. The reference sample has a median equal to 

74.001, i.e.  74.001.  

 Table 5.2 of Montgomery (2001) contains fifteen prospective (Phase II) samples each of five 

observations (n = 5). For the exceedance CUSUM median chart, we use  = 0 (i.e. ∗) and set H = 7.5 for 

an  370. The values of the exceedance and the exceedance CUSUM statistics are shown for 

illustration in Table 5. For the parametric CUSUM  chart we also use  0 and set H = 18 for an  

370. It should be noted that this value of H was found using a search algorithm. The CUSUM  and the 

exceedance CUSUM median charts are shown in panels (a) and (b), respectively, of Figure 5. 

< Table 5 > 

< Figure 5 > 
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 From Figure 5 we can see that the performances of the two charts are very similar. The exceedance 

CUSUM median chart signals at sample 13, whereas the CUSUM  chart signals at the very next sample, 14. 

However, recall that the nonparametric exceedance CUSUM chart doesn’t require normality or any 

distributional assumption other than continuity to guarantee the  370 but the same couldn’t be said 

about the CUSUM  chart unless the underlying distribution was normal or close to it. In fact, the actual 

 of the CUSUM  chart is unknown and most likely not the nominal 370. 

 As we have mentioned before, in practice the normality assumption can be in doubt or can’t be 

justified for lack of enough information or data and a nonparametric method may be more desirable.  

 

7. SUMMARY AND CONCLUDING REMARKS   

 CUSUM charts are popular control charts used in practice; they take advantage of the sequential 

accumulation of data arising in a typical SQC/SPC environment and are known to be more efficient than 

Shewhart charts in detecting smaller and persistent shifts. However, the traditional (parametric) CUSUM 

charts can lack in-control robustness and as such the possibility of varying and unknown false alarm rates is a 

practical concern with their applications. Nonparametric CUSUM charts offer an attractive alternative as they 

combine the inherent advantages of nonparametric charts (in-control robustness; same, fixed, false alarm rate 

for all continuous distributions) with the better small shift detection capability of CUSUM-type charts. We 

propose a nonparametric Phase II CUSUM chart based on the well-known exceedance statistics for detecting 

an increasing shift in the location parameter of a continuous distribution and is referred as the exceedance 

CUSUM chart. A performance comparison of the proposed chart with existing parametric and nonparametric 

CUSUM charts show that the exceedance CUSUM chart performs better than its competitors in detecting 

shifts under various contexts. Moreover, in certain situations where the data become available in a natural 

time order, the exceedance charts can be advantageous as they can be applied early, leading to savings in time 

and resources. Thus, on the basis of practicality, minimal assumptions, robustness of the in-control run-length 

distribution and out-of-control performance, the exceedance CUSUM chart is a strong contender in practical 

SPC applications. In terms of further research, exceedance/precedence statistics can be considered in a 

EWMA framework. This is currently being investigated and will be reported in a separate paper. 
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APPENDIX A. SOME MATHEMATICAL RESULTS. 
 
Result A.1. Given (conditionally on) , the		 , ’s are independently binomially distributed with parameters 
,  for any 1,2,3, … . 

 
Proof.  Since ,  is the number of -observations in the  Phase II sample that exceeds	 , given , the 
random variable ,  follows a binomial distribution with parameters	 , ) where 	 	 |	 .  
 
Result A.2. The (unconditional) IC distribution of ,  is distribution-free and is given by the pmf 
 

,  with 0,1,2, … , .  

 
Proof.  Using Result A.1 and averaging over the distribution of , we find the unconditional distribution of 

, . Thus  

, , | 1  

1 . 

 
When the process is IC we have  and the above integral can be shown to simplify, via a beta function, 
to the given result. Hence, the statistics , 	are unconditionally distribution-free when the process is IC. The 
same result can be obtained by combinatorial arguments; details are skipped. Note that the pmf of ,  shown 
above is known as the negative hypergeometric distribution.   
 
Next we extend Result A.2 and show that the (unconditional) joint distribution of ,  for 1,2, … ,  is 
distribution-free when the process is IC. This establishes that the proposed chart is distribution-free. 
 
Result A.3. The unconditional IC distribution of ,  for 1,2, … ,  where 1 is a positive integer, is 
distribution-free. 
 
Proof.  Noting that by Result A.1, given  the , , 1,2, … ,  are independent binomial ,  
variables, the joint distribution of , , , , … , , , when the process is IC, is given by 
 
                       											 , 	 	 , , 	 	 , . . . , , 	 	  

	 , 	 	 	 , 	 	 , … , , 	 	 	|	  
 

																										 … 1
1

∑

 

 

                       =  …
∑ ,			 ∑

,			
. 

	
 
The last result follows again by using the fact that  when the process is IC and simplifying the integral 
via a beta function. Hence the unconditional IC joint distribution of exceedance statistics from any number of 
independent Phase II samples is distribution-free. This proves that the proposed chart is distribution-free. 
 
Result A.4.  The unconditional exceedance probability  equals 	 1 	/	 1  when the 
process is IC. 
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Proof.  Note that . When the process is IC,  and then 
1 1  (say).  Since  is the  order statistic in a random sample of size m from F, 

using the probability integral transform, it can be shown (see, for example, Gibbons and Chakraborti, 2003) 
that 	follows the distribution of the  order statistic in a random sample of size m from the uniform (0, 1) 
distribution as long as  is continuous. This latter distribution is known to be a beta distribution with 
parameters  and 1, respectively. Moreover, when the process is IC,  follows a beta distribution 

with parameters 1 and .   Thus 1 , when the process is IC 

using the expectation formula for a beta distribution.   
 
APPENDIX B. EFFECT OF THE REFERENCE SAMPLE (ESTIMATION OF PARAMETERS) 
 

The effect of the reference sample data on the performance of the Phase II chart can be profound.  To 
investigate this question for our nonparametric chart, let us consider the IC situation and suppose that the IC 
underlying true process distribution is standard normal and we obtain 100 observations from it, as done in a 
Phase I study. The characteristics of this IC sample can and will vary and that will impact the chart.  For 
example, if the sample median turns out to be the same as true median (0) we have ̂ 1 Φ 0 1
0.5 0.5.  In that case the performance of the chart will be satisfactory.  In practice, however, it is hard to 
realise such a perfect situation; the sample median may be less than 0, that is, may have a downward bias or it 
may be greater than 0 with an upward bias. Let us consider these two situations separately. The bias in the 
Phase I sample (reference sample) median will introduce bias in ̂ , which, in turn, will affect the IC 
performance of the control chart. 

To examine the effect, suppose that the sample median has 1% downward bias and is found to be -
0.01. Given this sample median, we have ̂ 1 Φ 0.01 1 0.496 0.504. Then given ̂ 0.504, 
using the Markov chain approach as in Section 4, we find that for	 5.5	and	 0.5, the exact IC 
conditional average run-length is 505.72.  Now, the approximate distribution of the sample median based on a 

sample of size 100 is normal with mean 0 and standard deviation 
√

0.0199.  Thus there is a 30.8% 

chance that the downward bias may be more than 1% since Φ 0.01/0.0199 0.308.  Next suppose that 
the sample median has a 5% downward bias and thus equal 0.05.  Then ̂ 1 Φ 0.05 1 0.480
0.520 and given ̂ 0.520 and using the Markov chain approach, we find that for	 5.5, 0.5, the 
exact IC conditional ARL drops down to 228.27. Further, since 	Φ 0.05/0.0199 0.0061, there is a 0.6% 
chance that the downward bias in the median may be more than 5%.  Thus the downward bias in the reference 
sample median does not seem to produce very low conditional IC ARL’s which provides fair protection 
against the possibility of an early false alarm.   

On the other hand, suppose that the sample median has a 1% upward bias and thus equals 0.01. Then  
̂ 1 Φ 0.01 1 0.504 0.496 and given ̂ 0.496, using the Markov chain approach, we find 

that for	 5.5		and	 0.5, the exact IC conditional ARL is 941.04. Since,	1 Φ 0.01/0.0199
0.308, we have about 30.8% chance that the upward bias may be more than 1%. On the other hand if the 
sample median has a 5% upward bias, we have ̂ 1 Φ 0.05 1 0.520 0.480 and given 
̂ 0.480, using the Markov chain approach, we find that for	 5.5 and	 0.5, the exact IC conditional 

ARL jumps up to 6147.45. Thus the upward bias in the sample median can be of some concern as a much 
larger than nominal ARL0 can unnecessarily defer the detection of a shift even if it has occurred. If there is an 
upward bias of over 2.5%, the IC conditional ARL exceeds 1712.15, more than three times the nominal ARL0. 
This will produce nearly 1-2.5% of the extreme values in the unconditional run-length distribution and will 
make estimation of the unconditional ARL0 very unreliable and most likely result in a large IC SDRL.  
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As the reference sample size m increases however, the chances of a large bias in the Phase I estimate 
gradually decreases and the picture improves. With m = 100, n = 5, from the above calculations we see in only 
68.6% (1-30.8-0.6)% cases the conditional ARL0 lies within the interval (228, 942). The same interval 
contains 71%, 72.9%, 74.6%, 76.1%, 78.6%,86.9% and 94.4% of the conditional ARL0 values, respectively, 
for  m =125, 150, 175, 200, 250, 500 and 1000 with n = 5. For academic interest, we can study with fixed H 
and d and see how the interval (228, 942) works for n = 3 and 7 for various values of m. With n = 3, the 
interval can handle (that is, if the upward bias is up to 3.6% conditional ARL will be within (228, 942). If 
upward bias is more the conditional ARL0will be more than 942) up to 3.6% upward bias compared to only 1% 
with n = 5. On the other hand it can handle (that is if the downward bias is up to 3.8% conditional ARL will be 
within (228, 942). If downward bias is more the conditional ARL0will be less than 228) up to 3.8% downward 
bias (compared to 5% with n = 5). With n = 3, the same interval contains 93.6%, 96.2%, 97.7%, 98.6%, 
99.1%, and 99.6% conditional ARL0, respectively, for m = 100,125, 150, 175, 200 and 250 and 500; it contains 
almost 100% of the conditional ARL0 if m is 500 or more. On the other hand, when n = 7, it can address up to 
5.4% downward bias (compared to 5% for n = 5) but unfortunately, the interval can tolerate only about 0.01% 
upward bias. Intuitively, if one already has an upward bias in the Phase I sample, one cannot expect a quick 
detection of an upward sift or a quick boundary hitting of the Markov chain. It appears that a smaller test 
sample size n is preferable when m is not very high, as it gives more a stable run-length distribution. 

Thus, based on our observations, when m = 100, n should be 3 or 5, if m = 1000, n should be less than 
or equal 11 and if n = 25 has to adopt then m should be even higher. 

It may be noted that the effect of the reference sample is important to understand not only for our 
proposed chart but in all Phase II charts, including the normal theory CUSUM charts when parameters are 
estimated in Phase I. For some related details, see Hawkins and Olwell (1998). In the present scenario, we see 
that if m is relatively small, a choice of smaller n is better in the sense that it produces less extreme runs given 
a Phase I sample. Larger values of n tend to produce more and more extreme runs for a given H. Now if H is 
reduced, high extreme values may be avoided but instead some low values of conditional run-length (lower 
tail extremes) will arise. One possibility to avoid the hazard caused from extreme runs is to use, instead of the 
ARL0, the IC median run length (MDRL) as suggested by Gan (1993) or some percentile of the run-length 
distribution as advocated in Chakraborti and Van de Wiel (2008). Nevertheless, in the industrial set up, the 
ARL is still more commonly used. Therefore, we propose a systematic approach of using Monte-Carlo 
simulation along with windsorization to estimate the ARL. More details are presented in Appendix C. 

 
APPENDIX C. MONTE-CARLO SIMULATION UNDER SMALL SAMPLES: WINSORIZATION 

When m < 200, we recommend to set a-priori the maximum allowable length of monitoring at a 
certain high level, say, S.  This will eliminate the possibilities of high extreme runs by induced termination at 
S, which may be 10 to 15 times the nominal ARL0.Therefore, in course of estimation of the run-length via 
Monte-Carlo studies; a particular replicate will at most inspect S test samples (each of size n).  In other words, 
if we don’t observe a value of the run-length variable (that is the chart does not signal) less than or equal to S, 
we shall enforce termination of the monitoring process (simulation of data) and set the run-length value equal 
to S. As a result, we obtain a winsorized ARL with winsorization at the upper tail of the run-length 
distribution. While Table 4.A-4.E are based on a Monte-Carlo with termination enforced after S = 5,000 
simulations, in Tables 6.A and 6.B, we present a case study when a termination is enforced after S = 2,000 
simulations. In all those tables, we record the percentage of simulation replicates that naturally terminate 
before S and refer it as Winsorization level (WL). Tables 6.A and 6.B shows the effect of choice of lower 
value of S. For brevity, only the normal distribution and target ARL0 =500 (for Table 6.A) and Target ARL0 
=370 (for Table 6.B) are considered. We see from Table 6.A and 6.B that the control limits are naturally 
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overestimated and as a consequence the OOC run-lengths also increase a little when the shift is small. The 
following points are essential to note while working with winsorisation. 

A. The winsorized ARL with winsorization at the upper tail of the run-length distribution slightly 
underestimates the true ARL.  

B. Winsorization at upper tail of the run-length distribution stabilizes the variance and, consequently, 
increases the efficiency of the estimate of the ARL0. 

C. H* determined on the basis of winsorized ARL0 overestimates true H. 
D. If the calculated  based on H* with ARL0 = A of a chart is found to be lower than the  of 

any other charts with ARL0 = A, it guarantees that the former chart is better provided the probability 
that a conditional  exceeds the winsorization point, is practically nil. 

 
<Tables 6.A and 6.B> 
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(A) 

 

(B) 

 

(C) 

 

(D) 

 

Figure 1.  values of the exceedance CUSUM median chart with t = 500 for different values of k and  
= 0.1, 0.25, 0.5 and 1.0. 
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(A) (B) 

(C) (D) 

(E) 

 

Figure 2. OOC performance comparison of the exceedance CUSUM median chart for different values of n 
and various distributions for 1000, 0.5 or 0. 
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(A)   N(0,1) distribution 

 
 
 

(B)   EXP(1) distribution 

 

(C)   GAM(3,1) distribution 

 

(D)   t(3) distribution (E)   DE(0,1) distribution 

 
 

Figure 3. ARL performance comparison of the competing 
charts for various distributions with 100, 5, 

nominal  ARL0 = 500 and k = 0 

 

0

25

50

75

100

125

0
.2
5

0
.7
5

1
.2
5

1
.7
5

2
.2
5

2
.7
5

A
R

L

Shift

0

25

50

75

100

125

0
.2
5

0
.7
5

1
.2
5

1
.7
5

2
.2
5

2
.7
5

A
R

L

Shift

0

25

50

75

100

125

0
.2
5

0
.7
5

1
.2
5

1
.7
5

2
.2
5

2
.7
5

A
R

L

Shift

0

25

50

75

100

125

0
.2
5

0
.7
5

1
.2
5

1
.7
5

2
.2
5

2
.7
5

A
R

L

Shift

0

25

50

75

100

125
0
.2
5

0
.7
5

1
.2
5

1
.7
5

2
.2
5

2
.7
5

A
R

L

Shift



21 
 

(A)   N(0,1) distribution 

 
 

(B)   EXP(1) distribution (C)   GAM(3,1) distribution 

 

(D)   t(3) distribution (E)   DE(0,1) distribution 

 
 

Figure 4. ARL performance comparison of the competing 
charts for various distributions with 100, 5, 

nominal ARL0 = 500 and k > 0. 
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Table 1A. 
The IC characteristics of the run-length distribution of the exceedance CUSUM median chart for different n with m =1000, d= 0.5 (or k = 0) 

 
 Nominal ARL0  =  370  Nominal ARL0  =  500 

    

Distribution Type Mean 
Standard 
deviation 

5% 25% Median 75% 95% 
 

Mean 
Standard 
deviation

5% 25% Median 75% 95% 

 
 

n = 5, H = 15.5 
 

 
n = 5, H = 16.5 

N(0,1) 394.68 911.58 42 91 173 366 1361  487.10 1548.10 46 102 198 439 1690 
EXP(1) 384.42 972.02 42 89 173 372 1291  474.69 1668.50 46 99 195 426 1585 

GAM(3,1) 383.33 1048.65 42 89 172 370 1273  470.56 1395.70 46 99 194 427 1571 
t(3) 389.89 1084.26 42 89 174 373 1289  470.19 1277.29 46 99 195 428 1586 

DE(0,1) 385.70 918.64 42 90 173 371 1300  475.51 1628.32 47 99 194 422 1590 

 
 

n = 11, H = 18.5 
 

 
n = 11, H = 20.0 

N(0,1) 371.10 1810.85 27 58 116 272 1204  516.43 3079.99 30 65 133 326 1631 
EXP(1) 355.46 1428.46 26 56 114 260 1174  505.77 3121.91 30 66 135 331 1591 

GAM(3,1) 381.93 2315.71 27 58 117 273 1203  552.18 5437.10 30 66 133 328 1613 
t(3) 372.83 2008.43 27 58 116 273 1202  536.60 4091.31 31 66 134 325 1602 

DE(0,1) 368.17 2172.19 27 58 116 272 1190  528.42 4412.10 31 66 133 322 1611 

 
 

n = 25, H = 21.5 
 

 
n = 25, H = 22.5 

N(0,1) 369.96 2451.44 16 34 73 190 1104  486.27 11749.40 17 36 75 203 1409 
EXP(1) 370.80 2219.84 16 36 76 192 1211  493.66 7470.19 17 38 79 218 1504 

GAM(3,1) 416.70 4703.45 16 35 72 188 1136  555.21 10451.15 17 37 78 213 1405 
t(3) 442.81 6440.04 16 35 72 188 1153  576.02 9028.16 17 37 79 212 1416 

DE(0,1) 454.72 6960.93 16 35 72 190 1156  539.45 5942.58 17 37 79 214 1428 
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Table 1B. 
The IC characteristics of the run-length distribution of the exceedance CUSUM median chart for different n with m =1000, d= 0.5 (or k = 0) 

 
 Nominal ARL0  =  370  Nominal ARL0  =  500 

    

Distribution Type Mean 
Standard 
deviation 

5% 25% Median 75% 95% 
 

Mean 
Standard 
deviation

5% 25% Median 75% 95% 

 
 

n = 5, H = 13.0 
 

 
n = 5, H = 13.5 

N(0,1) 394.06 2279.96 29 63 126 294 1266  480.12 3542.63 31 67 134 321 1494 
EXP(1) 406.99 2707.59 29 63 125 293 1278  467.90 2669.46 31 67 135 319 1483 

GAM(3,1) 392.48 1828.10 29 63 126 295 1295  453.43 2129.83 31 67 136 324 1489 
t(3) 409.22 3368.77 29 63 126 294 1290  488.18 5288.29 31 67 134 320 1496 

DE(0,1) 404.24 3566.87 29 62 124 291 1280  486.71 3590.93 31 67 135 322 1501 

 
 

n = 11, H = 14.5 
 

 
n = 11, H = 15.5 

N(0,1) 361.20 3476.82 17 37 76 191 1050  544.91 8365.88 19 40 85 223 1387 
EXP(1) 365.10 3824.06 17 36 75 189 1047  538.40 6505.87 19 40 84 222 1407 

GAM(3,1) 370.10 5205.87 17 36 75 190 1060  520.38 8939.23 19 40 84 222 1411 
t(3) 370.71 4236.95 17 37 75 191 1071  558.72 6986.16 19 40 85 223 1403 

DE(0,1) 347.59 2205.70 17 36 75 192 1081  533.52 8816.49 19 41 85 226 1378 

 
 

n = 25, H = 15.5 
 

 
n = 25, H = 16.5 

N(0,1) 335.38 4094.52 9 19 41 115 815  555.66 11960.87 10 21 46 138 1059 
EXP(1) 319.67 4547.30 9 19 41 114 801  555.31 13151.20 10 21 46 134 1066 

GAM(3,1) 384.44 10013.27 9 20 42 114 799  647.13 32693.61 10 21 46 131 1053 
t(3) 350.98 4977.05 9 20 42 114 827  590.27 21776.30 10 21 45 130 1047 

DE(0,1) 341.56 4254.38 9 20 41 115 809  555.81 15907.33 10 21 46 133 1068 
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Table 2.  Some ARL0 values of the exceedance CUSUM median chart for given m, n, H and ∗ 

m  
∗  0.50 ∗ 0.51 ∗ 0.52 ∗  0.53 

 = 5  = 11  = 5  = 11  = 5  = 11  = 5  = 11 

49 

3 45.3 26.8 39.4 30.5 44.1 36.4 54.2 38.5 
3.5 55.1 50.5 63.2 52.1 74.3 54.3 89.9 94.3
4 112.2 116.2 118.9 137.6 119.1 133.1 145.6 194.8 

4.5 204.0 175.7 184.3 232.9 279.9 238.9 394.7 418.1 
5 328.4 265.0 324.5 342.2 452.7 >500 >500 >>500 

99 

3 22.5 15.3 23.8 15.7 26.8 18.8 27.8 21.2 
3.5 31.0 21.2 31.2 22.5 36.8 24.7 48.9 33.3 
4 43.7 31.5 45.0 30.3 55.1 39.3 63.6 54.9 

4.5 59.6 41.1 64.7 47.2 77.1 56.5 111.1 75.3 
5 81.5 57.3 91.5 68.5 122.7 100.5 163.0 145.5 

5.5 113.5 85.8 120.6 89.8 168.5 136.6 312.6 204.2 
6 164.65 125.6 188.6 168.2 292.9 234.7 374.2 346.5 

149 

3 20.4 12.9 20.5 13.3 23.1 15.1 25.2 17.6 
3.5 25.8 16.4 27.2 17.2 31.0 20.1 39.6 26.1 
4 34.3 21.6 35.8 24.0 41.2 29.4 50.1 36.3 

4.5 44.2 26.5 44.9 29.7 59.3 36.1 78.9 48.0 
5 54.3 34.0 65.1 43.0 79.0 60.3 105.0 84.9 

5.5 71.0 45.1 81.9 55.5 120.7 73.8 165.4 103.1 
6 96.7 64.5 101.9 74.6 144.5 108.9 250.4 162.1

6.5 127.8 77.1 149.9 103.1 208.5 178.4 328.5 212.9 
7 160.3 112.6 195.1 170.2 291.6 229.1 446.1 379.2 
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Table 3.A. The OOC characteristics of the run-length distribution for different n with m = 1000 and d = 0.5 (or 0) for the N(0,1)* 
distribution 

  Nominal ARL0 = 370  Nominal ARL0 = 500 
   Standard 

deviation 
5% 25% Median 75% 95%   Standard 

deviation 
5% 25% Median 75% 95% 

  , .   , .  
0.25  70.60 53.31 24 39 56 84 164  74.57 55.70 26 42 60 89 173 
0.50  36.38 16.08 18 25 33 44 67  38.52 16.78 19 27 35 46 70 
0.75  24.72 8.53 14 19 23 29 41  26.35 8.82 15 20 25 31 43 
1.00  19.07 5.51 12 15 18 22 29  20.72 5.60 13 16 19 23 30 
1.50  13.40 2.94 10 11 13 15 19  14.13 2.96 10 12 16 18 20 
2.00  10.64 1.84 8 9 10 12 14  11.30 1.92 8 10 11 12 15 
3.00  8.24 0.90 7 8 8 9 10  8.71 0.95 8 8 8 9 10 

                 
  , .   , .  
                 

0.25  61.83 79.05 17 29 43 69 158  67.94 80.43 19 31 47 75 181 
0.50  30.25 17.84 13 19 26 36 62  32.41 19.15 14 21 28 38 65 
0.75  20.30 8.48 10 14 18 24 36  21.59 8.56 11 16 20 26 38 
1.00  15.22 5.13 9 12 14 18 25  16.53 5.47 10 13 15 19 27 
1.50  10.54 2.74 7 9 10 12 16  11.33 2.84 7 9 11 13 17 
2.00  8.20 1.76 6 7 8 9 12  8.82 1.84 6 7 9 10 12 
3.00  5.95 0.94 5 5 6 6 8  6.37 1.00 5 6 6 7 8 

                 
  , .   , .  
                 

0.25  59.22 120.60 11 20 32 57 174  61.74 123.92 12 21 33 58 183 
0.50  25.32 25.05 9 14 19 29 59  26.58 26.16 9 14 20 30 62 
0.75  17.27 9.24 7 10 14 19 32  16.83 9.76 8 11 15 20 33 
1.00  12.08 5.16 6 9 11 14 22  12.67 5.38 6 9 12 15 23 
1.50  8.23 2.60 5 6 8 10 13  8.56 2.66 5 7 8 10 14 
2.00  6.31 1.65 4 5 6 7 9  6.55 1.66 4 5 6 8 10 
3.00  4.44 0.89 3 4 4 5 6  4.60 0.90 3 4 4 5 6 

* IC set up: mean 0	and	standard	deviation	 1; OOC set up: 	mean
√

	and	standard	deviation	 1 
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Table 3.B. The OOC characteristics of the run-length distribution for different n with m = 1000 and d = 0.5 (or 0) for the EXP(1)* 
distribution 

  Nominal ARL0 = 370  Nominal ARL0 = 500 
   Standard 

deviation 
5% 25% Median 75% 95%   Standard 

deviation 
5% 25% Median 75% 95% 

  , .   , .  
0.25  54.58 36.53 21 33 45 65 118  58.15 38.03 23 35 49 70 124 
0.50  26.24 9.98 14 20 24 31 45  27.60 10.23 15 20 26 32 46 
0.75  16.67 4.54 11 14 16 19 25  17.70 4.72 12 14 17 20 26 
1.00  11.92 2.53 8 10 12 13 16  12.60 2.62 9 11 12 14 18 
1.50  7.30 0.56 7 7 7 8 8  7.56 0.70 7 7 7 8 9 
2.00  7 0 7 7 7 7 7  7 0 7 7 7 7 7 
3.00  7 0 7 7 7 7 7  7 0 7 7 7 7 7 

                 
  , .   , .  
                 

0.25  47.78 47.76 16 25 36 55 114  52.88 56.47 17 27 39 60 129 
0.50  22.75 11.01 11 16 20 27 43  24.17 11.35 12 17 22 29 45 
0.75  14.49 5.04 8 11 14 17 24  15.59 5.29 9 12 15 18 25 
1.00  10.41 2.88 7 8 10 12 16  11.29 3.07 7 9 11 13 17 
1.50  6.60 1.27 5 6 6 7 9  7.08 1.34 5 6 7 8 9 
2.00  4.59 0.66 4 4 4 5 6  5.01 0.60 4 5 5 5 6 
3.00  4 0 4 4 4 4 4  4 0 4 4 4 4 4 

                 
  , .   , .  
                 

0.25  44.17 85.33 10 17 26 44 122  47.50 96.67 11 18 28 46 126 
0.50  19.13 20.13 8 11 16 22 40  19.92 16.39 8 12 16 23 42 
0.75  12.01 5.43 6 8 11 14 22  12.61 5.85 6 9 11 15 23 
1.00  8.85 3.30 5 7 8 10 15  9.18 3.28 5 7 8 11 15 
1.50  5.69 1.48 4 5 6 6 8  5.91 1.52 4 5 6 7 9 
2.00  4.14 0.83 3 4 4 5 6  4.30 0.86 3 4 4 5 6 
3.00  2.62 0.50 2 2 3 3 3  2.79 0.44 2 3 3 3 3 

* IC set up: mean 1	and	standard	deviation	 1; OOC set up: 	mean
√

	and	standard	deviation	 1 
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Table 3.C. The OOC characteristics of the run-length distribution for different n with m = 1000 and d = 0.5 (or 0) for the GAM(3,1)* 
distribution 

  Nominal ARL0 = 370  Nominal ARL0 = 500 
   Standard 

deviation 
5% 25% Median 75% 95%   Standard 

deviation 
5% 25% Median 75% 95% 

  , .   , .  
0.25  64.43 46.09 24 37 52 77 147  70.35 51.39 25 40 57 84 159 
0.50  32.53 13.68 16 23 30 39 59  34.01 14.21 18 24 32 41 61 
0.75  21.68 6.96 13 17 20 25 34  22.98 7.20 14 18 22 27 36 
1.00  16.28 4.34 10 13 16 18 24  17.20 4.35 12 14 16 20 25 
1.50  10.96 2.01 8 10 11 12 14  11.62 2.09 9 10 11 13 16 
2.00  8.56 1.07 7 8 8 9 10  9.04 1.12 8 8 9 10 11 
3.00  7.02 0.14 7 7 7 7 7  7.19 0.39 7 7 7 7 8 

                 
  , .   , .  
                 

0.25  57.66 66.31 17 28 41 65 142  63.10 75.50 19 30 45 71 159 
0.50  27.42 15.10 12 18 24 33 55  29.74 16.19 13 19 26 35 69 
0.75  17.98 7.04 10 13 16 21 31  19.43 7.58 11 14 18 23 33 
1.00  13.56 4.35 8 10 13 16 22  14.51 4.53 9 11 14 17 23 
1.50  8.98 2.15 6 8 9 10 13  9.68 2.22 7 8 9 11 14 
2.00  6.83 1.28 5 6 7 8 9  7.30 1.31 5 6 7 8 10 
3.00  4.77 0.64 4 4 5 5 6  5.16 0.55 4 5 5 5 6 

                 
  , .   , .  
                 

0.25  53.57 107.16 11 19 30 52 154  58.41 110.50 12 20 32 56 177 
0.50  23.00 19.17 8 13 18 26 53  24.25 23.68 9 14 19 28 54 
0.75  14.87 8.03 7 10 13 18 29  15.43 8.20 7 10 14 18 30 
1.00  10.90 4.45 6 8 10 13 19  11.45 4.80 6 8 10 14 20 
1.50  7.22 2.14 4 6 7 8 11  7.54 2.23 5 6 7 9 12 
2.00  5.44 1.32 4 4 5 6 8 5.69 1.34 4 5 6 6 8
3.00  3.75 0.66 3 3 4 4 5 3.88 0.67 3 3 4 4 5

* IC set up: mean 3	and	standard	deviation	 √3; OOC set up: 	mean
√
	and	standard	deviation	 √3 
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Table 3.D. The OOC characteristics of the run-length distribution for different n with m = 1000 and d = 0.5 (or 0) for the t(3)* distribution 
  Nominal ARL0 = 370  Nominal ARL0 = 500 
   Standard 

deviation 
5% 25% Median 75% 95%   Standard 

deviation 
5% 25% Median 75% 95% 

  , .   , .  
0.25  45.20 23.68 20 30 40 54 89 47.84 24.83 21 31 42 57 94
0.50  23.59 7.81 14 18 22 28 38  25.13 8.23 14 19 24 29 40 
0.75  16.52 4.24 11 14 16 19 24  17.64 4.42 12 14 17 20 26 
1.00  13.20 2.75 9 11 13 15 18  13.96 2.88 10 12 14 16 19 
1.50  10.02 1.58 8 9 10 11 13  10.58 1.61 8 10 10 12 14 
2.00  8.64 1.06 7 8 8 9 10  9.14 1.12 8 8 9 10 11 
3.00  7.61 0.62 7 7 8 8 9  8.02 0.62 7 8 8 8 9 

                 
  , .   , .  
                 

0.25  38.08 29.33 14 22 31 45 84  41.26 29.24 16 24 34 49 90 
0.50  18.97 7.55 10 14 18 22 33 20.52 7.94 11 15 19 24 35
0.75  13.13 3.97 8 10 12 15 20 14.16 4.21 9 11 13 16 22
1.00  10.17 2.56 7 8 10 12 15  10.93 2.70 7 9 11 12 16 
1.50  7.31 1.40 5 6 7 8 10  7.84 1.46 6 7 8 9 11 
2.00  6.00 0.93 5 5 6 6 8  6.46 1.02 5 6 6 7 8 
3.00  4.84 0.64 4 4 5 5 6  5.22 0.54 5 5 5 5 6 

                 
  , .   , .  
                 

0.25  33.20 47.53 10 16 23 36 81  35.23 48.64 10 16 24 38 90 
0.50  15.19 7.99 7 10 13 18 29  16.04 8.44 8 11 14 19 31 
0.75  10.24 3.85 6 8 9 12 18  10.75 4.01 6 8 10 13 18 
1.00  7.79 2.35 5 6 7 9 12 8.15 2.43 5 6 8 9 13
1.50  5.45 1.28 4 5 5 6 8 5.70 1.33 4 5 6 6 8
2.00  4.34 0.84 3 4 4 5 6  4.53 0.86 3 4 4 5 6 
3.00  3.34 0.51 3 3 3 4 4  3.45 0.54 3 3 3 4 4 

* IC set up: mean 0	and	standard	deviation	 √3; OOC set up: 	mean
√
	and	standard	deviation	 √3 
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Table 3.E. The OOC characteristics of the run-length distribution for different n with m = 1000 and d = 0.5 (or 0) for the DE(0,1)* 
distribution 

  Nominal ARL0 = 370  Nominal ARL0 = 500 
   Standard 

deviation 
5% 25% Median 75% 95%   Standard 

deviation 
5% 25% Median 75% 95% 

  , .   , .  
0.25  43.10 21.54 19 28 38 52 83  46.10 21.9 21 31 41 55 86 
0.50  23.99 7.89 14 18 23 28 39  25.50 8.27 15 20 24 30 41 
0.75  17.45 4.56 11 14 17 20 26  18.45 4.77 12 15 18 21 27 
1.00  14.07 3.11 10 12 14 16 20  15.05 3.26 10 13 15 17 21 
1.50  10.90 1.90 8 10 11 12 14  11.59 1.96 9 10 11 13 15 
2.00  9.35 1.36 8 8 9 10 12  9.89 1.38 8 9 10 11 12 
3.00  7.98 0.77 7 8 8 8 9  8.42 0.81 7 8 8 9 10 

                 
  , .   , .  
                 

0.25  35.20 23.2 14 21 29 42 76  38.60 25.82 15 23 32 46 82 
0.50  18.73 7.23 10 14 17 22 32  20.30 7.55 11 15 19 24 34 
0.75  13.32 3.98 8 10 13 16 21  14.26 4.14 9 11 14 17 22 
1.00  10.58 2.72 7 9 10 12 16  11.33 2.77 7 9 11 13 16 
1.50  7.89 1.60 6 7 8 9 11  8.45 1.65 6 7 8 9 11 
2.00  6.55 1.10 5 6 6 7 8  7.00 1.15 5 6 7 8 9 
3.00  5.27 0.73 4 5 5 6 6  5.62 0.73 5 5 6 6 7 

                 
  , .   , .  
                 

0.25  30.07 42.88 9 15 22 34 71  32.05 42.75 10 16 23 55 78 
0.50  14.37 6.93 7 10 13 17 26  15.06 6.90 7 10 14 18 28 
0.75  10.09 3.58 6 8 10 12 17  10.52 3.66 6 8 10 12 17 
1.00  7.83 2.31 5 6 8 9 12  8.18 2.40 5 6 8 10 13 
1.50  5.67 1.33 4 5 6 6 8  5.92 1.37 4 5 6 7 8 
2.00  4.61 0.92 3 4 4 5 6 4.81 0.95 4 4 5 5 6
3.00  3.60 0.60 3 3 4 4 4 3.73 0.60 3 3 4 4 5

* IC set up: mean 3	and	standard	deviation	 √2; OOC set up: 	mean
√
	and	standard	deviation	 √2 
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Table 4.A. The IC and OOC characteristics of the run-length distribution for 100 and 5 for the N(0,1) distribution* with nominal  
ARL0 = 500 and winsorization at the 5000th step** 

 
Chart Type

 

Parametric CUSUM   chart with 
Parameters estimated from a Phase I 

sample 
Rank-sum CUSUM chart Exceedance CUSUM median chart 

Winsorization 
level 

WL = 95.4 WL = 96.6 WL = 95.6 WL = 97.7 WL = 95.9 WL = 97.3 

Control 
limits 

 8.50  5.17  563.0  225 
 9.55 
 

 5.18 

 0 0.5 /√  0 0.5 1 /12 0 ∗  

∗ 
 
 

NA NA NA NA 0.50 0.5
1

4 2
 

0.57 

0.00 
507.44 (1177.56) 

14, 31, 72, 256, 4449 
493.51 (1070.55) 

11, 32, 99, 337, 3139 
503.52 (1171.43) 

16,33, 74, 264, 4236 
505.53 (972.27) 

 12, 48, 144, 444, 2499 
503.24 (1137.31) 

14, 31, 70, 252, 3880 
502.27 (1023.94) 

10, 37, 113, 404, 2844 

0.25 
92.00 (380.94) 

10, 17, 27, 51, 240 
97.55 (307.37) 

7, 14, 29, 68, 346 
93.33 (343.36) 

12, 19, 29, 56, 255 
137.73 (351.71) 

 8, 19, 44, 114, 521 
122.89 (464.30) 

11, 19, 32, 65, 380 
146.06 (430.42) 

8, 17, 39, 105, 547 

0.50 
24.81 (61.19) 

7, 11, 16, 25, 56 
26.74 (69.05) 

5, 9, 14, 25, 76 
26.98 (72.05) 

10, 14, 19, 27, 59 
41.09 (114.10) 

 6, 11, 19, 40, 129 
35.97 (143.89) 

9, 13, 20, 31, 83 
49.78 (180.86) 

6, 11, 19, 40, 153 

0.75 
13.52 (8.15) 

6, 9, 12, 16, 27 
12.93 (16.50) 

4, 6, 10, 15, 31 
16.15 (9.80) 

8, 11, 14,18, 30 
18.11 (26.46) 

 5, 8, 12, 19, 48 
18.21 (22.74) 

7, 10, 14, 20, 39 
20.22 (30.90) 

5, 8, 12, 21, 58 

1.00 
9.93 (4.28) 

5, 7, 9, 12, 18 
8.22 (5.12) 

3, 5, 7, 10, 17 
12.43 (4.73) 

 7, 9, 11, 14, 21 
11.35 (13.77) 
 5, 6, 9, 13, 26 

12.97 (7.39) 
6, 9, 11, 15, 24 

12.17 (11.72) 
4, 6, 9, 14, 29 

1.50 
6.62 (2.08) 

4, 5, 6, 8, 10 
5.00 (2.01) 
3, 4, 5, 6, 9 

8.96 (2.08) 
6, 8, 9,10, 13 

6.77 (2.67) 
 4, 5, 6, 8, 12 

8.76 (2.82) 
6, 7, 8, 10, 14 

6.77 (3.37) 
3, 4, 6, 8, 13 

2.00 
5.01 (1.29) 
3, 4, 5, 6, 7 

3.67 (1.19) 
2, 3, 3, 4, 6 

7.41 (1.23) 
6, 7, 7, 8, 10 

5.31 (1.38) 
4, 5, 6, 8, 20  

6.95 (1.69) 
5, 6, 6, 8, 10 

4.99 (1.87) 
3, 4, 5, 6, 8 

3.00 
3.46 (0.71) 
3, 3, 3, 4, 5 

2.49 (0.63) 
2, 2, 2, 3, 4 

5.99 (0.67) 
5, 6, 6, 6, 7 

4.10 (0.98) 
 1, 4, 4, 5, 5 

5.33 (0.86) 
4, 5, 5, 6, 7 

3.54 (0.78) 
3, 3, 3, 4, 5 

* IC set up: mean 	 0	and	standard	deviation	 1; OOC set up: 	mean
√

	and	standard	deviation	 1 

** Note that, the first row of each of the cells shows the ARL and SDRL values whereas the second row shows the 5th, 25th, 50th, 75th and 95th percentiles (in this order). 
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Table 4.B. The IC and OOC characteristics of the run-length distribution for 100 and 5 for the EXP(1) distribution* with nominal  
ARL0 = 500 and winsorization at the 5000th step** 

 
Chart Type 

 

Parametric CUSUM  chart with 
Parameters estimated from Phase I 

sample 
Rank-sum CUSUM chart Exceedance CUSUM median chart 

Winsorizatio
n 

level 
WL = 95.7 WL = 96.6 WL = 95.6 WL = 97.9 WL = 95.5 WL = 97.2 

Control 
limits 

 8.00  5.25  563.0  225.0 
 9.55 
 

 5.18 

 0 0.5 /√  0 0.5 1 /12 0 ∗  

∗ 
 
 

NA NA NA NA 0.50 0.5
1

4 2
 

0.57 

0.00 
497.99 (1151.67) 
11, 28, 69, 262, 

3990 

494.40 (1080.71) 
9, 29, 89, 332, 3220 

502.40 (1155.50) 
16, 33, 74,  257, 4067 

500.02 (953.54) 
 12, 47, 141, 448, 2464 

501.01 (1158.61) 
14, 31, 72, 264, 4223 

491.60 (1021.17) 
10, 37, 110, 383, 2763 

0.25 
112.39 (475.83) 

8, 15, 25, 51, 329 
171.68 (584.54) 

6, 14, 30, 87, 636 
49.89 (216.36) 

11, 15, 22, 34, 107 
108.92 (338.02) 

 7, 14, 30, 75, 401 
97.27 (400.71) 

10, 16, 26, 51, 248 
123.30 (399.82) 

7, 14, 30, 81, 440 

0.50 
28.47 (91.94) 

6, 10, 16, 26, 68 
51.78 (247.44) 

4, 9, 15, 30, 149 
15.84 (16.01) 

9, 11, 13, 17, 29 
25.24 (73.72) 

 6, 8, 12, 21, 73 
27.69 (142.54) 

7, 10, 15, 23, 58 
30.71 (110.29) 
4, 8, 13, 24, 92 

0.75 
14.06 (15.56) 

5, 8, 11, 16, 30 
17.64 (56.61) 

4, 6, 10, 17, 44 
11.19  (3.48) 

7, 9, 10, 13, 17 
10.52 (17.21) 
 5, 6, 8, 11, 21 

12.26 (12.33) 
6, 8, 10, 14, 25 

11.54 (22.89) 
3, 5, 8, 12, 29 

1.00 
9.99 (6.25) 

4, 6, 9, 12, 19 
10.12 (31.63) 
3, 5, 7, 11, 22 

9.05  (1.95) 
7, 8, 9, 10, 13 

7.14 (3.10) 
 5, 5, 6, 8, 12 

8.25 (3.95) 
5, 6, 7, 9, 15 

6.60 (7.87) 
3, 4, 5, 8, 15 

1.50 
6.45 (2.44) 

3, 5, 6, 8, 11 
5.32 (2.62) 

2, 4, 5, 6, 10 
7.24 (1.00) 
6, 7, 7, 8, 9 

5.18 (0.98) 
 4, 5, 5, 6, 7 

4.79 (1.28) 
4, 4, 4, 5, 7 

3.39 (1.01) 
3, 3, 3, 3, 5 

2.00 
4.82 (1.48) 
3, 4, 5, 6, 7 

3.82 (1.45) 
2, 3, 4, 4, 6 

6.37 (0.61) 
6, 6, 6, 7, 7   

4.50 (0.62) 
 4, 4, 4, 5, 5 

4.02 (0.20) 
4, 4, 4, 4, 4 

3.01 (0.08) 
3, 3, 3, 3, 3 

3.00 
3.28 (0.82) 
2, 3, 3, 4, 5 

2.54 (0.72) 
2, 2, 2, 3, 4 

5.55 (0.50) 
5, 5, 6, 6, 6 

3.97 (0.43) 
 4, 4, 4, 4, 4 

4.00 (0.00) 
4, 4, 4, 4, 4 

3.00 (0.00) 
3, 3, 3, 3, 3 

* IC set up: mean 1	and	standard	deviation	 1; OOC set up: 	mean
√

	and	standard	deviation	 1 

** Note that, the first row of each of the cells shows the ARL and SDRL values whereas the second row shows the 5th, 25th, 50th, 75th and 95th percentiles (in this order). 
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Table 4.C. The IC and OOC characteristics of the run-length distribution for 100 and 5 for the GAM(3,1) distribution* with nominal  
ARL0 = 500 and winsorization at the 5000th step** 

 
Chart Type 

 
Parametric CUSUM  chart with 

Parameters estimated from Phase I sample 
Rank-sum CUSUM chart Exceedance CUSUM median chart 

Windsorization 
level 

WL = 95.6 WL = 96.5 WL = 95.7 WL = 97.9 WL = 95.3 WL = 97.2 

Control 
limits 

 8.50  5.20  563.0  225.0 
 9.55 
 

 5.18 

 0 0.5 /√  0 0.5 1 /12 0 ∗   

	 ∗ 
 

  
NA NA NA NA 0.50 0.5

1
4 2

 

0.57 

0.00 
494.98 (1152.81) 

12, 29, 70, 255, 4117 
504.68 (1085.77) 

10, 30, 90, 352, 3226 
496.82 (1138.20) 

16, 33, 74, 262, 3752 
494.35 (945.50) 

 11, 45, 140, 450, 2393 
509.83 (1186.24) 

14, 31, 74, 269, 4546 
493.35 (1013.53) 

11, 38, 108, 364, 2739 

0.25 
109.26 (443.83) 

9, 16, 27, 55, 303 
139.34 (477.73) 

6, 14, 29, 79, 505 
90.09 (371.13) 

12, 18,  27,  49, 222  
143.62 (391.30) 

 8, 18, 41, 108, 555 
126.09 (494.92) 

10, 18, 29, 61, 356 
143.49 (435.83) 

7, 16, 36, 100, 534 

0.50 
27.76 (101.83) 

7, 11, 16, 25, 61 
37.35 (137.94) 

5, 9, 15, 29, 109 
23.54 (39.17) 

10, 13, 17, 24, 49 
39.89 (101.63) 

 6, 10, 18, 35, 131 
34.02 (142.31) 

8, 12, 18, 28, 76 
45.05 (142.86) 

5, 9, 17, 36, 145 

0.75 
14.13 (17.18) 

6, 8, 11, 16, 30 
15.82 (72.91) 

4, 6, 10, 16, 38 
14.45 (7.44)  

8, 10, 13, 16, 26  
17.15 (55.18) 

 5, 8, 11, 17, 43 
16.60 (53.03) 

7, 9, 12, 18, 34 
17.70 (36.70) 

4, 7, 10, 18, 49 

1.00 
10.03 (5.87) 

5, 7, 9, 12, 19 
8.88 (8.02) 

3, 5, 7, 10, 20 
11.25  (3.51)  

7, 9, 10, 13, 17 
9.65 (6.38) 

 5, 6, 8, 11, 20 
11.23 (6.82) 

6, 8, 10, 13, 21 
9.91 (14.59) 

3, 5, 8, 11, 23 

1.50 
6.54 (2.27) 

4, 5, 6, 8, 11 
5.19 (2.38) 

3, 4, 5, 6, 10 
8.24 (1.54)   

6, 7, 8, 9, 11 
6.14 (1.88) 
 4, 5, 6, 7, 9 

7.29 (2.18) 
5, 6, 7, 8, 11 

5.34 (2.52) 
3, 4, 5, 6, 10 

2.00 
4.92 (1.40) 
3, 4, 5, 6, 7 

3.75 (1.31) 
2, 3, 4, 4, 6 

6.97 (0.94)    
6, 6, 7, 7, 9   

4.97 (0.95) 
 4, 4, 5, 5, 7 

5.60 (1.16) 
4, 5, 5, 6, 8 

3.79 (1.16) 
3, 3, 3, 4, 6 

3.00 
3.40 (0.78) 
2, 3, 3, 4, 5 

2.51 (0.66) 
2, 2, 2, 3, 4 

5.80 (0.51)     
5, 5, 6, 6, 6  

4.04 (0.58) 
 4, 4, 4, 4, 5 

4.17 (0.40) 
4, 4, 4, 4, 5 

3.02 (0.14) 
3, 3, 3, 3, 3 

* IC set up: mean 3	and	standard	deviation	 √3; OOC set up: 	mean
√
	and	standard	deviation	 √3 

** Note that, the first row of each of the cells shows the ARL and SDRL values whereas the second row shows the 5th, 25th, 50th, 75th and 95th percentiles (in this order). 
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Table 4.D. The IC and OOC characteristics of the run-length distribution for 100 and 5 for the t(3) distribution* with nominal  ARL0 = 
500 and winsorization at the 5000th step** 

 
Chart Type 

 

Parametric CUSUM  chart with 
Parameters estimated from Phase I 

sample 
Rank-sum CUSUM chart Exceedance CUSUM median chart 

Winsorization 
level 

WL = 95.2 WL = 96.6 WL = 95.6 WL = 98.0 WL = 95.7 WL = 97.4 

Control 
limits 

 8.02  5.05  563.0  225.0 
 9.55 
 

 5.18 

 0 0.5 /√  0 0.5 1 /12 0 ∗  

∗ 
 
 

NA NA NA NA 0.50 0.5
1

4 2
 

0.57 

0.00 
496.93 (1179.16) 

13, 28, 64, 230, 4539 
501.25 (1104.27) 

9, 31, 90, 319, 3331 
501.88 (1142.80) 

16, 32, 71, 256, 3931 
492.11 (944.01) 

 12, 47, 138, 435, 2434 
498.96 (1139.02) 

14, 31, 71, 258, 3933 
494.62 (1010.80) 

10, 37, 111, 375, 2748 

0.25 
111.54 (514.50) 

8, 15, 24, 45, 237 
169.39 (655.76) 

6, 13, 26, 66, 519 
49.81 (189.48) 

 11, 16,  24, 39,  114 
83.73 (221.83) 

 7, 15, 30, 71, 303 
62.42 (267.48) 

10, 15, 24, 40, 148 
78.14 (242.04) 

6, 13, 25, 60, 273 

0.50 
34.96 (247.14) 

6, 10, 15, 22, 52 
56.46 (366.38) 
5, 8, 13, 24, 89 

16.97 (10.60) 
 9, 11, 15,19, 33 

21.22 (37.98) 
5, 8, 13, 22, 60 

16.69 (12.84) 
7, 10, 14, 19, 34 

18.09 (29.15) 
4, 8, 12, 20, 49 

0.75 
15.00 (95.56) 

5, 8, 10, 14, 26 
29.29 (293.97) 
4, 6, 9, 13, 31

11.78 (4.01) 
 7, 9, 11, 13, 19

10.24 (7.67) 
5, 6, 8,12, 22

11.05 (4.55) 
6, 8, 10, 13, 19

9.46 (6.84) 
4, 6, 8, 11, 21

1.00 
10.37 (75.34) 
4, 6, 8, 10, 17 

17.23 (202.69) 
3, 5, 6, 9, 17 

9.50 (2.37) 
 7, 8, 9, 11, 14 

7.33 (3.13) 
 4, 5, 6, 8, 13 

8.57 (2.68) 
6, 7, 8, 10, 14 

6.60 (3.08) 
3, 4, 6, 8, 12 

1.50 
6.71 (53.64) 
3, 5, 6, 7, 10 

6.88 (100.17) 
2, 3, 4, 5, 9 

7.31 (1.22) 
 6, 6, 7, 8, 10 

5.23 (1.28) 
 4, 4, 5, 6, 8 

6.48 (1.36) 
5, 6, 6, 7, 9 

4.53 (1.47) 
3, 3, 4, 5, 8 

2.00 
5.13 (50.05) 
3, 4, 4, 5, 7 

5.47 (99.93) 
2, 3, 3, 4, 6 

6.31 (0.79) 
5, 6, 6, 7, 8 

4.42 (0.92) 
 4, 4, 4, 5, 6 

5.56 (0.92) 
4, 5, 6, 6, 7 

3.73 (0.91) 
3, 3, 4, 4, 5 

3.00 
3.20 (1.14) 
2, 3, 3, 4, 5 

2.36 (0.84) 
2, 2, 2, 3, 4 

5.39 (0.52) 
 5, 5, 5, 6, 6 

3.43 (1.28) 
 1,4, 4, 4, 5 

4.79 (0.68) 
4, 4, 5, 5, 6 

3.19 (0.45) 
3, 3, 3, 3, 4 

* IC set up: mean 0	and	standard	deviation	 √3; OOC set up: 	mean
√
	and	standard	deviation	 √3 

** Note that, the first row of each of the cells shows the ARL and SDRL values whereas the second row shows the 5th, 25th, 50th, 75th and 95th percentiles (in this order). 
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Table 4.E. The IC and OOC characteristics of the run-length distribution for 100 and 5 for the DE(0,1) distribution* with nominal 
ARL0 = 500 and winsorization at the 5000th step** 

 
Chart Type 

 
Parametric CUSUM  chart with 

Parameters estimated from Phase I sample
Rank-sum CUSUM chart  Exceedance CUSUM median chart 

Winsorization 
level 

WL = 95.5 WL = 96.7 WL = 95.5 WL = 97.6 WL = 95.7 WL = 97.0 

Control 
limits 

 8.25  5.15  563.0  225 
 9.55 
 

 5.18 

 0 0.5 /√  0 0.5 1 /12 0 NA 

∗ 
 
 

NA NA NA NA 0.50 0.5
1

4 2
 

0.57 

0.00 
492.36 (1164.91) 

13, 29, 68, 241, 4367 
505.43 (1085.83) 

10, 32, 93, 341, 3169 
508.74 (1160.94) 

 16, 33, 73, 269, 4103 
507.43 (987.93) 

12, 46, 143, 450, 2661 
493.02 (1138.46) 

14, 31, 72, 270, 3953 
507.55 (1051.32) 

10, 37, 112, 384, 3043 

0.25 
94.44 (388.64) 

9, 16, 26, 51, 247 
123.21 (442.64) 

7, 14, 29, 72, 383 
64.02 (259.88) 

 11, 17, 26, 43, 144 
110.76 (313.85) 

 7, 16, 35, 87, 390 
58.15 (249.72) 

10, 15, 23, 38, 132 
71.41 (238.15) 

6, 13, 25, 54, 221 

0.50 
22.44 (58.34) 

7, 11, 16, 23, 52 
27.55 (72.73) 

5, 9, 14, 25, 77 
19.48 (17.22) 

 9, 12, 16, 22, 39 
26.73 (54.03) 

 6, 9, 14, 26, 77 
16.94 (17.05) 

8, 10, 14, 19, 33 
17.82 (27.62) 

5, 8, 12, 20, 46 

0.75 
13.17 (8.19) 

6, 8, 11, 15, 26 
12.64 (14.38) 
4, 6, 9, 14, 31

13.16 (5.32) 
8, 10, 12, 15, 22

12.55 (11.21) 
5, 7,  9, 14, 30

11.48 (4.76) 
6, 8, 10, 13, 20

9.83 (6.80) 
4, 6, 8, 11, 22

1.00 
9.68 (4.42) 

5, 7, 9, 11, 18 
8.31 (6.16) 

3, 5, 7, 10, 17 
10.44 (3.06)      

7, 8, 10, 12, 16 
8.46 (4.62) 

 4, 6, 7, 10, 16 
9.17 (2.88) 

6, 7, 9, 10, 14 
7.22 (3.51) 

3, 5, 7, 8, 14 

1.50 
6.40 (2.06) 

4, 5, 6, 7, 10 
4.95 (2.07) 
3, 4, 5, 6, 9 

7.95 (1.54) 
6, 7, 8, 9, 11 

5.81 (1.67) 
 4, 5, 5, 6, 9 

7.06 (1.63) 
5, 6, 7, 8, 10 

5.08 (1.81) 
3, 4, 5, 6, 8 

2.00 
4.88 (1.32) 
3, 4, 5, 6, 7 

3.66 (1.24) 
2, 3, 3, 4, 6 

6.78 (0.99) 
 6, 6, 7, 7, 9 

4.82 (1.04) 
 4, 4, 5, 5, 7 

6.03 (1.12) 
4, 5, 6, 6, 8 

4.16 (1.19) 
3, 3, 4, 5, 6 

3.00 
3.36 (0.75) 
2, 3, 3, 4, 5 

2.46 (0.65) 
2, 2, 2, 3, 4 

5.71 (0.63) 
 5, 5, 6, 6, 7 

3.88 (1.04) 
 1, 4, 4, 4, 5 

5.10 (0.77) 
4, 5, 5, 6, 6 

3.38 (0.62) 
3, 3, 3, 4, 5 

* IC set up: mean 0	and	standard	deviation	 √2; OOC set up: 	mean
√
	and	standard	deviation	 √2 

** Note that, the first row of each of the cells shows the ARL and SDRL values whereas the second row shows the 5th, 25th, 50th, 75th and 95th percentiles (in this order). 
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Table 5. The exceedance and the exceedance CUSUM median statistics 
 

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

,  3 2 0 4 1 4 4 1 3 4 2 5 5 5 4 
 0.5 0 0 1.5 0 1.5 3 1.5 2 3.5 3 5.5 8 10.5 12 

 

 

 

(a) CUSUM  chart   
(H = 18) 

 

 

 

              (b) Exceedance CUSUM median chart 
(H = 7.5) 

 

Figure 5. The CUSUM  and the exceedance CUSUM charts for the Montgomery (2001) piston ring data 
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Table 6.A. The IC and OOC characteristics of the run-length distribution for 100 and 5 for the Normal distribution with nominal 
ARL0 = 500 and winsorization at the 2000th step* 

 
Chart Type 

 

Parametric CUSUM  chart with 
Parameters estimated from Phase I 

sample 
Rank-sum CUSUM chart Exceedance CUSUM median chart 

Winsorization 
level (WL) 

WL = 85.1 WL = 86.7 WL = 84.7 WL = 88.9 WL = 85.2 WL = 89.1 

Control 
limits 

 11.05  5.95  725.0  246 
 12.10 
 

 5.85 

 0 0.5 /√  0 0.5 1 /12 0 
∗  

5 0.07 0.35 

∗ 
 
 

NA NA NA NA 0.50 0.5
1

4 2

0.57 

0.00 
498.49 (712.37) 
20, 45, 111, 586, 

2000 

505.28 (687.54) 
14, 45, 146, 636, 

2000 

505.34 (715.71) 
 20, 44, 118, 606, 

2000 

503.9843 (656.38) 
 10,57, 189, 660, 2000 

489.23 (709.53) 
19, 43, 109, 553, 

2000 

502.26 (676.35) 
14, 46, 15, 650, 2000 

0.25 
125.02 (323.68) 

13, 23, 36, 73, 488 
134.21 (320.59) 

8, 18, 35, 90, 605 
123.61 (314.23) 

 13, 23, 36, 73, 490 
168.01 (340.48) 

5, 19, 51, 146, 762 

141.68 (341.30) 
6, 14, 24, 40, 88, 

636 

178.81 (360.39) 
9, 22, 51, 149, 871 

0.50 
32.09 (69.69) 

10, 15, 21, 32, 71 
34.71 (88.19) 

6, 11, 17, 31, 103 
33.01 (80.32) 

 10, 15, 21, 32, 72 
45.76 (108.06) 

 3, 10, 19, 44, 163 
49.18 (130.78) 

11, 17, 25, 40, 126 
61.53 (152.20) 

6, 13, 23, 51, 220 

0.75 
17.66 (12.21) 

8, 11, 15, 20, 35 
15.00 (20.13) 

5, 7, 11, 17, 36 
17.92 (11.75) 

 8, 12, 15, 21, 35 
18.14 (32.02) 

3, 6, 11, 20, 54 
23.20 (27.99) 

9, 14, 18, 25, 47 
25.09 (56.04) 

6, 9, 14, 24, 70 

1.00 
12.67 (5.28) 

7, 9, 12, 15, 22 
9.36 (5.58) 

4, 6, 8, 11, 19
12.90  (5.28) 

7, 9, 12, 15, 23
9.71 (10.00) 
2, 5, 7, 12, 24 

16.19 (9.79) 
9, 11, 14, 19, 30

13.78 (16.79) 
5, 7, 10, 15, 34

1.50 
8.38 (2.41) 

5, 7, 8, 10, 13 
5.65 (2.23) 

3, 4, 5, 7, 10 
8.79 (2.57) 

 5, 7, 8, 10, 13 
5.18 (2.88) 

 2, 3, 5, 6, 10 
10.92 (3.46) 

7, 9, 10, 13, 17 
7.58 (3.77) 

4, 6, 6, 9, 14 

2.00 
6.32 (1.50) 
4, 5, 6, 7, 9 

4.15 (1.28) 
3, 3, 4, 5, 6 

6.77 (1.57) 
 5, 6, 7, 8, 10 

3.60 (1.55) 
 2, 2, 3, 4, 6 

8.56 (1.96) 
6, 7, 8, 9, 12 

5.63 (1.81) 
3, 4, 5, 6, 9 

3.00 
4.35 (0.85) 
3, 4, 4, 5, 6 

2.78 (0.70) 
2, 2, 3, 3, 4 

4.96 (0.83) 
 4, 4, 5, 5, 6 

2.51 (0.71) 
 2, 2, 2, 3, 4 

6.55 (0.92) 
5, 6, 7, 7, 8 

4.12 (0.91) 
3, 4, 4, 5, 6 

* IC set up: mean 0	and	standard	deviation	 1; OOC set up: 	mean
√

	and	standard	deviation	 1 

* Note that, the first row of each of the cells shows the ARL and SDRL values whereas the second row shows the 5th, 25th, 50th, 75th and 95th percentiles (in this order). 



37 
 

Table 6.B. The IC and OOC characteristics of the run-length distribution for 100 and 5 for the Normal distribution with nominal  
ARL0 = 370 and winsorization at the 2000th step* 

 
Chart Type 

 

Parametric CUSUM  chart with  
Parameters estimated from Phase I 

sample 
Rank-sum CUSUM chart Exceedance CUSUM median chart 

Winsorization 
level (WL) 

WL = 90.6 WL = 92.6 WL = 90.6 WL = 220 WL = 90.7 WL = 92.9 

Control 
limits 

 9.00  5.20  595.0  94.1 
 10.35 
 

 5.15 

 0 0.5 /√  0 0.5 1 /12 0 
∗  

5 0.07 0.35 
∗ 
 
 

NA NA NA NA 0.50 0.5
1

4 2
0.57 

0.00 
367.44 (612.93) 
15, 34, 78, 303, 

2000 

365.84 (576.38) 
11, 34, 101, 359, 

2000

369.49 (612.77) 
 15, 33, 80, 309, 

2000

368.60 (543.36) 
 7, 39, 129, 412, 2000 

366.25 (611.08) 
15, 34, 80, 304, 

2000

371.06 (568.33) 
11, 37, 112, 387, 2000 

0.25 
81.82 (224.01) 

10, 18, 29, 55, 258 
98.61 (247.75) 

7, 15, 29, 72, 386 
84.66 (237.11) 

 10, 17, 28, 55, 270 
109.51 (232.28) 

 4, 14, 38, 101, 440 
110.48 (285.48) 

11, 20, 33, 70, 427 
133.13 (284.64) 

8, 18, 42, 104, 547 

0.50 
25.60 (50.31) 

8, 12, 17, 26, 59 
26.99 (62.22) 

5, 9, 14, 25, 78 
26.19 (58.50) 

 8, 12, 17, 26, 61 
36.57 (81.63) 

 3, 8, 16, 36, 124 
37.97 (102.56) 

9, 14, 21, 33, 105 
45.90 (114.99) 

6, 11, 19, 39, 158 

0.75 
14.37 (9.07) 

7, 9, 12, 17, 29 
12.71 (14.03) 
4, 6, 9, 15, 31 

14.75 (9.76) 
 6, 9, 12, 17, 30 

15.52 (24.71) 
 2, 5, 9, 17, 46 

18.93 (17.13) 
8, 11, 15, 21, 41 

20.89 (36.14) 
5, 8, 13, 22, 58 

1.00 
10.51 (4.81) 

5, 8, 10, 12, 19 
8.26 (5.23) 

3, 5, 7, 10, 17 
10.76  (4.94) 

 5, 8, 10, 13, 19 
8.55 (8.27) 

 2, 4, 7, 10, 22 
13.62 (7.38) 

7, 9, 12, 16, 25 
12.13 (11.61) 
4, 7, 9, 14, 30 

1.50 
6.98 (2.16) 

4, 5, 7, 8, 11 
5.07 (2.08) 
3, 4, 5, 6, 9 

7.31 (2.31) 
 4, 6, 7, 9, 11 

4.63 (2.61) 
 2, 3, 4, 6, 9 

9.19 (2.95) 
6, 7, 9, 11, 15 

6.97 (3.60) 
3, 5, 6, 8, 14 

2.00 
5.28 (1.35) 
3, 4, 5, 6, 8 

3.70 (1.23) 
2, 3, 3, 4, 6 

5.70 (1.43) 
 4, 5, 5, 6, 8 

3.34 (1.45) 
 2, 2, 3, 4, 6 

7.22 (1.83) 
5, 6, 7, 8, 11 

5.10 (2.04) 
3, 4, 5, 6, 8 

3.00 
3.63 (0.74) 
3, 3, 4, 4, 5 

2.49 (0.63) 
2, 2, 2, 3, 4 

4.17 (0.78) 
 3, 4, 4, 5, 6 

2.36 (0.62) 
 2, 2, 2, 3, 4 

5.53 (0.78) 
5, 5, 5, 6, 7 

3.57 (0.82) 
3, 3, 3, 4, 5 

* IC set up: mean 0	and	standard	deviation	 1; OOC set up: 	mean
√

	and	standard	deviation	 1 

* Note that, the first row of each of the cells shows the ARL and SDRL values whereas the second row shows the 5th, 25th, 50th, 75th and 95th percentiles (in this order).  


