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ABSTRACT

Due to the availability of multi-megawatt wind turbines, ease of installation and maintenance,

economic compatibility and commercial acceptance, the power of the wind is being used

globally for both grid-connected and off-grid applications. The power of the wind is

intermittently available due to the fluctuating nature of the wind and hence needs to be

understood well. Therefore, its variability in time and spatial domain was studied. The present

work utilized daily mean values of wind speed from different meteorological stations spread over

the Kingdom of Saudi Arabia in conjunction with wavelet transform and fast Fourier transform

power spectrum techniques to understand the dynamic nature of the wind at nine stations.  The

study found that wind speed changed by ±0.6 to ±1.6 knots over a long period of about 10 years

depending on the locations. The long-term mean wind speed of 5.6, 8.9, 6.25, 8.1, 6.0, 7.1, 6.0,

8.6 and 7.3 knots were obtained at Abha, Dhahran, Gizan, Guriat, Hail, Jeddah, Riyadh, Turaif

and Yanbu, respectively.
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Introduction

When thinking of installing a wind firm at a site, an indispensable task is to conduct an on-

site wind speed measurement campaign for a few years (the longer the better) and analyze the

measured data to extract information on the variability of the wind (Jaramillo and Borja 2004).

The variability covers a wide spectrum of time-scales from seconds to several years, say, random

variation at very short interval (turbulence scale), synoptic scale, seasonal variation, annual cycle

variation etc. This statistical information is required not only for a feasibility study of the wind

firm to be installed but also for wind power prediction at different years/seasons/months/day as
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well as wind turbine control. This article provides statistical information about wind speed nature

for a long time in the past which is direly needed for long-term wind speed predictions.

Furthermore, without analytical prediction, the statistical information on variations of past wind

at different at  time-scales can give us a rough idea about how the wind will  behave in the near

future (Garcia-Marin et al. 2013).

The alarmingly increasing adverse effects of global warming and climate change have been

dictating an immediate cut in fossil fuel burning and at the same time, an exponential increase in

clean energy development and utilization. At present, the power of the wind has become a

commercially available and financially acceptable technology of the modern era. Hence for

proper and optimal utilization of wind power, understanding of its characteristics in time and

spatial domains has become essential. Short- and long-range wind forecasts over different time

periods are becoming important requirements for the management of wind farms. Time series

modeling of wind speeds is based on the valid assumption that all the causative factors are

implicitly accounted for in the sequence of occurrence of the process itself. Wind speed

characteristics have been reported worldwide using statistical, mathematical, empirical and

physical time series analysis (Fourier transform, wavelet transform, detrended fluctuation

analysis, artificial neural networks, Hurst exponent, autoregressive moving averages, etc.). In

recent times, power spectral density and wavelet transforms have been employed as useful tools

to analyze measured wind speed data in particular and meteorological data in general.

Usually, most of the signals contain numerous non-stationary or transitory characteristics

such as drift, trends, abrupt changes, and beginnings and ends of events. These characteristics are

often the most important part of the signal and are needed to be analyzed to understand physical

phenomena hidden behind the signal. To study these characteristics, wavelets have been being

developed since the early eighties. Wavelet analysis methods allow the use of long time intervals

where we want more precise low-frequency information, and shorter regions where we want

high-frequency information. One major advantage afforded by wavelets is the ability to perform

local analysis, that is, to analyze a localized area of a larger signal.

Kitagawa and Nomura (2003) used the inverse wavelet transform method to generate wind

velocity fluctuations. To investigate the timescale structure of natural wind, the wavelet

transform was applied to the time history of measured wind velocity data. Yamada and Ohkitani

(1991) applied the wavelet transform on historical time series of wind data and estimated the
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probability density functions (PDFs) of the wavelet coefficients. Their results showed that PDFs

of the wavelet coefficients for small-scale fluctuations deviated from the Gaussian distribution,

though the power spectrum agreed with Kolmogorov’s -5/3 law. The inverse Fourier transform is

a traditional method to generate time histories (Shinozuka and Deodatis 1991) but it fails to

reflect time-dependent characteristics of the data. Pettit et al. (2002) applied the wavelet

transform to the time data of roof-corner pressures with extreme local loads and obtained the

PDFs on the time-dependent characteristics of the pressure transients. Based on these PDFs, a

method to generate synthetic signals was developed, and time histories similar to the original

roof-corner pressure data were composed. Aksoy et al. (2004) introduced a new wind speed data

generation scheme based on wavelet transformation and compared this scheme with existing

wind speed generation methods. Their results proved that the proposed wavelet-based method

was found to be the best for wind speed data generation compared with existing methods.

Turbelin et al. (2009) estimated wavelet cross-coherence, wavelet cross-correlation and

spectral wavelet cross-correlation coefficients and displayed these as functions of the equivalent

Fourier period. The study found that the ANN models were effective in computing the large-

scale fluctuations of large amplitude. Chellali et al. (2010) applied wavelet transform as a time-

frequency analysis to meteorological data for the region of Adrar, Algeria. They conducted this

analysis to investigate the power spectra behaviors of wind speed and its variations with time.

The results showed significant synoptic oscillations for periods of 2 to 16 days in the cold

weather. The wavelet power spectrum also revealed the presence of intra-seasonal oscillations

for periods of 30 to 60 days. Giorgi (2011) proposed a wind speed prediction system based on

the wavelet decomposition technique and forecasted the wind speed in two time horizons (1 and

24 h) with acceptable accuracy compared with other techniques. Chellali et al. (2011) reported a

stochastic and cyclic study of wind speed behavior at Hassi-R’mel meterological data collection

site in Adrar, Algeria by fitting the wind speed data to Weibull distribution and the usage of

time-frequency analysis.  The results showed that the spectrum wind process was able to enfold

many limited interval oscillations which is not possible with other methods. During the last

decade, wavelets have been extensively employed as a tool to analyze measured data in general

and wind data in particular to study the wind effects on structures (Rossi 2004), feature

extraction for wind turbine vibration signals (Tang et al. 2010; Liu et al. 2010; Jiang et al. 2011;
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Karegar and Sobhani 2012) and to evaluate the quality of synthetic wind speed signals (Karem

and Kijewski 2002).

The inverse wavelet transform is also used to generate a time series of historical data (Gurley

et al. 1997). Applying the log-Poisson turbulence model, Dubrulle (1994) and She and Waymire

(1995) generated wavelet coefficients and time histories of turbulence. Hang et al. (2010) used

wavelet transform (WT) with fixed and adaptive machine learning/time series models (multi-

layer perceptron (MLP), radial basis functions, linear regression, or GARCH) for short-term

electricity demand and gas price forecasting. The results showed that the prediction accuracy was

improved by using the WT and adaptive models. With reference to Saudi Arabia, Abdel-Aal and

Al-Garni (1997) used univariate time series analysis for the prediction of electric energy

consumption for the eastern region of the country. Politis et el. (2012) used computational fluid

dynamics to predict wind power production from wind farms in complex terrain and to study the

wake flow patterns. Catalão et al. (2011) used artificial neural networks in combination with

wavelet transform for short-term wind power forecasting. Costa et al. (2000) made a brief review

of the last  30 years of the history of wind power short-term prediction, from the first  ideas and

sketches on the theme to the actual state of the art on models and tools, with the emphasis on the

most significant proposals and developments. Several studies have been conducted in different

regions of the globe for different time scales and frequency ranges using wavelet transform,

artificial neural networks and the cross-wavelet transform such as the study of turbulence (Costa

et al. 2008; Farge 1992), tropical convection (Weng and Lau 1994), electricity demand forecast

(Ekonomou 2010), intra-decadal changes in the ENSO monsoon system (Torrence and Compo

1998), intra-seasonal oscillations in wind speed and oceanic wave (Lee at al 2007), relationships

between solar activities and some large-scale climatic parameters (Velasco and Mendoza 2008)

and wind turbine vibration signal analysis (Xueli et al. 2011).

When the wind has salient periodic features only over limited intervals of times, a global

Fourier  analysis  is  theoretically  possible;  but  it  may  not  be  practical  or  efficient.  The  Fourier

transform is limited because an analysis with single window cannot detect features in the signal

that are either much longer or much shorter than the window size. Therefore, to have better

representation  of  the  wind  spectrum  for  such  case,  we  should  seek  a  representation  that  is

capable of following the wind spectrum as it varies with time. Such representation is known by

Time–Frequency Representation (TFR). Autocorrelation involves matching the signal with a
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copy of that signal, which is extended or delayed in the time axis, identifying the presence of a

periodic signal removing noise. But it cannot decompose a signal at different frequencies. On the

other hand, the wavelet analysis decomposes a signal into sub-signals at different frequency

bands, where the amplitude of the signal at each frequency band is clearly visible. When the

decomposition is done in a dyadic (orthogonal) scale adopted presently, it is possible to

reconstruct the original signal using either deconvolution or inverse filter, without redundancy

(Yang 1998 ). The signals of meteorological parameters of the Kingdom of Saudi Arabia have so

much noise that their overall shape is not apparent upon visual inspection but trends become

clearer with each approximation.  Thus, wavelet analysis is useful in revealing signal trends, a

goal  that  is  complementary  to  the  one  of  revealing  a  signal  hidden  in  the  noise.   If  the  signal

itself includes sharp changes, then successive approximations look less and less similar to the

original signal.  A repeating pattern in the wavelet coefficient plots is characteristic of a signal

that  looks  similar  on  many  scales.  If  a  signal  is  similar  to  itself  at  different  scales,  then  the

wavelet coefficients will also be similar at different scales.  In the coefficients plot, which shows

scale on the vertical axis, this self-similarity generates a characteristic pattern.

The main objective of the present work is to understand the fluctuating nature of the wind

using wavelet and fast Fourier transform power spectrum techniques which are very useful to

quantify the highly fluctuating natural phenomenon. Wind power industry is competing with the

conventional power systems and hence accurate prediction of wind speed in future time domain

is very helpful in assuring quality energy supply. Furthermore, the wind and other

meteorological measurements are sparsely available and hence these methods can also be used to

estimate values at locations where measurements are not available.

Mathematical description of wavelet methodology

In plots, the x-axis represents a position along the signal (time),  the y-axis represents scale,

and the color at each point represents the magnitude of the coefficient.  An inspection of the

continuous wavelet coefficient plot reveals patterns among scales and shows the signals’

possibly fractal nature. Calculating the wavelet coefficient at every possible scale is a fair

amount of work, and it generates an awful lot of data. It turns out that if we choose scales and

positions based on powers of two, so-called dynamic scales and positions, and then analysis
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becomes much more efficient and accurate.  The low-frequency content is the most important

part.  The high-frequency content, on the other hand, imparts flavor or nuance.  Any signal

(function) can be decomposed into two parts called approximation and details. The

approximations are the high-scale, low-frequency components of the signal. The details are the

low-scale,  high  frequency  components.  In  this  section,  we  apply  MATLAB  TOOL-BOX  to

detect discontinuities, long-term evolution and self-similarity of the signals of meteorological

parameters of nine meteorological stations of the Kingdom of Saudi Arabia. Mellit et al. (2006)

used adaptive wavelet-network model for forecasting daily total solar radiation data.

The first- and second-level details show the discontinuity most clearly, because the rupture

contains the high-frequency part.  The presence of noise, which is fairly common in signal

processing, makes identification of discontinuities more complete.  If the first levels of the

decomposition can be used to eliminate a large part of the noise, the rupture is sometimes visible

at deeper levels in the decomposition.  In order to detect a singularity, the selected wavelet must

be sufficiently regular, which implies a longer filter impulse response.

The name wavelet means small wave, and in brief, a wavelet is an oscillation that decays

quickly. The equivalent mathematical conditions are as follows:

∫ ଶஶ|(ݐ)߰|
ିஶ ݐ݀ < 	∞

∫ ݐ݀(ݐ)߰ = 0ஶ
ିஶ

Admissibility condition

∫ |ట(క)|మ

|క|
ஶ
ିஶ ߦ݀	 < 	∞

In wavelet theory, a function is represented by the infinite series expansion in terms of the

dilated and translated version of a basis function and called the mother wavelet satisfying the

above conditions:

߰௔,௕(ݐ) = 	ܽି
భ
మ߰ቀ௧ି௕

௔
ቁ ܽ	݁ݎℎ݁ݓ, > 0
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ట݂ܶ(ܽ, ܾ) = 	ܽିଵ/ଶ ∫ ߰(ݐ)݂ ቀ௧ି௕
௔
ቁஶ

ିஶ ݐ݀ =< ൫݂, ߰௔,௕൯ >	= ௔,௕߰	݀݊ܽ	݂	݂݋	ݐܿݑ݀݋ݎ݌	ݎ݁݊݊݅

where ట݂ܶ(ܽ, ܾ) is called the wavelet transform of function	݂(ݐ). A wavelet transform టܶ

decomposes a signal into several groups of coefficients. Different coefficient vectors contain

information about the characteristics of the sequence at different scales. It may be observed that

the  wavelet  transform  is  a  prism,  which  exhibits  properties  of  a  signal  such  as  points  of  abrupt

changes, seasonality or periodicity. The wavelet transform is a function of the scale of frequency

(a) and is the spatial position or time (b). The plane defined by the variables (a, b) is called the

scale-space or time-frequency plane. The wavelet transform ట݂ܶ(ܽ, ܾ) measures the variation of

݂	in the neighborhood of b. For a compactly supported wavelet (for a wavelet vanishing outside

a closed and bounded interval), the value of		 ట݂ܶ	depends on the value of f  in the neighborhood

of b of size proportional to the scale a. At small scales, ట݂ܶ(ܽ, ܾ) provides localized

information such as localized regularity (smoothness) of f. The global and local Lipschitz

regularity can be characterized by the asymptomatic decay of wavelet transformation at small

scales.

Sites and data description

The Kingdom of Saudi Arabia lies between latitudes 31° N and 17.5° N and longitudes 50° E

and 36.6° E. The land elevation varies between 0 m to 2,600 m above the mean sea level.

Complex terrain is found in the southwest region of the Kingdom. The east and the west coasts

of the Kingdom are located on the Arabian Gulf and Red Sea, respectively. Mainly two seasons,

winter and summer, are observed during the year. The historical meteorological data collected at

national and international airports in the Kingdom show a long term annual wind speed of about

7 to 9 knots at different locations at about 10 meters above ground level (AGL).

The latitude, longitude, altitude, and data collection period for national and international

airports are summarized in Table 1 and the physical locations are depicted in Figure 1. In

general, the data collection period varied from 1970 to 2006 for most of the data collection

stations. At all of these stations, the hourly values of all the parameters such as wind speed (WS),

wind direction (WD), dry bulb temperature (T), wet bulb temperature (Tw), station pressure (P),
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sea level pressure (Psl), relative humidity (RH), vapor pressure (Vp), total rainfall (R), and others

are recorded manually and then daily average, maximum and minimum values are saved on the

computer. The meteorological stations at Yanbu, Jeddah, Gizan, and Dhahran are situated near

the coast. Hence these stations could be considered as representatives of coastal locations. Table

2 provides the details (type of sensors, sensitivity, threshold, etc.) about different meteorological

sensors installed at these sites. The actual wind measurements were made in knots (1knot =

0.515m/s), so to avoid truncation errors without any added advantage, the units of wind speed

has been preferred in “knots” presently.

Table 1
Site specific information of meteorological stations considered in this study
Location From To Latitude

(°N)
Longitude

(°E)
Altitude

(m)
Anemometer
Height (m)*

Abha 01/09/1983 31/12/2006 18.20 42.70 2084 10
Dhahran 01/01/1970 31/12/2006 26.30 50.20 17 10
Gizan 01/01/1970 31/12/2006 16.90 42.60 3 8
Guriat 01/01/1984 31/12/2006 31.40 37.30 499 12
Hail 01/01/1990 30/11/2006 27.40 41.70 1013 9
Jeddah 01/01/1970 31/12/2006 21.70 39.20 12 10
Riyadh 01/04/1984 31/12/2006 24.70 46.70 612 10
Turaif 03/08/1970 31/12/2006 31.70 38.70 813 10
Yanbu 22/02/1977 31/12/2006 24.20 38.10 14 10

*Above ground level

Table 2
Operating ranges and accuracies of various sensors used for data collection.

Sensor type Technical Accuracy Range Threshold Output
Wind speed AC sine wave 0.1m/s 1-96 m/s 0.78 m/s 0-125 HZ

Wind direction Mechanical 1% 0 - 360o 1m/s 0-Exc.
Temperature - ±1.1oC -40oC to 52.5oC - 0–2.5 volts DC

Barometric pressure - ±15 mb 150–1150 mb Linear voltage

Results and Discussion

Wind speed is a highly random meteorological phenomenon and changes with the time of the

day, month, year, etc., and with geographical location. It is very difficult to predict the trend of

wind speed both in time and spatial domains. In order to evaluate the frequency content of the

time series of wind speed data, fast Fourier transforms (FFTs) providing power spectral density
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(PSD) are widely used. FFTs are useful to extract frequencies in a stationary or transient signal

as well as their predominance over the entire time series. These are discussed in details in the

forthcoming sub-section.

Spectral signature of wind speeds characteristics (using FFT)

 In this section, illuminations are shed on FFT analysis results of wind speed time series data

recorded at nine different locations, namely Abha, Dhahran, Gizan, Guriat, Hail, Jeddah, Riyadh,

Turaif and Yanbu in Saudi Arabi. Wind speed data are obtained from the nine weather stations in

Saudi Arabia, showing great potential for application in verifying the current criteria used for

design practices. The FFT analysis is done through MATLAB software, which provides a very

useful function in FFT algorithm. Parameters of engineering significance such as hidden

periodicities, frequency components, absolute magnitude and phase of the transformed data,

power spectral density and cross-spectral density can be obtained. Here data analysis of daily

average wind speed time series data is done for 1990 to 2005. The data was scanned every three

seconds and 10-minute average values were recorded. Finally, the daily average values were

obtained using 144 10-minute average values recorded during 24 hours. The total number of

daily average data points in the time series for 1990 to 2005 is 5960.

The power spectra of daily average wind speed time series data at the nine locations are

shown in Figure 2. While the horizontal axis represents the frequency (f), the vertical axis shows

energy at the frequency. Abha is a station with many hills around. As seen in Figure 2(a) for

Abha, power spectral energy mostly concentrates on a low frequency range 0.002 – 0.006 with a

peak at f = 0.0027. The  peak  corresponds  to  a  period  of  about T =  1/f »370 days » one year,

implying that wind speed variation in a year is similar to that in another at least qualitatively.

One should not be confused with the 370 days; the least deviation from exactly 365 days arises

from  the  frequency  resolution  in  the  FFT  analysis.   The f = 0.006 over which energy decays

corresponds to about half a year. That is the half-year repetition in wind speed also exists.

Dhahran is a coastal site 3 km inland from the Arabian Gulf. There is a small single-storey

airport building in the vicinity of the meteorological station. The station is 17 m above the mean

sea level and the wind direction is mostly from the sea to the station. Here the peak

corresponding to annual repetition (f = 0.0027) is more clear (Figure 2b). However, the half-year

recurrence that appeared at Abha is not explicit. The high-frequency energies (f >  0.02)  at
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Dhahran (Figure 2b) are larger than those at Abha (Figure 2a). A small peak emerges at f =

0.074 at Dahran, which communicates to biweekly repetition of wind speed. The biweekly

change in wind speed may be a unique feature for a coastal area as it is observed in other coastal

area, namely Yanbu, which will be presented later.

Gizan is a coastal station on the west coast of Saudi Arabia, some 100 meters inland. There

are one small single-storey airport building and some trees around. This station is only 5 m

above the mean sea level. The Red Sea is a bit more turbulent than the Arabian Gulf on the east

coast (Dhahran) and is wide open. Therefore, the annual and biweekly peaks are not as dominant

as those in Abha or Dhahran (Figure 2c). Another cause may be that the site is only 5 m above

the sea level. Guriat is an inland station with high land and small hills with gentle topographical

features. Since the station is high, the annual recurrence (f = 0.0027) is more dominant than that

at Abha and Dhahran (Figure 2d). Hail is a highland plateau in the north central area of Saudi

Arabia.  As  seen  in  Figure  2(e),  speed  varies  not  only  annually  (f = 0.0027) but also at further

low frequencies (f < 0.0027), e.g. two- and three-year repetitions which will be further clarified

through wavelet analysis results later.

Jeddah station is around 10 km inland from the Red Sea. The FFT power spectrum for this

station is presented in Figure 2(f). There are many buildings around and it is situated in an urban

area. The wind blows from the sea inwards and is intercepted by high-rise buildings and

structures such as bridges and other industrial installations. Due to this confrontation of wind

with structures, the annual maximum wind speed is smaller compared with that in Abha,

Dahran,  Guriat  and  Hail.  Gizan  also  has  similar  power  spectra  because  of  wind  obstructed  by

trees. The presence of high-rise buildings and/or trees makes the flow boundary layer wider,

resulting in a smaller speed. The FFT power spectrum obtained using long-term mean wind

speed data for Riyadh is shown in Figure 2(g). Riyadh station is on the mainland and is around

450 m above the mean sea level. Riyadh is the capital of Saudi Arabia, hence it is a very

developed region and surrounded by high-rise buildings, bridges and various industrial

installations. The winds are prevalent from the northern and north-western direction in this

region. Since the site is quite high above sea level, the annual variation is evident.

The FFT power spectrum for Turaif is shown in Figure 2(h). Turaif is a small city in the

northernmost part of Saudi Arabia and is a hilly inland area. The wind blows mostly from the

north onto this area and accelerates due to topographical features. The power spectrum displays
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low-frequencies variation (f < 0.0027), having similar characteristics to that at Hail. Yanbu is a

coastal site on the Red Sea in the north-west of Saudi Arabia. It is an industrial area and is

surrounded by a range of hills on the northern side and exposed to the sea on its western side.

The  station  is  10  m above  the  mean sea  level.  The  peak  at f = 0.0027 is sharp, indicating the

annual variation in wind speed is very regular (see Figure 2(i)). A biweekly variation also exists.

A scrupulous observation of all the FFT figures reveals that Abha, Dhahran, Guriat and Yanbu

having a sharp peak at f = 0.0027 retain a more regular annual repetition of wind speed than

Gizan, Hail, Jeddah, Riyad and Turaif. Wavelet analysis results will provide more details.

Intrinsic features of wind speed (using wavelet decomposition)

While the Fourier transform produces averaged spectral coefficients, which are independent

of  time  and  are  useful  to  identify  the  dominant  frequencies  in  a  signal,  the  wavelet  transform

provides a potentially more revealing picture of the time-frequency localization of signals

including signal decomposition at various frequencies. For a long-term wind speed signal, a

decomposition of signal at various frequencies is very valuable to the understanding of the

inherent characteristics of wind (Costa et al. 2008; Alam et al. 2003, 2005).

A discrete wavelet analysis of the daily mean values of wind speed time series data was

conducted over a period of 1990 - 2005 at the nine locations (Abha, Dhahran, Gizan, Guriat,

Hail, Jeddah, Riyadh, Turaif and Yanbu) using db8. Naturally the daily mean signal captures

information for a period of longer than 2 days following the Nyquist frequency criterion. The

decomposition  analysis  results  of  wind  speed  data  for  Abha,  Dhahran,  Gizan,  Guriat,  Hail,

Jeddah, Riyadh, Turaif and Yanbu are shown in Figs. 3 to 11, respectively. In these figures the x-

axis presents the number of days (D) of the entire data period (1990 to 2005) used in this study.

Each  of  these  figures  has  10  parts.  The  first  part  ‘S’  represents  the  signal  or  raw  data  and  the

second part ‘a8’ corresponds to the amplitude of the signal for wavelet Daubechies (db) at level 8

corresponding to a period of longer than 512 days. Note that that the dashed line in a8 signal is

not an output of the analysis, but just a hand sketch showing the low-frequency trend. The last

eight  parts,  i.e.  d1,  d2,  d3,  d4,  d5,  d6,  d7 and  d8 of these figures represent details of decomposed

signals of the raw data at eight different levels corresponding to a period range of 2 to 4, 4 to 8, 8

to 16, 16 to 32, 32 to 64, 64 to 128, 128 to 256 and 256 to 512 days, respectively.
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The raw signal ‘S’ in Figure 3 (Abha) displays a sharp spike at D = 1200 and a nearly regular

variation of speed. The nearly regular variation is evident in the d8 signal with a periodicity of

approximately 365 days (one year), forming a peak between June and August of each year. The

minimum speed occurs sometime in December to January. The fluctuation of the speed is

relatively high, -2.5 to 2.5 knots for D < 3300 (<1998) and -2 to 2 knots for D > 5000 (>2003)

and small, -1 to 1 knots for D = 3300 to 5000 corresponding to year 1998 to 2003. On an

average, the fluctuation occurs from -1.7 to 1.7 knots. That is, an annual fluctuation can

contribute a speed of ±1.7 knots. Further low-frequency (longer than 512 days) variation is

evident in signal a8. This signal can also be considered as the signal of yearly (exactly 256 days)

average wind speed.  The duration for the average is long enough. The signal, however, contains

approximately two-year undulations with small amplitudes. If the two-year undulation is

ignored, the mean speed indicated by the dashed line is initially about 7 knots, slowing down to

4.7 knots at D =1700 (1995), followed by augmentation to 6.5 at D = 2800 (1998). This variation

constitutes a period of about 8.5 years as evidenced by the dashed line. This information is very

useful for a long-term wind prediction and power production. The observation also explains why

a long-term wind speed trend at a location should be known to run a wind farm productively.

Signals d7 and d6 display oscillation with a period of about a half and a quarter year, respectively.

The oscillation is,  however,  small  (±2 knots).  The d5 and d4 signals have some large amplitude

variations in the ranges of peaks in d8 signal. The amplitude is greater in d4 (±2.0 knots) than d5

(±1.5 knots). The observation insinuates that the monthly variation in wind speed is stronger than

the bimonthly variation and it occurs in the peak season (June to August) of wind speed. The d3

and d2 signals display a spike at D = 1200; the spike is nevertheless larger at d2 than d3. It has

been mentioned that in signal S there is a spike at D = 1200 where the magnitude of speed is

about 27 knots, which can now be explained with a view on d2 signal  that  around D =1200

(1993) there was a persistent wind gust or storm in a period of 4 to 8 days. Similarly, another

wind gust is observed in d1 signal at D = 2200 (1996) for a shorter period of 2 to 4 days. Overall,

wind speed variation is stronger for a period of one year (d8), half a year (d7), one month (d4) and

less than 8 days (d1 and d2) but weaker for a period of a quarter year (d6), bimonthly (d5), and bi-

weekly (d3).

At  Dhahran,  a  station  on  the  east  coast  of  Saudi  Arabia,  the  raw  signal  ‘S’  in  Figure  4

displays sharp spikes at D = 500, 800, 2000, 3400, 4150, 4750, 5400. Gusty winds were afoot
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more frequently. Here the long-term variation shown by the dashed line in a8 represents a period

of about 9 years. This long-term variation period is almost the same for both Abha and Dhahran.

The speed fluctuates from 8.3 to 9.5 knots (dashed line), while that for Abha oscillates from 4.7

to 6.5 knots. Therefore, the mean speed over the whole duration can be considered as 8.9 knots

for Dhahran and 5.6 knots for Abha. The contribution of the long-term variation to the speed is

about ±0.6 and ±0.9 knots for Dhahran and Abha, respectively. The annual variation of speed (d8

signal) is more regular for Dhahran than for Abha, forming a peak in the months of April to June

of each year. This regularity was also reflected in the power spectrum results with a peak at f =

0.0027 appearing sharper at Dhahran than at Abha. While the mean variation in amplitudes at

Dhahran (d8 signal) is about ±1.3 knots, that at Abha is about ±1.7 knots, i.e. slightly larger in the

latter. The d7 – d3 signals display almost the same characteristics as those for Abha. The d2 and d1

signals, however, have larger amplitudes at Dhahran than at Abha. The larger amplitudes at

Dhahran result from the fact that Dhahran is 17 m above the sea level and very close (3 km) to

the sea.

At Gizan (Figure 5), which is located on the south-west coast of Saudi Arabia, the long-term

variation period (dashed line) is slightly longer, about 12 years with a change in speed from 5.0

to 7.5 knots. The entire duration average is about 6.25 knots. The annual variation in amplitude is

very small here, about ±0.7 knots (d8 signal). Because of the small amplitude, the corresponding

peak at f = 0.0027 in the FFT power spectrum was not distinguished enough (Figure 2c).  Table 3

extracts important intrinsic features of wind speed analysis results in Figures 3-11. The long-term

(16 years) mean speed (second column), long-term period (third column) and long-term

fluctuation (fourth column) are extracted from a8 signals. On the other hand, annual fluctuation

(fifth column), monthly fluctuation (sixth column) and half-weekly fluctuation in speed are

obtained from d8, d4 and d1 signals, respectively. Having smaller fluctuations, other data are not

included in Table 3. The data in Table 3 are plotted in Figs. 12 and 13 for the sake of a better

perceptibility of comparison between different locations. The long-term mean speed is a

minimum of 5.6 knots at Abha (Table 3, Figure 12). Dhahran, Guriat and Turaif undergo a

higher speed of 8.9, 8.1 and 8.6 knots, respectively (Table 3, Figure 13). It is interesting that the

wind speed has a long period of about 10 (8.5 to 1.2) years (third column of Table 3) which

contributes to a change in speed by ±0.6 to ±1.6 knots (fourth column) depending on the

location.
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Table 3
Intrinsic features of wind speed at different locations. June to August is the wind peak season.

Site

a8 d8 d4 d1

Long-term
mean
speed

(knots)

Long-term
period
(years)

Long-term
fluctuation

(knots)

Annual
fluctuation

(knots)

Monthly
fluctuation

June –August
(knots)

Half-weekly
fluctuation

(knots)

Abha 5.6 8.5 ±0.9 ±1.7 ±2.6 ±2.5
Dhahran 8.9 9 ±0.6 ±1.3 ±2.9 ±3.3
Gizan 6.25 12 ±0.9 ±0.7 ±1.5 ±1.6
Guriat 8.1 9 ±0.9 ±3.0 ±3.0 ±3.8
Hail 6.0 9 ±1.5 ±1.0 ±2.4 ±3.0
Jeddah 7.1 10.5 ±0.9 ±1.1 ±2.4 ±2.5
Riyadh 6.0 9.5 ±0.65 ±1.1 ±2.8 ±2.9
Turaif 8.6 10 ±1.4 ±0.9 ±2.5 ±3.5
Yanbu 7.3 10.5 ±1.6 ±1.7 ±2.5 ±3.0

The long-term contribution is, however, maximum at Yanbu (±1.6 knots) and Hail (±1.5

knots). It was found in the FFT analysis results that Abha, Dhahran, Guriat and Yanbu showing a

sharp peak at f = 0.0027 preserved a more regular annual repetition than Gizan, Hail, Jeddah,

Riyad and Turaif. The data in the fifth column agree with the observation in the FFT analysis

results, displaying larger fluctuations (±1.3 to ±3.0 knots) at the former locations and smaller

(±0.7 to ±1.1 knots) at the latter locations. The annual variation is, however, the largest (±3.0

knots) at Guriat and the smallest (±0.7 knots) at Gizan. Except for the small value (1.5 knots) at

Gizan, the monthly fluctuation is less dependent on location, nestling between ±2.4 and ±3.0

knots. Among the long-term, annual, monthly and half-weekly fluctuations (Table 3 and Figure

12), and the half-weekly fluctuation is the largest at all locations, varying from ±1.6 to ±3.8

knots. This observation points to the fact that the daily fluctuation should also to be investigated.

Overall, the annual, monthly, and half-weekly fluctuations are the largest at Guriat and the

smallest at Gizan. The most possible cause behind the largest and smallest fluctuations at Guriat

and Gizan, respectively, is that while Guriat is a high land with low and high hills, Gizan is a

coastal area only 5 m above the sea level. The information in Table 3 will be very useful for

short- and long-term wind forecasts, hence to distinguish idle and running periods of a wind

turbine. Using wavelet transform, Chellali et al. (2010) made a time-period analysis of wind
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speed data recorded at Adrar, Algeria for four years (2005 to 2009). Their analyzing period

ranged from 2 to 64 days only, which is rather small compared with our range of 2 to 512 days

investigated. They observed the dominant oscillation of periods between 2 and 16 days including

intra-seasonal oscillations of periods between 30 and 60 days.

Conclusions

FFT  and  wavelet  analyses  were  done  of  daily  average  wind  speed  time  series  data  at  nine

different  locations,  namely  Abha,  Dhahran,  Gizan,  Guriat,  Hail,  Jeddah,  Riyadh,  Turaif  and

Yanbu in Saudi Arabia over the period 1990 to 2005. The analyses extracted the intrinsic

features of wind speed, including long-term, annual, half-yearly, quarter-yearly, monthly, bi-

weekly, weekly and half-weekly fluctuations. The information on speed fluctuations at different

periods is very useful for meteorological purposes including wind and weather forecasting.

The wind speed over Saudi Arabia has a long period of about 10 years contributing to change

in speed by ±0.6 to ±1.6 knots depending on the locations. The long-term contribution is

maximum (±1.6 knots) at Yanbu and minimum (±0.6 knots) at Dhahran. The long-term mean

wind speed is 5.6, 8.9, 6.25, 8.1, 6.0, 7.1, 6.0, 8.6 and 7.3 knots at Abha, Dhahran, Gizan, Guriat,

Hail, Jeddah, Riyadh, Turaif and Yanbu, respectively. The annual fluctuation in wind speed is

larger (±1.3 to ±3.0 knots) and more regular at Abha, Dhahran, Guriat and Yanbu, while smaller

(±0.7 to ±1.1 knots) and less regular at Gizan, Hail, Jeddah, Riyad and Turaif, with the greatest

(±3.0) and smallest (±0.7) at Guriat and Gizan, respectively. Among long-term, annual, half-

yearly, quarter-yearly, monthly, biweekly, weekly and half-weekly fluctuations, the largest

change in wind speed occurs half-weekly, by about ±1.6 to ±3.8 knots depending on location.

The highland and coastal sites, Dhahran, Guriat and Yanbu, correspond to larger annual, monthly

and half-weekly fluctuations of wind speed.
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Fig. 1.  Physical locations of the meterological stations used in the study.
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Fig. 2. FFT power spectrum of wind speed data for (a) Abha, (b) Dhahran, (c) Gizan, (d) Guriat, (e) Hail, (f) Jeddah, (g) Riyadh, (h)

Turaif, and (i) Yanbu.

Frequency f  (1/day) Frequency f  (1/day) Frequency f  (1/day)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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Fig. 3. Decomposition of wind speed time series data for Abha using DB8.



22

Fig. 4. Decomposition of wind speed time series data for Dhahran using DB8.
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Fig. 5. Decomposition of wind speed time series data for Gizan using DB8.
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Fig. 6. Decomposition of wind speed time series data for Guriat using DB8.
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Fig. 7. Decomposition of wind speed time series data for Hail using DB8.
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Fig. 8. Decomposition of wind speed time series data for Jeddah using DB8.
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Fig. 9. Decomposition of wind speed time series data for Riyadh using DB8.
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Fig. 10. Decomposition of wind speed time series data for Turaif using DB8.
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Fig. 11. Decomposition of wind speed time series data for Yanbu using DB8.
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Fig. 12. Long-term (16 years) mean wind speed at different sites.

Fig. 13. Contributions of fluctuation in wind speed at different periods.


