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Abstract 34 

 35 

The resent increase in availability of high-performance computing (HPC) resources in 36 

South Africa allowed the development of an Ocean-Atmosphere coupled general 37 

circulation model (OAGCM). The ECHAM4.5-MOM3-SA is the first OAGCM to be 38 

developed in Africa for seasonal climate prediction. This model employs an initialization 39 

strategy that is different from previous versions of the model that coupled the same 40 

atmosphere and ocean models. Evaluation of hindcasts performed with the model 41 

revealed that the OAGCM is successful in capturing the development and maturity of El-42 

Niño and La-Niña episodes up to 8 months ahead. A model intercomparison also 43 

indicated that the ECHAM4.5-MOM3-SA has skill levels for the Niño-3.4 region SST 44 

comparable with other coupled models administered by international centres. Further 45 

analysis of the coupled model revealed that La-Niña events are more skillfully 46 

discriminated than El-Niño events. However, as is typical for OAGCM the model skill 47 

was generally found to decay faster during the spring barrier.  48 

The analysis also showed that the coupled model has useful skill up to several 49 

months lead-time when predicting the equatorial Indian Ocean Dipole (IOD) during the 50 

period spanning between the mid austral spring and the start of the summer seasons 51 

which reaches its peak in November. The weakness of the model in other seasons was 52 

mainly caused by the western segment of the dipole which eventually contaminates the 53 

Dipole Mode Index (DMI). The model is also able to forecast the anomalous upper air 54 

circulations, particularly in the equatorial belt, and surface air temperature in the southern 55 

African region as opposed to precipitation. 56 

 57 
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1.    Introduction  58 

The most physically realistic and computationally expensive method of modelling the 59 

climate system is to model all components of the system believed to be relevant at the 60 

timescales of interest. At the seasonal lead-time for instance, the minimum level of 61 

complexity required is a model which coupled  the atmosphere and the ocean (e.g., 62 

Stockdale et al. 1998; Palmer et al. 2004; DeWitt 2005; Graham et al. 2005; Guérémy et 63 

al. 2005; Saha et al. 2006).  64 

 The South African modelling community has over the past decade or so 65 

dedicated a large amount of resources to utilize Atmospheric General Circulation Models 66 

(AGCMs) as operational seasonal forecast tools (Landman et al. 2012). These models 67 

have all been developed outside of South Africa, but have been used extensively for 68 

operational seasonal forecast production as well as for research by many institutions 69 

including, inter alia, the South African Weather Service (COLA T30 – Kirtman et al. 70 

1997; ECHAM4.5 – Roeckner et al. 1996), the Universities of Cape Town (HadAM3P – 71 

Pope et al. 2000) and the Council for Scientific and Industrial Research (CCAM – 72 

McGregor 1996). Due to the enormous computational resources required to develop and 73 

run an operational forecast system based on coupled models, their engagement for real-74 

time forecasts in South Africa has not previously been tractable. In fact, only a few 75 

institutions which are designated as global producing centres by the World 76 

Meteorological Organization (WMO) for long-range forecasts using coupled models for 77 

operational seasonal forecasting (Stockdale et al. 2009).  78 

More recently, however, the ECHAM4.5 AGCM (Roeckner et al. 1996) has been 79 

coupled with the Geophysical Fluid Dynamics Laboratory (GFDL) Modular Oceanic 80 
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Model version 3 (MOM3; Pacanowski and Griffes 1998) at the South African Weather 81 

Service (SAWS) hereafter referred to as the “ECHAM4.5-MOM3-SA” Ocean-82 

Atmosphere coupled General Circulation Model (OAGCM). In addition, this coupled 83 

model employs an initialization strategy that capitalizes on best available information 84 

(Balmaseda and Anderson 2009). The use of real-time atmospheric states for 85 

initialization becomes possible with an atmospheric initial condition interface introduced 86 

in the model configuration. This interface is based on the vertical interpolation scheme 87 

originally suggested by Majewski (1985) that employs the integration of the hydrostatic 88 

equation but with numerical adjustment (I. Kirchner 2001, unpublished manuscript) 89 

coded in a software package referred to as INTERA (INTerpolation of ECMWF 90 

ReAnalysis data)2. We used this software to develop the interface that makes the 91 

OAGCM’s configuration uniquely different from previous systems involving the 92 

ECHAM4.5 AGCM coupled with the MOM3 OGCM (e.g., DeWitt 2005; hereafter 93 

referred to as “D05”). Our motivation for this work is twofold. First, it has been 94 

demonstrated that southern African midsummer rainfall variability has been shown to be 95 

sufficiently predictable by using the coupled model outputs such as from DEMETER 96 

(Development of a European Multimodel Ensemble system for seasonal to inTERannual 97 

prediction) project (Palmer et al. 2004) and the IRI, especially during El Niño and La 98 

Niña seasons (Landman et al. 2012; Landman and Beraki 2012). As noted above, coupled 99 

models are largely assumed or hypothesized to represent the state of the art of seasonal 100 

forecasting. In fact, it has been conclusively shown through the DEMETER project that 101 

coupled forecasting systems can predict both the evolution of SSTs and atmospheric 102 

conditions at enhanced levels of skill. This fact, indeed, stimulates the need to use 103 

                                                 
2 Available: http://wekuw.met.fu-berlin.de/~IngoKirchner/nudging/nudging/software/index.html 

http://wekuw.met.fu-berlin.de/~IngoKirchner/nudging/nudging/software/index.html
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coupled models in South Africa and renders them ideal candidates for seasonal climate 104 

prediction.  105 

   Second, with the inception of the Centre for High Performance for Computing 106 

(CHPC), the computational resources in South Africa has grown exponentially, 107 

consequently creating an environment for computationally intensive modelling research 108 

locally which would have been impossible otherwise. This recent advances in computing 109 

infrastructures compounded with the support from international institutions such as the 110 

International Research Institute for Climate and Society (IRI) in developing the coupled 111 

model described have paved the way for utilising and for further development of such 112 

state-of-the-art coupled models for seasonal forecast production and research. The aim of 113 

this paper is therefore to describe and evaluate the ECHAM4.5-MOM3-SA Ocean-114 

Atmosphere Coupled Model (OAGCM) developed in partnership between South Africa 115 

and IRI. 116 

The remainder of the paper is organized as follows. In sections 2 we describe the 117 

coupled model. The methodology of generating the hindcasts along with the initialization 118 

strategy is explained in section 3. In section 4 we evaluate the performance of the coupled 119 

model as a seasonal forecasting tool. A summary and conclusions are given in section 5. 120 

2.    Coupled model description 121 

The ECHAM4.5 AGCM (Roeckner et al. 1996) is coupled with the GFDL MOM3 122 

(Pacanowski and Griffes 1998) using the Multiple Program and Multiple Data (MPMD) 123 

fully parallelized coupler paradigm (Komori et al. 2010). Essentially, this means that the 124 

atmosphere and ocean models are the same as standalone versions except for changes 125 
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needed to handle the passing of data in between. Each model is treated as an independent 126 

set of Message Passing Interface (MPI) parallel processes. In contrast, D05 employed the 127 

Ocean Atmosphere Sea Ice Soil (OASIS) coupling software (Terray et al. 1999) produced 128 

by the European Centre for Research and Advanced Training in Scientific Computation 129 

(CERFACS)” to couple the models despite that the principle on which the exchange of 130 

information between the AGCM and OGCM remains similar. The atmosphere and ocean 131 

models along with the coupling scheme are described next. 132 

a. Atmospheric model 133 

The AGCM is originally evolved from the spectral weather forecast model of the 134 

European Centre for Medium Range Weather Forecasts (ECMWF; Simmons et al. 1989). 135 

Numerous modifications (in dynamics and physics) have been applied to this model at the 136 

Max Planck Institute for Meteorology (MPI) to make it suitable for climate predictions 137 

and it is the fourth generation in a series. This has been shown to have promising seasonal 138 

predictive capability for the southern Africa region (Landman et al. 2009).   139 

The prognostic variables are represented by truncated series of spherical 140 

harmonics with triangular truncation at wave number 42 (T42) except for the moisture 141 

and trace substances. Vertically 19 unevenly spaced hybrid sigma layers are used. The 142 

model employs the vertical coordinate system of Simmons and Burridge (1981) and a 143 

semi-Lagrangian transport scheme of Williamson and Rasch, (1994) for water vapour, 144 

cloud water and trace substances. It uses the Longwave radiation of Fouquart and Bonnel 145 

(1980) and shortwave radiation of Morcrette et al. (1986). Cumulus convection is 146 

parameterized using the mass flux scheme of Tiedtke (1989) but incorporates the 147 

modifications introduced by Nordeng (1994). The turbulent surface fluxes are calculated 148 
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from Monin–Obukhov similarity theory (Louis 1979), but different from its predecessors, 149 

a higher-order closure scheme (Brinkop and Roeckner 1995) is used to simulate the 150 

vertical diffusion of heat, momentum, moisture and cloud water. Horizontal diffusion is 151 

computed using the Laursen and Eliasen (1989) scheme. The orographic gravity waves 152 

are represented by the wave drag parameterization due to Miller et al. (1989). We refer 153 

the reader to Roeckner et al. (1996) for a complete model description. 154 

b.  Ocean model 155 

The Ocean model MOM3 is a finite-difference treatment of the primitive equations of 156 

motion using the Boussinesq and hydrostatic approximations in spherical coordinates. 157 

Spatially it covers the global ocean ranges between 74o South and 65o North. The 158 

coastline and bottom topography are realistic but the minimum and maximum ocean 159 

depths are assumed 100 and 6000m respectively. The artificial high-latitude meridional 160 

boundaries are impermeable and insulating. The model has a 0.5o uniform zonal 161 

resolution, variable meridional resolution with a 0.5o between 30oS and 10oN, gradually 162 

increasing to 1.5o at 30oN and fixed at 1.5o in the extratropics. There are 25 layers in the 163 

vertical with 17 layers in the upper levels between 7.5m and 450 m. The vertical mixing 164 

scheme is the nonlocal K-profile parameterization (KPP) scheme of Large et al. (1994). 165 

The horizontal mixing of tracers and momentum is Laplacian. The momentum mixing 166 

uses the space-time-dependent scheme of Smagorinsky (1963) and the tracer mixing uses 167 

Redi (1982) diffusion along with Gent and McWilliams (1990) quasi-adiabatic stirring. 168 

c.  Coupling procedure 169 
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The two GCMs exchange information once per simulation day. The AGCM feeds the 170 

OGCM with heat, momentum, freshwater, and surface solar flux. The OGCM, in turn, 171 

feeds the AGCM sea-surface temperature (SST) information. The coupling strategy used 172 

in this configuration is anomaly coupling on the AGCM side and full-field coupling on 173 

the OGCM side meaning that the anomalous atmospheric fluxes are super-imposed on the 174 

observed climatology. This procedure is the same as followed by Ji et al. (1998). The 175 

climatological AGCM fluxes are computed using a long-term climatology obtained from 176 

the uncoupled AGCM forced with observed SST. The climatological AGCM fluxes are 177 

subtracted from the fluxes computed by the AGCM component model in the coupled 178 

model to form anomalies. In addition, since the ocean model lacks a sea-ice model, the 179 

OGCM SST is relaxed toward the observed climatology in high latitudes to suppress the 180 

generation of spurious ice. 181 

3.    Retroactive forecasts design  182 

The OAGCM uses initial states of the atmosphere, land surface and ocean. While 183 

the use of the ocean and land surface states is straightforward, the atmospheric state needs 184 

cautious treatment prior to initializing the coupled model. In this process, the model is 185 

initialized with the National Centers for Environmental Prediction (NCEP) daily 186 

atmospheric initial states, interpolated into the AGCM’s vertical and horizontal resolution 187 

in a manner that respects numerical stability as explained above.  The atmospheric initial 188 

conditions in D05, however, were taken from simulations made with the (ECHAM4.5) 189 

AGCM forced by the temperature from the uppermost layer of the ODA product, which 190 

is equivalent to the (MOM3) OGCM SST. Despite that the atmospheric initial conditions 191 

become less important as the lead-time increases (Goddard et al. 2001), it is worth 192 
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emphasizing that the fast development of both computational technology and 193 

observational network (particularly with the advent of meteorological satellite 194 

information) has an immense contribution on the improvement in forecast quality. 195 

Theoretically, improving the predictability of the mean state of the atmosphere, to a large 196 

extent, is expected to arise from the improvement of, apart from dynamical and physical 197 

processes, optimal estimate of the state of the climate system (Balmaseda and Anderson 198 

2009; Doblas-Reyes et al. 2013). The use of realistic atmospheric and land surface (soil 199 

moisture) states in the ECHAM4.5-MOM3-SA configuration is, therefore, viewed from 200 

this perspective. The contribution of this initialization strategy to the overall forecast 201 

quality improvement is underway using different simulations of the ECHAM4.5 AGCM 202 

only. 203 

The OAGCM is initialized using slightly different atmospheric initial states to 204 

build an ensemble prediction system. The technique is however applied only to the 205 

atmospheric state (section 3a) meaning that the OAGCM is constrained with a fixed 206 

ocean state for all ensemble members which fall within the proximity of the forecast date 207 

(in our case the 4th of each month). The uncertainties which arise from the initial 208 

conditions are accounted for by taking 10 consecutive daily atmospheric states back from 209 

the forecast date in each month and year. For the November hindcasts for example the 210 

atmospheric initial conditions cover the period from October 26 to November 4 for 28 211 

years starting from 1982 to 2009. This approach is slightly different from the Climate 212 

Forecasting System (CFS) of NCEP (Saha et al. 2006) which considers pentad initial 213 

conditions. Each retrospective forecast is of 9 months length.  The procedures of 214 

generating the various initial states are described below. 215 
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a.  Atmospheric initial states 216 

The atmospheric initial conditions are obtained from the National Centers for 217 

Environmental Prediction, Department of Energy (NCEP/DOE) Atmospheric Model 218 

Intercomparison Project (AMIP) II Reanalysis (R2) dataset (Kanamitsu et al. 2002) 219 

except that the lower layer atmospheric temperature is assimilated from the upper layer of 220 

the GFDL ocean data assimilation (ODA) system in order to minimize the imbalance 221 

between the (near-equatorial) upper-ocean mass field and wind stress (D05). The 222 

NCEP/DOE atmospheric states are transformed to the horizontal and vertical resolution 223 

(T42L19) of the ECHAM4.5 AGCM as noted in section 2(a). In general, the process 224 

involves: 1) conversion of pressure to a hybrid-sigma coordinate system (Simmons and 225 

Burridge, 1981), 2) computation of vorticity and divergence from meridional and zonal 226 

wind components and 3) transformation of grid to spectral space. The latter component is 227 

applied on prognostic variables, i.e., temperature, vorticity and divergence only as the 228 

specific humidity needs to remain in the corresponding Gaussian grid resolution.  229 

The vertical coordinate system transformation requires careful treatment to ensure 230 

that an initial state is produced that is numerically and gravitationally stable. The 231 

ECHAM4.5 AGCM was found to be sensitive to be numerically unstable when a linear or 232 

non-linear interpolation scheme without adjustment was employed. The difficulties 233 

associated with the vertical interpolation were noted in various previous studies (e.g.  234 

Majewski 1985; Shen et al. 1986; Gaertner and Castro 1996). The horizontal truncation 235 

may also potentially introduce imbalances presumably due to normal mode variations 236 

between the NCEP/DOE and the model. To minimize the problem, the vertical 237 

interpolation was conducted in a manner that preserves the structure of the vertical 238 
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stratification of the atmosphere. The scheme is based on the vertical integration of the 239 

hydrostatic equation with adjustment (I. Kirchner 2001, unpublished manuscript). The 240 

interpolation scheme is originally suggested by Majewski (1985) and is also widely used 241 

for conversion between models fields of different resolution in the HIRLAM (High 242 

Resolution Limited Area Model; Undén et al. 2002) community.  243 

b. Preparation of land surface state 244 

The AGCM land surface model is initialized with observed soil moisture states.  The soil 245 

moisture is taken from the Climate Prediction Center (CPC) monthly mean dataset (Fan 246 

and van den Dool 2004). The CPC product is interpolated to the AGCM resolution using 247 

a bi-linear interpolation procedure. The AGCM uses the simple biosphere model (Sellers 248 

et al. 1986) and soil hydrology parameterization scheme suggested by Dümenil and 249 

Todini (1992). Many studies highlighted the role of soil moisture initialization on the 250 

skill of climate models (e.g., Walker and Rowntree 1977; Koster et al. 2004; Conil et al. 251 

2009; Douville 2010). However, it is beyond the scope of this work to assess the 252 

sensitivity of the OAGCM to soil moisture initialization alone. The goal is rather to 253 

optimize the forecasting system for predictive skill in an operational context.    254 

c. Preparation of ocean state 255 

The ocean initial conditions are taken from ODA system produced at the GFDL that 256 

employs an optimum interpolation scheme (Derber and Rosati 1989). The ODA uses 257 

expendable bathythermograph (XBT) data for the subsurface and relaxes the SST to 258 

observed values with a 5-day time scale. The use of the product is done by the horizontal 259 
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and vertical interpolation procedure described by D05. The procedure reportedly leads to 260 

a reasonable balanced ocean initial state for use in making SST forecasts.  261 

4.    Performance statistics 262 

The OAGCM’s deterministic and probabilistic skill of the models respective has been 263 

explored for different months and seasons along with several lead-times.  264 

The verification is based on 3360 (12 months x 28yrs x 10 ensemble members) 265 

hindcasts each consisting of 9-month integrations. The model runs are grouped according 266 

to the forecast date (if they were issued) to a set of hindcasts with 10 ensemble members. 267 

Each ensemble set mimics a set of operational forecasts issued on the 4th of each month 268 

starting from 1982 to 2009. The model bias in the mean annual cycle was removed from 269 

the model forecasts prior to comparing the statistics, that is,  computing the anomalies of 270 

the model about its own drifted climatology as a function of different initialization time 271 

and lead-months (Wang et al. 2002; Schneider et al. 2003; D05).  272 

 The model surface and upper air data were compared against observed data 273 

compiled from different sources. For the surface variables, rainfall and air temperatures, 274 

the observed data sets used for comparison were the CPC Merged Analysis of 275 

Precipitation (CMAP; Xie and Arkin 1997) and Climate Research Unit (CRU; New et al. 276 

2000). The SST forecasts were compared against optimum interpolation SST (OISST) 277 

version 2 (Reynolds et al. 2002). For the upper air analysis, the NCEP/DOE R2 278 

(Kanamitsu et al. 2002) was used as a proxy for observation.  279 

a. Deterministic forecast verification 280 
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Although operational seasonal forecasts are commonly issued probabilistically, it is also 281 

often informative to investigate their deterministic forecast performance. It is worth 282 

noting first that no cross-validation is conducted on the OAGCM SST hindcasts meaning 283 

that all the verification scores are computed directly from hindcasts as in D05. The most 284 

commonly used measures of skill in predicting the SST of the Equatorial Pacific Ocean 285 

are anomaly correlation (AC) and root-mean-square error (RMSE). Fig.1 shows the AC 286 

of   the Nino3.4 basin (5oS-5oN, 170o-120oW) for 12 initial condition (IC) months and 9 287 

months lead-time integrations. The model is successful in predicting the Nino3.4 SSTs 288 

well ahead of time and in most instances the ACs exceed 0.6 up to an 8 month lead-time 289 

for the ICs considered here. An AC 0.5 to 0.6 is commonly used as an indicator for the 290 

skilful forecast of the equatorial Pacific SST in the forecasting literature (e.g., Kirtman 291 

2003; Schneider et al. 2003; D05). The ECHAM4.5-MOM3-SA struggles to maintain the 292 

defined skill threshold at higher lead-times (> 6 month lead-time) for May, June and July 293 

target months.  This result is consistent with the CFS of NCEP (Saha et al. 2006). This 294 

sudden decay in skill near April is commonly referred to as the spring barrier in the 295 

literature and as Saha et al. (2006) suggested the spring barrier renders the austral winter 296 

months, most notably July forecasts to be more difficult.  297 

The overall accuracy of model SST forecasts for the Nino3.4 region is also 298 

assessed using the RMSE. Our model has very low error concentrations for nearly all IC 299 

cases considered here, but with errors increasing as a function of lead-time (Fig. 2). The 300 

model error is confined within the range of 0.1 and 0.5 oC.  At increased lead-times (at 301 

about 5 or more months lead-times), such as for October, November, December and 302 

January ICs, the model has relatively large biases.  303 
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The time evolution of observed vs. model simulated the El Niño-Southern 304 

Oscillation (ENSO) phenomenon is shown in Fig. 3.The SST indices are area average 305 

anomalies for the Nino3.4 region similar to the index used for the computation of the AC 306 

(Fig. 1) or RMSE (Fig. 2) but for seasons instead of months.  According to Fig. 3 the 307 

model agrees very well with observation for different lead-times for the austral summer 308 

(December to February; DJF) and austral fall (September to November; SON). The other 309 

seasons are relatively less skilful and uncertain specifically during the austral winter 310 

(June to August; JJA) as expected due to the spring barrier noted earlier. The skill 311 

enhancement shown in Fig. 1, to the large extent, is the contribution of the model’s 312 

ability to capture the amplitude of the El Niño phases (Fig. 3) accurately except during 313 

the early 1990s. However, the model seems to overestimate the annual amplitude or 314 

interannual variability of La Niña phases. This tendency is, however, not as striking when 315 

assessing the probabilistic skill of the model when the skill is decomposed in to various 316 

categories (see section 3(b)). 317 

The global skill distribution of the ECHAM4.5-MOM3-SA for the start of the 318 

austral summer (December) at 0 to 5 months lead-time is shown in Fig. 4. The central and 319 

eastern equatorial Pacific region remains the area of highest predictability and is 320 

associated with coherent spatial skills statistically significant at the 95% level except at 321 

zero month lead-time (Fig. 4a) when a similar skill is also found in other ocean basins.  322 

During austral winter, the model forecast skill is similar during austral summer except 323 

that the highest skill area is also expanded towards the western part of the equatorial 324 

Pacific region. The magnitude of the skill is, however, relatively weakened toward the 325 
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west as a function of lead-time (Fig. 5). The austral autumn and spring seasons (not 326 

shown) reveal a great deal of similarities with the austral summer and winter respectively. 327 

Model intercomparison is also a useful tool and commonly practiced in the area of 328 

model evaluation (e.g., Landman and Mason 2001; Schneider et al. 2003; Alves et al. 329 

2004; D05; Saha et al. 2006). The SST prediction for the Nino3.4 area is usually used as 330 

a benchmarking for this type of comparison since ENSO is the most predictable 331 

component of the climate system (Fig. 9). For this purpose, we used the DEMETER 332 

models (Palmer et al. 2004), the CFS coupled model (Saha et al. 2006), D05 and a 333 

statistical model (MMS; Beraki et al. 2012) to investigate whether our model has a 334 

reasonable skill level compared to other similar models. The data for the DEMETER 335 

models are only available for 1981-2001 whereas the other models hindcasts presented 336 

here are from 1982 to 2009. These differences may pose some difficulties in making 337 

objective or fair judgement. For this reason, we restrict the hindcast period to 1982-2001 338 

for this model intercomparison purpose. In addition, no interpolation was performed on 339 

the individual models rather the observed SST is interpolated to each model’s resolution 340 

to minimize the noise that might be introduced as a result. The DEMETER OAGCMs 341 

considered in this comparison comprise of the UKMO (United Kingdom Met Office; 342 

Pope et al. 2000), MF (Météo-France; Déqué 2001) and ECMWF (European Centres for 343 

Medium-Range Weather Forecast; Gregory et al. 2001). 344 

The skill and accuracy of the different models computed from their hindcasts 345 

initialized in November and February are illustrated in Figs. 6 and 7, respectively. The 346 

choice of the November and February ICs were dictated by the availability of the 347 

DEMETER models’ hindcast data. In the November IC, our coupled model demonstrates 348 
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a competitive skill with most of the models considered here. The ECHAM4.5-MOM3-SA 349 

(denoted as SCM) maintains its AC at or above 0.8 across all lead-times; the skill for 350 

ECMWF, CFS and MMS starts decaying faster at lead-time 5 (Fig. 6a). In the February 351 

IC (Fig. 6b), all models tend to show similar tendency at all lead-times to that of the 352 

November IC. The exception is that the skill level in February initialized runs is generally 353 

low. The ECMWF, CFS and MMS decay faster relative to the other models at longer 354 

lead-times.  355 

It is imperative to accompany the AC with a measure of accuracy or bias because 356 

the AC is not sensitive to bias since a biased forecasting system can still produce good 357 

AC. The RMSE computed for each model forecast set against the OI-SST is shown in 358 

Fig. 7. In the November IC (Fig. 7a), the ECHAM4.5-MOM3-SA achieves a comparable 359 

level of accuracy relative to the DEMETER models where MF is found to have the 360 

highest skill. The MMS (specifically at the start) and CFS (as the lead-time increases) 361 

show a gradual growth in error. In the February IC case (Fig. 7b), errors grow the fastest 362 

with increasing lead-time for the ECHAM4.5-MOM3-SA (1 to 3 months lead).  363 

The MMS shows a tendency of greater error growth in the context of ENSO 364 

forecasts at the start of the austral summer even though it demonstrates a robust 365 

performance in the February initialized ENSO forecasts. ECHAM4.5-MOM3-SA 366 

performance is nearly comparable with the OAGCMs which are performing best in the 367 

cases we considered except for the relative error growth noted earlier. 368 

The skill of the ECHAM4.5-MOM3-SA OAGCM in predicting ENSO during the 369 

austral summer is an improvement over D05 for the first four lead-months (0 to 3; Figs. 370 

6a and 7a) and then tends to decay faster after that. In addition, our coupled model 371 
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simulated the amplitude of ENSO more realistically than D05 (Fig. 9) when the 372 

amplitude of the seasonal variation of ENSO peaks (Fig. 8). Notwithstanding, in the 373 

February initialized hindcasts (Figs. 6b and 7b), D05 did well compared to our model. 374 

The result suggested that the impact of the initialization strategy apparently becomes 375 

noticeable when ENSO becomes active (Fig. 8). Generally, the two models, however, 376 

demonstrated comparable skill levels particularly in the context of rainfall and Indian 377 

Ocean Dipole (IOD) forecasts. 378 

Previous studies highlighted the role of the coupling of the equatorial Indian 379 

Ocean basin with southern African rainfall variability (e.g., Reason 1999, 2002; Reason 380 

and Mulenga 1999; Washington and Preston 2006). It was hypothesized that this coupling 381 

phenomenon is found to drive the southern African extratropical climate system through 382 

the influence of large-scale rainfall bearing systems such as the relative annual position of 383 

the Inter-Tropical Convergence Zone (ITCZ), the South Atlantic anticyclone, and the 384 

midlatitude westerlies (Reason, et al. 2006). However, the SST prediction over the 385 

equatorial Indian Ocean has been found to be more complex and challenging. In fact, 386 

state-of-the-art coupled climate models are most often unable to replicate the observed 387 

evolving SST patterns over this ocean region (Collins et al. 2004; Landman et al. 2009). 388 

It is therefore not surprising that our model also had difficulty in simulating the observed 389 

SST patterns over the equatorial Indian Ocean sub-domain. The model shows some skill 390 

in simulating the SSTs over the western equatorial Indian Ocean off the coast of the 391 

African sub-continent except during austral autumn. However, the model manages to 392 

capture the eastern part of the equatorial Indian Ocean SST patterns near the coast of 393 

north-western Australia starting from the mid austral spring toward the beginning of the 394 
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austral summer season. To substantiate this notion, we conducted model intercomparison 395 

to investigate the models’ ability to simulate the equatorial Indian Ocean Dipole (IOD) 396 

using the Dipole Mode Index (DMI; Saji et al. 1999). The DMI is the SST anomaly 397 

difference between western (50oE–70oE, 10oS–10oN) and eastern (90oE–110oE, 10oS-Eq) 398 

tropical Indian Ocean and commonly used to measure the strength and phases of the IOD 399 

(Saji et al. 1999). The model intercomparison analysis conducted during active period of 400 

IOD and ENSO (Fig., 8; Zhao and Hendon 2009) suggested that all the coupled models 401 

considered demonstrated marginal skill relative to ENSO despite that IOD is more 402 

predictable than rainfall (Fig. 9). Most of the coupled models overestimated or 403 

underestimated the amplitude of the IOD except for the MF coupled model. 404 

Notwithstanding, all models showed comparable level of skill, in the range of 0.8 and 0.9 405 

AC, in predicting IOD for austral spring (September to November; SON) at 0-month 406 

lead. 407 

The seasonal variation of the IOD fully develops during the austral spring (SON; 408 

Fig. 8; Saji et al. 1999; Zhao and Hendon 2009).  The model generally underestimated the 409 

amplitude of the   seasonal variation of IOD particularly for the first few lead-months as 410 

opposed to the model’s tendency to overestimate the amplitude of the seasonal variation 411 

of ENSO. Notwithstanding, the best performance of the model closely followed the 412 

observed peak of the seasonal cycle of the standard deviation of the IOD. Fig. 10 shows 413 

the predicted time evolution of the IOD during SON and OND (October to December) at 414 

different lead-times (1-4 months) over the verification period of 1982-2009 using a box-415 

whisker representation. The model was found to be skilful during the SON and OND 416 

seasons. For most cases the observations (green asterisks) are dressed with the ensemble 417 
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spread and tend to cluster within the same categories as delineated by the historical 25% 418 

and 75% percentiles of both the observation (green line) and ensemble mean (blue line). 419 

However, there are cases where observations lie outside the ensemble spread specifically 420 

during the1990s. These outliers might be significantly contributed to the model’s 421 

tendency to damp the amplitude of seasonal variation of the IOD (Fig. 8). This suggests 422 

that there is still room for further improvement by simply increasing the ensemble size of 423 

the OAGCM integrations.  In addition, the model performance during the same period but 424 

for individual months measured using the AC and RMSE is also shown in Table 1. The 425 

model demonstrates good skill (statistically significant at 5% confidence level) up to 5 426 

months lead-time which attains its peak during November. Nonetheless, the model tends 427 

to show the smallest error growth during December presumably due to the subsidence of 428 

the IOD maturity or variation. 429 

We also extended our analysis on the upper air fields of the model using the mean 430 

square skill score (MSSS; Murphy 1988). This score can easily be computed using the 431 

Mean Absolute Error (MAE) or Mean Square Error (MSE) where the latter is employed 432 

here. Usually the reference (control) forecasts are provided either by the climatology or 433 

persistence of the variable of interest (Wilks 2006). The skill score therefore represents 434 

improvements in the forecast skill relative to the reference. The MSSS has a value of one 435 

for perfect forecasts. The MSSS could be positive (negative) when the accuracy of the 436 

forecast is superior (inferior) to the accuracy of the reference forecast. When the MSE of 437 

the reference and forecast are equal, the MSSS becomes zero which implies no 438 

improvement in the forecast system relative to the reference forecast. The spatial 439 

distribution of global actual-skills (MSSS) of the OAGCM during the austral summer for 440 
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geopotential height (GH) is shown in Fig. 11. The skill score is computed from the 441 

ensemble mean of the model against the NCEP/DOE. On a synoptic scale, it is evident 442 

that the model, initialized in November, performs well at simulating the 850 and 500 hPa 443 

GH over the equatorial region, specifically over the latter. Of particular interest is that the 444 

OAGCM outscores the forecast of climatology further south, particularly on those key 445 

ocean basins which are recognized modes of atmospheric variability such as the South 446 

Pacific Wave (SPW) train (Mo and Ghil 1987) and the Southern Annular Mode (SAM).  447 

The OAGCM’s performance in predicting wind components was also evaluated 448 

based on the ensemble mean integrations. Fig. 12 shows the equatorial zonal and 449 

meridional wind anomaly (20oS to 20oN) skill during the austral summer (DJF) at various 450 

forecast lead-times (seasons) as a function of pressure levels computed against the 451 

NCEP/DOE. The result suggested that the model showed some skill on the lower 452 

tropospheric and upper stratospheric tropical flow as opposed to the extratropical flow. 453 

The analysis further revealed that the zonal wind appears to be more predicable than the 454 

meridional flow which might be attributed to ENSO forcing. Saha et al. (2006) 455 

demonstrated similar skill on the stratospheric zonal flow based on the CFS coupled 456 

model.  Our coupled model is, however, struggling to predict the upper air flow between 457 

the upper troposphere and lower stratosphere. Mathole et al. (2013) recently identified 458 

similar deficiency in the ECHAM4.5-MOM3-SA OAGCM. They indicated that the 459 

OAGCM was unable to simulate the observed pole ward migration of the eddy driven 460 

southern extratropical jet stream and lower stratospheric cooling which is presumably 461 

attributed to the lack of proper stratospheric ozone prescription, anthropogenic forcings 462 

and coarse vertical resolution.  463 
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b. Probabilistic  forecast verification 464 

Evaluating the model’s ability to predict ENSO phases probabilistically provides 465 

additional insight into the models ability to capture important modes of variability. The 466 

model testing is done here in a setting that mimics a true operational forecasting 467 

approach. First we present typical examples of forecast plumes for the 1982 and 1988 El-468 

Niño and La-Niña events respectively as illustrated in Fig. 13, and it can be seen that the 469 

coupled model successfully captures the development and maturity of these two typical 470 

ENSO episodes. 471 

In a probabilistic verification framework for seasonal forecasting, the observed 472 

and predicted fields are often separated into three categories of above-normal, near-473 

normal and below-normal conditions based on pre-defined thresholds emanated from 474 

model history (climatology). Despite that ENSO (anomalous and neutral)  is a relatively 475 

more predictable component of the climate system, results from the near-normal category 476 

are omitted here owing to the low skill generally associated with this category in other 477 

variables such as surface temperature and rainfall (Van den Dool and Toth 1991). In 478 

addition, the signature of neutral ENSO is not as influential as anomalous ENSO when 479 

used as a predictor in a statistical remapping framework (e.g. Landman and Beraki, 480 

2012). This categorization, results in a 2 x 2 contingency table. The contingency tables 481 

are subsequently used to compute the reliability diagrams, relative operating 482 

characteristics (ROC) curves, area underneath of the ROC curve and other commonly 483 

used measures of probabilistic skill such as the Brier (Skill) Score.  484 

The ROC is a highly flexible method for representing the quality of dichotomous, 485 

categorical and probabilistic forecasts (Mason & Graham, 1999). It is derived from 486 
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Signal Detection Theory (SDT) which was first introduced to the Meteorological 487 

community by Mason (1982). The ROC curve (Swets 1973; Mason 1982; Harvey et al. 488 

1992) is derived from a contingency table (Wilks 2006) in which the hit rate and the 489 

false-alarm rate are compared. In probabilistic forecasting system, a warning can be 490 

issued when the forecast for a predefined event exceeds some threshold (Mason 1979). 491 

Optimally, the ROC curve is desired to lie toward the upper most left corner of a ROC 492 

diagram. The diagonal line represents no skill and a curve lays below the no skill line 493 

implies that the forecasting system is not better than guess work. The area under the ROC 494 

curve is computed numerically and normalized to constitute what is referred to as a ROC 495 

score. The ROC score of a skillful forecasting system always exceeds the 0.5 limit.  496 

It is worthwhile mentioning, however, that the ROC is not sensitive to biases 497 

(systematic or nonsystematic; Murphy 1988) that may be embedded in the forecast 498 

system. This implies that a biased forecast can still produce a good ROC curve. It is 499 

useful to view the ROC as measure of potential skill and is often accompanied by a 500 

corresponding reliability diagrams. Reliability diagram is a type of conditional 501 

distribution which shows given each forecast probability interval, how frequently 502 

observation actually ended up in one or another category (Hartmann et al. 2002). The 503 

reliability diagram is constructed from the computation of the hit rate for the set of 504 

forecasts for individual probability bins separately and then plotted against the 505 

corresponding forecast probabilities. The most reliable forecasting systems have curves in 506 

close proximity of the diagonal line of perfect reliability. 507 

The ROC and reliability diagrams curves were calculated for each forecast lead-508 

time. Fig. 14 shows diagrams for three lead-months (1-,3- and 6- month lead-times) to 509 
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describe the model performance. The corresponding frequency histograms showing the 510 

relative frequency of use of the forecast bins which are also referred to as “sharpness 511 

diagrams“ both for below- and above-normal are shown on the top-left and bottom-right 512 

corners of each plot respectively. These histograms reveal how strongly and frequently 513 

the issued forecast probabilities depart from the climatological probabilities. At a1-month 514 

lead-time, the model exhibits good reliability to predict both the cold and warm phases of 515 

ENSO during late austral summer (December) although it shows a tendency of over 516 

forecast relative to the latter. It suggests that the quality of forecast manifested in the 517 

ROC curves is attainable as the forecasting system is unbiased where the strength is more 518 

robust for the cold phase category. At a 3-month lead-time the model reveals fairly high 519 

reliability to predict both cold and warm phases at lower probability bins, but gradually 520 

diverges to be over and under forecast for warmer and colder categories at higher 521 

probabilities respectively. The model still has good reliability at a 6 month lead-time in 522 

spite of both categories being overpredicted. During the start of the austral winter (Fig. 523 

15), the model exhibits high reliability to predict both the cold and warm phases of ENSO 524 

at 1- and at 3-month lead-times. Notwithstanding, at a 6-month lead-time the reliability of 525 

the model becomes weak. The deterioration of skill at this lead-time and longer is also 526 

captured in the AC (Fig. 1) and is presumably attributed as suggested earlier to the spring 527 

barrier. It is more evident from both Fig. 14 and Fig. 15 that in the Niño-3.4 region, cold 528 

events are more skilfully predicted compared to warm events. These results are similar to 529 

that found in previous ENSO predictability studies (Kirtman 2003; D05).   530 

The global distributions of ROC scores demonstrated by the OAGCM during the 531 

austral summer based on the November hindcasts predicting years of wet and dry 532 
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conditions are shown in Fig. 16. Only those scores which are statistically significant at 533 

95% are shown. The significance test is conducted using a variant of the Mann-Whitney 534 

non-parametric procedure that explicitly accounts for variance adjustment caused by 535 

incidents of ties (Mason and Graham 2002; Wilks 2006). It is apparent that the OAGCM 536 

is successful in discriminating below- and above-normal rainfall conditions over the 537 

larger part of the globe. Maximum skill is obtained on the equatorial Pacific region across 538 

all lead-times. Similar skill patterns are demonstrated for the larger part of southern 539 

Africa ranging from ROC sores of predominantly 0.6 to patches of 0.8. Similarly, the 540 

global surface temperature ROC score distribution of the coupled model is further 541 

demonstrated in Fig. 17. This verification result suggests that the model is able to 542 

significantly discriminate cold and warm episodes over the larger part of the globe. The 543 

performance of the model is more consistent and stronger in predicting surface 544 

temperatures than rainfall probabilistically, a result also found in other models (Barnston 545 

and Smith 1996; Colman and Davey 1999). These global results also support what has 546 

been discussed above with respect to the reliability diagrams for the southern Africa 547 

region in the sense that the model is more reliable in providing cold and warm events as 548 

opposed to dry and wet.  549 

Fig. 18 shows the reliability diagrams obtained from the different initialized 550 

model hindcasts for unusually warm and cold events in the vicinity of the austral summer 551 

(DJF) at 1-3 months lead-times. The sharpness diagram both for below- and above-552 

normal are also shown on the top-left and bottom-right corners of each plot respectively. 553 

The model is reliably discriminating warm and cold episodes with virtually no skill 554 

deterioration as a function of lead-time. At higher probabilities, however, the model 555 
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exhibits a slight tendency of overconfidence despite the model being increasingly 556 

conservative in providing warnings at higher probability bins as shown in the sharpness 557 

diagrams.  The model also demonstrates similar skill levels during the January to March 558 

and the November to January seasons. Notwithstanding, the OAGCM has generally 559 

shown a tendency of issuing warnings of certain events while such events (dry or wet 560 

condition; Fig. 19) are less frequently observed in the southern African region during the 561 

austral summer. The skill of the OAGCM in predicting surface temperature 562 

probabilistically, as one may expect, is by far more reliable than the rainfall forecasts 563 

where the model generally suffers from overconfidence. Nevertheless, the weakness is 564 

presumably attributed to the fact that the model is not equally successful across the whole 565 

of southern Africa as shown in Fig. 16. Besides, the overconfidence bias is apparently 566 

caused by rainfall conditions of higher seasonal totals (right tail of the scatter diagram; 567 

Fig. 19). The reliability and scatter analysis used identical inputs and both considered the 568 

contribution of each grid point and each ensemble member (no spatial average was 569 

applied). Previous studies (e.g., Landman et al. 2012; Landman and Beraki 2012) have 570 

similarly suggested that the most common slope of the reliability curves found for 571 

seasonal rainfall forecasts for the region are shallower than the diagonal line.  572 

5.    Summary and conclusions 573 

Coupled climate models represent the state of the art of seasonal forecasting which 574 

inherently renders them to be exceptionally convenient for seasonal climate prediction 575 

purposes. Notwithstanding, owing to the enormous computational needs of and 576 

complexity associated with OAGCMs, their engagement for seasonal forecasts in South 577 

Africa was initially not considered feasible particularly in an operational environment.  578 
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The substantial augmentation of the computational resources in South Africa due 579 

to the resent CHPC intervention brought new hope to South African climate modellers. 580 

Founded mainly on this motivation, we attempted to explore the advantage of coupled 581 

climate models in the area of research and seasonal forecast production. The emergence 582 

of the ECHAM4.5-MOM3-SA OAGCM in South Africa is the first ever locally 583 

developed coupled climate model which is configured for seasonal forecasts production. 584 

Moreover, it employs an initialization strategy that capitalizes on the best available 585 

atmospheric information, thusly making the forecasting system uniquely different from 586 

previous coupled models using the same atmosphere and ocean models. 587 

The model evaluation in the context of ENSO forecast showed that the OAGCM 588 

was plausibly skillful in most instances in capturing the development and maturity of El-589 

Niño and La-Niña episodes up to an 8 moth lead-time. The result was also complemented 590 

by low error concentrations confined within the range of 0.1 to 0.5 RMSE. In a 591 

probabilistic sense, the analysis revealed that La-Niña events are more skillfully 592 

discriminated than La-Niño events by the model. However, the model skill was generally 593 

found to decay faster during the spring barrier.           594 

The model intercomparison revealed that the ECHAM4.5-MOM3-SA OAGCM 595 

demonstrated comparable level of skill for the Niño-3.4 region SST forecast with state-596 

of-the-art coupled models administered by other international centres such as the UKMO, 597 

MF, ECMWF and CFS-NCEP, IRI and locally developed CCA based statistical model 598 

(MMS). The initialization strategy introduced in the ECHAM4.5-MOM3-SA 599 

configuration found to be beneficial when the seasonal variation of ENSO attains its peak 600 
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as opposed to the D05 version. This result is rather encouraging and further implies that 601 

the proposed forecasting system is robust. 602 

Further verification analysis confirmed that the coupled model demonstrated 603 

remarkable skill up to several month lead-times in predicting the equatorial IOD during 604 

the period spanning between the mid austral spring and the start of the main summer 605 

seasons which reaches its peak in November. This may suggest that IOD is more 606 

predictable when its seasonal variation becomes strong.  The investigation also unveiled 607 

that the weakness of the model in other seasons was mainly caused by the western 608 

segment of the dipole which eventually contaminates the DMI although the cause of the 609 

deficiency is not clear. The complexity of the equatorial IOD prediction reportedly 610 

challenges coupled climate models even though observational and theoretical studies 611 

conclusively demonstrated the role of the dipole structure in modulating southern Africa 612 

and Australian rainfall variability at the seasonal timescale.   613 

The ECHAM4.5-MOM3-SA was also found to be successful in simulating the 614 

observed upper air circulation as represented by the 850 and 500 hPa GH in the equatorial 615 

belt with a pronounced skill on the latter. Further south, the model was fairly skilful on 616 

those key ocean basins such as SPW and SAM despite that the model was mostly unable 617 

to outscore a climatological forecast.  In addition, the model is fairly skillful in simulating 618 

the lower tropospheric and upper stratospheric equatorial flow during the austral summer.  619 

Notwithstanding the zonal wind appeared to be more predicable than the meridional wind 620 

that might be attributed to ENSO forcing.   621 

The OAGCM probabilistic forecast for the austral summer season for rainfall 622 

totals and surface air temperatures was found to be informative and fairly useful. The 623 
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model was evidently successful in discriminating below- and above-normal rainfall 624 

conditions over the larger part of the globe where the signal is more pronounced on the 625 

equatorial Pacific region. Similarly, the verification result indicated that the model was 626 

able to discriminate cold and warm episodes. Nonetheless, as one may expect, the 627 

performance of the model was more consistent and more skilful in predicting surface air 628 

temperatures than rainfall totals probabilistically. The findings is further supported, at 629 

least for the southern African window, by the fact that the model is more reliable in 630 

issuing forecasts of cold or warm seasons as opposed to dry or wet. Probabilistic rainfall 631 

forecasts are biased toward overconfidence.  632 

The advent of fully coupled ocean–atmosphere models (e.g., Stockdale et al. 633 

1998) promised improved seasonal forecasts. However, in spite of the promise of 634 

enhanced seasonal forecast skill, coupled models have not been administered in South 635 

Africa for operational seasonal forecast production because these models effectively 636 

require double the computing resources of their atmosphere-only counterparts. Recent 637 

advances in computing infrastructures in South Africa and the support from international 638 

institutions such as the IRI in developing the coupled model described here have paved 639 

the way for utilising and for further development of such state-of-the-art coupled models 640 

for seasonal forecast production and research. 641 
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 881 

Tables: 882 

TABLE 1. OACGM skill and error growth in predicting the IOD for different lead-883 

months during late autumn and the beginning of summer seasons as measured by AC and 884 

RMSE respectively. The skill scores were computed against observed DMI computed 885 

from the OI SST. The * represents that AC is statistically significant at 95% level. 886 

 887 

Lead 

AC RMSE 

Oct Nov Dec Oct Nov Dec 

 

0 

 

*94.51 

 

*92.75 

 

*72.70 

 

0.3645 

 

0.2225 

 

0.3472 

1 *77.20 *83.21 *61.63 0.5526 0.4102 0.2692 

2 *74.27 *77.29 *44.95 0.6036 0.4054 0.3054 

3 *50.23 *77.61 *54.35 0.6894 0.4179 0.2844 
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4 *50.95 *59.99 *47.09 0.6852 0.4767 0.3214 

5 31.36 *56.76 *47.84 0.7651 0.4887 0.3134 

6 14.77 *45.63 *44.60 0.8535 0.5325 0.3255 

7 10.35 38.19 28.26 0.8844 0.5712 0.3733 

8 12.40 38.22 38.53 0.8485 0.6142 0.3518 
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 889 

 890 

Figure Caption List 891 

FIG. 1. OAGCM Skill for the SST forecasts in the Niño3.4 as measured with AC as a 892 

function of lead-time (vertical) and target (horizontal) months based on the monthly mean 893 

SST over the period 1982-2009. 894 

FIG. 2. OAGCM overall accuracy predicting the Niño3.4 SST. The RMSE is computed 895 

based on the monthly mean SST over the period 1982-2009 896 

FIG. 3. OAGCM Skill for the SST forecasts in the Niño3.4 as measured with AC as a 897 

function of lead-time (vertical) and target (horizontal) months based on the monthly mean 898 

SST over the period 1982-2009. 899 

FIG. 4. Near global SST skill (AC) of the OAGCM during the start of the austral summer 900 

(December) for 6 months lead-time (0-5). Only statistical significant at 95% are shown. 901 

FIG. 5.  Same as Fig. 4 but for the austral winter (June). 902 
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FIG. 6. Anomaly correlation by various prediction methods of monthly mean for the 903 

Niño-3.4 forecasts as a function of different lead-month (horizontal). The skill scores are 904 

base on the November (a) and February (b) initialized hindcasts. The ECHAM4.5-905 

MOM3-SA is denoted by SCM; The MMS refers to CCA based statistical Multi-Model 906 

ENSO prediction system. 907 

FIG. 7. RMSE by various prediction methods of monthly mean for the Niño-3.4 forecasts 908 

as a function of different lead-month (horizontal). The level of bias in each model 909 

computed using the November (a) and February (b) initialized hindcasts. The 910 

ECHAM4.5-MOM3-SA (as in Fig. 6) compared with the local CCA based empirical 911 

model, DEMETER coupled models (UKMO, ECMWF and MF) and CFS of NCEP 912 

coupled model. 913 

FIG. 8. Seasonal cycle of the standard deviation of anomalies of (a) the DMI and (b) the 914 

Niño3.4 index at various lead-months (as shown in the inset). Anomalies are computed 915 

by removing the respective climatological seasonal cycle for each lead-time and 916 

observations. 917 

FIG. 9. Taylor diagram (Taylor 2001) by various prediction methods (as shown in the 918 

inset) based on the ensemble mean for SOI (Southern Oscillation index;*), IOD (solid 919 

circle) and rainfall totals for Tropical region between 20oS and 20oN (open circle ) and 920 

southern Africa south of the Equator (+).  The standard deviation is normalized by the 921 

respective observation (see text). The ECHAM4.5-MOM3-SA is denoted by SCM. 922 

FIG. 10. Time series of IOD index from the mid austral spring to the start of summer at 923 

2,5 and 8 months  lead for the period of 1982-2009. The OAGCM ensemble spread is 924 
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shown by the box-whisker representation with 25% and 75% percentile of the ensemble 925 

members. The blue dots and green stars represent the ensemble mean and OI SST 926 

respectively. The blue (ensemble mean) and green (OISST) lines around the zero black 927 

line also depict the historical quartiles based on 28 years of the index. 928 

FIG. 11. Actual skill of November initialized OAGCM integrations both for 850 hPa (left 929 

panel) and 500hPa (right panel) geopotential heights. (a,b)  NDJ (0-month lead-time), 930 

(c,d) DJF (1-month lead-time) and (e,f) JFM (2-month lead-time). The MSSS is 931 

computed against the NCEP/DOE upper air climate data as a proxy for observation and 932 

climatological forecast as a reference. The PSA indicated with * on the three locations 933 

(H1, H2 and H3; Yuan and Li 2008). 934 

FIG. 12. Anomaly correlation of zonal (a) and meridional (b) mean wind anomalies of the 935 

equatorial region (20oSo to 20oN) at various lead-times as a function of pressure levels. 936 

FIG. 13. ECHAM4.5-MOM3-SA forecast plume of Niño-3.4 SST anomalies (K) 937 

initialized from the 10 NCEP/DOE atmospheric initial states on the 4th of April 1982 (top 938 

panel) and 1988 (lower panel). All members are shown in dot lines, the ensemble mean is 939 

solid line marked with closed circle, and the observation is in black line marked with 940 

triangle as shown in the legend. 941 

FIG. 14. ROC curve (left panel) and reliability diagrams (right panel) of ECHAM4.5-942 

MOM3-SA probabilistic forecasts that show the warming and cooling phases of ENSO 943 

for different lead-times of February as shown on the title of each plot.  “B” and “A” in the 944 

legend denote La Niña and El-Niño respectively. The histograms on the topleft (cold) and 945 



45 

bottom right (warm) corners each reliability diagrams plots imply the frequency of 946 

forecast usage in different bins. 947 

FIG. 15. as in Fig. 14 but June as the target month. 948 

FIG. 16. Global Distribution of ROC area for seasonal rainfall totals (mm) skill of the 949 

OAGCM during the austral summer from NDJ (lead-0) to JFM (lead-2) both for below- 950 

(a-c) and above-normal (d-f) categories.  Only statistically significant values at the 95% 951 

level shades are shown. 952 

FIG. 17.  As Fig. 16 but for 2m surface temperatures (K). 953 

FIG. 18. Reliability diagrams of the OAGCM in predicting below- and above-normal 954 

surface air temperature conditions during the three rolling seasons centred around the 955 

austral summer season for the southern African region (South of the Equator). “B” and 956 

“A” in the legend denote cold and warm events respectively. The frequency of utilization 957 

the different probability bins for both below- and above-normal categories are also shown 958 

on the left top-upper and bottom-left corners of each diagram respectively. 959 

FIG. 19. Reliability diagrams (right panel) as in Fig 15 but for November initialized 960 

hindcasts rainfall totals. The scatter diagrams (right panel) used the same inputs as in the 961 

reliability diagrams; the ensembles members are shown in grey (+) and the ensemble 962 

mean is in black (*). No spatial averaging is applied on the fields meaning that each grid 963 

point value is included in each plot. 964 
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 974 

 975 

FIG. 1. OAGCM Skill for the SST forecasts in the Niño3.4 as measured with AC as a 976 

function of lead-time (vertical) and target (horizontal) months based on the monthly mean 977 

SST over the period 1982-2009. 978 
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 979 

FIG. 2. OAGCM overall accuracy predicting the Niño3.4 SST. The RMSE is computed 980 

based on the monthly mean SST over the period 1982-2009 981 

 982 

 983 

 984 
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 985 

FIG. 3. The time evolution of El Niño Southern Oscillation (ENSO) as simulated by the 986 

ECHAM4.5-MOM3-SA ocean-atmosphere coupled climate model. 987 

 988 
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 989 

FIG. 4. Near global SST skill (AC) of the OAGCM during the start of the austral summer 990 

(December) for 6 months lead-time (0-5). Only statistical significant at 95% are shown. 991 

 992 
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FIG. 5.  Same as Fig. 4 but for the austral winter (June).  993 

 994 

 995 

 996 

 997 

 998 

FIG. 6. Anomaly correlation by various prediction methods of monthly for the Niño-3.4 999 

forecasts as a function of different lead-month (horizontal). The skill scores are base on 1000 

the November (a) and February (b) initialized hindcasts. The ECHAM4.5-MOM3-SA is 1001 

denoted by SCM; The MMS refers to CCA based statistical Multi-Model ENSO 1002 

prediction system. 1003 

 1004 

 1005 
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 1006 

 1007 

FIG. 7. RMSE by various prediction methods of monthly mean for the Niño-3.4 forecasts 1008 

as a function of different lead-month (horizontal). The level of bias in each model 1009 

computed using the November (a) and February (b) initialized hindcasts. The 1010 

ECHAM4.5-MOM3-SA (as in Fig. 6) compared with the local CCA based empirical 1011 

model, DEMETER coupled models (UKMO, ECMWF and MF), D05 and CFS of NCEP 1012 

coupled model. 1013 

 1014 

 1015 

 1016 

 1017 

 1018 
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 1020 

 1021 

 1022 

 1023 

 1024 

 1025 

FIG. 8. Seasonal cycle of the standard deviation of anomalies of (a) the DMI and (b) the 1026 

Niño3.4 index at various lead-months (as shown in the inset). Anomalies are computed 1027 

formed by removing the respective climatological seasonal cycle each lead-time and 1028 

observations. 1029 

 1030 
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 1031 

FIG. 9. Taylor diagram (Taylor 2001) by various prediction methods (as shown in the 1032 

inset) based on the ensemble mean Niño-3.4 (*), IOD (solid circle) and rainfall totals for 1033 

Tropical region between 20oS and 20oN (+) and southern Africa south of the Equator 1034 

(open circle).  The standard deviation is normalized by the respective observation (see 1035 

text). The ECHAM4.5-MOM3-SA is denoted by SCM. 1036 

 1037 

 1038 

 1039 

 1040 

 1041 
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55 

FIG. 10. Time series of IOD index from the mid austral spring to the start of summer at 1043 

2,5 and 8 months  lead for the period of 1982-2009. The OAGCM ensemble spread is 1044 

shown by the box-whisker representation with 25% and 75% terciles of the ensemble 1045 

members. The blue dots and green stars represent the ensemble mean and OI SST 1046 

respectively. The blue (ensemble mean) and green (OI SST) lines around zero black line 1047 

also depict the historical quartiles based on 28 years of the index.      1048 

 1049 

 1050 

 1051 

 1052 

 1053 

FIG. 11. Actual skill of November initialized OAGCM integrations both for 850 hPa (left 1054 

panel) and 500hPa (right panel) geopotential heights. (a,b)  NDJ (0-month lead-time), 1055 

(c,d) DJF (1-month lead-time) and (e,f) JFM (2-month lead-time). The MSSS is 1056 



56 

computed against the NCEP/DOE upper air climate data as a proxy for observation and 1057 

climatological forecast as a reference. The PSA indicated with * on the three locations 1058 

(H1, H2 and H3; Yuan and Li 2008). 1059 

 1060 

 1061 
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FIG. 12. Anomaly correlation of zonal (a) and meridional (b) mean wind anomalies of the 1062 

equatorial region (20oSo to 20oN) at various lead-time as a function of pressure levels. 1063 

 1064 

 1065 

 1066 

FIG. 13. ECHAM4.5-MOM3-SA forecast plume of Niño-3.4 SST anomalies (K) 1067 

initialized from the 10 NCEP/DOE atmospheric initial states on the 4th of April 1982 (top 1068 

panel) and 1988 (lower panel). All members are shown in dot lines, the ensemble mean is 1069 

solid line marked with closed circle, and the observation is in black line marked with 1070 

triangle as shown in the legend. 1071 

 1072 
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 1073 

 1074 

 1075 

FIG. 14. ROC curve (left panel) and reliability diagrams (right panel) of ECHAM4.5-1076 

MOM3-SA probabilistic forecasts that show the warming and cooling phases of ENSO 1077 

for different lead-times of February as shown on the title of each plot.  “B” and “A” in the 1078 

legend denote La Niña and El-Niño respectively. The histograms on the topleft (cold) and 1079 
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bottom right (warm) corners each reliability diagrams plots imply the frequency of 1080 

forecast usage in different bins.    1081 

 1082 

 1083 

 1084 

FIG. 15. as in Fig. 14 but June as the target month. 1085 
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 1087 

 1088 

FIG. 16. Global Distribution of ROC area for seasonal rainfall totals (mm) skill of the 1089 

OAGCM during the austral summer from NDJ (lead-0) to JFM (lead-2) both for below- 1090 

(a-c) and above-normal (d-f) categories.  Only statistically significant values at the 95% 1091 

level shades are shown. 1092 
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 1097 

FIG. 17.  As Fig. 16 but for 2m surface temperatures (K). 1098 
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FIG. 18. Reliability diagrams of the OAGCM in predicting below- and above-normal 1104 

surface air temperature conditions during the three rolling seasons centred around the 1105 

austral summer season for the southern African region (South of the Equator). “B” and 1106 

“A” in the legend denote cold and warm events respectively. The frequency of utilization 1107 

the different probability bins for both below- and above-normal categories are also shown 1108 

on the left top-upper and bottom-left corners of each diagram respectively. 1109 

 1110 

 1111 
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FIG. 19. reliability diagrams (right panel) as in Fig 18 but for November initialized 1112 

hindcasts rainfall totals. The scatter diagrams (right panel) used the same inputs as in the 1113 

reliability diagrams; the ensembles members are shown in grey (+) and the ensemble 1114 

mean is in black (*). No spatial average applied on the fields meaning that each grid point 1115 

is contributed in each plot. 1116 
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