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Abstract

We study the degree-diameter problem for claw-free graphs and
2-regular hypergraphs. Let cf∆,D be the largest order of a claw-
free graph of maximum degree ∆ and diameter D. We show that

cf∆,D ≤ 1 + 2
∑D

i=1(∆
2 )i − c′∆

∑D−2
i=0 (∆

2 )i, where c′∆ = 2 (∆/2)2

(∆/2)2+∆/2+2
,

for any D and any even ∆ ≥ 4. So for claw-free graphs the well-known
Moore bound can be strengthened considerably. We further show that
cf∆,2 ≥ 5

16(∆+2)2 for ∆ ≥ 6 with ∆ ≡ 2 (mod 4). We also give an up-
per bound on the order of K1,p-free graphs of given maximum degree
and diameter for p ≥ 3. We prove similar results for the hypergraph
version of the degree-diameter problem. The hypergraph Moore bound
states that the order of a hypergraph of maximum degree ∆, rank k
and diameter D is at most 1+∆

∑D
i=1(∆−1)i−1(k−1)i. For 2-regular

hypergraph of rank k ≥ 3 and any diameter D, we improve this bound
to 1 + 2

∑D
i=1(k − 1)i − ck

∑D−2
i=0 (k − 1)i, where ck = 2k2−2k+1

k2−k+2
. Our

construction of claw-free graphs of diameter 2 yields a similar result
for hypergraphs of diameter 2, degree 2 and any even rank k ≥ 4.

Keywords: claw-free graph; hypergraph; degree; diameter; Moore geometry

1. Introduction and results

The degree-diameter problem is to determine the largest order n∆,D of a
graph of given maximum degree ∆ and diameter D. It is well-known that the
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number of vertices in a graph of maximum degree ∆ and diameter D cannot
exceed the Moore bound M∆,D = 1+∆+∆(∆−1)+. . .+∆(∆−1)D−1. Bannai
and Ito [1] improved the upper bound and showed that n∆,D ≤M∆,D− 2 for
any ∆, D ≥ 3, and we have n∆,D ≤M∆,D− 3 if ∆ ≥ 4 is even; see [8]. There
is a slightly better bound if ∆ = 3, since Miller and Pineda-Villavicencio
[11] proved that n3,D ≤ M3,D − 6 for any D ≥ 5. A construction of Canale
and Gómez [4] gives the best known lower bound on n∆,D for large ∆ and
D. They showed that there is a constant D0 such that for each D ≥ D0

congruent with −1, 0 or 1 modulo 8, and for infinitely many values of ∆, we
have n∆,D ≥ ( ∆

1.45
)D. For a survey on the problem we refer the reader to [12].

In this paper we study the degree-diameter problem for claw-free graphs
and hypergraphs. This is motivated by the observation that graphs whose
order is close to the Moore bound do not have small cycles, hence such graphs
have many claws. It is therefore natural to expect that the Moore bound can
be significantly improved if restricted to claw-free graphs, or more general to
graphs that contain no induced subgraph K1,p. We show in Theorem 1 that
this is indeed the case, and we derive a bound that we term K1,p-free Moore
bound:

n ≤ 1 +
D∑
i=1

(p− 2

p− 1

)i−1

∆i. (1)

Our investigations focus particularly on claw-free graphs of even maximum
degree. Let cf∆,D be the largest order of a claw-free graph of maximum
degree ∆ and diameter D. The special case p = 3 of (1), which we term
claw-free Moore bound, is the upper bound

cf∆,D ≤ 1 + 2
D∑
i=1

(∆

2

)i
, (2)

which differs from the Moore bound M∆,D by a factor of approximately
(1

2
)D−1. In Theorem 2 we show that claw-free graphs whose order is close to

this bound are underlying graphs of 2-regular, (∆
2

+ 1)-uniform hypergraphs.
Having established this link between claw-free graphs and hypergraphs,

we consider the degree-diameter problem for 2-regular hypergraphs. Note
that hypergraphs are often modelled by bipartite graphs with the vertices
and edges of the hypergraphs as partite sets. This representation facilitates
structural analysis on the hypergraphs and relates the degree-diameter prob-
lem for hypergraphs to the degree-diameter problem for bipartite graphs.
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The general degree-diameter problem for hypergraphs is to determine the
largest order of a connected hypergraph of given maximum degree ∆ (the
maximum number of hyperedges containing any vertex), rank k (the maxi-
mum number of vertices in any hyperedge) and diameter D. The well-known
hypergraph Moore bound on the order of such a hypergraph is

n ≤ 1 + ∆
D∑
i=1

(∆− 1)i−1(k − 1)i. (3)

The hypergraphs attaining the upper bound are called Moore geometries.
Moore geometries with k = 2 are Moore graphs. Damerell and Georgiacodis
[6] and Damerell [5] showed that there are no non-trivial Moore geometries
for D ≥ 5, and Fuglister [9, 10] proved the non-existence for diameters 3 and
4. Except for odd cycles, all Moore geometries have diameter D ≤ 2, and
there are no known Moore geometries with D = 2 and k ≥ 3, see [2].

The hypergraph Moore bound for 2-regular hypergraphs is n ≤ 1 +
2
∑D

i=1(k − 1)i. In Theorem 3 we improve this bound and show that the
order n of a 2-regular hypergraph of rank k ≥ 3 and diameter D is bounded
by

n ≤ 1 + 2
D∑
i=1

(k − 1)i − ck
D−2∑
i=1

(k − 1)i.

where ck = 2k2−2k+1
k2−k+2

. So, unlike for graphs, where the Moore bound has
been improved only by a small constant, the Moore bound for 2-regular
hypergraphs can be improved significantly. As a corollary to Theorem 3 we
obtain the non-existence of Moore geometries of degree 2 of any diameter
and rank k ≥ 3.

In the last section of the paper we give lower bounds on cf∆,D. These
are derived by taking line graphs of known constructions of large graphs of
given maximum degree and diameter. We also give a new construction of
claw-free graphs of diameter 2, degree ∆ ≥ 6, where ∆ ≡ 2 (mod 4), and
order 5

16
(∆ + 2)2. We show that these bounds give rise to lower bounds for

the maximal order of 2-regular, k-uniform hypergraphs of given diameter.
Our notation is as follows. The vertex set of a graph or hypergraph G is

denoted by V (G), and the edge (for hypergraphs we sometimes use the term
hyperedge) set by E(G). We use n(G) for the number of vertices of G. We
write degG(v) for the degree of vertex v, i.e., the number of edges incident
with v, and the maximum degree is ∆(G). If G is understood then we often
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drop the argument or subscript G. The rank of a hypergraph is the largest
cardinality of its edges. If all edges have the same cardinality k, then we
say G is k-uniform. Every hypergraph H gives rise to a graph on the same
vertex set, where two vertices are adjacent in G if some edge of H contains
them both. We say that in this case G is the underlying graph of H. The
diameter of a hypergraph is the diameter of its underlying graph. Let N(v)
be the neighbourhood of v. If G is a graph and U1, U2 are two disjoint subsets
of V (G), then E(U1, U2) is the set of edges which have one end in U1 and
the other end in U2. The graph G− U1 is obtained from G by removing the
vertices in U1 and all edges incident with a vertex in U1. The subgraph of G
induced by U1 is denoted by G[U1].

Kn and Km,n stand for the complete graph on n vertices and the complete
bipartite graph with partite sets of cardinality m and n, respectively. If H is
a fixed graph, and if G does not have H as an induced subgraph, then we say
that G is H-free. A K1,3-free graph is commonly referred to as a claw-free
graph. The independence number of G and the complement of G are denoted
by α(G) and Gc, respectively.

Assume that G is rooted at a vertex v and that k ∈ N0. Then Vk(v) is
the set of vertices of G at distance exactly k from v. If v is understood, then
we often drop the argument v and write Vk. We also denote

⋃k
i=1 Vi by V≤k.

If u and w are distinct vertices of G, and u is on a v − w geodesic, then we
say that w is a descendant of u, and that u is a predecessor of w.

2. Upper bounds

It is well-known that graphs of given maximum degree and diameter with
order close to the Moore bound cannot have small cycles, specifically tri-
angles. Hence the neighbourhood of every vertex is an independent set, so
such a graph contains many claws, or generally many induced subgraphs K1,p

for p ≤ ∆. Theorem 1 below shows that for graphs that do not contain an
induced subgraph K1,p the Moore bound can be improved significantly. We
will call the bound in Theorem 1 the K1,p-free Moore bound.

In our proofs we will make use of a slightly weaker form of Turán’s The-
orem (Theorem A) and its complement version (Corollary A). The Turán
graph Tn,s is the complete s-partite graph of order n, whose partite sets have

cardinalities dn
s
e or bn

s
c. Note that |E(Tn,s)| ≤ ( s−1

s
)n

2

2
, with equality only if

n is a multiple of s.
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Theorem A. Let H be a Ks+1-free graph of order n. Then |E(H)| ≤
|E(Tn,s)| ≤ s−1

2s
n2, where |E(H)| = s−1

2s
n2 if and only if n is divisible by

s and H = Tn,s.

Corollary A. Let H be a graph of order n and let α(G) ≤ s. Then
|E(H)| ≥ n

2
(n
s
−1) with equality if and only if n is divisible by s and G = T c

n,s.

The complement version of Theorem A implies that only graphs consisting
of two disjoint cliques have minimum size among the graphs of independence
number 2. The following lemma, which we will need in the proof of Theorem
2, gives a lower bound on the size of graphs of independence number at most
2 that are not the union of two cliques.

Lemma 1 Let H be a graph of order n and independence number at most
2. If V (H) cannot be partitioned into two sets, such that each set induces a
clique, then n ≥ 5 and

|E(H)| ≥

{
n2

4
− 1 if n is even,

n2

4
− 5

4
if n is odd.

Proof. Since V (H) cannot be partitioned into two sets, each inducing
a clique, the complement graph Hc is not bipartite. Hence Hc contains an
odd cycle. Among the odd cycles in Hc let Ck be one of minimum length k.
Then Ck is an induced cycle of Hc. We have k ≥ 5 since otherwise, if k = 3,
the 3-cycle vertices would form an independent set in H, a contradiction to
α(H) ≤ 2. This implies n ≥ 5. Since Ck is an induced cycle in Hc, we have

|E(Hc[V (Ck)])| = k.

Since Hc − V (Ck) is triangle-free, by Theorem A,

|E(Hc − V (Ck))| ≤

{
(n−k)2−1

4
if n− k is odd,

(n−k)2

4
if n− k is even.

Since a vertex in Hc− V (Ck) cannot be adjacent to two consecutive vertices
of Ck, it has at most k−1

2
neighbours on Ck. Hence,

|E(V (Hc − V (Ck)), V (Ck))| ≤ (n− k)k−1
2

.
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In total we obtain

|E(Hc)| = |E(Hc[V (Ck)])|+ |E(Hc − V (Ck))|+ |E(V (Hc − V (Ck)), V (Ck))|

≤

{
k + (n−k)2−1

4
+ (n− k)k−1

2
if n− k is odd,

k + (n−k)2

4
+ (n− k)k−1

2
if n− k is even.

It is easy to verify that the right hand side of the inequality is decreasing in
k. Substituting k = 5 yields

|E(Hc)| ≤

{
n2

4
− n

2
+ 1 if n is even,

n2

4
− n

2
+ 5

4
if n is odd,

which implies

|E(H)| ≥

{
n2

4
− 1 if n is even,

n2

4
− 5

4
if n is odd.

2

Lemma 2 Let p ≥ 3 and let G be a K1,p-free graph of maximum degree ∆,
rooted at a vertex v. Then |V2| ≤ p−2

p−1
∆2.

Proof. Since G has no induced K1,p, the graph G[V1] has independence

number at most p− 1. By Corollary A, we have |E(G[V1])| ≥ |V1|
2

( |V1|
p−1
− 1).

Hence

|V2| ≤ |E(V1, V2)| =
∑
u∈V1

degG(u)− 2|E(G[V1])| − |E(V0, V1)|

≤ |V1|∆− |V1|
( |V1|
p− 1

− 1
)
− |V1| = |V1|

(
∆− |V1|

p− 1

)
. (4)

It is easy to verify that, subject to |V1| ≤ ∆, the right hand side of (4) is
maximized if |V1| = ∆. Substituting this yields |V2| ≤ p−2

p−1
∆2. 2

Theorem 1 Let p ≥ 3. Let G be a connected graph of order n, maximum
degree ∆ and diameter D, which contains no K1,p as an induced subgraph.
Then

n ≤ 1 +
D∑
i=1

(p− 2

p− 1

)i−1

∆i.
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Proof. Let G be a K1,p-free graph of degree at most ∆ and diameter D,
rooted at a vertex v. From Lemma 2 it follows that |V2| ≤ p−2

p−1
∆2. Since G

is K1,p-free, we have α(G[N(x) ∩ Vi]) ≤ p − 2 for all x ∈ Vi−1, 2 ≤ i ≤ D.
This implies

α(G[Vi]) ≤ |Vi−1|(p− 2).

As above, applying Corollary A to G[Vi] we obtain

|Vi+1| ≤
∑
u∈Vi

degG(u)− 2|E(G[Vi])| − |E(Vi−1, Vi)|

≤ |Vi|∆− |Vi|
( |Vi|
|Vi−1|(p− 2)

− 1
)
− |Vi|

= |Vi|
(

∆− |Vi|
|Vi−1|(p− 2)

)
. (5)

We now show that, for i = 1, 2, . . . , D, we have |Vi| ≤ (p−2
p−1

)i−1∆i. The proof
is by induction on i. For i = 1, 2 the inequality has already been shown, so
we assume that i ≥ 3. Denote the right hand side of (5) by f . We consider
two cases.

Case 1: p = 3.
Simple maximisation shows that f , as a function of |Vi| attains its maximum
if |Vi| = ∆

2
|Vi−1|. Hence

|Vi+1| ≤
∆

2
|Vi−1|

(
∆− ∆|Vi−1|

2|Vi−1|

)
=

∆2

4
|Vi−1|.

Case 2: p ≥ 4.
f is increasing in |Vi−1|. Moreover, since |Vi| < ∆|Vi−1|, f is also increasing
in |Vi|. Hence

|Vi+1| ≤ |Vi|
(

∆− |Vi|
|Vi−1|(p− 2)

)
≤

(p− 2

p− 1

)i−1

∆i
(

∆−
(p−2
p−1

)i−1∆i

(p−2
p−1

)i−2∆i−1(p− 2)

)
=
(p− 2

p− 1

)i
∆i+1,

as desired. 2

We now focus on the case p = 3, i.e., claw-free graphs. Theorem 1 shows
that for a claw-free, connected graph of maximum degree ∆ and diameter
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D, the order n can be bounded by

n ≤ 1 + 2
D∑
i=1

(∆

2

)i
.

We refer to this as the claw-free Moore bound. We improve this bound for
even ∆ in two steps. In Theorem 2 below we show that every claw-free graph
of even maximum degree ∆ and diameter D whose order is close to the claw-
free Moore bound is the underlying graph of some 2-regular, (∆

2
+1)-uniform

hypergraph. Then we improve the hypergraph Moore bound for 2-regular
hypergraphs in Theorem 3.

We call a vertex u partitionable if the neighbourhood of u can be par-
titioned into two disjoint sets such that each set induces a complete graph.
We call u equipartitionable if the neighbourhood of u can be partitioned into
two disjoint sets of equal cardinality such that each set induces a complete
graph.

Theorem 2 Let G be a connected, claw-free graph of order n, diameter D
and even maximum degree ∆. If

n > 1 + 2
D∑
i=1

(∆

2

)i
− 2
(∆

2

)D−2

,

then G is ∆-regular and every vertex of G is equipartitionable. Moreover, G
is the underlying graph of some 2-regular, (∆

2
+ 1)-uniform hypergraph.

Proof. Let G be rooted at an arbitrary but fixed vertex v, which we will
determine later. For i = 0, 1, . . . , D we denote the ith distance layer, i.e., the
set of vertices at distance exactly i from v, by Vi.

Claim 1: Let vi ∈ Vi, 1 ≤ i ≤ D − 2. If |N(vi) ∩ V≤i| = ∆
2

+ s, then vi has

in Vi+2 at most ∆2

4
− s2 descendants if s > 0, and at most ∆2

4
descendants if

s ≤ 0.

Let |N(vi) ∩ Vi+1| = ∆
2
− p. Then p ≥ s. Since G is claw-free, and since vi

is adjacent to some vertex in Vi−1, the set N(vi) ∩ Vi+1 induces a complete
graph K∆

2
−p. Hence each neighbour of vi in Vi+1 is adjacent to at most ∆

2
+p

vertices in Vi+2. Therefore, vi has at most(∆

2
− p
)(∆

2
+ p
)

=
(∆

2

)2

− p2 (6)
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descendants in Vi+2. Clearly, (6) is at most (∆
2

)2 − s2 if s > 0 and (6) is at
most (∆

2
)2 if s ≤ 0.

As an immediate consequence of Claim 1 we obtain the following claim:

Claim 2: Let 1 ≤ i ≤ D − 2. Then |Vi+2| ≤ ∆2

4
|Vi|.

Claim 3: |V2| > ∆2

2
− 2 or |V3| > ∆3

4
−∆ + 2.

Suppose to the contrary that |V2| ≤ ∆2

2
− 2 and |V3| ≤ ∆3

4
− ∆ + 2. Then

|V2| ≤ ∆2

2
− 2 + 4

∆
. Repeated application of Claim 2 yields that,

|Vi| ≤
∆i

2i−1
− ∆i−2

2i−3
+

∆i−3

2i−4
for i = 2, 3, . . . , D.

Summation over i = 2, 3, . . . , D yields

n = 1 +
D∑
i=1

|Vi|

≤ 1 +
D∑
i=1

∆i

2i−1
−

D∑
i=1

∆i−2

2i−3
+

D∑
i=2

∆i−3

2i−4

= 1 +
D∑
i=1

∆i

2i−1
− 2
(∆

2

)D−2

,

a contradiction to the hypothesis of the lemma.

Claim 4: Every vertex of G is partitionable.

Suppose to the contrary that G contains a vertex that is not partitionable.
Denote this vertex by v and root G at v. Then G[V1] cannot be partitioned
into two sets such that each set induces a clique. Since ∆ is even, it follows

by Lemma 1 that ∆ ≥ 6 and the graph G[V1] has at least |V1|2
4
− 5

4
edges. Let

|V1| = ∆− p. Then we bound |V2| as follows.

|V2| ≤ |E(V1, V2)| (7)

≤
∑
u∈V1

degG(u)− 2|E(G[V1])| − |E(V0, V1)|

≤ |V1|∆− 2
( |V1|2

4
− 5

4

)
− |V1|

=
∆2

2
−∆ +

5

2
+ p− p2

2
,
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which is at most ∆2

2
− 3 since p− p2

2
≤ 1

2
for any p.

We now show that |V3| ≤ ∆3

4
− ∆ + 2, which yields a contradiction to

Claim 3. If |V1| ≤ ∆− 1, then |V3| ≤ (∆− 1)∆2

4
< ∆3

4
−∆ + 2, so we assume

that |V1| = ∆. Let u1, u2, . . . , u∆ be the neighbours of v, and define si by
|N(ui)∩V≤1| = ∆

2
+si for i = 1, 2, . . . ,∆. We first bound

∑∆
i=1 si from below.

Since |V1| is even, by Lemma 1, the graph G[V1] has at least ∆2

4
− 1 edges.

Hence

∆∑
i=1

|N(ui) ∩ V≤1| = 2|E(G[V1])|+ ∆ ≥ 2
(∆2

4
− 1
)

+ ∆ =
∆2

2
+ ∆− 2.

On the other hand we have

∆∑
i=1

|N(ui) ∩ V≤1| =
∆∑
i=1

(∆

2
+ si

)
=

∆2

2
+

∆∑
i=1

si.

The last two inequalities imply
∑∆

i=1 si ≥ ∆− 2.
Let V ′1 be the subset of V1 containing those ui for which si > 0. We may

assume that V ′1 = {u1, u2, . . . , u∆′} where ∆′ ≤ ∆. Clearly,
∑∆′

i=1 si ≥ ∆− 2.
From Claim 1 it follows that any vertex ui, where i = 1, 2, . . . ,∆′ (where
i = ∆′+1,∆′+2, . . . ,∆) has at most ∆2

4
−s2

i (at most ∆2

4
) descendants in V3.

Then |V3| ≤ ∆3

4
−
∑∆′

i=1 s
2
i . Since

∑∆′

i=1 s
2
i ≥ ∆−2, we have |V3| ≤ ∆3

4
−∆+2.

This, in conjunction with |V2| ≤ ∆2

2
− 3 yields a contradiction to Claim 3,

and so Claim 4 follows.

From now on we will denote the two cliques in which a vertex u is con-
tained by C1(u) and C2(u), and their cardinalities as c1(u) and c2(u), respec-
tively. (If there is more than one way to partition the neighbours of u into
cliques then chose any.) Note that c1(u) + c2(u) = degG(u) + 2.

Claim 5: For each vertex u ∈ V1 we have⋃
x∈V1−{u}

N(x) ∩ V2 ⊂
⋃
x∈V1

N(x) ∩ V2.

Suppose to the contrary that there exists a vertex u ∈ V1 with
⋃

x∈V1
N(x)∩

V2 =
⋃

x∈V1−{u}N(x)∩V2. For i = 1, 2, every vertex in Ci(v)−{v} is adjacent

to at least ci(v) − 1 vertices in V0 ∪ V1, and has thus at most ∆ − ci(v) + 1
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descendants in V2. We may assume that u ∈ C1(v). Then, by our hypothesis,

|V2| ≤ (c1(v)− 2)(∆− c1(v) + 1) + (c2(v)− 1)(∆− c2(v) + 1)

=
2∑

i=1

(ci(v)− 1)(∆− ci(v) + 1)− (∆− c1(v) + 1).

It is now easy to see that (c2(v)−1)(∆− c2(v)+1) ≤ ∆2

4
and (c1(v)−2)(∆−

c1(v)+1) ≤ ∆
2

(∆
2
−1), implying that |V2| ≤ ∆2

4
− ∆

2
≤ ∆2

4
−2. We bound |V3|

as follows. Since every vertex in V3 is a descendant of a vertex in V1 − {u},
we have by Claim 2 that |V3| ≤ (∆− 1)∆2

4
≤ ∆3

4
−∆ + 2. These bounds on

|V2| and |V3| yield a contradiction to Claim 3, so Claim 5 follows.

Claim 6: There is no edge joining a vertex in C1(v) − {v} to a vertex in
C2(v)− {v}.
Suppose to the contrary that there exists an edge uw with u ∈ C1(v)−{v} and
w ∈ C2(v)− {v}. Without loss of generality we may assume that v ∈ C1(u)
and v ∈ C1(w), so (C1(u)∪C1(w))∩V2 = ∅. Then C2(u) does not contain any
vertex in V1−{u} since otherwise, if there was a vertex x ∈ C2(u)∩(V1−{u}),
every neighbour of u in V2 would also be a neighbour of x, contradicting
Claim 5. Similarly C2(w) does not contain any vertex in V1 − {w}. Hence
w ∈ C1(u), and so w is adjacent to every vertex in C1(u) and thus to every
vertex in V1. This implies C1(w) = V0 ∪ V1, and so the neighbourhood of v
induces a clique. If now v has degree k, then every vertex in V1 is adjacent
to at most ∆− k vertices in V2. Hence

|V2| ≤ k(∆− k) ≤ ∆2

4
≤ ∆2

2
− 2.

Furthermore, it follows from Claim 1 that

|V3| ≤
{

k∆2

4
if k ≤ ∆

2
,

k(∆2

4
− (k − ∆

2
)2) if k > ∆

2
,

which is easily seen to be less than ∆3

4
−∆ + 2, and so we obtain a contra-

diction to Claim 3. This proves Claim 6.

Since v is arbitrary, Claim 6 implies that the neighbourhood of every
vertex induces a graph isomorphic to the disjoint union of two complete
graphs. This yields the following claim.
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Claim 7: Let uw ∈ E(G). If u ∈ Ci(w) and w ∈ Cj(u), then Ci(w) = Cj(u).
Furthermore, if K is an inclusion-maximal clique of G, then for each u ∈ K
we have Ci(u) = K for some i ∈ {1, 2}.
Claim 8: For all u ∈ V and i ∈ {1, 2} we have ci(u) 6= ∆

2
.

Suppose to the contrary that there exists a vertex u with, say, c1(u) = ∆
2

.
Then C1(u) forms a maximal clique of order ∆

2
. We consider three cases.

Case 1: There exists a maximal clique K of G of order ∆
2

, such that every
vertex of K has degree ∆.

It follows from Claim 7 that for every w ∈ K, we have Ci(w) = K for some
i ∈ {1, 2}. We may assume that C1(w) = K for all w ∈ K. Then each C2(w)
is a clique of order ∆

2
+ 2. Choose v to be one of the vertices in K and root

G at v. For any vertex u ∈ C1(v) − {v} we have |N(u) ∩ V2| ≤ ∆
2

+ 1, and
for any u ∈ C2(v)− {v} we have |N(u) ∩ V2| ≤ ∆

2
− 1. Therefore,

|V2| ≤
∑
u∈V1

|N(u) ∩ V2| ≤
(∆

2
− 1
)(∆

2
+ 1
)

+
(∆

2
+ 1
)(∆

2
− 1
)

=
∆2

2
− 2.

Let u ∈ C1(v)−{v}. Every vertex in N(u)∩V2 has at least ∆
2

+1 neighbours
in V1 ∪ V2, and thus at most ∆

2
− 1 neighbours in V3. Hence, u has at most

(∆
2

+1)(∆
2
−1) descendants in V3. Now let u ∈ C2(v)−{v}. Then u is adjacent

to ∆
2

+ 1 vertices in V0 ∪ V1, and thus has at most ∆2

4
− 1 descendants in V3

by Claim 1. Hence we obtain

|V3| ≤ (c1(v)− 1)
(∆2

4
− 1
)

+ (c2(v)− 1)
(∆2

4
− 1
)

=
∆3

4
−∆.

This bound on |V3| together with the above bound on |V2| yield a contradic-
tion to Claim 3.

Case 2: Every maximal clique of order ∆
2

contains a vertex of degree at
most ∆− 1 and a vertex of degree ∆.

Choose v to be a vertex of degree ∆ which is contained in a maximum clique,
C1(v) say, of order ∆

2
, and root G at v. As in the previous case it follows

that |V2| ≤ ∆2

2
− 2.

To bound |V3|, we bound the number of descendants of the vertices in
C1(v) − {v} and in C2(v) − {v} separately. By Claim 2 every vertex in
C1(v)− {v} has at most ∆2

4
descendants in V3.

12



Now consider a vertex u ∈ C2(v). We show that u has at most ∆2

4
− 2

descendants in V3. By Claim 7, C2(v) = Ci(u) for some i ∈ {1, 2}, we may
assume that C2(v) = C1(u). Then N(u) ∩ V2 ⊂ C2(V2) − {u}, and so u has
at most ∆

2
− 1 neighbours in V2. We consider two cases: (a) u has ∆

2
− 1

neighbours in V2, and (b) u has at most ∆
2
− 2 neighbours in V2.

In case (a), degu = ∆, C2(u) − {u} ⊆ V2, and C2(u) is a maximal clique
of order ∆

2
. By the defining condition of Case 2, C2(u) contains a vertex of

degree at most ∆− 1, which thus has at most ∆
2

neighbours in V3, while the
other ∆

2
− 2 vertices of C2(u) − {u} have at most ∆

2
+ 1 neighbours in V3.

Hence u has at most (∆
2
− 2)(∆

2
+ 1) + ∆

2
= ∆2

4
− 2 descendants in V3. In

case (b), if u has ∆
2
− p neighbours in V2, where p ≥ 2, then u has at most

(∆
2
− p)(∆

2
+ p) ≤ ∆2

4
− 4 descendants in V3, as desired.

In total it follows that

|V3| ≤ (c1(v)− 1)
∆2

4
+ (c2(v)− 1)

(∆2

4
− 2
)

=
∆3

4
−∆− 2.

This, in conjunction with the bound on |V2| yields a contradiction to Claim
3.

Case 3: There exists a maximal clique of order ∆
2

, whose vertices all have
degree at most ∆− 1.

Choose a vertex v of such a clique, and root G at v. Let the clique of order
∆
2

be, say, C1(v). Since deg(v) ≤ ∆− 1, we have c2(v) ≤ ∆
2

+ 1. Since each
vertex in C1(v) − {v} has at most ∆

2
neighbours in V2, and every vertex in

C2(v)− {v} has at most ∆− c2(v) + 1 neighbours in V2, we have

|V2| ≤ (c1(v)− 1)
∆

2
+ (c2(v)− 1)(∆− c2(v) + 1).

Now c1(v) = ∆
2

, and since c2(v) ≤ ∆
2

+ 1, we have

|V2| ≤
(∆

2
− 1
)∆

2
+

∆2

4
=

∆2

4
− ∆

2
≤ ∆2

4
− 2.

Since each of the ∆ − 1 vertices in V1 has at most ∆2

4
descendants in V3 by

Claim 2, we obtain

|V3| ≤ (∆− 1)
∆2

4
≤ ∆3

4
−∆ + 2.

13



The bounds on |V2| and |V3| contradict Claim 3. Claim 8 follows.

Claim 9: G is ∆-regular and every vertex of G is equitably partitionable.

Suppose to the contrary that G has a vertex v for which c1(v) 6= ∆
2

+ 1
or c2(v) 6= ∆

2
+ 1. Root G at v. We may assume that c1(v) ≤ c2(v), so

c1(v) ≤ ∆
2

+ 1. If c1(v) = ∆
2

+ 1 then c1(v) = c2(v), contradicting the
choice of v. If c1(v) = ∆

2
then we have a contradiction to Claim 7, therefore

c1(v) = ∆
2

+ 1 − p for some integer p ≥ 2, and thus c2(v) = ∆
2

+ 1 + s for
some integer s ≤ p. Consider u ∈ V1. If u ∈ C1(v)−{v}, then u has at most
∆
2

+ p neighbours in V2, and if u ∈ C2(v) − {v}, then u has at most ∆
2
− s

neighbours in V2. Hence, since p ≥ 2,

|V2| ≤
(∆

2
− p
)(∆

2
+ p
)

+
(∆

2
− s
)(∆

2
+ s
)

=
∆2

2
− p2 − s2 <

∆2

2
− 2.

Now bound |V3|. If |V1| ≤ ∆−1, then by Claim 2, |V3| ≤ ∆3

4
−∆2

4
< ∆3

4
−∆+2,

so we may assume that |V1| = ∆ and p = s ≥ 2. By Claim 1, any vertex
in V (C1(v)) − {v} (in V (C2(v)) − {v}) has at most ∆2

4
(at most ∆2

4
− p2)

descendants in V3. Thus

|V3| ≤
(∆

2
− p
)∆2

4
+
(∆

2
+ p
)(∆2

4
− p2

)
=

∆3

4
− ∆

2
p2 − p3 <

∆3

4
−∆ + 2,

and we obtain a contradiction to Claim 3.

Claim 10: G is the underlying graph of a 2-regular, (∆
2

+ 1)-uniform hyper-
graph.

Let Ki, i = 1, 2, . . . ,m be the (inclusion) maximal cliques of G. Define H to
be the hypergraph on the vertex set V (G) whose hyperedges are the maximal
cliques Ki, i = 1, 2, . . . ,m of G. By Claim 7, each Ki is of the form Cj(u) for
some vertex u of G, and so H is 2-regular, and G is the underlying graph of
H. By Claim 9 we have |Ki| = ∆

2
+1, so H is (∆

2
+1)-uniform, as desired. 2

Theorem 3 Let k ≥ 3 and let G be a 2-regular, k-uniform hypergraph of
diameter D. Let ck := 2k2−2k+1

k2−k+2
. Then

n ≤ 1 + 2
D∑
i=1

(k − 1)i − ck
D−2∑
i=0

(k − 1)i.

14



Proof. It suffices to show that for every real c with 0 < c < ck we have

n < 1 + 2
D∑
i=1

(k − 1)i − c
D−2∑
i=0

(k − 1)i.

We prove this by contradiction. Suppose to the contrary that there exists a
2-regular, k-uniform hypergraph G of order n and diameter D with

n ≥ 1 + 2
D∑
i=1

(k − 1)i − c
D−2∑
i=0

(k − 1)i, (8)

for some real c with 0 < c < ck.
Let G be rooted at a vertex v which we will determine later. Every vertex

w of G is incident with exactly two hyperedges, which we denote by e(w)
and f(w), respectively. For the root v we assign the names e(v) and f(v) to
the hyperedges containing v in an arbitrary way. For w ∈ Vi, i = 1, 2, . . . , D,
we assign the names e(w) and f(w) such that e(w) always contains a vertex
in Vi−1. Clearly such a vertex always exists. Hence e(w) ⊆ Vi−1 ∪ Vi, and
f(w) ⊆ Vi−1 ∪ Vi or f(w) ⊆ Vi ∪ Vi+1. This implies that, for all i ≥ 1,

|Vi+1| ≤ |
⋃
w∈Vi

(f(w)− {w}| ≤
∑
w∈Vi

|f(w)− {w}| = (k − 1)|Vi|. (9)

This in turn implies that |Vi| ≤ 2(k− 1)i for i = 1, 2, . . . , D, and by summa-
tion over all i ∈ {1, 2, . . . , D} we obtain n ≤ 1 + 2

∑D
i=1(k− 1)i, which is the

Moore bound for 2-regular hypergraphs.
To improve this bound we need some further notation. For i ∈ {1, 2, . . . , D}

we define Bi to be the set of vertices u ∈ Vi for which |e(u) ∩ Vi−1| +
|f(u) ∩ Vi−1| ≥ 2. Further let B′i be the set of vertices u ∈ Bi for which
f(u)∩Vi−1 6= ∅ (and thus f(u) ⊆ Vi−1 ∪Vi), and let B′′i be the set of vertices
of Bi for which f(u) ∩ Vi−1 = ∅ (and thus f(u) ⊆ Vi ∪ Vi+1). Note that B′′1
is empty. Denote the cardinalities of Bi, B

′
i and B′′i by bi, b

′
i and b′′i , respec-

tively. Clearly, bi = b′i + b′′i . We further let B̂i = N [Bi] ∩ Vi, B̂′i = N [B′i] ∩ Vi
and B̂′′i = N [B′′i ] ∩ Vi for i ∈ {1, 2, . . . , D}, B =

⋃D−1
i=2 Bi and B̂ =

⋃D−1
i=2 B̂i.

Note that we are not assuming that these sets are nonempty. In the
next three claims of the proof we show that our assumption on the order
of G implies that the sets Bi are so small that there exists a hyperedge
f ⊂ VD − B̂D such that f has no ancestor in B̂. This in turn is used to
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obtain a contradiction and to complete the proof of Theorem 3.

Claim 1: Let 1 ≤ i ≤ D − 1. Then

n ≤ 1 + 2
D∑
i=1

(k − 1)i −
D−1∑
i=1

(k − 1)D−i(2b′i + b′′i )− bD.

Clearly, we have |V1| = 2(k−1)−b′1 = 2(k−1)−b1. Since for j ∈ {1, 2, . . . , D−
1} the vertices in B′j have no neighbour in Vj+1, we have

Vj+1 =
⋃

u∈Vj−B′
j

(f(u) ∩ Vj+1).

Since each f(u)∩Vj+1 contains at most k−1 vertices, and since bj+1 vertices
in Vj+1 appear in two of the sets f(u)∩Vj+1, we have |Vj+1| ≤ (k− 1)(|Vj| −
b′j)−bj+1. Repeated application of this inequality yields that, for 1 ≤ j ≤ D,

|Vj| ≤ 2(k − 1)j −
j−1∑
i=1

(k − 1)j−i(bi + b′i)− bj.

Summation over all j ∈ {1, 2, . . . , D}, in conjunction with bi + b′i = 2b′i + b′′i ,
yields

n ≤ 1 + 2
D∑
j=1

(k − 1)j −
D∑
j=3

j−1∑
i=1

(k − 1)j−i(bi + b′i)−
D∑
j=1

bj

≤ 1 + 2
D∑
i=1

(k − 1)i −
D−1∑
i=1

(k − 1)D−i(2b′i + b′′i )− bD, (10)

as desired.

Let F (B̂) denote the number of vertices in VD which are descendants of
vertices in B̂.

Claim 2: F (B̂) ≤ (2k − 4)
∑D−1

i=1 b′i(k − 1)D−i +
∑D−1

i=1 b′′i (k − 1)D−i.

We bound the number of descendants of vertices in B̂i for 1 ≤ i ≤ D − 1.
First consider the vertices in B′i. For each u ∈ B′i both hyperedges, e(u)

and f(u) contain a vertex of Vi−1, and no vertex of Vi+1. Hence, |B̂′i| ≤
b′i(2k − 3). Since any vertex of B̂′i −B′i is adjacent to at most k − 1 vertices
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in Vi+1, there are at most b′i(2k − 4)(k − 1)D−i vertices in VD which are

descendants of vertices in B̂′i.
Now consider the vertices in B̂′′i . Each u ∈ B′′i has at most (k − 1)D−i

descendants in VD. We claim that for each neighbour w of u in B̂′′i − B′′i ,
every descendant of w is also a descendant of u. Indeed, since u ∈ B′′i ,
we have f(u) ⊆ Vi ∪ Vi+1. Each neighbour of u in e(u) ∩ Vi is also in B′′i ,
so w ∈ f(u). Hence f(w) = f(u), and so N(u) ∩ Vi+1 = f(u) ∩ Vi+1 =
f(w) ∩ Vi+1 = N(w) ∩ Vi+1, as desired. Hence the descendants of vertices
in B̂′′i are descendants of vertices in B′′i , and so there are in total at most
b′′i (k − 1)D−i descendants of vertices in B̂′′i in VD.

It follows from the above that the total number of descendants in VD of
vertices in B̂i is at most (2k−4)b′i(k−1)D−i + b′′i (k−1)D−i. Summation over
all i ∈ {1, 2, . . . , D − 1} now yields the claim.

Claim 3: F (B̂) ≤ c(k − 1)D−1 − c− (k − 2)bD.

From Claim 1 and our assumption |V (G)| ≥ 1+2
∑D

i=1(k−1)i−c
∑D−2

i=0 (k−1)i

we get that

c
D−2∑
i=0

(k − 1)i ≥
D−1∑
i=1

(k − 1)D−i(2b′i + b′′i ) + bD,

or equivalently,

D−1∑
i=1

(k − 1)D−ib′i ≤
c

2

D−2∑
i=0

(k − 1)i − 1

2

D−1∑
i=1

(k − 1)D−ib′′i −
1

2
bD. (11)

Substituting the right hand side of (11) in Claim 2 yields

F (B̂) ≤ (2k − 4)
D−1∑
i=1

b′i(k − 1)D−i +
D−1∑
i=1

b′′i (k − 1)D−i

≤ (k − 2)
[
c

D−2∑
i=0

(k − 1)i −
D−1∑
i=1

(k − 1)D−ib′′i − bD
]

+
D−1∑
i=1

b′′i (k − 1)D−i

≤ (k − 2)
[
c

D−2∑
i=0

(k − 1)i − bD
]

= c(k − 1)D−1 − c− (k − 2)bD.
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Claim 4: There exists a hyperedge f ⊂ VD − B̂D, such that no vertex in f
has an ancestor in B̂.

For any u ∈ VD − B̂D, e(u) contains exactly one vertex of VD−1 and f(u)
contains only vertices of VD − B̂D. Let N be the number of hyperedges in
G[VD− B̂D]. In order to prove the claim, it suffices to show that N > F (B̂).
Clearly, N = |VD − B̂D|/k, so we first bound |VD − B̂D| from below.

Since |V (G)| ≥ 1 + 2
∑D

i=1(k − 1)i − c
∑D−2

i=0 (k − 1)i and
∑D−1

i=0 |Vi| ≤
1 + 2

∑D−1
i=1 (k − 1)i, we get |VD| ≥ 2(k − 1)D − c

∑D−2
i=0 (k − 1)i. Since

|B̂D| ≤ (2k − 3)bD, it follows that

|VD − B̂D| ≥ 2(k − 1)D − c
D−2∑
i=0

(k − 1)i − (2k − 3)bD

≥ 2(k − 1)D − 2c(k − 1)D−2 − (2k − 3)bD.

Considering the right hand side of the last inequality, we note that

[2(k − 1)D − 2c(k − 1)D−2]/k > c(k − 1)D−1

This follows from the fact that the equivalent inequalities

2(k − 1)D − 2c(k − 1)D−2 > c(k − 1)D + c(k − 1)D−1

and
(2− c)(k − 1)2 − c(k − 1)− 2c > 0

hold for our choice of c. Hence

N =
|VD − B̂D|

k
≥ c(k−1)D−1− 2k − 3

k
bD ≥ c(k−1)D−1−(k−2)bD > F (B̂),

the last inequality following from Claim 3 and the fact that c > 0. This
proves Claim 4.

We are now in a position to complete the proof. By Claim 4 there exists
a hyperedge f ⊆ VD, such that none of its vertices has an ancestor in B̂.

We show that for every vertex x ∈ f there exists a unique vertex x ∈ V1 at
distance D − 1 from x. Let x ∈ f be arbitrary, and let v, x1, x2, . . . , xD−1, x
be a v − x path of length D, so xi ∈ Vi for i = 1, 2, . . . , D − 1. Then
e(xi)∩Vi−1 = {xi−1} since xi /∈ B, and f(xi) = e(xi+1) for i = 1, 2, . . . , D−1.
So every vertex on the v − x path has a unique neighbour which is closer to
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v, and so the v − w path of length D is unique, which implies that x := x1

is the unique vertex in V1 at distance D − 1 from x.
Now fix a vertex w ∈ f . Without loss of generality we assume that

w ∈ e(v).
We claim that for each u ∈ V1 there exists x ∈ f such that x = u. First

let u ∈ f(v). Consider a shortest u− w path P (u,w). Clearly, P (u,w) does
not contain v. Also, P (u,w) cannot contain vertex vD−1, since otherwise,
if P (u,w) contained vD−1, it would be of the form u1, u2, . . . , uj, vj, vj+1, . . .,
vD−1, w, where ui ∈ Vi for i = 1, 2, . . . , j, u1 = u and vl ∈ Vl, l = j, j +
1, . . . , D − 1. Now uj ∈ e(vj) ∪ f(vj), but since f(vj) has only vertex vj in
Vj, we have uj ∈ e(vj). But since e(vj) has only one vertex in Vj−1, viz.
vj−1, we have, uj−1 = vj−1, and so P is not a shortest path since vj and
uj−1 are adjacent, a contradiction. Therefore P (u,w) does not contain vD−1,
and so P (u,w) contains a vertex x ∈ f − {w}. Hence P (u,w) has the form
u1, . . . , x, w, implying x = u, as desired. Now let u ∈ e(v). Fixing a vertex
w′ ∈ f for which w′ ∈ f(v) and applying the same argument as above, with
w′ replacing w, we show there exists x ∈ f such that x = u. In total we
conclude that for each vertex in u ∈ V1 we have x for some x ∈ f .

Hence the mapping x → x from f to V1 is surjective, and so |f | ≥ |V1|.
But |f | = k and |V1| = 2k − 2, which implies k ≤ 2. This contradiction to
k ≥ 3 completes the proof of Theorem 3. 2

Corollary 1 There are no Moore geometries of degree 2, diameter D ≥ 2
and rank k ≥ 3.

Theorem 4 Let ∆, D be positive integers such that ∆ ≥ 4 is even. Let

c′∆ := 2 (∆/2)2

(∆/2)2+∆/2+2
. Then

cf∆,D ≤ 1 + 2
D∑
i=1

(∆

2

)i
− c′∆

D−2∑
i=0

(∆

2

)i
.

Proof. We prove the result by contradiction. Suppose that there exists
a claw-free graph G of even maximum degree ∆ ≥ 4, diameter D ≥ 2 and
order n, where

n > 1 + 2
D∑
i=1

(∆

2

)i
− c′∆

D−2∑
i=0

(∆

2

)i
,
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and c′∆ is as defined above. In order to show that G satisfies the hypothesis
of Theorem 2 it suffices to prove that

1 + 2
D∑
i=1

(∆

2

)i
− c′∆

D−2∑
i=0

(∆

2

)i
> 1 + 2

D∑
i=1

(∆

2

)i
− 2
(∆

2

)D−2

,

or, equivalently,

c′∆ <
2
(

∆
2

)D−2

∑D−2
i=0 (∆

2
)i
,

which is easy to verify for our choice of c′∆.
Hence, by Theorem 2, G is the underlying graph of a 2-regular, k-uniform

hypergraph H, where k = ∆
2

+ 1. But then, since ck = c′∆,

n(H) = n(G) > 1+2
D∑
i=1

(∆

2

)i
−c′∆

D−2∑
i=0

(∆

2

)i
= 1+2

D∑
i=1

(k−1)i−ck
D−2∑
i=0

(k−1)i,

a contradiction to Theorem 3. 2

3. Lower bounds

In this section we obtain lower bounds on cf∆,D. In view of Theorem
2, underlying graphs of 2-regular, uniform, linear hypergraphs (or, equiva-
lently, graphs whose vertices are equipartitionable) are likely candidates for
large claw-free graphs of given degree and diameter. Note that graphs whose
vertices are equipartitionable are line graphs, because the neighbouhood of
every vertex of a line graph can be divided into (at most) 2 cliques. It also
follows that no vertex of a line graph has 3 neighbours such that all of them
are non-adjacent. Hence all line graphs are claw-free. We mainly consider
line graphs of known constructions to obtain lower bounds on cf∆,D.

Is is easy to see that the line graph of a connected graph of diameter D
has diameter at most D+1, and that it is at most D if the graph is bipartite.

Delorme [7] showed that for any ∆ and D, there exists a bipartite graph of
order 2c(∆

2
)D−1, where c ∈ {1, 2, . . . , 6} depending on D (for example c = 6

if D ≡ 6 or 26 (mod 30)). Taking line graphs we obtain graphs of order
2c(∆

2
)D and degree 2∆− 2. This yields the following lower bound on cf∆,D.
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Proposition 1 For any D and any even ∆ there exists a c ∈ {1, 2, 3, 4, 5, 6},
depending only on D, such that

cf∆,D ≥ 2c
(∆ + 2

4

)D
.

From a construction of Canale and Gómez [4] we can get line graphs of
maximum degree ∆, diameter D and order at least 29

40
(∆+2

2.9
)D for infinitely

many values of ∆ and D. Hence the above bound can be improved as follows.

Proposition 2 For infinitely many values of ∆ and D we have

cf∆,D ≥
29

40

(∆ + 2

2.9

)D
.

For diameters D = 2, 3, 4 and 6 we obtain large claw-free graphs from
bipartite Moore graphs. For diameter D = 2, the bipartite Moore graphs
are the complete bipartite graphs with partite sets of order ∆. If ∆ − 1
is a prime power, the bipartite Moore graphs of diameter 3 and degree ∆
are the incidence graphs of projective planes, and for diameter 4 and degree
∆ the graphs are called generalized quadrangles. For D = 6 generalized
hexagons exist if ∆− 1 is an odd power of 3, see [3]. The order of bipartite

Moore graphs of degree ∆ and diameter D is 2[(∆−1)D−1]
∆−2

. Line graphs of
the bipartite Moore graphs of diameter D = 2, 3, 4 and 6 give the bound
cf∆′,D ≥ ∆′+2

∆′−2
[(∆′

2
)D − 1] where ∆′ = 2∆− 2.

Proposition 3 If (i) D = 2 and ∆ is even, (ii) D = 3 or 4, and ∆
2

is a
prime power, (iii) D = 6 and ∆

2
is an odd power of 3, then we have

cf∆,D ≥
∆ + 2

∆− 2

[(∆

2

)D
− 1
]
.

We note that the above line graphs are underlying graphs of 2-regular,
uniform hypergraphs. Hence they also yield lower bounds on the order of
2-regular, uniform hypergraphs of given rank and diameter.

For diameter 2 we construct claw-free graphs that improve the bound in
Proposition 3.

Theorem 5 Let ∆ ≥ 6 such that ∆ ≡ 2 (mod 4). Then cf∆,2 ≥ 5
16

(∆ + 2)2.
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Proof. We construct a ∆-regular claw-free graph G of diameter 2 and
order 5

16
(∆+2)2, where ∆ ≥ 6, ∆ ≡ 2 (mod 4). Let X be a set of order p ≥ 2

and let Z5 be the (additive) cyclic group of order 5. Let G be the graph with
vertex set V (G) = Z5 × X × X, where vertex (a, x1, x2) is adjacent to the
vertices of the form

(a, x1, y1), (a, y2, x2), (a− 1, y3, x1), or (a+ 1, x2, y4),

where y1 ∈ X \ {x2}, y2 ∈ X \ {x1}, and y3, y4 ∈ X. Clearly, the degree
of every vertex is ∆ = 4p − 2 and the order of G is 5p2 = 5

16
(∆ + 2)2. The

neigbours of (a, x1, x2) can be divided into two cliques, one clique containing
the neighbours of the form (a, x1, y1) and (a− 1, y3, x1), and the other clique
containing the neighbours of the form (a, y2, x2) and (a + 1, x2, y4). Hence,
G is a line graph and thus claw-free.

It remains to show that the diameter of G is 2. We show that any two
different vertices (a, x1, x2) and (a′, x′1, x

′
2) are either adjacent or there is a

vertex v which is adjacent to both of them. If a′ = a, then v = (a, x′1, x2) for
x1 6= x′1 and x2 6= x′2, and (a, x1, x2) is adjacent to (a′, x′1, x

′
2) for x1 = x′1 or

x2 = x′2. If a′ = a + 1, then v = (a, x1, x
′
1) for x2 6= x′1, otherwise (a, x1, x2)

and (a′, x′1, x
′
2) are adjacent. If a′ = a + 2, then v = (a, x2, x

′
1). The cases

a′ = a− 1 or a− 2 are analogous. Hence, cf∆,2 ≥ 5
16

(∆ + 2)2. 2

The graph constructed above is an underlying graph of a 2-regular, (∆
2

+
1)-uniform hypergraph of diameter 2. Hence we obtain the following corol-
lary.

Corollary 2 For every even integer k ≥ 4 there exists a hypergraph of degree
2, diameter 2, rank k and order 5

4
k2.

Open problems

In this paper we established bounds on the order of claw-free graphs of
given diameter D and degree ∆, where ∆ is even. It would be interesting to
obtain similar results for odd ∆.

We established a connection between large claw-free graphs of given even
degree and diameter and 2-regular hypergraphs. Are there similar connec-
tions between large K1,p-free graphs and (p− 1)-regular hypergraphs?

Much research has been undertaken on the construction of large graphs
of given degree and diameter. Is it possible to give constructions of large
hypergraphs of given rank, degree, and diameter?
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