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Abstract—Incorporated with a receding horizon control (RHC)
approach, a penalty method is proposed to reduce energy wasted
by braking in a heavy haul train’s operation. The train’s practical
nonlinear model is linearized to design the RHC controller.
This controller is then applied to the train practical nonlinear
dynamics and its performances are analyzed. In particular, the
main focus in this study is on the brake penalty’s impact on the
train performances. Meantime, a fence method is presented to
tackle two issues. The first one is that all the cars in a train cannot
be controlled individually due to limit of available transmission
channels for control systems in a long train. The other one is that
the RHC approach suffers from heavy computation and memory
load. Simulations verified that the brake penalty presented in
the design can reduce a train’s energy consumption and in-
train forces remarkably without sacrificing the train’s velocity
tracking performance. Simulations also verified that the fence
method is essential to reduce the related computation load when
the RHC approach is applied to a long heavy haul train. Further,
it is demonstrated that the fence method can effectively shorten
computation time and reduce memory usage without severely
jeopardizing the train’s performance.

Index Terms—Heavy haul trains, braking penalization, RHC,
fence method, optimal control.

I. INTRODUCTION

For a heavy haul train’s operation, reducing energy con-
sumption while ensure both the train’s operation safety and
service quality is an urgent call from the viewpoint of energy
shortage and environment conservation. With this purpose,
Zhuan et al presented optimal train schedulers that optimize
the train’s performances in terms of in-train forces, speed
tracking and energy consumption [1], [2]. Because the train
dynamics are naturally nonlinear, their later work employed
nonlinear regulation theory to solve this problem to obtain
better results as no approximation is required in the controller
design [3]. Also, a series of work in this field have been
done by Howlett et al. Open-loop switching controllers were
proposed in their papers [4], [5] to operate trains ener-
gy efficiently. There are two distinctive differences between
Zhuan’s and Howlett’s works. The first one is whether in-
train dynamics of the train are considered. The in-train forces
were not considered in Howlett’s studies because a single mass
point train model (which models a train as a single mass point)
was used in controller design. Zhuan et al designed controllers
to minimize in-train forces in order to ensure the train’s run
safety with a cascade mass point model. The second difference
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is that Howlett’s work follows switching control framework
and is actually open loop control while Zhuan et al showed
closed loop controllers.

In this paper, a closed-loop receding horizon control (RHC)
approach is adopted to control a train in a closed loop manner
with the objective of reducing the train’s energy usage while
ensuring its operation safety and service quality. The nonlinear
cascade mass point train model [6] is linearized and discretized
to design the RHC controller [7]. In comparison with existing
train operation control approaches, the closed-loop RHC’s
ability to handle (both hard and soft) constraints and to
compensate the degraded performances caused by model plant
mismatch [8] is an advantage from control point of view. As
train dynamics are practically nonlinear, model plant mismatch
exist inevitably between the train dynamics and the linearized
model used in controller design. With respect to this issue,
the RHC approach is better than other approaches [2], [5]
because it solves the problem in a local horizon where the
train dynamics can be considered to be approximately linear.
This further implies that using a linearized train model for
controller design is acceptable.

The objective of the proposed controller is to minimize
energy consumption during the train’s operation to save energy
and reduce emission, to minimize in-train forces experienced
by couplers connecting neighboring cars in the train to ensure
safety, and to keep the train’s speed as close to the given refer-
ence speed profile as possible to ensure the train’s punctuality.
While the reference speed profile of a train on a given track
should and can be optimized as done in [9], [10], it is out of
scope of this paper and is not discussed. Only speed tracking
with respect to a given reference speed profile is addressed.

The most distinct difference between this study and our
previous work is that additional attention is given to energy
wasted by the train’s braking because it is demonstrated in [11]
that statistically, energy wasted by train braking is responsible
for 10-20% of the total energy consumption. Study carried out
in [11] using actual engineering data from trains run from
Eastern Hefei Freight Yard to Chang’anji China showed a 9%
energy consumption reduction by purely avoiding unnecessary
braking. Specifically, a penalty factor for the train’s braking is
introduced to prevent the train from applying excessive braking
forces.

In addition, as a long heavy haul train normally has more
than 150 cars, the RHC approach suffers from heavy com-
putation load and memory demand. Also, the large number
of cars in the train made it impossible to control all the cars
individually because signal transmission channels available for
a control system in a train is limited. For example, 32 channels



were specified according to the standard of the Association of
American Railroads [12], which means that only 32 individual
control signals can be used for controlling the train. To tackle
this issue, a car fence method is also introduced to facilitate
the RHC approach’s practical implementation.

The remainder of this paper is organized as follows: the
braking penalized RHC of heavy haul trains is presented,
followed by the fence methodology in Section II. Simulations
are given in Section III to investigate the impacts of fence
methodology and braking penalization, respectively. Conclud-
ing remarks are drawn in Section IV.

II. RECEDING HORIZON CONTROL OF HEAVY HAUL TRAINS

The braking penalized RHC of heavy haul trains is given in
this section. A penalty factor is introduced to penalize wagons’
braking efforts in a train. The major purpose of this section
is to establish equations that represent the train operation and
mathematical interpretation of the braking penalization so that
the problem could be ready solved.

A. Train model

The cascade mass point model is employed so that in-train
dynamics of the train can be considered. Originally, this model
for a heavy haul train equipped with an electrically controlled
pneumatic braking system was presented in [6]:
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where n is the number of cars in the train, m; and v; are
respectively the ith car’s mass and speed, u; is the effort
of the ith car (driving/braking effort for a locomotive and
braking effort for a wagon). The variable f,, = fr, + fp,,
in which f,, = m;(co, + c1,v; + c2,v?) is the ith car’s rolling
resistance and aerodynamic force with coefficients co,, c1, and

o, determined by experiments, f,, = fq, + fc, is the force

due to the track slope and curvature on which the ith car is

running. The variable f;,, is in-train forces between the ith
and 7 + 1th cars, and z;,, is relative displacement of the 7th
and ¢ + 1th cars.

While (1) is nonlinear and complicated, it reveals both
overall and in-train dynamics of a train. In order to facilitate
controller design, the following procedure is used to deviate
a linear discrete state space model from (1) (more details are
referred to [13]) to be used for controller design:

(1) Linearization: chose a new control variable u, = u; —
(mico, +mica,v? + fpi),i = 1,...,n to make the train
dynamics take the origin as an equilibrium point and
ignore coupler damping effect so that the model becomes
linear.

(2) Discretization: using zero-order hold method with sam-
pling period T to discretize the linearized model.

After the above two steps, the train model used for controller
design is as follows

2(k+1) = Az(k) + Bu' (k) )

where x(k) consists of all car’s current velocities and the
relative displacements of neighboring cars in a train, (k) =
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Since the state variables are not all measurable, only the
locomotives’ speeds, which can be measured in practice [14],
[15], are chosen as outputs:

y Ling, _q (k)]T

y(k) = Cx(k), 3)

where C' is a matrix with zero row vectors except at the
position where a locomotive is used is one. For instance

1,0,...,0
o= sy

when two locomotives are connected together at the front of
the train.

B. Objective function

In [2], an objective function considering energy consump-
tion, velocity tracking and in-train forces is employed. It is
shown that if properly tuned, the designed controller can
emphasize on one of those three factors and a trade-off must be
done. However, that paper failed to take the following aspects
of the optimization into consideration.

Firstly, from the viewpoint of energy consumption, it was
claimed that, statistically, the energy wasted to compensate
kinetic energy loss caused by braking takes account for
10-20% of the total energy consumption during a train’s
operation [11]. This implies that remarkable train operation
performance improvement can be reached by reducing braking
efforts of wagons such that braking loss of kinetic energy is
reduced. In this study, the effort is made to reduce the train’s
energy consumption by using as less braking as possible while
following a predefined speed profile.

So a factor K is presented here to penalize the braking
efforts of wagons. Similar to the work done in [2], a new
objective function is presented as follows
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where v, is the reference speed, and K¢, K., K, are weights
for in-train forces, energy consumption, and velocity tracking,
respectively. The variables ¢y and t; are the beginning and
ending time of the optimization horizon. The variable m is
the total number of locomotives and 1,15, ..., [, denotes the
relative position of those locomotives in the train. Variables
wg, and uw; (1 = 1,2,...,n,i # ;) are used to distinguish
traction/brake forces of locomotives and braking forces of
wagons. Moreover, K; is the penalty factor introduced to
punish braking of wagons.

In order to practice predictive control of the train, the
equation (4) is transformed into its equivalent one as done
in [7] as follows,
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where

Q- diag(Ky, ..., Ky) 0
- 0 diag(K k2, ... Ksk2 )|’
FI' = —2Ky0.[11xn, O1xn1], FS = 2K.[mico, +
fprs---smnco, + fp,], and R is a diagonal matrix

K, ifi=1;,j=12,...,m,

R(i,i) =
(&79) {KbKe, otherwise,

where ¢ = 1,2,...,n and 174, is a row vector with entries
one of specified dimension.

C. Receding horizon control

The basic idea of the RHC approach is that one solves
fixed horizon optimization problem to compute a sequence of
predicted inputs (control variables) over a prediction horizon
Np, and then implements the first control of the calculated
sequence. When the next control time arrives, this process
is repeated. This strategy has been enormously successful in
process control applications [16], [17], [18], [19].

For the train operation problem, the RHC approach uses
current train dynamic state, train model, and operational limits
to calculate future N, changes in the control variable so that
the train’s operation is optimized within the /V,, optimization
window. After calculation, only the first change in control
variable is send out to be implemented, and the calculation
procedure is repeated when the next control instant is arrived.
The RHC formulation for heavy haul trains is given below.

1) Input constraints: The constraints on inputs are the
limitations on the amplitudes and the change rates of a train’s
traction/braking efforts. With the change rates of a wagon’s
brake power is assumed to be unbounded, the constraints can
be written as

l u .
u; <wu; <wu, 1=1,2,...,n,

Aulj < Ay, < Aulj, ji=12,...,m.

where ul, u? are the lower and upper bounds of the ith car’s
effort (control signal), Aufj and Aufj are the lower and upper
limits of the step change of the jth locomotive’s effort.

2) State constraints: State constraints concern two aspects.
The first one is the in-train forces which should be maintained
in a safe range during the train’s operation. The second one
is a hard speed limit which prevents the train’s average speed
from exceeding the reference speed for safety reasons.

As for the relationship between in-train forces and the state
variable, one has f;,, = k;zi,,, in which k; is the elastic
coefficient of the ith coupler. So the constraints on state
variables including speed limit

%Zv <, ™

n—1, (8)

where f! and f* are the lower and upper bounds of in-train
forces.

3) Prediction: State prediction is done as in [7]:
X = Fa(k) + QU, 9

where X = [z(k + 1|k)T, z(k + 2|k)T, ..., z(k + Np|k)T]T
and U = [/ (B)T,u/(k + D)T,...,u'(k + N. — 1)T]T are
predicted state vector and corresponding optimal control signal
based on the current state, and

A B o ... 0
e AB B ... 0
Fo |4 o | 4B AB .. 0
AN ANl AN2p ANy=Ne g

Meanwhile, it is seen in equation (5) that Fj is related to
speed profile v, and F5 is related to f,, which two are directly
related to the train’s position at a given track. Denote the
velocity elements in the state variable x(k+1i|k) as v(k+1i|k),
and the position of the train at time instant k as p(k), the train’s
position at time instant k 4 ¢ can be approximately calculated
as

k) +v(k + j|k)

e+ ifk) = p(k) + 3 7, 2T =10 |

j=1
Note that v(k + i — 1|k) is known according to (9).

After that, the F} and F5 matrix can be calculated during
the prediction procedure owing to the fact that both v, and f,
only dependent on p.

As a result, prediction of F; and F5 is done as follows,

Fl = [F1<I{?)T, ey F](k‘ + Np)]T = Fl('Ur) = Fl@)»

B =[Bk)",... Bk + Ny)" = By(f,) = Fa(p).
where Fy(k + i) and Fy(k + i) are the discrete values of F
and F5 in equation (5), respectively.

Finally, with the above formulation, the train operation
optimization problem in the RHC framework, which can
be uniformly solved by quadratic programming, is given as
follows

minimize

J=UTHU +2U7Tf,

subject to train dynamics (2) and constraints
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and ®, and F, are the first (2n — 1)N, rows of ® and F,
respectively.



It is seen that the train’s current sate x(k) is required to
solve the problem formulated above. In order to get this state
information, a state observer is designed.

It can be verified that the dynamic system with state
dynamics (2) with output function (3) is observable, provided
that the first or the last car’s speed is measured. For instance,
if only the first car’s speed is measured, i.e. C = [1,0,...,0],
the observability matrix of the [A, C] pair is of full rank
which implies the system is observable [20]. The condition
of knowing the first or last car’s speed, is easy to satisfy since
in most trains, the first or last car is a locomotive whose speed
can be measured in practice [15].

Given this observability analysis, an observer based on
discrete Kalman state estimator is designed to estimate the
train’s state. To be exact, process noise and measurement noise
are introduced in the train’s model first as follows

z(k + 1) = Az (k) + Bu(k) + w(k),
y(k) = Cx(k) + v(k).

where w(k) and v(k) are process noise (disturbance) and
measurement noise, respectively.
Then the state estimation from a Kalman filter is given by

Z(klk) = Az(k|k — 1) + Bu(k) + L(k)(y(k) — Cz(klk — 1)),
(10)
where & (k|k — 1) is the estimated state variable at sampling
instant k using all available measurements up to sampling
instant k — 1. L(k) is the optimal dynamic Kalman gain given
by
L(k) = AP(k)CT(R + CP(k)CT)™ 1,

where P(k) satisfies the following discrete-time dynamic
Riccati equation [21]

difference between their characteristics. Firstly, locomotives
can pull/push the train as well as brake the train while there
is only brake available for wagons. Secondly, the physical
parameters of locomotives and wagons are distinctive, like
the length and mass of a locomotive is far different from a
wagon’s.

So, the fixed train fence method works as follows. Assuming
that a train with a locomotives at the front, b wagons in the
middle, and other ¢ locomotives at the rear. The total number
of the virtual cars after fencing with fence factor f can be

calculated as
a b c
o= |3+ 3+ 5]

where [z] is an operator which gives the integer closest to and
no less than x.

Then, the objective function (4) is converted to be as
follows,
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where my is the number of virtual locomotives after fencing
and ly,,5 = 1,2,...,my is the relative position of the jth
virtual locomotive in the train.

Consequently, the numbers of control variables and con-
straints can be reduced by the fence factor f remarkably:
from nN, to nyN, and from (6n — 2)N, to (6ny — 2)N,
respectively. If the fencing factor f is large, this reduction is
really considerable and is contributing to reduce the compu-

P(k+1) = A(P(k‘)—P(k)CT(R+CP(k)CT)_1CP(k))AT+Q,tati°n load of the problem.

in which Q = E(w(k)w(k))? and R = E(v(k)v(k)T) are
the noise covariance data.

D. Fence technology

When the RHC approach is applied directly to a heavy
haul train with n cars, the number of control variables of
the optimization problem equals n/N. and the number of
constraints equals (6n — 2)N.. For a train with more than
150 cars, nN. and (6n — 2)N, can easily reach thousands
which composes a very difficult problem for QP solvers. Even
the latest developed QP solver [22], [23] cannot always solve
this problem within acceptable time. In this application, using
more than T seconds to solve the problem means that the
optimized values of control variables are not available at the
next control instant, which prevents the implementation of the
controller presented. Also, the problem solving and simulation
procedure have a very high memory demand. Therefore, a
fixed number car fence method is introduced below.

By presetting a fence factor f, a train is fenced to have
ny virtual cars. Each virtual car includes f or less than f
(if the number of adjacent wagons/locomotives is indivisible
by f) cars. It should be noticed that locomotives and wagons
cannot be fenced into the same virtual car because of the big

As for the transmission channel limit for control systems,
f can be selected so that ny is not larger than the number of
available control channels.

III. SIMULATION

The train configuration is the same as in [1]. There are four
locomotives in the train with two each located at front and
rear of the train. Between those locomotives, 200 wagons are
connected one-by-one in the middle. Regarding the safety of
the train, allowable maximum absolute value of in-train forces
is 2000 kN. The locomotive’s and wagon’s parameters of the
train is listed in Table I and II. Other parameters in simulation
are k; = 10488 kN/m, d; = 1500 kNs/m, ¢ = 1,2,...,n —
1, the maximum wagon’s braking force is 180 kN, and the
locomotive’s traction/braking characteristics are the same as
in [2] and not listed here. Besides, the track information GIS
data is described in [6] and not listed here for clarity. For the
train controller design, Ts = 20 s sampling period is used.
For the weights in the controller, K. = 10, K, = 60 and
Ky = 10 are used in all simulations if not explicitly explained
to be others.

As for the observer used, a large @) = 50 is used owing to
the fact that the observer is based on a linearized model which
is inaccurate and R = 0.01 is set small because the speed can



TABLE I: Locomotive parameters

m (ton) | co (m/s2) | c1 (1/s) | co (1/m) | L (m)

126 7.6685¢-3 1.08e-4 2.06e-5 20.47
TABLE II: Wagon parameters

m (ton) | co (m/s?) | c1 (1/s) | co (1/m) | L (m)

66 6.3625¢-3 1.08e-4 1.492e-5 12.07

be measured with a high precision with current speed sensor
technologies.

Regarding hardware platform the simulations are run on, it
is a personal computer with Intel Core 17-2600 CPU @ 3.4
GHz and with 4 GB RAM. The operating system installed is
Windows 7 32-bit operating system. All simulations are run
on that computer with simulation code developed in MATLAB
2011a.

In simulations, the RHC controller designed according to
linearized train model (2) is applied to the train practical
nonlinear model (1) to verify its performances on the practical
nonlinear train plant as shown in Fig. 1.

It is to be noticed that in Fig. 2, the first subplot depicts the
train’s speed tracking result (mean speed of all cars in the train
and reference speed are given), the second one demonstrates
the train’s locomotives’ throttle notches while the third one
shows the maximum and minimum in-train forces (fin in the
figure represents f;,). Besides, Fig. 2, Fig. 3, Fig. 4, Fig. 5
and Fig. 6 share the same track profile as shown in the fourth
subplot of Fig. 2.

A. Effectiveness of the controller

While the practical train dynamics are nonlinear, the RHC
controller presented is based on the linearized version of that
nonlinear dynamics. The following simulation is carried out
to verify the effectiveness of this controller.

The controller parameters N, = 8 and N, = 6 are used.
Further, because of this simulation’s purpose, the computation
time of the solving this problem is not considered. That is
to say, the solution is implemented to the train plant even
if the the time used to solve this problem is longer than the
sampling period. The solution is shown in Fig. 2, which clearly
shows that proposed controller works very well on the practical
nonlinear train dynamics. The train’s speed tracks the reference
speed profile well. Moreover, the train’s speed does not exceed
the predefined speed profile at most of the time. The only
overshoot occurred at position where the speed profile drops
instantly, which is actually not achievable in practice. The

Track information
Operation limits

Reference

RHC controller | ¥ | Train nonlinear
speed v >

based on (4) model (1)

State observer |

based on (10) |

» Train performances

Fig. 1: Simulation diagram
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Fig. 2: Controller effectiveness demonstration (f = 1, N, = §,
Ne = 6)

maximum and minimum in-train forces are within safe range
as can be seen from Fig. 2.

B. Impacts of fencing

In this section, analysis and simulation verification of the
impacts of the fence method is followed by a demonstration
example showing the importance of the fence method.

1) Necessity of of the fence method: The configuration of
the simulation is the same as in Section III-A except the
truth that the train will retain its throttle settings unchanged if
the computation time required to solve optimal train control
problem is longer than the sampling period as the control
signal is not available at the control instant. The simulation
result is depicted in Fig. 3. It can be observed that the train’s
speed tracking performance is very poor when the train travels
from position 7000 m to 12700 m. The reason for this can be
found by comparing Fig. 2 and Fig. 3. It is shown in Fig. 2
that after 7000 m, up gear of the locomotives are required so
that the train can follow the faster reference speed, however,
the locomotives’ throttles are not changed Fig. 3 because the
calculation time required to solve the problem is longer than
T, during that section (detailed later). This directly leads to
the train’s performance become unacceptable.

This demonstration example explicitly shows the necessity
of the fence method which can be used to reduce the compu-
tation burden of the controller.

2) Fence’s impacts on computation and memory load: The
fence method’s impacts on the computation and memory load
of solving the train operation problem can be demonstrated by
the following illustrative example.



Fig. 3: Necessity of fence demonstration (f = 1,N, =
6, Nc = 4)
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Initially, when N,, = 8 and N. = 6 are used without
fencing which implies that the number of control variables
is nN., = 204 x 6 = 1224 and number of constraints is
(6n —2)N, = (6 x 204 — 2) x 6 = 7332. The large number
of control variables as well as constraints makes the solving
procedure very time consuming. Time required to solving this
problem with the latest developed QP solver [23] during the
travel of the train with different controller and fence factor
settings are compared in Fig. 4, in which the y-axis represents
time elapsed during solving the problem at each calculation
instant and x-axis represents the train’s position where the
corresponding calculation occurred. For instance, the fifth
point of the first subplot in Fig. 4 shows that the fifth control
instant happened when the train run to position 977.2 m and
the computation time used to solve the control problem at that
point is 44.61 s.

It is manifest from Fig. 4 that when fence method is not used
(f = 1) the problem solving time is always much longer than
the sampling period T when N, = 8 and N, = 6. While
using short optimization horizon N, = 6 and N, = 4, the
computation time decreased to be acceptable at the most of
time. However, it still requires more than 7 seconds to solve
the problem during the track section 7000 m to 12700 m,
which results in the poor speed tracking result as shown in
Fig. 3.

Moreover, if one looks at the memory load with the above
instances, storing the problem matrices, control variables and
train state variables requires more than 250 MB memory.

By contrast, if a fence factor f = 10 is used for the same
configuration with N, = 8 and N. = 6, the complexity
of above problem is reduced a lot: the number of control
variables is ny N, = 22 x 6 = 132 and number of constraints
is (6ny —2)N. = (6 x 22 — 2) x 6 = 780. The maximum
calculating time required to solve the problem during the
train’s travel drops to 0.95 seconds with an average time used
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Fig. 4: Computation time

to be 0.30 seconds. Meanwhile, the memory space required to
store the same matrices and variables is reduced to 2.91 MB.
This comparison between without and with fence factor gives
a very straightforward explanation of why the fence method
is introduced.

3) Fence’s impacts on train performances: As the fence
method is useful to bring down the time and memory require-
ment of the RHC approach, its impacts on the train perfor-
mances are to be determined in order to show its feasibility
when applying to heavy haul trains. During simulations, it is
verified that when f increases from one to ten, an upward
trend of energy consumption and maximum in-train force is
seen while changes regarding velocity tracking is minimal (an
example when f = 10 is shown in Fig. 5).

Also, the numerical analysis of f = 1 and f = 10
with same controller parameters are listed in Table III in
which |07| represent absolute value of the difference between
the reference velocity and the mean value of all the cars’
velocities, |f;,| is absolute value of in-train forces and E
stands for energy consumption calculated by fOT |uv|dt where
T is the total travel time.

From Table III, it can be seen that energy consumption and
in-train forces increase with a large f while speed tracking
result remain almost stable. The reason for this is that with a
large f many cars are treated as one single unit which hinders
optimal operation of each of them, thus energy consumption
increases. The in-train forces increase for the same reason.

This means that the fence factor should be selected as small
as possible according to the computing resource and available
control channels in the train. Also, this verifies that fence
method presented can be used in heavy haul train control prob-
lem without severely jeopardizing the train’s performances
when used properly.
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Fig. 5: Train performances with f = 10, V, = 8, and N, =6

TABLE III: Performance with different f while IV, = 8 and
N.=6

;| 1ol @) | fin] (KN) E (MI)
mean std max mean std total

1 1.33 2.15 531.94 113.43  30.71 20050

10 1.41 2.14 | 1060.38 221.70 68.42 20349

C. Impacts of brake penalization

1) Ky'’s impacts on train performances: The train’s perfor-
mances with different K are summarized in Table IV. It can
be seen that when K increases from 1 (no braking penalty)
to 80, velocity tracking result almost remain unchanged but
other two performance indicators improved significantly. Both
maximum absolute in-train force and energy consumption are
decreased dramatically. To be exact, maximum in-train force
drops from 1357.11 kN (K, = 1) to 509.03 (K, = 60),
2.67 times decrease is reached. Total energy consumption
diminishes from 23103 MJ to 20064 MJ (13.8% reduction)
when K increases from 1 to 80. Looking at energy consumed
by wagons only, it slides down from 14755 MJ to 12940 MJ
(12.3% decrease).

Fundamentally, K; punishes wagons’ braking forces in a
train. This leads to the following performance changes directly.
The first one is that the energy wasted by braking is reduced
with a K > 1. The second one is that the maximum absolute
in-train force decreases as a result of that less frequent braking
occurs with a large K. These two are direct influences that
braking penalization has on the train performances. There is
another impact—the train’s velocity tracking can be affected
since the objective function used in the controller is a weighted
one. However, In simulation done here, the weight for velocity
tracking K, is set to 60 (a relatively large weight) which
ensures the train’s velocity tracking result.
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Fig. 6: Velocity tracking comparison with different /V,, and NN,

2) Ky incorporated with RHC to improve train perfor-
mances: Although the train’s performances can be improved
by brake punishment, there are two points related to this
method worth mentioning. On the one hand, it is necessary
to apply brake forces to a train appropriately so that it can run
down a hill safely. On the other hand, controlling the train
with regard to its current state only results in that the train
starts to decelerate when it already runs on a downhill track.
In such a way, it requires to apply significantly large brake
forces in order to operate the train properly, which means that
energy consumed by braking at a downbhill track is noticeable.
Owing to the RHC framework, if the optimization horizon is
long enough, the train can reduce as much energy wasted by
braking as it can and ensure the train’s operation performances
by means of slowing down earlier.

With the RHC strategy, the controller can optimize the
train’s operation by looking ahead. Given the train’s current
state, track information and reference speed profile, the RHC
optimizes the train’s operation in a section of track, which
implies that, the RHC approach can take advantage of the
track information and reduces braking as much as possible
in the optimization. For instance, if a train is running over a
fluctuating track, the RHC approach uses the uphill section
of the track to slow down the train and apply less braking
forces at the downhill section compared to approaches that
only use the train’s brake forces to slow down the train at
the downhill section. Also, it can slow the train down earlier
before the decline by reducing power rather than applying
braking forces at the decline. This feature of RHC gives a
way to reduce braking efforts of the train and makes it possible
to compensate the speed tracking deterioration resulting from
braking penalization.

As shown in Fig. 6, if the optimization and control horizons
increase from N, = 1, N, = 1to N, = 6, N. = 4 when K =
60, the train’s velocity tracking result is improved a lot. The
train slows down to reference speed at the position exactly as
expected in the latter case. During the whole travel, the mean
speed tracking error and standard deviation of speed tracking
error decrease from 1.30 m/s to 1.20 m/s and from 2.11 m/s
to 1.87 m/s, respectively while the other two performances
indicators remain stable.

IV. CONCLUSION

A close-loop braking penalized receding horizon control
(RHC) approach is presented to optimize operation of heavy



TABLE IV: Performance with different K; while N, = 4,
N.=2,and f =10

K, | 197 @) | fin| (KN) E (MJ)
mean std max mean std wagon total
1 1.57 2.2 | 1357.11 25197 89.44 | 14755 23103
40 1.33  2.09 | 577.72 122772 31.28 | 12889 19924
60 136 2.08 | 509.03 122.33  29.15 | 12743 19655
80 136 2.09 | 512.38 12355  28.81 | 12940 20064

haul trains in a long journey with its advantages of constraints

and

model plant mismatch handling capability. It is verified

by simulations that:

ey

@)

The brake penalty presented can reduce the train’s energy
consumption and in-train forces remarkably. In addition,
incorporated with the RHC approach, the brake penal-
ty’s side effects on the train’s velocity tracking can be
compensated by a long optimization horizon.

The fence methodology is effective in bringing down the
RHC approach’s computation and memory load without
severely jeopardizing the train’s performances. It is useful
when applying the presented control scheme to a train
which has a limited control channels.

The RHC controller and the fence method proposed in this
brief can be used to control a heavy haul train directly. Or,
the whole control and simulation scheme shown in Fig. 1 can
be used to run simulations along a train’s journey as a driver
assistance system.
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