
Copyright Declaration: This is the pre-print of a short-paper accepted for publication in
the Information Processing Letters 110, Elsevier Publ., 2010.

The work is based on a project conducted by Theuns Steyn under the supervision of
Stefan Gruner during the year 2009, as documented in full length (52 pages) online,
http://ssfm.cs.up.ac.za/TR-ThS-2010.pdf

Deadlock-Freeness of Hexagonal Systolic Arrays
Stefan Gruner & Theuns Steyn

Department of Computer Science
University of Pretoria

South Africa

http://ssfm.cs.up.ac.za/

Abstract: With the re-emergence of parallel computation for technical applications in these
days also the classical concept of systolic arrays is becoming important again. However,
for the sake of their operational safety, the question of deadlock must be addressed.
For this contribution we used the well-known Roscoe-Dathi method to demonstrate the
deadlock-freeness of a systolic array with hexagonal connectivity. Our result implies
that it is theoretically safe to deploy such arrays on various platforms. Our proof is
valid for all cases in which the computational pattern (input-output-behaviour) of the
array does not depend on the particular values (contents) of the communicated data.

1 Introduction

Systolic arrays are a useful paradigm of parallel computation, as they can be quite easily
implemented in the commodity hardware of field-programmable gate arrays (FPGA); this has
been done since the 1990s. Since the early works by Kung [6], many useful types of systolic
arrays for various application purposes are known [9]. As always in parallel computation,
the possibility of deadlock must be taken into account also in the paradigm of systolic arrays;
this issue has been addressed already in [7].

In this letter we show the deadlock-freeness of a hexagonal systolic array (useful for
numeric matrix multiplications) from [9] by application of Roscoe’s and Dathi’s CSP -based
analytic proof method [10], (in contrast to the approach by model-checking presented in [2]
[8] which is based on state space exploration [1]). This kind of proof is ‘data-blind’ (or ‘data-
independent’ in the terminology of [2] [8]) and is thus valid for all similar hexagonal systolic
arrays in which the dynamic communication patterns within the array do not depend on
the value (contents) of the data communicated between the processor nodes in the array.
We conclude that such hexagonal systolic arrays may thus be safely mapped onto FPGA
hardware for a variety of applications: this deadlock-freeness result for data-independent
hexagonal systolic arrays is (as far as we know) a new result.

For all details about how our proof was derived, see [11]. For more information about
the motivation and research context of our result, see Section 6 (Future Work) below.

i

Figure 1: Sketch of a Hexagonal Systolic Array

2 Definition: Hexagonal Array Representation in CSP

In a hexagonal systolic array the processing elements are topologically arranged like in ‘bee
hives’ and can communicate in three directions. In this arrangement it is not obvious that
such an array can be expressed in terms of Cartesian coordinates, but there is indeed a graph
isomorphism (≈), as sketched in Figure 1, which makes it obvious that also hexagonal systolic
arrays can be described in terms of Cartesian coordinates. In other words: a hexagonal
systolic array is a rectangular systolic array with additional diagonal communication lines in
one direction (not in both diagonal directions, otherwise it would be an octogonal array).

The lengthy CSP formula in the subsequent paragraph, which is used to formally specify
the processes of each individual node in the hexagonal systolic array, is graphically illustrated
in Figure 2 and has the following intuitive meaning:

• The process of every network cell is divided into two subsequent phases, P and Q,
which are iterated until termination.

• Whereas P represents the reading phase (notation: “?”), in which the cell receives
input (to process it), Q represents the writing phase (notation: “!”), in which the cell
delivers its (processed) output.

• Input for the reading phase of a cell comes from its three North-Western neighbour
cells, in any (arbitrary) order (in an ‘interleaving’ mode of concurrency), whenever the
cell’s environment makes input available.

ii

• Output from the writing phase of the cell goes to its three South-Eastern neighour cell,
also in any (arbitrary) order (in an ‘interleaving’ mode of concurrency); this output
can then serve as input to those neighbour cells.

• The horizontal, vertical and diagonal channels, which carry those signals from cell to
cell, are identified in the subsequent CSP formula by various variables hi,j, vi,j and di,j.

In CSP [3], and on the basis of a 2-dimentional Cartesian coordinate system in (i, j) for
the position of the processors P , our hexagonal systolic array chosen from [9] has thus the
following representation:

Pi,j(a, b, c) = (X � Y � Z),

whereby:

X := (hi,j?a→ (B � C)),
Y := (vi,j?b→ (A � C ′)),
Z := (di,j?c→ (A′ � B′)),

with:

B := (vi,j?b→ di,j?c→ Qi,j(a, b, c)),
C := (di,j?c→ vi,j?b→ Qi,j(a, b, c)),
A := (hi,j?a→ di,j?c→ Qi,j(a, b, c)),
C ′ := (di,j?c→ hi,j?a→ Qi,j(a, b, c)),
A′ := (hi,j?a→ vi,j?b→ Qi,j(a, b, c)),
B′ := (vi,j?b→ hi,j?a→ Qi,j(a, b, c)).

After P -processes have thus read the incoming data from their neighbours, the Q-processes
will write the (processed) data to other neighbours as follows:

Qi,j(x, y, z) = ((X ′ ||| Y ′ ||| Z ′) ; Pi,j(a, b, c)),

whereby:

X ′ := (h(i+1),j!x→ SKIP),
Y ′ := (vi,(j+1)!y → SKIP),

Z ′ := (d(i+1),(j+1)!(z + xy)→ SKIP).

Note that a, b, c are the (numerical) data which are communicated through the channels
between the processors; however the contents of those data is irrelevant for the form of
communication between the processes.

To summarise the meaning of the formula of above: It describes the process executed in
each (every) cell of the hexagonal systolic array. This process has two sub-processes: One
for getting input from its three north-western neighbours (in any order), and one for writing
output for its three south-eastern neighbours (in any order). In Figure 2 these events are
abbreviated by the letters A, B, C (for reading) and D, E, F (for writing). Thereafter the
process repeats itself.

iii

Figure 2: Process executed by every Array Cell

3 Method Applicability: Prerequisites

The Roscoe-Dathi-method can only be applied if a network, such as our hexagonal systolic
array as specified in the previous section, fulfills the following conditions [10]:

• Each individual process within the network is deadlock-free by itself;

• The communication structure of the entire network is triple-disjoint.

In our case, the first condition is obviously fulfilled. As far as the second condition is
concerned, it has been shown in [11] that

(αA ∩ αA′ ∩ αA′′) = ∅

for all possible combinations of

iv

A, A′, A′′ ∈ {Pi,j, P(i+1),j, Pi,(j+1), P(i+1),(j+1)},

such that the Roscoe-Dathi method is indeed applicable to the case of our hexagonal systolic
array.

√

4 Process Communication Analysis

In the next phase of the proof, one has to analyse the pairwise communication behaviour
of any two adjacent processes P and P ′: forward and backward, in all possible directions,
horizontally, vertically as well as diagonally. Thus, six communicative constellations must

be analysed: (P
h−→ P ′), (P

h←− P ′), (P
v−→ P ′), (P

v←− P ′), (P
d−→ P ′), (P

d←− P ′). For
each of these constellations, the sets of ungranted requests [10] must be found, which can be
done by looking at the state transition diagrams S(P) and S(P ′) of the two processes under
consideration, and by analysing the possible state pairs (s, s′) with s ∈ S(P) and s′ ∈ S(P ′).
Analysis of the ‘ungranted requests’ is so crucial because they are the ‘seeds’ of deadlock in
unfortunate circumstances (such as ‘circular wait’ situations).

If done ‘manually’, this is a lenghty and tedious procedure which starkly highlights the
practical need for proof automation; see Section 6 (Future Work) below. For our hexagonal
systolic array this lenghty proof procedure was fully carried out ‘manually’ and described in
all details in [11]. In this short letter we can only present the main intermediate results to
the final result and have to omit many minute steps inbetween.

4.1 Communication Case: Pi,j −→ P(i+1),j

In the situations of ‘ungranted requests’ [10] after traces t in this case, and for its relevant
communication event D, the following characteristic inequalities have found to be valid [11]
about the according numbers of event observations.

• Requests: |t ↑ αPi,j| ≥ 6 · |t ↑ {D}|+ 3,

• Refusals: |t ↑ αP(i+1),j| ≤ 6 · |t ↑ {D}| − 1,

whereby |(t ↑ {D})| indicates the process cycle number and |(t ↑ αPi,j)| the number of
steps which the two processes can make together until the relevant situation occurs [10].
Merging these two inequalities arithmetically leads eventually to the following characteristic
description of this case as Lemma 1:

|t ↑ αPi,j| > |t ↑ αP(i+1),j|+ 3.
√

4.2 Communication Case: P(i+1),j −→ Pi,j

For this case, following the same procedure [10] as above, the following inequalities have
been found [11].

v

• Requests: |t ↑ αP(i+1),j| ≥ 6 · |t ↑ {D}|,

• Refusals: |t ↑ αPi,j| ≤ 6 · |t ↑ {D}|+ 2,

Merging these two inequalities arithmetically we eventually yield Lemma 2:

|t ↑ αP(i+1),j| > |t ↑ αPi,j| − 3.
√

4.3 Communication Case: Pi,j −→ Pi,(j+1)

Now we are dealing with a different communication event, E, which this constellation of
processes has in common. For this case, following the same procedure [10] as above, the
following inequalities have been found [11].

• Requests: |t ↑ αPi,j| ≥ 6 · |t ↑ {E}|+ 3,

• Refusals: |t ↑ αPi,(j+1)| ≤ 6 · |t ↑ {E}| − 1,

Merging these two inequalities arithmetically we eventually yield Lemma 3:

|t ↑ αPi,j| > |t ↑ αPi,(j+1)|+ 3.
√

4.4 Communication Case: Pi,(j+1) −→ Pi,j

For this case, following the same procedure [10] as above, the following inequalities have
been found [11].

• Requests: |t ↑ αPi,(j+1)| ≥ 6 · |t ↑ {E}|,

• Refusals: |t ↑ αPi,j| ≤ 6 · |t ↑ {E}|+ 2,

Merging these two inequalities arithmetically we eventually yield Lemma 4:

|t ↑ αPi,(j+1)| > |t ↑ αPi,j| − 3.
√

4.5 Communication Case: Pi,j −→ P(i+1),(j+1)

For the communications in the diagonal directions of the array, F is now the channel event
relevant for the analysis. For this case, following the same procedure [10] as above, the
following inequalities have been found [11].

• Requests: |t ↑ αPi,j| ≥ 6 · |t ↑ {F}|+ 3,

• Refusals: |t ↑ αP(i+1),(j+1)| ≤ 6 · |t ↑ {F}| − 1,

Merging these two inequalities arithmetically we eventually yield Lemma 5:

|t ↑ αPi,j| > |t ↑ αP(i+1),(j+1)|+ 3.
√

vi

4.6 Communication Case: P(i+1),(j+1) −→ Pi,j

For this case, following the same procedure [10] as above, the following inequalities have
been found [11].

• Requests: |t ↑ αP(i+1),(j+1)| ≥ 6 · |t ↑ {F}|,

• Refusals: |t ↑ αPi,j| ≤ 6 · |t ↑ {F}|+ 2,

Merging these two inequalities arithmetically we eventually yield Lemma 6:

|t ↑ αP(i+1),(j+1)| > |t ↑ αPi,j| − 3.
√

5 Network Function

The analysis of each of those 6 communication scenarios resulted in the 6 characteristic
inequalities described by Lemmata 1-6 of above. They describe only partial aspects of our
array. To analyse the array as a whole, these 6 inequalities must be merged and transformed
mathematically in a clever way, until a function definition emerges which Roscoe and Dathi
have called the networks variant [10]. On the basis of this variant it can then be decided
whether the network is deadlock-free.

The arithmetic operations merging and transformation of those Lemmata 1-6 have been
described in all details in [11] and must be omitted in this short letter due to lack of space.
Eventually we arrive at a final inequality with parameters i and j, namely:

(2 · |t ↑ αP(i+1),(j+1)|+ 3 · (i + 1 + j + 1)) > (2 · |t ↑ αPi,j|+ 3 · (i + j)),

from which the following characteristic network function (variant) can eventually be derived
as Lemma 7:

fi,j(t) = 2 · |t|+ 3 · (i + j).
√

The purpose of this function, as fully explained by Roscoe and Dathi [10], is to describe at
which grid-positions (i, j) there can be processors in the network that are waiting for input
(from other processors) before they are able to proceed with their own computational tasks.

5.1 Monotony of the Network Function

It is basic knowledge that deadlock can only occur in a computational system if four con-
ditions are fulfilled, one of which is circular wait. If circular wait is not possible, dead-
lock cannot occur. This information can be retrieved from the network function (vari-
ant) of Lemma 7: IF f is a monotonic function, then there cannot possibly exist a cycle
{(i, j)|(i+ j) ∈ {r, (r +1)}} [10] of grid positions at which the processors would forever wait
for each other.

vii

5.2 Conclusion of the Proof

We conclude our argument with Lemma 8:

The network function fi,j, given in Lemma 7 for our
hexagonal systolic array, is a monotonic function.

√

This has been demonstrated in further detail in the project report [11] on which this letter
is based.

The meaning of Lemma 8 is that ungranted requests in this hexagonal systolic array
can only occur in open chains, but never in closed cycles. Consequently (if we did not err
in our mathematical calculations) it is now theoretically sure that the hexagonal systolic
array, which we have chosen from [9] and defined in CSP as shown in Section 2 of above, is
deadlock-free.

Note, however, that we did not prove the (numeric) data correctness of the matrix mul-
tiplication algorithm which this type systolic array is supposed to perform [9].

5.3 Technical Implication of the Proof

The type of hexagonal systolic array discussed in this letter, which has many areas of practical
application [9], is deadlock free and can thus be safely implemented on FPGA or similar
parallel processing hardware platforms.

6 Research Context and Future Work

The proof result about the deadlock-freeness of haxagonal systolic arrays reported in this
letter was achieved ‘with pen and paper’, in a lengthy and tedious exercise. The space of a
letter to this journal is not sufficient to describe the proof [11] in all its details. Such kind of
proofs are not only theoretically error-prone but also practically infeasible (with too many
man-hours needed per proof). Proof automation is thus needed. Whereas model checking
[1] of examples such as the one presented in this letter does not seem to be a major problem
any more [2] [8], theorem proving of such examples is still a problem.

For this reason, Isobe and Roggenbach are continuously developing a theorem prover,
CSP-Prover [4], which shall be specialized for cases such as the one presented in this letter.
With CSP-Prover, the deadlock-freeness of a rectangular systolic array could already be
proven [5], but cases of higher complexity are still a problem for this tool. In this context the
manually proven correctness result of the hexagonal systolic array, as presented in this letter,
shall be used as a basis for the further development or enrichment of the proof heuristics
and tactics encoded in the CSP-Prover tool.

Efficient heuristics and tactics for this tool, however, can only be implemented after hav-
ing studied ‘inductively’ the ‘typical characteristics’ of many manually conducted correctness
proof examples, one of which has been the topic of this letter. An ongoing project in our
research group shall therefore yield the ‘manual’ deadlock-freeness proofs for a wider range

viii

of systolic array types, mostly selected from [9], as a basis for the further improvement of
the proof tactics and heuristics in the ongoing evolution of the CSP-Prover tool.

Acknowledgments

The project results summarised in this contribution to IPL are ‘embedded’ into a long-term
research cooperation in which also M. Roggenbach (GB) and Y. Isobe (JP), are involved: We
thank both of them for interesting and fruitful discussions on this topic.

References

[1] E.M. Clarke, O. Grumberg, D.A. Peled, Model Ckecking, MIT Press 1999.

[2] S.J. Creese, A.W. Roscoe, Data Independent Induction over Structured Networks,
PDPTA’2000: Proc. Internat. Conf. on Parallel and Distr. Processing Techn. and Ap-
plic., Las Vegas, 2000.

[3] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall 1985.

[4] Y. Isobe, M. Roggenbach, CSP-Prover: A Proof Tool for the Verification of Scalable
Concurrent Systems, Journal of Computer Software 25 (4) (2008) 85-92.

[5] Y. Isobe, M. Roggenbach, S. Gruner, Extending CSP Prover by Deadlock Analysis —
Towards the Verification of Systolic Arrays, FOSE’05: Proc. 12th Japanese Workshop
on Foundations of Softw. Eng., Japan, 2005.

[6] H.T. Kung, Why Systolic Architectures, Computer 15 (1) (1982) 37-46.

[7] H.T. Kung, Deadlock Avoidance for Systolic Communication, ISCA’88: Proc. 15th An-
nual Internat. Symp. on Comp. Architecture, Honolulu, 1988, pp. 252-260.

[8] R. Lazić, D. Nowak, On a Semantic Definition of Data Independence, LNCS 2701 (2003)
226-240.

[9] N. Petkov, Systolic Parallel Computing, North-Holland 1992.

[10] A.W. Roscoe, N. Dathi, The Pursuit of Deadlock Freedom, Inf. Comput. 75 (3) (1987)
289-327.

[11] T.J. Steyn, Deadlock Analysis of Hexagonal Systolic Arrays using the Roscoe-Dathi
Method, Project Report, Department of Computer Science, University of Pretoria,
November 2009, http://ssfm.cs.up.ac.za/TR-ThS-2010.pdf

ix

