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Abstract. Classical ways of intrusion analysis from textual communication log files are either
AI-based (such as by combinations of data mining with various techniques of machine learning), or
they are based on regular expressions (such as the scanners implemented in the ‘CISCO boxes’).
Whereas AI-based heuristics are not analytically exact, methods based on regular expressions do
not reach very far in Chomsky’s hierarchy of languages. In this short chapter we describe work
in progress on the topic of parsing traces of network traffic with context-free grammars. ‘Green’
grammars describe acceptable log files, whereas ‘red’ grammars represent already known specific
patterns of intrusion attempts. This technique can complement or augment the aready existing AI-
approaches with additional precision. Analytically it is also more powerful than CISCO’s technique
on the basis of regular expressions.

1 Introduction

Modern intrusion analysis systems, for the most part, rely on simple pattern recognition
in order to differentiate and categorise malicious network traffic from benign [1] [7] [9].
Anomaly-based detection systems, which are those built to recognise traffic generated in the
normal day-to-day operations of a network, often look no further than the header of packets
in the data stream, determining information such as source and destination addresses, the
identity of the application which generated the traffic, the port through which the connection
is made, and the like, to determine whether a package should cause reason for alarm or not.
Sometimes the analysis is taken one step further, scrutinising the packets as a stream, instead
of just one by one. However this rarely extends further than simply checking the counts of
the packet found also within the header to ensure the order is correct. Signature-based
analysis systems operate in mostly the same way, in some cases analysing the data segments
of network packets in addition, searching for signatures of, for example, injected code, which
can usually be identified as a series of bits and identified with the use of a suitable regular
expression.

In spite of all such analysis, however, there is still much potentially useful information
which goes unnoticed, some of which can be drawn on from the procession of packets in a
data stream. State-based analysis has been suggested before for the purpose of security in
computing [4] [11]. Gudes and Olivier have argued in [11] that the ‘state’ of an application
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should also be considered in determining the security of that application. They reason
that certain messages recieved by an application, while perfectly safe if in one state, may
compromise the security of that application should it be found in some other, more vulnerable
state. Therefore, in analysis, the ‘state’ of the applications should be taken into account when
trying to determine whether some incoming data was harmful or not. Gudes and Olivier,
too, proposed the use of context-free grammars for the purpose of state-based analysis. This
approach entails the construction of a grammar to represent the transitions from state to
state internally within an application, thus also describing the actions that are allowable in
any given state.

Memon had applied context-free grammars, too, in a log file categorization system [10].
His method of data analysis did not, however, take into consideration the sequencing of
packets in a data stream, nor the idea of the ‘statefulness’ of an interaction between net-
work applications. Instead, he proposed the use of grammars in categorisation for their
adaptability, arguing that existing pattern-matching methods were too ad hoc, non-adaptive
and become highly work-intensive, particularly when the systems relying on such methods
require updates. Memon developed a grammar capable of representing a single packet in
a data stream, including information such as packet protocol, source and destination. He
also developed a method of grammar inference, capable of expanding an existing grammar
modeled for such purpose to include additional packets to be regarded as benign, at the
discretion of an administrator.

A grammar complex enough to capture and represent the statefulness of applications
communicating over a network would likely require considerably more design efforts than
those grammars described in Memon’s work. There is, however, ongoing research into the
application of artificial intelligence (genetic algorithms in particular) for the purpose of
grammar inference from provided example sentences [2] [8] [14]. Currently these techniques
allow only for the inference of rather simple grammars within reasonable time through the
use of positive and negative examples; in intrusion detection these would be benign and
malicious network traces respectively. More complex grammars, as required for the purpose
we intend, require more design efforts which cannot yet be automated. However, the efforts
of manually crafting a suitable intrusion analysis grammar will be worth the while when the
grammar is used often enough after its construction.

The possibility of too many false alerts in automated intrusion detection systems was
addressed in [6], where some algorithmic heuristics was shown to condense an un-managable
amount of elementary alerts to a managable amount of so-called “meta-alerts”. However
the alert condensation technique in [6] appeared as somewhat ‘ad hoc’, (i.e.: without much
theoretical underpinning). Similar work, also concerned about alert management and the
“fusion” of alerts w.r.t. their similarity (near-match) to already existing “meta alerts”, can
be found in [13], too.

In the context of this chapter, however, we are not concerned about such managerial
issues like as the sheer numbers of risen alerts; our concern is the further development of
formal methods (here: context-free grammars) for the purpose of incident identification.
The relevance of this undertaking with regard to potential forensic applications (in practice)
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should be obvious and evident without many further words of motivation.

2 Method

In this explorative phase of our project we are only dealing with a subset of all possible
malicious attack ‘vectors’. Our grammar method, which fits well into the digital forensics
context, is conceptually related to formal methods in the field of model-based testing [5] and
may be regarded as a limited form of automated verification on the basis of specific samples.
Proof goal is a decision whether or not an intrusion attempt has occurred on the network
in a specific situation. To tackle the problem more effectively from two ends, two types of
grammars will be needed:

• One ‘green’ grammar is designed to describe log files of harmless communications.

– A log file that can be successfully parsed with a ‘green’ grammar is regarded as
hypothetically harmless and passes the test.

– A log file that cannot be parsed with a ‘green’ grammar is regarded as suspicious
such that an alert will be raised.

• Several ‘red’ grammars are supposed to describe log files containing typical traces of
already known patterns of malicious communication.

– A log file that can be successfully parsed with a ‘red’ grammar is regarded as
harmful such that an alert will be raised.

– A log file that cannot be parsed with a ‘red’ grammar is regarded as hypothetically
harmless and passes the test.

Using a specific browser to generate experimental traffic and log files we have designed the
‘green’ grammar (representing acceptable traffic) listed in the → Appendix below. In this
grammar each terminal symbol represents a single packet of traffic recorded. The grammar
as a whole models a string of packets of a ‘conversation’ as a simple web page is transfered.
Ideally such a conversation would follow the following simplified pattern:

TRACE -> syn synack acko get acki PDU

PDU -> data data acko PDU

| data http acko

| http acko

A communication at the browser opens with a ‘handshake’, i.e.: a sequence of packages with
synchronisation or acknowledgement or both flags set. Subsequently a request is made for
data transfer: the ‘get’ followed by a packet in which the acknowledgement flag is set (again),
and then data transfer begins. This is represented by the protocol data unit (PDU) section.
The rest is rather simple: data is transfered in two packets at a time, until the transfer is
complete. After every two data packets incoming, an acknowledgement is sent out to indicate
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there are no errors (for example with the order in which the packets are recieved) and that
it is possible to continue with the transfer. When there is no more data, a final http packet
is recieved to indicate the end of the stream, followed by one last outgoing acknowledgement
to the web server.

That would be an ideal model of a conversation between client and server. In practice,
however, the streams tend to be interspersed with some additional ‘mini’ conversations every
now and then which carry some kinds of meta information. For example, an address reso-
lution protocol message may be sent in order to find the location of the web page initially.
Also in nearly every trace there is at least one request for a domain name server which tends
to jump straight into the middle of the main conversation with the web server. Therefore an
appropriate ‘green’ grammar must be constructed in such a way that it can ‘remember’ the
internal state of a conversation when it gets interrupted in such manner, such that it can
return to that state again after the interrupt.

This implies that the entire conversation must complete in order to be recognized as
a benign trace. If the conversation starts (with the handshake in this case), it must also
terminate successfully. If it does not, then this can indicate that the browser could have
been compromised (unless the communication was technically interrupted, for example by a
browser ‘crash’ on the client’s side). In such a case the corresponding trace, when parsed,
will lead to a syntax error, and the corresponding communication trace will be classified as
‘suspicious’.

Last but not least it is worth nothing that DNS requests and ARP also represent such
‘mini’ conversations as mentioned above. However, an ARP request is always completed
without interruption in the traces corresponding to the grammar. DNS requests, on the
other hand, are just as susceptible to interruption as the web browser conversation discussed
above. At this point we can see that regular expressions alone (instead of context-free
grammars) would not suffice for remembering a status of conversation before the occurrence
of such interrupts.

3 Explorative Experiments

We presume that our readers are familiar with the principles and techniques of lexical and
syntax analysis as they are well known from the classical computer science field of compiler
construction. On these premises, with our ‘green’ grammar (as printed in the Appendix)
and a controlled laboratory network setting we conducted a series of tests, both with various
permissible and not permissible input strings, to assess the current effectivity of our tech-
nique. The experimental results are summarized in the following table, whereby the tool
Antlr [12] was used to generate the parser for that grammar.

Input Total Accepted Rejected Lex-Err. Syntax-Err.

benign 100 94 6 6 0
malicious 100 0 100 28 72
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Alpha error a.k.a. ‘false positive’ (wrong rejection of benign input): 6/100 = 6%. Alpha
errors may be regarded as ‘annoying’ or ‘inconvenient’; however they are not harmful
from a security point of view.

Beta error a.k.a. ‘false negative’ (wrong acceptance of malicious input): 0/100 = 0%. Beta
errors should, for obvious reasons, be interpreted as ‘harmful’ from a security point of
view.

In spite of our seemingly ‘nice’ Beta value, residual problems with our current grammar can
be inferred from the observation that not all parsing failures resulted from syntax errors, as
it should have been the case if our grammar had been a-priori ‘aware’ of all possible input
tokens. The lexical errors (prior to the parsing phase) show that an input stream can still
contain a number of ‘unknown’ symbols with which our ‘green’ grammar could not cope.
Thus we can roughly estimate the fit-for-purpose-quality of our intrusion detection grammar
as follows:

In case Alpha (whereby ideally no parse error should have occurred at all), all errors
occurred in the phase of lexical analysis. This implies that our grammar has caused
100% percent of the Alpha errors by not ‘knowing’ all the symbols of our input strings.

In case Beta (in which ideally only syntax errors should have occured), we have to ad-
mit that only 72% percent of our (correct) rejection decisions were based on parsing,
whereas 28% percent of all rejections were based on decision-less lexical errors before
the deciding parsing phase started. Therefore, contrary to what has been ‘roughly’
stated above, our Beta error should be estimated as higher than those 0%, namely up
to 28% (in the worst case).

Thus there is still much room for improvements. On the basis of ‘inspection with the naked
eye’ we conjectured that those errors seem to appear in the context of those occasional ‘in
between’ communications which we have mentioned above in the introductory section.

For the experiments with malicious input streams we have so far restricted ourselves to
very ‘typical’ scenarios such as buffer overflow attacks. In most of those cases communication
terminated mid-stream, such that the parser could correctly recognise the absence of the
stream-closing data packets. However we are also aware of at least one case where the lexical
analyser could not recognize a termination symbol that had been sent properly to terminate
a conversation. Some of those problems might even be linked to speed discrepancies between
data download and analysis, such that the parsing unit may prematurely believe that an
input stream has been ‘hacked’ whilst in truth a harmless ‘download’ is still on its way.

Last but not least we must also note from a science-philosophical point of view that our
explorative experiments were predominantly ‘qualitative’ so far and did not yet meet the
strictest criteria of experimental scientificness described by Bunge in [3].
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4 Outlook

Critical readers may ask the question whether the additional complexity of context-free
grammars, in comparison against regular expressions, is practically justified; (from a theo-
retical point of view is is clear that the class of all regular languages is a genuine sub class
of the class of all context-free languages). To answer this question, more practical examples
will need to be identified which cannot be elegantly treated by regular expressions, (whereby
we can ignore the triviality that every finite string can of course be represented by its own,
however cumbersome, ad-hoc regular expression). Speed of analysis had been the main reason
for using regular expressions in the context of the ‘CISCO boxes’ because in that context the
analysis of data streams proceeds on-line and on-the-fly; it is well known that regular epres-
sion analysis can be implemented very runtime-efficiently. Ex-post-facto log file analysis, on
the contrary, does not operate under such strict real-time conditions.

Another practical problem faced by the parsing technique is posed by technically inter-
rupted communication attempts, for example due to a ‘collapsing’ or ‘freezing’ browser on
the client side of a volatile internet connection. On the server side this will leave a ‘bro-
ken trace’ in the log file which can possibly not be successfully parsed, no matter whether
the interrupted communication attempt had been malicious or harmless. String traces of
interrupted communication attempts may thus considerably increase the rate of ‘inconve-
nient’ Alpha-type errors. To tackle this problem, we would have to find a way of dividing
a large trace into a set of shorter sub traces which could possibly be parsed individually.
Alternatively we could think about modifying the detector grammars in such a manner that
interrupted communications can be explicitly identified as such.

For the remainder of this project we shall work on a practically useful software framework
which shall allow the user to ‘plug in’ case-specific grammars (of type ‘green’ as well as of
type ‘red’) and thus to generate analysis tools for various application scenarios.

• The Antlr parser generator [12] shall serve as the most important component of that
software framework.

• We must also ‘fine-tune’ our method itself in the light of the experimental experiences
we have described them in the previous section.

• Moreover, we must also ‘cast’ a larger number of well known patterns of intrusion
attempts into case-specific ‘red’ grammars, in addition to our ‘green’ grammar which
only specifies the acceptable communication patterns at the network interface.

• A suitable combination of ‘green’ and ‘red’ grammars should further diminish the
frequency of both Alpha and Beta decision errors, though this would also require an
additional meta decision policy for cases in which the decisions made by the ‘green’
parser and the ‘red’ parsers would not be mutually consistent from a logical point of
view.

• Last but not least, some degree of “context-sensitivity” or supra-local information-
capturing could be introduced by defining suitable attributed grammars —used in
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compiler-construction to capture particular features of static semantics beyond mere
syntax analysis— which we have not yet used in our un-attributed grammar approach
so far.
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A Grammar for our Explorative Experiments

TRACE -> e | TRANSF | ADRESO | DNSQRY

TRACED1 -> TRANSFD1 | ADRESOD1 | DNSQRY1

TRACET1 -> TRANSF1 | ADRESOT1 | DNSQRYT1

TRACET2 -> TRANSF2 | ADRESOT2 | DNSQRYT2

TRACET3 -> PDU | ADRESOT3 | DNSQRYT3

TRACET1D1 -> TRANSF1D1 | ADRESOT1D1 | DNSQRY1T1

TRACET2D1 -> TRANSF2D1 | ADRESOT2D1 | DNSQRY1T2

TRACET3D1 -> PDUD1 | ADRESOT3D1 | DNSQRY1T3

TRACEP1 -> PDU1 | ADRESOP1 | DNSQRYP1

TRACEP2 -> PDU2 | ADRESOP2 | DNSQRYP2

TRACEP3 -> PDU3 | ADRESOP3 | DNSQRYP3

TRACED1P1 -> PDU1D1 | ADRESOD1P1 | DNSQRY1P1

TRACED1P2 -> PDU2D1 | ADRESOD1P2 | DNSQRY1P2

TRACED1P3 -> PDU3D1 | ADRESOD1P3 | DNSQRY1P3

TRANSF -> syn TRACET1

TRANSF1 -> synack acko get TRACET2

TRANSF2 -> acki TRACET3

TRANSFD1 -> syn TRACET1D1

TRANSF1D1 -> synack acko get TRACET2D1

TRANSF2D1 -> acki TRACET3D1

ADRESO -> arpq arpr TRACE

ADRESOT1 -> arpq arpr TRACET1

ADRESOT2 -> arpq arpr TRACET2

ADRESOT3 -> arpq arpr TRACET3

ADRESOT1D1 -> arpq arpr TRACET1D1

ADRESOT2D1 -> arpq arpr TRACET2D1

ADRESOT3D1 -> arpq arpr TRACET3D1

ADRESOP1 -> arpq arpr TRACEP1
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ADRESOP2 -> arpq arpr TRACEP2

ADRESOP3 -> arpq arpr TRACEP3

ADRESOD1P1 -> arpq arpr TRACED1P1

ADRESOD1P2 -> arpq arpr TRACED1P2

ADRESOD1P3 -> arpq arpr TRACED1P3

DNSQRY -> dnsq TRACED1

DNSQRY1 -> dnsr TRACE

DNSQRYT1 -> dnsq TRACET1D1

DNSQRYP1 -> dnsq TRACED1P1

DNSQRY1T1 -> dnsr TRACET1

DNSQRY1P1 -> dnsr TRACEP1

DNSQRYT2 -> dnsq TRACET2D1

DNSQRYP2 -> dnsq TRACED1P2

DNSQRY1T2 -> dnsr TRACET2

DNSQRY1P2 -> dnsr TRACEP2

DNSQRYT3 -> dnsq TRACET3D1

DNSQRYP3 -> dnsq TRACED1P3

DNSQRY1T3 -> dnsr TRACET3

DNSQRY1P3 -> dnsr TRACEP3

PDU -> data TRACEP1 | http TRACEP3

PDU1 -> data TRACEP2 | http TRACEP3

PDU2 -> acko TRACET3

PDU3 -> acko TRACE

PDUD1 -> data TRACED1P1 | http TRACED1P3

PDU1D1 -> data TRACED1P2 | http TRACED1P3

PDU2D1 -> acko TRACET3D1

PDU3D1 -> acko TRACED1
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