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Abstract

The interdependency, in a cognitive radio (CR) network, of spectrum sensing, occupancy modelling, channel switching and sec-
ondary user (SU) performance, is investigated. AchievableSU data throughput and primary user (PU) disruption rate have been
examined for both theoretical test data as well as data obtained from real-world spectrum measurements done in Pretoria, South
Africa. A channel switching simulator was developed to investigate SU performance, where a hidden Markov model (HMM) was
employed to model and predict PU behaviour, from which proactive channel allocations could be made. Results show that CR
performance may be improved if PU behaviour is accurately modelled, since accurate prediction allows the SU to make proactive
channel switching decisions. It is further shown that a trade-off may exist between achievable SU throughput and average PU
disruption rate. When using the prediction model, significant performance improvements, particularly under heavy traffic density
conditions, of up to double the SU throughput and half the PU disruption rate were observed. Results obtained from a measure-
ment campaign were comparable with those obtained from theoretical occupancy data, with an average similarity score of95% for
prediction accuracy, 90% for SU throughput and 70% for PU disruption rate.
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1. Introduction

The way in which land becomes scarcer as urban areas be-
come more densely populated, is readily compared to the de-
crease in availability of useful radio spectrum as the number of
wireless devices vying for usage of similar frequency bandsin-
creases. The FCC has predicted a rapidly increasing demand
for mobile data services in North America that may exceed ca-
pacity in the near future [1, 2]. Consequently, the concept of
cognitive radio (CR) has been proposed [3] as an attempt at
making more efficient usage of the radio frequency spectrum
through opportunistic spectrum access.

Performance in CR networks is inherently affected by the
spectrum sensing (SS) and channel selection process. Incor-
rect identification of spectrum opportunities and furthermore,
subsequent suboptimal channel selections, could result inun-
necessary delays. These delays may lead to a degradation in
secondary user (SU) performance and may also bring about un-
necessary interference for existing primary users (PU). Accu-
rate, proactive channel occupancy predictions should improve
the channel allocation process by helping to minimise the prob-
ability of incorrectly detecting spectrum holes, thus actively re-
ducing interference delays and transmission gaps due to sub-
optimal channel switching [4].

In [5], a two-state Hidden Markov model (HMM), which is
used to predict PU behaviour, is proposed. This model relieson
historical usage data. In [6], usage of historical PU behaviour,
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measured from the 6GHz region, was shown to improve the SS
decision making process. Furthermore, intelligent approaches
to channel switching, based on proactive channel predictions,
were proposed in [4] and [7].

In this paper, the work in [4] and [7] has been extended by
using the HMM in [5], to investigate the effect that intelligent
channel switching has on SU performance in a CR network.
The interdependent relationship between spectrum sensing, PU
traffic modelling, channel switching, SU throughput and aver-
age PU disruption rate, is the main focus of the article.

Firstly, prediction accuracy using the HMM is investigated.
The HMM was chosen, since it allows for the assumption that
PU traffic can be independent of a specific statistical distribu-
tion (PU traffic was assumed to follow an exponential distribu-
tion in [4] and [7]).

Secondly, the authors present a proactive channel switching
simulator for performing simulations to investigate the effect
that the channel occupancy model has on the channel switch-
ing process and the subsequent effect that this has on SU data
throughput and PU disruption rate. To the author’s knowledge,
this is currently a unique contribution to the field of a CR.

Practical spectrum measurements of GSM traffic were used
to verify the results obtained by theoretical simulation. Since
there appeared to be a lack of information surrounding the se-
lection of a signal detection threshold for the measured data, a
novel approach to calculating this was proposed by the authors.
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2. Channel occupancy

Before SU communication may be initiated, it is imperative
that the SU is able to determine which channels are already
occupied by PUs. Furthermore, the ability of the SU to predict
future PU behaviour may provide significant benefits to both
sets of users.

2.1. Hidden Markov occupancy model

It is necessary to model and predict channel occupancy since
enabling the SU to predict future PU behaviour allows for po-
tential improvement to the channel allocation process. Oneof
the methods suggested for modelling channel occupancy in CR
networks is the two-state HMM [5, 8, 9], where sub-band spec-
trum occupancy is modelled as a consecutive sequence of bi-
nary states that represent sub-band channel occupancy (theex-
ponential distribution is an alternative approach explored in the
literature [10]). HMMs are suited to this problem since true
occupancy states are not always known to SUs after the SS pro-
cess.

2.1.1. HMM structure

A HMM comprises a setZ of M possible states,

Z = {z1, z2, · · · , zM} , (1)

and a setX of N possible emissions,

X = {x1, x2, · · · , xN} . (2)

Two statistical parameters govern the operation of a HMM.
The first parameterP is anM-by-M state transition probability
matrix representing the probabilities associated with changing
from one state to another [11] and is given by,

P =
(

pi j

)

M×M
i, j ∈ Z, (3)

where the individual elements of (3) are denoted by,

pi j = Pr (zn = j | zn−1 = i) 2 ≤ n ≤ L, (4)

andL represents the length of an observation period.
Similarly, the second parameterE is an M-by-N emission

probability matrix that represents the probabilities associated
with obtaining a certain output given that the model is currently
in a true statezn, and is given by,

E = (eih)M×N i,h ∈ X, (5)

where the individual elements of (5) are denoted by,

ei(h) = Pr (xn = h | zn = i) 2 ≤ n ≤ τ. (6)

HMM parameters may be denoted byλ = (P, E, π), whereπ
is the initial state distribution.
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Figure 1: HMM representation of binary sub-band spectrum occupancy.

2.1.2. Traffic occupancy model
Proposed in [5, 12], the model illustrated in Fig. 1 is a two

dimensional HMM with state spaceZ = {0,1} and emission
state spaceX = {0,1}.

At any given time, the channel may be detected to be ei-
ther occupied by a PU,Zi = 1 or available for use by a SU
Zi = 0. Since the HMM is used to predict a sequence of
channel occupancy states, bothP(X | λ) and the HMM model
parameters need to be determined. Initially, an educated
guess is made for these parameters. A set of observations
O (t) = {xt−1, xt−2, · · · , xt−L} are then collected, by observing the
band of interest for a time interval comprising a maximum of
L observations. The model parameters are then fine-tuned by
feeding these observations into a model training algorithm. Af-
ter training has been performed, the model is used to predictthe
most likely sequence of near-future channel occupancy states
Ẑ = {zt+1, zt+2, · · · , zN}. Based on these predictions, the SU may
now be allocated a channel within which to operate.

2.2. Model training algorithms

The accuracy level that the model is able to achieve is in-
fluenced by the accuracy of its parameters, i.e. if the model is
poorly trained then it will not accurately represent the statistics
of the channel under investigation. For comparison, two dif-
ferent model training algorithms are selected: a Viterbi based
algorithm (VBA) and the Baum-Welch algorithm (BWA).

2.2.1. Viterbi based algorithm
A VBA for training HMMs is described in [13]. GivenO(t)

and an estimate forλ, the Viterbi algorithm may be used to
calculate the most probable sequence of hidden states by recur-
sively selecting the path with the highest probabilityπ∗, such
that,

π∗ = arg max
π∈Z

P(x, π). (7)

If Vt,k is the most probable path ending in statek, with V0,0 = 1,
then these probabilities can be obtained as follows,

Vt,k = log[P(xt | k)] +max
z∈Z

[

log
(

pz,k
)

+ Vt−1,z
]

. (8)

UsingO(t) andπ∗, the model parameters are then re-estimated
by counting all particular transitions and emissions that occur,
according to the following expressions[13],

pkl =
Pkl

∑M−1
a=0 Pka

and ek(b) =
Ek(b)

∑N−1
c=0 Ek(c)

, (9)
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where Pkl is the number of transitions from statek to
state l and Ek(b) the number of emissions ofb from state
k. A value for λ is then found that maximises the con-
tribution to the log likelihood of the observation sequence,
logP[xt−1, · · · , xt−L|λ, π

∗(xt−1), · · · , π∗(xt−L)].
This process is repeated until the difference between consec-

utive values of this likelihood fall below a predefined threshold
(chosen as 0.001 in this article).

2.2.2. Baum-Welch algorithm
The BWA is an instance of a generalised expectation-

maximisation (EM) algorithm and makes use of both the for-
ward and backward algorithms [11]. If the number of hidden
and visible states is known, then it is possible to obtain a good
solution forλ by iteratively updating the weights of the BWA
until certain convergence criteria have been met. The forward
variableατ is the probability of obtaining the partial observa-
tion sequence,O, when it terminates in statei, given as,

ατ (i) = p (x1, x2, · · · , xt, zt = i | λ) , (10)

and forms part of a recursive relationship known as the forward
algorithm,

αt+1 ( j) = ej(xt+1)γt 1 ≤ j ≤ M,1 ≤ t ≤ L − 1, (11)

whereγt is given by,

γt =

M
∑

i=1

αt (i) pi j 1 ≤ j ≤ M,1 ≤ t ≤ L − 1, (12)

and the first instance of the forward variable is,

αt+1 ( j) = π jej (x1) 1 ≤ j ≤ M. (13)

Therefore,

P (X | λ) =
M
∑

i=1

αL (i) . (14)

3. Channel switching simulator

A software simulator has been developed to investigate the
effects that channel switching may have on the performance of
SUs while operating within a CR network.

3.1. Physical layer considerations

The channel switching simulator has been set up to operate
under various physical layer parameters that are based on the
IEEE 802.22 wireless regional area network standard (WRAN)
for CR [14]. The standard specifies a number of adaptive mod-
ulationΘ and coding rater modes. The authors have chosen to
perform simulations using mode 3. This mode specifies a spec-
tral efficiency of 0.76 b/s/hz incorporating quadrature phase-
shift keying (QPSK) with ad = 1/2 rate forward error correc-
tion (FEC) code.

Guidelines pertaining to CR frame structure are provided for
by the media access control (MAC) layer specification of the

Table 1: Physical layer parameters for investigating SU performance.

Param. Θ d BW tf ρ

Value QPSK 1/2 100 kHz 100 ms 5

standard. The standard suggests that data should be transmitted
in ts f = 16t f sized superframes. Wheret f = 10 ms is the frame
period.

Due to physical limitations on the speed at which spectrum
measurements were able to be taken, the frame period had to be
adjusted to be ten times longer than that specified in the stan-
dard. Thus the frame period utilised wast f = 100 ms. Although
t f was much longer than recommended by the standard, it was
assumed that this would not unduly influence the results ob-
tained, since the average length of a mobile telephone call has
been reported at around 101s [15] (whenL = 400, observation
time would be 40s). Since the bandwidth of a GSM channel
is 200 KHz [16], a channel bandwidth ofBW = 100 KHz was
chosen. For the purpose of channel switching analysis another
MAC structure was added: the superblock. A superblock con-
sists oftsb = 32ts f superframes. These physical layer consider-
ations are summarised in Table 1.

3.2. Channel-switching algorithm

The channel switching simulator makes use of the channel
occupancy and prediction model, described in Section 2, to in-
vestigate the performance of a single SU in a CR network. A
flow diagram of the simulator is presented in Fig. 2.

To begin with, the SU must perform wide-band spectrum
sensing and determine the channel occupancies of a set of po-
tential narrow-band operating channelsIq. This is done forL
frame periods, such that,

Iq = Oq (t) 1 ≤ q ≤ ϑ,1 ≤ t ≤ L, (15)

whereϑ is the size of the channel set.Iq is then used to train a
HMM for each channel in the set.

From these models future channel occupancy for the entire
setFq is then predicted,

Fq = X (t) tL ≤ t ≤ Ψ, (16)

where tL is the frame period commencing immediately after
model training has been performed andΨ is the maximum num-
ber of states that will be predicted. The foundation upon which
the SU will then determine when and within which channels to
operate is provided byFq.

Before data transmission begins, the SU will quickly sense
the set of potential operating channels again for a timetsn ≤

t f , to test for immediate PU activity on the currently selected
channelqc. If qc is found to be currently available at timetc,
Oq (tc) = 0, then the SU will transmit onqc for a time intervaltI .
The interval size is governed by the selected spectrum sensing
approach (discussed in Section 3.3).

However, ifqc is found to be currently occupied,Oq (tc) = 1,
the SU will try to find an alternative channel to pro-actively
switch to. This channel is chosen by selecting what the SU
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Figure 2: Algorithm for channel switching simulator.

deems to be the channel that will remain unoccupied for the
longest expected number of frame periodsΩq (based on future
channel occupancy predictions) such that [7],

arg max
q
Ωq tc ≤ Ωqt f ≤ tc + ρt f , (17)

whereρ is the maximum number of future frame periods that
the SU will consider when choosingΩq. However, if all the
channels in the set are occupied,Iq = 1,1 ≤ q ≤ ϑ, then the
SU will wait until t = tc + tI before testing for an open channel
again.

The SU will continue the cycle of quick sensing, testing
channel availability, channel switching and data transmission
until the prediction period is exceeded, i.e.t = tL + Ψ. At this
point the set of HMMs will be updated andFq will be repopu-
lated by further channel occupancy predictions, thus continuing
the channel switching and transmission cycle.

3.3. Spectrum sensing approach

Sensing is performed to verify the occupancy status of the
channel within which a SU is currently operating. This is meant
to limit PU interference, however, every sensing operationdoes
introduce added delays. The spectrum sensing approach deter-
mines how regularly the quick sensing operation is performed.
A prediction dependent approach is employed which is based
on the periodic sensing concept presented in [17]. However,in
this paper, quick sensing relies on occupancy prediction accu-
racy and is only performed afterΩq frame periods. The trans-
mission interval is thus given as,

tI = Ωqt f . (18)

4. Secondary user performance

The criteria used to evaluate SU performance are now dis-
cussed.

4.1. Channel occupancy model performance

The only way that a SU will be able to perform intelligent
channel switching is if it has up-to-date knowledge of all the
channels that it may potentially be operating within. Amongst
other factors, future PU behaviour prediction accuracy may
have a significant effect on achievable CR performance. The
more accurately channel occupancy is predicted, the more ac-
curately channel allocation may be performed. Poor prediction
accuracy may cause the SU to experience further delays due
to additional sensing and channel switching requirements and
cause PUs to be more likely to experience SU interference.

4.2. Data throughput

The impact that channel modelling may have on SU perfor-
mance is measured by calculating the effect that channel switch-
ing accuracy has on the throughput of a single SU. Certain fac-
tors that are specific to the cognitive nature of the network will
affect the actual throughput achieved. These are over and above
traditional factors such as modulation scheme, coding rateand
imperfect channel conditions. Any delays introduced by theCR
will have a negative impact on the achievable throughput of the
network. Due to the inherent nature of CR, various CR-specific
delays are inevitable. These may include: sensing delaysdsn,
waiting delaysdwt, switching delaysdsw, channel observation
delaysdob and model training delaysdtr .

These delays are a function of the number of SU quick sens-
ing operationsυsn performed, the number of times a SU has to
wait for a free channel to become availableυwt, the number of
times a SU has to switch channelsυsw, the observation length
L and the number of iterationsI performed during the HMM
training processυtr . The sensing delay may thus be given as,

dsn = υsntsn, (19)

the waiting delay is given as,

dwt = υwtt f , (20)

and the switching delay is given as,

dsw = υswtsw, (21)

wheretsw ≤ t f is the time required to perform a channel switch.
The channel observation delaydob is given by,

dob = t f L, (22)

and the training delay is given by,

dtr = υtr ttr , (23)

wherettr << t f is the average time required to perform a single
iteration of the HMM training algorithm.
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Table 2: Simulation parameter assumptions for CR-specific delays.

Param. tsn tsw ttr
Value t f /2 t f /2 t f /10

If throughput is defined to be the rate at which data is re-
ceived, then it may be presented as a function of the number
of bits k received over a fixed period of timeTs. Thus data
throughputRb is given as [18],

Rb =
k
Ts
. (24)

The theoretically achievable throughputRsu based on CR fac-
tors only, i.e. the effects of modulation, coding and channel
gain are ignored, may thus be expressed as follows,

Rsu =
k

Tcr
, (25)

whereTcr represents the transmission time period with the ad-
ditional time delay introduced by the CR process included.Tcr

is thus defined as follows,

Tcr = Ts + dsn+ dwt + dsw+ dob + dtr . (26)

A summary of the assumptions made regarding the length of
these CR-specific delays, is presented in Table 2, wheretsn, tsw

andttr are specified as a function oft f .

4.3. Primary user disruption

When a SU erroneously switches to a channel that is already
occupied by a PU it will disrupt and interfere with the PU. This
will occur when a channel is either incorrectly sensed and/or
predicted to be unoccupied at a time when it is in actual fact
not. The rate at which a SU may cause disruptions to PUs is
calculated usingTcr. This is calculated as the number of times
that a SU causes PU interference over a certain period of time.
If Icr denotes the number of such events that occur during the
time periodTcr, then PU disruption rateDpu may be expressed
as,

Dpu =
Icr

Tcr
. (27)

5. Spectrum measurements

Using the energy detector method, channel occupancy data
was collected through a six week long spectrum measurement
campaign carried out on the main campus of the University of
Pretoria, South Africa [19]. The channel switching simulator
(discussed in Section 3) was employed to investigate potential
SU performance on this data set. For the purpose of verification,
these results will be compared, in Section 6, to those obtained
by theoretically based simulations.

5.1. Spectrum sensing

Due to its low computational and implementation complex-
ity, the energy detection sensing technique was chosen [20]. For
this technique, channel occupancy is determined by comparing
the output of an energy detector to a predetermined threshold.
This threshold may be heavily influenced by the environmental
noise floor. The detected signalr (n) may be represented by the
following signal model,

r (n) = s(n) + w (n) , (28)

wheres(n) is the original PU signal andw (n) denotes additive
white Gaussian noise (AWGN). It is assumed that PU channel
occupancy follows a binary model of being either unoccupied
H0 or occupiedH1, the outcome of a sensing operation may
thus be expressed by the following binary hypothesis,

H0 : r (n) = w (n) ,
H1 : r (n) = s(n) + w (n) .

(29)

Thus, when the PU is not present,s(n) = 0, alternativelys(n) >
0 when a PU is occupying the band.

5.2. Occupancy threshold

To test (29), the signal detection thresholdKTh needs to be
calculated. To do this, the received signalr(n) needs to be
transformed into a more detector friendly form. This may be
accomplished by raisingr(n) to a threshold exponentδ as fol-
lows,

Y = |r (n)|δ 0 ≤ n ≤ N. (30)

In (30) N is the observation vector size, while the value cho-
sen forδ determines the extent to which smaller signal or noise
components may be suppressed, or the extent to which larger
components may be accentuated. To compensate for the accen-
tuated components,Y is then clipped by the sum of its meanµs

and standard deviationσs. The clipped signal may be expressed
as,

Yc =

{

Y if |Y| ≤ µs + σs

µs + σs if |Y| > µs + σs.
(31)

The signal detection thresholdKTh may now be calculated by
adding the mean of the clipped signalµc to a preselected con-
stantγ, and is thus given as,

KTh = µc + γ. (32)

The design choices forδ andγ affect channel occupancy ac-
curacy. Since these parameters have a direct influence onKTh

they need to be selected appropriately so as to minimise the
probabilities associated with incorrectly detecting PU activity,
namely mis-detectionPmd and false alarmPf a. Pmd is defined
as the probability of detecting a band to be free when in reality
it is actually occupied.Pmd is thus given as,

Pmd = Pr {Y < KTh|H1|} . (33)

Pf a is defined as the probability of detecting PU activity when
the channel is actually free.Pf a is given as,

Pf a = Pr {Y > KTh|H0} . (34)
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Figure 3: Simulated effect of δ on: (a)Pf a, Pmd, and (b) the resulting accu-
racy of channel occupancy detection. An illustration ofKTh whenδ = 1.73 is
presented in part (c).

The importance of correct threshold selection is illustrated
in Fig. 3, wherePf a , Pmd and the resulting percentage accu-
racy of PU detection are compared. Fig. 3 has been generated
from a set of simulated test data where transmitter information
is known. The average channel occupancy of the simulated test
data is 41.6%.Pf a andPmd are estimated by counting the rate
at which these events occur over a test sequence of 2000 states.
The calculated detection threshold, whenδ = 1.73, is also visu-
ally illustrated. It is assumed thatγ = 0.

5.3. Bands of interest

SU performance is investigated using measured data from the
South African GSM cellular bands. Occupancy data from two
specific bands, presented in Table 3, has been selected for anal-
ysis. These data sets have been chosen in an attempt to rep-
resent both high and low traffic-density conditions. Data from
these bands is used to test the occupancy model and also pro-
vide inputs to the channel switching simulator (described in
Section 3). Measurements have thus been taken from a por-
tion of the GSM 900 up-link (band A) as well a portion from
the GSM 1800 down-link (band B).

Table 3: Table of measured frequency bands, calculated detection thresholds
and associated percentage occupancies.

.

Freq. band Band A Band B
Freq. (MHz) 890.1 - 895.1 1848.5 - 1853.5
Thres. (dBm) -91.49 -93.50
Occup. (% ) 20.47 84.38

5.4. Measurement system

The system used to take spectrum measurements, based on
the design in [21], employs a wide band antenna that is con-
nected to a spectrum analyser (SA) via a low noise amplifier
(LNA). Operation of the system is controlled by an automated
software application that interfaces with the SA over a remote
Ethernet connection. The antenna, LNA and SA are housed
within an air-conditioned metal cabinet at the measurementsite.

5.5. Measurement description

The measurements described in this paper were taken from a
5 MHz block of spectrum, spaced at a channel frequency inter-
val of 100 kHz. Each measured channel consisted of a sweep
of 512 time samples that were spaced 100 ms apart from each
other. Thus, each band was represented by a frequency-time
matrix of 50 frequency bins of 512 time samples each (5 MHz
x 51.2 s). Measurements were taken every two hours during a
measurement campaign that covered a period of six weeks.

5.6. Measured channel occupancy

The measured average frequency-time power spectra of the
bands presented in Table 3 are illustrated in Fig. 5 and Fig. 4
respectively.

Detection thresholds for these bands have been calculated ac-
cording to the procedure described in Section 5.2. The values
chosen forδ in (30) were selected by a process of visual in-
spection. Separate values forδ were selected for each band
due to differences in the frequency-power profile of each band
(this was necessitated by the reliance of the threshold detection
method on calculating mean received power levels). Thresh-
old exponent values ofδ = 5.0 andδ = 0.1 were chosen for
frequency band A and frequency band B respectively.
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Figure 4: Measured power spectra of frequency band A.
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Calculated detection thresholds and resulting percentage
channel occupancies are listed in Table 3. The calculated chan-
nel occupancy for both bands is also visually illustrated inFig.
6 in the form of a white and black frequency-time binary occu-
pancy map. The white areas represent PU occupancy and the
black areas the absence thereof.

The selected bands clearly exhibit rapidly changing PU ac-
tivity across both time and frequency. The calculated average
percentage occupancy of band A is 20.47% and for band B
84.38%. It is thus assumed that data from band A represents
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Figure 6: Binary occupancy plots for (a) frequency band A and(b) frequency
band B.

practically measured low density traffic conditions and that the
data from band B represents practically measured high density
traffic conditions.

6. Performance evaluation

The channel switching simulator was used to investigate the
accuracy of the traffic occupancy model as well as its effect on
the performance of a single SU within a CR network. Simula-
tion results were compared for both theoretical and measured
channel occupancy.

6.1. Occupancy model performance

Performance results for the HMM based occupancy model
using different training algorithms are presented in Table 4
(trained by the VBA) and Table 5 (trained by the BWA) and
include results obtained from theoretical occupancy data,from
measured occupancy data and the absolute difference between
them (|∆A| when comparing band A and|∆B| when comparing
band B). The results include, the percentage mean prediction
accuracy, the percentage standard deviation of predictionaccu-
racy and the number of iterations required to train the model.

The performance of the model was investigated for a set of
training observation lengthsL = {200; 300; 400} and it was ev-
ident that prediction accuracy improved asL was increased. It
was also noticeable that using the BWA to train the HMM pro-
vided a slight prediction accuracy improvement over the VBA,
particularly for the measured occupancy data. However, the
BWA is a more complex algorithm and was found to require
many more iterations to converge on a good solution.

From Table 4 and Table 5 it is evident that for both train-
ing algorithms the results, both in terms of measured prediction
accuracy and the required number of training algorithm itera-
tions, are either comparable with or show an improvement over
the simulated results (especially for shorter lengths ofL). How-
ever, the model performed slightly worse when trained with the
VBA in frequency band A.

6.2. Spectrum allocation performance

Simulations, based on both theoretical and measured occu-
pancy data, were run on the channel switching simulator to

Table 4: Channel occupancy prediction performance using theHMM based
prediction model and VBA training algorithm.

Band A Band B
L Theo. Meas. |%∆A| Meas. |%∆B|

Mean
200 75.00 72.45 3.40 82.54 10.05
300 84.57 81.81 3.26 86.60 2.40
400 92.70 89.85 3.07 92.79 0.10

Std
200 11.31 1.56 86.21 1.69 85.06
300 6.43 1.35 79.00 1.96 69.52
400 3.82 0.52 86.39 0.01 99.74

Iterat.
200 4.0 5.49 37.25 4.80 20.00
300 4.0 15.14 278.5 4.98 24.50
400 4.0 5.65 41.25 5.16 29.00
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Table 5: Channel occupancy prediction performance using theHMM based
prediction model and BWA training algorithm.

Band A Band B
L Theo. Meas. |%∆A| Meas. |%∆B|

Mean
200 76.49 81.99 7.19 85.72 12.07
300 84.06 87.44 4.02 89.78 6.80
400 92.51 92.57 0.06 92.59 0.09

Std
200 8.62 1.78 79.35 2.15 75.06
300 6.28 1.19 81.05 1.01 83.92
400 3.33 0.57 82.88 0.99 70.27

Iterat.
200 106.8 77.35 27.57 101.2 5.24
300 116.6 79.37 31.93 91.84 21.23
400 126.5 90.43 28.51 90.48 28.47

investigate the effect that prediction model based channel al-
location had on potentially achievable SU throughput and PU
disruption rate.

6.2.1. Simulation parameters and assumptions
An HMM was used to generate test data for both a heavy

and a light density traffic scenario. To do this, parameters were
chosen asP = Pt for heavy density traffic (78.75% occupancy),
andP = 1−Pt for light density traffic (31.84% occupancy). For
both scenarios,E = |I2 − 0.05|, whereI2 is a two-dimensional
identity matrix and the transition matrixPt was defined as [5],

Pt =

[

0.30 0.70
0.20 0.80

]

, (35)

Initial parameter guesses, for training the prediction model,
were chosen asP = Pt − 0.3I2 + 0.15 andE = |I2 − 0.09|.
A summary of parameter choices is provided in Table 6.

The VBA was chosen to train the occupancy model (due to
its lower computational complexity) and the observation and
training window was limited toL+Ψ = 512 consecutive states.
This meant that asL was increased,Ψ was decreased by a pro-
portionate amount.

The physical layer parameters listed in Table 1 were adhered
to and simulations were run for a length of one superblocktsb

for Sx = 1024tsb iterations.
Since a-priori information about PU activity is not known to

SUs, channel occupancy was determined by selecting a detec-
tion threshold at acceptable SNR conditions. Therefore, only
CR-specific effects were considered, i.e. the effects of channel
gain were ignored.

6.2.2. Simulator results
Results for SU throughput and PU disruption rate, based on

theoretical occupancy data, are presented in Fig. 7 and Fig.8
respectively, and the equivalent results for frequency band A

Table 6: Model parameters for simulating traffic density.

Initial guess Light tra ffic Heavy traffic
P Pt − 0.3I2 + 0.15 1− Pt Pt

E |I2 − 0.09| |I2 − 0.05| |I2 − 0.05|
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Figure 7: Average SU throughput calculated from theoretical occupancy data.

and frequency band B are presented in Fig. 9 and Fig. 10. Re-
sults based on prediction are also compared against those where
channel switching is performed on a random basis. For compar-
ative purposes, the random approach to switching was chosen
to illustrate the benefits that channel occupancy prediction may
have on CR network performance.

Since prediction accuracy improves asL increases, a longer
L should mean that fewer channel switching operations will be
required of the SU. This was shown to be true for heavy traffic,
since throughput increased and PU disruption decreased as both
L andϑ were increased (throughput doubled and PU disruption
halved compared to random switching whenL = 400 andϑ =
20). This trend was reversed for throughput under light traffic
(throughput decreased by between 15% to 30% whenL = 400
andϑ = 20).

A possible explanation is that, under light traffic density con-
ditions, there are many more channels available for the SU to
switch to and thus in terms of throughput, the reduction gained
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Figure 8: Average PU disruption rate calculated from theoretical data.
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Figure 9: Average SU throughput calculated from measured occupancy data.

for υsw is too small to justify the time spent on gathering train-
ing sequence observations, i.e., more time is spent on training
the model than is saved by the achieved reduction inυsw.

As expected, heavy traffic density had a noticeably negative
effect on SU throughput and even more so on the PU disrup-
tion rate when compared to light traffic density (approximately
a 25% reduction in throughput and a 250% increase in the PU
disruption rate whenL = 400 andϑ = 20).

6.3. Similarity
To test how results based on theoretical occupancyH com-

pared to those based on measured occupancyΓ, an average per-
centage similarity scoreη was calculated as follows,

η = 100

[

1−

(

|Γ − H|
H

)]

. (36)

Average percentage similarity scores, listed in Table 7, indicate
good correlation between theoretical and measured resultsfor
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Figure 10: Average PU disruption rate calculated from measured data.

Table 7: Similarity scores for Frequency bands A and B as compared to results
obtained from theoretical occupancy data.

Freq. band A Freq. band B
VBA 96.6 96.7 96.9 90.0 97.6 99.9
BWA 92.8 96.0 99.9 87.9 93.2 99.9
Rsu 96.0 91.1 88.3 82.4 88.7 92.2
Dpu 61.4 72.1 77.5 75.6 67.9 68.6
L 200 300 400 200 300 400

both prediction accuracy (η ≈ 95%) and SU throughput (η ≈
90%). There is a lower but still fair correlation (η ≈ 70%)
for PU disruption rate. In general, lower values ofη may be
attributed to variations in PU occupancy patterns. However,
significant performance improvements for PU disruption, based
on measured occupancy, were responsible for the lowerη values
for PU disruption.

7. Conclusion

In this article, the interdependency of spectrum sensing, PU
traffic modelling, channel switching and SU performance, was
investigated for a CR network scenario. A channel switching
simulator was presented and a channel switching algorithm,
based on a two-state HMM, was proposed. SU throughput
and PU disruption rate were compared under both heavy and
light traffic density conditions for both simulated and practi-
cally measured occupancy data. Results obtained by the pro-
posed channel switching and allocation method indicated sig-
nificant SU throughput gains (up to 200 % increase), particu-
larly under heavy traffic conditions, and an overall reduction in
the PU disruption rate (up to 50 % reduction) under both light
and heavy traffic density conditions. SU performance was de-
graded by high traffic density but the proposed channel switch-
ing algorithm helped to limit the severity of degradation. Re-
sults obtained from measured occupancy data were comparable
with those obtained through simulation. From the work pre-
sented it may be concluded that the proposed method is accu-
rate, as corroborated by the results obtained from the measured
occupancy data.
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Appendix A. List of symbols

A list of the most important symbols used in this article is
provided in Table A.8.

Table A.8: List of symbols used.

Symbol Definition
Z Matrix of possible states
M Number of possible states
X Matrix of possible emissions
N Number of possible emissions
P State transition probability matrix
E Emission probability matrix
O Set of channel observations
L Observation length
π Initial state distribution
Iq Potential operating channel set
Fq Predicted operating channel set
Ψ Maximum number of predicted states
Ωq Maximum expected free channel time
ρ Maximum number of future frames

BW Channel bandwidth
Θ Modulation scheme
d Coding rate
qc Currently selected channel
tI Transmission interval
t f Frame period
tsn Quick sensing time
dsn Overall quick sensing delay
dwt Waiting delay
tsw Channel switching time
dsw Overall channel switching delay
dsn Overall channel observation delay
ttr Iteration time for model training
dtr Overall model training delay

RS U Secondary user throughput
TCR Cognitive radio transmission time
ICR Number of interference events
DPU Primary user disruption rate
r(n) Received signal
s(n) Information component of received signal
w(n) Noise component of received signal

Y Noise suppressed signal
Yc Clipped signal
δ Noise threshold exponent
µc Mean of clipped signal

Pmd Probability of mis-detection
Pf a Probability of false alarm
KTh Detection threshold
η Similarity score
H Theoretical occupancy matrix
Γ Measured occupancy matrix
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