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Abstract

The interdependency, in a cognitive radio (CR) network,pefcsrum sensing, occupancy modelling, channel switchimtysec-
ondary user (SU) performance, is investigated. Achiev&ledata throughput and primary user (PU) disruption rate teen
examined for both theoretical test data as well as datarsddarom real-world spectrum measurements done in Preteaath
Africa. A channel switching simulator was developed to stigate SU performance, where a hidden Markov model (HMM3 wa
employed to model and predict PU behaviour, from which piieachannel allocations could be made. Results show that CR
performance may be improved if PU behaviour is accuratelgietied, since accurate prediction allows the SU to makeqbinea
channel switching decisions. It is further shown that adreadl may exist between achievable SU throughput and average PU
disruption rate. When using the prediction model, signifigarformance improvements, particularly under heavifitraensity
conditions, of up to double the SU throughput and half the Rldugtion rate were observed. Results obtained from a measu
ment campaign were comparable with those obtained fronrétieal occupancy data, with an average similarity scor@séb for
prediction accuracy, 90% for SU throughput and 70% for Plugison rate.
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1. Introduction measured from the 6GHz region, was shown to improve the SS

decision making process. Furthermore, intelligent apgrea

The way in which land becomes scarcer as urban areas bg; channel switching, based on proactive channel predistio
come more densely populated, is readily compared to the dgye e proposed in [4] and [7].

crease in availability of useful radio spectrum as the nurobe

wireless devices vying for usage ofsimilgr frgquency bands In this paper, the work in [4] and [7] has been extended by
creases. The FCC has predicted a rapidly increasing demanging the HMM in [5], to investigate theffect that intelligent
for mobile data services in North America that may exceed caghannel switching has on SU performance in a CR network.
pacity in the near future [1, 2]. Consequently, the concépt OThg jnterdependent relationship between spectrum serihg
cognitive radio (CR) has been proposed [3] as an attempt §agic modelling, channel switching, SU throughput and aver-
making more #icient usage of the radio frequency spectrumage py disruption rate, is the main focus of the article.
through opportunistic spectrum access.

Performance in CR networks is inherentlffexted by the  Firstly, prediction accuracy using the HMM is investigated
spectrum sensing (SS) and channel selection process. - INC8fhe HMM was chosen, since it allows for the assumption that
rect identification of spectrum opportunities and furtherey  py trafic can be independent of a specific statistical distribu-

subsequent suboptimal channel selections, could resulin  tion (PU trafic was assumed to follow an exponential distribu-
necessary delays. These delays may lead to a degradationyjgp, in [4] and [7]).

secondary user (SU) performance and may also bring about un-

necessary interference for existing primary users (PURUAC  secondly, the authors present a proactive channel swigchin
rate, proactive channel occupancy predictions shoulddm®r  simylator for performing simulations to investigate thféeet
the channel allocation process by helping to minimise th@pr  that the channel occupancy model has on the channel switch-
ability of incorrectly detecting spectrum holes, thuswlii re-  ing process and the subsequefiet that this has on SU data
ducing interference delays and transmission gaps due to SUfhroughput and PU disruption rate. To the author’s knowdedg
optimal channel switching [4]. this is currently a unique contribution to the field of a CR.
In [5], a two-state Hidden Markov model (HMM), which is
used to predict PU behaviour, is proposed. This model relies  practical spectrum measurements of GSMitavere used
historical usage data. In [6], usage of historical PU behavi  to verify the results obtained by theoretical simulationncs
there appeared to be a lack of information surrounding the se
*Corresponding author, Tek:27 12 420 2872. lection of a signal detection threshold for the measured, dat
Email addresssimonbarnes@ieee.org (S.D. Barnes) novel approach to calculating this was proposed by the asitho
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2. Channel occupancy

Before SU communication may be initiated, it is imperative
that the SU is able to determine which channels are already
occupied by PUs. Furthermore, the ability of the SU to predic
future PU behaviour may provide significant benefits to both

sets of users.

2.1. Hidden Markov occupancy model

Figure 1: HMM representation of binary sub-band spectruoupancy.

Itis necessary to model and predict channel occupancy since
enabling the SU to predict future PU behaviour allows for po-2 1 2. Trgfic occupancy model

tential improvement to the channel allocation process. @ine

Proposed in [5, 12], the model illustrated in Fig. 1 is a two

the methods suggested for modelling channel occupancy in CRimensional HMM with state spacg = {0,1} and emission

networks is the two-state HMM [5, 8, 9], where sub-band specy;aie spac = {0, 1)

trum occupancy is modelled as a consecutive sequence of bi- o any given time, the channel may be detected to be ei-
nary states that represent sub-band channel occupanogxtthe ey occupied by a PUZ; = 1 or available for use by a SU

ponential distribution is an alternative approach explanethe

Z =0. Since the HMM is used to predict a sequence of

literature [10]). HMMs are suited to this problem since true hannel occupancy states, b&€X | ) and the HMM model

occupancy states are not always known to SUs after the SS P'Barameters need to be determined.

cess.

2.1.1. HMM structure
A HMM comprises a seZ of M possible states,

Z:{21’22""’ZM}a (1)
and a seX of N possible emissions,
X:{X]JXZs'”,XN}' (2)

Initially, an educated
guess is made for these parameters. A set of observations
O(t) = {X_1, %2, - - , %L} are then collected, by observing the
band of interest for a time interval comprising a maximum of

L observations. The model parameters are then fine-tuned by
feeding these observations into a model training algoritAfa

ter training has been performed, the model is used to pregict
most likely sequence of near-future channel occupancegstat
7= {z+1,Z42, -+ , Zn}. Based onthese predictions, the SU may
now be allocated a channel within which to operate.

2.2. Model training algorithms

Two statistical parameters govern the operation of a HMM. The accuracy level that the model is able to achieve is in-

The first parameteP is anM-by-M state transition probability
matrix representing the probabilities associated witmgiray
from one state to another [11] and is given by,

P=(Pu)ys 11 €2Z: ®3)
where the individual elements of (3) are denoted by,
Pij=Pr(Z=]jlz1=1) 2<n<l, @)

andL represents the length of an observation period.

Similarly, the second parameté&r is an M-by-N emission
probability matrix that represents the probabilities atsed
with obtaining a certain output given that the model is cuitlge
in a true state;,, and is given by,

E=(anuxn i,heX, (5)
where the individual elements of (5) are denoted by,
e =P (xh=hlz=i) 2<n<t (6)

HMM parameters may be denoted by (P, E, n), wherer
is the initial state distribution.

fluenced by the accuracy of its parameters, i.e. if the madel i
poorly trained then it will not accurately represent thdistias

of the channel under investigation. For comparison, twe dif
ferent model training algorithms are selected: a Viterlsidaa
algorithm (VBA) and the Baum-Welch algorithm (BWA).

2.2.1. Viterbi based algorithm

A VBA for training HMMs is described in [13]. GiveO(t)
and an estimate for, the Viterbi algorithm may be used to
calculate the most probable sequence of hidden states by rec
sively selecting the path with the highest probabifity such
that,

(7)

If Vi is the most probable path ending in stilatevith Voo = 1,
then these probabilities can be obtained as follows,

7 = arg maxP(x, ).
neZ

Vik = log[P(x | K)] + nzlezxx[log(pzk) + Vie1]- (8)

Using O(t) andx*, the model parameters are then re-estimated

by counting all particular transitions and emissions thatuo,
according to the following expressions[13],

Ex(b)

P« = and e(b) = m7 9)

kil
M-1
a=0 Pka



where Py is the number of transitions from state to
statel and Ex(b) the number of emissions df from state
k. A value for 2 is then found that maximises the con-
tribution to the log likelihood of the observation sequence
log P[Xe—1,- -+, X |4, " (Xe-1), - -+, 0" (Xe-L)]-

This process is repeated until thefdrence between consec- giandard. The standard suggests that data should be ttagsmi
utive values of this likelihood fall below a predefined threlsl ter = 16t sized superframes. Where= 10 ms is the frame
(chosen as 0.001 in this article). period.

] Due to physical limitations on the speed at which spectrum

2.2.2. Baum-Welch algorithm measurements were able to be taken, the frame period had to be

The BWA is an instance of a generalised expectationygjusted to be ten times longer than that specified in the stan
maximisation (EM) algorithm and makes use of both the for-gard. Thus the frame period utilised was= 100 ms. Although
ward and backward algorithms [11]. If the number of hiddent; was much longer than recommended by the standard, it was
and visible states is known, then it is possible to obtain@dgo assumed that this would not unduly influence the results ob-
solution fora by iteratively updating the weights of the BWA tained, since the average length of a mobile telephone aall h
until certain convergence criteria have been met. The fatwa peen reported at around 101s [15] (wher 400, observation
variablea- is the probability of obtaining the partial observa- time would be 40s). Since the bandwidth of a GSM channel

Table 1: Physical layer parameters for investigating SUguetance.

Param. ® d BW 7 e
Value | QPSK 72 100kHz 100ms 5

tion sequenceD, when it terminates in stategiven as, is 200 KHz [16], a channel bandwidth &W = 100 KHz was
N . 1 chosen. For the purpose of channel switching analysis anoth
a: (i) = pOa. X %2 =11 ), (10)  MAC structure was added: the superblock. A superblock con-

sists ofty, = 325t superframes. These physical layer consider-

and forms part of a recursive relationship known as the fodwa ~ . .
ations are summarised in Table 1.

algorithm,

awi() =)y l<jsMilstsL-1, (11)  3.2. Channel-switching algorithm
o The channel switching simulator makes use of the channel
wherey is given by, occupancy and prediction model, described in Section 2)-to i
M vestigate the performance of a single SU in a CR network. A
Y= Z a@p; 1<jsMl<t<L-1, (12 flow diagram of the simulator is presented in Fig. 2.

. To begin with, the SU must perform wide-band spectrum
sensing and determine the channel occupancies of a set of po-
and the first instance of the forward variable is, tential narrow-band operating channéjs This is done forL

frame periods, such that,

i=1

a1 (J)=mg(x) 1<j<M (13)
lq=0q() 1<g<d,1l<st<lL, 15
Therefore, q q () q (15)
M . . . .
B . whered is the size of the channel sdt, is then used to train a
PXTA) = .Z; o (). (14) HMM for each channel in the set.

From these models future channel occupancy for the entire

Lo setF is then predicted,
3. Channel switching simulator

) , , Fg=X({) t<st<Vy, 16
A software simulator has been developed to investigate the a © (16)

effects that channel switching may have on the performance Gfneret, is the frame period commencing immediately after

SUs while operating within a CR network. model training has been performed akis the maximum num-
_ ) _ ber of states that will be predicted. The foundation uporcwhi
3.1. Physical layer considerations the SU will then determine when and within which channels to

The channel switching simulator has been set up to operateperate is provided b,
under various physical layer parameters that are basedeon th Before data transmission begins, the SU will quickly sense
IEEE 802.22 wireless regional area network standard (WRANj}he set of potential operating channels again for a tigge<
for CR [14]. The standard specifies a number of adaptive mod, to test for immediate PU activity on the currently selected
ulation® and coding rate modes. The authors have chosen tochannelqc.. If . is found to be currently available at timg
perform simulations using mode 3. This mode specifies a spe@y (tc) = 0, then the SU will transmit og. for a time intervat, .
tral eficiency of Q76 bs’hz incorporating quadrature phase- The interval size is governed by the selected spectrumrsgnsi
shift keying (QPSK) with a = 1/2 rate forward error correc- approach (discussed in Section 3.3).
tion (FEC) code. However, ifqc is found to be currently occupie@y (tc) = 1,
Guidelines pertaining to CR frame structure are provided fothe SU will try to find an alternative channel to pro-actively
by the media access control (MAC) layer specification of theswitch to. This channel is chosen by selecting what the SU

3



4. Secondary user performance

Observe Train channel Predict

channels models occupancy F,

The criteria used to evaluate SU performance are now dis-
cussed.

Quick sense 4.1. Channel occupancy model performance
channels I, for

1, seconds

\ 4

The only way that a SU will be able to perform intelligent
channel switching is if it has up-to-date knowledge of a# th
channels that it may potentially be operating within. Amsing
other factors, future PU behaviour prediction accuracy may
have a significantféect on achievable CR performance. The
more accurately channel occupancy is predicted, the mere ac
curately channel allocation may be performed. Poor priedict
accuracy may cause the SU to experience further delays due
to additional sensing and channel switching requirememds a
No cause PUs to be more likely to experience SU interference.

Tx on
current
channel g,
for #
seconds

Test

4.2. Data throughput

The impact that channel modelling may have on SU perfor-
mance is measured by calculating tifieet that channel switch-
ing accuracy has on the throughput of a single SU. Certain fac
tors that are specific to the cognitive nature of the netwatk w
affect the actual throughput achieved. These are over and above
traditional factors such as modulation scheme, codinganate

deems to be the channel that will remain unoccupied for thdMPerfect channel conditions. Any delays introduced byGRe

longest expected number of frame perigtis(based on future will have a negative impact on the achievable throughputef t
channel occupancy predictions) such that [7] network. Due to the inherent nature of CR, various CR-specifi

delays are inevitable. These may include: sensing delgys
argmaxg te < Quty < te + pty, 17) waiting delaysd, switchipg delaysisy, channel observation
q delaysd,, and model training delayd; .

Switch to best
predicted
channel Q,

Test free channel

—| Wait N .
existence

Figure 2: Algorithm for channel switching simulator.

. . : These delays are a function of the number of SU quick sens-
wherep is the maximum number of future frame periods that. . .
) . . . ing operationsss, performed, the number of times a SU has to
the SU will consider when choosin@y. However, if all the : :
. ) wait for a free channel to become availablg, the number of
channels in the set are occupidd,= 1,1 < q < ¢, then the

SU will wait until t = t; + t; before testing for an open channel times a SU has to switch channels, the observation length
T 9 P L and the number of iteratiorisperformed during the HMM

again. . . . . ._training processy . The sensing delay may thus be given as,
The SU will continue the cycle of quick sensing, testing
channel availability, channel switching and data transiois dsn = verten (19)

until the prediction period is exceeded, ite= t, + . At this

point the set of HMMs will be updated arfel will be repopu-  the waiting delay is given as,

lated by further channel occupancy predictions, thus oairtg

the channel switching and transmission cycle. dwt = vuits, (20)

3.3. Spectrum sensing approach and the switching delay is given as,

Sensing is performed to verify the occupancy status of the Asw = Uswtsws (21)
channel within which a SU is currently operating. This is mtea
to limit PU interference, however, every sensing operatioes wherets,, < t; is the time required to perform a channel switch.
introduce added delays. The spectrum sensing approadh detd e channel observation deldy, is given by,
mines how regularly the quick sensing operation is perfakme
A prediction dependent approach is employed which is based dob = 1L, (22)
on the periodic sensing concept presented in [17]. Howéver,
this paper, quick sensing relies on occupancy predicticn-ac
racy .and. is onlylperformgd aft€xy frame periods. The trans- O = Vet (23)
mission interval is thus given as,

and the training delay is given by,

wheret; << t; is the average time required to perform a single
t = Qqts. (18)  jteration of the HMM training algorithm.



A rum sensin
Table 2: Simulation parameter assumptions for CR-specifiydela 5 Spegt um sensing . . .
Param. | tg,  tew ty Due to its low computational and implementation complex-

Value | t;/2 t;/2 t;/10 ity, the energy detection sensing technique was chosenff20]
this technique, channel occupancy is determined by comgari
the output of an energy detector to a predetermined thréshol

If throughput is defined to be the rate at which data is re_Th.is threshold may be heayily influenced by the environmenta
ceived, then it may be presented as a function of the numbdl©ise floor. The detected signe(in) may be represented by the
of bits k received over a fixed period of timBs. Thus data following signal model,

throughputR, is given as [18], r(n) = s(n) +w(n), (28)
_ 5 (24) wheres(n) is the original PU signal and/ (n) denotes additive
Ts white Gaussian noise (AWGN). It is assumed that PU channel

] ] occupancy follows a binary model of being either unoccupied
The theoretically achievable throughpeg, based on CR fac- Ho or occupiedH:, the outcome of a sensing operation may
tors only, i.e. the fects of modulation, coding and channel i,s pe expressed by the following binary hypothesis,
gain are ignored, may thus be expressed as follows,
Ho:r(n) =w(n),

TL’ (25) Hi:r(n) =s()+w(n).

(29)
Rsu =
Thus, when the PU is not preses{n) = 0, alternativelys(n) >
whereT,, represents the transmission time period with the ad0 when a PU is occupying the band.
ditional time delay introduced by the CR process includigd.

is thus defined as follows, 5.2. Occupancy threshold
To test (29), the signal detection thresh#lgl, needs to be
Ter = Ts + dsn + Owt + Aew + dop + iy (26)  calculated. To do this, the received sigméh) needs to be

transformed into a more detector friendly form. This may be

A summary of the assumptions made regarding the length giccomplished by raising(n) to a threshold exponetas fol-
these CR-specific delays, is presented in Table 2, wigrg,,  1OWS,
andt, are specified as a function of Y=Ir(mP 0<n<N (30)
In (30) N is the observation vector size, while the value cho-
sen fors determines the extent to which smaller signal or noise
components may be suppressed, or the extent to which larger

When a SU erroneously switches to a channel that is alread§PMPOnents may be accentuated. To compensate for the accen-
occupied by a PU it will disrupt and interfere with the PU. ghi fuated component¥, is then clipped by the sum of its mean
will occur when a channel is either incorrectly sensed/and @nd standard deviatians. The clipped signal may be expressed
predicted to be unoccupied at a time when it is in actual facfS:
not. The rate at which a SU may cause disruptions to PUs is Y, = {
calculated usind@ ;. This is calculated as the number of times
that a SU causes PU interference over a certain period of tim@he signal detection thresholr, may now be calculated by
If I, denotes the number of such events that occur during thadding the mean of the clipped signalto a preselected con-
time periodTc,, then PU disruption rat®,, may be expressed stanty, and is thus given as,

as,
lcr Krh = e +7. (32)
Dpu= —. (27)

Ter The design choices f@randy affect channel occupancy ac-
curacy. Since these parameters have a direct influend¢érpn
they need to be selected appropriately so as to minimise the
probabilities associated with incorrectly detecting Pltivég,
namely mis-detectio®y,q and false alarniP¢,. Png is defined

Using the energy detector method, channel occupancy dats the probability of detecting a band to be free when intseali
was collected through a six week long spectrum measuremeiitis actually occupiedPnq is thus given as,

campaign carried out on the main campus of the University of

Pretoria, South Africa [19]. The channel switching simatkat Pma = Pr{Y < KrnlHal}. (33)

(discussed in Section 3) was employed to investigate patent p s defined as the probability of detecting PU activity when

SuU performange on this data set.' Forthg purpose of ver[may the channel is actually fre®;, is given as,

these results will be compared, in Section 6, to those obthin

by theoretically based simulations. Pta = P {Y > KrnlHo} . (34)

4.3. Primary user disruption

Y if Y| <ps+os

us+os if Y| >pus+os. (31)

5. Spectrum measurements



@ 5.4, Measurement system

2 0'4\ JUEEEE S 7 The system used to take spectrum measurements, based on
g the design in [21], employs a wide band antenna that is con-
S 07 x"x* =Pl nected to a spectrum analyser (SA) via a low noise amplifier
e v P (LNA). Operation of the system is controlled by an automated
% s 0 & 3 10 software application that interfaces with the SA over a remo
0 ®) Ethernet connection. The antenna, LNA and SA are housed
. 120 within an air-conditioned metal cabinet at the measuremsieant
>
§ 32 | 5.5. Measurement description
§ 60~ The measurements described in this paper were taken from a
5_% - 5 : I | 5 MHz block of spectrum, spaced at a channel frequency inter-
5 © val of 1QO kHz. Each measured channel consisted of a sweep
-6 ‘ of 512 time samples that were spaced 100 ms apart from each
n% 70 —rm other. Thus, each band was represented by a frequency-time
© &0 Th matrix of 50 frequency bins of 512 time samples each (5 MHz
g U x 51.2 s). Measurements were taken every two hours during a
g 90 measurement campaign that covered a period of six weeks.

-10

Il Il
10 20 30 40 50 60 70 80 90

Frequency 5.6. Measured channel occupancy
Figure 3: Simulated féect of § on: (a)Pfa, Pmg, and (b) the resulting accu- The measured average frequency-time power spectra of the
racy of channel occupancy detection. An illustratiorkaeh, whens = 1.73is  pands presented in Table 3 are illustrated in Fig. 5 and Fig. 4
presented in part (c). respectively.

Detection thresholds for these bands have been calculeted a
cording to the procedure described in Section 5.2. The salue

in Fig. 3, wherePr, , Pmg and the resulting percentage accu- chosen fors in (30) were selected by a process of visual in-

racy of PU detection are compared. Fig. 3 has been generat(@jﬁecuogi'f Separa’Fe \;]alufes iorwere selected f_flo ' efach rt]) e;)nd d
from a set of simulated test data where transmitter infoinat 2u€ t0 diferences in the frequency-power profile of each ban

is known. The average channel occupancy of the simulatéd teghIS was necessﬂatpd by the rellar_me of the threshold:
data is 41.6% Py, andPpg are estimated by counting the rate method on calculating mean received power levels). Thresh-

at which these events occur over a test sequence of 2008.stat ld exponebnt \éakjesﬁ =50 an%& =dgl were phc|>sen for
The calculated detection threshold, wigea 1.73, is also visu-  TedUency band A andirequency ban respectively.
ally illustrated. It is assumed that= 0.

The importance of correct threshold selection is illustdat

5.3. Bands of interest

SU performance is investigated using measured data from the -go.,
South African GSM cellular bands. Occupancy data from two g
specific bands, presented in Table 3, has been selecteddler an g5
ysis. These data sets have been chosen in an attempt to rejg _g,

resent both high and low tiiic-density conditions. Data from 3 o4
these bands is used to test the occupancy model and also prcg

. . . . . . L2 -954
vide inputs to the channel switching simulator (described i 3 g

Section 3). Measurements have thus been taken from a por
tion of the GSM 900 up-link (band A) as well a portion from
the GSM 1800 down-link (band B). 98

895.1

Table 3: Table of measured frequency bands, calculatedtigtebresholds 894.1
and associated percentage occupancies. 8921 893.1
Freqg. band Band A Band B 1
Freq. (MHz) | 890.1-895.1| 1848.5 - 1853.5 Time, s 8901 Frequency, MHz
Thres. (dBm) -91.49 -93.50
Occup. (%) 20.47 84.38 Figure 4: Measured power spectra of frequency band A.




practically measured low density ffig conditions and that the
data from band B represents practically measured high yensi
ﬂ“"lv}i‘ traffic conditions.
\ l \\

" b \\ \\9&\\ \

-90 /\ ?\} \ \ ]/\ \\ ‘ \ | M’\WM\ \ 6. Performance evaluation

f A

-91 N IR\ \ ‘ L . . .
u% \ \ \ K\'\ \ \}\,\ \ ‘ \\ The channel switching simulator was used to investigate the
° 92 ~ J‘ Wi accuracy of the tific occupancy model as well as it§ext on
Q-3 . , the performance of a single SU within a CR network. Simula-
£ —oa tion results were compared for both theoretical and medsure

/ channel occupancy.
-95 1’
-96 / ’/ / 6.1. Occupancy model performance

Performance results for the HMM based occupancy model
1853 using diferent training algorithms are presented in Table 4
(trained by the VBA) and Table 5 (trained by the BWA) and
" 51850.5 ' include results obtained from theoretical occupancy deta)
10 18485 measured occupancy data and the absoldferdnce between
Frequency, MHz them (AA] when comparing band A aridB| when comparing
band B). The results include, the percentage mean predlictio
accuracy, the percentage standard deviation of prediation-
racy and the number of iterations required to train the model
The performance of the model was investigated for a set of
aining observation lengths = {200; 300; 40Qand it was ev-

Time, s

Figure 5: Measured power spectra of frequency band B.

Calculated detection thresholds and resulting percentagt
channel occupancies are listed in Table 3. The calculatan-ch r .
ident that prediction accuracy improvedlasvas increased. It

nel occupancy for both bands is also visually illustrate&im . . .
6 in the form of a white and black frequency-time binary occu-Vas also poUceabIg t.hat using the'BWA to train the HMM pro-
ed a slight prediction accuracy improvement over the YBA

ancy map. The white areas represent PU occupancy and tP{Ej :
Elackyareaz the absence thereofp pancy particularly for the measured occupancy data. However, the
BWA is a more complex algorithm and was found to require
The selected bands clearly exhibit rapidly changing PU ac-
many more iterations to converge on a good solution.
tivity across both time and frequency. The calculated ayera .
From Table 4 and Table 5 it is evident that for both train-
percentage occupancy of band A is 20.47% and for band B

84.38%. It is thus assumed that data from band A represen[sg algorithms the results, both in terms of measured ptietiic
accuracy and the required number of training algorithnaiter

tions, are either comparable with or show an improvement ove
the simulated results (especially for shorter lengthis)oHow-
ever, the model performed slightly worse when trained with t
VBA in frequency band A.

6.2. Spectrum allocation performance
Simulations, based on both theoretical and measured occu-

N . I*HF*WWM uﬁﬁ i ! pancy data, were run on the channel switching simulator to
b= e g e wulmnldl |‘\N\‘|||Iur ) Jmu sy byt
= R e e e e L I I R
% Table 4: Channel occupancy prediction performance usingHti& based
g 7 Y iy (W A AL Ll S Ay igh prediction model and VBA training algorithm.
g iy wumww«ww\|u| i¥miie wrmgﬂr.mnm DAL uww Band A Band B
L 1807‘H LR T LT R ([ R T L Y S P Y1 B P L LY P I l\ L TRAINE L Theo Meas |%AAI Meas |%AB|
EERRIELER L LR ....'..Mum e 1 ' [T ] i
1807 bl u‘,m»‘.pa-‘w?l.m il Amle iy me,'m b ol el 200 | 75.00 | 7245 3.40 | 8254 10.05
! 4 BT o ) ,'\ H I S )i
1806.5 ""l"'u','l-:d:Rﬁ?“m, lu‘ |If f:}. h,!ﬁl 1y ||I||E \.rlw‘\jl J 'nlw mﬁﬁ‘ ‘! I Im‘ “Iqul\ll 1 |jJ|H‘M\‘| Mean 288 333(7) g;gé ggg gggg Si’g
1806 mHil- ‘ ‘ " it * 200| 11.31| 156 86.21| 1.69 85.06
i L I o ol e o
1805]'!1'1,!,,,1"7“&!,‘1{‘#\ 'W’ﬂ' ty ,,,‘H,Pfﬂ,'l ﬁr,ff,'ﬁ,',- bt Std | 300| 643 | 1.35 79.00| 1.96 69.52
' 5 10 15 20 25 30 35 40 45 50 400 | 3.82 0.52 86.39| 0.01 99.74
Time, s 200 4.0 | 549 37.25| 480 20.00
] ] Iterat. | 300 4.0 15.14 2785 | 498 2450
Figure 6: Binary occupancy plots for (a) frequency band A @mdrequency 400 4.0 5.65 41.25 5.16 20.00
band B. : . . : .




Table 5: Channel occupancy prediction performance usingHti& based

prediction model and BWA training algorithm.

Band A Band B
L | Theo. | Meas. |%AA| | Meas. |%AB]
200 | 76.49| 8199 7.19 | 85.72 12.07
Mean | 300 | 84.06 | 87.44 4.02 | 89.78 6.80
400 | 92.51| 9257 0.06 | 92.59 0.09
200 | 8.62 1.78 79.35| 2.15 75.06
Std 300 | 6.28 1.19 81.05| 1.01 83.92
400| 3.33 | 057 82.88| 0.99 70.27
200 | 106.8| 77.35 2757 | 101.2 5.24
lterat. | 300 | 116.6 | 79.37 31.93| 91.84 21.23
400 | 126.5| 90.43 28.51 | 90.48 28.47
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location had on potentially achievable SU throughput and PU

disruption rate.

6.2.1. Simulation parameters and assumptions

An HMM was used to generate test data for both a heavyyts based on prediction are also compared against thasewh

chosen a® = P, for heavy density tréic (78.75% occupancy),

Figure 7: Average SU throughput calculated from theorkticaupancy data.

and frequency band B are presented in Fig. 9 and Fig. 10. Re-

ative purposes, the random approach to switching was chosen

andP = 1- P for light density trafic (31.84% occupancy). For g jjjustrate the benefits that channel occupancy predictiay

both scenariosE = |I, — 0.05], wherel is a two-dimensional
identity matrix and the transition matri was defined as [5],

Pt =

Initial parameter guesses, for training the prediction etpd
were chosen aP = Py — 03], + 0.15 andE = |I, — 0.09.

030 Q70
020 080 |’

(35)

A summary of parameter choices is provided in Table 6.
The VBA was chosen to train the occupancy model (due tdthroughput decreased by between 15% to 30% when400
its lower computational complexity) and the observatiod an andd = 20).

training window was limited td. + ¥ = 512 consecutive states.

have on CR network performance.

Since prediction accuracy improves lagncreases, a longer
L should mean that fewer channel switching operations will be
required of the SU. This was shown to be true for heavjitia
since throughput increased and PU disruption decreaseittas b
L and®¢ were increased (throughput doubled and PU disruption
halved compared to random switching wHer 400 and$ =
20). This trend was reversed for throughput under lighfitra

A possible explanation is that, under lightffra density con-

This meant that ak was increasedy was decreased by a pro- ditions, there are many more channels available for the SU to

portionate amount.

switch to and thus in terms of throughput, the reduction egin

The physical layer parameters listed in Table 1 were adhered

to and simulations were run for a length of one superblggk

for Sy = 10244, iterations.

Since a-priori information about PU activity is not known to
SUs, channel occupancy was determined by selecting a detec-
tion threshold at acceptable SNR conditions. Thereforg; on
CR-specific &ects were considered, i.e. thifexts of channel

gain were ignored.

6.2.2. Simulator results

Results for SU throughput and PU disruption rate, based on
theoretical occupancy data, are presented in Fig. 7 andgig.
respectively, and the equivalent results for frequencydb&n

Table 6: Model parameters for simulatingftra density.

Initial guess Light tra fic | Heavy traffic
P| P-03l,+0.15 1-P Py
E [I, - 0.09 [I, —0.05 [I, —0.05
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Figure 8: Average PU disruption rate calculated from thécaiedata.
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Table 7: Similarity scores for Frequency bands A and B as coeaparresults
obtained from theoretical occupancy data.

400~
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>
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Freq. band A Freg. band B
el VBA [ 966 96.7 96.9 900 97.6 99.9
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both prediction accuracy;(~ 95%) and SU throughput (=
90%). There is a lower but still fair correlation (~ 70%)
for PU disruption rate. In general, lower valuesmpmay be
attributed to variations in PU occupancy patterns. However

0 significant performance improvements for PU disruptiosdoh
on measured occupancy, were responsible for the Igwalues
for PU disruption.
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Figure 9: Average SU throughput calculated from measuredpzty data.

. L . . _ 7. Conclusion
for vgy is too small to justify the time spent on gathering train-

ing sequence observations, i.e., more time is spent orrtcain  In this article, the interdependency of spectrum sensiky, P
the model than is saved by the achieved reductian,in traffic modelling, channel switching and SU performance, was
As expected, heavy tfizc density had a noticeably negative investigated for a CR network scenario. A channel switching
effect on SU throughput and even more so on the PU disrupsimulator was presented and a channel switching algorithm,
tion rate when compared to light ffiex density (approximately based on a two-state HMM, was proposed. SU throughput
a 25% reduction in throughput and a 250% increase in the Pldnd PU disruption rate were compared under both heavy and
disruption rate wheih = 400 and$ = 20). light traffic density conditions for both simulated and practi-
cally measured occupancy data. Results obtained by the pro-
posed channel switching and allocation method indicatgd si
nificant SU throughput gains (up to 200 % increase), particu-
larly under heavy trdic conditions, and an overall reduction in
the PU disruption rate (up to 50 % reduction) under both light
and heavy trlic density conditions. SU performance was de-
1— (lF — Hl)] . graded by high tric density but the proposed channel switch-
H ing algorithm helped to limit the severity of degradatione-R
Average percentage similarity scores, listed in Tabledicate  Sults obtained from measured occupancy data were comparabl
good correlation between theoretical and measured refsults With those obtained through simulation. From the work pre-

6.3. Similarity

To test how results based on theoretical occupataom-
pared to those based on measured occupBEnay average per-
centage similarity scorgwas calculated as follows,

5 =100 (36)
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Figure 10: Average PU disruption rate calculated from messdata.
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sented it may be concluded that the proposed method is accu-
rate, as corroborated by the results obtained from the medsu
occupancy data.
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