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ABSTRACT 

In this paper, three-dimensional topology optimisation was investigated with regard to heat conduction for the 

volume-to-point or volume-to-surface problem in a cubic three-dimensional domain. The positioning of high 

conductive material in a solid with low thermal conductivity and high heat generation was optimized via the 

method of moving asymptotes (MMA) algorithm in order to reduce the average internal temperature.  Both 

partial and full Dirichlet temperature boundaries were considered. Thermal conductivity ratios ranging from 5 to 

3 000 and volumetric constraint between 5% and 30% were covered.  The high conductive material distributions 

were found to resemble those of natural tree-structures, with the four primary branches extending towards the 

furthest corners of the domain when a single seed-location was used.  Multiple seed locations (two and four) 

were also considered. It was found that each seed location resulted in a separate conduction tree, each of which 

also had four primary branches. By increasing the number of seed locations from one to four, the thermal 

performance of the optimized internal architecture improved by up to 20% for a volumetric constraint of 5%.  
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Nomenclature 

ܽ  finite volume method matrix coefficient  

ሾܣሿ  matrix of linear equation  

  source term vector  ܊

ܿ  characteristic length of temperature boundary/seed location  

 diagonal section plane  ܦ

݃଴  objective function 

ଵ݃  constraint function  

  ௕  height of fixed subdomainܪ

  direction-ݖ	 ஽  dimension of domain in theܪ

 number of optimisation iterations  ܫ

݇௅  low thermal conductivity in the heat-generating solid  

݇ு  high thermal conductivity   

݇   cell thermal conductivity  

݇∗  thermal conductivity ratio  

 lower asymptote ܮ

  direction-ݕ	 ஽  dimension of domain in theܮ

  direction-ݖ or -ݕ ,-ݔ number of nodes for  ܯ

 ஐ  total number of nodes in the domainܯ

݊  normal direction  

ܱ  origin/reference point 
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  intermediate density penalisation factor  ݌

  cell heat generation density  ݍ

  ு  high heat generation densityݍ

 optimisation algorithm moving asymptote parameter  ݏ

 ଴  optimisation algorithm fixed asymptote parameterݏ

ܶ  temperature   

തܶ  average temperature  

  temperature vector  ܂

ܷ upper asymptote 

   cell/element volume  ݒ

௙ܸ  volume ratio occupied by high conductive material  

ܸ∗   maximum allowed volume ratio occupied by high conductive material  

஽ܹ  dimension of domain in the 	ݔ-direction   

  x-direction /  x-coordinate  ݔ

  y-direction /  y-coordinate  ݕ

 z-direction  ݖ

 

Greek Symbols 

ૃ  adjoint vector  

  design variable/cellular density  ߠ

ી  design variable vector/density vector 
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 MMA algorithm iteration number ߢ

߬  dimensionless temperature measure 

Subscripts 

1  Referring to the single-seed case 

2  Referring to the two-seed case 

4  Referring to the four-seed case 

݅  index number  

݆  index number  

  maximum  ݔܽ݉

∞  temperature boundary 

Superscripts 

ܶ  transpose 
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1. Introduction 

One of the major limiting factors in the increase of power density in electronics is the thermal barrier opposing 

the transport of internally generated heat to cooler regions.  The scale of electronics is becoming smaller, which 

thus increases the need for small-scale cooling solutions. At smaller dimensional scales, conventional electronic 

cooling, whether it is single-phase convection, or evaporative and boiling convection, is challenging, since there 

is limited space for fluid channels and the support systems needed to maintain the operation of these systems.  

This makes internal conduction cooling, where heat is distributed to the surface regions, a viable solution on a 

small scale, on condition that only a limited volume percentage is set aside for this purpose.   

This limited space problem has sparked numerous papers in recent years where the goal generally is the 

minimisation of the thermal resistance in a volume using high conductive cooling paths. The volume-to-point, or 

volume-to-surface problem thus requires finding the best internal distribution of a finite quantity of high 

conductive material which could aid in the heat transport from within a uniformly heated volume to predefined 

regions on its boundary.   The result of such optimisation drives is measured as a reduction in overall 

temperatures within such a volume.  

Some of the first works in the heat conduction volume-to-point problem were done by Bejan and co-workers [1-

7] for rectangular and other geometrically shaped bodies using the constructal theory approach. Among their 

numerous works in this area, Bejan et al. [8] also considered two-dimensional conduction optimisation at micro- 

and nano-scales where traditional conduction heat transfer theory is not suitable.   One of the methods that were 

followed was the deterministic approach where predefined geometric shape-types (such as linear rectangular 

paths perpendicular branching paths) were considered.  This deterministic geometrical choice has a significant 

advantage from a manufacturing point of view.   Previous work by the current authors also considered 

preselected geometrical types such as conductive embedded plate structures in power electronic modules in 

order to increase the effective power density [9-11].  

Such preselected geometrical types, however, impose restrictions and may be far from the overall optimum 

material distribution as shown by Boichot et al. [12] and Song and Guo [13].  In recent years, topology 

optimisation tools have been used to solve the volume-to-point problem with heat conduction in both the 

discrete and continuous design methods.  The internal material distribution is represented in a structured manner 
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by a set of design variables.  Gersborg-Hansen et al. [14],  Zhang and Liu [15] and Dirker and Meyer [16] 

investigated the two-dimensional optimisation of conducting paths using the solid isotropic with material 

penalisation (SIMP) method coupled to a multi-dimensional optimisation algorithm.  It was found that the 

optimal paths obtained by this method, were similar to those of natural trees.    

Other topology optimisation schemes also exist. Li et al. [17-18] investigated two-dimensional heat conduction 

using evolutionary structural optimisation.  Gao et al. [19] investigated two-dimensional conduction problems 

using a modified bi-directional evolutionary structural optimisation scheme, which is very similar to 

Evolutionary Structural Optimisation.  Boichot et al. [12] investigated cellular automaton with the goal of 

effectively cooling a heat-generating surface by arranging the configuration of high conductive material links.  

Cheng et al.  [20] and Song and Guo [13] implemented bionic optimisation in the construction of highly 

effective heat conduction paths.    Xu et al. [21] investigated the volume-to-point (VP) problem using simulated 

annealing, which proved to perform better than constructal theory and bionic optimisation.  All of these studies 

obtained internal material distributions that resembled natural-looking tree structures.  

Mostly two-dimensional optimisation studies have been conducted and limited three-dimensional optimisation 

results are available. Bejan and co-workers [22-23] and Feng et al. [24] did consider three-dimensional cases, 

but mostly cylindrical and conical type domains were considered using constructal theory.  For the rectangular 

and cubic domains, few results are available and is difficult to generalise.   Since almost all two-dimensional 

topology optimisation studies have exhibited non-perpendicular heat flow in the two dimensions considered, it 

is logical that this will also be the case in the third dimension, and that the third dimension must be included in 

the optimisation process to better understand the type of optimized geometry in real-world three-dimensional 

cases.  Also, because a two-dimensional approach is not able to describe the impact of the size of a Dirichlet 

boundary type in the third dimension, a three-dimensional approach has become vital, at least in this 

investigation.    

The SIMP approach, even though it does not supply discrete material distributions, allows for additional 

flexibility in the material density and has been accepted widely among both engineers and researchers interested 

in topology optimization in a variety of fields [25]. For thermal conduction topology optimization in specific, 

[14,15] showed that SIMP is a plausible approach.  The MMA algorithm and its family of algorithms are widely 

accepted for topology optimization problems which are restricted by either a single constraint or multiple 



8 
 

constraints.  This algorithm has attracted significant interest from the topology optimization community [26, 27] 

and is for this reason adopted for this investigation.  

The purpose of this study is thus to consider three-dimensional optimisation for the volume-to-surface problem 

where the average domain temperature is to be minimized.  Topology optimisation and specifically the method 

of moving asymptotes [28] algorithm, together with the SIMP method are used to determine the optimised 

internal architectures in a cubic three-dimensional domain for different thermal conductivity combinations, 

volume constraint, boundary types and boundary placement options.   Due to the computational expense of 

performing sensitivity analyses needed during the MMA approach, (especially since a large number of design 

variables are needed), the adjoint method is used.  

 

2. Problem Formulation 

Consider a cubic domain ∅, shown in Figure 1 with ܮ஽ ൌ ஽ܹ ൌ  ஽ [m]. The domain originally contains only aܪ

solid with a low uniform thermal conductivity of ݇௅ [W/mK] and high uniform volumetric heat-generating rate 

of ݍு [W/m3].  The heat-generating rate is directly linked to the function of the solid (ie. it could be 

representative of for instance, an electronic module which has an internal volumetric heat generation).  All 

boundaries are adiabatic except for a square region having a characteristic length of ܿ [m] centred on one of the 

external surfaces. This portion has a constant uniform temperature of ஶܶ [K]. High conductive material having a 

conductivity of ݇ு is to be introduced by replacing the original low conductive material to aid heat transport 

towards the constant temperature region on the boundary. In order to numerically determine the optimized 

material distribution, the domain is divided into ܯஐ number of equally sized smaller cubic sub-volumes (or 

elements), each with a volume of  ݒ [m3], which fill the entire domain in a structured manner. The volumetric 

density of the high thermal conductive material in each element (uniform within the element), is described by a 

design variable ߠ௜, which can take any value between 0  and 1. The thermal conductivity within the element is 

thus given by: 

 ݇ሺߠ௜ሻ ൌ ݇୐ ൅ ௜ሺ݇ுߠ െ ݇୐ሻ (1) 

Index ݅ refers to the element number. Likewise, the local heat generation rate within an element is given by: 
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௜ሻߠሺݍ  ൌ ுሺ1ݍ െ  ௜ሻ (2)ߠ

When ߠ௜ ൌ 0, the element has a low thermal conductivity of ݇௅ and a high heat-generating rate of ݍு , while 

when ߠ௜ ൌ 1, the element has the maximum thermal conductivity of ݇ு and no heat-generation (representing a 

volumetric region occupied fully by the high thermal conductive material).  

The purpose of the optimisation process is to find the optimal material distribution (described by the density 

vector	ી) that would minimise an objective function, ݃଴ሺ܂ሻ (where ܂ is the temperature vector containing the 

temperatures of all elements in the domain, which is a function of ી), subject to a non-uniform heat generation 

field (described by the design variable dependence given in Eq. (2)) while adhering to one (or more) 

constraint(s), ଵ݃ሺીሻ.  Average temperature,	 തܶ, is selected as the objective function in this paper. Other objective 

functions can also be used, however, in a previous investigation [16], the average temperature was shown to be 

suitable.   There is only one constraint in this paper, namely that the volume ratio, ௙ܸ,  which the high 

conductive material occupies, is smaller than some maximum allowed proportion, ܸ∗.  

This is formulated mathematically as: 

 Find:   ી 
 

 Minimise: ݃଴ሺ܂ሻ ൌ തܶ ൌ
ଵ

ெಈ
∑ ௜ܶ
ெಈ
௜ୀଵ  

(3) 

 Subject to: ଵ݃ሺીሻ ൌ ௙ܸ ൌ
ଵ

ெಈ
∑ ୧ߠ
ெಈ
௜ୀଵ ൑ ܸ∗ (4) 

3. Numerical Method 

3.1. Finite Volume Method 

To solve the temperature distribution in the domain, the finite volume method (FVM) is adopted. Each element 

is represented by a single volume-centred node.  Assuming steady-state diffusion, the energy equation reduces 

to: 

 ߲
ݔ߲

൬݇ሺߠሻ
߲ܶ
ݔ߲
൰ ൅

߲
ݕ߲

൬݇ሺߠሻ
߲ܶ
ݕ߲
൰ ൅

߲
ݖ߲
൬݇ሺߠሻ

߲ܶ
ݖ߲
൰ ൅ ሻߠሺݍ ൌ 0 

(5) 

 

At the external boundaries, the following is applicable:  
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 ܶ = ஶܶ at the temperature boundary (6)  

 

 ௗ்

ௗ௡
 = 0 except at the temperature boundary (7) 

 

Following the FVM derivation, the following holds for a multidimensional domain for element number	݅ not on 

a diabatic domain boundary: 

 

௜ܶ ෍ሺܽ௝ሻ

ெಈ

௝ୀଵ

ൌ෍൫ ௝ܽ ௝ܶ൯

ெಈ

௝ୀଵ

൅  (8) ݒ௜ሻߠሺݍ

where ݅	 ് ݆. Coefficients ௝ܽ are calculated using the thermal conductivity value at the interface of two 

neighbouring elements, the nodal distance between the elements and the heat flux area  (for all non-

neighbouring elements, ௝ܽ 	= 0).  The thermal conductivity is calculated using the harmonic mean of the 

conductivity values on either side of the interface,	 ௝݇ and ݇௜, assuming the element lengths of both are equal: 

 
݇ ൌ

2݇௜ ௝݇

݇௜ ൅ ௝݇
 

(9) 

For an element on a diabatic domain boundary, a similar equation to Eq. (8) can be drawn up, which would 

contain an additional boundary heat term [W] on the right-hand side. Such equations are used to describe each 

element in the domain and to set up a matrix, ሾܣሿ, of linear equations that is solved using an iterative solver: 

 ሾܣሿ܂ ൌ  ܊
(10) 

Vector ܊ contains all source terms (generated heat) as well as boundary heat terms on diabatic boundaries.  The 

accuracy of the numerical model was checked against the results of commercial numerical packages.  

3.1. Method of Moving Asymptotes 

The method of moving asymptotes algorithm [28] is used to solve a non-linear optimisation problem by 

introducing a strictly convex sub-problem.  It is based on the first-order Taylor series expansion of the objective 

and the constraint functions.  The MMA has been shown to be well suited for structural and, multidisciplinary 

optimization applications, especially where reciprocal or reciprocal-like approximations are used [27]. In broad 

terms, the following iterative scheme is used (for more information on this method the reader is referred to the 

original text): 

STEP 0)  A starting point ીሺ଴ሻ is chosen for iteration ߢ ൌ 0 
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STEP I)  For a given iteration, ߢ, the following are determined: 

i. Constraint function value: ଵ݃ሺીሺ఑ሻሻ  

ii.  Gradients (in terms of θሻ of the cost function as well as the constraint functions:  ݃׏଴ሺીሺ఑ሻሻ  

and ׏ ଵ݃ሺીሺ఑ሻሻ  

STEP II) Generate a sub-problem based on the original problem by replacing the original implicit functions 

with approximating explicit functions based on the results of STEP I. 

STEP III)  Find the optimal solution of the sub-problem and let this solution be the next iteration point ીሺ఑ାଵሻ. 

Go to STEP I) and repeat until some convergence criterion is met.  

The MMA algorithm uses moving asymptotes to relax or restrict the optimization process depending on whether 

it is slow and monotone, or oscillating.  These asymptotes are re-calculated for each iteration and are dependent 

on the current density vector	ી as well as additional information from previous optimisation iterations. During 

the first two MMA iterations ሺߢ ൌ 0 and ߢ ൌ 1) when historic data is not yet available, all lower asymptotes 

(for each design variable, indexed i) were set to ܮ௜
ሺ఑ሻ ൌ 	െݏ଴, while all upper asymptotes were set to ௜ܷ

ሺ఑ሻ ൌ 	  .଴ݏ

For MMA iteration number 2 and above, the lower asymptote for each design variable was set to ܮ௜
ሺ఑ሻ ൌ ௜ߠ	

ሺ఑ሻ െ

௜ߠሾݏ
ሺ఑ିଵሻ െ ௜ܮ

ሺ఑ିଵሻሿ when the process started to oscillate, or ܮ௜
ሺ఑ሻ ൌ ௜ߠ	

ሺ఑ሻ െ ሾߠ௜
ሺ఑ିଵሻ െ ௜ܮ

ሺ఑ିଵሻሿ/ݏ  when the 

asymptote slowed the process down. Likewise, the upper asymptote for each design variable was either set to 

௜ܷ
ሺ఑ሻ ൌ ௜ߠ	

ሺ఑ሻ ൅ ൣݏ ௜ܷ
ሺ఑ିଵሻ െ ௜ߠ

ሺ఑ିଵሻ൧ or  ௜ܷ
ሺ఑ሻ ൌ ௜ߠ	

ሺ఑ሻ ൅ ൣ ௜ܷ
ሺ఑ିଵሻ െ ௜ߠ

ሺ఑ିଵሻ൧/ݏ. The values of ݏ଴ and s were 

carefully selected  in this investigation to produce the lowest optimized value of ݃଴ሺ܂ሻ. This is discussed later in 

the paper. 

3.2. Penalisation Method 

The MMA algorithm has the freedom to assign any value from 0 to 1 to each ߠ in order to minimize the 

objective function (non-discrete). The purpose of the SIMP method is to penalise the intermediate densities 

(non-integer	ߠ values) and encourage the optimisation algorithm to produce 0-1 solutions, although intermediate 

densities are still possible.  

The temperature distribution required in the MMA algorithm is based on conductivity and heat generation 

densities calculated using equations (1) and (2). The MMA also requires the sensitivities of the objective 
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function, which can be calculated on penalised density values, instead of the densities of the actual material 

distribution. This is where the SIMP method is introduced.  Equations (1) and (2) are altered as follows: 

 ݇ሺߠ௜ሻ ൌ ݇୐ ൅ ௜ߠ
௣ሺ݇ு െ ݇୐ሻ (11) 

௜ሻߠሺݍ  ൌ ுሺ1ݍ െ ௜ߠ
௣ሻ (12) 

Here ݌ is the penalisation factor and can take on a value greater than or equal to 1.  

3.3. Adjoint Method 

The sensitivity field of the objection function is required by the MMA algorithm. This could be calculated 

directly, but would be complex and extremely computationally expensive, especially since there are a large 

number of design variables. The adjoint method provides an efficient option for calculating the sensitivity field 

of the objective function, ݀݃଴/݀ߠ and has successfully been implemented in volume-to-point/surface (VP) heat 

conduction problems in the past [14,16]. 

Each design variable sensitivity was calculated by using the adjoint equation [29]: 

 ݀݃଴
௜ߠ݀

ൌ
߲݃଴
௜ߠ߲

െ ૃ் ൬
߲ሾܣሿ
௜ߠ߲

܂ െ
܊߲
௜ߠ߲

൰ 
(13) 

This equation is used to calculate the sensitivity of each element according to the objective function, thus it 

forms a matrix of sensitivities, which is sent to the MMA algorithm. The adjoint vector, ૃ, is calculated as 

follows: 

 
ሾܣሿ்ૃ ൌ ൬

߲݃଴
܂߲

൰
்

 (14) 

where ሾܣሿ is the conductivity matrix and ݃଴ is the objective function.  The rest of the terms in Eq. (13) are 

calculated easily.  ߲݃଴/߲ߠ௜ is zero since the calculation of the objective function is not directly dependent on the 

density of an element. ߲ሾܣሿ/߲ߠ௜ and ߲ߠ/܊௜ are calculated by only deriving the parts in the matrix or vector that 

are dependent on ߠ௜.  

3.4. Non-Dimensional Temperature Measure  

It was found that the difference between the peak temperature in the domain, ௠ܶ௔௫, and the boundary 

temperature ஶܶ, is directly proportional to, ݍு, and ܮ஽
ଶ  and indirectly proportional to the thermal conductivity 

inside the domain. From this, a non-dimensional temperature measure,	߬, can be defined to represent the thermal 
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performance of a given high conductive material distribution, and which can be used to compare the thermal 

performance of a particular material distribution to another: 

 
߬ ൌ

ሺ ௠ܶ௔௫ െ ஶܶሻ݇௅
஽ܮுݍ

ଶ  
(15) 

Other investigations that also used such a measure include [22, 30]. Low ߬ values indicate good thermal cooling 

performance of the material distribution while higher ߬  values represent poorer thermal performance. It was 

found that ߬ is dependent on both ݇௅ and ݇ு. However, if these are in a fixed ratio to each other, i.e.: 	݇ு/ ݇௅ ൌ

	constant, the thermal dependence on ߬ is fully described by either ݇௅ or ݇ு.  In addition, the converged material 

distribution is then independent of the individual thermal conductivities of ݇௅ or ݇ு, but rather becomes 

dependent on the thermal conductivity ratio defined as: 

݇∗ ൌ ݇ு/݇௅ 
(16) 

The heavy dependence of ߬ on ܸ∗ (volumetric constraint ratio) will be discussed later.   

It might be noted that the objective function in this investigation is the average domain temperature, while the 

temperature measure, ߬, of Eq. (15) uses the peak temperature in the domain. These are not strictly speaking 

equivalent, however, it has been found that their relative behaviour is very similar for the conditions covered 

here.    In order to conform to previously published results [16], the use of ߬ is adopted in this paper. Also, it 

would be exceedingly computationally expensive to redefine the objective function to be equal to the peak 

domain temperature, since the adjoint method is not suitably convenient for this, and also it has been shown that 

the use of the peak domain temperature as objective resulted in poorer performing material distributions [16].  

3.5. Dependence Investigation  

Investigations were made to check the dependence of the optimized layout on the numeric mesh density, the 

number of MMA iterations, penalisation scheme and initial density distributions.  It was found that 50 = ܯ 

elements along the characteristic length (ܮ஽) were sufficient and that element numbers beyond this only resulted 

in marginal thermal improvements.  Similarly, it was found that 60 = ܫ (number of MMA iterations) were 

sufficient.  Considering the penalisation scheme,  superior thermal material distributions were achieved when ݌ 

is initially set to 1 (no penalisation) and incrementally increased as the MMA iterations progress. It was found 

that constant penalisation was detrimental to the final thermal performance.  An incrementally increasing ݌ 

value starting at 1 and ending at 3 at the last MMA iteration was adopted. When using an initial uniform density 
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distribution (with ߠ௜ ൌ ܸ∗ ) also resulted in superior distribution solutions compared with imposed material 

distributions, which could affect the outcome of the topology optimization scheme and which should be guarded 

against. 

As mentioned earlier, ݏ and ݏ଴ which were used to control the behaviour of the MMA asymptotes, could have an 

effect on the converged material distribution and could therefore also influence the converged ߬ value. A wide 

range of  ݏ and ݏ଴ value combination were tested in order to arrive at the lowest optimized value of ݃଴ሺ܂ሻ.   

Refer to Figure 2 showing the impact of ݏ and ݏ଴ for an arbitrary chosen  ݇∗ and ܸ∗	scenario. It was found that  

 ,଴ was set between 0.15 and 0.25ݏ ଴. Whenݏ provided the lowest values of ߬ across a wide range of 0.85 = ݏ

good thermal performing solutions where obtained for all other ݇∗ and ܸ∗	scenarios considered. Based on this, ݏ 

= 0.85 and ݏ଴ = 0.15 were adopted for the entire study, but were routinely checked. For domains which are not 

cubic in nature, other values of  ݏ and ݏ଴ might be suitable.  

4. Partial Dirichlet Boundary 

The first boundary condition that was evaluated is that of a partial Dirichlet boundary. Only the square region on 

one of the domain edge surfaces has a fixed uniform temperature as shown in Figure 1.  All other surfaces were 

adiabatic, thus, heat was only able to escape the domain at the temperature boundary.  This boundary type was 

investigated as a starting point to perform a tentative comparison with other two-dimensional studies that also 

utilized such a boundary type.  Figure 3 shows the converged three-dimensional material distribution for an 

arbitrary test case with k* = 500, V* = 0.1, and c/LD = 0.1.  Black regions in the side and top views represent 

design variables ߠ ൌ 1 (placement of high thermal conductive material) while white regions represent	ߠ ൌ 0. 

Grey shades represent intermediate density values (0 < 1 > ߠ).  The grey shades in the isometric view have no 

significance other than to improve visibility of the converged three-dimensional structure.  

The figure shows a tree-like structure, with four main branches extending to the outer-upper corners of the 

domain.  The structure has a single origin, at the position of the constant temperature region.   As expected, the 

converged material distribution is symmetric in nature. The principle-view and top-view show a surprisingly 

ordered structure with a large number of the secondary branches extending outwards orthogonally to the domain 

edges, frequently at vertical and horizontal alignments, or diagonally towards the vertical corner lines of the 

domain.   Similar overall tree structures were observed for all partial Dirichlet boundary cases. Minor overall 

structural variations were present at different ݇∗ and ܸ∗ combinations.  
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4.1. Results for Different Conductivity and Volume Ratios 

The conductivity ratio, ݇∗, and maximum volume ratio, ܸ∗, had a significant impact on the frequency and length 

of the branches, as well as on the thermal performance of the converged material distributions. These impacts 

were investigated for conductivity ratios ranging from ݇∗ = 5 to 3 000 and volume ratio constraints between 

ܸ∗ = 0.05 and 0.3.   

Since the three-dimensional architecture is difficult to replicate on paper, a diagonal section on plane ܦ (as 

defined in Figure 1) is used to compare different scenarios with each other.  Converged architectures for 

different values of ݇∗ at ܸ∗ = 0.1 are given in Table 1, as well as the steady-state non-dimensional temperature, 

for each, normalised between the lowest and highest temperatures.  Here black refers to the highest temperature 

while white refers to lowest temperature.  It can be seen that the peak temperature location is different 

depending on the material distribution, however, normally this temperature is located somewhere on the 

adiabatic boundary.  It might appear that some sections are disconnected from the main structure, but this is only 

due to the figures containing sectional views of the tree structures.  The disconnected portions just indicate 

where a branch intercepts the sectional plane.   The architectures are similar in nature to architectures obtained 

in two-dimensional studies [14-16], especially for ݇∗ values greater than 500.  The width of the base and the 

main branches decreases with an increase in the conductivity ratio.  For lower ݇∗ values, there are less 

secondary branches, most of which extend normally to the side of the domain.  With an increase in ݇∗, the 

number of secondary branches increases and  most of these extend with an upward gradient.  This follows 

logically from the fact that a higher conductive solid requires a smaller cross-sectional area to conduct a 

particular heat rate through it.  Due to the thinner branches, volume capacity is available for the branches to 

reach further into the heat-producing domain, or to branch into more secondary branches. 

Table 2 contains converged architectures obtained for different values of  ܸ∗ at  ݇∗ = 500.  With the increase in 

ܸ∗, the width of the main and secondary branches quickly starts to increase.   Also included in this table are the 

converged temperature distributions for each case.  

A plot of  ߬ values for the converged material distributions with a partial Dirichlet boundary is supplied in 

Figure 4  with dashed lines.  It shows that ߬ is decreased as either, or both, the conductivity ratio or the volume 

ratio is increased.  For k* > 500, relatively little enhancement in the converged thermal performance is obtained, 
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mainly since the length and positioning of the high conductive branches do not alter significantly as the thermal 

conductivity is increased further.  

5. Full Dirichlet Boundary  

The use of a partial Dirichlet boundary is not always representative of the thermal boundary conditions present 

on actual heat-producing media.  Frequently, an entire surface of a rectangular heat producing solid is able to 

exchange heat with, for instance, a heat sink or a cold plate.  To represent such cases more realistically, a full 

Dirichlet boundary condition (where one entire edge of the domain is at a uniform temperature of  ஶܶ) was also 

considered.  The problem with such a boundary condition is that if a uniform initial density distribution is used, 

߲݃଴/߲ߠ  will be constant on all ݕ-ݔ-planes during the initial MMA iterations.  This means that the optimisation 

algorithm will not be able to develop observable internal conducting structures.   

To counteract this, a section of the domain’s material distribution was pre-defined in order to provide a seeding 

location as shown in Figure 5. The MMA algorithm was not allowed to alter this region The subdomain of 

height of ܪ௕, had a set of fixed ߠ values, with 1 = ߠ at the locations from where main branches are to form, 

while all other elements in the subdomain were allocated  0 = ߠ.  This provided the variation needed in ݀݃଴/݀ߠ.    

In this paper one-, two- and four-seed locations are considered. 

5.1. One-Seed Case 

5.1.1.  Subdomain Definition  

A single-square seed location placed in the centre of the bottom surface of the domain was considered first. In 

order to determine the influence of the ܿ and ܪ௕ on the optimized material distribution, ܿ/ܮ஽ was ranged 

between 0.08 and 0.8, and ܪ௕/ܮ஽, was ranged between 0.04 and 1.0.  It was found that an increase in the 

relative height of subdomain  ܪ௕/ܮ஽, limited the domain which the MMA can modify, which resulted in 

increased internal temperatures.  With a thinner subdomain, the optimisation procedure was better-abled to 

arrive at thermally more efficient material distributions.  

Table 3 shows a selection of architectures for ܪ௕/ܮ஽= 0.04 for different values of ܿ/ܮ஽.  As ܿ/ܮ஽ increases, the 

main tree structure becomes “hollow”, the number of secondary branches reduces and the gradient of the main 

branches increases, eventually to the point where the main branches are straight up, or even incline inwards. 
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Converged ߬ values for different combinations of ܪ௕/ܮ஽ and ܿ/ܮ஽ are given in Figure 6 for ݇∗ = 500 and 

ܸ∗ = 0.05.  It can be seen that the optimal value for ܿ/ܮ஽ is approximately 0.24 for ܪ௕/ܮ஽ ൑ 0.4.  As ܪ௕/ܮ஽ is 

increased, ߬ increases exponentially.  Similar tendencies were observed for all ݇∗ and ܸ∗ values.  Best 

performance was achieved when the fixed subdomain was as thin as possible. Based on this,  ܿ/ܮ஽ = 0.24 and 

 ஽ = 0.04 were used to investigate a single-seed location. Both, centred and non-centred seed locations wereܮ/௕ܪ

considered.  

5.1.2.  Centred seed placement results 

Figure 7 represents the converged material distribution obtained with a full Dirichlet boundary type for the same 

k* and V* case shown in Figure 3, which was obtained with the partial Dirichlet boundary type.  The similarities 

can be clearly seen, with the main branches again extending to the corners of the domain.  The main branches 

are, however, thinner for the full Dirichlet boundary compared with the partial boundary, especially when 

considering the top view.  Even though ܿ/ܮ஽ = 0.25 instead of ܿ/ܮ஽ = 0.1, the main trunk in the middle is also 

smaller for the full Dirichlet boundary.  In terms of the secondary branches, there are fewer branches for the full 

Dirichlet boundary compared with the partial boundary. 

Figure 4 also plots the ߬ values obtained for the converged material distributions for a full Dirichlet boundary 

(solid lines) over a range of  ݇∗ and ܸ∗  values.  For comparative purposes, the ߬ values as obtained with a 

partial and full Dirichlet boundary are plotted on the same graph. The full Dirichlet boundary exhibits a 

significant reduction in temperatures due to the larger boundary surface area at a low constant temperature.  As 

before, increases in either ݇∗ or ܸ∗  lead to reduced internal temperatures.  

Some sectional views of converged architectures are given in Table 4 for 0.1 = ∗ࢂ at for different values of ࢑∗.  

As seen, the architectures obtained with the full Dirichlet boundary are similar to those obtained earlier for the 

partial Dirichlet boundary, except at low ࢑∗ values where additional tree structures form at location other than 

the intended seeding point. Due to the predefined subdomain, these additional structures are not linked to the 

outer surface of the domain.  In general, there are fewer secondary branches present for the full Dirichlet 

boundary than for the partial boundary.   
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5.1.3. Non-centred seed placement results 

Non-centred placement of a single-seed location at ݔ and ݕ directional offset values of ݔଵ and ݕଵ respectively is 

now considered.  The same ܿ/ܮ஽ and ܪ௕/ܮ஽ values were used as before. The thermal performances of the 

resulting converged material distributions are given in Figure 8 for ܸ∗ = 0.05 and ݇∗ = 500. As shown, a centred 

seed location at  ݔଵ ൌ ଵݕ ൌ 0 results in the best optimized material distribution.  The same finding was obtained 

for all ܸ∗ and ݇∗ cases.     

Even for off-centre seed placements, four main branch structures were obtained, each extending in a straight 

path towards the furthest domain corners as demonstrated in Table 5 for architectures viewed from below.  The 

branch that extends to the furthest corner is the best developed. Several sub-branches are also present. 

5.2. Two-Seed Case 

Two main configuration types for the placement of two-seed locations, as shown in Figure 9, were considered.  

Each seed location had dimension ܿ by ܿ in the -ݔ	ݕ-plane. As before, different ܿ/ܮ஽ and ܪ௕/ܮ஽ values for the 

subdomain definition were investigated for a wide range of ݔଶ, ݕଶ, ݇∗ , and ܸ∗. It was found that ܿ/ܮ஽ = 0.24 

and ܪ௕/ܮ஽ = 0.04 for each seed location respectively produced the best-performing optimized material layouts.  

Figure 10 shows the influence of the placement of the seed locations for the ܿ/ܮ஽ and ܪ௕/ܮ஽ values when 

considering configuration I for ܸ∗ = 0.05 and ݇∗ = 500.  Similar trends were observed for all other ܸ∗ and  ݇∗ 

values.  From the figure, it can be seen that the optimisation algorithm produced the best-performing material 

distributions when ݔଶ/ܮ஽ = 0.25 and ݕଶ/ܮ஽ = 0.  The same seed placement (ݕଶ/ܮ஽= 0 and ݔଶ/ܮ஽ = 0.25) was 

attained when Configuration II was considered (not shown here).  

A representative material distribution is given in Figure 11 for ܸ∗ = 0.05 and ݇∗ = 500 for this seed placement.  

It can be seen that two identical, mirror-imaged, non-merging structures are present. From the top view, it can 

be seen that each has four main branches. From the front and side views, it can be seen that these branches  

extend towards the corners of each half-domain, similar to the case with a single-tree structure that extended 

towards the four upper corners of the full domain.  Several secondary branches developed also. 

The influence of ܸ∗ and ݇∗ on the converged τ is given in Figure 12. At first glance, there is little or no 

improvement in the thermal performance when using two seeding locations compared with one seeding location 

(compared with the single-seed location plot in Figure 4). However, finer comparisons reveal that the ߬ values 



19 
 

are indeed decreased. By making use of Eq. (17), the performance improvement (expressed in terms of a 

reduction in temperature) can be calculated.   

ሺ%ሻ݁ܿ݊݁ݎ݂݂݁݅݀	݁ܿ݊ܽ݉ݎ݋݂ݎ݁ܲ ൌ
|߬ଵ െ ߬ଶ|

߬ଵ
∗ 100 

(17) 

Here subscript 1 refers to the single-seed case and subscript 2 to the two-seed case.  As example: ߬ decreased by 

4% for a ݇∗ = 50 and ܸ∗ = 0.05, and by 11% for ݇∗ = 1000, ܸ∗ = 0.05 when using two seed locations compared 

with one location.   

5.3. Four-Seed Case 

Four-seed locations, as described in Figure 13, are considered now with each seed location again having 

dimensions ܿ by ܿ in the -ݔ	ݕ-plane.  For this configuration, ܿ/ܮ஽ = 0.12 and ܪ௕/ܮ஽ = 0.04 resulted in the best-

performing material distributions.   The positioning of the seed locations was investigated, as was done with the 

single-seed and two-seed cases. As expected, the best performance was achieved when  ݔସ/ܮ஽  =  	ݕସ/

 ஽  = 0.25.  This describes the case where the seed locations are equally distributed on the lower surface of theܮ

domain.  

Figure 14 shows a material distribution for ܸ∗ = 0.05 and ݇∗ = 500, using four seed locations.  In this case, four 

identical, non-merging structures are present. From the top view, it can be seen that each tree structure again has 

four main branches. From the front and side views, it can be seen that these branches extend towards the corners 

of each quarter-domain, similar to the single-seed and two-seed cases.  Secondary branches are present, but are 

considerably smaller when compared with secondary branches from the one-seed and two-seed cases.  Also, 

there are much fewer secondary branches present.   

The influence of ܸ∗ and ݇∗ follows the same trend as with the one-seed and two-seed cases and is not shown 

here.  Using four locations improved the thermal performance compared with the two-seed case (which already 

showed improved compared with the one-seed case).  

5.4. Comparison of Thermal Performance 

Figure 15 shows the performance improvement (in terms of a reduction in the non-dimensional temperature) 

when using multiple seed locations compared with the one-seed case. An arbitrarily chosen scenario with ܸ∗ = 
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0.05 is considered for a wide range of  ݇∗ values, where 1-2 denotes the decrease in ߬ when using two seed 

locations compared with one as is defined by Eq. (17.  The same applies to1-4. 

From Figure 15 it is evident that the two-seed case resulted in tree structures that perform better than those with 

the single-seed case. A larger improvement is obtained when four seed locations were used.  For low 

conductivity values (݇∗ ൑ 20), the performance increase gained with multiple seed locations was relatively low, 

compared to the improvements obtained in the mid-conductivity range.  Of all the cases considered for ܸ∗ = 

0.05, a maximum decrease of 20% in the maximum temperature was observed for ݇∗ = 500, when increasing the 

initial seed points from one to four.  

6. Conclusion 

The optimum layout of heat-conducting paths in a three-dimensional heat-producing cubic domain as obtained 

with topology optimisation, using the method of moving asymptotes (MMA) algorithm, was investigated.  

Converged high conductive material distributions resembling natural tree-structures were obtained. When using 

a partial Dirichlet boundary and a centred single-seed location, the architectures were similar in nature to those 

obtained in two-dimensional studies, except that four main branches were obtained, each of which extended 

towards an upper domain corner.  When non-centred seed positions were considered, non-symmetric tree 

structures, still with four main branches present, were obtained.   The thermal performance of such material 

distributions was inferior to those that used a centred seed location.   

A full Dirichlet boundary was also investigated for two-seed, and four-seed location cases.  This required a fixed 

defined subdomain (which could not be altered by the optimisation algorithm).  This subdomain was optimized 

to enable the MMA algorithm to develop the best-performing tree structures.  This included the determination of 

the optimal relative placement (ݔଵ/ܮ஽	 and ݕଵ/ܮ஽) of the seed locations, the relative height (ܪ௕/ܮ஽) and the 

relative size of each (ܿ/ܮ஽).   For each seed location, a separate tree structure was obtained.   Each tree structure 

had four main branches extending towards the corners of the imaginary rectangular subdomain surrounding it.   

For optimally placed multiple seed locations for a full Dirichlet boundary, thermal performance increased as the 

number of seed locations increased from one to two and from two to four, for all volume ratios and conductivity 

ratios.  Overall, by using four seed positions, the thermal performance was improved by up to 23% compared to 

when a single seed position was used for a volume ratio of 0.05 and a conductivity ratio of 500.   
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Table 1 

݇∗ [-] 5 50 500 

߬ [-] 9.487 x 10-1 1.704 x 10-1 2.268 x 10-2 

ી 

 

T 

݇∗ [-] 1000 2000 3000 

߬ [-] 1.145 x 10-2 6.312 x 10-2 4.090 x 10-3  
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Table 2 

ܸ∗ [-] 0.05 0.1 0.15 

߬ [-] 4.420 x 10-2 2.268 x 10-2 1.538 x 10-2 

ી 

   

T 

 
  

ܸ∗ [-] 0.2 0.25 0.3 

߬ [-] 1.192 x 10-2 1.091 x 10-2 8.458 x 10-2 
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Table 3 

 0.40 0.24 0.08 [-] ܮ/ܿ

߬ [-] 4.431 x 10-2 3.495 x 10- 3.516 x 10-2 

ી 

   

 0.80 0.72 0.56 [-] ܮ/ܿ

߬ [-] 3.514 x 10-2 3.564 x 10- 6.041 x 10-2 

ી 
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Table 4 

݇∗ [-] 5 50 500 

߬ [-] 3.567 x 10-1 1.164 x 10-1 1.693 x 10-2 

ી 

   

݇∗ [-] 1000 2000 3000 

߬ [-] 8.839 x 10-3 4.618 x 10-3 3.293 x 10-3 
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Table 5 

y1/LD x1/LD 

 0 0.24 0.38 

0.38 

  

0.24 
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