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ABSTRACT – Conventional planar wideband bandstop filters with rapid cutoff employ Cauer
prototypes, but become non-realizable with Kuroda-Levy transforms for bandwidths of 150% or more.
Transmission line filters with harmonic stubs have been shown to be realizable at these bandwidths,
but have limited performance ranges due to the fixed positions of the transmission zeros.  In this paper,
two structures that employ shunt Foster resonators that enable the shift of the transmission zeros, are
described.  Simulated and measured properties show that greatly improved performance can be
realized while not adding to the complexity of the structure.

Key words:  harmonic stub filter, bandstop filter, shunt Foster sections, pseudo-elliptic function
response.

1.  Introduction

Previously, microwave bandstop and bandpass filters were described that make use of
open- or short circuited shunt stubs of which the lengths are in a harmonic ratio [1] –
[5].  In the 1:2:4 ratio filters, stub lengths are in an octave ratio of l0 = l0/4, 2l0 and
4l0.  The stubs contribute transmission zeros at frequencies of {f0} for l0, {0.5f0, 1.5f0}
for  2l0 and {0.25f0, 0.75f0, 1.25f0, 1.75f0}  for  4l0,  giving  7  transmission  zeros  in  all,
before repeating the harmonic frequency response of the filter [3], [4].
 The  filters  with  shunt  stubs  with  harmonic  ratios  of  1:2:3  will  similarly  give
transmission zeros at frequencies of {f0} for l0, {0.5f0, 1.5f0} for 2l0, and {0.333f0, f0,
1.667f0} for 3l0.  Note that there are two zeros on either side of the centre frequency
and a double zero at f0 [5]. The pole at f0 contributed by the stub of length 4l0 has now
become a zero at f0.
 The occurrence of transmission zeros away from the centre frequency makes a
pseudo-elliptic response possible.  By adjustment of the stub impedances, and the
impedance levels of the quarter-wave cascade lines separating them (unit elements,
u.e.), superior passband match, rapid cutoff, and high stopband rejection can be
obtained, almost equalling the performance of the Cauer filters; the latter are not
physically realizable by means of Kuroda-Levy transforms for bandwidths on the
order of 150% because of the occurrence of negative inductors [6].
 Unfortunately, the application of the 1:2:4 and 1:2:3 structures are limited by the
fact that the transmission zeros occur at fixed frequencies.  This results in tradeoffs
between passband return loss and stopband level.
 In this paper,  two new harmonic filters are described, that  overcome some of the
limitations of the filters with simple stubs, by making use of shunt Foster sections
instead of simple stubs.  Additional orders of freedom are introduced to the networks,
and the performance is substantially improved.  Examples of 1:2:4 and 1:2:3 stub ratio
filters with shunt Foster sections are presented, including numerical modelling and
measurements  on  constructed  filters.   It  is  shown  that  a  substantial  improvement  in
performance is achieved.



2.  Shunt Foster Sections

Fig. 1(a) shows a schematic of a simple single section shunt stub resonating at 0.5 f0,
and length 2l0.   In  Fig.  1(b)  the  single  stub  is  replaced  by  shunt  Foster  section,  a
cascade  of  two  unit  elements,  each  of  length l0, and impedances Z1 and Z2,
respectively.

The input impedance to the shunt Foster section is given by

where

                                                      (a)                               (b)

Figure 1 (a): Stub resonating at f0/2; (b): Shunt Foster section with
Shifted transmission zeros.

The shunt Foster section resonates where the input impedance to the section is zero,
or

If Z2 = Z1 = Z0, then f00 = f0/2, as for the stub in Fig. 1(a).
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These two cases are illustrated graphically in Fig. 2.  Without altering the lengths
of the stubs, i.e. maintaining the symmetrical placement about the centre frequency,
an additional order of freedom is introduced to adjust the ripple level by means of the
positions of the transmission zeros.  Note that the zeros can be shifted to either side of
the initial resonance frequency.

Figure 2 Transmission response of shunt Foster section, with
transmission zeros shifted either side of f0.

3.  Octave Ratio Filter (1:2:4)

The octave ratio filter  has three stubs in length ratio of 1:2:4 [4].   Fig.  3(a) shows a
typical layout of an octave ratio filter with unmodified stubs, and the corresponding
filter in which the stubs Z2 and Z3 have been replaced by Foster sections is shown in
Fig. 3(b).  Note that the stubs are spaced by two cascade unit elements, each of length
l0, as well as a feed u.e. of length l0.

(a)                                     (b)

Figure  3 Structure of 1:2:4 filter without (a), and with Foster sections, (b).

  A  typical  frequency  response  was  calculated  for  a  filter  without  Foster
sections  [4].   The  trensmission  zeros  lie  at  {0.25f0, 0.5f0, 0.75f0, f0, 1.25f0, 1.5f0,
1.75f0}.  As can be seen from Fig. 4, the outermost peaks in the stopband are high; the
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set of peaks between 0.5f0 and 0.75f0 and  its  mirror  are  depressed,  and  due  to  the
single zero at the centre frequency, the centre peaks are agin high.

The stub Z2 of length 2l0 is  modified into a shunt Foster section of two elements
each l0 long, and the stub Z3 of length 4l0 is split into two sections of length 2l0.  As an
example of the type of frequency response that can be obtained, values of impedance
Z1 = 28 W and Z2 = 17 W,  are  chosen  for  the  2l0 stub,  as  shown in  Fig.  3(b).   This
causes the associated transmission zeros to shift from {0.5f0, 1.5f0} to {0.421f0,
1.579f0}; the first peak in the stopband is consequently reduced, and the second rises
in level.  Similarly, the stub of length 4l0 is  split  into two sections of length 2l0 and
with characteristic impedances of Z1 = 58 W and Z2 = 115 W.  Bearing in mind that
this section repeats its first half-wave response around 0.5f0, and not f0, the new
resonant frequencies change to {0.303f0, 0.697f0, 1.303f0, 1.697f0}.  The responses of
this filter is compared to that of the filter wihout the Foster sections in Fig. 4.
 Some of the zero shifts oppose each other, and a balance has to be struck between
the rate of cutoff, the passband match, and the stopband attenuation level.  Note that
these values of Z1 and Z2 for the two Foster sections are not unique.  There exists a
very large range of impedances that will yield frequency responses of acceptable to
excellent performance.  This will be determined by the passband return loss and the
stopband insertion loss, as well as the realizability of the elements.  The rate of cutoff
is also a variable but the various parameters are not independent.

Figure 4 Comparison between the S11 and S21 responses of the 1:2:4 ratio stub
length filters with and without shunt Foster sections.

4.   Fibonacci Ratio Filter (1:2:3)

The 1:2:4-filter has only one transmission zero at the centre frequency, while a filter
in which the element lengths are part of a Fibonacci seies with a 1:2:3 ratio has two
transmission zeros at f0.  The structure of this filter is shown in Figs 5(a) and (b) for
the filter without and with a Foster section, respectively.

The stub with length 3l0 creates zeros at 0.333f0, f0 and 1.667f0.   Fig.  6  shows a
typical response for a 1:2:3 ratio filter without a Foster section; in respect of the
centre lobes, this is clearly superior to the 1:2:4 filter, although the rate of cutoff is not
as rapid as in the latter case [5].
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By replacing the 2l0-stub with a shunt Foster section, a further degree of freedom is
introduced.   As  an  example,  the  transmission  zeros  at  {0.5f0, 1.5f0}  were  shifted  to
{0.544f0, 1.456f0} by making Z1 = 19 W and Z2 = 25 W, while the other impedances
have been adjusted to obtain a desirable response with low passband loss and an
equiripple stopband loss of 30 dB. The transmission zeros at 0.333f0, f0 and 1.667f0
have remained unchanged. The stub Z3 cannot be split into a shunt Foster because it
has a first half-wave resonance at 0.667f0, and consequently the zero at f0 would shift
away, distorting the frequency response.

(a)                                     (b)

Figure 5 Structure of 1:2:3 stub ratio filter without (a), and with shunt Foster section, (b).

Fig. 6 compares the frequency response obtained using a 1-2-3 layout with one
shunt  Foster  section  to  that  of  the  network  without  a  Foster.   Note  that  once  again
there exists a vast number of impedance and zero position solutions that can affect the
properties of the filter; these presented here are not necessarily the best solutions.

Figure 6 Comparison between the S11 and S21 responses of the 1:2:3 ratio
stub length filters with and without shunt Foster sections.

5.  Numerical Performance Evaluation

The performance of the resonant stub filters with Foster sections is evaluated against
that of a Cauer filter with passband and stopband levels closest to the examples
developed.  In this instance, the Cauer filter response is used as a standard, even
though it is known that Cauer filters become non-realizable at the bandwidths in
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question  [6].   For  both  the  filters  illustrated,  the  nearest  Cauer  response  is  obtained
and bandwidth scaled to coincide with that of the harmonic filter at the -3 dB points.
Because of the rapid rate of cutoff, this corresponds roughly to the pssband equiripple
points.

The Cauer filter that most closely resembles the 1:2:4 filter in passband and
stopband performance is designated C0520, Q = 55° [7]; it has a passband reflection
coefficient of amax = -13.98 dB, and stopband level of amin = -32.2 dB.  Comparitive
responses between the 1:2:4 filter and the Cauer filter is shown in Fig. 7.

Figure 7 Comparison of 1:2:4 harmonic filter and Cauer filter response

The harmonic filter compares extremely well with the Cauer filter.  The low
frequency passband of the harmonic filter is slightly narrower than the Cauer
prototype.  The rate of cutoff is, however, just as rapid; passband bandwidth can be
offset against the rate of cutoff by adjusting the impedances.

For the harmonic filter with 1:2:3 ratio stubs, a Cauer filter designated C0520, Q =
57° was chosen; it has a passband reflection coefficient of amax = -13.98 dB, and
stopband attenuation level of amin = -30.3 dB.  Responses are compared in Fig. 8.

Figure 8 Comparison of 1:2:3 harmonic filter and Cauer filter response

The low frequency passband of the 1:2:3 filter is the same as that of the Cauer
filter.  However, it does not cut off as rapidly. Once again, passband bandwidth can be
offset against the rate of cutoff by adjusting the impedances.
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6.  Measured and Simulated Filter Performance

Both the filters described in Figures 4 and 6 above were first simulated in Sonnet [8]
and then constructed as microstrip circuits on RT Duroid 5880, with er = 2.2, and
dielectric thickness of 1.57 mm.

The measured responses of S11 and S21 of the 1:2:4 filter are shown in Fig. 9.  Also
shown are the simulated responses as well as the calculated performance.  Similar
responses are given for the 1:2:3 filter in Fig. 10.

Figure 9 Measured S11 and S21 responses for the 1:2:4 filter.
This is compared to the calculated and the

simulated responses (Sonnet).

Figure 10 Measured S11 and S21 responses for the 1:2:3 filter.
This is compared to the calculated and the

simulated responses (Sonnet).

7.  Conclusion

For both the simulated and measured responses, the preformance deteriorates at the
high frequency end of the filter; as this is to be applied as a pseudo-lowpass filter, it is
not of any concern.  It is caused by the increased loss in the substrate material, as well
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as incresed dispersion from the microsrtip lines, especially in view of the extremities
of impedance in the structure.

Tradeoffs exist between lower passband return loss, lower passband bandwidth,
stopband attenuation level, and rate of cutoff.  Of the multitude of possible solutions,
two have been presented, that could be considered to be typical.

A comparison with the Cauer filter prototypes show responses that perform
extremely well at bandwidths of the order of 150%, where very few alternative planar
designs with similar performance are available.
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