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Abstract

Real-world optimisation problems are often very complex. Metaheuristics
have been successful in solving many of these problems, but the difficulty in
choosing the best approach can be a huge challenge for practitioners. One
approach to this dilemma is to use fitness landscape analysis to better un-
derstand problems before deciding on approaches to solving the problems.
However, despite extensive research on fitness landscape analysis and a large
number of developed techniques, very few techniques are used in practice.
This could be because fitness landscape analysis in itself can be complex.
In an attempt to make fitness landscape analysis techniques accessible, this
paper provides an overview of techniques from the 1980s to the present.
Attributes that are important for practical implementation are highlighted
and ways of adapting techniques to be more feasible or appropriate are sug-
gested. The survey reveals the wide range of factors that can influence prob-
lem difficulty, emphasising the need for a shift in focus away from predicting
problem hardness towards measuring characteristics. It is hoped that this
survey will invoke renewed interest in the field of understanding complex
optimisation problems and ultimately lead to better decision making on the
use of appropriate metaheuristics.

Keywords: Fitness landscape, Landscape analysis, Optimisation problem,
Problem hardness measure

1. Introduction

Metaheuristics have become popular for solving complex optimisation
problems where classical optimisation methods are either infeasible or per-
form poorly. Despite many success stories, it is well known that on some

Preprint submitted to Information Sciences July 22, 2013



problems these techniques fail and that there is in fact very little under-
standing of which algorithms, or algorithm variants, are in general more
suitable for solving which kinds of problems. It is also true that no one
optimisation algorithm is at all times superior to the other. This was shown
theoretically by Wolpert and Macready with their famous ‘No-Free-Lunch’
theorems for search/optimisation [87, 88]. In the case of simple hill-climbing
algorithms it is relatively straightforward to estimate which problems will
be easy and which will be harder to solve. However, in the case of more
complex metaheuristics, it is not as easy to predict the degree to which
problems will present difficulties for algorithms. As expressed by Culberson
[12]: “The researcher trying to solve a problem is then placed in the unfor-
tunate position of having to find a representation, operators and parameter
settings to make a poorly understood system solve a poorly understood prob-
lem. In many cases he might be better served concentrating on the problem
itself.” This article focuses on ways of better understanding problems in the
hope that practitioners and researchers will have better guidance in the use
of appropriate algorithms.

Many attempts at characterising optimisation problems have focused on
finding a measure that could divide problems into those that are easy and
those that are hard to solve [30, 48, 23]. These attempts have not been
very successful. In the literature, whenever a publication appears proposing
some measure of problem hardness, a number of subsequent publications can
usually be found with counter-examples for which the proposed hardness
measure does not hold. Some authors even provide counter-examples to
their own techniques, pre-empting the inevitable ‘counter-paper’.

Much of the earlier work done on predicting problem hardness assumed
genetic algorithms with the resulting notions of GA-hard and GA-easy prob-
lems [14, 28, 33, 47]. As pointed out by Guo and Hsu [23] “Any efforts like
this are doomed to fail”, because the class of GA algorithms is too broad.
The same problem can change from a hard problem to an easy problem by
changing the GA settings. If finding a GA hardness measure is infeasible,
then surely finding a general problem hardness measure is infeasible? Even
assuming such a general difficulty measure could be found, He et al. [24]
have proved that a predictive version of such a measure, i.e. that runs in
polynomial-time, cannot exist (unless P = NP or BPP1 = NP). The general
agreement in literature seems to be that no satisfactory problem difficulty
measure for search heuristics has been found [30, 23, 24].

1BPP: bounded-error probabilistic, polynomial time [83].
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A possible reason for this is that although there are many factors (such as
deception, ruggedness and non-linear separability) that clearly affect prob-
lem difficulty, no one factor appears to be necessary or sufficient for charac-
terising problem hardness. For example, modality, although an important
consideration, cannot be used as the only estimate of complexity for search
algorithms. Horn and Goldberg [28] show that there are problems with
minimal modality (such as long path problems) that are hard for a GA to
optimise and that there are problems with maximum modality (such as their
one-max function with “bumps”) that are easy for a GA to optimise. Kallel
et al. [34] confirm that multimodality is neither necessary nor sufficient as
a predictor of difficulty for both hill-climbers and genetic algorithms. For-
rest and Mitchell [18] studied GA failure showing that some GA-deceptive
problems are easy for a GA and that there are non-deceptive problems that
are difficult for a GA. They conclude that GA-deception is only one factor
that contributes to the difficulty of search for a GA. It has therefore become
widely accepted, as expressed by Smith et al. [64] that “No single measure
or description can possibly characterise any high-dimensional heterogeneous
search space”.

Instead of trying to find one measure of hardness, a more realistic ap-
proach could be to determine the characteristics of a problem and then use
these characteristics to determine which algorithm would be best suited to
solving that problem. What is hard for a Particle Swarm Optimisation
(PSO) algorithm to solve might not necessarily be hard for a Genetic Algo-
rithm (GA) to solve, or even a PSO with different parameter settings. It is
hoped that in analysing problems in more depth, it will become possible to
distinguish problems based on their characteristics.

This paper addresses the topic of characterising optimisation problems.
The aims are to, firstly, discuss characteristics of problems that could po-
tentially make them hard to solve and, secondly, to provide an overview of
existing techniques for analysing these problem characteristics. Section 2
starts with an overview of different views of fitness landscapes. Although
the term ‘fitness landscape’ is used frequently in literature, it can have dif-
ferent meanings in different contexts and these are elaborated on in Section
2. Section 3 provides a summary of different features of optimisation prob-
lems that could potentially affect the difficulty in solving the problem. The
most important contribution of this work is in Section 4 where a survey is
provided of existing techniques to characterise optimisation problems from
the 1980s to the present. Important features are highlighted such as the
focus, the level of search independence, assumptions on which the technique
is based, and the result produced by the technique. The paper concludes
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with suggestions on how research in this area can move forward.

2. Fitness landscapes

For most optimisation problems there is a fitness function2 that reflects
the objectives of the problem to be solved. (Problems that do not have a
readily available fitness function are excluded from this study.) Potential
solutions to a problem are compared based on their fitness values, which are
determined using the fitness function. In some problem cases, the function
is expressed so that the aim is to find the solution that maximises the fitness
value and in other cases, the aim is to find the solution that minimises the
fitness value.

There are many ways of analysing fitness functions, such as epistasis
variance [14] and the density of states [62] and these are discussed further in
Section 4. However, more interesting analyses can be performed, when a fit-
ness function is extended into a fitness landscape, by introducing some form
of topology onto the search space. Although the term ‘fitness landscape’
with its associated notions of ‘peaks’ and ‘valleys’ is widely used in many
contexts and in academic writing, there is often a lack of understanding of
what precisely is meant by the term. This section summarises some of the
contributions towards understanding and formalising fitness landscapes.

Wright [89] introduced the notion of a fitness landscape (which he called
a surface of selective values) for genetic evolution back in 1932, with further
invited commentary on his seminal paper published 56 years later [90]. He
proposed an abstract space where genotypes are packed, side by side, in a
two-dimensional space in such a way that each is surrounded by genotypes
that differ by only one gene replacement. He used contour lines to indicate
fitness values and in this way illustrated the peaks and valleys in a two
dimensional diagram, as shown in Figure 1. Notice that the ‘axes’ of the
diagram are not real axes, as there are no defined units or labels. In his own
words, such a representation “is useless for mathematical purposes” [90].
Wright’s aim with this representation was to provide an intuitive picture
of evolutionary processes taking place in high dimensional space and not
to provide any kind of formal model for analysis. Despite a lack of formal
definition, this same basic fitness landscape metaphor with its associated

2Note that this study does not restrict the notion of fitness and fitness function to
the meaning of fitness in the evolutionary sense, but rather to the broader notion of an
objective and objective function to be optimised by an algorithm.
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Figure 1: Adaptation of Wright’s (1932) fitness landscape, which he called a two-
dimensional ‘surface of selective values’.

‘valleys’, ‘peaks’, ‘ridges’ and ‘plateaus’ has been used extensively within
multiple disciplines to understand and explain complex systems.

An alternative, more formal view of a fitness landscape particular to
search algorithms, is to define a landscape as a directed graph, where nodes
correspond to solutions. Two nodes in the fitness landscape graph are neigh-
bours if one solution can be reached from the other through a single step of
a search operator (such as mutation or crossover in the case of a GA). Jones
[32] introduced such a model and argued for the view of “one operator, one
landscape”, where each search operator defines its own fitness landscape. In
his model, the fitness value (or ‘height’ in the fitness landscape metaphor)
is indicated as a label attached to each node in the graph and probabilities
of the step occurring are attached to edges of the graph.

In Jones’ [32] study of fitness landscapes it is assumed that the landscape
is discrete (or combinatorial). Stadler [66] provides a more general view of
landscapes as consisting of three elements:

1. A set X of configurations (solutions to the problem),

2. a notion X of neighbourhood, nearness, distance, or accessibility on
X, and

3. a fitness function f : X → R.

This description can be used in the case of both discrete and continuous
landscapes. For example, in a discrete landscape, X could be described as
a notion of neighbourhood specified using a crossover operator, or using a
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more generic notion of neighbourhood, such as Hamming distance. For a
continuous landscape, X can be described in terms of a distance metric,
such as Euclidean distance or using some gradient-based search strategy for
determining accessibility to a continuous subset of configurations.

In many studies, the term fitness landscape is used to refer to a problem
encoding in combination with a fitness function (elements 1 and 3 in Stadler’s
description above). In these cases it is usually assumed that the notion of
neighbourhood/distance is based on some ‘natural’ notion of order/distance.
For example, in binary-encoded problems, Hamming distance is often as-
sumed as the neighbourhood relationship: any two points are neighbours if
their Hamming distance is 1. In real-encoded problems, Euclidean distance
is usually assumed as the metric on which the fitness landscape is defined.
In some representations, it is not as obvious to define neighbourhood. For
example, when solutions are in the form of trees, there is no obvious way of
deciding when two tree solutions are neighbours. In these cases, neighbour-
hood is often defined in terms of a particular search operator/strategy: two
solutions are regarded as neighbours if it is possible to move from one to the
other via a single application of the search operator.

Because a fitness landscape is defined using a particular notion of neigh-
bourhood/distance, the same fitness function can generate many different
fitness landscapes. For example, in Wright’s [89] fitness landscape, a geno-
type is a neighbour of another genotype if they differ by a single gene. If
instead, neighbourhood was defined based on a k-bit-flip mutation opera-
tor, a very different fitness landscape may result. The number of different
possible fitness landscapes is dependent on the fitness distribution [7]. A
constant fitness function, for example, has only one possible fitness land-
scape. The fitness landscape is therefore not a feature of the problem per
se, but rather a feature of the encoding of the problem, the fitness function,
and of the notion of neighbourhood/distance used to define the landscape.
Landscape theory serves as a reminder that other possibilities may exist, be-
yond the obvious ones, for defining landscapes and exploring and analysing
optimisation problems.

3. Features of fitness functions and landscapes

This section summarises a number of features of optimisation problems
that could influence the ability of algorithms to solve the problems. The fea-
tures listed are not in any way exhaustive. There may be features not known
or not mentioned here, which could influence the behaviour of optimisation
algorithms. The purpose is to summarise those features that are commonly
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discussed in literature. Measuring or quantifying these features is not always
straight-forward and this is discussed further in Section 4. The first three
features (degree of variable interdependency, noise and fitness distribution)
are features of the fitness function alone (without any defined fitness land-
scape). The remaining features are based on fitness landscapes. Although
divided into separate subsections, many of these features are related to one
another.

3.1. Degree of variable interdependency (including epistasis)

In genetics, epistasis refers to the degree of dependency between genes
in a chromosome for expression [14]. If genes contribute independently to
the overall fitness of the chromosome then the system has low epistasis.
On the other hand, if the fitness contributions of genes depends on the
values of the other genes, the system has high epistasis. In general, for
optimisation problems, this characteristic can be referred to as the degree of
interdependency between variables (also known as non-linear separability).
When variables in an optimisation problem are dependent on each other,
this means that it is impossible to tune one variable to find the optimal
value independently of the others. For example, if different variables in a
mathematical expression of a fitness function are separated by addition, then
the variables contribute independently to the fitness. However, if different
variables are combined in a term through multiplication, then these variables
must cooperate in order to contribute to fitness; if either variable has a low
value, then the product may be low even if the other variable has a high
value. It is seldom as simple as in this example. In complex problems, the
interactions between variables can take many different forms. Studies have
shown that linearly separable functions are easier for genetic algorithms to
solve than non-linearly separable functions [63, 13]. Naudts and Naudts
[49] argue that it is the type of interaction (functions with first and second
order dependencies) rather than the amount of higher order interaction that
influences the difficulty of the problem for search algorithms. Measures
for quantifying epistasis include epistasis variance [14] (Technique 5 in the
survey), the site-wise optimisation measure [49], and bit-wise epistasis [16]
(Technique 12 in the survey).

3.2. Noise

Noisy objective functions are common in many real-world optimisation
problems. Levitan and Kauffman [39] studied the effect of noise on hill-
climbing algorithms and found that although certain types and levels of
noise had a negative effect on the ability of the algorithm to search well,
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small amounts of noise could help the algorithm to perform better than in
the absence of noise. It is a common belief that evolutionary algorithms
work well in noisy environments, but Beyer [6] has shown that this is not
necessarily the case. A common way of reducing the effects of noise dur-
ing search is to resample data points and average over a number of fitness
evaluations [58]. Similarly, to detect noise in a fitness function, data points
can be resampled. Some measure of difference (such as variance or stan-
dard deviation) could then be used to quantify the level of noise in multiply
sampled data points.

3.3. Fitness distribution

A statistical analysis of fitness function values can provide some infor-
mation on the problem at hand. For example, the distribution of fitness
values (the frequency with which each fitness value occurs) can be used to
provide a profile of the problem, as is done with the density of states tech-
nique [62] (Technique 9 in the survey). In most cases the fitness distribution
of a problem cannot be exactly determined and has to be estimated, based
on some sampling and grouping strategy.

3.4. Fitness distribution in search space

Given a fitness landscape of a problem, a simple way of characterising the
problem is to measure, in some way, how the fitness values are distributed
across the search space. This differs from simple fitness value statistics,
because the position of fitness values within the search space is taken into
account. Techniques for quantifying fitness distribution layout in binary
landscapes include the HDIL (Hamming Distance In a Level) and HDBL
(Hamming Distance Between a Level) measures [4] (Technique 13 in the
survey).

3.5. Modality and the landscape structure of optima

Unimodal functions have only one local optimum, which is also the global
optimum. Multimodal functions have more than one local optimum. Horn
and Goldberg [28] define a local optimum as a point or region (a set of
interconnected points with equal fitness) with fitness function value greater
than those of all its nearest neighbours. This definition would consider flat
plateaus and ridges as single optima. Local optima are obstacles for local
search algorithms in finding the global optimum because there is a lack of
information in the neighbourhood to direct search out of the local optima.
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Other than the number of optima, the distribution of basin sizes and
the depth (or height) of the basins is a factor that may be more impor-
tant in determining landscape difficulty [34]. Local optima with relatively
small basins of attraction are called isolated. An extreme example of an
isolated landscape could be a needle-in-a-haystack binary encoded maximi-
sation problem, where the fitness value is 1 for one arbitrary bit string and
0 elsewhere. A less extreme example would be a landscape where the local
optima have large basins of attraction and the global optima has a smaller
basin of attraction. Rana [57] studied the effect of multimodality on GA
performance and found that although the number of local optima did not
always affect GA behaviour, highly fit local optima, particularly with large
basins of attraction, did present a problem for GA search. Kinnear [38] found
that in the case of genetic programming, landscape basin depths showed a
good correlation with problem difficulty over a range of problems.

Techniques related to modality and landscape structure of optima in-
clude: Garnier and Kallel’s [19] technique for estimating the number and
distribution of local optima and Merz’s [45] escape rate measure for estimat-
ing the sizes of basins of local optima in the fitness landscapes of combina-
torial problems. In addition, Ochoa et al. [53] have proposed a technique
for compressing the essential landscape features for combinatorial optimisa-
tion problems into a graph called a local optima network. This graph-based
model serves as a characterisation of the structure of a landscape and the
distribution of local optima.

3.6. Information to guide search and deception

Some problems result in fitness landscapes that are structured in such
a way that they guide search algorithms more easily towards the global op-
tima. Both the quantity and quality of information available is important
[8]. In other words, for an algorithm to perform well, the fitness landscape
should not only provide sufficient information to guide the search, but the
information should also guide the search in the right direction. The presence
of misleading information is sometimes known as deception. Deception is
clearly related to the landscape structure of optima. The positions of sub-
optima in relation to the global optimum and the presence of isolation will
have an effect on the level of deception. Deception only has meaning with
reference to a particular search algorithm. A problem that is deceptive to
a GA would not necessarily be deceptive to a PSO algorithm. Measures of
deception include GA-deception [20, 21, 15] (Technique 1 in the survey) and
the deceptiveness coefficient [31]. Xin et al. [91] studied the notion of de-
ception for PSOs and concluded that the relative size of basins of attraction
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(local versus global) was the most important factor related to deception for
PSOs.

3.7. Global landscape structure (funnels)

A funnel in a landscape is a global basin shape that consists of clus-
tered local optima [67]. Figure 2 shows two one-dimensional minimisation
benchmark problems. Figure 2(a) shows the Rastrigin function as an exam-
ple of a single-funnel landscape. Although Rastrigin is clearly multimodal,
there is a distinct underlying unimodal structure, indicating the presence
of a single funnel. Figure 2(b) illustrates the Schwefel 2.26 function, which
is an example of a multi-funnel landscape. The exact number of funnels
in Schwefel 2.26 would depend on the precise definition of a funnel. Multi-
funnel landscapes can present problems for search, particularly in the case
of algorithms that rely on local information, as they may become trapped
in sub-optimal funnels [67, 91]. A technique for estimating the presence of
funnels in a fitness landscape is Lunacek and Whitley’s dispersion metric
[42] (Technique 19 in the survey).
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Figure 2: Two sample minimisation benchmark problem landscapes.

3.8. Ruggedness and smoothness

Ruggedness refers to the number and distribution of local optima. It
therefore has to do with the level of variation in fitness values in a fitness
landscape. If neighbouring points have very different fitness values, then the
result is a rugged landscape. The opposite of a very rugged landscape would
be a landscape with a single large basin/peak of attraction or a flat landscape
with no features. In general, search algorithms struggle to optimise very
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rugged landscapes, because the algorithms can get trapped in local optima.
Kauffman [35, 36] introduced a model of binary fitness landscapes with
tunable ruggedness, called NK landscapes, where the value of N specifies the
number of variables and K can be set to determine the level of ruggedness.
The NK landscapes have been used extensively in studies of ruggedness and
the link to problem difficulty. Techniques for measuring ruggedness include
adaptive walks [37], autocorrelation measures [84, 44] (Techniques 2 and 3
in the survey), correlation length [40] (Technique 4 in the survey), entropic
measures [78, 79, 43] (Technique 10 in the survey) and amplitude spectra
[27] (Technique 11 in the survey).

A smooth landscape is one where neighbouring points have nearly the
same fitness value [36]. Smoothness also relates to the size of the basins
of attraction. A landscape is smooth if the number of optima is low and
the optima have large basins of attraction [79]. A technique for quantifying
landscape smoothness is the second entropic measure by Vassilev et al. [78,
79] (Technique 10 in the survey).

3.9. Neutrality

Neutrality is present in a landscape when neighbouring points have equal
fitness values. A discrete landscape is regarded as neutral if a substantial
fraction of adjacent pairs of solutions are neutral [60]. A neutral landscape
therefore does not imply a flat landscape (where the function is constant),
but rather the presence of successive neutrality, which can manifest in fea-
tures such as plateaus and ridges in a landscape. Neutrality can also feature
in continuous fitness landscapes as regions of equal or nearly equal fitness
(for an investigation into this topic of neutrality in continuous domains see
[29]). Neutrality is a feature which is often ignored, but can have a profound
effect on the number and distribution of local optima [17] and on the success
of search algorithms [64]. During search when a population moves through
a neutral portion of a fitness landscape, this could be misinterpreted as con-
vergence on a local optimum. Since the fitness values are not changing, it
may seem as if the population is stagnating, when in fact the population is
moving across a neutral area. In a study of neutral landscapes Beaudoin et
al. [3] found that neutrality had a smoothing effect on problem difficulty in
that adding neutrality to a deceptive landscape made the problem easier,
whereas adding neutrality to an easy landscape made it harder (as measured
by the fitness distance correlation difficulty metric [33]). Techniques that
measure landscape neutrality include neutral walks [60] (Technique 14 in the
survey) and neutral network analysis [73, 75] (Technique 20 in the survey).
Verel et al. [81] show how local optima networks [53] can be extended to
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analyse the structure of neutral combinatorial fitness landscapes, but this
approach currently requires a full enumeration of of the search space.

3.10. Symmetry

Symmetry in a fitness function or landscape leads to multiple points with
the same fitness values, so in some way partitions the search space into large
equivalence classes [85]. There are many different forms of symmetry. For
example, if a fitness landscape is symmetrical with respect to one of the axes
this is known as axial bias. A fitness landscape is symmetrical with respect
to an optimum if the fitness value of all points a set distance away from the
optimum is the same regardless of the direction of the point. Some forms of
symmetry are a feature of the fitness function alone. Van Hoyweghen and
Naudts [69] define simple types of symmetry for discrete representations,
such as symmetry on string positions (where a permutation on string po-
sitions results in no change to the fitness) and symmetry on the alphabet
(e.g. spin-flip symmetry, where a binary string and the binary complement
have the same fitness value). There are conflicting studies on the effect of
symmetry on search. Whitley et al. [85] note several research findings where
the presence of symmetry in functions results in failure for certain genetic al-
gorithms. Naudts and Naudts [49] also show that the presence of symmetry
can have a negative effect on the ability of a simple GA to converge. This
could be due to the phenomenon where two dissimilar good (symmetrical)
solutions, crossed over, result in inferior children. Other studies have shown
that genetic algorithms show improved performance on landscapes with ax-
ial biases [13] and that a rotation of the coordinate system for such problems
(resulting in the loss of symmetry) causes severe algorithmic performance
loss [63].

3.11. Evolvability/Searchability

Evolvability can be loosely defined as the capacity to evolve [68]. Al-
tenberg [1] describes evolvability with particular reference to genetic algo-
rithms as the ability of a population to produce offspring that are fitter
than their parents. Although the notion of evolvability is related to the
algorithm’s ability to evolve the population and is therefore primarily a per-
formance measure of an algorithm, it can also be viewed as a characteristic
of a fitness landscape in terms of a particular search operator/strategy. The
evolvability of a fitness landscape is defined in this study as the ability of a
given search process to move to a place in the landscape of better fitness and
is henceforth referred to as searchability. Note that this definition broadens
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the scope of evolvability beyond evolutionary based algorithms to encom-
pass any search process. Searchability is a characteristic of problems that
only has meaning with reference to a particular search strategy. A prob-
lem that has high searchability in terms of one algorithm, may exhibit low
searchability with reference to another algorithm. Fitness landscape anal-
ysis techniques that focus on evolvability include fitness evolvability por-
traits [64] (Technique 15 in the survey), fitness clouds [80] (Technique 16 in
the survey), negative slope coefficient [70, 72] (Technique 17 in the survey),
fitness-probability clouds [41] (Technique 21 in the survey) and accumulated
escape probability [41] (Technique 22 in the survey).

3.12. Discussion

In the subsections above, a number of characteristics of fitness functions
and landscapes were discussed. Many of these characteristics are related to
each other. For example, modality and the structure of optima are clearly
related to ruggedness, smoothness and neutrality of the landscape. Also,
if a function has a high degree of variable interdependency, then this will
probably affect the ruggedness of an associated landscape. Vassilev et al.
[79] claim that the ruggedness, smoothness and neutrality alone can fully
characterise a fitness landscape. Although this may be true, there could
still be value in viewing a problem through a deception ‘lense’, or through
a funnel ‘lense’ or through any other viewpoint that could shed light on the
nature of the problem to be solved. The aim of this study is to work with a
number of these characteristics together to form a more comprehensive view
of the problem rather than limiting the focus to one viewpoint.

4. Measures and techniques for analysing fitness landscapes

For low dimensional problems, the associated fitness landscape could be
visualised. A graphical representation could then give some indication of
the features of the problem to be solved. Two problem landscapes could be
compared in terms of ruggedness, deception, neutrality, etc. simply through
visual inspection. In reality, however, problems are too complex to be vi-
sualised, so some other way of analysing problem characteristics is needed.
The ideal would be to have a single numerical measure of difficulty for every
problem. Given the issue with problem ‘hardness’ as described in Section 1,
it is unrealistic to find such a single measure. Instead, it is proposed that
problems should be characterised through multiple viewpoints and that this
hopefully will provide sufficient insight into the problem so as to facilitate
informed decisions regarding the approach used to solve the problem.
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This section provides an overview of techniques used to characterise op-
timisation problems from the 1980s to the present. The techniques are
summarised in Table 1, sorted in chronological order. Before presenting the
table, the kinds of measures not included in this survey are described.

4.1. Types of measures not included in this survey

There are many reasons for characterising optimisation problems. Some
measures are performed during execution of algorithms with the aim of
adapting the algorithms on the fly. In other cases problems are studied
and characterised to try to explain unexpected algorithmic behaviour in
retrospect. In yet other cases the motivation is to divide problems into the-
oretical complexity classes. Jansen [30] distinguishes between two types of
classifications of fitness functions: descriptive and analytical. A descriptive
classification is one where classes of fitness functions are defined with some
common property, whereas an analytical classification is a technique that
takes a fitness function and produces a classifying attribute as output. For
example, Naudts and Kallel [48] provide a precise definition for the class of
site-wise optimisable fitness functions (a descriptive classification) and also
define the site-wise optimisation measure as a measure of epistasis (an ana-
lytical classification). All techniques for classifying problems considered in
this study are analytical. The aim is to obtain a priori information on the
problem to help guide the choice of appropriate (or possibly not inappro-
priate) algorithms to solve the problem, in a less computationally-intensive
way than actually solving the problem. In this section, three types of mea-
sures not included in this study are discussed. These are termed theoretical
measures, dynamic measures and retrospective measures.

4.1.1. Theoretical measures

There are some estimators of problem complexity or difficulty that are
theoretical in nature. Such measures, which cannot be practically imple-
mented, are not discussed in this overview. An example of this is Kol-
mogorov complexity (KC). KC, also known as algorithmic information the-
ory [22], is a measure of an object that relates to the complexity of the
computer program required to produce that object and then halt. A dis-
crete fitness function defined over a finite space can be described by a single
binary string consisting of all possible output values of the function. The
KC of this string is expected to capture the difficulty of the function [10].
Although this approach to using KC to quantify function complexity has
been used extensively in theoretical studies and proofs, particularly in re-
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lation to the no-free-lunch theorems for search/optimisation, the KC of a
problem cannot be computed [10], and is therefore not studied further.

4.1.2. Dynamic measures

Dynamic measures are those that are measured during execution of an
optimisation algorithm and are typically used as a basis for adapting the
search algorithm on the fly. Examples of such measures include the following:

• The correlation coefficient by Manderick et al. [44], which measures
the correlation between two populations during execution,

• Riopka’s average bit certainty measure [61], which is used to modify
the behaviour of a GA relative to the landscape being searched,

• Generation Rate of Better Solutions (GRBS) measure by Waeselynck
et al. [82] that monitors convergence, and

• Merz’s escape rate measure [45] performed during the run of a memetic
algorithm.

4.1.3. Retrospective measures

There are some measures of problems that involve the actual execution
of an optimisation algorithm. By attempting to solve the problem (possibly
using a number of approaches or iterations of an algorithm), characteristics
of the problem can be deduced in retrospect. Examples of retrospective
measures include the following:

• Kauffman and Levin’s adaptive walks [37]: This is a measure for es-
timating the ruggedness of a landscape and involves determining the
lengths of hill-climbing walks.

• Ochoa’s consensus sequence plots [51], which involves running a GA
on the problem multiple times with a decreasing mutation rate.

• Garnier and Kallel’s [19] method for estimating the number and dis-
tribution of local optima, which involves performing a steepest ascent
search from a random sample of starting positions.

The measures considered in more detail in this study are all computed a
priori and although some measures are based on theories applicable to spe-
cific algorithms or on particular search operators, the purpose is to obtain
information on the problem without actually executing a particular search
algorithm.
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4.2. Introduction to the survey

The aim of this survey was to obtain a better understanding of exist-
ing techniques for characterising optimisation problems. For a survey of
techniques to be useful, distinguishing characteristics needed to be high-
lighted, but it was not clear what these distinguishing characteristics should
be. Naudts and Kallel [48] distinguish between exact and approximate mea-
sures. A measure is exact if it is computed using all solutions in the search
space, whereas an approximate measure is computed using a sample of the
search space. He et al. [24] further distinguish between predictive and non-
predictive measures. They define a predictive difficulty measure as one where
the algorithm’s worst-case running time is bounded by a polynomial in n
(the problem size). Exact computation of many of the difficulty measures
is in general exponential with respect to the problem size [30], so although
many of the techniques were originally defined as exact measures, they are
in practice used as approximate measures. Since the aim was not to divide
techniques into classes, but rather to understand techniques to be of prac-
tical use, more descriptive distinguishing features are highlighted. These
are described and motivated below and correspond to the attributes used in
Table 1.

1. Technique (with unique number): The first attribute gives the name
of the technique and the reference to the authors that proposed the
technique. The techniques in the table appear in chronological order
by the year of the first reference to the technique. The reason for
organising the survey in this way was to facilitate an understanding
of how the techniques have evolved over the last two decades. Where
a technique was adapted in different ways by subsequent studies by
the same or different authors, citations to significant complementary
research on the original technique are listed as “extensions”.

2. Year: The year that the technique was first introduced in published
form.

3. Focus: The overall focus of the technique is given as the second at-
tribute. This refers to what is measured or predicted by the technique.
To explicitly tie each technique to the features discussed in Section 3,
the relevant subsection discussing the feature is stated in parentheses.

4. Search independence: This descriptor refers to the level with which a
technique is bound to a particular search algorithm. Four categories
are used:

(a) Complete: A technique for characterising a problem is regarded
as having complete search independence when the technique is
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based on a fitness function alone and not on any notion of neigh-
bourhood/nearness between solutions. In other words, there is
no fitness landscape involved in the technique.

(b) High: A technique is regarded as having high search independence
when it is based on some generic or neutral notion of neighbour-
hood/distance between solutions, such as Hamming distance or
Euclidean distance, which defines the fitness landscape. An ex-
ample of a technique with high search independence is one which
is based on a random walk through the landscape, without any
significant biased direction.

(c) Medium: A technique is regarded as having medium search inde-
pendence when the sampling or analysis is based on, and there-
fore biased by, some theory or notion particular to a given search
algorithm.

(d) Low: A technique is regarded as having low search independence
if it is based on a sample generated by the actual execution of an
optimisation algorithm. The survey does not include any tech-
niques with low search independence, as these would be classified
as retrospective measures (Section 4.1.3).

5. Assumptions: Where there are significant assumptions on which the
technique is based, these are mentioned.

6. Brief summary: A brief summary of how the technique works is pro-
vided.

7. Result: There are many different forms of output produced by the
techniques outlined in this survey. For example, some result in a single
numerical output value, while others produce visual output in the form
of scatterplots, graphs or charts. The Result attribute describes the
output produced by the technique.
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Table 1: Techniques for characterising fitness functions and landscapes

Technique 1: GA-deception by Goldberg [20] with extensions [21,
15].

Year: 1987.
Focus: Deception with respect to a GA (Section 3.6).
Search Independence: Medium: based on genetic operators and schemata,

applicable to recombinative algorithms.
Assumptions: Assumes knowledge of global optima. Assumes a bi-

nary representation.
Description: A binary fitness function is expressed as a Walsh poly-

nomial. The Walsh coefficients are then used to cal-
culate schema average fitness values. A set of schema
with relatively high fitness are determined and the ef-
fect of genetic operators on the fitness of the schema
are analysed.

Result: Decision on level of GA-deception (strictly deceptive,
deceptive, simple, strictly simple).

Technique 2: Autocorrelation function by Weinberger [84] with
extensions [44, 26].

Year: 1990.
Focus: Ruggedness (Section 3.8).
Search Independence: High: based on random walks through a binary fitness

landscape.
Assumptions: Assumes a discrete landscape and that the landscape

is statistically istropic, meaning that the statistics of
a random walk on a landscape will be the same, re-
gardless of the starting position.

Description: From a sequence of fitness values, obtained from a ran-
dom walk through the fitness landscape, calculate the
correlation with the same sequence of values a small
distance away. Do this for all possible landscapes.

Result: Plot of autocorrelation ρ(s) against step size s (dis-
tance between sequences being correlated). The value
of ρ(s) is in the range (−1, 1) where |ρ(s)| = 1 indi-
cates maximal correlation and a value close to 0 indi-
cates almost no correlation.

Continued on Next Page. . .
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Table 1 – Continued

Technique 3: Correlation length by Weinberger [84] with exten-
sions [44, 65, 26].

Year: 1990.
Focus: Ruggedness (Section 3.8).
Search Independence: High: based on random walks through a binary fitness

landscape.
Assumptions: As for Technique 2. Also assumes that the autocorre-

lation function is a decaying exponential.
Description: Using the autocorrelation function ρ(s) for step size

s, calculate the correlation length using the formula:
τ = −1/ln(ρ(1)).

Result: A single value (the distance beyond which the ma-
jority of points become uncorrelated: a smaller value
indicates a more rugged landscape).

Technique 4: Correlation length by Lipsitch [40].
Year: 1991.
Focus: Ruggedness (Section 3.8).
Search Independence: High: based on random walks through a binary fitness

landscape.
Assumptions: Assumes the problem has a binary representation.
Description: Given 600 random initial points in the search space,

calculate the standard correlation coefficient (ci) be-
tween the fitness of points and the fitness of each of
30 i-mutant neighbours of the points. The correlation
length is one less than the value of i at which ci first
becomes non-positive.

Result: A single value (from 0 to 30, inclusive), where smaller
values are indicative of a more rugged landscape.

Continued on Next Page. . .
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Table 1 – Continued

Technique 5: Epistasis variance by Davidor [14] with extensions
[59, 50, 47].

Year: 1991.
Focus: Epistasis (Section 3.1).
Search Independence: Complete: based on fitness function alone.
Assumptions: Assumes a binary representation.
Description: A measurement of epistasis is calculated based on a

linear composition of a string solution from its bits.
The level of inaccuracy (the epistasis variance) of the
linear decomposition of the function is used as an es-
timate of the amount of non-linearity in the function.

Result: A single value (from 0 to a non-normalized positive
number), where 0 indicates no dependency between
genes.

Technique 6: Formae variance by Radcliffe and Surry [56].
Year: 1995.
Focus: Fitness variance of formae (Section 3.3).
Search Independence: Medium: based on evolutionary notion of formae.
Assumptions: Assumes a discrete representation.
Description: Given a discrete fitness function and a sample of

randomly generated formae (generalised schemata) at
each order, calculate the variance of fitness values for
each forma order. The premise is that lower variance
will provide more exploitable information for evolu-
tionary search algorithms.

Result: Plot of fitness variance of formae against forma order,
where a plot in which variance falls more quickly is
indicative of more exploitable information.

Continued on Next Page. . .
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Table 1 – Continued

Technique 7: Fitness distance correlation and scatter plots by
Jones and Forrest [33] with extensions [32, 2, 70].

Year: 1995.
Focus: Deception with respect to local search (Section 3.6).
Search Independence: High: uses Hamming distance as basis of measure.
Assumptions: Requires knowledge of global optima. Assumes the

existence of a measure of distance between solutions.
Description: Given a random sample of points in the search space,

each point i generates a pair (fi, di), where fi is the
fitness of point i and di is the distance of point i to
the nearest global optimum. The fitness distance cor-
relation is calculated as the correlation coefficient of
this set of (fitness, distance) pairs.

Result: A single correlation value r (between -1 and +1, in-
clusive), where for maximisation problems, low values
(r ≤ −0.15) are easy, values around 0 (−0.15 < r <
0.15) are difficult and higher values (r ≥ 0.15) are
misleading. A scatter plot of fitness against distance
is used when r is insufficient as a measure of the rela-
tionship between fitness and distance.

Technique 8: Static-φ metric by Whitley et al. [86] with exten-
sions [25, 57].

Year: 1995.
Focus: GA deception (Section 3.6).
Search Independence: Medium: based on schemata, applicable to recombi-

native algorithms.
Assumptions: Requires knowledge of global optima. Restricted to

binary representations.
Description: Given a binary fitness function with all hyperplane

partitions, the static-φ metric calculates the degree
of consistency between a ranking of schemata within
hyperplane partitions based on average fitness values
and a ranking based on the distance from the global
optimum (using a form of match counting).

Result: A single value, from 0 to a positive value (could be
normalized).

Continued on Next Page. . .
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Technique 9: Density of states by Rosé et al. [62].
Year: 1996.
Focus: Fitness distribution (Section 3.3).
Search Independence: Complete: based on fitness function alone.
Assumptions: None.
Description: Given a sample of points (the Boltzmann ensemble

method of sampling was used in the original study),
the density of states quantifies the number of solutions
with a given fitness value. The shape of the density
of states graph (when plotted over a range of fitness
values) can serve as a classifier of fitness functions. For
example, maximisation problems with a fast decay of
the density of states graph is indicative of the fast
decay of the probability of finding a better solution,
so should be harder to solve [62].

Result: A plot of the number of solutions per fitness value.

Technique 10: FEM and SEM: First and second entropic measures
by Vassilev et al. [76, 78, 77, 79] with extensions [43].

Year: 1997
Focus: Ruggedness and Smoothness with respect to neutrality

(Section 3.8 and Section 3.9).
Search Independence: High: based on a random walk through the fitness

landscape.
Assumptions: Assumes a discrete representation.
Description: Based on a random walk, a sequence of three-point

objects are generated. These objects are classified as
rugged, smooth or neutral, based on the change in fit-
ness values between neighbouring points. The rugged-
ness/smoothness of the landscape is estimated using
a measure of entropy with respect to the probability
distribution of the rugged/non-rugged elements within
the sequence.

Result: A graph illustrating how ruggedness/smoothness
changes with an increase in landscape neutrality.
Ruggedness/Smoothness values are in the range [0, 1]
where 1 indicates maximal ruggedness/smoothness.

Continued on Next Page. . .
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Technique 11: Amplitude Spectra by Hordijk and Stadler [27].
Year: 1998.
Focus: Ruggedness (Section 3.8).
Search Independence: High: based on any notion of neighbourhood.
Assumptions: Assumes a discrete representation.
Description: Using a form of Fourier analysis, the fitness landscape

is decomposed into elementary landscapes. The re-
sulting amplitude spectrum provides a summary of the
properties of a landscape.

Result: A graph of amplitude values for different interaction
orders.

Technique 12: Bit-wise epistasis by Fonlupt et al. [16].
Year: 1998.
Focus: Epistasis (Section 3.1).
Search Independence: Complete: based on fitness function alone.
Assumptions: Assumes a binary representation.
Description: For each bit position i calculate the variance of the

fitness differences at that position by comparing the
fitness values of the genotypes with 0 in bit position
i and 1 in bit position i, with the other bit position
values staying the same. The computation is based on
a full enumeration of the search space if feasible. If
not, bit-wise epistasis is approximated on a sample of
schemata.

Result: A plot of bit-wise epistasis values (in range [0, 1]) for
each bit position, where a value of 0 for all bit positions
indicates no dependency between variables.

Continued on Next Page. . .
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Technique 13: HDIL and HDBL by Belaidouni and Hao [5].
Year: 2000.
Focus: Fitness distribution layout (Section 3.4).
Search Independence: High: uses Hamming distance as basis of measure.
Assumptions: Assumes a binary representation.
Description: Iso-cost levels are defined (sets of solutions with the

same fitness values). The HDIL (Hamming Distance
In a Level) measures the similarity of solutions within
a given iso-cost level, based on the average Hamming
distance between solutions in the set corresponding
to that iso-level. The HDBL (Hamming Distance Be-
tween a Level) quantifies the distance between two iso-
cost level sets C and C ′, based on the average Ham-
ming distance required for solutions from C to reach
any solution in set C ′.

Result: A single HDIL value for each iso-cost level, where a
low value indicates that solutions with the same fitness
value are clustered together in the search space and a
high value that the solutions are spread out. A single
HDBL value for each pair of iso-cost levels, where a
low value indicates that on average a small Hamming
distance has to be covered to move from a solution
in one iso-cost level to a solution in the other iso-cost
level.

Technique 14: Neutral walk by Reidys and Stadler [60].
Year: 2001.
Focus: Neutrality (Section 3.9).
Search Independence: High: based on generic notion of neighbourhood.
Assumptions: Assumes a discrete representation.
Description: From a random starting position x0 in the search

space, perform a neutral walk as follows: generate all
neutral neighbours of x0. Find one neutral neighbour
for which the total distance from the starting point
will increase with the step. This process is continued
until there are no neutral neighbours that result in the
total distance increasing.

Result: A single value (the number of steps in the neutral
walk).

Continued on Next Page. . .
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Technique 15: Fitness evolvability portraits by Smith et al. [64].
Year: 2002.
Focus: Evolvability (Section 3.11).
Search Independence: Medium: quantifies evolvability of a solution with ref-

erence to a particular operator (mutation in the orig-
inal study).

Assumptions: Assumes a discrete representation.
Description: For all solutions in a sample, calculate the evolvabil-

ity metrics (such as the expected fitness of the top Cth

percentile of offspring fitnesses). Determine the aver-
age metrics for solutions with the same (or similar)
fitness values.

Result: Plots of average evolvability metrics against fitness.

Technique 16: Fitness cloud by Verel et al. [80] with extensions
[72].

Year: 2003.
Focus: Evolvability (Section 3.11).
Search Independence: Medium: illustrates evolvability with reference to a

particular search operator.
Assumptions: Assumes the existence of a neighbourhood function.
Description: For every solution x in the search space S of all possi-

ble solutions, determine a neighbour x′ ∈ S based on
some search operator and plot the points (f(x), f(x′))
for every x ∈ S, where f is the fitness function.

Result: Scatterplot showing the relationship between fitness
values of parents and offspring.

Continued on Next Page. . .
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Technique 17: Negative slope coefficient by Vanneschi et al. [70,
72] with extensions [74, 55].

Year: 2004.
Focus: Evolvability (Section 3.11).
Search Independence: Medium: based on evolvability with reference to a par-

ticular search operator.
Assumptions: Assumes the existence of a neighbourhood function.
Description: Given a fitness cloud (Technique 16) partitioned into

discrete bins, line segments are defined between the
centroids of adjacent bins. The negative slope coef-
ficient is the sum of all negative slopes between seg-
ments.

Result: A single value (in the range (-∞,0], where 0 indicates
an easy problem and smaller values indicate more dif-
ficult problems).

Technique 18: Information landscape hardness measure by
Borenstein and Poli [8, 9] with extensions [11].

Year: 2005.
Focus: Deception in terms of difference from a landscape with

perfect information for search (Section 3.6).
Search Independence: High: based on a comparison to an optimal landscape,

which assumes the same neighbourhood structure.
Assumptions: Requires knowledge of global optima. Assumes a dis-

crete representation.
Description: Given a discrete problem, compute the information

landscape (matrix of probabilities of superiority of
every solution with respect to every other solution).
Determine an optimal information landscape, which
presents perfect information to guide search. Cal-
culate the distance between the optimal information
landscape and the information landscape of the prob-
lem.

Result: A single value in the range [0, 1], where a value of 0
indicates no misleading information and 1 indicates
maximal misleading information (difference from the
optimal information landscape).

Continued on Next Page. . .
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Technique 19: Dispersion metric by Lunacek and Whitley [42].
Year: 2006.
Focus: Global topology or presence of funnels (Section 3.7).
Search Independence: High: requires the calculation of distances in the so-

lution space.
Assumptions: Assumes the existence of a measure of distance be-

tween solutions.
Description: Given a sample of points below a fitness threshold:

if a decrease in threshold (assuming a minimisation
problem) results in an increase in the dispersion of the
points from the sample that are below the threshold,
then this indicates the presence of multiple funnels in
the landscape. Dispersion is calculated as the average
pairwise distance in solution space between all points
in a sample. The dispersion metric is calculated as
the dispersion of a sample of points subtracted from
the dispersion of a subset of the fittest points from the
same sample.

Result: A single value where smaller values (negative values)
indicate a simpler global topology and larger values
(positive values) indicate the presence of funnels. The
magnitude of the dispersion metric is dependent on
the scale of the distances in the search space.

Technique 20: Measures on neutral networks by Vanneschi et al.
[73] with extensions [75].

Year: 2006.
Focus: Neutrality (Section 3.9).
Search Independence: Medium: based on a notion of neighbourhood as de-

fined by a search operator.
Assumptions: Assumes a discrete representation.
Description: Given a discrete fitness landscape, determine the set of

all neutral networks (plateaus formulated as connected
graphs of solutions with equal fitness neighbours).
Measures are defined based on this set: average neu-
trality ratio, average fitness gain, non-improvable and
“non-worsenable” solutions ratios.

Result: Scatterplots of measures with respect to fitness values
of neutral networks.

Continued on Next Page. . .
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Technique 21: Fitness-probability cloud by Lu, Li and Yao [41].
Year: 2011.
Focus: Evolvability (Section 3.11).
Search Independence: Medium: based on evolvability with reference to a par-

ticular search operator.
Assumptions: Restricted to problems with a discrete representation

since the technique is based on the notion of an escape
rate [45], which assumes discrete steps through the
search space.

Description: Using a sample of n solution points (Metropolis-
Hastings sampling used in the original study) with as-
sociated fitness values f1, . . . , fn, generate a sample set
of neighbours for each point through one application of
a given search operator. Calculate the proportion Pi

of neighbours with improved fitness for each fi. The
fitness-probability cloud is the set of (fi, Pi) points.

Result: A plot of (fi, Pi) pairs, where fi is a fitness value and
Pi is the estimated escape probability of the sampled
point i.

Technique 22: Accumulated escape probability by Lu, Li and
Yao [41].

Year: 2011.
Focus: Evolvability (Section 3.11).
Search Independence: Medium: based on evolvability with reference to a par-

ticular search operator.
Assumptions: As for Technique 21.
Description: Given a fitness-probability cloud as defined in Tech-

nique 21: fpc = (f1, P1), . . . , (fn, Pn), the accumu-
lated escape probability is defined as the mean of all
Pi values in fpc.

Result: A single value in the range [0, 1], where a higher value
indicates higher evolvability.

5. Discussion

The aim of this study was to make sense of the body of work outlined
in Table 1 in order to better utilise these techniques in practical ways. This
section highlights what the survey reveals: where the focus has been, where
the gaps are and possible ways in which techniques can be adapted to be
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more usable or relevant. The main points of the discussion in this section
are summarised as possible ways forward in Table 2.

5.1. The focus of techniques

Scanning the Focus attribute in Table 1 reveals how the techniques
for characterising problems have evolved over time. Studies starting in
the late 1980s through to the 90s had a strong focus on ruggedness, with
some focus on other themes including deception, epistasis and fitness vari-
ance/distribution. The late 90s saw the emergence of neutrality as one of
the new focus areas, with a number of studies highlighting the fact that
there were problems that were not rugged and yet were hard to solve and
many of these had high neutrality. The 2000s see evolvability emerge as a
new focus of many techniques, with other themes including global topology
and fitness statistics.

The many different factors on which the techniques focus highlight the
wide range of features that can influence problem difficulty. Each factor
is clearly important to some degree and it opens the question: Are there
characteristics which are also important, but are missing from the list of
available techniques? For example, symmetry is known to influence problem
difficulty [63, 85, 49, 13], but to the authors’ knowledge there are no known
techniques for measuring symmetry in fitness landscapes. Another example
is the degree of variable interdependency. Although there are techniques
for measuring epistasis that appear in the survey, these all only apply to
discrete representations. These and other potential factors point to possible
areas for future work.

There are four techniques in Table 1 that focus on measuring deception,
Goldberg’s GA-deception (Technique 1), Jones and Forrest’s fitness distance
correlation (Technique 7), Whitley et al.’s static-φmetric (Technique 8), and
Borenstein and Poli’s information landscape hardness measure (Technique
18). These four techniques are also the only ones listed that require knowl-
edge of the global optima. This is because it only makes sense to talk of
deception in reference to finding the optimal solution(s). Characterising a
problem based on deception is not useful in practice for two reasons:

• If the aim is to obtain a priori information on the problem, the global
optima will not be known.

• In many cases it may be infeasible to expect an algorithm to find a
global optimum and if a problem guides an algorithm to a reasonable
solution, then this may be sufficient.
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Assuming a broader notion of success and failure than finding an optimal
solution, an alternative aim could be to measure the ease or difficulty with
which a search process will progress towards a place of better fitness. This is
equivalent to a shift in focus from optimality to searchability (or evolvability
as it is more commonly known). If this position is taken, it becomes possible
to use techniques such as fitness distance correlation (Technique 7) even
when the global optimum is not known. The fitness distance correlation
measure was based on the premise that if the fitness function correlates well
with the distance to the optimum, then search will be easier (assuming a
minimisation problem). If the measure is changed to focus on searchability,
rather than deception or problem difficulty, and the premise is re-stated
as: if the fitness function correlates well with the distance to a position of
higher fitness, then search will progress more easily, then the technique can
be used with the most fit value from a sample in place of the optimum.
For example, given an unknown problem, a random sample of solutions
can be generated and the fitness values determined. From this sample, the
most fit solution is determined and used as the basis for the fitness distance
correlation calculation of Technique 7. The result would no longer be a
measure of deception for local search, but would instead be a measure of
how easy or hard it would be for a local search algorithm to progress to
a place of better fitness. In this way, a technique for measuring deception
or problem difficulty is converted into a technique for measuring problem
searchability.

5.2. Search independence

Each technique in Table 1 is characterised as having complete, high, or
medium search independence. Depending on the purpose and context, dif-
ferent kinds of techniques will be more suitable. On the one hand, where
the choice of algorithm is set, an appropriate technique with medium search
independence could be used to better understand the given problem with ref-
erence to that algorithm. For example, assuming an evolutionary algorithm
is being used, the accumulated escape probability (Technique 22) could be
used to guide the choice of appropriate parameters for the algorithm on the
given problem. On the other hand, where the purpose is to choose an ap-
propriate algorithm for a given problem, techniques for characterising the
problem with complete or high search independence will be more useful.

In some cases a technique that is based on a particular search opera-
tor and therefore regarded as having medium search independence could be
adapted to use a generic notion of neighbourhood, so that the analysis could
apply to different algorithms. For example, the negative slope coefficient
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(Technique 17) is described as having medium search independence because
the neighbourhood is defined in terms of a particular search operator (sub-
tree mutation for genetic programming in the original study). If instead,
the neighbourhood was defined using some generic notion of distance, such
as Euclidean distance for a continuous problem, then the technique will
be used with high search independence. Conversely, a technique with high
search independence can be adapted into a technique with medium search
independence. For example, the correlation length technique (Technique 3)
originally based on random walks, could be instead based on the trajectory
of a particle within a PSO swarm. In this way, the technique would be
used to measure ruggedness from the particular viewpoint of a PSO search
process.

5.3. Further proposed work

Many of the techniques outlined in the survey assume the fitness function
(f) is a mapping from the binary space to real space (f : {0, 1}n → R), or
from some discrete alphabet to real space. In some cases this is a restriction,
because there is no obvious way of using the technique for other represen-
tations, such as continuous representations (where f : Rn → R). In other
cases, although the technique is described in terms of one representation,
this is not necessarily a restriction. For example, the information landscape
hardness measure (Technique 18) is defined for discrete representations and
involves constructing a matrix of fitness superiority values of all solutions
with respect to all other solutions. This approach could be adapted to a
continuous representation by using a random sample of solutions. With-
out knowledge of the global optimum the technique would also have to be
adapted in the way described in Way forward 2 of Table 2.

The Result attribute of Table 1 also presents opportunities for further
work. Some of the techniques produce plots or graphs as results. While
visual output is useful for human analysis, numerical output is more useful
for facilitating automated analysis. There are examples of existing numerical
measures that are based on other techniques that produce visual output,
such as:

• Vanneschi et al.’s negative slope coefficient (Technique 17), which is a
numerical output measure based on Verel et al.’s fitness cloud scatter-
plot (Technique 16).

• Malan and Engelbrecht’s [43] single ruggedness measure, which is
based on the first entropic measure output graph by Vassilev et al.
(Technique 10).
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In similar ways, other measures with non-numerical output could form the
basis of new numerical measures. For example, the result of the density of
states technique (Technique 9) is a plot of the number of solutions against
fitness. The tail end of the graph closer to optimal fitness values is the
more significant part in terms of assessing the difficulty for search. A pos-
sible single measure of fitness distribution could in some way quantify the
proportion of solutions at better fitness values in contrast to the number of
solutions at other less fit fitness values.

Table 2: Summary of some possible ways forward

Way forward 1: New techniques for features not covered by existing
techniques.

Description: There are features that are known to influence problem
difficulty, but for which there are no known predictive
measures that can be used to obtain a priori informa-
tion on the problem.

Examples: Symmetry (Section 3.10) and variable interdependency
for continuous functions (Section 3.1).

Way forward 2: Shifting focus from optimality to searchability (or
evolvability).

Description: Techniques which measure deception assume knowl-
edge of the global optima, which is not known for un-
seen problems. These techniques can be converted to
instead measure searchability (or evolvability), by bas-
ing the analysis or calculation on the fittest solution
from a sample, instead of the global optimum.

Examples: This approach could apply to GA-deception (Tech-
nique 1), fitness distance correlation (Technique 7),
static-φ metric (Technique 8), or information land-
scape hardness measure (Technique 18).

Continued on Next Page. . .
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Way forward 3: Generalising the notion of neighbourhood.
Description: Techniques with medium search independence can be

adapted to work with more general notions of neigh-
bourhood and in this way be adapted to techniques
with high search independence.

Examples: Fitness cloud (Technique 16) and associated negative
slope coefficient (Technique 17) could be adapted to
work with a generic distance measure as a neighbour-
hood function.

Way forward 4: Specialising the notion of neighbourhood.
Description: Techniques with high search independence can be

adapted to have medium independence by working
with more specific notions of neighbourhood for a given
search algorithm.

Example: Correlation length (Technique 3), based on random
walks, can be adapted to measure ruggedness of a
search path of a particular search algorithm.

Way forward 5: Adapting techniques for different representations.
Description: Techniques that are defined for one representation (e.g.

discrete) can possibly be adapted to be used for prob-
lems with a different representation (e.g. continuous
representation).

Example: Information landscape hardness measure (Technique
18) defined for discrete problems could possibly be
adapted for continuous problems based on a random
sample of solutions.

Way forward 6: Scalarizing visual outputs.
Description: Techniques that produce plots or graphs can form the

basis for new numerical measures to facilitate auto-
mated analysis.

Examples: Density of states (Technique 9), which results in a vi-
sual plot, could be condensed into a single measure
that in some way captures the shape of the graph.

Other than developing new techniques or adapting existing techniques for
fitness landscape analysis, there is also further research required in analysing
the link between problem characteristics and algorithm performance. Early
studies in this direction include: using the negative slope coefficient to choose
the most appropriate genetic programming configuration to solve real life ap-
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plications [71]; using fitness distance correlation and correlation length to
analyse heuristic search spaces [52]; the use of correlation length and fit-
ness distance correlation to design memetic algorithms [46]; and analysing
the correlation between problem difficulty measures and hybrid evolution-
ary algorithms [54]. Further work is required in analysing a wider range of
measures and in finding effective ways to guide the problem solving process
based on these measured problem characteristics. History has shown the
inadequacy of trying to predict algorithm performance based on a single
characteristic. What seems to be needed is a combined approach, where a
number of different characteristics are analysed together to determine the
suitability of a given search algorithm to a given problem. This in itself is
a complex multi-dimensional problem where there is interdependency be-
tween the variables (in this case the characteristics of a problem). Given
a suitable dataset of known benchmark problems with generated numerical
characteristics, and a subset of algorithms, the actual performance of the
algorithms on the set of problems can be determined by solving the prob-
lems using the algorithms. Some form of data mining could then be used
to determine if a mapping can be found between problem characteristics
and algorithm performance. If a mapping can be found and it is sufficiently
general, the mapping could be used to predict algorithm performance on
unseen problems. This is a promising area of future research.

6. Conclusion

This paper provides a survey of existing techniques for characterising
problems. Each technique is described in terms of the focus (what is mea-
sured), the level of search independence, assumptions on which the tech-
nique is based, and the result produced. The survey reveals how the fo-
cus has changed over the last two decades. Some characteristics, such as
ruggedness, are the focus of many different techniques, but others, such as
symmetry, are not well represented. Suggestions are made for ways in which
existing techniques can be adapted to be more usable or relevant. Tech-
niques that require knowledge of the global optima can be used without this
knowledge by shifting the focus from optimality to searchability. The same
fitness analysis technique can also be used in multiple ways by changing the
search independence and in effect analysing different fitness landscapes for
the same problem.

Further work is needed in developing new ways of characterising prob-
lems, adapting existing techniques, and investigating the links between prob-
lem characteristics and algorithm performance. It is hoped that this paper
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will invoke renewed interest in the field of understanding complex optimisa-
tion problems and ultimately lead to better decision making on the use of
algorithms.
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