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Abstract

This paper explains the empirical phenomenon of persistent “fifty-fifty”prob-

ability judgments through a model of Bayesian updating under ambiguity. To this

purpose I characterize an announced probability judgment as a Bayesian estimate

given as the solution to a Choquet expected utility maximization problem with

respect to a neo-additive capacity that has been updated in accordance with the

Generalized Bayesian update rule. Only for the non-generic case, in which this

capacity degenerates to an additive probability measure, the agent will learn the

event’s true probability if the number of i.i.d. data observations gets large. In

contrast, for the generic case in which the capacity is not additive, the agent’s an-

nounced probability judgment becomes a persistent “fifty-fifty”probability judg-

ment after finitely many observations.
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1 Introduction

1.1 Motivation

Let us consider two opposite benchmark cases of how agents form and revise probabil-

ity judgments. On the one hand, there is the statistically sophisticated agent whose

probability judgments are described by additive Bayesian estimates that are updated

in accordance with Bayes’rule. On the other hand, there is the statistically ignorant

agent who attaches a fifty percent chance to any uncertain event whereby he sticks to

this probability judgment regardless of any new information. More precisely, I speak

of a “fifty-fifty”probability judgment if for any given pair of uncertain complementary

events A,¬A the agent announces that either event occurs with 0.5 probability.

The persistence of such “fifty-fifty”probability judgments are well-documented within

the literature on focal point answers in economic surveys (Hurd 2009; Kleinjans and Van

Soest 2010; Manski and Molinari 2010; van Santen et al. 2012) as well as within the

psychological literature (Bruine de Bruin et al. 2000; Wakker 2004; Camerer 2007).

Wakker (2010) interprets “fifty-fifty” judgments as an extreme case of cognitive likeli-

hood insensitivity; more specifically, he writes:

“Likelihood insensitivity can be related to regression to the mean. It

is not a statistical artifact resulting from data analysis with noise, though,

but it is a psychological phenomenon, describing how people perceive and

weight probabilities in decisions. In weighting probabilities, a regression to

the mean takes place, with people failing to discriminate suffi ciently between

intermediate probabilities and taking them all too much as the same (“50-

50”, “don’t know”).”(p. 228).

Given that likelihood insensitivity corresponds, in theory, to a very large domain

of possible probability judgments, the question arises why “fifty-fifty” judgments are

the predominant empirical expression of likelihood insensitivity. This paper proposes

a decision theoretic explanation of this “fifty-fifty” phenomenon. To this purpose I

construct a model of Bayesian estimation under ambiguity which I combine with a

Bayesian learning model such that the agent can observe i.i.d. statistical trials whose

outcomes are either A or ¬A. The resulting model of Bayesian learning under ambiguity
turns out to encompass the announced probability judgments of sophisticated agents as

the non-generic and the announced probability judgments of ignorant agents as the

generic case.

Formally, my model is based on the assumption that decision makers are Choquet

expected utility (=CEU) rather than expected utility (=EU) maximizers. Behavioral
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axioms that generalize EU to CEU theory were first presented in Schmeidler (1989)

within the Anscombe and Aumann (1963) framework, which assumes preferences over

objective probability distributions. Subsequently, Gilboa (1987) as well as Sarin and

Wakker (1992) have presented behavioral CEU axiomatizations within the purely sub-

jective Savage (1954) framework.

From a mathematical perspective, CEU theory is an application of fuzzy measure

theory such that the integration with respect to a fuzzy (=non-additive) probability

measure is characterized by a comonotonic, positive homogeneous and monotonic func-

tional (cf., Schmeidler 1986; Grabisch et al. 1995; Murofushi and Sugeno 1989, 1991;

Narukawa and Murofushi 2003, 2004; Sugeno et al. 1998; Narukawa et al. 2000, 2001;

Narukawa 2007).

From the perspective of behavioral decision theory, CEU theory is formally equivalent

to cumulative prospect theory (=CPT) (Tversky and Kahneman 1992; Wakker and

Tversky 1993; Basili and Chateauneuf 2011) whenever CPT is restricted to gains. CPT,

in turn, extends the celebrated concept of original prospect theory by Kahneman and

Tversky (1979) to the case of several possible gain values in a way that satisfies first-order

stochastic dominance. Because my formal approach thus admits for an interpretation

in terms of behavioral axioms (Gilboa 1987; Chateauneuf et al. 2007; Eichberger et

al. 2007), it contributes towards “opening the black box of decision makers instead of

modifying functional forms”(Rubinstein 2003, p. 1207).

1.2 The set-up

My point of departure is the formal description of announced probability judgments

about some family of complementary events A,¬A whereby the agent can observe the
outcome of statistical trials resulting each time in the occurrence of either A or ¬A. To
fix ideas consider the following illustrative example.

Example. Suppose that the agent knows the total (large) number of
balls in a given urn as well as the fact that each ball has some color y, with

y ∈ {blue, red, green}, but that he has no information whatsoever about
the proportions of differently colored balls within this urn. A state ω′ ∈ Ω′

stands for the fact that a specific ball is drawn. Fix some color y and define

A ≡ Ay as the event that a ball of color y will be drawn. In a next step,

we allow the agent to observe statistical trials according to which balls are

drawn from this urn and put back after their color has been revealed to

the agent. Assume that these trials are i.i.d. such that, for example, the
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“true”probability θ ∈ (0, 1) of Ay corresponds to the actual proportion of

y-colored balls in the urn. If the agent is an ignorant agent in our sense, he

will announce after finitely many observations that the chance of drawing

versus not-drawing a ball of color y is “fifty-fifty”. Now we can switch to

a different color and we will observe the same “fifty-fifty” judgment after

suffi ciently many statistical trials. That is, the ignorant agent in our sense

will eventually attach a fifty-fifty chance to all complementary event pairs

Ay,¬Ay with y ∈ {blue, red, green}.

More generally, consider the measurable space (Ω′,A′) and fix some event A ∈ A′

such that (i) θ ∈ (0, 1) denotes the true probability of A and (ii) the agent deems it

impossible that A might have probability one or zero. Let A = {∅, A,¬A,Ω′}. The
agent’s probability judgments will then apply to some family of “binary”measurable

spaces {(Ω′,A)}A∈A′ .
Fix an arbitrary (Ω′,A) and construct the measurable space (Ω,F) as follows. Define

the state space

Ω = Θ× I (1)

with generic element ω ≡ (θ, i). The parameter space Θ = (0, 1) collects all possible

probabilities of event A.1 Endow Θ with the Euclidean metric and denote by B the
corresponding Borel σ-algebra on Θ. The information space I is given as the infinite
sample space

I = ×∞j=1Sj (2)

such that, for all j,

Sj = {A,¬A} . (3)

Sj collects the possible outcomes of the j-th statistical trial according to which either

A or ¬A occurs. Define I as the standard product algebra of (A)∞j=1, i.e., the σ-algebra

generated by the sets in{
×∞j=1Bj | Bj ∈ A such that Bj 6= Ω′ for finitely many Bj

}
. (4)

Consequently, the agent will always only receive a finite amount of sample information.

The relevant event space F is then defined as the standard product algebra of B and I.
1In line with the assumption that the agent deems it impossible that A has probability one or zero,

I consider Θ = (0, 1) rather than Θ = [0, 1]. Mathematically, the restriction to Θ = (0, 1) also has

the advantage that I do not have to consider degenerate measures which put all probability mass on

0 or 1. (For example, for such measures Bayesian updating is not well-defined for all possible sample

observations. Also see footnote 7.)
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I assume that the agent is a Choquet Bayesian decision maker in the sense that his

beliefs are characterized by (i) a unique– not necessarily additive– subjective proba-

bility measure on (Ω,F) and (ii) that he forms conditional– not necessarily additive–

probability measures in accordance with some Bayesian update rule for CEU decision

makers (see Section 2.2 for details).2 More specifically, let us focus thoughts and assume

that the agent’s subjective probability measure is pinned down by his CEU preferences

over Savage acts defined on the state space Ω. Recall that a Savage act f maps the state

space into some set of consequences, i.e., f : Ω→ Z, whereby I assume throughout the

paper that Z = [0, 1]. For a given constant x ∈ (0, 1) define the F-measurable Savage
act fx : Ω → [0, 1] such that fx (θ, i) = |x− θ|. I interpret fx as the Savage act that
corresponds to the probability judgment x whereby the consequence of fx in state (θ, i)

is given as the Euclidean distance between the agent’s probability judgment x and the

true probability θ.

An announced probability judgment x∗ is then formally characterized by the pref-

erence maximizing act fx∗ over all fx, x ∈ (0, 1). Through an announced probability

judgment the agent thus expresses his probabilistic forecast about the occurrence of

an uncertain event such as, e.g., tomorrow’s weather conditions, next year’s economic

growth, or whether the agent will die at age y ∈ {65, ...100}.
In the remainder of this introduction I describe this preference maximization problem,

at first, for the special case of a standard expected utility and, afterwards, for the general

case of a Choquet expected utility maximizer.

1.3 The standard approach: Expected utility decision makers

Consider at first the special case of a CEU decision maker who reduces to a standard

expected utility (=EU) decision maker. To focus thoughts let us assume that this EU

decision maker is a subjective EU maximizer with preferences � over Savage acts on Ω

that satisfy Savage’s (1954) axioms. For this EU decision maker there exists a bounded

utility function u : Z ≡ [0, 1] → R, unique up to a positive linear transformation, and
a unique additive probability measure µ on (Ω,F) such that for all Savage acts fx, fy,

2Especially in the Statistics and Econometrics literature, the term “Bayesian agent”is usually associ-

ated with subjective additive probability measures. The situation is, in my opinion, somewhat different

in Decision Theory where a “Bayesian agent”is distinguished from an, e.g., case-based or an heuristic

agent, in that his likelihood considerations in the light of new information are formalized through some

mathematical definition of subjective, not necessarily additive, conditional probability measures. To

avoid terminological confusions, I speak of a Choquet Bayesian rather than a Bayesian agent whenever

this agent is characterized by subjective, not necessarily additive, conditional probability measures.
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x, y ∈ (0, 1):

fx � fy ⇔ E
[
u
(∣∣∣x− θ̃∣∣∣) , µ(θ̃)] ≥ E

[
u
(∣∣∣y − θ̃∣∣∣) , µ(θ̃)] , (5)

where θ̃ (θ, i) = θ denotes the F-measurable random variable that gives for every state

(θ, i) of the world the true probability θ ∈ (0, 1) and E denotes the expectation operator

with respect to µ
(
θ̃
)
.

Let

I ∈ {Θ× I ′ | I ′ ∈ I} (6)

denote some sample information in F . Denote by �I an ex post preference ordering
which we interpret as the agent’s preferences over Savage acts after he has learnt infor-

mation I. If the agent updates his preferences � to �I in the standard Bayesian way,
we obtain for an EU decision maker that, for all Savage acts fx, fy, x, y ∈ (0, 1):

fx �I fy ⇔ E
[
u
(∣∣∣x− θ̃∣∣∣) , µ(θ̃ | I)] ≥ E

[
u
(∣∣∣y − θ̃∣∣∣) , µ(θ̃ | I)] (7)

where

µ (B | I) =
µ (B ∩ I)

µ (I)
(8)

for B ∈ {B′ × I | B′ ∈ B}. The solution to the EU maximization problem

x∗I = arg sup
x∈(0,1)

E
[
u
(∣∣∣x− θ̃∣∣∣) , µ(θ̃ | I)] (9)

stands for this EU decision maker’s announced probability judgment in the light of

sample information I.

Observe that the announced probability judgment (9) is the standard estimate of

Bayesian statistics which minimizes the expectation of some loss function l = −u, defined
over absolute errors, with respect to some posterior distribution (cf., e.g., Berger 1980).

For example, if the loss function is quadratic, i.e.,

u (|x− θ|) = − (x− θ)2 , (10)

it can be shown (cf. Section 3) that (9) becomes

x∗I = arg sup
x∈(0,1)

E

[
−
(
x− θ̃

)2
, µ
(
θ̃ | I

)]
(11)

= E
[
θ̃, µ

(
θ̃ | I

)]
. (12)

That is, under the assumption of a negative quadratic utility function the EU agent’s

announced probability judgment x∗I coincides with the classical Bayesian estimate given

as the expected parameter value with respect to the posterior distribution µ
(
θ̃ | I

)
(cf.,

Girshick and Savage 1951; James and Stein 1961; Section 35 in Billingsley 1995).
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The example revisited for a negative quadratic utility function.
Fix some color y ∈ {blue, red, green} and suppose that µ

(
θ̃
)
corresponds to

a Beta distribution over (0, 1) with parameters α, β > 0 so that, prior to any

sample information, the agent’s announced probability judgment (11) about

drawing an y-colored ball, i.e., event Ay, is given as

E
[
θ̃, µ

(
θ̃
)]

=
α

α + β
. (13)

Denote by I ≡ Ikn the sample information according to which k balls of

color y have been drawn in n (Bernoulli) trials. It can be easily shown (cf.

Zimper 2011 and references therein) that the posterior distribution µ
(
θ̃ | Ikn

)
is itself a Beta distribution with parameters α+k, β+n−k so that the agent’s
announced probability judgment (11) in the light of sample information Ikn
becomes

E
[
θ̃, µ

(
θ̃ | Ikn

)]
=

α + k

α + β + n
(14)

=

(
α + β

α + β + n

)
E
[
θ̃, µ

(
θ̃
)]

+

(
n

α + β + n

)
k

n
.(15)

Observe that the probability judgment (15) is a convex combination between the

agent’s prior probability judgment, E
[
θ̃, µ

(
θ̃
)]
, and the observed proportion of drawn

balls of color y, k
n
, whereby the agent will attach an increasing weight to this observed

proportion when the number of trials increases. By the law of large numbers, this

EU maximizing agent’s probability judgment will thus converge with certainty to the

true probability of event Ay. Since this convergence result holds, by Doob’s (1949)

consistency theorem, for EU maximizing agents under fairly general conditions (see

Section 4), the probability judgments of an ignorant agent in our sense cannot be modeled

as the Bayesian estimates of an EU decision maker.

1.4 My approach: Choquet expected utility decision makers

As this paper’s main conceptual contribution, I generalize the standard model (9) of

Bayesian estimation to a model of Choquet Bayesian estimation. To focus thoughts

suppose that the agent satisfies Gilboa’s (1987) CEU axioms on preferences � over

Savage acts on Ω so that there exists a bounded utility function u : Z ≡ [0, 1] → R,
unique up to a positive linear transformation, and a unique non-additive probability

measure κ on (Ω,F) such that for all Savage acts fx, fy, x, y ∈ (0, 1):

fx � fy ⇔ EC
[
u
(∣∣∣x− θ̃∣∣∣) , κ(θ̃)] ≥ EC

[
u
(∣∣∣y − θ̃∣∣∣) , κ(θ̃)] (16)
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where EC denotes the Choquet expectation operator with respect to κ (see Section 2

for formal definitions).

Furthermore, if the agent updates his preferences � to �I in accordance with the
Generalized Bayesian update rule (Pires 2002; Eichberger et al. 2007; Siniscalchi 2011),

we obtain for an CEU decision maker that, for all Savage acts fx, fy, x, y ∈ (0, 1):

fx �I fy ⇔ EC
[
u
(∣∣∣x− θ̃∣∣∣) , κ(θ̃ | I)] ≥ EC

[
u
(∣∣∣y − θ̃∣∣∣) , κ(θ̃ | I)] (17)

such that

κ (B | I) =
κ (B ∩ I)

κ (B ∩ I) + 1− κ (B ∪ ¬I)
(18)

for B ∈ {B′ × I | B′ ∈ B}. I refer to the solution of the CEU maximization problem

xCI = arg sup
x∈(0,1)

EC
[
u
(∣∣∣x− θ̃∣∣∣) , κ(θ̃ | I)] (19)

as the CEU decision maker’s announced probability judgment in the light of sample

information I. Alternatively, I call (19) the Choquet Bayesian estimate with respect to

κ
(
θ̃ | I

)
.

If κ reduces to an additive measure µ, the Choquet Bayesian estimate (19) becomes

(9) so that standard Bayesian estimation is nested within Choquet Bayesian estimation.

If κ is not additive, the CEU maximization problem (19) does, in general, not allow

for an analytically convenient solution. In contrast to the additive expectation operator

E in (9), the Choquet expectation operator EC is non-linear and, while being contin-

uous, it is no longer differentiable everywhere. Unlike the global maximum of (9), the

global maximum of (19) is, for strictly concave and differentiable u, therefore no longer

characterized by a first-order condition.

To simplify the maximization problem (19), I am going to restrict attention to

non-additive probability measures described as neo-additive capacities in the sense of

Chateauneuf et al. (2007). Neo-additive capacities reduce the potential complexity of

non-additive probability measures in a very parsimonious way (i.e., two additional para-

meters only) such that important empirical features (e.g., inversely S-shaped probability

transformation functions) are portrayed (cf. Chapter 11 in Wakker 2010).

As a first formal result (Lemma), I comprehensively characterize the solution to the

CEU maximization problem (19) for strictly concave and differentiable utility functions

and neo-additive capacities. In a next step, I study a model of Bayesian learning in

which the agent can observe i.i.d. sample information generated by the true probability

of event A. For the non-generic case in which the neo-additive capacity reduces to an

additive probability measure, the agent’s announced probability judgment converges, by

Doob’s (1949) consistency theorem, to the event A’s true probability. As this paper’s

main formal result (Theorem), I prove:
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For the generic case in which the neo-additive capacity is not additive, the agent’s

announced probability judgment about any events A,¬A becomes a “fifty-fifty”

judgment after finitely many data observations.

The remainder of the analysis proceeds as follows. Section 2 recalls concepts from

Choquet decision theory. Section 3 presents the analytical solution to the Choquet

Bayesian estimation problem. The Bayesian learning model is constructed in Section 4.

Section 5 concludes. All formal proofs are relegated to the Appendix.

2 Preliminaries

2.1 Non-additive probability measures and Choquet integra-
tion

Fix the measurable space (Ω,F) and a set of null events N ⊂ F such that (i) ∅ ∈ N ,
(ii) B ∈ N implies B′ ∈ N for all B′ ∈ F such that B′ ⊂ B, and (iii) B,B′ ∈ N implies

B ∪B′ ∈ N . A non-additive (=fuzzy) probability measure κ : F → [0, 1] satisfies

(i) κ (B) = 0 for B ∈ N ,
(ii) κ (B) = 1 for B such that Ω\B ∈ N ,
(iii) κ (B) ≤ κ (C) for B,C such that B ⊂ C.

For reasons of analytical tractability we focus on non-additive probability measures

defined as neo-additive capacities (Chateauneuf et al. 2007).

Definition. Fix some parameters δ, λ ∈ [0, 1]. A neo-additive capacity ν : F → [0, 1]

is defined as

ν (B) = δ · νλ (B) + (1− δ) · µ (B) (20)

for all B ∈ F such that µ is some additive probability measure satisfying

µ (B) =

{
0 if B ∈ N
1 if Ω\B ∈ N

(21)

and the non-additive probability measure νλ is defined as follows

νλ (B) =


0 iffB ∈ N
λ else

1 iff Ω\B ∈ N .
(22)
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I call an event B ∈ F essential if and only if B /∈ N and Ω\B /∈ N . Throughout
this paper I restrict attention to sets of null-events N such that B ∈ N iff µ (B) = 0.

Consequently, B is essential if and only if 0 < µ (B) < 1. Observe that the neo-additive

capacity (20) simplifies to

ν (B) = δ · λ+ (1− δ) · µ (B) (23)

for essentialB. The parameter δ is interpreted as an ambiguity or insensitivity parameter

whereas the value of λ determines whether ν (B) overestimates (i.e., λ > ν (B)) or

underestimates (i.e., λ < ν (B)) the additive probability µ (B) whenever δ > 0.

The Choquet integral of a bounded F-measurable function w : Ω→ R with respect to
capacity κ is defined as the following Riemann integral extended to domainΩ (Schmeidler

1986):

EC [w, κ] =

∫ 0

−∞
(κ ({ω ∈ Ω | w (ω) ≥ z})− 1) dz +

∫ +∞

0

κ ({ω ∈ Ω | w (ω) ≥ z}) dz.

(24)

For instance, if w takes on m different values such that B1, ..., Bm is the unique partition

of Ω with w (ω1) > ... > w (ωm) for ωi ∈ Ai, the Choquet expectation (24) becomes

EC [w, κ] =
m∑
i=1

w (ωi) · [κ (B1 ∪ ... ∪Bi)− κ (B1 ∪ ... ∪Bi−1)] . (25)

A formal proof of the following Observation can be found for finite valuedw in Chateauneuf

et al. (2007) and for bounded w in Zimper (2012).

Observation 1. Let w : Ω → R be an F-measurable function with bounded range.
The Choquet expected value (24) of w with respect to a neo-additive capacity (20)

is given as

EC [w, ν] = δ (λ supw + (1− λ) inf w) + (1− δ)E [w, µ] . (26)

2.2 Conditional non-additive probability measures

CEU theory generalizes EU theory in order to accommodate paradoxes of the Ells-

berg (1961) type which show that real-life decision makers violate Savage’s sure thing

principle. Because CEU relaxes the sure thing principle, there exist several alternative

Bayesian update rules for CEU decision makers which correspond to alternative defini-

tions of conditional non-additive probability measures. The existing literature foremostly
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focuses on conditional non-additive probability measures derived from the optimistic

(=naive), the pessimistic (=Dempster-Shafer), or the Generalized (=full) Bayesian up-

date rule (cf. Gilboa and Schmeidler 1993; Sarin and Wakker 1998; Pires 2002; Eich-

berger, Grant, Kelsey 2007, 2010; Eichberger, Grant, Lefort 2009; Zimper and Ludwig

2009; Siniscalchi 2011; Zimper 2012). In what follows I briefly sketch why the relaxation

of the sure thing principle gives rise to alternative definitions of conditional non-additive

probability measures.3

Ex ante preferences over Savage acts, denoted �, are interpreted as the decision
maker’s preferences before he receives any information. In contrast, ex post preferences

over Savage acts, denoted �I , are interpreted as preferences conditional on information
I, i.e., after the decision maker has observed the occurrence of some non-null event

I ∈ F . A Bayesian update rule specifies how ex post preferences �I over Savage acts
are derived from ex ante preferences � for all essential I ∈ F . Define the following
Savage act fIh : Ω→ Z

fIh (ω) =

{
f (ω) for ω ∈ I
h (ω) for ω ∈ ¬I

(27)

and recall the definition of Savage’s (1954) sure thing principle:

Definition: Sure thing principle. For all Savage acts f, g, h, h′ and all I ∈ F , the
following condition holds for ex ante preferences:

fIh � gIh ⇒ fIh
′ � gIh

′. (28)

If the sure thing principle (28) holds, then there exists one plausible Bayesian update

rule; namely, for all f, g, h and all I,

fIh � gIh ⇒ f �I g. (29)

In words: If the decision maker prefers the consequences of f on I to the consequences

of g on I given that f and g have common consequences on ¬I, then the decision maker
should also prefer f to g after he has learnt that I has occurred. Under the assumption

of Savage’s (1954) axioms for � and �I , the update rule (29) gives rise to the familiar
definition of a conditional additive probability measure (8).

CEU preferences that do not reduce to EU preferences, however, violate the sure

thing principle to the effect that there exist f, g and I such that

fIh � gIh and gIh′ � fIh
′ (30)

3Since any in-depth discussion of this topic is beyond the scope of the present paper, I would like to

refer the interested reader to the mentioned literature.
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for some h and h′ with h 6= h′. Fix h and h′ in (30) and observe that there exist two

alternative ways of deriving ex post preferences �I over f and g from (30); namely,

either

fIh � gIh ⇒ f �I g (31)

or

gIh
′ � fIh

′ ⇒ g �I f . (32)

That is, if the sure principle does not hold, there exist several alternative Bayesian

update rules in the sense that we can associate, for fixed f, g, with every I ∈ F an act
h∗ (I) such that

fIh
∗ (I) � gIh

∗ (I) ⇒ f �I g. (33)

2.3 The Generalized Bayesian update rule

In the present paper I restrict attention to the Generalized Bayesian update rule, which

appears to perform well in empirical investigations (Cohen at al. 2000) and which is

popular in the literature because it avoids the extreme updating behavior of alternative

update rules. More specifically, the Generalized Bayesian update rule defines h∗ (I) in

(33) as the (�I)-conditional certainty equivalent of g; that is, h∗ (I) is the constant act

such that g �I h∗ (I) as well as h∗ (I) �I g.
Eichberger et al. (2007) prove that the Generalized Bayesian update rule gives rise

to a conditional non-additive probability measure given as (18). A formal proof of the

following result appears in Zimper and Ludwig (2009) and in Eichberger et al. (2010).

Observation 2. An application of the Generalized Bayesian update rule (18) to a neo-
additive capacity (20) results in the following conditional neo-additive capacity

ν (B | I) = δI · λ+ (1− δI) · µ (B | I) , (34)

for essential B ∈ F and non-null I ∈ F , whereby

δI =
δ

δ + (1− δ) · µ (I)
. (35)

By Observation 2, an application of the Generalized Bayesian update rule to a neo-

additive capacity results in a conditional neo-additive capacity for which the ambiguity

parameter has changed from δ to δI whereas the parameter λ remains unchanged. As a

consequence, the Generalized Bayesian update rule is formally very convenient because it
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reduces the Bayesian updating dynamics of neo-additive capacities to additive Bayesian

updating plus the updating of the ambiguity parameter. In particular, we have that

δI > δ whereby smaller additive probabilities of the observed information, µ (I), imply

a greater updated ambiguity parameter δI . If we interpret the ambiguity parameter

δ as the agent’s lack of confidence in the additive probability measure µ, the formal

relationship (35) implies that the agent’s confidence will further decrease if he observes

unlikely information.

Although this interpretation of (35) has intuitive appeal, it also implies that more

and more sample information will increase the ambiguity parameter. This is because

in a Bayesian framework any specific realization of large sample information is rather

unlikely from an ex ante perspective and it will be the more unlikely the larger the

sample is. The fact that ambiguity increases by (35) with more information will drive

the Theorem in Section 4 where I consider a Bayesian learner who can observe large

data samples.

3 Choquet Bayesian estimation

Consider a Savage act fx : Ω→ [0, 1] such that, for all (θ, i) ∈ Ω,

fx (θ, i) = |θ − x| (36)

whereby I interpret x ∈ (0, 1) as the decision maker’s probability judgment associated

with act fx. The consequence of fx in state (θ, i) is thus defined as the Euclidean distance

between the true probability θ and the probability judgment x. To evaluate probability

judgments I consider a bounded utility function u : [0, 1]→ R− which is strictly concave
and strictly decreasing whereby I normalize u (0) = 0.4 Furthermore, I assume that

u (fx ((θ, i))) = u (|θ − x|) (37)

is continuously differentiable in x as well as measurable with respect to θ̃ (θ, i) = θ. For

the first order derivative of u it holds that

u′ (z) =

{
0 if z = 0

< 0 if z > 0
(38)

That is, I assume that the maximum of u (|θ − x|) at θ = x is conveniently characterized

by the first order condition (=FOC).

4A strictly concave u corresponds to the standard case of strictly risk averse decision makers. In-

terpreted in terms of the loss function l = −u of Bayesian estimation, strict concavity of u (i.e., strict
convexity of l) implies that large differences between the probability judgment and the true probability

are over-proportionally penalized.
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Fix some information I = Θ × I ′ ∈ F where I ′ ∈ I and consider the conditional
neo-additive capacity space (Ω,F , ν (· | I)) such that ν (· | I) is given by (34). By Ob-

servation 1, the CEU of the probability judgment x is given as

EC
[
u (fx) , ν

(
θ̃ | I

)]
(39)

= δI

(
λ sup
θ∈(0,1)

u (fx) + (1− λ) inf
θ∈(0,1)

u (fx)

)
+ (1− δI)E

[
u (fx) , µ

(
θ̃ | I

)]
.

The best probability judgment a decision maker could come up with is to correctly

announce the true probability, i.e., x = θ, implying

sup
θ∈(0,1)

u (fx) = 0. (40)

The worst possible probability judgment corresponds to the maximal Euclidean distance

between the true probability θ and the announced probability x, implying

inf
θ∈(0,1)

u (fx) =

{
u (1− x) if x ≤ 1

2

u (x) if x ≥ 1
2

(41)

The best case scenario (40) corresponds to a benevolent nature which always picks

a state that coincides with the agent’s probability judgment thereby maximizing his

utility. In contrast, the worst case scenario (41) corresponds to a malevolent nature

which always picks a state that minimizes the agent’s utility for his probability judgment.

The ambiguity parameter δI in (39) determines how much the agent cares about the best

and worst case scenario as compared to his additive (=non-ambiguous) expectation. The

parameter λ in (39) determines the degree by which the agent resolves his ambiguity by

focusing on the best case versus the worst case scenario.

Collecting terms gives us the following characterization of the agent’s CEU function

(39) for any probability judgment x.

Observation 3. Let

U1 (x) ≡ δI (1− λ)u (1− x) + (1− δI)E
[
u (fx) , µ

(
θ̃ | I

)]
, (42)

U2 (x) ≡ δI (1− λ)u (x) + (1− δI)E
[
u (fx) , µ

(
θ̃ | I

)]
(43)

with δI given by (35). The agent’s objective function is then given as

EC
[
u (fx) , ν

(
θ̃ | I

)]
=

{
U1 (x) if x ∈

(
0, 1

2

]
U2 (x) if x ∈

[
1
2
, 1
) (44)

14



Observe that the term for the best case scenario (40) vanishes from the agent’s

maximization problem. The reason is straightforward: Whatever probability judgment

the agent chooses, in the best case scenario a benevolent nature plays along to ensure that

the agent achieves his maximal utility. In contrast, the worst case scenario (41), in which

a malevolent nature plays against the agent, enters the agent’s maximization problem.5

Moreover, this worst case scenario results in a kink of the agent’s objective function at

x = 1
2
to the effect that a simple FOC argument is not suffi cient to characterize the

solution to (44). To exclude the trivial case where (42) and (43) are constantly zero, I

henceforth assume that

either δI < 1 or δI = 1, λ < 1. (45)

Lemma. Define x1 and x2 implicitly through the following FOCs

d

dx
(Ui (xi)) = 0, i = 1, 2. (46)

The solution xCI of the maximization problem (44), i.e.,

xCI = arg sup
x∈(0,1)

EC
[
u (fx) , ν

(
θ̃ | I

)]
, (47)

is characterized as follows.

(a) If

x1 <
1

2
and x2 >

1

2
(48)

then

xCI = arg max
{x1,x2}

EC
[
u (fx) , ν

(
θ̃ | I

)]
. (49)

(b) If

x1 ≤
1

2
and x2 ≤

1

2
(50)

then

xCI = x1. (51)

5But of course, the parameter λ, which measures how much the agent cares about the best case

scenario, still plays an important role in the agent’s optimization problem if there is ambiguity. Therefore

to say that “the term for the best case scenario vanishes from the agent’s optimization problem”does

not mean that “the agent’s ambiguity attitudes towards the best case scenario have no impact on the

agent’s optimization problem”.
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(c) If

x1 ≥
1

2
and x2 ≥

1

2
(52)

then

xCI = x2. (53)

(d) If

x1 ≥
1

2
and x2 ≤

1

2
(54)

then

xCI =
1

2
. (55)

To illustrate the findings of the Lemma let us consider the special case of a negative

quadratic utility function, i.e., u (z) = −z2. In that case, (42) and (43) become

U1 (x) ≡ δI (1− λ) (−) (1− x)2 + (1− δI)E
[
−
(
x− θ̃

)2
, µ
(
θ̃ | I

)]
, (56)

U2 (x) ≡ δI (1− λ) (−) (x)2 + (1− δI)E
[
−
(
x− θ̃

)2
, µ
(
θ̃ | I

)]
(57)

and we can derive explicit analytical expressions for x1 and x2. Namely, by (46),

d

dx
(U1 (x1)) = 0 (58)

⇔

0 = δI (1− λ) · 2 (1− x1) + (1− δI)
∫

θ∈(0,1)

− (2x1 − 2θ) dµ
(
θ̃ | I

)
(59)

⇔

x1 =
δI − δIλ+ (1− δI)E

[
θ̃, µ

(
θ̃ | I

)]
δI − δIλ+ 1− δI

; (60)

as well as

d

dx
(U2 (x2)) = 0 (61)

⇔

0 = −2δI (1− λ) · x2 + (1− δI)
∫

θ∈(0,1)

− (2x2 − 2θ) dµ
(
θ̃ | I

)
(62)

⇔
x2 =

(1− δI)
(1− δIλ)

E
[
θ̃, µ

(
θ̃ | I

)]
. (63)
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The following corollary establishes that the classical point estimate of Bayesian

statistics– given as the expected parameter value with respect to a posterior (addi-

tive) probability distribution– is nested in the solution of the Lemma whenever the

neo-additive capacity reduces to an additive probability measure and u is given as the

negative quadratic utility function.

Corollary. Suppose that u is given as the negative quadratic utility function, i.e.,

u (z) = −z2.

(a) If δ = 0, the analytical solution (47) becomes

xCI = E
[
θ̃, µ

(
θ̃ | I

)]
. (64)

(b) Consider the generic case E
[
θ̃, µ

(
θ̃ | I

)]
6= 1

2
. Only if δ = 0, the analytical

solution (47) becomes (64).

4 Choquet Bayesian Learning of Probability Judg-

ments

This section combines the CEU estimation problem (47) with a standard model of

Bayesian learning according to which the agent observes sample information that is

generated by some i.i.d. process. More specifically, for a given measurable space (Ω′,A)

consider the additive probability space (Ω,F , µ) with (Ω,F) defined in Subsection 1.1.

Any possible sample information after n trials is given as some event

In = Θ× {s1} × ...× {sn} × Sn+1 × ... ∈ F (65)

with sj ∈ {A,¬A}, j = 1, ..., n. Suppose that the outcomes of the statistical trials are,

conditional on θ, i.i.d. such that A occurs in every trial with true probability θ. That

is,

µ
(
In | θ̃ = θ

)
=

n∏
j=1

πθ (sj) (66)

such that

πθ (sj) =

{
θ if sj = A

1− θ if sj = ¬A
(67)

By Bayes’rule, we obtain the posterior µ
(
θ̃ | In

)
such that, for anyB ∈ {B′ × I | B′ ∈ B},

17



µ (B | In) =

∫
θ∈B µ

(
In | θ̃

)
dµ
(
θ̃
)

µ (In)
(68)

=

∫
θ∈B

n∏
j=1

πθ (sj) dµ
(
θ̃
)

∫
θ∈(0,1)

n∏
j=1

πθ (sj) dµ
(
θ̃
) . (69)

Define

Ωθ =
{
ω ∈ Ω | θ̃ (ω) = θ

}
. (70)

Recall that Doob’s (1949) consistency theorem6 implies that, for almost all true pa-

rameter values θ belonging to the support of µ, the posterior distribution µ
(
θ̃ | In

)
concentrates Ωθ-almost everywhere (i.e., with µ (· | θ)-probability one) at the true value
θ as n gets large; that is,

µ (B | In)→ 1B′θ, µ (· | θ) -a.s. (71)

for all B ∈ {B′ × I | B′ ∈ B} where 1B′ denotes the indicator function of the Borel set
B′. Or, simply expressed,

µ
(
θ̃ | I∞

)
=

{
1 if θ̃ = θ

0 if θ̃ 6= θ
, µ (· | θ) -a.s. (72)

Applied to the standard Bayesian estimate of an EU agent (47), we therefore obtain in

the limit that

x∗I∞ = arg sup
x∈(0,1)

E
[
u
(∣∣∣x− θ̃∣∣∣) , µ(θ̃ | I∞)] (73)

= arg sup
x∈(0,1)

u (|x− θ|) (74)

= θ (75)

with µ (· | θ)-probability one. Consequently, Doob’s theorem immediately implies the

following convergence result.

Observation 4. Let µ
(
θ̃
)
have full support on (0, 1). The EU agent’s probability

judgment about any essential event A ∈ A will, for almost all θ, almost surely

converge to A’s true probability if the sample size n gets large, i.e.,

x∗In ≡ arg sup
x∈(0,1)

E
[
u (fx) , µ

(
θ̃ | In

)]
→ θ, µ (· | θ) -a.s. (76)

6For a comprehensive discussion of Doob’s theorem see Gosh and Ramamoorthi (2003) and Lijoi et

al. (2004).
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By Observation 4, the probability judgment of an EU decision maker will converge

through Bayesian learning towards the true probability of any given event A. Whenever

(76) holds, I speak of a (statistically) sophisticated agent.

The situation is different for CEU decision makers. As in the EU benchmark case of

Observation 4, I assume that the i.i.d. sample information In is generated by θ, i.e., with

true probability µ (In | θ). However, in contrast to the conditional additive probability
measure µ

(
θ̃ | In

)
given by (69), the CEU agent’s Bayesian updating now results in the

conditional neo-additive capacity

ν
(
θ̃ | In

)
= δInλ+ (1− δIn)µ

(
θ̃ | In

)
. (77)

Consequently, the sophisticated agent of Observation 4 corresponds to the non-generic

special case of an CEU agent for whom δ = 0.

The following Theorem states this paper’s main result according to which the generic

CEU agent becomes, already after finitely many observations, a (statistically) ignorant

agent whose announced probability judgment is given as a “fifty-fifty”judgment.

Theorem. For any δ ∈ (0, 1] and λ ∈ [0, 1), the agent’s announced probability judg-

ment about any complementary essential events A,¬A ∈ A becomes a fifty-fifty

judgment for all ω ∈ Ωθ if the sample size n gets suffi ciently large. That is, for

any fixed δ ∈ (0, 1] and λ ∈ [0, 1) there exists some finite number n′ such that

xCIn ≡ arg sup
x∈(0,1)

EC
[
u (fx) , ν

(
θ̃ | In

)]
=

1

2
, Ωθ-everywhere (78)

for all n ≥ n′.

The formal proof of the Theorem is driven by the fact that the conditional am-

biguity parameter converges towards one, i.e., limn→∞ δIn = 1, because the (addi-

tive) prior probability attached to this sample information converges towards zero, i.e.,

limn→∞ µ (In) = 0. As a consequence, we obtain for the limit of the objective function

lim
n→∞

EC
[
u (fx) , ν

(
θ̃ | In

)]
= (1− λ) inf

θ∈(0,1)
u (fx) , Ωθ-everywhere (79)

with

inf
θ∈(0,1)

u (fx) =

{
u (1− x) if x ≤ 1

2

u (x) if x ≥ 1
2

(80)
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That is, in the limit the agent only cares about the worst case scenario in which a

malevolent nature picks a true parameter value θ that minimizes his utility for any x

he is going to choose. Since u is strictly decreasing on (0, 1), infθ∈(0,1) u (fx) takes on a

maximum at the kink x = 1
2
. Observe that this limit argument implies that xCI∞ = 1

2

amounts to the best probability judgment against a malevolent nature regardless of

the shape of u, i.e., regardless of the agent’s risk attitudes, because there remains no

(subjective) uncertainty in the limit.

Beyond this limit argument, the formal proof of the Theorem uses the Lemma to

show that xCIn = 1
2
becomes already the announced probability judgment of strictly risk

averse agents (i.e., u is strictly concave) if the number of observations n is suffi ciently

large.

5 Concluding Remarks

Referring to the “new psychological concept”of cognitive likelihood insensitivity, Peter

Wakker (2010) demands that “new mathematical tools have to be developed to analyze

this phenomenon”(p. 227). The present paper has done exactly that: Based on technical

tools from fuzzy measure theory, the agent’s probability judgments have been formally

described as the solution to a CEU maximization problem subject to Bayesian learning

of neo-additive capacities.

The main result establishes that all announced probability judgments become after

finitely many observations “fifty-fifty”judgments whenever the agent’s neo-additive ca-

pacity is not given as an additive probability measure. This generic convergence result

might thus contribute towards an explanation of why “fifty-fifty” judgments are the

predominant empirical phenomenon of likelihood insensitivity. Interestingly, the CEU

agent of our model announces his “fifty-fifty”probability judgment not due to a lack of

statistical information but rather because he has received a large amount of information

which increases his ambiguity parameter, i.e., his likelihood insensitivity.
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Appendix: Formal Proofs

Proof of the Lemma. Step 1. Observe at first that

E
[
u (fx) , µ

(
θ̃ | I

)]
(81)

is locally uniformly integrably bounded because µ
(
θ̃ | I

)
is finite and u (fx) is con-

tinuously differentiable in x and measurable in θ̃ as well as bounded. Similarly, the

continuous and θ̃-measurable partial derivative function

d

dx
(u (fx)) (82)

is locally uniformly integrably bounded with respect to µ
(
θ̃ | I

)
. As a consequence (cf.

Theorem 16.8 in Billingsley 1995), (81) is continuously differentiable in x whereby

d

dx

(
E
[
u (fx) , µ

(
θ̃ | I

)])
= E

[
d

dx
(u (fx)) , µ

(
θ̃ | I

)]
. (83)

Step 2. Focus on the function (42) and observe that it is, by assumption (45), strictly

concave. Furthermore, (42) is, by (83), continuously differentiable with

d

dx
(U1 (x)) = δI (1− λ) (−)u′ (1− x) + (1− δI)E

[
d

dx
(u (fx)) , µ

(
θ̃ | I

)]
. (84)

Evaluate (84) at x = 0, i.e.,

d

dx
(U1 (0)) = δI (1− λ) (−)u′ (1) + (1− δI)E

[
d

dx
(u (f0)) , µ

(
θ̃ | I

)]
. (85)

Since u′ (1) < 0, we have, by assumption (45),

δI (1− λ) (−)u′ (1) > 0. (86)

Furthermore, our assumptions on u and u′, in particular u′ (0) = 0, imply

E

[
d

dx
(u (fx)) , µ

(
θ̃ | I

)]
=

∫
θ∈(0,x)

u′ (x− θ) dµ
(
θ̃ | I

)
+

∫
θ∈(x,1)

(−)u′ (θ − x) dµ
(
θ̃ | I

)
.

(87)

so that

E

[
d

dx
(u (f0)) , µ

(
θ̃ | I

)]
=

∫
θ∈(0,1)

(−)u′ (θ) dµ
(
θ̃ | I

)
> 0 (88)

because u′ (θ) < 0 for all θ ∈ (0, 1). Combining (86) and (88) shows that

d

dx
(U1 (0)) > 0 (89)
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so that U1 is strictly increasing at x = 0. Consequently,

0 6= arg sup
x∈(0,1)

EC
[
u (fx) , ν

(
θ̃ | I

)]
(90)

implying that there exists a maximum x1 of function (42) on the interval
(
0, 1

2

]
which is

either x1 ≤ 1
2
characterized by the FOC (46) for i = 1 or given as the boundary solution

x1 = 1
2
. That is, whenever x1 ∈

(
0, 1

2

]
, x1 is a local maximizer of the objective function

(44).

Step 3. Turn now to the function (43), which is also strictly concave. (43) is contin-

uously differentiable with

d

dx
(U2 (x)) = δI (1− λ)u′ (x) + (1− δI)E

[
d

dx
(u (fx)) , µ

(
θ̃ | I

)]
. (91)

Evaluated at x = 1, we have

d

dx
(U2 (1)) = δI (1− λ)u′ (1) + (1− δI)

∫
θ∈(0,1)

u′ (1− θ) dµ
(
θ̃ | I

)
(92)

< 0

because of u′ (1) < 0 and u′ (1− θ) < 0 for all θ ∈ (0, 1). That is, U2 (x) is strictly

decreasing at x = 1, implying

1 6= arg sup
x∈(0,1)

EC
[
u (fx) , ν

(
θ̃ | I

)]
. (93)

Consequently, there exists a maximum x2 of function (43) on the interval
[
1
2
, 1
)
which is

either x2 ≥ 1
2
characterized by the FOC (46) for i = 2 or given as the boundary solution

x2 = 1
2
. That is, x2 is a local maximizer of (44) iff x2 ∈

[
1
2
, 1
)
.

Step 4. If condition (48) holds, we have thus two local maximizers, x1 and x2, of

(44), characterized by FOCs (46), and whichever is greater is the global maximizer for

(44). This proves (a).

Step 5. If condition (50) holds, we have one local maximizer x1 characterized by the

FOC (46) for i = 1. Since x1 ≥ 1
2
, with 1

2
being the boundary maximum of (44) on the

interval
[
1
2
, 1
)
, x1 is also the global maximizer for (44). This proves (b).

Step 6. If condition (52) holds, we have one local maximizer x2 ≥ 1
2
characterized

by the FOC (46) for i = 2, which is also the global maximizer for (44). This proves (c).

Step 7. If condition (54) holds, there is no local maximizer characterized by any

FOC. Instead (44) takes on its maximum at the kink x = 1
2
. This proves (d).�

Proof of the Corollary. Case (a). If δ = 0, then δI = 0. By (60) and (63),

x1 = x2 = E
[
θ̃, µ

(
θ̃ | I

)]
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so that (64) is the global maximizer.

Case (b). Suppose, on the contrary, that

xCI = E
[
θ̃, µ

(
θ̃ | I

)]
6= 1

2
. (94)

In that case, either xCI = x1 or xCI = x2 because xCI must coincide with some local

maximizer characterized by the corresponding FOC. However, if δ > 0, then

E

[
−
(
x− θ̃

)2
, µ
(
θ̃ | I

)]
6= x1 and E

[
−
(
x− θ̃

)2
, µ
(
θ̃ | I

)]
6= x2, (95)

by (45), implying

xCI 6= E
[
θ̃, µ

(
θ̃ | I

)]
. (96)

�

Proof of the Theorem. Step 1. Let

θmax = max {θ, 1− θ} (97)

and observe that, for any In = Θ × {s1} × ... × {sn} × Ω′ × ... with sj ∈ {A,¬A},
j = 1, ..., n,

µ (In) =

∫
θ∈(0,1)

πθ (s1, ..., sn) dµ
(
θ̃
)

(98)

=

∫
θ∈(0,1)

πθ (s1) · ... · πθ (sn) dµ
(
θ̃
)

(99)

≤
∫
θ∈(0,1)

(θmax)
n dµ

(
θ̃
)
, (100)

because the sample observations are θ-conditionally independent. Since the {wn (θ) ≡ (θmax)
n}n∈N

are non-negative measurable functions on (0, 1) decreasing in n pointwise to the con-

stant function 0 whereby
∫
θ∈(0,1)w1 (θ) dµ

(
θ̃
)
< ∞, an application of the monotone

convergence theorem (cf. Lemma 19.36 in Aliprantis and Border 2006) gives

lim
n→∞

∫
θ∈(0,1)

(θmax)
n dµ

(
θ̃
)

=

∫
θ∈(0,1)

lim
n→∞

wn (θ) dµ
(
θ̃
)

(101)

= 0 (102)

implying, for any In,

lim
n→∞

µ (In) = 0.7 (103)

7Here the assumption thatΘ = (0, 1) instead ofΘ = [0, 1] is crucial. Otherwise pointwise convergence

of wn (θ) to the zero function would break down at θ = 0 and θ = 1. For degenerate probability measures

µ that put probability mass one on θ = 0 or θ = 1, we would then obtain that limn→∞ µ (In) > 0.
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Step 2. Notice that (103) together with (35) implies

lim
n→∞

δIn → 1 (104)

for any In.

Step 3. Consider at first the FOC (46) for i = 1 implying

d

dx
(U1 (x1,In)) = 0(105)

⇔

δIn (1− λ) (−)u′ (1− x1,In) + (1− δIn)E

[
d

dx

(
u
(
fx1,In

))
, µ
(
θ̃ | In

)]
= 0(106)

for all n. Taking the limit n→∞ gives, by (104),

u′ (1− x1,I∞) = 0, Ωθ-everywhere (107)

because λ < 1 and E
[
d
dx

(
u
(
fx1,In

))
, µ
(
θ̃ | In

)]
is bounded for all n. By (38), we

therefore have

x1,I∞ = 1. (108)

Step 4. Turn to the FOC (46) for i = 2 implying

d

dx
(U2 (x2,In)) = 0 (109)

⇔

δIn (1− λ)u′ (x2,In) + (1− δIn)E

[
d

dx

(
u
(
fx2,In

))
, µ
(
θ̃ | In

)]
= 0 (110)

for all n. Taking the limit n→∞ gives, by (104),

u′ (x2,I∞) = 0, Ωθ-everywhere (111)

because λ < 1 and E
[
d
dx

(
u
(
fx2,In

))
, µ
(
θ̃ | In

)]
is bounded for all n. Consequently,

x2,I∞ = 0. (112)

Step 5. Collecting (108) and (112) establishes that x1,In converges to one whereas

x2,In converges to zero. By the definition of convergence in the Euclidean distance, there

must thus exist some finite n′ such that for all n ≥ n′

|1− x1,In| <
1

2
and |x2,In − 0| < 1

2
, Ωθ-everywhere. (113)

Consequently, for all n ≥ n′,

x1,In >
1

2
and x2,In <

1

2
, Ωθ-everywhere (114)

so that part (d) of the Lemma implies the desired result (78).�
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