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Summary

Promoter: Dr H Boraine

Co-promoter: Dr JEW Holm

The analysis of a time series is a problem well known to statisticians. Neural networks

form the basis of an entirely non-linear approach to the analysis of time series. It has

been widely used in pattern recognition, classification and prediction. Recently,

reviews from a statistical perspective were done by Cheng and Titterington (1994)

and Ripley (1993).

One of the most important properties of a neural network is its ability to learn. In

neural network methodology, the data set is divided in three different sets, namely a

training set, a cross-validation set, and a test set. The training set is used for training

the network with the various available learning (optimisation) algorithms. Different

algorithms will perform best on different problems. The advantages and limitations of

different algorithms in respect of all training problems are discussed.

In this dissertation the method of neural networks and that of ARlMA. models are

discussed. The procedures of identification, estimation and evaluation of both models

are investigated. Many of the standard techniques in statistics can be compared with

neural network methodology, especially in applications with large data sets.

 
 
 



To illustrate the adaptability of neural networks the problem of forecasting is

considered. A few alternative theoretical approaches to obtain forecasts for non-linear

time series models are discussed. It is shown that bootstrap methods can be used to

calculate predictions, s~dard errors and prediction limits for the forecasts.

Neural network methodology is applied to predict an electricity consumption time

senes.
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Voorgele ter vervulling van 'n deel van die vereistes

vir die graad Magister in Wisklmdige Statistiek

Die ontleding van tydreekse is 'n bekende probleem vir statistici. Neurale netwerke

vorm die basis van 'n geheel en al nieliniere benadering tot die analise van 'n

tydreeks. Dit word in 'n wye spektrum van probleemgebiede gebruik, byvoorbeeld

patroonerkenning asook klassifikasie en vooruitskatting. Slegs onlangs is neurale

netwerke deur navorsers soos Cheng en Titterington (1994) en Ripley (1993) vanuit

'n statistiese oogpunt beskou.

Een van die belangrikste eienskappe van neurale netwerke is die vermoe om te leer.

Neurale netwerkmetodologie behels dat die datastel verdeel word in drie dele,

naamlik: 'n leerstel, 'n kruisvalidasiestel en 'n toetsstel. Die leerstel word gebruik om

die netwerk af te rig deur gebruik te maak van verskeie leeralgoritmes. Sekere

algoritmes presteer beter as ander, na gelang van die tipe probleemsituasie. Die voor-

en nadele van leeralgoritmes word bespreek.

In hierdie verhandeling word die metodiek van neurale netwerke en die van ARMA

modelle hespreek. Die prosedures van identifikasie, hemming en evaluasie van heide

modelle word bespreek. Baie van die standaardtegnieke in statistiek word vergelyk

met neurale netwerkmetodologie en spesifiek met die toepassing van groot datastelle.

 
 
 



Om die aanpasbaarheid van neurale netwerke te illustreer, word die probleem van

vooruitskatting in oenskou geneem. 'n Paar a1tematiewe teoretiese beskouings om

vooruitskattinings te maak vir nieliniere tydreekse, word bespreek. Daar word

aangetoon dat bootstrap-metodes gebruik kan word om vooruitskattings,

standaardfoute en intervalle vir vooruitgeskatte waardes te bereken.
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Detecting trends and patterns in a time series traditionally involves statistical methods

such as clustering and regression analysis. However, these methods are linear and

may fail to forecast a non-linear data set. Neural networks form the basis of a different

approach to the non-linear analysis of time series. This study investigates the use of a

linear time series ARIMA model in comparison with a non-linear neural network

model for application in forecasting.

Chapter 2 deals with the history and development of neural networks. This is done in

the framework of a variety of problems, such as classification, pattern recognition and

forecasting. The model of a neural network is illustrated along with different types of

applied neural networks. Of all the possible networks, multi-layered feedforward

neural networks are used in this dissertation.

A very important property of a neural network is its ability to learn, which is the

phase during which parameter estimation takes place. The data set is divided into

three different sets, namely a training set, cross-validation set, and a test set. Neural

networks are data driven in the sense that they use data to train and build statistical

models of a recorded process. The training set is used for training the network with

various available learning (optimisation) algorithms. These various available learning

algorithms are treated in Chapter 3. Optimisation is the process in which an error

function, E, is minimised. The cross-validation set is used to prevent the network from

over-training. Over-training occurs when the network is able to represent the data

very well but without the ability to generalise. In well-behaved optimisation

problems, the value of the error function will have a downward slope in regard to the

parameters or weights. The algorithm will terminate when a specified criterion is met,

such as a required degree of accuracy. A stopping criterion that is often used in neural

network methodology, to prevent over-training, is the value of the error function

calculated for the cross-validation set (a data set not used for the estimation of the

parameters of the model). If this value shows an upward trend, while the

corresponding value for the training set decreases, over-training is indicated. The test

 
 
 



set does not form part of the learning process and is not considered in the estimation

of the model.

Further in Chapter 3. different optimisation algorithms are discussed. It is emphasised

that it is not possible to highlight one specific algorithm because all algorithms have

advantages and limitations.

Chapter 4 reviews the ARMA(p.q)-process.The different stages of modelling. namely

identification. estimation by means of maximum likelihood and evaluation are

discussed. This is illustrated by examples where both an AR(2) model and a nemal

network model are fitted to two time series. a computer generated AR(2) time series and

an electricity consumption time series. In Chapter 6. the model used to describe the

electricity consumption is extended in order to describe complex seasonal patterns.

Time series models are often used for forecasting. Since neural network models are non-

linear. minimum mean squared error forecasts are not of a simple form. In Chapter 5. a

procedure is proposed to calculate one- and multi-step forecasts as well as prediction

limits for the forecasts based on bootstrap methodology.

In Chapter 6. more complex models are considered to fit electricity consumption. The

aim of Chapter 6 is to demonstrate the use of neural networks as a statistical tool for

forecasting. Forecasting is done for one to twelve and twentyfour hours ahead. Three

of the forecasting procedures. discussed in Chapter 5. are also implemented

Chapter 7 concludes this work and suggests three extensions to this research. namely the

inclusion of bootstrap methods in new software tools. comparative studies and

applications.

 
 
 



An introduction to neural networks will be given in this chapter. In Section 2.2 the

history of Artificial Neural Networks (ANN), the development thereot: the different

fields of applications as well as the contributions that have been made between Neural

Networks and Statistics are discussed. To conclude the section, the connection

between a biological neuron and the neural network is illustrated. The capabilities and

properties of neural networks are given in Section 2.3 and 2.4. The construction of a

neural network as well as network architectures will be discussed in Section 2.5 and

Section 2.6.

The first time interest was taken in the term Artificial Neural Networks was when Mc

Culloch and Pitts (1943) introduced simplified neurons which represented biological

neurons, and which could perform computational tasks. In 1969 Minsky and Papert

(1969) published their book Perceptrons, which focussed on the deficiencies of

perceptron models. Unfortunately this caused many researchers to leave the field

Interest in neural networks in the early eighties re-emerged after the publication of

several important theoretical results. This renewed interest is clearly visible in the

number of societies and journals associated with neural networks. The INNS

(International Neural Network Society) is widely known, and ranges from Europe

(ENNS) to Japan (JNNS). The field of Electrical and Electronic Engineering is served

by the journal series IEEE, and the field of Agriculture by the journal Neural Network

Application Agriculture (NNAA). In the field of Economics and Finance there are the

Journal of Economics and Complexity and the Journal of Computational Intelligence

in Finance etc. Other well known journals include Neural Networks and Neural

Computation. Several conferences are held regularly, and for example the World

Congress of Neural Networks (WCNN'95) took place in Washington in 1995.A.I.arge

3

 
 
 



variety of software packages are available in the market today. Neural networks are

popular because of the many application fields in which they can be used Many

articles were written in recent years in several interesting fields, for example on

classification (Ripley, 1994) and pattern recognition, where applications include the

automatic reading of handwriting and SPeeChrecognition (park et oJ, 1991). Another

field of application for neural networks is prediction. In the world of finance, Tam

and Kiang (1992) showed that the neural network is a promising method of predicting

bankruptcy. In the medical world neural networks are used for instance to predict

mortality following cardiac surgery (Orr, 1995).

Several articles have been published in which statistical principles are used with

neural networks. Cheng and Titterington (1994) pointed out some links between

statistics and neural networks and encouraged cross-disciplinary research to improve

results. De Jongh and De Wet (1991) introduced neural networks as a powerful tool

that is close to statistical methods in solving various problems like pattern

recognition, classification and forecasting. The neural network and statistical

literature contain many of the same concepts but usually with different terminology

(Sarle, 1996). A list of statistical and neural network terminology is given in the

Appendix of this chapter.

In the following paragraphs a complete discussion will be given of what a neural

network is and how it comPares with a biological neural network.

Artificial Neural Networks (ANN) are computer algorithms or computer programs

develoPed to model the activity of the brain (Stem, 1996:205). The term "neural

network" originates from the attempt by scientists to imitate the ability of the brain to

recognise patterns and to classify. This is the reason why it is called "Artificial NeuroJ

Networb". Scientists prefer to refer to ANN only as NN (neural networks). In this

dissertation they will also be referred to only as neural networks.

The brain is a highly complex, non-linear and massively parallel computer. It can

perform computations like pattern recognition, perception and motor control many

times faster than any digital computer. This is possible because of the existence of

 
 
 



neurons. Neurons are simple elements in the brain connected to each other to form a

network of neurons. In Figure 2.1 the biological neuron is illustrated

A neuron is activated by another activated neuron(s) and, in ~ activates another

neuron(s). Synapses are units that mediate the interaction between the neurons. It can

either excite or inhibit a receptive neuron. If a neuron receives a signal from a

neighbouring neuron, which excites, the neuron's soma potential rises above some

threshold value and the neuron "fires". This in turn sends a signal to the next neuron,

and so on. New synaptic connections between neurons and the modification of

existing synapses constantly take place as the brain learns.

The axon.~ are the transmission lines, and the dendrites are the receptive zones. The

neural network resembles the human brain in two ways, namely that the network has

to learn to acquire knowledge and then the knowledge is stored in synaptic weights,

which represent the strength betw"eenconnected neurons.(Haykin, 1994:2).

For classification problems, discriminant analysis is used and linear regressIOn

analysis is commonly used for prediction. Why would one use neural networks when

there are so many other methods available? In this section only a few reasons

mentioned by Haykin (1994) are given.

 
 
 



Firstly a neural network develops out of interconnections between neurons which

defines a non-linear relationship between the neurons whereas the procedure for the

above-mentioned techniques are linear.

Secondly neural network methodology is a non-parametric because the network

learns from examples by constructing input-output mapping for the specific problem.

Although there are usually many Parameters in a neural network model, these

Parameters are essentially artefacts in the fitting process. The emphasis is therefore

not on interpreting their values but on finding the optimal set for the classification or

prediction problem. One of the training methods is supervised learning. This involves

the changing of the synaptic weights by Presenting a training set of examples to the

network. Every time the weights are changed, an error signal is computed This error

signal is defined as the difference between the actual response of the network and the

desired response. The moment the error signal reaches a minimum value, the desired

weights for the specific problem have been obtained. Neural networks are therefore

adaptable. A more detailed discussion on supervised learning as a training method is

given in Chapter 3.

In classification problems, neural networks'are not only designed to give information

on which specific pattern to select, but also on the confidence in the decision made.

Evidential response is thus an important property of neural networks in classification

problems.

Neural networks are fault tolerant in the sense that, for example if a neuron or its

connecting links should be damaged, the neural network will gradually degrade in

performance, rather than suddenly.

Another important issue regarding neural networks is that the broad approach is a

very computer- intensive method, but with the constant improvement in computer

technology it becomes cheaper and faster to do calculations.

Lastly, neural networks are perhaps more user-friendly than other methods because

the user only has to differentiate between the independent (input) and dependent

(output) variables before selecting a model.

 
 
 



There are other broad classes of neural networks such as Hopfield associative networks,

Linear networks, Probabilistic neural networks and Radial Basis Function neural

networks. A feed forward neural network, as used in this dissertation, is a name used for

a wide variety of mathematical models used to define the connection between a number

of explanatory variables and one or more dependent variables. In Section 2.5 it is shown

that the architecture of the model depicts the mathematical outlay of the neural network.

As mentioned in Section 2.2, the neurons are the elements that are connected to each

other to form the network. In Figure 2.2 the non-linear model of a neuron is

illustrated. The different components of a non-linear model are given.

Let x I, X2, ... Xp be a set of independent or explanatory variables and let Yk be the non-

linear function

Input
signals

Activation
function

Output
y};

Synaoeic
weights

Figure 2.2: The non-linear model ofa neuron (Haykin, 1994:8)

 
 
 



The Xj'S are the input signals. They are each connected to a weight or strength of its

own. A signal Xj at the input of synapse j connected to neuron k is multiplied by the

synaptic weight wkj. The first subscript refers to the neuron in question and the second

subscript refers to the input end of the synapse to which the weight refers. If the

weight is positive, the associated synapse is excitatory. If negative, the synapse is

inhibitory. The threshold function, Bt, is a bias or constant parameter added as an

extra input with value in most cases chosen as one.

The non-linear regression model can be described as

where Yk is the outp~ wkj, j = 1,2, ...p are the parameters or weights associated with

each input valuexj,j= 1,2,...p and &.t is the residual term.

The linear combiner described as I sums the input signal Xj, weighed by the

respective synapses of the neuron.

The activation Junction, ffJ, transforms the amplitude of the output of a neuron.

Normally the amplitude will lie in the interval (0.0;1.0) or (-1.0;1.0), depending on the

type of activation function. Three types of activation functions, namely the threshold

function, the piecewise linear function, and the sigmoidal function are discussed.

P

Vk = LW.qxj -8k
j=l

 
 
 



{
I if V> 0

qJ( V) = 0 if v < 0
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The sigmoidal function is the most popular activation function. The fact that it is a

differentiable function is especially important in the training of neural networks. The

 
 
 



reason for this will be discussed later. An example of a sigmoidal function is the

logistic !W2Ction.

1
qJ(v) = .

l+exp(-av)

Note that the activation functions range from 0 to 1. In Figure 2:5 the sigmoidal

function is illustrated for different values of a.

2
1.8
1.6

:p(v)
1.4
1.2
1

0.8
0.6
0.4
0.2
0 0 2 4 6 8 10-10 -8 -6 -4 -2

v

The threshold has the effect of lowering the net input to the activation function. If the

opposite effect is needed a hia') term can be implemented. The bias and threshold

function are, therefore nUIl?ericallythe same but with different signs.

 
 
 



where Yk is the output of the signal rp(.) is the activation function and 8k is the

threshold The use of the threshold 8k has the effect of applying an affine

transformation to the output Uk. of the Jinear combiner. See Figure 2.6.

Total
internal
activity
level, Vk

Threshold 8k < 0

8k=0

8k>0

Linear combiner's
output, Uk

Figure 2.6: Affine transformation produced by the presence of a threshold (Haykin,

1994:9)

Whether the threshold 8k is positive or not, the relationship between the activation

potential Vk of neuron k and the linear combiner output Uk stays constant.

A neural network is an interconnection of neurons. Neurons can be connected in many

different ways to define different neural network architectures. In Section 2.5 the

architecture of the neural network is illustrated along with the different classes of

neural network architectures.

Neural networks are mostly illustrated as block diagrams in which the vanous

elements of the model are described. There are four different classes of network

 
 
 



architectures, namely single-layer feedforward networks, multi-layer feedforward

networks, recurrent networks and lattices structures. Only the first three will be

discussed.

When a network is organised in a form of layers, it is referred to as a layered network.

A linear regression model is equivalent to a feedforward neural network in its

simplest form with an input and an output layer and a linear activation fimction. In

Figure 2.7, a feedforward network with a single layer of neurons is illustrated The

most simple feedforward neural network has an input and output layer.

Figure 2.7:Feedforward network with a single layer of neurons (Schalkhoff,

1992:250)

This network consists of an input layer, one or more hidden layers and an output

layer. The computation nodes of the hidden layer are called the hidden neurons or

units. This type of network defines a more complicated model. The relationship

between the inputs and outputs can be non-linear functions of non-linear functions, so

 
 
 



that the degree of non-linearity increases with each additional layer. In Figure 2.8 a

fully connected feedforward network with one hidden layer is illustrated. In a fully

connected feedforward network, every input neuron in the input layer is connected to

every neuron in the follqwing hidden layer, as well as every neuron in the last hidden

layer connected with every neuron in the output layer (Schalkhoff, 1992:236-258).

0··

Figure 2.8: Fully connected feedforward network with one hidden layer and output

layer(De Jongh and De Wet, 1994:5)

There are many fields of application for the multi-layered feedforward network, like

classificatio~ pattern recognition and forecasting. The following example illustrates a

time series prediction problem.

Letyt. Yt-l, Yt-2 ... be a stationary time series and let Yt+l be the value to be predicted.

Then a set of d such values Yt-d+], ... Yt can be selected from the time series to be the

inputs to a feedforward network, and the next value Yt+ 1, used as the target for the

output. In Figure 2.9 a feedforward neural network with one hidden layer is illustrated

(Bishop, 1996:303).
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A recurrent network differs from a feedforward network in the sense that it has at

least one feedback loop. If feedback exists in a neural network, it can be shown that

its output depends on all previous input values. Let Yl• Yl •... YN be a time series.

Suppose that a recurrent network architecture is used to define a model for the time

series and that the observation at time t can be written as

Yt-1 and the previous output value, Y t-I, which is characteristic of a recurrent neural

network model. By recursive substitution it can be shown that Yt can be written as a

function of Yt-1.Yt-l•... :

y, = f(Y,_I,Yt-l,~+&,

=f(Yt-l,f(Y,-2'Y 1-2,w),~ + &,

 
 
 



If Yt is generated by a moving average process (see par 4.2), it can be expressed as a

linear function of an infinite nwnber of previous time series observations: Yt-J• Yt-2•...

(see 4.2.7). A recurrent network will therefore be suitable in the case of any process

with moving average terms.

Basic ModelGenlM 1.0 of Crusader systems, the software package that was used in

this study, offers both feed forward and Elman networks, which are recurrent In

Figure 2.10 The Elman-net is illustrated

Figure 2.10: An Elman Recurrent network (Basic ModelGenlM1.0, 1997:53-54)

In an Elman network one or more of the hidden units from the previous time step are

used as an input at the next time step. This is useful when the output depends on the

history of the inputs, which is the case in this study. O'Brien (1997) uses a

feedforward neural network and an Elman recurrent neural network to extract

knowledge of a physical system (O'Brien, 1997).

A neural network can thus be compared with a non-linear model which defines a

connection between certain input or explanatory or independent variables and output or

dependent variables. Neural networks are used for different applications such as

classification and prediction. In order to predict or classify, the parameters in the case of

the non-linear model and known in neural network literature as weights, first have to be

 
 
 



estimated The estimation of the weights is referred to as '~ining" the network.

Chapter 3 investigates the various methods of training a network.

 
 
 



Below is a list of neural network terms and the corresponding statistical terms.(Sarle,

1996: 1-5)
.----
Neural network term Statistical term

Architecture Model

Training, Learning, Adaptation Estimation, Model fitting, Optimisation

Classification Discriminant analysis

Mapping, Function approximation Regression

Supennsedleanting Regression, Discriminant analysis

Unsupennsed learning, Principal components, Cluster analysis,

Self-organization Data reduction

Training set Sample, Construction sample

Test set, Validation set Hold-out sample

Input Independent variables, Predictors,

Regressors, Explanatory variables,

Carriers

Output Predicted values

Forward propagation Prediction

Training values, Target values Dependent variables, Responses,

Observed values

Training pair Observation containing both inputs and

target values

 
 
 



Neural network term Statistical term

Errors Residuals

Noise Error term

Generalisation Interpolation, Extrapolation, Prediction

Prediction Forecasting

Squashing function Bounded function with infinite domain

Error bars Confidence intervals

Weights, Synaptic weights (Regression) coefficients, Parameter

estimates

Bias Intercept

Them~rencereM~nilie~pected Bias

value of a statistic and the

corresponding true value

Backpropagation Computation of derivatives for a multi-

layer perceptron and various algorithms

based thereon

Least mean squares (LMS) Ordinary least squares (OLS)

 
 
 



One of the most important properties of a neural network: is its ability to leam In

neural network methodology, the data set is divided into three different sets, namely a

training set, a cross-validation set, and a fest set. The training set is used for training

the network with the various available leaming (optimisation) algorithms. These are

discussed in this chapter. Section 3.2 defines the error function associated with neural

network learning. In Section 3.3 and Section 3.4 methods based on first and second

order Taylor expansions are reviewed, including the gradient descent method, Newton

methods, conjugate gradient and quasi-Newton methodv. The powerful superlinear

methods namely Levenberg-Marquardt algorithm and Snyman's leap-frog method,

which involve combinations of first and second order Taylor expansions, are also

discussed. The procedure of cross-validation, which forms part of the learning

process, is described in Section 3.5. Different algorithms will perform best on

different problems. It is therefore not possible to highlight one specific algorithm. The

advantages and limitations of different algorithms in respect of all training problems

are discussed.

Optimisation is the process in which an error function E is minimised There are many

optimal error functions, of which the sum of squares error function is the most widely

used. The error is a function of the weights in the network as well as the training data.

For a multi-layered perceptron (MLP) (discussed in Chapter 2), the derivatives of an

error function with respect to the weights can be obtained efficiently by using

backpropagation. The gradient information is of central importance in the use of

algorithms for network training. There are four main stationary points at which the

local gradient of an error function can possibly vanish. Figure 3.1 illustrates this point

by showing the value of an error function E against a single weight w. Point A is

called a local minimum because it is not the global minimum value in the error space.

Point B is a local maximum, while point C is called a "saddle point". Point 9. is a

19

 
 
 



region where the error function can be flat and some algorithms tend to get stuck on

this flat surface for long periods. This behaviour is also found with local minima and

can lead to premature termination of the optimisation algorithm. The desired error

minimum is point D, the global minimum, because the value of the error function is

minimal at this point.

To illustrate basic terminology, the simple case where the error function depends on

only two weights, WI and Wl, is considered The problem is to find values for WI and

Wl where the error function reaches a global minimum. Figure 3.2 is a geometrical

representation of an error function E(!YJ as a surface lying above the weight space.

Point A represents a local minimum while point B represents the global minimum of

the error function. If C is any point in the error surface, then the local gradient of the

error function is VE, where VE is the gradient of the error function with respect to the

weights. The gradient in Figure 3.2 will thus be the two-dimensional vector of partial

derivatives with respect to the weights:

 
 
 



Neural networks usually have many weight parameters, which may lead to extended

training times. As a result, effective algorithms are necessary to find a suitable local

minimmn of the error function in the shortest time possible. The parameters or

weights are not identifIable because more than one set of parameters can give the

same error function value. For instance, a two layered neural network: with M hidden

neurons exhibits a symmetry factor of MJrJ (Bishop, 1996:256) equivalent points

which generate the same network mapping and therefore give the same value for the

error function. It is clear that the error function therefore does not have a unique

global minimum. As a result, the specifIc values of the weights are not important.

When the error surface is locally convex, the error function can be written as a Taylor

series expansion in the vicinity of a local minimum. Optimisation algorithms can be

classified according to their relation with the terms in the Taylor expansion. Four

categories can be distinguished. Firstly, methods based on zero order Taylor

expansions are simplex and random walk. These methods are well treated in different

texts, and will not be of interest in this work (Fletcher, 1987). A second category

includes methods based on first order Taylor expansions such as gradient descent. A

third category which can involve combinations of either first and of second order

Taylor expansions are superlinear methods such as the Levenberg-Marquardt, leap-

frog, quasi- Newton and conjugate gradient methods. Finally, the fourth category

\ '~lolt?-z.(."l
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includes methods based purely on second order Taylor expansions such as the Newton

methods.

Because of the non-linearity of the error function, it is impossible to find global

solutions to the error. To overcome this problem, algorithms that search through the

weight space are used; formulated in mathematical terms as follows:

where w is a weight vector (chosen at random) in a specific update direction, n the

iteration step and Aw(n) the adjustment of the weight vector. Different algorithms

involve different choices for Aw(n). Algorithms such as conjugate gradient and quavi-

Newton are formulated not to increase the error function as the weights change. Non-

linear optimisation algorithms cannot guarantee global minimum and therefor the

disadvantage of these methods is that the error function can get stuck in a local

minimum, which, in turn, leads to premature termination.

The process of learning or estimation involves the process of optimising the error

function by finding the vector of weights which minimises the error function. By

obtaining a local quadratic approximation by using a Taylor series expansion, the error

function can be minimised in a convex region around a local minimwn.

Let E be a function of more than one argument, EU!) = [(WI. W2. ...• w,J (Hamilton,

1994:735-738). Furthermore, let E: fit' -+91 with continuous second order derivatives.

A first order Taylor series expansion of EU!) around any point WI is given by

 
 
 



T

oE = VET is a (lxn) vector (the transpose of the gradient) and RI(.) is a remainderow

If E(.) has continuous second order derivatives, a second order Taylor senes

expansion of E(!!!J around WI is given by

Consider a second order Taylor series approximation of the multi-variable error

function E(!!!J: It' ~ RI around some point WI in the weight space, which is to be

minimised. When E(!!!J is twice differentiable, the second order Taylor series

approximation of E(w) around WI is

b = oE(!i) I
- ow ~l

The first derivative of the approximated error function (3.3-3) with respect to W is

given by

 
 
 



The gradient is set equal'to zero at a stationary point, say !!2= w* and solved for ~

then

This forms the basis of many of the learning algorithms because, for points w that are

close to w·, these above expressions will give acceptable approximations to the error

function and its gradient.

The method of gradient descent, also known as steepest descent, makes use of the first

order Taylor expansion of the error function, E<!f) as given by (3.3-1). As mentioned

in Section 3.2, different algorithms involve different choices for L1w(n), the weight

vector update. An initial guess for the weight vector, denoted by wo, is required. The

weight vector is updated in such a way that with each iteration step n the direction of

the movement is towards the negative gradient of the error function oE~),
A!!"

evaluated at !fn. This is a discretisation of a first-order differential equation in w so

that the trajectory in weight space leads to a stationary point w*. Thus for the error

function

oE~ )T .
--"- =!!, the weIght vector update is

ow"

 
 
 



A ( ) aE(w,,)l..lwn =-TJ---
- aw"

2
O<TJ<--,

Amax

where A.max is the largest eigenvalue of H(J!) (Haykin, 1994:49). This leads to

guaranteed convergence, although in practice 1] is determined empirically or by rule of

thumb.

The algorithm that implements the gradient descent learning strategy for feed forward

neural networks is known as back propagation. It can be described in two steps. The

first step is a forward propagation of the input pattern from the input to the output

layer of the network. The second step is a back propagation of the error vector from

the output layer to the input layer of the network (Berthold et ai, 1999: 228-229).

Superlinear methods involve either first or second order Taylor expansions, such as

Levenberg-Marquardt, leap-frog, and quasi-Newton methods. Consider (3.3-8)

where the Levenberg-Marquardt methods replace B-1 with rt,.l) where 1] is a step

size parameter and I the unity matrix. When TJ is equal to 1, rt,.l)/Ldominatesand the

method resembles to gradient descent and when TJ becomes small the method

becomes second order.

It is important to mention that if residuals, which is the difference between the model

output and the desired output, are not small. it should be better to use general quasi-

 
 
 



methods or hybrids thereof (see later in this section). The Levenberg-Marquardt

algorithm (Bishop, 1996:290-292)minimises the error function while at the same time

it tries to keep the step size small to ensure that the linear approximation remains

valid

The leap-frog optimisation method of Snyman (1982:449-462) is a reliable and robust

algorithm which will generally compute acceptable minima without being overly

sensitive with respect to difficult environmental conditions. The method is based on

the motion of a particle of unit mass in an N-dimensional conservative force field

where the total energy of the particle is conserved In the case of neural networks the

force field is the weight space. The energy of the particle consists of two components,

namely potential energy and kinetic energy from the fact that a force acts on a unity

mass particle. The force accelerates the particle to a point where it has maximum

kinetic energy and minimum potential energy. When this happens the particle stops

because the force is zero. The force acting on the particle is the negative of the

gradient of the potential energy (Snyman, 1983). The leap-frog method is based on

Euler relations for dynamic systems. The updating equation (cf 3.2-2) for this method

where Aw(n) = rln)At(n) is the step size in the weight space, At(n) the time step, and

g(n) the acceleration of the particle at step n. (3.4.2-1) relates the trajectory of the

particle in the weight space to the particle velocity! and acceleration Q.

Quasi-Newton methods use the local gradient of the error function, but instead of

calculating the Hessian directly and then evaluating its inverse, an approximation A of

the inverse Hessian is built up over a number of steps. The minimum of the quadratic

error function is typically reached after W steps (where W is the number of weights

and biases in a network) as is the same with the method of conjugate gradient A

 
 
 



sequence of matrices is generated to represent increasingly accurate approximations to

the inverse Hessian Ifl. This is accomplished by the use of only first order derivatives

of the error function (by using backpropagation). By starting from a positive definite

matrix such as the unity matrix, the problem of non-positive definite Hessian matrices

is eliminated. The update procedures are such that the approximation to the inverse

Hessian Ifl is guaranteed to remain positive definite although the condition number

of Ifl may become inconveniently large. Two commonly used update procedures are

the Broyden-Fletcher-Goldfarb-Shanno (BFGS) and the Davidson-Fletcher-Powell

(DFP) (Bishop, 1996:288) with BFGS the method of choice.

For the method of gradient descent, the direction vector is the negative of the gradient

vector. Small steps are taken to reach the minimum of the error function, which can

be a time consuming effort. The method of conjugate gradients guarantees the error

function is minimised within W search steps, without calculating the Hessian matrix.

This property is an improvement on the gradient descent method because the gradient

descent needs many steps to minimise a simple quadratic error function. For

conjugate gradient the choice for L1w(n)(the weight update in (3.2-2» is

where pIn) denotes the search direction vector at iteration n of the algorithm and TJ is

the learning rate parameter. The initial direction vector, ]l(O), is set equal to the

negative gradient vector,

b = oE(~)1 •
_0 ~ w=wuw --

p(O) = -~o

Each successive direction vector is then calculated as a linear combination of the

current gradient vector and the previous direction vector:

 
 
 



p(n +1) = -Q"+l +p(n)p(n)

where JX...n) is a time varying parameter that is determined in terms of the gradient

vectOTSQ"and Q,,+l' The Fletcher-Reeves fonnula and the Polak-Ribiere fonnula can

be used to detennine JX...n) (Bishop, 1996:280-281). This method was applied to small

Boolean learning problems and it was shown that backpropagation learning based on

conjugate gradient required fewer iterations than the standard backpropagation

algorithm, but is more complex to compute (Kramer and Sangiovanni-Vincentelli,

1989 and Johansson et ai, 1992). There are known problems with conjugate gradient

when the dimensionality of the network becomes large. This is due to curnmuIative

mis-adjustment on the search direction update formula given in (3.4.2-5).

Newton method,; may take only a few steps to converge, but are relatively slow

because the Newton methods make explicit use of the full Hessian matrix, H, which

has to be calculated. These can lead to computational expense. However, these

methods are elegant and applicable and must be treated in this text.

Consider the second order Taylor expansion given in (3.3-3) and assume that EUf) is

twice differentiable. Then from (3.3-8), where the weight vector w corresponding to

the minimum of the error function satisfies

w= w· -H-1b.- - -

The vector _H-1Q is known as the Newton direction or step (Bishop, 1996:287).

Since the quadratic approximation used to determine (3.3-3) is not exact, the weight

update equation has to be applied iteratively and H re-evaluated at each new search

point. The Newton method has significant disadvantages. For non-linear networks, the

Hessian matrix take NW 2 steps to compute, where W is the number of weights in the

network and N the number of patterns in the training set. It also has to be inverted,

 
 
 



requiring 1..NW 3 steps. The Hessian has to be positive definite to ensure descent in
2

the Newton direction.

Cross validation is the process whereby a trained network's performance is measured

on unseen data records. The data is divided into three different subsets, namely the

training set, cross validation set and the test set. The cross validation set is used

during the training process in order to stop training when the network starts to

overtrain. With each iteration, the root mean square error (RMSE) of both the training

and the cross validation sets are calculated and compared. The RMSE of the training

set will typically decrease, and after a number of iterations, stabilise. The RMSE as a

measure of performance can be determined by calculating the sum of squares of the

error function

whereYj is the target output, f(~j;~ a function of the input vector ~and the weight

vector wand N is the number of training patterns. The MSE (mean squared error) is

then

M~E=E~
N

Overtraining occurs when the network model fits the training set well but fails to

generalise on samples of the same population. The problem is more accute in

situations where the number of observations is small in comparison with the number

of weights. To overcome the problem of overtraining, the neural network model fitted

to the training set is also (in a sense) fitted to the cross validation set. A measure of fit

such as the root of the mean squared error (RMSE) is calculated for both data sets. If

the RMSE of the cross validation set increases after a number of iterations while the

 
 
 



corresponding value decreases for the training set this is a sign of overtraining and

unacceptable generalisation results.

The remaining data is used to test the network's performance after training. This will

be discussed in Chapter 4 by means of an example, when the test set is used to test the

performance of the model after training.

In this chapter different training or learning algorithms are given. It is emphasised that

there is no ideal learning algorithm and that discretion must be used in selecting the

correct method for a specific problem. In the next chapter time series analysis with

neural network models and Box-Jenkins autoregressive moving average (ARMA)

models are discussed.

 
 
 



The aim of this chapter is to illustrate the identification, estimation and evaluation of

neural network models and autoregressive moving average (ARMA) models for a

stationary time series. Neural network models have been used in time series prediction

(Le. Baron and Wiegen~ 1996). Autoregressive moving average models (ARMA) are

well-known for purposes of time series analysis (Ansuj et aI. 1996). These models

define linear relationships between a time series observation at time t. the dependent

variable. and a set of time series observations that occurred prior to time t. Any linear

model can be expressed as a simple feed forward neural network model with only linear

activation functions. This is referred to as a regressor. The versatility of a neural

network lies in the fact that it is used to model non-linear relationships between input

and output variables. This can result in very complicated models with a large number of

parameters. where the parameters have no physical meaning. In model building there is

always a trade-off between models with a large number of parameters that fit very well,

but with poor generalisation abilities. and models with fewer parameters that do not fit

all that well but produce better forecasts because of better generalisation abilities. In

Section 4.2 to Section 4.5 the ARMA{p,q}-process is defined. maximum likelihood

estimation and the evaluation of the results are discussed. It is shown that these

procedures can also be applied as part of the neural network methodology.

Suppose that Y,. t =... -I, 0, I ... is an equally space~ weakly stationary or covariance

stationary. time series. A well-known class of linear models for the analysis of time

series in the time domain belongs to an autoregressive moving average (ARMA) class of

the form (4.2-1) (Hamilton, 1994:59-61),

 
 
 



where {&t} is a sequence of uncorrelated variables, also referred to as a white noise

process, with conditions

E{et) = o and

E{e e ) = {CT: for t = r
t' r 0 th .o efWlse

and ~ (PI. ... ¢p, 01, ... Oq are unknown constants or parameters. The model (4.2-1) is an

ARMA(p,q) model or Box-Jenkins model.

The process is stationary if the roots of the equation i(BJ = 0 all lie within the unit

circle. TheARMA(p,q) model can be expressed as a moving average (AM) model,

 
 
 



TI(B)Y, = p. +&,

(J(B)
with n(B) = =--

~(B)

Let n(B) = 1-JrtB-Jr2B2
- •••• The equation (4.2-6) can be written as

Any ARMA model can therefore be written as an AR or MA model (Cryer, 1986:73-

74).

Box and Jenkins (Box, Jenkins and Reinsel, 1994) developed a general framework:for

time series modelling. They suggested a model-building strategy where model

identification, estimation and diagnostic checking are done iteratively to select the best

possible model for a given series.

The ARMA model is based on linear relationships between successive observations as

measured by the autocorrelation function. Plots of the sample autocorrelation function

(ACF) and the sample partial autocorrelation function (PACF) are compared to the

corresponding population functions to identify the ARMA model by selecting the values

of p and q, the autoregressive and moving average order, of the model. (Cryer,

1986:111).

 
 
 



r r = COV(Y'_l , &, ) = 0 if k > 0.
:;t: 0 if k ~ 0

P
_r1

1- ro

t/ti is the correlation coefficient in the bivariate distribution of Yt. Yt-k conditional on

Yt-I, Yt-l, ... , Yt-k+I (Cryer, 1986:106).

The ACF of an AR(P) process shows an exponential decay or a damped sine wave,

while its PACF is zero for lags greater than p.

A pure moving average model of order q has nonzero autocorrelations wdY on the

first q lags and its partial autocorrelations are not zero after q lags.

Two time series are used to illustrate the concepts of identification, estimation and

evaluation of a model. Time Series 1 consists of 150 tenns generated from an AR(2)

 
 
 



model with t/JJ. =1.3, th = -0.5, and zero mean, and St - N(O,a;). Time Series 2

consists of 336 data points of electricity consmnption, measured hourly, for two weeks.

As mentioned in Section 4.3, the sample autocorrelation function and sample partial

autocorrelation function can be used to identify a possible model that can be used to

describe a time series.

A time plot can be used to identify a trend, seasonal patterns, outliers, discontinuities,

etc. A time plot of hundred observations of Series I is given in Figure 4.1.

10

5

o
-5

-10

-15

I-Vtl

Figure 4.2 is the sample autocorrelation function. It has the appearance of a damped

sine wave which is typical of an AR model while the sample partial autocorrelation

illustrated in Figure 4.3 gives a clear indication of an AR(2) model. The first two

partial autocorrelations differ significantly from zero while the rest do not differ from

zero on the 5% significance level.

 
 
 



Lao Covariance Correlation ·1
o 7.670817 1.00000
1 6.013996 0.78401
2 3.712388 0.48396
3 2.166189 0.28239
4 1.322617 0.17242
5 0.765067 0.09974
6 0.505147 0.06585
7 0.830336 0.10825
8 1.042072 O.13585
9 0.744163 0.09701

10 0•323893 0 .04222
11 -0.124980 ·0.01829
12 -0.368546 ·0.04805
13 ·0.454332 -0.05923
14 -0.431367 ·0.05823
15 ·0.391593 ·0.05105
16 -0.338712 ·0.04418
17 -0.359287 ·0.04884
18 -0.789711 ·0.10034
19 -1.156028 ·0.15070
20 ·1.868117 ·0.21748
21 -2.225459 ·0.29012
22 -2.784961 ·0.36045
23 ·2.763432 ·0.36025
24 -1.983370 ·0.25856

I················, .
I······ .
I'·'
I'•
I'
I"
I'·'
I",.
I.,.,.,.,.,.,..,

"'1····1
....... ,........ ,
. .....,

marks two standard errors

Std
o

0.100000
O.'49310
0.164249
0.169035
0.170784
0.171368
0.171619
0.172300
0.173368
0.173910
0.174012
0.174028
0.174160
0.174362
0.174543
0.174692
0.174804
0.174929
0.175504
0.176793
0.179448
0.184079
0.191007
0.197685

Figure 4.2: Sample autocorrelation function for an AR(2) with ;1=1.3 and ria. = -0.5

(SAS System for Windows v6.12)

Lag Correlation ·1 9 8 7 6 5 432 I 0 I 2 3 4 5 6 7 891
I 0.88347 I··················
2 ·0.42102 ........ ,
3 0.00224 I
4 0.00211 I
5 ·0.00117 I
6 0.02936 I"
7 0.02602 I'
8 0.08493 I'•
9 0.06300 I'
10 0.11536 I"
11 -0.06218 '1
12 ·0.00949 1
13 ·0.08332 "1
14 0.19943 I····
15 -0.13970 ····1
16 -0.04186 '1
17 -0.00209 1
18 -0.14519 .* •• ,
19 ·0.07380 '1
20 0.02051 1
21 0.04710 ,.
22 -0.06309 .,
23 -0.15938 .... ,
24 ·0.00652 I

Figure 4.3: Sample partial autocorrelation function for an AR(2) with ;1 =1.3 and th =

-0.5 (SAS System for Windows v6.12)
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There are explicit daily, 12-hourly and weekly seasonal patterns in the electricity

consumption, due to consumer behaviour. The autocorrelation function depicted in

Figure 4.5 shows evidence of a sine wave, which may suggest an AR(2) component.

The sample autocorrelations from lags 20 to 24 are quite high due to the 24-hour

seasonal pattern.

Lag Covariance
o 5842606
1 5379454
2 4337118
3 3086162
4 1901803
5 917772
6 194390
7 -238615
8 -361234
9 -197386
10 146418
11 456639
12 511863
13 243946
14 -219729
15 -631504
16 -783852
17 -635189
18 -208851
19 465597
20 1324200
21 2276192
22 3199092
23 3893269
24 4086444

Correlation
1.00000
0.92073
0.74233
0.52822
0.32551
0.15708
0.03327
-0.04084
-0.06183
-0.03378
0.02506
0.07816
0.08761
0.04175
-0.03761
-0.10809
-0.13416
-0.10872
-0.03575
0.07969
0.22665
0.38959
0.54755
0.66636
0.69942

't:****'/r+****
********+.***
•••• ****+ •••••

 
 
 



The partial.a.utocorrelation function's first two lags are significant and the remaining

lags are significantly reduced which indicates an AR(2)- process. This is illustrated in

Figure 4.5.

1 0.89902'
2 ·0.40365 ,
3 ·0.08511 1
4 ·0.12721 ,
5 ·0.22907 1

6 ·0.17068 1

7 0.15599'
8 0.13347'
9 0.04207 I

10 0.02022 1
11 -0.04473 I
12 -0.12335 I
13 -0.09437 ,
14 0.08936'
15 ·0.19785 I
16 -0.09166 I
17 ·0.00793 I
18 ·0.13995 I
19 0.00804'
20 -0.10087 ,
21 -0.02190 ,
22 -0.06457 ,
23 -0.00557 I
24 0.03435'

I·················· I
• •••••• ·1 1

· "I 1
•• •• 1 I

••••• , 1

· •• ·1 I
I •• •• 1
I·... I
,. 1, ,
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Figure 4.6: The partial autocorrelation function for the sample of electricity

consumption.

A spectral analysis of the data can be used to identitYthe most prominent cycles in the

data. A periodogram of the data is given in Figure 4.7 ..
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The graph s~~wspeaks at 12-hour. 24-hour (the most) and 48-hour periods. A large

percentage of the total variation in the data can therefore be ascribed to the identified

cycles. and the information can be used to define input variables for a neural network
model.

Through the method of spectral analysis. the series of observations Yt can be

described as a weighed sum of periodic functions of the form cos(~). where {j}

denotes a particular frequency (Hamilton, 1994:152). For Series 2 with dominant

periods of 24 hours and 12 hours. as seen in Figure 4.7. the frequencies can be

calculated as follows:

Period =24 = 2Jr therefore lUI = 0.2618
lUl

Period =12 = 2Jr therefore lU2 = 0.5236.
lU2

Different numbers of nodes in the hidden layer were tried and it was decided to use no

more than two nodes in the hidden layer. The added complexity introduced by adding

nodes in the hidden layer did not result in a significant improvement of the model fit.

 
 
 



Let fl, f2, ... , f N denote a stationary time series, and suppose that the observation at

time t can be described by the model

where w is the parameter vector or weight vector and the error terms ... ~-I,~,~+I •..

are assumed to be white noise. Iff is a linear function, the above model is an AR(P)

model.

The parameters of an ARMA model can be estimated by the method of maximum

likelihood. There are various other methods, for example, the conditional least .~quare

method (CLS) and the unconditionallea.,>;tsquares method (ULS). In the case of an AR

model, if the error tenns are assumed to be independent nonnal, it can be shown that

the maximum likelihood method is equivalent to the least squares method. For

purposes of this dissertation only the method of maximum likelihood will be

discussed.

be the vector of parameters for anAR(p) model and let (Y••f2. ... fM>be a stationary

time series. The value of l'that maxirnises the joint probability or likelihood function

is the maximum likelihood estimate. The likelihood function for an AR(p)-process,

conditions on both Y' sand i's.

lfthe initial values of ~o = (Yo'Y-J'···'Y-P+)' and fo =(Eo,E_),...~E_q+)'are given,

the sequence {e) ,e2, ••• ,eN } can be calculated from {Y)'Y2' ... 'YN }by iterating on

 
 
 



with the option of setting the initial y's and cs equal to their exPected values

(Hamilton, 1994:132). The error function used for maximum likelihood estimation

can be written as

In neural network terminology, estimation of the parameters of the model takes place

during the training period, during which the network learns with generalisation

through certain learning algorithms. Weights connected to each input value

(parameters) are constantly updated until the error function, E(!!J, which is often the

sum of squared errors (see Chapter 2), reaches its global minimum.

An AR(2) model was fitted, by using the SAS System for Windows v6.12, to Series 1

by the method of maximum likelihood. The estimates, approximate standard errors

and corresponding t-ratios are given in Table 4.1.

 
 
 



Parameter Estimate Approx. Std Error T-Ratio Lag

MU -o.672n 0.89122 -0.75 0

AR1,1 1.26298 0.09195 13.74 1

AR1,2 -0.42242 0.0937 -4.51 2

For large sample sizes the t-ratio may be used to test the significance of the estimates

with respect to the null hypothesis that the corresponding parameter is zero. The t-

value for the mean is small, not rejecting the null hypothesis. This is expected, since

the time series was generated with a zero mean. The parameter is redundant and

should be excluded from the model. The t-values for the two estimates are large,

indicating that ;J and th should not be excluded from the model. In Figure 4.8 the

time plots of the actual and the fitted series is given.
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A neural network is fitted to the electricity consumption time series. The program

package used for this purpose is Basic ModelGen™l.O from Crusader Systems.

 
 
 



Estimation ~.fa neural network model takes place during training by means of the

training algorithm. For the training set 70% of the data is used, 20% for the cross-

validation set and the rest is used for testing the model. The model (4.3-6) has six

input variables, as mentioned in Example 4.1, as well as an intercept term included in

both the input layer and the hidden layer. The neural network model is non-linear with

two neurons in the hidden layer. The sigmoidal function (2.5-7) is used as activation

function. The sum of squared error function (3.5-1), which is a function of the weights

in the network, is minimised. This is done efficiently by using backpropagation. As

mentioned in Chapter 3, the cross-validation set is also used during training. The root

mean square error (RMSE) of both the training set and the cross-validation set

decrease with each iteration. The RMSE of the training set will usually decrease more

than the RMSE of the cross-validation set because the network is trained on the data

of the training set. If too many parameters are included in the model relative to the

number of data points in the training set, over-training can occur. An increase in the

RMSE of the cross-validation set gives an indication that the network is starting to

over-train and training stops immediately. In Figure 4.9 a plot of the RMSE of the

training set and the cross-validation set is illustrated.
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The output of the model is a function of the weights but the weights t~emselves do not

have any significance value. When the vector of weights, which minimises the

gradient of the error function, has been detennined through a learning algorithm,

training stops. The output of the model containing the six input variables (and one

 
 
 



hidden laye~~th two neurons) as indicated in Section 4.3 fitted to Series 2 is given in

Figure 4.10.

a- 1.2
U c.- 0 1~ .-
1) a. 0.8
~ § 0.6
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Time

Although the data set is quite small, the model fits the data reasonably well,

considering Figure 4.10. A rule of thumb that is often used and accepted by

practitioners is that the number of observations should be at least a factor of ten times

the number of weights (N=JOW).

In this section, the estimation of linear and neural network models is discussed The

evaluation of the estimated model is discussed in the next section.

After a model has been identified and the parameters estimated, the model must be

evaluated. Evaluation procedures are the same for both the ARIMA and neural

network models. If the model fits the data well, then the residuals should almost have

the properties of uncorrelated, identically distributed, random vat:iables with zero

mean and fixed standard deviation (Cryer, 1986:147). If the estimated value of r. is

given by

 
 
 



The residuals of a fitted model are useful indicators of any inadequacies in the

specification of the model or violations of underlying assumptions.

Examination of various plots of the residuals, is an indispensable step in the

evaluation process of any model (Box and Jenkins, 1994:289). If a plot of the

residuals exhibits a trend over time, it is an indication of a trend in the data that is not

adequately modelled.

A histogram of standardised residuals should correspond with a symmetrical normal

curve if the model fits the data well. Any outliers will imply significant differences

between the Y, and the corresponding observed value, Yt that should be investigated

since the model fits the data poorly at those points.

The sample autocorrelation function of the residuals, r k , can be observed to check for

the independence of the residuals in the model. Usually the sample autocorrelations

are approximately uncorrelated and normally distributed with mean zero and variance

l/n. A '"i (Chi-squared) test is used to test whether residuals are correlated (Cryer,

1986:153).

Different programme packages evaluate neural network models differently. A

comprehensive residual analysis is offered by the BasicModelGen™l.O Crusader

systems. The mean square error (MSE) in (3.5-2) and the root of the mean square

error (RMSE) are determined for every model and the model with the smallest of

these values should be selected. As mentioned, the residuals play an important role in

the evaluation process. A fast Fourier transform of the model residuals is calculated

If the spectrum of the residuals is constant, white noise is implied and it can be

concluded that the model fits the data relatively well.

 
 
 



Other meth~ of evaluation are a sensitivity analysis performed to establish the most

influential input variable of the model, and output analysis where the relationship

between an output and specific input is shown. The t-test statistic is used to determine

whether a model's output differs from the desired output. Together with this test the

mean and the standard deviation of the model's output are calculated. The quality of

the model can be observed by viewing a graphical representation of the model's

output versus the desired output. Another useful measure of evaluation is the

correlation (R) between the target output and the actual model output. In the following

example the evaluation of the models fitted to the AR(2) and the electricity demand

time series is illustrated.

The residuals for the estimated AR(2) model in Example 4.2 were analysed A time

plot and other residual plots revealed no deviations from the model and assumptions.

A X2(Chi-squared) test for independence of the residuals was performed and the null

hypothesis was not rejected. AR(I), ARMA(2,I) and AR(3) models were also fitted,

but the AR(2) model fit was superior as measured by Akaike's information criterion

(Cryer, 1986:122) and the significance of the estimated pammeters. This is an

expected result, since the time series is generated by an AR(2)-process.

The evaluation procedure points out some inconsistencies with respect of the neuml

network model fitted to the electricity data, which can be expected because the data is

seasonal and the model selected to fit the series perhaps does not include all the

variables necessary to fit the data. This problem is examined in Chapter 6.

The observed spectrum of the residuals of the neural network model has some peaks

which indicate that there is some seasonal information present in the residuals.

The sensitivity analysis, illustmted in Figure 4.11, shows that the variable ft-l has the

greatest influence on the model output which is quite reasonable because it represents

the electricity consumption during the previous hour.
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The t-test is used to determine how significantly a model's output differs from the

desired or target output. The time plot of the model output and the desired output for

the test set are given in Figure 4.12.

Model Output versus Target Output

The correlation between the target output and model output is 0.897. This value

differs significantly from O. Table 4.2 provides this information together with the

mean and standard deviation of the model and the desired outputs for the test set, as

well as a 95% confidence interval for R.

 
 
 



Table 4.2: The correlation coefficient for the test set as determined by the neural

network model

Standard 95% Confidence

Mean Deviation R Ii UmitsforR

Backprop net 19861.1 2065.443 0.89722 0.80501 [0.82EH:>.940]

Desired 19461.3 2144.093

Although the evaluation of the model for the electricity consumption may indicate

some inadequacies, one can always improve the model by trial and error. In Chapter 6

an electricity load forecasting will be done on one year's data.

In this chapter the process of identification, estimation and evaluation was discussed

by means of examples. When the process of evaluation has been completed, and the

model gives a satisfactory description of the data, the model can be used for

forecasting or classification. In Chapter 5 forecasts and prediction intervals are

derived and calculated for neural network models.

 
 
 



In this chapter a neural network model is used to forecast a time series. It is shown

that bootstrap methods can be used to calculate standard errors and prediction limits

for the forecasts.

In Section 5.2 one- and two-step minimum mean square error (MSE) forecasts are

given for both a linear autoregressive model and a non-linear neural network model.

In case of the non-linear model, a different approach has to be considered. A few

alternative theoretical approaches to obtain forecasts for non-linear time series models

are discussed in Section 5.3 and the bootstrap technique is selected for the purpose of

obtaining prediction intervals. Section 5.4 shows how bootstrap methodology can be

used to construct prediction intervals.

One- and multi-step predictions, together with their standard errors and 95%

prediction intervals are calculated for the simulated AR(2) series.

Consider the ARMA model (4.2-1) for a stationary time series fit} with t =1,2, ..., N.

The linear AR( 1) model is given by

where {Et} is a white noise process that satisfies the conditions (4.2-2). Suppose that

the white noise variables are identically distributed.

 
 
 



The minimum mean square error (MSE) linear predictor for one step is the conditional

expectation of YN+l, given Yl• Y1•... YN:

YN(l) = E(YN+.IY.,Y2,··.,YN)

= E(f;'YN +E,v+l!Y.,Y2,···,YN)

= tAYN

By using (5.2-1) for the second step prediction, Y,v+1, the U';;E linear predictor can be

written in terms of the observed data Y;v:

YN(2) = E(YN+2IY.'Y2'···'YN)

= ;IE(Y,v+IIY1'Y2, ... 'YN )+0
= ;IYN(l)

=;.2YN

YN(2) = E[f(YN+I,a)+EN+21~'Y2' ...'YN]

= E{f[f(Y N,a) +EN+.],a lY1, Y2,... , YN }

= E{flYN(I)+&N+d,al~'Y2' ... 'YN}

 
 
 



Alternative approaches have been proposed to calculate the forecasts; such methods

are discussed in the following paragraphs.

Five techniques for forecasting have been discussed by Brown and Mariano (1989)

and summarised by Lin and Granger (1994). Some of the methods are naive in the

requirement of assumptions regarding the distribution of the white noise terms. The

methods vary in respect of ease of implementation and computing sensitivity.

This technique is widely used and easy to implement but due to the fact that the

forecast is b~ it is not satisfactory. If one considers the non-linear model for time

series forecasting given in (5.2-5), the naive technique states that the two-step forecast

of YN+2 is given by

for YN+l in the model equation. The estimator a is obtained by minimising the sum of

squared error terms or by maximising the likelihood function of the observations.

Usually the expected value of the function is not equal to the function of the expected

value and therefore the forecast will be biased Even if the functional form f( ) is

known, the bias will not go to zero jf the sample size N is large.

 
 
 



YN(2) = J f{(YN(I)+&),~)dF(&),

= JfTf(Y N,~)+&),~]dF(&)

where F() is the distribution function of & andj(.) a non-linear function of &. It is

necessary to know the distribution of &, which is in practice generally unknown.

Brown and Mariano (1989) assume a N(O,I) distribution, but this has to be verified

Numerical integration can be used to approximate (5.3.2-1). Apart from the fact that

this forecast can be difficult to calculate, it may be incorrect, because of the wrong

assumption on the distribution of &. The dimensionality of the error distribution will

increase with the lead time of the forecast, and will consequently result in an increase

in computer time.

For large values of N this technique has the same disadvantage as the closed form

technique (in that the distribution the error terms is needed) but it is easier to

implement. The two-step forecast is defined as

where the sequence ej's are independent and identically distributed and chosen from

the error terms. This is a particular form of numerical integration based on

simulations. The mathematical expectation (5.2-7) is approximated by the arithmetic

average from a sample of possible realisations of YN+2 given Yl, Y2, ... , YN.

The bootstrap technique is based on the estimated residuals. The two-step forecast is

given by

 
 
 



are the realised one-step forecast errors arising up to time N. No assumption on the

distribution of the error terms is therefore necessary. The forecast improves as time

advances and is easily formed (Lin and Granger, 1994:2). This technique is used for

purposes of this dissertation and discussed further in Section 5.4.

This method involves the direct modelling of the relationship between YN+2 and YN by

using the same model as before but estimating a new set of coefficients directly. The

previous techniques involved the use of the same function with the same set of

coefficients, f(f( )), for the two-step forecasts, which decreases its quality. The f( ) is

rarely known in practice and has to be approximated from a specific search. If

could be considered For a non-parametric procedure such as neural networks this

would be a sensible technique.

Lin and Granger (1994) investigated all these techniques with a simulation study for

the two-step case. The results lead to a mild recommendation of the bootstrap

predictor because of its small bias and not more than 5% inefficiency in mean squared

error, when compared with the parametric model, using the corr~ specifications.

Further study on broader classes of time series models is recommended

 
 
 



The bootstrap technique can be applied to obtain interval forecasts for an

autoregressive time series. Masarotto (1990) finds the bootstrap technique useful for

three reasons, namely: it is distribution-free, it takes into account that the Parameters

and order of the model are unknown, and improved computer technology makes the

difficult calculations involved with the bootstrap technique easier. Boraine (2000)

showed that the bootstrap results for linear models can be extended to non-linear time

series models. A discussion is given in this section. In Section 5.4.1 the prediction

limits for linear autoregressive models are given. These are the standard results given

in any time series text book. The multi-step forecasts for the neural network models

are introduced in Section 5.4.2 and the prediction limits for the multi-step forecasts

are given in Section 5.4.3.

where YN(J) = YN-i if j < o.

The forecasts are calculated recursively and converge to the mean of the time series

for large values of h.

h-l·

YN +h IYl,Y2 , ••. , YN is normal with mean YN(h) and variance a;(1+Ltp~) where the j 's
j:l

 
 
 



The approximation of I-a probability limits for fN+hll; ,f2 ,""", fN is given by

where Z a is the 100(1 - ~)Ih percentile of the standard normal distribution (Box,
1-2 2

Let fl, f1, ... ,fN be a stationary time series described by a non-linear neural network

model

where j{ ) is a non-linear function defined by the neural network architecture, p is the

number of input variables in the network, and w the weight vector. The c,'s are

uncorrelated, identically distributed random variables with mean zero and variance

u/. The observation at time N+1 can be written as

 
 
 



For the estimation of the minimum MSE forecast, the bootstrap methodology can be

used and therefore the bootstrap forecast for YA(2) is proposed as

AIm A

Y (2) - "f *(j) •N - - LJ (YN+l'YN""'YN+2-p,!:!:0
m j=1

-.
and &~{l is an observation, drawn with replacement, from &p+1,... ,&N with

AIm A
Y (h) - "f(y*(j) y*(j) y*(j). ",\N - - LJ N+h-1' N+h-2"'" N+h-p'~m j=1

"
Y;}!2 = f(Y;~L1,Y;}!L2, ... ,Y;}!Lp;!:!:0+&~{1 and

Y*(j) - Y 'fh < 0N+h-p - N+h-p 1 -p -

The bootstrap procedure can be summarised in a few steps:

First fit the model (5.4.2-1) to the time series Yl, Yl, ...,YN. Then calculate estimates of

the residual term using (5.4.2-8). Thirdly calculateY;+1, ...,r:~+h conditional on Yl, Yl,

... ,YN:

Y;+Ir-p = YN+h-p if h-p:::; Oand&~+h is an observation drawn randomly with

replacement from &p+l, ... ,&N .Repeat this for m times where m =100, usually. Now

calculate the one- to h-step forecasts for the time series generated in the previous step

using (5.4.2-3), (5.4.2-6) and (5.4.2-9).

 
 
 



In the next .s~on it is shown that bootstrap methodology can also be used for the

construction of prediction intervals for YN+h.

The ideas used in this section are based on the method proposed by Masarotto (1990)

for linear time series models. The prediction error is

By using the bootstrap methodology the distribution of r};{h) can be approximated

using the Monte Carlo algorithm.

rL andru are the B(Y )-th andB(l- Y )- th order statistic of rN(h); •...• rN(h)~ where
2 2

B is the number of bootstrap replications.

eN(h) are required Note that rN(h)is a function of u. A uis required for each

rN (h). For good approximation of the distribution of rN (h). at least 1000 bootstrap

replications are required

 
 
 



First calculate the bootstrap time series ~. ,..., Y;+h. To do this a neural network model

of the form (5.4.2-1) is fitted to the observed time series, Yl, Y1,... YH. If w is the

estimated weight vector, the estimated residuals as in (5.4.2-8) are

&, = Y, - fO~-t,···,}'~-p;~ with t = p+ l,p+2, ...,N.

A A* ",*

Y,· = f(Y'~J'Y'~2""'Y'~P;~+&' where &, is drawn randomly with replacement from

It is assumed that the bootstrap time series values Y:3P-t = Y:3P-2 = ...= y,,:,p = Y.

u· , the standard error of YN (h), is calculated by using a bootstrap procedure within

the bootstrap procedure, that estimates the distribution of the standardised residual

The neural network model of the form (5.4.2-1) is fitted to the time series, ~. ,...,Y;.
The residuals of the model are determined by using (5.4.2-8). By using this model

residuals, a bootstrap series is generated namely,

 
 
 



The forecasts, YN (h) are calculated by taking into account the first N observations,

Yl- ,Y; ...,Y;. The prediction error defined in (5.4.3-1) is

e;(h) = Y;+h - YN(h).

This is repeated m times. The standard deviation of e;(h)(l), ...,e;(h)(m) is used as an

....• A*
time series J;* ' ...'Y;+h' as well as the calculation of YN(h) andu and 7N(h)*, B

times where B must be at least 1000, the interval (5.4.3-4) can be constructed.

A practical application of forecasting a time series from a linear AR(2) model is given

in the following example.

A Fortran program (see Appendix: Chapter 6) was developed to train the network and

to implement the bootstrap for forecasting and the calculation of the prediction limits.

The program uses a Gauss-Newton algorithm to estimate the parameters of the neural

network.

 
 
 



As an exam:l~lea generated AR(2) time series (see Example 4.1 to 4.3) consisting of

200 values is used to illustrate the calculation of the forecasts and the corresponding

95% prediction limits. The generated process is linear, and therefore it can not be

expected that the neural network model would produce better prediction results than a

linear model. A feed forward neural network with two input nodes for two past values

of the time series and one hidden layer with a sigmoidal activation function was

trained. Bootstrap methodology was used to calculated the prediction limits. Figure

5.1 and Figure 5.2 illustrate the prediction results. The results for the neural network

where bootstrap methods were used and the linear model correspond more or less.

Autoregressive time series: predictions
and 95% prediction limits (neural network)
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"Autoregressive time series: predictions
and 950/0 prediction limits (linear

regression model)
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It is shown that bootstrap methodology can be used to calculate one- and multi-step

predictions of neural networks with their standard errors and prediction limits. A

minimum of 1000 time series have been resampled from the observed times series and

for each resampled time series a network is trained to do one step predictions. These

highly computer intensive calculations were no problem considering the ever-

increasing speed of computers.

In can be seen in the two examples given that neural networks as well as linear

regression models are used to model the time series. Predictions and prediction limits

are calculated. The results compare reasonably well.

Further research is required to establish whether the bootstrap results can be

improved. For an example, the increase in the number of bootstrap replications may

lead to an improvement in the results.

 
 
 



The objective of this chapter is to forecast a time series by using neural networks.

Some scientists devote careers to the building of models for electricity load

forecasting. The purpose of this chapter is not to improve on the work done on model

estimation but only to introduce the neural network as a forecasting tool.

Several studies have been done on electricity load forecasting. For example: the

modelling of one-hour-ahead hourly electricity demand prediction has been done by

Connor (1996) while Hwang and Ding (1997) focused on the construction of

prediction intervals for electricity load forecasting. Lee et of (1992) used neural

networks for short term load forecasting by dividing the data into different classes of

daily and weekly load variations while Peng et 01 (1993) proposed a new strategy in

selecting training cases for a neural network model.

The data used here is ESKOM data taken hourly. measuring the average electricity

consumption for the Republic of South Africa. Section 6.2 deals with the analysis of

the data. The different strategies and techniques used to prepare the data for

estimation of the models are proposed in Section 6.3. The model is investigated in

Section 6.4 by means of evaluation. Forecasting one to twelve hours ahead by using

the selected model is done in Section 6.5. Unfortunately the programme package.

Basic ModelGen does not include the bootstrap method as a forecasting technique.

Two methods. namely the naive technique discussed in paragraph 5.3.1 and the direct

method discussed in paragraph 5.3.5 are used and compared in Section 6.5 by the use

of the programme package. Basic ModelGen. The bootstrap method is then used in

Section 6.5.3 on the above mentioned electricity data.

As mentioned earlier. ESKOM data. taken hourly. measuring electricity consumption

was analysed. A one-year period was considered starting from the 25th of October
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1997 to the ~.5thof October 1998, a total of N = 8760 observations. The data therefore

contains seasonal components, as seen in Figure 6.1, where a four-week period is

illustrated.
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Seasonal components cause difficulties in the estimation of the model parameters. The

sample autocorrelation function (ACF) and sample partial autocorrelation function

(PACF) point out a definite AR(2) component. Therefore the consumption in periods I-I

and 1-2will be considered as two of the inputs in the neural network model.

From the electricity data it is clear that there is more than one seasonal component.

Several seasonal components can influence the behaviour of a time series. A spectral

analysis can be performed to attribute the total variation in the electricity consumption

to cycles of different frequencies.

The results of the spectral analysis indicated the 24-hour and the 12-hour periods

respectively as the more important seasonal components.

Several other factors were considered, for example the effect of the day of the week and

of public holidays, and the average temperature for each day. Galpin (1997) investigated

the inclusion of rainfall, temperature and humidity as input variables in a regression

 
 
 



model. Alt~~ugh she found that these climate data decrease the forecast error, it was

found that public holidays have an overriding impact on the forecasting process.

These variables were all considered as explanatory variables. Networks with different

combinations of input variables and a different number of hidden inputs were trained

The model that was finally selected to describe the electricity data has as explanatory

variables periodic components that were determined by a spectral analysis (see Example

4.1), and the electricity consumption of the two previous hours. If Yt denotes the

electricity consumption at time I,the proposed model is:

Y, = I(Yt-), Y'_2,COS[liJ)(I -1)],sin[liJ)(I -1)],COS[liJ2(1 -1)],sin[liJil -I)];.!!) +&,

(6.2-1)

as well as two nodes in the hidden layer. The &,'S are assumed to be generated by a

white noise process and liJ}= 0.2618 and liJ2= 0.5236.

The ideal network is one that is not redundant, in other words, the specific network

with the fewest parameters and which represents the data the best, is preferred (Hwang

and Ding, 1997:748-757).

The data is divided into a training set (first 70% of data), a cross-validation set (10% of

data excluding the training set) and the rest is used as a test set (last 20%). By

calculating the MSE for each model, the one with the smallest MSE value was selected.

This was done for both the feed forward neural network, which uses backpropagation,

and the Elman recurrent neural network The feedforward neural network is a function

of a fixed number of previous values of a time series, while the Elman recurrent neural

network, implicitly depends on all previous observations of a time series. The

feedforward models considered in this dissertation, performed better as can be seen

from the MSE values in Figure 6.2.
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The labels on the horizontal axis denote the number of input nodes and the number of

hidden nodes of the different models considered. For example: 3.2 indicates a neural

network with three inputs and two hidden nodes. The number of parameters, W, in the

fully connected model is calculated as follows:

where nj is the number of input nodes and

nh is the number of nodes in the hidden layer.

(The term, one, that is added. provides for a bias or intercept in both the input and

hidden layer.)

Therefore the neural network model (6.3-1) with six input nodes and two hidden nodes,

has 17 parameters or weights. This is acceptable because the total number of patterns in

the training set should ideally not be less than 32W(Bishop, 1996:410), but 10Wis also

an accepted norm in some cases.

The software package of the Basic ModelGen™ 1.0 from Crusader Systems was used.

In the training phase the input signals are passed through an activation function (see

 
 
 



Chapter 3). The activation function used here is a symmetric sigmoidal function (see

2.5-7). The backpropagation method was used to calculate the gradient of the error

function. The training stopped after 250 iterations. After the network has been trained,

the model has to be evaluated. Procedures for evaluation differ from programme

package to programme package. A few of the procedures available in the Basic

ModelGen™ 1.0 from Crusader Systems, are discussed in Section 6.4.

Figure 6.3 is a representation of the root mean squared error (RM()E), and therefore

also the mean square error (MSE), of the training and cross validation sets during

training. This gives the user an indication of how well the training progresses with

each iteration or epoch and, should there be some default, training can be stopped

immediately.
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The RMSE for both the training and cross-validation sets fall sharply at the beginning

of the iterative process. The RMSE of the training set is lower and decreases steadily,

while the RMSE of the cross-validation set shows a slight upward trend before it

 
 
 



stabilises after about 130 iterations. This is an indication that the model should fit

reasonably well to an independent data set from the same population.

The investigation of the model residuals by means of the Fourier transform gives a

spectrum that is not zero. This means the residuals may still contain some information

of the underlying time series.

The sensitivity analysis points out that the model is the most sensitive for the input

variables Yt-1 and Yt-2• To inspect the sensitivity of the model output to the other input

variables, Figure 6.4 can be observed.

A graph of the output of the model and the desired outputs also gives an indication of

the quality of the fit of the model. Figure 6.5 shows these results for a randomly

selected section of the time series. The graph appears satisfactory because the model

output is relatively similar to the target or desired output values. The last peak is over-

estimated by the model. The performance of the model on weekends should be

investigated further.
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The following table provides the correlation coefficient, R, between the outputs

predicted by the model and the actual desired output on the test set. The test set is

used for model evaluation. This is data that was not used during the training phase.

Standard 95% Confidence

MODELS Mean Deviation R R2 UmitsforR
Feed Forw 0.096 0.341 0.9821 0.9645 [0.980 - 0.984]

Desired 0.035 0.341

Desi"ed 0.035 0.341

The R of 0.9821 is quite high and lies in the 95% confidence interval. This indicates

that the model fits the data well. The narrow interval is due to the large number of

observations in the test set.

The evaluation of the model has been done by means of v~ous methods of

measurements. If this model is satisfactory, the forecasting process can take place. In

Section 6.5 the forecasting of twelve hours ahead is done.

 
 
 



The model (6.2-1) was estimated and evaluated in the previous sections. This model is

now used to forecast Basic ModelGen™ 1.0 from Crusader Systems unfortunately is

not a specialised time series analysis package. It only provides one-step predictions.

For a given set of input variables, the predicted model value (6.2-1) can be calculated.

It was decided to use the nalve-, the direct method and the bootstrap method (see

Section 5.3 and 5.4) to forecast twelve electricity consumption values. A Fortran

programme (see Appendix: Chapter 6), was used to produce forecasts and prediction

intervals using bootstrap methodology. In the next section these three methods are

implemented.

= fey N(I),YN,cos[0,2618(N + 1)],sin[0.2618(N + 1)],

cos[O.5236(N +1)],sin[O.5236(N +1)];w)

= fCY N(2),Y NCl),cos[O,26H{N +2)],sin[O.261a:N+2)],

cos[0.523((N + 2)],sin[0.523((N + 2)];~

 
 
 



The following graph shows how this method performed. The forecast output values are

compared with the target outputs for twelve hours.
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By inspection of the graph one can see that after two forecasts the forecast values

predicted by the model are less than the target values. This can be a problem because

it can cause an underproduction of electricity.

The next method implemented is the direct method.

For the direct method, a different model has to be estimated for each lead time. To

forecast two steps, the neural network is trained to estimate Yt+2 from .Yi: and .Yi:-J:

Y 1+2 = g(Y I, Y,-l' cos[O,2618(t + 1)],sin[0.2618(t + 1)],

cos[O.5236(t +1)],sin[O.5236(t +1)]; w) +&1+2

 
 
 



Y Hi = h(Y, ,Yt-I ,cos[0,2618(t + l-l)],sin[0.2618(t +1-1)],

cos[0.5236(t +1-1)],sin[0.5236(t +I-I)]; w) + CHi

Figure 6.7 illustrates the performance of the direct method with once again the forecast

output values compared with the target outputs for twelve hours.
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Here the model- forecast values differ a bit less from the target values. To compare

the naive method with the direct method Figure 6.8 is shown.
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Figure 6.8 illustrates that the direct method performs better. The predicted values of

the model for this method are for most of the time periods the nearest to the target.

In this chapter a neural network was fitted to hourly electricity consumption. Two

methods for determining the forecasts were discussed. The direct method performed

better for most of the forecast values.

Chatfield (1996) investigated alternative approaches to forecasting. The investigation

of neural networks as a forecasting model showed that models with less parameters

generally give better out-of-sample predictions than those neural network models with

more parameters, even though this smaller models fit worse than less parsimonious

models. Chatfield (1996) also found that wider prediction intervals may reflect model

uncertainty better. Neural network software programs may be improved by including

methods for determining prediction intervals.

The same neural network model used in Chapter 5 is used to predict the electricity

consumption for 1 to 24 hours ahead. A time plot of the data is given in Figure 6.9.
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Bootstrap methodology is used for prediction together with their standard errors and a

95% prediction interval. The results are illustrated in Figure 6.10.

Predicted hourly electricity load.
(Bootstrap approach applied to

neural network.)
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A linear regression model was also used to predict the electricity lo~d. The same input

variables were used and it was assumed that the prediction errors are normal

distributed when determining the prediction limits. In Figure 6.11 the prediction limits
as well as the predictions are illustrated.

 
 
 



Predicted hourly electricity load
(linear regression model)
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It can be seen that the forecasts obtained by the neural network (Figure 6.10) and the

linear model (Figure 6.11) compares well. In the case of the linear model the

predictions and the prediction intervals are smoother than that obtained by the

bootstrap method for the neural network model. This is because the bootstrap method

is data driven and does not rely on any assumptions on the probability distribution of

the data.

 
 
 



PREDICTNN is an artificial feed forward neural network that does one-step and multi-
step time series prediction, as well as the calculation of standard errors and prediction
intervals based on bootstrap methodology. (Reference).

Minimum hardware specifications:
The program runs under DOS Version 4.
Memory: 32 MB
CPU: 486
Disk space: 1 MB

Disclaimer: The authors do not take responsibility in any terms for any damages that
may result from using PREDICTNN.

Create a new directory, say TSPREDICT.
Copy PREDICTNN.EXE to the TSPREDICT directory.
All input and output files will be written to or read from TSPREDICT directory.

Go to DOS Window.
cd\path to TSPREDICT
Type PREDICTNN.

PREDICTNN requires parameter input (from screen or ASCII file) and the training data
set (from ASCII file).

The user can either specify the parameters by
typing it in as prompted by the program, or
the parameters can be read from an input file:

I Enter 0 if input from screen or 1 if input from file:--]

If the user choose to specify the parameters by typing it in from the screen, the following
values must be entered as prompted by th~ program:

 
 
 



Enter the number of patterns in the training set:
Enter the number of bootstrap samples to·be drawn:
Enter the number of input variables:
Enter the number of hidden neurons:
Enter the number of lags of the dependent variable:
Enter the number of forecasts to be calculated:
Enter lOO*(l-?)% confidence interval:
Enter the maximum number of iterations:
Enter the number of nn models to fi t: \

Enter the input file name:

It is assumed that the training set is the first pattern in the data file up to the number of
patterns in the training set as specified.
The number of bootstrap samples to be drawn refers to the number of samples to be used
to calculate the prediction interval. A minimum of 1000 bootstrap samples is
recommended in the literature. Note that an A1~ is trained on every bootstrap sample. If
you only want predictions and standard errors, you may specify a value of3 for this
parameter. The program will draw 100 bootstrap samples from the original time series to
calculate predictions and standard errors.
The number of input variables is the number of independent! explanatory variables in the
model including the number oflagged values of the dependent! output variable. The
dependent variable is a time series.
The number of lags of the dependent variable is the autoregressive order of the model.
Number of hidden neurons - number of neurons in hidden layer.
Number offorecasts to be calculated - size of forecasting window.
100*(1-?)% confidence interval- a value of 0.05 will, for instance, specify a 95%
confidence coefficient.
Maximum number of iterations - iterative optimization algorithm will stop after the
maximum number of iterations has been reached, even if convergence to the global
minimum has not taken place. More complex problems require more iterations. In
relatively small problems, (20 parameters), 60 iterations should suffice.
The number of nn models tofit ~efers to the number of ANN's to be trained from random
starting weights. The network with the lowest mean square error is then selected. Values
between 3 and 10 should suffice.
The input file name is the name of the data file. (Not longer than 20 characters).

The values entered are automatically writt.en to the file PARAMB.DAT.

 
 
 



If the parameters are read from a file, the program will read the parameter values from
the ASCII file PARAMB.DA T one value per line in the following order:

NTRAIN: Number of patterns in the training set.
NBOOT: Number of bootstrap samples to be drawn.
NINP: Number of input 'variables.
NHID: Number of hidden neurons.
NLAGS: Number of lags of the dependent variable.
LEAD: Number of forecasts to be calculated.
PALPHA:IOO*(l-?)% confidence interval.
MAXITE: Maximum number of iterations.
NFIT: Number of neural network models to fit.
FNAME: Input file name.

The data file is an ASCII file. The data are real numbers separated by one or more blanks.
The name of the data file is specified by the user (see input parameters).
The first pattern in the training set is given in the first row of the data file, starting with
the output variable, the independent variables (if any) the first lag of the output variable,
the second lag of the output variable, and so on. More than one line of data may be used
for each pattern in the training set. The computer will go to a new line after a pattern has
been read.

FORECAST.OUT
Format of output:
Forecast lead (e.g. 1 for one step), forecast, standard error of forecast, lower and upper
prediction limits, length of prediction interval.

BOOT.OUT
Format of output:
Bootstrap sample number, value of root mean squared error for trained network (on
training set).

OPTIM.OUT
Work file used by optimization algorithm~ This file may have useful information on
optimization problems. Iteration results are given for the last network trained.

 
 
 



Neural network architecture:
Pre processing: Input and output variables are scaled to (-I: I).
Initialization of weights: A set of weights are generated using a random number
generator. In order to prevent local minimum problems, a number (as specified by user)
of ANN's are trained from random points, and the best ANN is selected.
One hidden layer with sigmoidal activation function.
Error function: Root mean squared error.
One output.

Number of input variables (NINP) and number of nodes in hidden layer (NHID):
NHID*(NINP+2)<100
Number of patterns in training set (NTRAIN): NTRAIN<IOOO
(NINP+ 1)*NTRAIN < 6000
Number of forecast lead times (LEAD): LEAD<100
Number of bootstrap samples (NBOOT): NBOOT < 2000
LEAD*NBOOT < 10000

The data file ELECS.TXT contains 716 patterns of an electricity load demand time
series. Each pattern consists of the output variable and 8 input variables including two
lagged values of the output variable.

Suppose we want to train a network with two nodes in the hidden layer on the first 400
patterns and produce 5 forecasts with 95% prediction limits, using 1000 bootstrap
samples.

400
1000
8
2
2
5
0.05
40
3
elecs.txt

To run the program, type PREDICTNN. The pr~m will estimate the required running
time. If you want to terminate the program, hit 19!21 ~. .
The output file are FORECAST. OUT and BOOT.OUT.

 
 
 



The temptation exists to use neural networks as "black boxes", and scientists often

succumb. This is very unfortunate because a neural network is a powerful statistical

device, used for many different problems. Statisticians should provide the knowledge

to implement statistical methods together with neural networks to bring out its best

performances.

In this dissertation, neural networks were used to analyse a time series and especially

in request of the problem of forecasting. Statistical methods, used for time series

analysis, are usually linear but may not succeed in forecasting a non-linear data set.

This study specifically investigated the use of ARMA model in comparison with the

neural network model for the problem of forecasting.

Two time series, namely a generated AR(2) and an electricity consumption time

series, were used to illustrate the process of time series analysis. Box and Jenkins

proposed three phases for the analysis of a time series: identification, estimation and

evaluation. These phases were given for ARMA models and also applied to neural

network models in Chapter 4.

To illustrate the use of neural networks for the problem of forecasting, electricity

consumption data as a time series was used. A neural network model was estimated to

predict twelve hours ahead. The model for electricity consumption can be improved.

Different forecasting methods suitable for non-linear models were discussed A

program was developed to detennine prediction intervals for the examples of the

linear model and the neural network model by using the bootstrap method. The neural

network program package that was used in this study can only calculate one-step

predictions and does not permit the implementation of the bootstrap method.

Calculation of multi-step forecasts and prediction intervals should be implemented in

neural network software.

 
 
 



Neural. ~etworks as a versatile, adjustable tool are highly recommended. This study

focussed on the identification, estimation and evaluation of neural network models for

time series, and forecasting. Many of the standard techniques in statistics can be

compared with neural network methodology, especially in application with large data

sets.

Further research includes the use of bootstrap methods to calculate predictions,

standard errors and prediction intervals for the forecasts. Bootstrap techniques can be

implemented in neural network computer software packages. Research in the

application and comparison by use of bootstrap techniques with neural networks are

recommended.
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