Structural studies of thallium(I)-thiourea complexes

by

Nicholas Frederick Brennan

Submitted in partial fulfillment of the requirements for the degree

Magister Scientiae

In the Faculty of Natural and Agricultural Sciences, University of Pretoria

December 2005

TABLE OF CONTENTS

		page
Acknowledgements		i
Summary		ii
Chapter 1	Background, synthesis	1
1.1	Introduction	1
1.2	Organic salts from which ions were derived	4
1.3	Synthesis of organic salts	5
1.4	Experimental	6
1.4.1	Synthesis of complexes	6
1.4.2	Experimental method	8
1.4.3	Recrystallisation	8
1.5	References-Chapter 1	14
Chapter 2	Crystallographic analysis	15
2.1	Introduction	15
2.2	Single crystal study	16
2.2.1	Experimental	18
2.2.2	Crystallographic labelling system	19
2.3	Crystallographic results for the four benzoate complexes	20
2.3.1	Results for the 2-fluoro complex crystal analysis	20
2.3.2	Results for the 3-fluoro complex crystal analysis	24
2.3.3	Results for the 3-amino complex crystal analysis	28
2.3.4	Results for the benzoate complex crystal analysis	32

2.4	Structural analysis of the four benzoic acid derivative	36
	complexes	
2.4.1	Cell dimensions and volumes	36
2.4.2	Channel sizes	37
2.4.3	Atomic interactions	40
2.5	Crystallographic results for the remaining complexes	42
2.5.1	Results for the PF_6^- complex crystal analysis	42
2.5.2	Results for the BF ₄ ⁻ complex crystal analysis	46
2.5.3	Results for the thallium-4-aminobenzoate complex	50
	crystal analysis	
2.5.4	Results for the 2Tl(I), 2(TU) 2(Tph) 2H ₂ O	54
	(Tph = terephthalate benzene-1,4-dicarboxylate)	
	complex crystal analysis	
2.6	Structural analysis for the remaining complexes	60
2.6.1	PF_6^- complex	60
2.6.2	BF ₄ ⁻ complex	61
2.6.3	Thallium-4-aminobenzoate	61
2.6.4	$2Tl(I)$, $2(TU) 2(Tph) 2H_2O$ (Tph = terephthalate	62
	benzene-1,4-dicarboxylate) complex	
2.7	Powder diffraction study	64
2.7.1	Experimental powder x-ray diffraction patterns	65
2.8	Conclusion	69
2.9	References-Chapter 2	70
2.10	Appendix – Additional crystallographic data of the complexes	71
2.10.1	Tl ⁺¹ 4(TU) 2-Fluorobenzoate complex	71
2.10.2	Tl ⁺¹ 4(TU) 3-Fluorobenzoate complex	73
2.10.3	Tl ⁺¹ 4(TU) 3-Aminobenzoate complex	75

2.10.4	Tl ⁺¹ 4(TU) Benzoate complex	77
2.10.5	$TI^{+1} 4(TU) PF_6^-$ complex	79
2.10.6	$TI^{+1} 4(TU) BF_4$ complex	80
2.10.7	Thallium-4-aminobenzoate	82
2.10.8	$2Tl(I)$, $2(TU) 2(Tph) 2H_2O$ (Tph = terephthalate	84
	benzene-1,4-dicarboxylate) complex	

Chapter 3	Infrared and Raman Spectroscopy	88
3.1	Introduction	88
3.2	Experimental detail	89
3.3	Discussion	90
3.3.1	The region $3500-3000 \text{ cm}^{-1}$	93
3.3.2	The region 1700-400 cm^{-1}	95
3.3.3	The region 300-100 cm^{-1}	100
3.4	Raman and IR spectra of the other 17 complexes	101
3.5	Conclusion	103
3.6	IR and Raman bands for all the complexes	104
3.7	References-Chapter 3	108

Chapte	er 4	UV/VIS Spectroscopy	109
	4.1	Introduction	109
	4.2	Instrumentation	110
	4.3	Preparation of sample	111
	4.4	Charge Transfer	111
	4.5	UV of aromatic compounds	111
	4.6	Solvent effects	114
	4.7	Disubstituted benzene derivatives	114
	4.8	UV spectra obtained from complexes	115
	4.9	Conclusion	115
	4.10	References-Chapter 4	116
	4.11	Wavelength and absorbance as well as spectra of all the complexes	117
Chapte	er 5	NMR Spectroscopy	122
	5.1	Introduction	122
	5.2	Group 13 metals and NMR	122
	5.3	Analysis of complexes	123
	5.4	Analysis of the four single crystal complexes	124
	5.4.1	3-Amino complex	124

5.4.2	2-Fluoro complex	127
5.4.3	3-Fluoro complex	129
5.4.4	Benzoate complex	132
5.5	Analysis of the 2-hydroxy, 3-bromo, 4-chloro complexes	134
5.6	Conclusion	136
5.7	References-Chapter 5	137

Chapter 6	Thermal analysis and mass spectrometry	138
6.1	Introduction	138
6.2	Applications of thermogravimetry (TG)	139
6.3	Experimental	140
6.4	Discussion of the results of the thermal studies of the complexes	140
6.4.1	Endothermic and exothermic transitions	140
6.5	Trends in thermal results	141
6.5.1	DSC	141
6.5.2	Enthalpy values for the complexes	142
5.5.3	TG	143
6.6	Mass spectroscopy	150
6.7	Melting points of complexes	153
6.8	Melting points of all complexes	154

6.9	Melting point vs molecular weight	155
6.10	Conclusion	156
6.11	References-Chapter 6	158
6.12	Thermal data of all the complexes	159
6.13	TG and DSC spectra	166

ACKNOWLEDGEMENTS

I would whole heartedly like to thank my supervisor Prof. van Rooyen for all his help and guidance throughout this project and for always assuring me that there was light at the end of the tunnel.

To my co-supervisor Prof. Boeyens I would like to extend my gratitude for much valued input.

The following people's help and assistance was very much appreciated: Dave Liles Linda Prinsloo Eric Palmer Yvette Naude Leonore Smit

To my parents, Anne and John, without whose love and financial help this would not have been possible.

And finally to my fiancée, Cas, for always believing in me.

SUMMARY

Structural Studies of Thallium(1)-Thiourea Complexes

by

Nicholas Frederick Brennan

Supervisor: Prof. P. H. van Rooyen Co-supervisor: Prof. J. C. A. Boeyens Submitted in partial fulfilment of the requirements for the degree Magister Scientiae Department of Chemistry, University of Pretoria

It is known that from research carried out in 1968 by L.H.W. Verhoef and J.C.A. Boeyens that the combination of thallium(1) salts, thiourea and benzoic acid results in the formation of ($TI^+.4TU$)_n coordination columns (TU = Thiourea) with the benzoate ions also positioning themselves in linear stacks or columns [1].

Various complexes were synthesised from Tl_2CO_3 with different benzoic acid derivatives and thiourea in order to observe the effects this may have on the Tl(1)thiourea complexes. It was also possible to confirm the formation of the intermediate product [Tl (OC(O)C₆H₄)R], R = 4-NH₂, by single crystal analysis.

The benzoic acid derivatives incorporated a wide range of both electron withdrawing and electron donating substituent groups at the ortho, meta and para positions. Also included for completeness were bulky group substituents.

[NH₂, NO₂, CH₃, Cl, F, Br]_{ortho, meta and para}, 4-methoxy, and 2-hydroxy benzoic acid derivatives were the specific substituents included in this study. The only benzoic acid derivative complexes which yielded diffraction quality crystals suitable for single crystal studies were the 2-fluoro, 3-fluoro, 3-amino and benzoate complexes. The crystal structures for the complexes with PF_6^- and BF_4^- as anions were also determined as well as that of 2Tl(I), 2(TU) 2(Tph) $2H_2O$ (Tph = terephthalate benzene-1,4-dicarboxylate) complex.

All benzoic acid derivative complexes were analysed using x-ray powder diffraction. The powder diffraction data of all benzoate complexes could be split into five different groupings of complexes with similar patterns. One such group contained

the four isostructural complexes. Another group had eight complexes with only 2- and 4-substituted benzoates present.

The results of the x-ray powder and single crystal diffraction studies prove beyond doubt that the four benzoic acid derivative complexes are isostructural. Thus changing the substituent on the aromatic ring in the anion plays little or no role in the size or shape of the cavity/channel that forms with in the complex.

Spectroscopic studies (IR, Raman, UV, NMR) as well as thermal and mass spectroscopy studies were carried out on all the complexes as a means of identification and proof of complexation, as well as to study the molecular interactions in the solid state.

As a result of this and the similarity of the IR/Raman, UV and thermal studies of these four complexes to the other synthesised complexes, one can say that all the complexes that were prepared have indeed very similar solid state interactions.

The thermal studies reflected the effects of changing the electronic character of the substituent on the benzoate. Also, the thermal behaviour of the thiourea molecules in the the complexes was analysed.

Reference: [1] L. H. W. Verhoef and J. C. A. Boeyens, Acta Cryst. 1969. B25, 607