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THESIS SUMMARY 

Failure analysis of ultra-high molecular weight polyethylene acetabular 
cups 
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Degree:  PhD (Mechanical Engineering) 
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cup, wear, lubrication, poor heat conduction 

 

Owing to the crippling nature of arthritis, surgeons have been trying for 

well over a century to successfully treat this debilitating disease 

particularly when attacking the hip joint.  In the early 1970s, Sir John 

Charnley started with total hip replacement as a solution to this ever-

increasing problem.  Many different designs were developed but all the 

designs revolved around a femoral stem, femoral head and acetabular 

component.  Independent of the design, longevity of the implant remains a 

problem.  The major cause of replacements, according to various hip 

registers, is due to aseptic loosening resulting from osteolysis.  According 

to these registers, the average in-vivo life of a hip replacement is 

approximately 12 years. 

 

The main aim of this study was to determine the root cause of mechanical 

failure of the acetabular cups and to determine the origin of the excessive 

amount of ultra-high molecular weight polyethylene (UHMWPE) wear 

debris floating in the joint resulting in osteolysis. 
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During the study, various techniques were used to investigate the 

acetabular components to try to establish the root cause of mechanical 

failure.  These techniques included: 

1. Visual inspection 

2. Investigation making use of dye penetrant spray 

3. Investigation under stereo microscope 

4. Investigation making use of a scanning electron microscope 

5. Electrophoresis 

6. Mass-spectrometric analysis 

7. Analysis of the synovial fluid on high-frequency linear-oscillation 

machine (SRV). 

 

The wear debris retrieved from the scar tissue surrounding the joints of a 

number of patients was also analysed. 

 

Apart from the obvious defects such as mechanical damage due to 

impingement, the main defect on which this study focuses is the wear 

patches found on the inside of the acetabular components. 

  

The wear areas were presented as areas where the surface layer of the 

UHMWPE was ripped off by adhering to the rotating femoral head.   This 

type of failure is possible if localised overheating takes place resulting in 

the material either adhering to the rotating femoral head or the material 

being squeezed out under the prevailing pressure.  Both these 

mechanisms were confirmed by the wear debris retrieved from the scar 

tissue, being either droplets of UHMWPE or whisker-like wear products. 

 

To confirm the existence of elevated temperatures the brown discolouring 

on the inside of the acetabular cups was analysed, making use of 

electrophoresis, mass-spectrometric analysis and scanning electron 

microscope recordings.  In this part of the study, it was confirmed that 
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localised temperatures on the bearing surface had reached at least 60°C 

during in-vivo service.  This temperature was confirmed by inserting a 

thermocouple just under the surface of an acetabular cup and then 

measuring the temperature while in-vitro testing was taking place on a hip 

simulator.   

 

The wear debris as retrieved was also duplicated in laboratory 

experiments while the temperature on the surface of an acetabular cup 

was monitored.  It was established that wear particles similar in shape and 

size were formed at temperatures in excess of 90°C.  At temperatures 

above 50°C the UHMWPE had visually shown extensive increase in 

creep, indicating that at these temperatures the material softens 

sufficiently for this type of debris to be generated 

 

The overheating as described can also only occur if there is a lack of 

lubrication in the bearing couple.  The synovial fluid from 12 patients was 

retrieved during revision surgery.  This synovial fluid was then tested on a 

high-frequency linear-oscillation machine (Optimol SRV test machine) to 

determine the lubricity characteristics of the synovial fluid as retrieved.  It 

was discovered that the load-carrying capability of the synovial fluid did 

not comply with the minimum requirements for a fluid to function as a 

lubricant.  

 

The final conclusion of this study is that excessive amounts of wear debris 

are generated due to the localised overheating of the bearing couple as a 

result of insufficient lubrication.  The localised heat build-up results in 

excessive amounts of wear debris being generated and deposited in the 

joint area resulting in osteolysis. 
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Glossary  

Abduction  Act of turning outward. 

Acetal     Acetal, also known as polyacetal, 

polyoxymethylene (POM), or 

polyformaldehyde, is a high-performance 

engineering polymer. 

Adduction  Act of turning inward. 

Arthritis   Arthritis is inflammation of one or more joints. 

When joints are inflamed they can develop 

stiffness, warmth, swelling, redness and pain. 

There are over 100 types of arthritis, including 

osteoarthritis, rheumatoid arthritis, ankylosing 

spondylitis, psoriatic arthritis, lupus, gout, and 

pseudogout. Earlier and accurate diagnosis 

can help to prevent irreversible damage and 

disability.  

Arthrodesis  Athrodesis is the surgical fixation of a joint. It 
is also called artificial ankylosis. 

Avascular necrosis   Condition in which poor blood supply to an 

area of bone leads to bone death. This is 

called avascular necrosis and osteonecrosis. 

Cortical bone    Main construction of the shaft of the femur. 

Dislocation, congenital hip  The abnormal formation of the hip joint in 

which the ball at the top of the thigh bone (the 

femoral head) is not stable within the socket 

(the acetabulum). The ligaments of the hip 

joint may also be loose and stretched. 

Dysplasia   Abnormal in form. Dysplasia is derived from 

the Greek dys- (bad, disordered, abnormal) 

and plassein (to form). For example, retinal 

dysplasia is the abnormal formation of the 

retina during embryonic development. 
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Electrophoresis   Gel electrophoresis is a method that 

separates macromolecules — either nucleic 

acids or proteins — on the basis of size, 

electric charge, and other physical properties. 

Ethylene oxide   Ethylene oxide is a colourless liquefied gas 

with a sweet odour used for the sterilisation of 

implants and equipment within a 

steriliser/autoclave. 

Extension  Movement that increases the angle at a joint. 

Fixation, internal    A surgical procedure that stabilises and joins 

the ends of fractured (broken) bones by 

mechanical devices, such as metal plates, 

pins, rods, wires or screws. 

Flexion  Movement that decreases the angle at a joint. 

Fracture   A fracture is a break in the bone or cartilage. 

It usually is a result of trauma. A fracture can, 

however, be the result of an acquired bone 

disease such as osteoporosis or the result of 

abnormal formation of bone in a congenital 

bone disease such as osteogenesis 

imperfecta ("brittle bone disease"). 

Hydroxy-apatite  Plasma-sprayed calcium phosphate coating 

that is bio-active. 

Izod impact strength  Material test that provides toughness data 

under dynamic rather than static conditions 

(Shigley & Mischke, 2003). 

Lateral    Side of the patient. 

Lysis  Destruction. Haemolysis (haemo-lysis) is the 

destruction of red blood cells with the release 

of  haemoglobin; bacteriolysis (bacterio-lysis) 

is the destruction of bacteria; and so on. Lysis 

can also refer to the subsidence of one or 
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more symptoms of an acute disease as, for 

example, the fever of pneumonia. 

Osteoarthritis   A type of arthritis caused by inflammation, 

breakdown, and eventual loss of cartilage in 

the joints. Osteoarthritis is also known as 

degenerative arthritis. Osteoarthritis can be 

caused by ageing, heredity, and injury from 

trauma or disease. The most common 

symptom of osteoarthritis is pain in the 

affected joint(s) after repetitive use. 

Osteolastic  A pathological condition resulting from 
accumulation of acid or a loss of base in the 
body; characterised by an increase in 
hydrogen ion concentration (decrease in pH). 
Has various causes including several states 
that produce excesses in various acids; 
included are diabetes mellitus (keotone 
bodies), renal insufficiency (phosphorus, 
sulfuric and hydrochloric acids), respiratory 
disease (carbonic acid), and prolonged 
strenuous exercise (lactic acid). 
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Osteolysis  Also called particle disease, aggressive 
granulomatosis.  Particulate debris from wear 
of arthroplasty components, most commonly 
polyethylene component (Schmalzried et 
al.,1997).  Large pieces sequestered in 
fibrous tissue. 

Osteotomy   Osteotomy is an operation in which a bone is 

cut, enabling a surgeon to reposition it. An 

osteotomy may be performed to lengthen or 

shorten a leg, to correct bowed or bent legs, 

or to reset a fracture. 

PMMA    Polymethyl methacrylate — a thermoplastic 

polymer synthesised from methyl 

methacrylate and used as bone cement for 

the fixation of implant. 

Smaller trochanter 

   
 

Posterior  Back of the patient. 

Rheumatoid arthritis   An auto-immune disease that causes chronic 

inflammation of the joints, the tissue around 

Smaller trochanter

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  BBuurrggeerr,,  NN  DD  LL    ((22000066))  



 
xxxiii

the joints, as well as other organs in the body. 

Auto-immune diseases occur when the body 

tissues are mistakenly attacked by its own 

immune system. The immune system is a 

complex organisation of cells and antibodies 

designed normally to "seek and destroy" 

invaders of the body, particularly infections. 

Patients with these diseases have antibodies 

in their blood which target their own body 

tissues, where they can be associated with 

inflammation. Because it can affect multiple 

other organs of the body, rheumatoid arthritis 

is referred to as a systemic illness and is 

sometimes called rheumatoid disease. While 

rheumatoid arthritis is a chronic illness 

(meaning it can last for years), patients may 

experience long periods without symptoms. 

 

 

 
 

 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  BBuurrggeerr,,  NN  DD  LL    ((22000066))  


	FRONT
	Title page
	Acknowledgements
	Summary
	Table of contents
	List of appendices
	List of tables
	List of figures
	Glossary

	Chapters 1-2
	Chapters 3-4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapters 8-9
	Back



