Gene expression and plant performance in oryzacystatin-I expressing transformed tobacco (*Nicotiana tabacum* L. cv Samsun) plants under abiotic stress.

By

GETU BEYENE

Thesis submitted in partial fulfilment of the requirements for the degree PHILOSOPHIAE DOCTOR Forestry and Agricultural Biotechnology Institute (FABI) Department of Botany

in the Faculty of Natural and Agricultural Sciences University of Pretoria

SUPERVISORS: PROF. K.J. KUNERT PROF. C.H. FOYER

March 2006

CONTENT	S	PAGES
ABSTRAC	Г	viii
RESEARCI	H AIMS AND OBJECTIVES	X
THESIS CO	OMPOSITION	xi
ACKNOWI	LEDGEMENTS	xiii
ABBREVIA	ATIONS AND SYMBOLS	XV
LIST OF FI	IGURES	xvii
LIST OF T	ABLES	XX
CHAPTER	ONE	1
1.1 Pla	ants and stress	2
1.1.1	Forms of plant stress	2
1.1.2	Drought and heat stress in plants	
1.1.2 1.1.2 1.2 Pl a	8	6
1.2.1	Techniques to detect gene expression	7
1.2.2	Gene expression under drought stress	
1.2.3	Gene expression under heat stress	
1.3 Pl	ant engineering for drought and heat stress tolerance	15
1.3.1	Plant engineering for drought stress	15
1.3.2	Plant engineering for heat stress	
1.4 Pr	oteinase/proteinase inhibitor system and stress	21
1.4.1	Plant proteinases	
1.4.1	.1 Cysteine proteinases	

	1.4.1.2	Cysteine proteinase expression under drought and heat stress	28
1	.4.2	Plant proteinase inhibitors	35
	1.4.2.1	Cysteine proteinase inhibitors	36
	1.4.2.2	Plant proteinase inhibitor expression under drought and heat stress	39
1	.4.3	Plant engineering and the cysteine proteinase/proteinase inhibitor system	42
1	.4.3	Stability of proteinase inhibitors transgenes in plants	. 46
CHAI	PTER T	WO	50
EXPF	RESSIO	N OF ORYZACYSTATIN-I IN DROUGHT AND HEAT-STRESSED	
TRAN	NSFOR	MED TOBACCO PLANTS	. 50
2.1	Abs	tract	51
2.2	Intr	oduction	. 52
2.3	Mat	erials and Methods	. 54
2	2.3.1	Plant material	. 54
2	2.3.2	Detection of OC-I sequence in transgenic plants	. 54
2	2.3.3	Stress treatment of plants	. 55
2	2.3.4	Preparation of leaf protein extract	. 56
2	2.3.5	Immuno-blotting	. 56
2	2.3.6	Cysteine proteinase inhibition by tobacco leaf protein extract	. 57
2	2.3.7	Southern blot analysis	. 58
2	2.3.8	Northern blot analysis	. 58
2.4	Rest	ults	. 60
2	2.4.1	OC-I gene and protein detection	. 60
2	2.4.2	Expression of the small and large subunit of Rubisco	. 62

2.4.	.3 OC-I expression under stress	64
2.4.	.4 Activity of expressed OC-I	
2.5	Discussion	68
СНАРТ	TER THREE	
GROW	TH OF OC-I EXPRESSING TRANSFORMED TOBACCO	PLANTS UNDER
ABIOTI	IC STRESS	
3.1	Abstract	71
3.2	Introduction	72
3.3	Materials and Methods	74
3.3.	.1 Glasshouse experiments	74
3.3.	.2 Growth cabinet experiments	75
3.3.	.3 Statistical analysis	76
3.4	Results	77
3.4.	.1 Effect of drought stress on plant growth and net photosynt	hetic rate in the
glas	sshouse	77
3.4.	.2 Effect of drought and heat stresses on plant growth and ne	t photosynthetic rate
(gro	owth cabinet)	
3.5	Discussion	
СНАРТ	TER FOUR	
APPLIC	CATION OF cDNA REPRESENTATIONAL DIFFERENCE	ANALYSIS
(cDNA I	RDA) FOR DETECTION OF DIFFERENTIALLY EXPRES	SED GENES IN
OC-I EX	XPRESSING TOBACCO	
4.1	Abstract	

4.2	Introduction	
4.3	Materials and Methods	89
4.3.	1 mRNA isolation and cDNA synthesis	89
4.3.	2 cDNA RDA	89
4	.3.2.1 Amplicon production	
4	.3.2.2 First round subtraction and amplification	
4	.3.2.3 Second round subtraction and amplification	
4	.3.2.4 Third and fourth round subtraction and amplification	
4	.3.2.5 Cloning and sequence analysis of difference products	
4.3.	4 Gene expression under heat stress	
4.3.	5 Chlorophyll determination	
4.3.	6 Two-dimensional gel electrophoresis (2-DE)	
4.4	Results	
4.4.	1 cDNA RDA	
4.4.	2 Expression of GBDP4-5d-12	
4.4.	3 Chlorophyll content	105
4.4.	4 Protein expression detected by 2-DE	107
4.5	Discussion	109
СНАРТ	ER FIVE	113
CLONI	NG OF TWO NEW CYSTEINE PROTEINASES WITH SPECIE	FIC
EXPRE	SSION PATTERNS IN MATURE AND SENESCENT TOBACC	O LEAVES
•••••		113
5.1	Abstract	

5.2	Intr	roduction	115
5.3	Ma	terials and methods	118
5	5.3.1	Plant material	118
5	5.3.2	Plant treatment	118
5	5.3.3	Chlorophyll determination	119
5	5.3.4	Proteinase determination	119
5	5.3.5	Proteinase determination with gelatine SDS-PAGE	119
5	5.3.6	Azocasein assay	120
4	5.3.7	Fluorimetric measurement of cysteine proteinase activity	121
4	5.3.8	Isolation of cysteine proteinase coding sequences	122
4	5.3.9	Sequence analysis	123
4	5.3.10	Southern blot analysis	124
4	5.3.11	Northern blot analysis	125
2	5.3.12	Statistical analysis	126
5.4	Res	sults	127
4	5.4.1	Leaf chlorophyll, soluble protein content and proteinase activity	127
2	5.4.2	Isolation and analysis of NtCP1 and NtCP2	130
2	5.4.3	Copy number and expression of NtCP1 and NtCP2	140
5.5	Dis	cussion	143
4	5.5.1	NtCP1 and NtCP2 sequence analysis	143
4	5.5.2	NtCP1 characterization	144
2	5.5.3	NtC2 characterization	145
CHA	PTER S	SIX	147

SUMMARY AND PERSPICTIVE	147
REFERENCES	151

Gene expression and plant performance in oryzacystatin-I (OC-I) expressing

transformed tobacco (Nicotaiana tabacum L. cv. Samsun) plants under abiotic stress.

Getu Beyene Department of Botany, Forestry and Agricultural Biotechnology Institute, University of Pretoria, 74 Lunnon Road, Hillcrest 0002, Pretoria, South Africa.

Supervisor: Professor Karl J. Kunert Department of Botany, Forestry and Agricultural Biotechnology Institute, University of Pretoria, 74 Lunnon Road, Hillcrest 0002, Pretoria, South Africa.

Co-supervisor: Professor Christine H. Foyer Crop Improvement Division, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK.

ABSTRACT

Plant cysteine proteinase inhibitors or also called phytocystatins inhibit the action of cysteine proteinases in plants. These proteinases are involved in many developmental processes by degrading proteins. In this study possible effects of an exogenous oryzacystatin-I (OC-I) expressed in transformed tobacco has been investigated. By challenging OC-I expressing and non-expressing tobacco with drought and heat stress, OC-I transcription and translation were not affected in OC-I expressing plants and plant extracts from stressed plants containing the inhibitor inhibited papain activity *in vitro*. Further, plant growth and photosynthesis was not greatly different under the selected growth conditions in both plant types under stress and non-stress conditions. However, OC-I expressing plants showed slightly lower photosynthetic rate, were shorter and had a higher lower dry mass production under non-stress condition. By applying cDNA Representational Difference Analysis (cDNA-RDA) to detect differentially expressed genes in the two types of plants, a gene coding for the light harvesting chlorophyll *a/b* binding protein gene (*lhcb1*) of photosystem II (LHC II) was

isolated from non-OCI expressing plants. Northern blot analysis showed lower transcript accumulation of the *lhcb1* gene in OCI-expressing plants both under non-stress and stress conditions, which was accompanied by lower chlorophyll content in OC-I expressing plants. Furthermore, plants benefited from OC-I expression by protection of a variety of expressed proteins against degradation. Identification of possible target cysteine proteinases for OC-I in tobacco resulted in the isolation, cloning and characterization of two new papain-like cysteine proteinases from tobacco designated NtCP1 and NtCP2. NtCP1 was expressed only in senescent leaves and it was not induced in mature green leaves upon exposure to drought or heat stress. *Nt*CP1 has therefore a possible potential as a developmental senescence marker in tobacco. In contrast, NtCP2, which was expressed in mature green leaves, has a high similarity to KDEL-tailed cysteine proteinases that are involved in programmed cell death. Both drought and heat decreased NtCP2 transcript abundance in mature green leaves. Overall, this study has provided evidence that expression of exogenous OC-I does not significantly improve plant performance in tobacco in terms of physiological traits under drought and heat stress but provides protection in terms of stability of protein expression by possibly interacting with endogenous tobacco cysteine proteinases. Further detailed studies are suggested on the interaction of endogenous cysteine proteinases and exogenous phytocystatins to elucidate in more detail the type of interaction.

RESEARCH AIM AND OBJECTIVES

Genetic enginnering of plants, which involves the transfer of a sigle or multiple genes of interest to a plant genome, have been widely used both for introduction of desirable traits to plants and for a basic molecular biology study of gene function. A siginificant number of plants that have been transformed with stress tolerance genes have been generated. Evidences, however, suggest that the introduction of such genes into plant genome may not always results in desirable abiotic stress tolerant phenotype. This can partially be attributed to the level of expression of the transgene as well as subsequent stability of the transgene encoded protein under abiotic stress. Undesirable interaction of the introduced transgene with plant nomal function has been also a frequent phenomenon. In this PhD study, it was hypothesized that constitutive overexpression of a rice cysteine proteinase inhibitor transgene (OC-I) in tobacco could confere protection against abiotic stresses, such as drought and heat. The aim of this study was to compare OC-I expressing tobacco plants with non-transformed plants both at physiological and molecular level in order to prove the working hypothesis that OC-I could confer protection against abiotic stresses. The specific objectives were to: (1) study the expression and stability of the OC-I transgene under drought and heat stress, (2) evaluate growth performance of transformed and non-trasformed plants under drought and heat stress, (3) isolate differentially expressed genes between transformed and nontrasformed plants under heat stress by using a technique of representational difference analysis of cDNA (cDNA-RDA) and (4) clone tobacco cysteine proteinases that could be possible endogeous targets of exogenous OC-I.

THESIS COMPOSITION

Chapter one reviews the current knowledge about plant responses to drought and heat stress. This chapter in particular covers the present knowledge on genes that have been identified and investigated to respond to drought and heat and have also been used to enhance stress tolerance. Further, this chapter provides in greater detail an overview about previous and current research on the different types of plant proteinases and proteinase inhibitors, their action and location in plants and their involvement in plant stress reactions. Chapter two reports on the characterization of transformed tobacco, which expresses an exogenous rice cysteine proteinase inhibitor (OC-I) gene. In particular, the chapter deals with detection of inhibitor integration into the plant genome and expression of the inhibitor in transformed tobacco under drought and heat stress. Chapter three compares, by measuring a variety of physiological parameters, plant performance of OC-I expressing and non-expressing tobacco plants under drought and heat stress and combination of both stresses to evaluate any benefit for plants of exogenous OC-I expression. This chapter reports about studies that have been carried out in the greenhouse and in environmentally controlled growth chambers. Chapter four presents results of the isolation of gene sequences differentially expressed between OC-I expressing plants and non-expressing plants in response to heat treatment by applying the technique of c-DNA Representational Difference Analysis (cDNA-RDA). In particular, results of expression of a sequence coding for a chlorophyll-binding protein under heat stress are reported. Finally, this chapter also deals with results obtained for pigment production and protein expression patterns in OC-I expressing and non-expressing tobacco under stress and non-stress conditions using spectro-photometry for pigment content determination and twodimensional gel electrophoresis (2DE) for detection of expressed proteins. **Chapter five** describes the cloning and detailed characterization of two new papain-like cysteine proteinases from tobacco leaves. This chapter also presents the expression patterns of these proteinases in response to drought, heat and combination of both stresses. **Chapter six** summarizes the new aspects of the study. This chapter specifically focuses on how the study has contributed to an advanced understanding of the consequences of exogenous OC-I expression in tobacco and in particular the benefits gained from OC-I expression but also its limitation. Finally, this chapter also outlines possible future research activities including the isolation and characterization of endogenous cysteine proteinases that might interact with expressed exogenous inhibitors.

ACKNOWLEDGEMENTS

I could have taken a wrong detour than being in academic environment had it not been for the caring father and mother. I thank both for bringing me up to the level where I am today.

My sincere thanks to my supervisor, Prof Karl Kunert for all his patience, support and guidance through out this study. Two moments were very special, first dating back to September 2001 for facilitating my transfer from the Kasetsart University in Bangkok to the University of Pretoria and second the opportunities he gave me to visit my family whom I missed most during this study. I would also thank my co-supervisor Prof. Christeine Foyer for giving me the privillage to visit her lab at Rothamsted Resaech and learn proteomics.

I am very much indepted to Alemaya University for sponsoring my study. Special thanks to Prof. Belay Kassa for all the support he rendered to me and my family. My sincere gratitude also to colleagues and friends at Forestry and Agricultural Biotechnology Institute (FABI), the University of Pretoria, who suppoted me during my study.

It also gives me a pleasure to thank best friends and colleagues, Yoseph Beyene, Tekalign Tsegaw, Abubakar Hassen, Solomon Kebede and Geremew Eticha and Mesfin Bogale for all their support during this study and advises in life. Tesfaye Lemma, Eyassu Seifu, Solomon Worku, Wondemeneh A., Yared M. and Melaku Z. are also acknowledged.

Last but not least I would like to thank my wife Mulualem Geleta and my Son Kena Getu for their patience and support during my absentees for more than three year. I am also pleased to welcome our second boy who came to this world on the 7th of this month while this thesis was getting in shape.

ABBREVIATIONS AND SYMBOLS

ABA	Abscisic acid
ABRE	ABA-responsive element
APX	Ascorbate peroxidase
AREB	ABRE-binding proteins
BBTI	Bowman-Birk trypsine inhibitor
bp	Base pair
ĊaMV	Cauliflower Mosaic Virus
CO_2	Carbondioxide
COR15A	Cold-Regulated 15A
DRE/CRT	Dehydration-responsive element/C-repeat
DREB1/CBF	DRE/CRT binding protein
E-64	Trans-epoxysuccinyl-L-leucylamido (4-guanidino) butane
EDTA	Ethylenediaminetetraacetic acid
ER	Endoplasmic Reticulum
ESTs	Expressed Sequence Tag sequencing"
g	Gram
HR	Hypersensitive
HSF	heat shock factors
HSPs	Heat shock proteins
IPG	Immobilized pH gradient
IPM	Integrated pest management
JA.	Jasmonic acid
kDa	Killo Dalton
KIN	Cold-inducible
LEA	Late embryogenesis abundant proteins
LHC II	light harvesting chlorophyll a/b binding protein of photosystem II
LSU	Large subunit
Μ	Molarity
MeJA	Methyl jasmonate,
mL	Milliliter
MPSS	Massively Parallel Signature Sequencing
nm	Nanometer
OC-I	Oryzacystatin-I
ORF	Open reading frame
PAGE	Polyacrylamide gel electrophoresis
PCD	Programmed cell death
PCR	Polymerase Chain Reaction
PEG	Polyethylene glycol
PhyCys	Phytocystatin
PI	Proteinase inhibitor
PMSF	Phenylmethylsulphonyl fluoride
RACE	Rapid amplification of cDNA ends
rbcL	Gene coding for large subunits of Rubisco

rbcS	Gene coding for small subunits of Rubisco
rd29A	Responsive to dehydration rd29A
RDA	Representational Difference Analysis
ROS	Reactive oxygen species
Rubisco	Ribulose-1,5-bisphosphate carboxylase/oxygenase
RWC,	Relative water content
SAG	Senescence associated gene
SAGE	Serial Analysis of Gene Expression
SD	Standard deviation
SDG	Senescence down-regulated gene
SDS	Sodium dodecyl sulphate
SE	Standard error
SO_2	Sulfur dioxide
SSU	Small subunit
TBS	Tris-buffered saline
TBS-T	Tris-buffered saline-Tween
TMV	Tobacco mosaic virus-i
U	Unit
UTR	Untranslated regions
UV	Ultra violet
VPE	Vacuolar processing enzyme
Z-phe-arg-AMC	Benzyloxycarbonyl-phenylalanine-arginie aminomythylcoumarin
α -AI-1	α -amylase inhibitor 1
μg	microgram
μl	Microlitre
μM	Micromolar
%	Percentage
°C	Degree Celsius
2DE	Two-dimensional gel electrophoresis
m	Metre

LIST OF FIGURES

Figure 1.1 Biotic and abiotic stresses that affect plant growth and development
Figure 1.2 Techniques for gene expression profiling technologies
Figure 1.3 Regulatory networks of <i>cis</i> -acting elements and transcription factors involved in
osmotic- and cold-stress responsive gene expression
Figure 1.4 Drought stress inducible genes and their possible functions in stress tolerance and
response13
Figure 1.5 Genes that have been used to enhance abiotic stress tolerance in plants
Figure 1.6 Functions of plant cysteine proteinases. 22

Figure 2.4 Residual papain activity (%) in the presence of 100 μ g of plant soluble protein. 67

- Figure 3.2 Plant growth and net photosynthetic rates of non-transformed and transformed plants under drought (D), heat (H) or a combination of both stresses (D&H). 81

- Figure 5.1 (A) Tobacco plant and (B) developmental stages of leaves with progression of natural senescence. For the study fully expanded mature green (G3) and senescent

- Figure 5.3 Nucleotide and deduced amino acid sequence of NtCP1 (A) and NtCP2 (B). ... 133

- Figure 5.7 (A) Northern blot analysis for detection of *Nt*CP1 and *Nt*CP2 expression in mature green and senescent leaves... 142

LIST OF TABLES

Table 1.1 Mechanisms, genes, genetically modified plants and enhanced tolerance to abiotic
stress (adapted from Wang et al., 2003) 18
Table 1.2 Proteinases and PIs induced/repressed under different stresses and treatments 33
Table 1.3 Families of plant proteinaceous proteinase inhibitors
Table 1.4 Transgenic plants expressing cystatin genes for defense against pests and
physiological studies (adapted from Haq et al., 2004).

Table 3.1 Effect of drought stress on photosynthesis, stomatal conductance and transpiration	
rates of non-transformed and transformed tobacco plants (data are mean \pm S.E. of	
10 individual plants)	