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Abstract

Gradient-based optimisers are a natural way to solve optimisation problems, and

have long been used for their efficacy in exploiting the search space. Particle swarm

optimisers (PSOs), when using reasonable algorithm parameters, are considered to have

good exploration characteristics.

This thesis proposes a specific way of constructing hybrid gradient PSOs. Hetero-

geneous, hybrid gradient PSOs are constructed by allowing the gradient algorithm to

optimise local best particles, while the PSO algorithm governs the behaviour of the rest

of the swarm. This approach allows the distinct algorithms to concentrate on performing

the separate tasks of exploration and exploitation. Two new PSOs, the Gradient De-

scent PSO, which combines the Gradient Descent and PSO algorithms, and the LeapFrog

PSO, which combines the LeapFrog and PSO algorithms, are introduced. The GDPSO

represents arguably the simplest hybrid gradient PSO possible, while the LeapFrog PSO

incorporates the more sophisticated LFOP1(b) algorithm, exhibiting a heuristic algo-

rithm design and dynamic time step adjustment mechanism. The strong tendency of

these hybrids to prematurely converge is examined, and it is shown that by modifying

algorithm parameters and delaying the introduction of gradient information, it is pos-

sible to retain strong exploration capabilities of the original PSO algorithm while also

benefiting from the exploitation of the gradient algorithms.
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Chapter 1

Introduction

Optimisation is a concept taken for granted by many, without giving it a second thought.

From the availability and speed of communication networks to the strategic placement

of convenience stores, today’s modern society has come to rely on optimisation to ensure

that people can carry on with their lives efficiently. Featured in almost all aspects of

human civilisation, optimisation has truly become both ubiquitous and critical.

In order to better define optimisation, consider the analogy of a racing team, at-

tempting to fine-tune their car for a race. In racing, the goal of optimisation is relatively

straight forward and well defined; namely configure the car to travel around a race track

as quickly as possible. There are a myriad of settings on the race car (known as variables

in the context of optimisation) which can be adjusted to accomplish this task, such as

tyre width and compound, the size, angle and placement of aerodynamic wings, chassis

height, and so on. This seemingly simple task hides much complexity. Even considering

a single setting in isolation, such as the size of an aerodynamic wing, can be complex.

In this case, an increase in the size of the wing will provide more downward force at the

cost of higher drag on the vehicle. Worse still, some of the settings may influence other

settings, and the problem can quickly become unmanageable. The traditional solution

to this problem would be to employ race engineers, who have prior experience in the

field. These experts could make intuitive guesses regarding the correct settings, perhaps

resulting in a solution which is acceptable.

While many problems can be solved with the above human approach, a problem could

1

 
 
 



Chapter 1. Introduction 2

be encountered for which no pool of human experts is available. Other problems may

have such a large number of variables that it is unfeasible for humans to attempt to guess

an acceptable solution. In these situations, it is possible to employ computer algorithms

to do much of the work. In the above racing team analogy, it would be possible to create

a computer simulation of the physics surrounding a race car. Given such a simulation, it

would be possible for a computer to try different settings, typically orders of magnitude

more rapidly and cost effectively than attempting to do the same with the actual race

car.

1.1 Motivation

Particle swarm optimisers (PSOs) are just one of the many different types of optimisation

algorithms available in the field of computational intelligence. They mimic the movement

of groups of animals, such as a flock of birds, in the virtual space of the problem being

optimised. Simple to implement, they are surprisingly apt at finding good solutions early

on, a task referred to as exploration.

Gradient based algorithms are another class of optimisation algorithms. They make

use of the direction of the largest improvement in the quality of solutions in order to

obtain successive solutions. This direction is represented by the gradient of the problem.

The process of repeatedly modifying a candidate solution aims to eventually end up with

a solution which can no longer be improved upon using this method. Gradient algorithms

are a natural way to solve simple optimisation problems, and they are generally regarded

as being efficient at finding good solutions close to the solution that they start out with.

This task is known as exploitation.

It seems to make sense to combine one algorithm which is good at exploration under

certain conditions (PSO), with another which is good at exploitation (gradient algo-

rithms). This idea is not entirely new; such hybrid algorithms exist, even given the

relatively recent rise to popularity of PSOs. Examples of PSOs which are conceptually

similar include the Hybrid Gradient Descent PSO (HGPSO) discussed in section 2.5.5,

the Division of Labour PSO discussed in section 2.5.8, and arguably the two-step PSO

discussed in section 2.5.4. The algorithm that is the closest conceptually is the HG-
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PSO, which uses an actual gradient descent component in the velocity update equation,

instead of the usual cognitive update. While the intent of the HGPSO is in the spirit

of the original PSO, namely to balance the tasks of exploration and exploitation, it is

quite different to the approach used in this dissertation to construct hybrid algorithms,

making an investigation into other approaches worthwhile. Furthermore, this disserta-

tion argues that by replacing portions of the original PSO velocity update equation and

applying gradient search capability to all particles in the swarm, the approach used in

the HGPSO may detract from the ability of the swarm to efficiently explore.

By separating the concern of individual particles within the swarm to that of explo-

ration and exploitation, a heterogeneous swarm results. This approach is significantly

different to most existing gradient hybrid PSOs, having perhaps more in common with

the DoLPSO. This thesis intends to show that these heterogeneous swarms offer a nat-

ural and feasible way to introduce a second, local-search oriented algorithm into the

PSO algorithm, resulting in retained exploration capability and increased exploitation

capability.

1.2 Objectives

The objectives of this dissertation can be summarised as follows:

� Formally define a new, novel way to construct gradient hybrid PSOs.

� Present new and specific gradient hybrid PSO algorithms constructed using the

new approach.

� Explore the performance characteristics of these hybrid algorithms.

� Attempt to correct or suggest corrections for the deficiencies of these algorithms.

1.3 Contributions

The dissertation provides the following contributions to the field of computational intel-

ligence:
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� A new approach to constructing gradient hybrid algorithms, formalised as the

Generalised Local Search PSO (GLSPSO).

� The Gradient Descent PSO (GDPSO), which differs from existing hybrid PSOs

which make use of the gradient descent algorithm in the way the algorithm is

incorporated into PSO.

� The LeapFrog PSO, a combination of the LFOP1(b) and PSO algorithms which

has never been done previously.

� A discussion on the nature of the problems resulting from the combination of the

gradient and PSO algorithms, specifically premature convergence.

� Simple solutions to the problem of premature convergence by way of algorithm

parameter adjustment, as well as delayed introduction of gradient information.

Validation of these solutions using empirical experimentation.

1.4 Dissertation outline

The remainder of the dissertation is structured as follows:

� Chapter 2 gives background information on the concept of optimisation, gradient

optimisers, PSOs, hybrid gradient PSOs, as well as existing research that is relevant

to the dissertation.

� Chapter 3 examines the concept of constructing a gradient hybrid PSO. The

Gradient Descent PSO (GDPSO), LeapFrog PSO (LFPSO), and a generalisation

of the two, the Generalised Local Search PSO (GLSPSO), are formally described.

An argument is put forward for the specific approach to constructing these hybrid

PSOs. Several potential issues, such as premature convergence, and large variances

in problem gradients, are discussed, and potential solutions are presented. Gradient

estimation is briefly discussed.

� Chapter 4 details the experimental methodology used to obtain empirical results.

The benchmark functions used are clearly defined, and modifications used to the
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functions, such as function shifting, is discussed. All algorithm and experimental

assumptions are given, as well as the statistical method used to determine statistical

significance of results.

� Chapter 5 provides and discusses empirical results obtained via experimentation.

By systematically providing a series of hypotheses, constructing experiments to

validate them, and analysing the results of the experiments, this chapter aims to

meet the performance related objectives of this dissertation.

� Chapter 6 gives a conclusion to the dissertation. A summary of the experimental

results, and the significance of each, is discussed. The initial objectives of the

dissertation are revisited, and compared to the actual findings.

 
 
 



Chapter 2

Background

This chapter serves as an overview of optimisation problems and algorithms relevant to

this thesis. First, the concept of optimisation is discussed in section 2.1. Two gradient-

based optimisation algorithms, viz. gradient descent (section 2.2) and the LeapFrog

algorithm (section 2.3), are examined. The particle swarm optimiser (PSO) is discussed

in section 2.4, followed by a discussion of modifications to the basic PSO algorithm in-

volving techniques such as mutation, gradient-based approaches and division of labour

(section 2.5). The latter modifications and algorithms are deemed relevant due to con-

ceptual similarities to the algorithms introduced in this dissertation, or in certain cases,

due to their role as benchmark algorithms to compare against in experimental results.

Section 2.6 gives conclusions about the background material presented.

2.1 Optimisation

This section provides a compact review of optimisation. Section 2.1.1 formalises the

concept of optimisation. An illustration of minima is given in section 2.1.2.

2.1.1 Formal Definitions

Chapter 1 introduced the concept of optimisation with the race car analogy, however a

more formal definition is required. An optimisation problem can be defined as follows:

6
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The task of finding values for a set of variables, such that a defined measure of

optimality is obtained and a set of constraints is satisfied.

Let A denote the set of all permissible solutions, also referred to as the search space.

The objective function, denoted by f , is a measure of the quality of a given solution. The

task is then to find a solution, denoted by x, such that f(x) is acceptable, and x ∈ A.

An algorithm which performs this task is known as an optimisation algorithm.

In the case of the analogy from chapter 1, x would represent a configuration of the

car (i.e., all the individual settings which together define a possible configuration for

the car), f(x) would be a measurement of how fast the car completed a lap given the

settings, and A would define all possible configurations for the car. The optimisation

task is then to find a configuration, x, which minimises the time, f(x), the car takes to

complete a lap.

Optimisation problems can be classified based on the following criteria:

� Problems where solutions must satisfy a set of constraints are known as constrained

optimisation problems. Unconstrained problems typically only have boundary con-

straints, which define upper and lower limits for each of the variables being opti-

mised.

� If A ⊆ Rn, then the optimisation problem is said to be continuous-valued. Discrete

optimisation problems are those where A ⊆ Zn. It is possible for an optimisation

problem to involve solutions where a mixture of discrete- and continuous-valued

variables are being optimised; these are referred to as mixed integer optimisation

problems.

� Problems where the objective function can be expressed as a linear equation are

known as linear optimisation problems. Non-linear problems involve a non-linear

objective function, and are typically more difficult to solve.

� Considering regions of the search space which contain only a single “best” solution,

it is possible to differentiate between problems that contain only a single such region

and problems which exhibit multiple such regions. The former are referred to as

unimodal whilst the latter are referred to as multimodal. Multimodal problems are

typically far more complex.
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� Problems where the quality of a solution is defined by a single objective func-

tion are referred to as single-objective problems. Multi-objective problems involve

the optimisation of variables in order to find an acceptable solution to multiple

objective functions at the same time.

� Optimisation problems where the goal is to find min(f(x)) are known as minimi-

sation problems, whilst problems where the goal is to find max(f(x)) are known as

maximisation problems.

� Dynamic optimisation problems exhibit search spaces which change with time.

Static optimisation problems have search spaces which remain constant.

This thesis is primarily concerned with continuous-valued, nonlinear, static, single-

objective function minimisation problems. We can see that max(f(x)) is equivalent

to min(−f(x)), therefore no further distinction between minimisation and maximisation

problems will be made in this chapter, and minimisation will be assumed unless otherwise

stated. This subset of optimisation problems can be formally defined as:

Given f : A→ R where A ∈ Rn

find a solution x∗ : f(x∗) < f(x), ∀x ∈ A
(2.1)

Solutions can be classified by their quality when compared to other solutions. In the

case of function minimisation, a solution is referred to as a minimum if it is the best

solution within a certain region B of the search space A. Minima can be classified as

global or local, depending on the extent of the region B, and the latter can be further

categorised into strong and weak local minima. The solution, x∗, from definition 2.1

represents a global minimum, since it satisfies the criteria for global minima. Formal

definitions for the different types of minima are given below.

Global minimum

The solution x∗ ∈ A is a global minimum of f if

f(x∗) < f(x), ∀x ∈ A (2.2)
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Thus global minima represent the best possible solutions out of the set of all feasible

candidate solutions A. In contrast, local minima are the best solutions only within some

subset of A. The distinction between strong and weak local minima is formally defined

in equations (2.3) and (2.4):

Strong local minimum

The solution x∗B ∈ B ⊆ A is a strong local minimum of f if

f(x∗B) < f(x), ∀x ∈ B (2.3)

where B is a set of candidate solutions in the neighbourhood of x∗B.

Weak local minimum

The solution x∗B ∈ B ⊆ A is a weak local minimum of f if

f(x∗B) <= f(x), ∀x ∈ B (2.4)

where B is a set of candidate solutions in the neighbourhood of x∗B.

2.1.2 An Illustration of Minima

Figure 2.1 illustrates the concept of minima, as discussed in section 2.1.1. The function

f(x) is a one-dimensional, multimodal objective function. For the purpose of the illus-

tration, it can be assumed that the entire domain A of f is shown. The horizontal axis

represents values of x, while the vertical axis represents the quality of these solutions.

The global minimum, x∗ is readily identifiable as the lowest point of the objective func-

tion. The figure also contains two local minima, x∗B and x∗C , where B and C represent

the regions immediately surrounding the minima. The leftmost minimum, x∗B, can be

classified as a strong local minimum, since as per definition 2.3, it is possible to identify

a single point for which the value of the objective function f is lower than all the other

points in its vicinity. The rightmost minimum, x∗C , can be identified as a weak local
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minimum, because multiple points in the area C result in the same, locally lowest point

for f .

Figure 2.1: Global and local minima

2.2 Gradient Descent

This section describes the gradient descent optimisation algorithm. An overview is given

in section 2.2.1, followed by a discussion of parameter selection issues (section 2.2.2). A

graphical illustration of the algorithm is given in section 2.2.3.

2.2.1 Overview

Gradient descent (GD) [39] is one of the simplest algorithms for unconstrained optimi-

sation, and can be defined as follows:
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x(t+ 1) = x(t)− δ∇f(x(t)) (2.5)

where x(t) represents a candidate solution at time step t, ∇f(x(t)) represents the gradi-

ent of the objective function f at the position represented by x(t), and δ is an arbitrary

ratio, referred to as the step size.

The algorithm operates on the basis that for any given value of x, the value of f(x)

increases most rapidly in the direction of the gradient, ∇f(x). Conversely, the direction

of −∇f(x) provides the most rapid decrease in the value f(x); for this reason, gradient

descent is sometimes also referred to as the method of steepest descent.

It follows that given an initial position x(0) ∈ B ⊆ A, iterating equation (2.5) with

sufficiently small values for δ will result in x(t) ≈ x∗B for increasing values of t .

Algorithm 2.1 The Gradient Descent Algorithm

1: Initialise x(0) ∈ A;

2: repeat

3: x(t+ 1) = x(t)− δ∇f(x(t));

4: until stopping condition is true

Gradient descent (refer to algorithm 2.1) can be used as an unconstrained opti-

misation algorithm where the gradient of f is known, or can be approximated. The

algorithm’s simplicity has lead to widespread use in optimisation, e.g. in the training of

neural networks [19, 9, 61].

2.2.2 Parameter Selection

The basic gradient descent algorithm defines only one algorithm parameter, namely the

step size, δ. The selection of a good value for δ is essential, because it influences the

performance of the gradient descent algorithm greatly. Too small a value consumes too

much computing time, while too large a value can result in the optimum point being

missed. It should be noted that the choice of value for δ is highly problem dependent,

as can be seen in the empirically determined values given later on in section 4.4.2, and

specifically table 4.4 (where the optimal values for δ were determined using a standard

GD algorithm).
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Typically, parameters are selected during trials where two or more parameter selec-

tions are evaluated, and the results compared against each other. The outcomes of these

trials serve as an indication of good values for δ for a given optimisation problem.

There are a number of approaches to parameter selection, examples of which would

be constant values, linearly decreasing values and dynamic methods. A short overview

of each approach is given below.

Constant values for δ

In this approach to setting the parameter δ, the value for δ is set once, and never

changes. Assigning a constant value for δ is the simplest option, but can result in other

complications:

� Large values usually allow for rapid improvement early on, but run the risk of

overshooting a local minimum, and tend to produce less accurate results.

� Small values tend to produce more accurate results, but take proportionally longer

to find the local minimum. They are also more likely to get trapped in local

minima.

Decreasing values for δ

The parameter δ can also be set by starting with a given value for δ, and defining a

scheme whereby it is decreased after each iteration [35], e.g.:

δ(t+ 1) = δ(t)− γ (2.6)

where γ ∈ R is an arbitrary, small value and δ(t) > γ so as to ensure that δ remains

positive. Updating δ thus after each iteration would result in δ decreasing after each

iteration, with the aim being to balance benefits of having a large value for δ early on, and

having a small value as time goes on and focus shifts from exploration to exploitation.

These methods, although often providing better results than with constant values,

do still suffer from various issues:
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� A value for γ needs to be defined, which in effect attempts to estimate the desired

number of steps for the algorithm to find a solution.

� Many objective functions exhibit a landscape such that a linearly decreasing value

for δ may not be the most appropriate choice, since the scheme does not cater for

increasing δ.

Dynamic methods for δ

More complex approaches can be created for managing the choice of δ, such as the

dynamic time step control mechanism employed in the LeapFrog algorithm [54], which is

discussed in detail in section 2.3. It should be noted that while the LeapFrog algorithm

differs from gradient descent, the concept of the time step variable ∆t is analogous to the

GD parameter δ. These approaches are usually aimed at addressing the shortcomings

of the above approaches, or increasing the level of autonomy of the algorithm, which

the use of additional algorithm parameters tend to detract from. In the case of the

LeapFrog algorithm, the dynamic method employed is able to both increase or decrease

the value that algorithm’s equivalent of δ, dictated by certain heuristic decisions based

on the recent history of the algorithm’s position updates.

2.2.3 An Illustration of the Gradient Descent Algorithm

Figure 2.2 is a graphical illustration of the constant step size version of the gradient

descent algorithm applied to minimising the one-dimensional version of the spherical

function, f(x) = x2. The spherical function is unimodal, consisting of a single global

minimum, and no local minima. Since ∇f(x) = f ′(x) = 2x, it is apparent that applying

the gradient descent position update for any value of x(t) will result in x(t+ 1) moving

closer to x∗ = 0, as long as δ is small enough. It is also worthwhile noting that the

change in x is determined by not only δ, but also the steepness of the gradient at x,

since the gradient is typically not normalised.

Since the combined effect of δ and the steepness of the gradient may result in a

positional update which overshoots x∗, it is not possible to deduce that f(x(t+ 1)) <=

f(x(t)). Algorithms which do guarantee this property are known as hill climbing or hill
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Figure 2.2: A geometric illustration of the gradient descent algorithm

descent algorithms, depending on the context of problem maximisation or minimisation.

In both cases, the terms imply a an algorithm which guarantees that the solution to

the objective function at each subsequent step does not deteriorate. Although gradient

descent is strictly speaking not a hill descent algorithm, it does exhibit extremely good

local optimisation characteristics.

Gradient-based algorithms, such as gradient descent, typically perform extremely well

on unimodal functions, but often get trapped by local minima on multimodal functions,
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where they tend to find the best solution in the localised area where the algorithm is

started.

2.3 The LeapFrog Algorithm

In his original 1982 paper [52], Snyman proposed a new gradient method for uncon-

strained optimisation, which eventually became known as the LeapFrog algorithm. Sny-

man’s algorithm views the search space of the problem as a force field, through which a

particle moves. The algorithm attempts to predict the trajectory of the particle using

established methods from the field of molecular dynamics, thus effectively finding a lo-

cally optimal solution. An improved version of the algorithm, known as LFOP1(b), was

proposed in [54]. The improved version included a mechanism for dynamically adjusting

the time-step of the algorithm, which enabled the algorithm to be effective on a wider

range of problems.

The LeapFrog algorithm belongs to a class of algorithms which are referred to as

Quasi-Newton methods. The application of Newton’s method to function minimisation

involves the observation that local minima occur where ∇f(x∗) = f ′(x∗) = 0. Therefore

if x∗ is a local minimum, then it is also a root of f ′(x), and as such one can solve for it

by applying Newton’s method [13, 25]. In contrast with Newton’s Method [48], Quasi-

Newton methods [12] approximate the Hessian matrix of f ′′(x) by observing the gradient

in sequential time steps.

An overview of the LeapFrog algorithm is given in section 2.3.1, followed by a dis-

cussion on parameter selection in section 2.3.2. A summary is given in section 2.3.3.

2.3.1 Overview of the LeapFrog Algorithm

Consider the minimisation problem specified in equation (2.1), namely to minimise f(x),

where x = (x1, x2, ..., xn)T ∈ Rn. Suppose that x represents the position of a particle of

unit mass in a conservative force field and f(x) represents the potential energy of the

particle. By conservation of energy, it follows that:
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f(x) = −
∫ x

x∗
a(s)Tds+ f(x∗) (2.7)

where a(s) represents the force on the particle at each point s in the force field. The

kinetic energy of the particle is:

K(x) =
1

2

n∑
i=1

ẋ2
i =

1

2
||ẋ||2 (2.8)

where ẋ is the shorthand for dx
dt

, the derivative of x with respect to time. The Lagrangian

can be written as:

L(x) = K(x)− f(x) (2.9)

The Euler-Lagrange equation is:

d

dt

(
∂L

∂ẋi

)
− ∂L

∂xi
= 0 (2.10)

where i = 1, ..., n. Substitution of equations (2.7) and (2.8) into equation (2.9) and

subsequently into equation (2.10) yields:

ẍ = −∇f = a (2.11)

where ẍ is the second-order derivative of x with respect to time, i.e. d2x
dt2

. Snyman equates

ẍ to a new variable, a, presumably a shortening for acceleration (since it represents

the second order derivative), and primarily serving to differentiate from x in Snyman’s

FORTRAN code listing. This new variable is used in parts of the algorithm description

in [52], and will be the notation used in this summary in turn. Given the following initial

conditions,

x(0) = x0

ẋ(0) = v(0) = v0 = 0
(2.12)

and the fact that the force field is conservative,

K(x) + f(x) = K(x0) + f(x0) = E0 (2.13)
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where E0 is the total energy at time step 0. Since K(x0) = 0, it is apparent that along

the path of the particle, f(x) ≤ f(x0).

Snyman [52] observed that in the absence of frictional forces, the particle will be in

constant motion, and will not necessarily pass through x∗. In order to ensure convergence

of the particle, Snyman proposed an interfering strategy, whereby the energy of the

particle is systematically reduced. A damping term is considered, whereby:

ẍ = −∇f − αẋ (2.14)

This approach, however, is found to be too dependent on an appropriate choice of the

damping coefficient α, which brings about complexities similar to the choice of δ in the

gradient descent algorithm. Instead, an alternative approach was subsequently proposed

by Snyman [52]. Consider that by conservation of energy, the following relation holds:

∆ft = f(x(t+ 1))− f(x(t))

= −K(x(t+ 1)) +K(x(t))

= −∆K(t)

(2.15)

If ∆K(x(t)) > 0, then ∆f(x(t)) < 0, which is desirable. Snyman proposed [52] the

following strategy to be implemented at each time step t:

Monitor ||v(t+ 1)||

if and only if ||v(t+ 1)|| ≤ ||v(t)||;

set v(t) = 0

(2.16)

where the notation ||v(t + 1)|| and ||v(t)|| refers to the Euclidean length of the vectors

v(t + 1) and v(t), respectively. Snyman states that the success of the algorithm rests

on the selection of an integration method which is accurate and stable, but also retains

the conservation of energy property. An integration mechanism known as the ‘leap-frog’

method, found by Greenspan to be stable [24], is employed. The entire optimisation

algorithm would eventually come to be called the ‘LeapFrog’ algorithm, abbreviated to

LFOP, after the choice of the integration method, which can be defined as:
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x(t+ 1) = x(t) + v(t)∆t

v(t+ 1) = v(t) + a(t+ 1)∆t
(2.17)

where a(t) = −∇f(x(t)).

Having established a basic algorithm, Snyman proposed [52] several heuristic argu-

ments to enhance the behaviour of the algorithm. Consider the strategy proposed in

equation (2.16). Snyman argued that by setting v(t) = 0, information regarding the

correct search direction is lost, resulting in slower convergence. In order to decrease ve-

locity, but maintain the search direction, the following empirically established approach

is adopted:

v(t) = (v(t) + v(t+ 1))/4 (2.18)

Furthermore, empirical results showed that a similar argument could be made for

setting x(t+ 1) = x(t), resulting in the following approach for restarts:

x(t+ 1) = (x(t) + x(t+ 1))/2 (2.19)

In order to prevent a scenario where the particle continues to climb uphill, Snyman

proposed [52] that v(t) be set to 0, and x(t+1) = (x(t)+x(t+1))/2 if ||v(t+1)|| ≤ ||v(t)||
for more than two consecutive time steps. Thereafter, equation (2.18) is employed only

on the first occasion when ||v(t+ 1)|| ≤ ||v(t)||.
In certain areas of the objective function f , the gradient could be very large, resulting

in large changes in the position of the particle. Extremely large changes in position

are typically not desirable and Snyman proposed the following approach, effectively

requiring:

||∆x(t)|| ≤ δ (2.20)

where δ is an algorithm parameter, specifying the maximum allowed step size. The

algorithm is regarded as having converged when the following condition holds:

||∇f(t) = ||a(t)|| ≤ ε (2.21)
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where ε ∈ R is a small, positive algorithm parameter.

The above definition became known as LFOP1, or version 1 of the LeapFrog algo-

rithm. Subsequently, Snyman developed a second version of the algorithm [53] known as

LFOP2, which was constructed with less reliance on heuristic arguments. Despite this,

Snyman found that the performance of the original LFOP1 was surprisingly good and

proposed further changes to the algorithm in [54].

In 1982, Snyman pointed out that the effectiveness of LFOP1 relied heavily on the

selection of an appropriate value for the time step parameter, ∆t [52]. The original paper

proposed one possible solution, built around the heuristic argument that a number of

steps taken at the maximum allowed step size δ would lead to inaccuracy. This original

suggestion involved additional an algorithm parameter, M , which would dictate the

number of consecutive steps of δ in size which would be allowed before a reduction was

enforced. To cater for rapid exploitation of relatively flat areas, another parameter, N ,

would serve as a means to limit the number of times this reduction itself was enforced,

essentially allowing for the algorithm to disable the limit if it again accelerated past δ.

While this provided a dynamic way to manage ∆t, it was not until [54] that Snyman

was satisfied with the algorithm. The new algorithm, LFOP1(b), proposes the following

heuristic argument for managing ∆t:

Large values of ∆t result in a trajectory which is inaccurate when compared to the

theoretical true trajectory of the particle. The closer the particle is to x∗ the more im-

portant an accurate trajectory becomes to ensure convergence. By considering the angle

between two successive gradient directions, a(t) and a(t − 1), the algorithm has some

measure of the inaccuracy. Specifically, if the angle between two successive gradient di-

rections is greater than 90°, ∆t has become very large, and should be reduced. Reducing

∆t at the first occurrence of the above condition, however, might be premature, and lead

to slower convergence. Snyman proposed [54] the following approach:
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At each time step t compute aT (t)a(t− 1)

If the quantity is greater than 0 for m consecutive steps, then

∆t = ∆t/2, and

restart with position (x(t) + x(t− 1))/2 and

velocity (v(t) + v(t− 1))/4.

(2.22)

Snyman suggested [54] using the parameter setting m = 3, however, the value for m

can be adjusted for different problems, although no empirical evidence was provided to

evaluate the result of such adjustments. The algorithm also caters for excessive reduction

in step size by magnifying ∆t at each successful step, where a successful step is defined

as a step where aT (t)a(t−1) > 0 and ||∆x(t)|| < δ. In such time steps, ∆t is thus scaled

by a factor of p, computed as follows:

p = (1 +Nδ1) (2.23)

whenever aT (t)a(t− 1) > 0, where δ1 is a small, positive constant, and N is the number

of successful steps carried out. N is reset to 1 whenever aT (t)a(t− 1) ≤ 0, and N is not

incremented if ||∆x(t)|| ≥ δ. Suggested starting values for the parameters are δ1 = 0.001

and ∆t = 0.5.

The LeapFrog algorithm with the above enhanced time step control mechanism is

known as LFOP1(b), and is the preferred version of the algorithm. In the rest of this

thesis, unless otherwise stated, this version of the algorithm is assumed.

The full LFOP1(b) algorithm [54] is summarised in algorithm listing 2.2, which has

been taken from Engelbrecht [20].

 
 
 



Chapter 2. Background 21

Algorithm 2.2 The LeapFrog Algorithm
1: Create a random initial solution x(0), let t = -1;

2: Let ∆t = 0.5, δ = 1,m = 3, δ1 = 0.01, ε = 10−5, i = 0, j = 2, s = 0, p = 1;

3: Compute initial acceleration a(0) = ∇f(x(0)) and velocity v(0) = 1
2
a(0)∆t;

4: repeat

5: t = t+ 1;

6: Compute ‖∆x(t)‖ = ‖v(t)‖∆t

7: if ‖∆x(t)‖ < δ then

8: p = p+ δ1,∆t = p∆t;

9: else

10: v(t) = δv(t)/(∆t ‖v(t)‖);
11: end if

12: if s ≥ m then

13: ∆t = ∆t/2, s = 0;

14: x(t) = (x(t) + x(t− 1))/2;

15: v(t) = (v(t) + v(t− 1))/4;

16: end if

17: x(t+ 1) = x(t) + v(t)∆t;

18: repeat

19: a(t+ 1) = −∇f(x(t+ 1));

20: v(t+ 1) = v(t) + a(t+ 1)∆t;

21: if aT (t+ 1)a(t) > 0 then

22: s = 0;

23: else

24: s = s+ 1, p = 1

25: end if

26: if ‖a(t+ 1)‖ > ε then

27: if ‖v(t− 1)‖ > ‖v(t)‖ then
28: i = 0;

29: else

30: x(t+ 2) = (x(t+ 1) + x(t))/2;

31: i = i+ 1;

32: if i ≤ j then

33: v(t+ 1) = (v(t+ 1) + v(t))/4;

34: t = t+ 1;

35: else

36: v(t+ 1) = 0, j = 1, t = t+ 1;

37: end if

38: end if

39: end if

40: until ‖v(t+ 1)‖ > ‖v(t)‖ ;

41: until ‖a(t+ 1)‖ ≤ ε; Return x(t) as solution;

Figure 2.3 has been created and included here to give an overview of Algorithm 2.2.

The algorithm’s main conceptual points are shown as a flowchart for comprehensibility.
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Figure 2.3: An overview of the LFOP1(b) algorithm

2.3.2 Parameter Selection

The LeapFrog algorithm defines several parameters which can be modified to change the

behaviour of the algorithm. A short discussion follows:

� ∆t is the step size, used to scale the velocity component at each time step. In

the LFOP1(b) version of the algorithm, ∆t is constantly updated by a dynamic

method, as explained in section 2.3.1. However, the initial choice for step size still
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influences the overall algorithm.

� Introduced in [54], p1 is used to modify the ratio p, which scales ∆t at appropriate

points in the algorithm. Essentially, p1 controls how aggressively ∆t is scaled by

the algorithm.

� The parameter δ is used as a threshold to determine whether ∆t should be increased

or decreased. The algorithm effectively attempts to scale ∆t such that ∆t||v(t)|| ≈
δ, making δ the maximum velocity allowed.

� The control parameter j is used as a threshold to determine whether a velocity

reset should occur or not. If the number of consecutive time steps where velocity

has decreased, i, is greater than j, then the velocity is set to 0. The value of j can

be modified to change how quickly the algorithm punishes a decrease in velocity,

which is taken to indicate that the algorithm is finding worse solutions at each

subsequent time step.

� The parameter m is a threshold for determining whether a restart should happen.

If the number of consecutive time steps where gradient components have changed

direction by more than 90°(denoted by s) is greater than m, a restart is performed.

Conceptually similar to j, the parameter m can be modified to change how quickly

the algorithm punishes a ∆t value which causes a large change in direction of

successive gradients.

Snyman provides reasonable defaults for the above parameters in [52, 54], however

provides no further guidance or empirical evidence regarding parameter choices. During

the experiments which provided empirical results for this dissertation, problem specific

values were determined for the parameter ∆t, which was found to have a significant effect

on the performance of the algorithm. These values are given in full in section 4.4.3, table

4.5. In the case of the other algorithm parameters, the reasonable defaults suggested by

Snyman were used.
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2.3.3 Summary

The LeapFrog algorithm has been empirically shown to perform well against comparable

algorithms on benchmark functions [52, 54]. Snyman [52, 54] specifically points to the

scalability of LeapFrog with increasing dimensionality which compares very favourably

with other Quasi-Newton methods. The following is a list of interesting features and

characteristics of the algorithm, which may contribute toward its good performance:

� A dynamic mechanism for adjusting the step size for each iteration. The mechanism

allows both upward and downward scaling of the step size, based on a heuristic

condition which seems to perform well on many benchmark functions.

� Velocity clamping to ensure that velocities do not become too extreme.

� Heuristically triggered restarts which use information from previous time steps.

2.4 Particle Swarm Optimiser

The Particle Swarm Optimiser (PSO) was originally proposed by Eberhart and Kennedy

[14, 28] as a model of the localised movements of groups of animals.

The algorithm has been successfully applied to a diverse set of problems and fields,

such as function minimisation [28], nonlinear mapping [17, 18], neural network training

[21], inversion of neural networks [58], data mining [55] and software testing [63], to name

a few.

In this section, the particle swarm optimiser is described. The basic algorithm is

discussed in section 2.4.1. A graphical illustration of the algorithm in given in section

2.4.2. An overview of particle topologies is given in section 2.4.3. A discussion of swarm

concepts is given in section 2.4.4, followed by discussions on particle trajectories (section

2.4.5) and modifications to the basic algorithm in section 2.4.6. Further modifications

to the algorithm are discussed in section 2.5.
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2.4.1 Basic Algorithm

The PSO maintains a swarm of particles, each representing a candidate solution to the

problem being optimised. The algorithm iteratively updates the position of each particle

in the swarm by calculating a velocity and applying it to each particle’s current position.

Let xi(t) denote the position of particle i, at time step t. The position of the particle

is then updated at each time step as follows:

xi(t+ 1) = xi(t) + vi(t+ 1) (2.24)

When considering a particle i, the velocity consists of three major components:

� A cognitive component, derived from the particle’s previous personal best position.

� A social component, derived from the position of the best particle that particle i

is aware of.

� An inertia component, derived from the particle’s previous velocity.

Each particle maintains its personal best position, allowing the cognitive component

to be calculated. The social component is calculated based on the position of a particle

regarded as the best in a neighbourhood of particles. A neighbourhood refers to a social

structure whereby particles are aware of each other; the concept is further discussed in

section 2.4.3.

Originally, two basic variations of PSO were developed, referred to as the global best

PSO (gbest) and the local best PSO (lbest). They differ from each other only in the size

of the particle neighbourhoods; in fact gbest can be described as a special case of lbest

where only a single neighbourhood (containing the entire swarm) exists. Since gbest is

the simpler of the two algorithms, it will be discussed first.

Global Best PSO

In the case of the gbest PSO, the social structure is such that all particles are fully

interconnected. Effectively, at each time step, all the particles are updated with a social
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component derived from the position of the best particle in the entire swarm, denoted

by ŷ(t).

The velocity is then calculated as follows:

vi,j(t+ 1) = vi,j(t) + c1r1,j(t)[yi,j(t)− xi,j(t)] + c2r2,j(t)[ŷj(t)− xi,j(t)] (2.25)

where vi,j(t) is the velocity of particle i in dimension j at time step t. The equation also

includes the constants c1 and c2, known as acceleration coefficients, which are used to

balance the social and cognitive components, as well as r1,j(t) ∼ U(0, 1) and r2,j(t) ∼
U(0, 1), sampled from a uniform random distribution. The vectors r1 and r2 add a

stochastic element to the algorithm.

Assuming minimisation, the personal best position ŷi of each particle i, is calculated

as:

yi(t+ 1) =

{
yi(t) if f(xi(t+ 1)) ≥ f(yi(t))

xi(t+ 1) if f(xi(t+ 1)) ≤ f(yi(t))
(2.26)

where f is the objective function.

The global best position, ŷ can be calculated as

ŷ(t) ∈ {y0(t), ...,yns
}|f(ŷ(t)) = min{f(y0(t)), ..., f(yns

(t))} (2.27)

where the global best position is defined as the best position discovered by any of the

particles since t = 0. Alternatively, ŷ can also be calculated as

ŷ(t) = min{f(x0(t)), ..., f(xns(t))} (2.28)

where the global best position is defined as the best current position of any particle in the

swarm. It is important to note the difference between equations (2.27) and (2.28); the

former represents the best solution found so far by the swarm, whereas the latter only

takes into consideration the solutions found in the last time step. One of the implications

of equation (2.27) is that the best solution found is never lost, making it fit the condition

of a hill descent algorithm.
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Algorithm 2.3 The gbest PSO Algorithm
1: Create and initialise an nx-dimensional swarm, S;

2: repeat

3: for all particles i ∈ [1, ..., S.ns] do

4: if f(S.xi) < f(S.yi) then

5: S.yi = S.xi;

6: end if

7: if f(S.yi) < f(S.ŷ) then

8: S.ŷ = S.yi;

9: end if

10: end for

11: for all particles i ∈ [1, ..., S.ns] do

12: update the velocity using equation 2.25

13: update the position using equation 2.24

14: end for

15: until stopping condition is true

Using conventions from [20] and [9], the algorithm is summarised in algorithm listing

2.3.

Local Best PSO

In contrast to the global best PSO, local best PSO (lbest PSO) makes use of a social

structure whereby all the particles are not directly connected with each other. A social

structure known as the ring topology is used. The ring topology groups particles into

smaller, interleaved neighbourhoods which slow the spread of social information. It

is important to note that the particle indices - rather than spatial information - are

used to determine particle neighbourhoods (discussed further in section 2.4.3). Particle

topologies, such as the ring topology, are discussed in greater detail in section 2.4.3.

The velocity calculation changes as follows:

vi,j(t+ 1) = vi,j(t) + c1r1,j(t)[yi,j(t)− xi,j(t)] + c2r2,j(t)[ŷi,j(t)− xi,j(t)] (2.29)

where ŷi,j is the best position in dimension j, found by particles in particle i’s neigh-

bourhood.
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Using conventions from [20] and [9], the lbest PSO algorithm is summarised in algo-

rithm listing 2.4.

Algorithm 2.4 The lbest PSO Algorithm
1: Create and initialise an nx-dimensional swarm, S;

2: repeat

3: for all particles i ∈ [1, ..., S.ns] do

4: if f(S.xi) < f(S.yi) then

5: S.yi = S.xi;

6: end if

7: if f(S.yi) < f(S.ŷ) then

8: S.ŷ = S.yi;

9: end if

10: end for

11: for all particles i ∈ [1, ..., S.ns] do

12: update the velocity using equation 2.29

13: update the position using equation 2.24

14: end for

15: until stopping condition is true

2.4.2 An Illustration of the PSO Algorithm

Figure 2.4 illustrates the main forces acting on a single particle. The idea for the geomet-

ric diagram is taken from [19]. The figure shows how the social and cognitive components,

together with the previous time step’s velocity, contribute toward the velocity for the

next time step. The illustration visualises how the PSO velocity equation balances the

various forces acting on a particle, such as the desire to perform a global search (social

component) and the desire to perform local search (cognitive component). The sim-

plicity of the core PSO algorithm is apparent, requiring only elementary mathematical

concepts such as multiplication and vector addition to be implemented.

2.4.3 Topologies

In the context of Particle Swarm Optimisation, the term topology refers to the social

structure, or social connectivity of the particles. A topology determines how a particle’s
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Figure 2.4: A geometric illustration of the PSO velocity components

neighbourhood is defined. The terms neighbourhood and topology are sometimes used

interchangeably. Numerous topologies have been proposed and studied [15, 26, 29, 37],

each exhibiting different characteristics. The choice of topology influences the rate at

which information is exchanged in the swarm, thus influencing the rate of convergence.

It is important to note that whilst the various topologies prescribe connections which

can be visualised as certain shapes, topologies are normally not implemented to take a

particle’s position in the search space into account. Neighbourhoods are typically deter-

mined using the index of each particle, and since particles are usually randomly placed

during initialisation of the algorithm, particles in the same social neighbourhood might

be far apart in terms of the search space. Over time, the social sharing of information

tends to lead to the convergence of inter-connected particles. Neighbourhoods where

the Euclidean distance between particles is taken into account has been proposed by

Suganthan [56]. The Euclidean distance-based topologies are more complex and have a

large computational cost, making the index-based topologies the preferred choice.

Several of the most popular topologies are listed and briefly discussed below.
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The star topology

The social structure employed in the gbest algorithm is known as the star topology. All

particles in the swarm are directly connected with each other, and as a result at each

time step, particles are attracted toward the best particle in the entire swarm. The star

topology leads to rapid convergence of the swarm, and is thought to perform well on

unimodal problems.

The ring topology

The social structure employed in the lbest algorithm is known as the ring topology. Here,

each particle is connected to nN of its closest neighbours. To facilitate the sharing of

information between distinct neighbourhoods, at least one particle in each neighbourhood

belongs to another neighbourhood as well. Over time, this overlap leads to the different

neighbourhoods converging toward each other, and as a result, a single solution. The

name of the topology is taken from the special case nN = 2, where the topology resembles

a ring structure.

The indirect link between the neighbourhoods also leads to a lower rate of conver-

gence. The effect is that the swarm is able to explore more of the search space, and as a

result, the ring topology tends to perform better than the star topology on multimodal

problems.

The wheel topology

The wheel topology aims to slow down the rate of convergence by effectively isolating the

particles from each other. A single particle is designated as a focal point, and all other

particles have a single connection to this particle. The focal particle is thus connected

to all particles, but the rest of the swarm are only indirectly connected with each other,

through the focal particle.
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The pyramid topology

The pyramid topology can be visualised as a three-dimensional pyramid, with particles

being placed at equal distances on its surface. Particles are connected to their conceptual

neighbours, resulting in a topology which balances the rate of convergence by having a

high degree of connectivity, whilst at the same time maintaining a large information gap

between particles on opposite sides of the structure.

The four clusters topology

This topology prescribes four neighbourhoods of five particles each, with there being two

inter-neighbourhood connections between each pair. Intra-neighbourhood connections

take the form of the star topology, thus all five particles are connected with each other.

The Von Neumann topology

The Von Neumann topology sets out the particles in the shape of a three dimensional

wire grid. It is conceptually similar to the pyramid topology, and has been empirically

shown to perform superior to the other topologies on a large number of problems [29, 45].

2.4.4 Swarm Concepts

This section introduces and discusses concepts which are particularly relevant to swarm

algorithms.

Swarm Convergence

A swarm whose particles tend cluster spatially over time is said to be convergent. By

adjusting algorithm parameters, e.g. selecting large values for c1 and c2, it is possible to

create swarms which exhibit divergent behaviour [9], however this is not desirable. Swarm

convergence has received much attention from researchers in the past (to be discussed

in more depth in the following sections), and remains an important concept. Examples

of research on swarm convergence include velocity clamping [15], inertia weights [50],

Clerc and Kennedy’s constriction coefficients [8], Poli’s Canonical PSO [46, 47], Van den
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Bergh’s extensive analysis of swarm convergence and the Guaranteed Convergence PSO

(GCPSO) [9], to name a few.

Swarm Diversity

The term swarm diversity is used to describe the degree to which particles in a swarm

are spread out. As particles converge toward the global or neighbourhood best particles,

swarm diversity decreases. A swarm which lacks diversity is unlikely to uncover new

regions of interest in the search space, and as a result is generally less likely to experience

large improvements in the solutions found.

The term premature convergence refers to the phenomenon of a swarm converging

too quickly, effectively missing opportunities to better explore the search space. Swarms

that exhibit premature convergence perform poorly, especially on highly multimodal

functions, where they tend to get trapped in local minima early on.

Exploration vs. Exploitation

The term exploration refers to the ability of an algorithm to explore diverse regions of

the search space, and to find regions where good local minima may be located.

Exploitation refers to the ability of an algorithm to refine a candidate solution to a

local minimum, having already found a region of interest.

The terms are by no means unique to swarm optimisers, however they remain central

themes in research, with most suggested modifications aiming to improve either the

exploration or exploitation abilities of PSO. Examples include the GCPSO [9], the PSO

with a non-uniform mutating operator [22], the PSO with a mutating operator [33],

the two-step PSO [58], the HGPSO [40] and the DoLPSO [60], amongst many others

[7, 20, 27]. The concepts of exploration, exploitation, diversity and convergence are

related - essentially, PSO algorithms aim to achieve a balance whereby the swarm has

high diversity, preventing premature convergence, yet allowing the swarm to converge

when a good solution is found.

Particle swarm optimisers have been shown empirically to exhibit good exploration

characteristics on numerous problems [2, 56]. However, their ability to refine these
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solutions in an efficient manner is generally not as impressive [2, 30, 9, 60].

Later sections examine approaches that attempt to enhance the exploitation ability

of the PSO.

2.4.5 Particle Trajectories

Ozcan and Mohan presented the first formal analysis of particle trajectories in [43]. Their

first study considered a simplified swarm with several assumptions, but was followed by

a second study of a more generalised, multi-dimensional PSO system in [44]. A full

treatment is beyond the scope of this thesis, but their conclusions are summarised here:

� Particles conduct their search in different manners in different regions of the search

space. The steps made by particles in each dimension is sampled from a random

sine wave, with the amplitude of the wave decreasing over time; in some regions

the step size is greater than in others.

� Particles do not “fly” through the search space - a term borrowed from the al-

gorithm’s origins in the study of swarming animals, such as birds - but rather,

particles “surf” on the aforementioned sine waves.

It has been shown by Van den Bergh [9] and also Trelea [59] that a swarm will display

convergent behaviour if the following conditions hold:

1 > w >
1

2
(c1 + c2)− 1 ≥ 0 (2.30)

where w is the interia weight (discussed in section 2.4.6). The characterestics of the

swarm with respect to convergence or divergence largely depend on values of w, c1, and

c2.

Further, in-depth studies by Clerc and Kennedy [8], Trelea [59], and Van den Bergh

and Engelbrecht [11] on particle trajectories have reinforced the finding that particles

will converge to a stable point under certain conditions. The convergence relationship

given in equation (2.30) satisfies the convergence conditions.
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2.4.6 Modifications to the Basic Algorithm

Modifications to the basic PSO have been proposed to enhance the performance of the

algorithm. Some of these modifications, are examined in this section.

Velocity Clamping

Large velocities can cause particles to leave the defined boundary constraints of the

problem, which not only results in wasted effort due to discarded solutions, but may

also cause the swarm to diverge rather than converge. To counter this problem, the

following mechanism has been proposed by Eberhart et al. [15], whereby large velocities

calculated using the normal velocity equations (2.25) and (2.29) can be reduced:

vi,j(t+ 1) =

{
v′i,j(t+ 1) if v′i,j(t+ 1) ≤ Vmax,j

Vmax,j if v′i,j(t+ 1) ≥ Vmax,j
(2.31)

Vmax,j therefore defines the maximum value for a velocity component in dimension j. The

choice of Vmax,j defines whether the swarm will tend toward exploration or exploitation.

Small values of Vmax,j tend to cause particles to explore only their local regions, and may

cause them to become trapped in local minima. The number of steps required to reach

a good local solution may also increase.

Vmax,j is usually defined as a proportion of the boundary constraint:

Vmax,j = δ (xmax,j − xmin,j) (2.32)

where δ ∈ (0, 1] and xmax,j and xmin,j represent the maximum and minimum allowed

values for x in dimension j.

Since the choice of δ defines the effective value for Vmax,j it indirectly controls the

trade-off between exploration and exploitation. As a result, its value needs to be adjusted

for each distinct problem [42, 51].

Velocity clamping also has the effect of changing the direction of the velocity vector

[20]. This is due to the way in which Vmax,j is applied according to equation (2.31).

Each component of the velocity is evaluated - and potentially modified - in isolation

from the other components. This implies that the velocity is not scaled back by an equal

ratio in all dimensions. For very small values of Vmax,j, it is not uncommon for all the
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components of v to be set equal to Vmax,j. No studies have been done to examine whether

this phenomenon has a significant impact on the performance of the algorithm.

Inertia Weight

Similar in its goals to velocity clamping, the inertia weight aims to balance exploration

and exploitation in the swarm [50]. This is achieved by applying the inertia weight,

w ∈ R, to the previous time step’s velocity during the velocity update. The gbest

velocity update equation (2.25) now becomes:

vi,j(t+ 1) = wvi,j(t) + c1r1,j(t)[yi,j(t)− xi,j(t)] + c2r2,j(t)[ŷj(t)− xi,j(t)] (2.33)

The lbest velocity update equation (2.29) is modified as follows:

vi,j(t+ 1) = wvi,j(t) + c1r1,j(t)[yi,j(t)− xi,j(t)] + c2r2,j(t)[ŷi,j(t)− xi,j(t)] (2.34)

Large values for w will keep particle velocities large, while smaller values result in

particle velocities becoming smaller more rapidly with each iteration, unless c1 and c2 are

adjusted to satisfy the condition in equation (2.30). In this way, the value of w determines

whether the swarm will be driven more toward exploration, or toward exploitation.

Similar to the selection of the value of Vmax, it determines a trade-off that is problem

dependent. It is also important to realise that w is applied to the previous velocity

vector, which has already been scaled by c1 and c2. Therefore, a decision on the value

of w needs to take into consideration the values of c1 and c2.

Asynchronous Updates

The manner in which the updates in the original PSO algorithm (defined in algorithm 2.3)

has since been termed synchronous. An alternative, asynchronous approach to perform

the updates has been proposed [20]. In the asynchronous PSO, the updates to each

particle’s velocity, position, personal best and global or neighbourhood best particles are

done immediately. As a result, information regarding better solutions is spread through

the swarm more quickly than in the synchronous PSO. The asynchronous PSO has been

shown to exhibit faster convergence as a result [20]. The asynchronous PSO algorithm

is summarised in algorithm 2.5.
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Algorithm 2.5 The asynchronous gbest PSO Algorithm
1: Create and initialise an nx-dimensional swarm, S;

2: repeat

3: for all particles i ∈ [1, ..., S.ns] do

4: if f(S.xi) < f(S.yi) then

5: S.yi = S.xi;

6: end if

7: if f(S.yi) < f(S.ŷ) then

8: S.ŷ = S.yi;

9: end if

10: update the velocity using equation 2.25

11: update the position using equation 2.24

12: end for

13: until stopping condition is true

2.5 Modified PSO Algorithms

Several modified PSO algorithms are described in this section, each relevant to the main

topic of the thesis. The GCPSO is examined in section 2.5.1, followed by the PSO

with Non-Uniform Mutating Operator (section 2.5.2), the PSO with Mutation Operator

(section 2.5.3), the Two-step PSO (section 2.5.4), the Hybrid Gradient Descent PSO

(section 2.5.5), the FR-PSO (section 2.5.6), the GTPSO (section 2.5.7), and finally the

Division of Labour PSO in section 2.5.8.

The algorithms were selected for their relevance to this thesis, specifically where the

algorithm employs or estimates gradient information. To a lesser degree, algorithms

where specific particles are driven by a separate velocity or position update equation are

included. The GCPSO is included because it fulfills the latter criteria, and because it

is a well established algorithm, making it easier to compare performance against. The

HGPSO was included for its combination of the PSO algorithm with a direct gradient-

based algorithm, and the Two-Step PSO is included because it makes use of a very

rough gradient estimate. The PSO with Non-Uniform Mutating Operator was included

for performance comparisons due to its increased swarm diversity [22]. The DoLPSO

was included for its treatment of the division of labour concept, which is similar to the
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concept of separate velocity and position update equations for different particles.

2.5.1 Guaranteed Convergence PSO

In this section, the Guaranteed Convergence PSO (GCPSO) [9, 10] is discussed.

Motivation

Van den Bergh and Engelbrecht [9, 10] examined the convergence properties of particle

swarm optimisers, and presented the following observation:

Consider a situation where xi = yi = ŷi, i.e. a particle’s current position coincides

with the global best position (and, thus also the particle’s personal best position). Using

the velocity update equation (2.33) with inertia weight, it can be observed that yi,j(t)−
xi,j(t) = 0 and ŷj(t)−xi,j(t) = 0, effectively implying that for this situation, vi,j(t+1) =

wvi,j(t); the particle is dependent entirely on the inertia component for the velocity

update. This condition has the following implications:

� Since the velocity update is dependent solely on the previous velocity, there is no

way for the particle to change direction. There is no guarantee that the previous

velocity leads toward a local minimum, leading to a potential decrease in the ability

of the particle to exploit its surroundings and a stagnation in the quality of the

solution found by the particle.

� Once all the particles in the swarm are near ŷ, the velocity of the entire swarm

will be driven by the inertia component. In turn, the inertia weight may decrease

velocities to the point where they are close to zero. At this point, the swarm has

effectively converged and will have no chance of finding a better solution. While

this condition should eventually occur naturally in a swarm (when the swarm has

been paramaterised according to equation (2.30)), here it is seen as premature

convergence, since it is possible for this convergence to occur before the swarm has

even reached a local minimum.

In summary, the local optimisation and convergence characteristics of standard PSO

can be improved upon, and with this in mind, the Guaranteed Convergence PSO (GCPSO)

was introduced [9, 10].
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Overview

The proposed solution to the above problem involves modifying the velocity update

equation of the best particle as follows:

vi,j(t+ 1) = wvi,j(t)− xi,j(t) + yi,j + ρ(t)rj (2.35)

where rj ∼ U(−1, 1) and ρ(t) is a scaling factor calculated as follows:

ρ(t+ 1) =

{ 2ρ(t) if #successes > sc

0.5ρ(t) if #failures > fc

ρ(t) otherwise

(2.36)

where sc and fc are threshold parameters which can be configured. A default value of

ρ(0) = 1.0 was used in the original study [10], with acceptable results.

Assuming minimisation, a failure is defined as f(ŷ(t)) ≤ f(ŷ(t + 1)), and in such a

case, #failures is incremented and #successes is set to zero. A success is defined as

f(ŷ(t)) > f(ŷ(t+ 1)), and here #successes is incremented and #failures is set to zero.

Whenever the best particle changes, both counters are set to zero.

The choice of values for sc and fc are problem dependent, and can be indepen-

dently adjusted to conform to various strategies. The original work examines using

fc = 5, sc = 15, which is empirically found to produce acceptable results on highly mul-

timodal functions. An alternative mechanism of dynamically adjusting fc and sc is also

discussed by Van den Bergh [9].

The modified velocity update equation (2.36) results in the particle performing a

directed random search around the best particle. Under the majority of conditions, this

results in the best particle moving toward the local minimum much faster than is the

case with the standard PSO velocity update. This suggests that neighbourhoods, being

a mechanism to slow down the propagation of social information, play an increased role

in the GCPSO. This topic is further investigated by Peer et al [45], where the lbest

algorithm was generally found to produce a superior result when compared to gbest,

especially for multimodal objective functions.

Van den Bergh [9] provided local convergence proofs for the GCPSO, as well as proofs

that neither the standard PSO nor GCPSO satisfy the global search algorithm criteria.
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It is suggested that the algorithm can be altered to be a global search algorithm by

adding randomised particles (RPSO) or performing multiple starts (MSPSO).

2.5.2 PSO with Non-Uniform Mutating Operator

Esquivel and Coello Coello [22] proposed the introduction of a mutation operator to

the PSO algorithm as a means of increasing swarm diversity, a key factor for good

performance on highly multimodal functions.

A non-uniform mutation operator is adopted from [38]:

Assume x(t) = [x1(t), ..., xn(t)]; if xj is the element being mutated, then x(t + 1) =

[x1(t), ...x′j(t), ..., xn(t)], where

x′j(t) =

{
xj(t) + ∆(t, UB − xj(t)) if a random digit is 0

xj(t)−∆(t, xj(t)− LB) if a random digit is 1
(2.37)

UB and LB are the upper and lower bounds for xj, respectively. The function ∆(t, y)

returns a value in the range [0, y] such that the probability of ∆(t, y) being close to

0 increases as t increases. The definition of the function ∆(t, y) used by Esquivel and

Coello Coello [22] is from [38]:

∆(t, y) = y
(

1− r(1− t
T

)b
)

(2.38)

where r ∈ [0, 1] is a random number, T is the total number of iterations allowed for the

algorithm, and b is a parameter which determines the degree of dependency on iteration

number.

The mutating PSO was benchmarked and found to be competitive with, and in some

cases superior to the 6 topologies investigated by Peer et al. in [45]. Specifically, the

mutating PSO seemed to have performed better against the other algorithms on the

more complex functions, such as Rastrigin and Schwefel.

Esquivel and Coello Coello [22] concluded that the results validated their hypothesis,

specifically that the use of a non-uniform mutation operator increases swarm diversity,

which enables the algorithm to perform better on highly multimodal functions.
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2.5.3 PSO with a Mutation Operator

Li et al. proposed a Particle Swarm Optimiser with a mutation operator in [33]. The

authors observed that the standard PSO has a tendency to get trapped in local minima,

making note of the convergence issue discussed in section 2.5.1 and [9], where xi = yi =

ŷi.

Li et al made reference to the Multi-start PSO (MPSO) proposed in [9], whereby

particles are re-initialised after a certain number of iterations, which increases swarm di-

versity and allows the MPSO to escape local minima. Li et al. maintain that whilst

the MPSO approach achieves the desired global convergence characteristics, the re-

initialisation of all particles hampers local search and results in lower accuracy.

In the approach proposed by Li et al, the algorithm keeps track of the historic optimal

position of the swarm, Pl. If the optimal position of the swarm does not change by a

significant amount for MaxStep number of consecutive steps, and the radius of the

swarm is below a specified threshold BorderRadius, then the position and velocity of

several particles is re-randomised according to some mutation probability, ρ.

The radius of the swarm, MaxRadius, is defined as:

MaxRadius = max
j=1...m

(√√√√ D∑
d=1

(pid − xid)2

)
(2.39)

Thus MaxRadius is the maximum Euclidean distance between all the particles and

the historic optimal position of the neighbourhood.

By adjusting the algorithm parameters MaxStep, MaxRadius and ρ, the conver-

gence rate and speed of searching can be influenced.

In empirical trials, Li et al assert that the PSO with mutation performed better than

either the standard PSO or the Multi-start PSO.

2.5.4 Two-step PSO

The Two-step PSO has been developed by Thompson et al. [58]. The approach es-

sentially involves calculating two possible velocities for a particle, and then selecting

the one which results in a steeper decline in the objective function, thereby essentially
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approximating the gradient of the function.

The algorithm can be summarised as follows: Calculate candidate position x′i(t+ 1)

using the standard PSO position update:

x′i(t+ 1) = xi + vt+1 (2.40)

and candidate position x′′i (t+ 1) using a scaled down velocity:

x′i(t+ 1) = xi + δvt+1 (2.41)

where δ ∈ (0, 1).

The position update equation now becomes:

xi(t+ 1) =

{
x′i(t+ 1) if − x′i(t+ 1) ≥ −f(x′′i (t+1))

δ

x′′i (t+ 1) otherwise
(2.42)

The two-step PSO introduces a single new parameter, the step size δ, to the PSO

algorithm. The algorithm was designed to cater for scenarios where the standard position

updates would result in particles overshooting local minima.

Some observations about the algorithm can be made:

� It should be noted that whilst in essence, the two-step PSO approximates the

gradient at a point, it does not make direct use of the gradient of the objective

function.

� The candidate positions x′i(t+1) and x′′i (t+1) lie in the same direction with respect

to xi(t); the algorithm does not attempt to find a better search direction, it merely

attempts to check if local minima have been missed.

� The modified algorithm can potentially only scale back the position updates of

particles, and it does not directly deal with the convergence problems introduced

in section 2.5.1. Thompson et al. [58] predicted premature convergence issues with

the algorithm and attempt to counter the effects by combining the algorithm with

a cluster PSO.
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2.5.5 Hybrid Gradient Descent PSO (HGPSO)

The Hybrid Gradient Descent PSO, introduced by Noel and Jannett in [40], makes direct

use of the gradient of the objective function to enhance the exploitation characteristics

of the standard PSO.

The algorithm proposes making use of Gradient Descent as discussed in section 2.2.

The standard gradient descent position update (see equation (2.5)) is incorporated into

the standard PSO velocity update, and the following hybrid velocity update equation is

the result:

vi,j(t+1) = vi,j(t)+c1r1,j(t)[yi,j(t)−xi,j(t)]−(c1r1,j/ε)[f(xi,j(t)+εEi)−f(xi,j(t))] (2.43)

where ε is a small constant, and Ei is the ith standard basis vector for Rn.

Essentially, the algorithm replaces the standard cognitive component which attracts

the particle toward its personal best position in a standard PSO, with the gradient

descent term, which attracts the particle in the direction of the steepest decrease in the

values of the objective function.

One of the goals of equation (2.43) is to lessen the tendency of the gradient descent

algorithm to get trapped in local minima. By combining the gradient descent position

update with the inertia and social components, Noel and Jannett propose that swarm

diversity is maintained.

It should be noted that the original HGPSO [40] does not make use of inertia weights,

but rather, velocity clamping by means of Vmax was employed. The algorithm was

implemented using inertia weights for the purpose of empirical analysis in order to make

comparisons to the other algorithms easier (as discussed in section 4.5.7).

2.5.6 FR-PSO

Borowska and Nadolski [6] proposed a gradient-hybrid PSO which makes use of the

Flecher-Reeves conjugate gradient method [23], called the FR-PSO. The algorithm is

partially inspired by Noel and Jannett’s HGPSO [40], however, instead of replacing the

cognitive component of the velocity update equation, a third component is added:
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vi,j(t+ 1) = wvi,j(t) + c1r1,j(t)[yi,j(t)− xi,j(t)]

+ c2r2,j(t)[ŷj(t)− xi,j(t)]

+ c3r3,j(t)[mfri,j(t)− xi,j(t)]

(2.44)

where c3 is a constant algorithm parameter, r3,j is a random number sampled from a

uniform distribution and the mfri,j(t) term is the solution obtained by the Flecher-

Reeves algorithm for particle i in the j-th dimension.

The hybrid algorithm was found by the authors to be more efficient than standard

PSO when applied to the problem of finding the optimal geometry of two cylindrical coil

arrangements evoking a magnetic field of specific parameters [6]. The largest differences

in performance were found when using a relatively large swarm size of 100 particles. It

should be noted that this result is limited to a single problem, and that a relatively small

number of iterations was observed (100 to 150 iterations), presumably because further

iterations did not yield differences in solution quality.

The addition of a third term to the standard PSO velocity update equation is an

interesting approach to incorporating a gradient algorithm into PSO. An unfortunate

implication of the new term, however, is that the behaviour of such a modified swarm is

no longer well researched. One example of this would be Van den Bergh’s relationship

between inertia weight and c1 and c2 [9], for which no version exists which has been

generalised to further terms.

2.5.7 GTPSO

Zhang et. al. [64] proposed a new hybrid-gradient PSO, which makes use of a new

gradient approach. Termed the GTPSO, the new algorithm combines the core algorithm

from standard PSO, with a way to approximate the gradient of the problem. The GTPSO

algorithm can be summarised as follows:

� Perform an iteration of the standard PSO algorithm.

� Starting at the position of the gbest particle, find a new position using a gradient

method.
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� Repeat the previous step until the gradient method no longer provides a better

fitness or a stopping condition is met.

� If the new position found by the gradient method is of a better fitness, update the

position and fitness of the gbest particle to that of the new position.

� Continue performing iterations until a stopping condition is met.

The GTPSO algorithm was applied by Zhang et. al. [64] to the problem of the

control of polarization mode dispersion (PMD) compensation in optical fibers. The

GTPSO algorithm was found to have a faster convergent speed than standard PSO.

Zhang et. al. [64] concluded that since convergent speed is an important performance

criterion for real time PMD compensation, GTPSO was a better algorithm than standard

PSO for that task.

2.5.8 Division of Labour PSO (DoLPSO)

In their research, Vesterstrøm et al. found three major problems with the basic PSO

algorithm, namely: “premature convergence, parameter control and lack of dynamic

velocity adjustment, resulting in the inability to hill climb solutions”. The authors set

out to address the last issue by proposing the Division of Labour PSO (DoLPSO) [60].

The term division of labour refers to the cooperation of individuals which have been

specialised to perform different tasks [4]. This type of behaviour is displayed by many of

the social insects; for example, ants specialise into different roles such as worker, soldier,

queen, and male. This concept is applied to the PSO model to enhance the exploitation

capabilities of the algorithm.

Response thresholds

The division of labour mechanism is implemented using response thresholds [5], adapted

here to particle swarm optimisation. If i represents a particle, and d represents a task,

then θi,d is a threshold for particle i to perform task d. Associated with each particle,

and for each task, is a stimulus si,d. A response function T is defined to determine the

probability of particle i performing task d, given inputs θi,d and si,d.
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The authors further adapt the mechanism to a single task, leading to the following

threshold function:

P (Xi = 0→ Xi = 1) = T (si, θi) =
sn

θni + sn
(2.45)

where Xi represents the state of particle i, such that when Xi = 0, the particle is not

performing the task, and is performing the task when Xi = 1. The constant n determines

the steepness of the response function. The probability of an active particle becoming

inactive is defined as:

P (Xi = 1→ Xi = 0) = p (2.46)

where p is an algorithm parameter.

Local search and stimulus

Vesterstrøm et al. [60] define the one additional task of the DoLPSO to be local search.

When a particle i experiences a lack of improvement, the stimulus si is increased, leading

to an increased probability that the local search task will be activated.

Given particle i has triggered the local search task, its position xi is set to the

position of the global best particle, ŷ. Furthermore, the velocity of the particle, vi,

is re-initialised using random values, adjusted for the the length of the velocity of the

global best particle. By introducing the search direction of the particle to the global

best position, it is reasoned that a more efficient local search is produced.

It is clear from the above local search algorithm that the diversity of the swarm will

typically be decreased by its application. The authors note this and suggest mechanisms

to prevent its application to cases where the local search would cause the diversity to

decrease too much, such as when a candidate particle’s distance to the global best particle

is larger than a certain threshold.

Conclusions

From their empirical analysis, Vesterstrøm et al. [60] conclude that when compared

to standard PSO, the DoLPSO performs well on unimodal functions, but suffers on
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multimodal ones.

Beyond the performance of the basic DoLPSO, the research done by Vesterstrøm et

al. also served to formalise the need for a type of division of labour, as well as one

possible implementation for DoL mechanisms in PSO. While modifications to PSO that

effectively achieve division of labour, such as the GCPSO [9] had been published prior

to [60], they had not been explicit and formal about the fact that division of labour was

in effect implemented.

2.6 Conclusion

This chapter has served to provide background to the central theme of the thesis, which

is the combination of gradient-based algorithms with Particle Swarm Optimisers. A

brief, formal overview of optimisation has been provided. Focus was placed on two gra-

dient based optimisers, the Gradient Descent and LeapFrog algorithms, and the Particle

Swarm Optimiser (PSO) was discussed. Several areas of PSO research, as well as spe-

cific modified PSO algorithms were discussed, where deemed to be relevant to the central

theme of this thesis.

In conclusion, it is apparent that the topic of gradient hybrid PSOs is not one that

has been heavily researched in the past (when compared to the focus that other research

areas, such as the topic of convergence, have received), and an opportunity exists for

new approaches. The remainder of this thesis will focus on this topic, namely the pro-

posal of a new way to construct hybrid gradient PSOs, the introduction of two specific

new gradient-hybrid PSOs, and empirical experimentation to determine and verify the

characteristics of the new algorithms.
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Using Gradient Information in PSO

This section discusses the concept of making use of gradient information in particle

swarm optimisers. Motivation is given in section 3.1, followed by a discussion on the

challenges involved in incorporating gradient information in PSO (section 3.3). Two

new gradient-based PSO algorithms, namely the gradient descent PSO (GDPSO), the

LeapFrog PSO (LFPSO) are given in section 3.2. A generalisation of the GDPSO and

LFPSO, the generalised local search PSO (GLSPSO) is also described. Finally, a short

treatment of gradient estimation is given in section 3.4.

3.1 Motivation

Section 2.5.1, discussed a condition under which the basic PSO algorithm exhibits poor

convergence characteristics. This is a well known condition which has inspired numerous

suggestions aimed at improving the basic PSO algorithm [33, 9].

Very few studies have considered making use of gradient information directly within

PSO. Notable exceptions are the HGPSO [40] (discussed in section 2.5.5), and the

GTPSO [64] (discussed in section 2.5.7), which make use of the gradient descent al-

gorithm, and the FR-PSO [6], which makes use of the Flecher-Reeves method. The

HGPSO effectively combines equation (2.5) from the gradient descent algorithm with

the PSO velocity update equation (2.25), to circumvent the anticipated premature con-

vergence that gradient descent might cause [40]. The GTPSO and FR-PSO are less

47
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concerned with premature convergence, and more with convergent speed [6, 64], due to

the nature of the problems they were designed for.

The following interesting observation can be made about the basic PSO algorithm:

it makes use of a single type of particle. This thesis refers to this behaviour as homoge-

neous, since all the particles in the swarm are updated using a single equation. Examples

of homogeneous PSOs include the basic gbest and lbest PSOs (algorithms 2.3) and 2.4,

respectfully), the HGPSO (described in equation (2.43)), the Two-Step PSO (equation

(2.42)). The PSO with Mutation Operator (section 2.5.2) and PSO with Non-Uniform

Mutating Operator (described in section 2.5.3) can also be described as being homoge-

neous. Certain PSO algorithms can also be described as being heterogeneous, because

different particles in the swarm may be driven by completely different equations. Exam-

ples of heterogeneous PSOs include the GCPSO from section 2.5.1 and the Division of

Labor PSO (described in section 2.5.8).

The concept of a heterogeneous swarm enables certain particles to be focused on

finding good areas (exploration) and other particles to be focused on finding the best

solution within these good areas (exploitation). It can be argued that these are two con-

ceptually separate tasks, and therefore should be performed by two separate algorithms.

This makes the creation of a hybrid PSO using a gradient-based algorithm an attractive

proposition.

3.2 Gradient-Based PSO Algorithms

In section 3.2.1, the differences and similarities between PSO and gradient-based algo-

rithms are discussed. The construction of the gradient descent PSO and LeapFrog PSO

is discussed in sections 3.2.2 and 3.2.3 respectively. Finally, a more generalised PSO

algorithm, the generalised local search PSO, is proposed in section 3.2.4.

3.2.1 PSO and Gradient Algorithms

Contrasting the standard PSO and gradient-based algorithms discussed so far (namely

the gradient descent and LeapFrog algorithms), certain differences can be highlighted:
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� The gradient descent and LeapFrog algorithms work with a single candidate so-

lution, while particle swarm optimisers are population-based, and thus deal with

multiple solutions at any given point. The population approach allows the PSO to

sample a larger area of the search space before determining the direction of future

search; it can be argued that this gives it better exploration capability.

� The basic PSO algorithm does not make use of the gradient information of the

objective function, whilst gradient descent and LeapFrog do. This allows the gra-

dient algorithm to directly determine the direction of largest improvement in fit-

ness, which the PSO has to attempt to work out by sampling the search space

at multiple points. In the context of local optimisation, and assuming gradient

information is available, it can be argued that on average, the gradient approach is

more efficient. One downside of using gradient information is that typically, gra-

dient based algorithms are local optimisers, which can easily be trapped in local

minima.

� Gradient descent and LeapFrog are deterministic algorithms, while Particle Swarm

Optimisers are stochastic in nature.

It is clear from the above that PSOs are quite different to the gradient-based algo-

rithms presented so far. Despite this, the algorithms share several critical aspects, which

are useful when attempting to combine the two:

� Both categories of algorithms have a similar concept of a solution; the position of

a particle in PSO is analogous to a solution in a gradient-based algorithm.

� The concept of an iteration is similar in both cases.

The above similarities mean that PSOs can be successfully combined with gradient-

based algorithms.

3.2.2 Gradient Descent PSO

The gradient descent PSO (GDPSO), as its name suggests, is a combination of the PSO

(algorithms 2.3 and 2.4) with the simplest of gradient based methods, namely gradient

descent (algorithm 2.1).
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Considering the similarities between the algorithms discussed in section 3.2.1, the

following strategy for the hybrid PSO is proposed:

� Assume the basic PSO algorithm is being used.

� In the case of the gbest or lbest particles, the position update equation from the

standard PSO is ignored. Instead, the gradient descent algorithm is applied to

determine the position of the particle in the next iteration. It is important to note

that this approach differentiates the algorithms proposed in this thesis from the

the HGPSO [40].

� The behaviour of all other particles is unmodified, and work using the principles

of the standard PSO algorithm.

Since the gbest algorithm can be thought of as a special case of the lbest algorithm, in

the interest of brevity, the term lbest particle will be used to represent both the gbest and

lbest particle for the rest of this chapter. The more generic lbest version of the algorithm

is presented as algorithm 3.1.
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Algorithm 3.1 The GDPSO Algorithm
1: Create and initialise an nx-dimensional swarm, S;

2: repeat

3: for all particles i ∈ [1, ..., S.ns] do

4: if f(S.xi) < f(S.yi) then

5: S.yi = S.xi;

6: end if

7: if f(S.yi) < f(S.ŷ) then

8: S.ŷ = S.yi;

9: end if

10: end for

11: for all particles i ∈ [1, ..., S.ns] do

12: if particle i is a neighbourhood best then

13: update the position using equation (2.5)

14: else

15: update the velocity using equation (2.29)

16: update the position using equation (2.24)

17: end if

18: end for

19: until stopping condition is true

The following observations can be made about the algorithm:

� The behaviour of the lbest particles are directly affected at each iteration of the

algorithm, however the rest of the swarm is driven by the standard PSO algorithm.

Assuming neighbourhoods that aren’t unusually small, this would imply that the

majority of the swarm is still operating in an identical fashion to the standard PSO

algorithm, retaining the positive performance characteristics of that algorithm.

� By limiting the usage of gradient information to a subset of the particles, the ap-

proach attempts to improve exploitation without negatively affecting exploration.

The difference in position update equations between standard particles and the

lbest particles effectively specialises the swarm into two roles, namely: particles

specialising more in exploration, and particles specialising more in exploitation.

� The application of a local search algorithm to the lbest particles also solves a

specific problem with the PSO position update equation when xi = yi = ŷi (as
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explained by Van den Bergh [9] and discussed in section 2.5.1). This is due to

the fact that the above condition depends on two major assumptions, namely

the particle in question itself also being the local best particle, and the usage of

the standard PSO velocity update equation. By ensuring that the standard PSO

velocity update equation is not used for neighbourhood best particles, the situation

is circumvented.

� Popular modifications to standard PSO, such as Vmax, inertia weights and advanced

topologies can be applied without significant effort.

The inclusion of the gradient descent algorithm also introduces a new swarm param-

eter, δ (discussed in section 2.2.2), which can be adjusted for different problems. The

approach used in this thesis was to select problem-specific, reasonable defaults for δ. The

most basic gradient descent model, involving a static value for δ is used.

GDPSO, GTPSO, and HGPSO all make use of a similar gradient algorithm in the

context of a PSO. As a result, some justification for the existence of GDPSO is necessary.

It is important to highlight the following differences between the algorithms:

� The HGPSO is homogeneous while the GDPSO is heterogeneous. This distinc-

tion allows a separation of concern between exploration and exploitation for the

GDPSO, and the specific application of the local search algorithm to local best

particles implies exploitation at positions in the search space where it might be

most advantageous.

� All particles in the HGPSO make use of the gradient descent algorithm at all

times, while only the gbest or lbest particles in the GDPSO do so. In the case of

the HGPSO, this gives each particle a strong local search component which may

lead to premature convergence [40].

� The gradient descent algorithm is incorporated into the HGPSO such that the

cognitive component from the velocity update equation is removed, and replaced

completely by a gradient-based component. This results in the swarm categorically

losing memory of personal best positions and the ability to use this information.

This is not the case with the GDPSO.
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� In the case of the GTPSO, the gradient method is applied repeatedly until it

no longer provides any further fitness benefits. This repeated application of the

gradient method, within one iteration of the rest of the swarm, is significantly

different to the approach used in the GDPSO.

The above differences are significant enough to differentiate the GDPSO from the

HGPSO and GTPSO algorithms, and in turn, the inclusion of GDPSO in this thesis.

3.2.3 Leapfrog PSO

The LeapFrog PSO (LFPSO) is GDPSO, in that it replaces the position update equation

of the lbest particle with a local search algorithm. In the case of the LFPSO, the

algorithm performing the local search is the LeapFrog, as documented in algorithm 2.2.

The LeapFrog algorithm is a significantly more complicated and sophisticated algo-

rithm than gradient descent, with several capabilities which make it a good candidate

for this thesis. One of the core differentiating aspects is the ability of the LeapFrog

algorithm to automatically adjust ∆t, which serves a similar purpose as δ in the GD

algorithm. This difference also influenced the decision to keep the GDPSO’s implemen-

tation of the GD algorithm as simple as possible - in this manner, a simplistic gradient

algorithm can be contrasted with a complex one.

Since the LeapFrog algorithm has knowledge of previous time steps and can poten-

tially make changes to its own algorithm parameters at each time step, the following

approach is used:

� Each particle in the swarm carries its own LeapFrog algorithm parameters and

other LeapFrog related state information. Due to a small number of particles

typically being used by PSO, this is a relatively small trade-off.

� The LeapFrog algorithm parameters are reset to their defaults if a particle that

wasn’t lbest in the previous time step becomes lbest in the current one. These

parameters serve to maintain memory of certain aspects of the path of the particle,

relevant to the LeapFrog algorithm heuristics (such as the number of times the

velocity has subsequently decreased, and the number of times the algorithm has
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performed a turn greater than 90◦ - refer to section 2.3). These parameters would

no longer be accurate in the case that the lbest particle was not the lbest particle

in the previous timestep. In such a case, the previous position update would have

been performed by a standard PSO velocity and position update equation instead

of the LeapFrog algorithm. There is no clear way to update the relevant parameters

without making use of the LeapFrog algorithm itself. If the algorithm is allowed

to make use of the old algorithm parameters, the LeapFrog algorithm’s heuristics

may make decisions based on invalid memory; it is thus better to perform a reset

of the algorithm and allow it to build up a new memory from the new position.

The LeapFrog PSO algorithm is summarised in algorithm 3.2.

Algorithm 3.2 The LFPSO Algorithm
1: Create and initialise an nx-dimensional swarm, S;

2: repeat

3: for all particles i ∈ [1, ..., S.ns] do

4: if f(S.xi) < f(S.yi) then

5: S.yi = S.xi;

6: end if

7: if f(S.yi) < f(S.ŷ) then

8: S.ŷ = S.yi;

9: end if

10: end for

11: for all particles i ∈ [1, ..., S.ns] do

12: if particle i is neighbourhood best then

13: if particle i was not neighbourhood best in previous time step then

14: reset particle i’s LeapFrog parameters

15: set x(0) as the current position of the particle

16: end if

17: update the position using by using one iteration of the LeapFrog algorithm (algorithm 2.2)

18: else

19: update the velocity using equation (2.29)

20: update the position using equation (2.24)

21: end if

22: end for

23: until stopping condition is true
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3.2.4 Generalised Local Search PSO

There is a clear set of similarities between the GDPSO and LFPSO algorithms, specifi-

cally in terms of what they respectively try to achieve and how they achieve this. These

similarities can be highlighted by generalising them into a new proposed algorithm, the

generalised local search PSO (GLPSO), summarised as algorithm (3.3).

Algorithm 3.3 The GLSPSO Algorithm
1: Create and initialise an nx-dimensional swarm, S;

2: repeat

3: for all particles i ∈ [1, ..., S.ns] do

4: if f(S.xi) < f(S.yi) then

5: S.yi = S.xi;

6: end if

7: if f(S.yi) < f(S.ŷ) then

8: S.ŷ = S.yi;

9: end if

10: end for

11: for all particles i ∈ [1, ..., S.ns] do

12: if particle i is neighbourhood best then

13: if particle i was not neighbourhood best in previous time step then

14: reset particle i’s local search parameters, where applicable

15: end if

16: update the position using a local search algorithm

17: else

18: update the velocity using equation 2.29

19: update the position using equation 2.24

20: end if

21: end for

22: until stopping condition is true

It is apparent that both the GDPSO and LFPSO are specialised versions of the

GLSPSO, obtained by simply specifying state information for the particles as well as the

position update equation. It is interesting to note, however, that some existing PSOs

conform to this pattern as well, e.g. the GCPSO [9].

As with the LFPSO algorithm, GLSPSO algorithm incorporates a step to reset any

applicable local search parameters in the case that the neighbourhood best particle was
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not the neighbourhood best in the previous time step. The exact parameters which

are reset may vary depending on the algorithm, e.g. it is likely that in a GDPSO

implementation, the algorithm parameter δ would not be reset, as it would not make

sense to do so. This step in the algorithm is included specifically to deal with special

cases, such as the LFPSO, which rely on local search parameters that are only relevant

and accurate given consecutive iterations with the gradient algorithm, for a given particle.

It is also interesting to contrast the GLSPSO with other similar concepts, such as the

Division of Labor PSO (DolPSO) and the Hybrid Gradient Descent PSO (HGPSO). It

can be argued that the specialisation of particles into the exploration and exploitation

roles is simply a division of labor, a concept which is central to DolPSO. In fact, the

GLSPSO can be described in terms of Vesterstrøm et al.’s DolPSO. GLSPSO is logically

equivalent to a DolPSO where the stimulus is defined as whether a given particle is

the lbest particle or not, with a response threshold so that the local search algorithm is

always triggered if the stimulus is present.

Contrasted with the HGPSO, the GLSPSO highlights several critical differences.

The most important of these is the lack of specialisation, or division of labor within the

HGPSO swarm. In HGPSO, the cognitive component of each particle’s velocity update

equation is replaced with the Gradient Descent position update equation. Effectively,

all particles in the swarm are driven by a single position update equation; they are

attempting to perform the dual task of exploration and exploitation using this single

equation. This is a completely different approach to the GLSPSO, where exploration

and exploitation are treated as separate roles and can be configured individually to suit

a given problem. By contrasting the performance of GDPSO and LFPSO against that of

the HGPSO using empirical methods (chapter 5), this thesis aims to determine whether

this design choice is desirable.

3.3 Challenges with Gradient Information in PSO

Potential challenges arising due to the inclusion of gradient information in PSO are

discussed in this section. Section 3.3.1 discusses the possibility of gradient-based PSOs

to prematurely converge. This is followed by a discussion in section 3.3.2 of how large
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gradient variances can adversely affect gradient based algorithms.

3.3.1 Tendency for Premature Convergence

By definition, the gradient of a function gives the direction of the largest change in

fitness. It is reasonable to deduct that algorithms which make use of gradient information

would be efficient at exploitation of their immediate surroundings [40]. One possible

implication of the inclusion of gradient-enabled particles in a swarm would be the rapid

improvement in quality of these particles. The unfair advantage afforded by the gradient

algorithms to these particles means that it is likely that they would effectively hold the

title of neighbourhood best or global best particle for longer than they would otherwise

have (empirical evidence for this tendency is given in section 5.2.3). This behaviour

could easily unbalance the swarm and adversely affect diversity, and ultimately lead to

premature convergence and inferior performance.

Noel and Jannett’s work [40] on the HGPSO was discussed in section 2.5.5. One of

the primary concerns of the authors was a tendency of gradient hybrid algorithms to

prematurely converge, which influenced the eventual design of the HGPSO.

Three possible approaches to counter premature convergence are proposed in this sec-

tion, namely adjusting social and cognitive acceleration coefficients, delayed introduction

of gradient information, and using of alternative PSO topologies. These approaches are

empirically evaluated in section 5.3.

Adjusted social and cognitive acceleration coefficients

The social and cognitive acceleration coefficients, c1 and c2, can be used to change the

balance of forces acting on the particles in a swarm. Larger values for c1 mean that parti-

cles tend to move more towards their own previous best positions, while larger values for

c2 imply that particles tend to move more towards their global and neighbourhood best

particles. It seems likely that by decreasing c2 while increasing or otherwise adjusting

c1, could result in a swarm that is less affected by immediate exploitation of the gradient

algorithms.

 
 
 



Chapter 3. Using Gradient Information in PSO 58

Delayed introduction of gradient information

By introducing a delay before the gradient information is enabled in the swarm, it is

possible to give the swarm time to find good regions without being adversely affected by

premature convergence. The following mechanism is proposed in this thesis:

Let ρdelay ∈ [0, 1] denote the delay coefficient, such that ρdelay = 0 implies introduction

of gradient information at 0% completion of an experimental run, and ρdelay = 1 implies

introduction at 100% completion (i.e. no introduction at all). In this thesis, experiments

were performed to a fixed number of iterations, and this provided a natural approach

for the calculation.

Alternatively, the introduction of gradient information could also be triggered upon

the realisation of one or more of the following criteria:

� swarm radius being smaller than a certain threshold,

� no improvement in the fitness of the gbest particle over a certain number of itera-

tions,

� the approximated gradient of the fitness function being close to 0.

Use of alternative topologies

In section 2.4.3, alternative topologies such as the ring topology (lbest PSO) were dis-

cussed). These topologies often serve to delay the spread of information in PSO, thereby

reducing the tendency for premature convergence. It is possible that these approaches

would work equally well in the case of gradient PSOs.

Synchronous and asynchronous PSO

The choice of a synchronous versus asynchronous PSO was discussed in section 2.4.6.

Since information regarding better solutions is spread more quickly in an asynchronous

swarm, in a hybrid gradient PSO, this would imply quicker introduction of gradient

information. Conversely, a synchronous PSO would imply a slightly delayed introduction

of gradient information.
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Memory and iteration based gbest

The approach of determining the gbest position can vary, as discussed in section 2.4.1.

The position can be memory based, where the best position out of all previous iterations

is considered to be the gbest position (equation (2.27)), or itertation based, where the best

position in the current iteration is considered (equation (2.28)). It is possible that the

choice of memory or iteration based gbest may also affect the convergence characteristics

of a gradient-based PSO.

3.3.2 Large Gradients

One challenge that gradient-based methods encounter is that of large gradients. The term

large gradient refers to a position in the search space, where at least one component of

the gradient vector can be considered to be unusually large, possibly causing gradient-

based methods to exhibit poor performance. A more formal definition is given below,

followed by an example scenario involving large gradients.

Let∇minf(x) and∇maxf(x) denote the smallest and largest components, respectively,

of the gradient vector for all possible solutions x for the objective function f .

Given a continuous objective function, f(x), which contains at least one minimum

that does not lie on the boundary, it follows that ∃ xB such that ∇f(xB) = [0, ..., 0],

where xB is an extremum of f . Therefore, ∇minf(x) = 0. The value of ∇maxf(x)

depends on the function f and the boundary constraints specified.

An example of large gradients

Consider the one-dimensional function f(x) = x4, with boundary constraints x ∈ [−5, 5].

Since x∗ = 0, it follows that the smallest gradient will occur at x∗, thus ∇minf(x) = 0.

The gradient of the function is defined by the first order derivative, f ′(x) = 4x3. The

most extreme values for the gradient will occur at the boundary constraints. With this

information, it can be calculated that ∇maxf(x) = 500.

Consider the gradient descent algorithm 2.2, where the position update equation is

x(t + 1) = x(t) − δ∇f(x(t)) (equation (2.5)). Suppose that the step size algorithm

parameter has been assigned an arbitrary value of δ = 0.5.
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In the context of the gradient descent algorithm, let the terms convergent and diver-

gent mean that the quality of the solution found is increased and decreased, respectively,

with each subsequent iteration of the algorithm. The objective function f is strictly uni-

modal, and subsequently it can be said that the algorithm will converge if the size of the

position updates decreases with each subsequent time step, i.e. f(x(t + 1)) < f(x(t)).

This condition is satisfied for the above function f when |x(t)− δ∇f(x(t))| < x(t). An

analysis of the gradient f ′(x(t)) yields the following observations:

� When x(0) = 1 or x(0) = −1, the algorithm will oscillate between the positions of

1 and -1 indefinitely. Consider that if x(0) = 1, x(1) = x(0) − δ∇f(x(0)) = −1.

Similarly, given x(1) = −1, it follows that x(2) = 1, and so the sequence carries

on.

� When x(0) ∈ (−1, 1), the algorithm will exhibit convergent behaviour. Each sub-

sequent position update satisfies the convergence condition above, and therefore

limt→∞ f(x(t)) = 0.

� When x(0) /∈ [−1, 1], the algorithm will exhibit divergent behaviour. Each subse-

quent position update is greater than the previous, leading to limt→∞ f(x(t)) =∞.

Figure 3.1 shows the different areas of the objective function f . As an example, the

trajectory of x(0) = 1.1 is shown to be divergent.

Further observations reveal that if x(t) /∈ [−1.48, 1.48] the subsequent position update

will be large enough such that x(t + 1) /∈ [−5, 5], i.e. outside the boundary constraints.

It is useful to note that given a random position drawn from a uniform distribution

such that x(0) ∈ [−5, 5], the algorithm will converge just less than 10% of the time,

and will diverge 90% of the time. Approximately 85% of all possible starting positions

result in an update to the position which immediately removes it from the feasible area.

Considering a 2 dimensional version of f , i.e. f(x1, x2) = x4
1 + x4

2, a simple numerical

analysis reveals the situation would be even worse, with the percentages being 4% for

convergence, 96% for divergence and just over 91% of starting positions resulting in the

algorithm immediately leaving the feasible area. The increase of the scope of the problem

is due to the fact that in the 2 dimensional case, if either x1 or x2 are outside of the
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Figure 3.1: Behaviour of gradient descent where f(x) = x4 and δ = 0.5

convergent range, the resulting position update itself will be outside of bounds in at least

1 dimension, making the entire solution invalid.

This analysis is possible due to the simple nature of the objective function; other

objective functions have far more complex surfaces that would require far more complex

analyses. The analysis presented above was not intended to create any formal definitions

of when gradient based algorithms will converge or diverge, rather it is simply meant

to highlight that under certain conditions gradient based methods can overshoot local

minima, resulting in a new solution that is possibly in a new region of the search space.

This new region of the search space can even be outside the boundary constraints of

the problem, resulting in a solution which is not usable. There is no guarantee that the
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algorithm will be able to return to the feasible region without additional intervention,

resulting in further solutions which are not usable.

Numerous approaches can be applied to solving, or lessening the impact of this prob-

lem. The approaches are generally concerned with the selection of the step size param-

eter, some of which have been mentioned in Section 2.2.2. A short discussion regarding

the approaches, and their applicability to the GDPSO and LFPSO algorithms follows.

Selecting smaller step sizes

One possible solution to the problem of large gradients would be to simply use smaller

step sizes - in the case of gradient descent, this would mean a smaller value for δ. The

main problem with this approach is that a very small value for δ, whilst preventing

large position updates, also slows down the rate of exploitation near flat regions. In the

case of objective functions which contain both large, flat regions as well as steep ones,

convergence would likely be unacceptably slow.

Consider the function f(x) = x4 from above. A step size of δ < 0.02 would mean

that all starting positions within the entire search space of [−5, 5] would converge on x∗.

Given this step size, and a starting position of x(0) = 0.1, it would take the gradient

descent algorithm almost 2500 iterations to reach a position where x(t) ∈ (−0.01, 0.01).

This observation highlights the tendency of objective functions to have regions with

extremely steep gradients as well as regions with very shallow gradients. While selecting

small step sizes potentially solves the problem of large gradients, the efficacy of the

algorithm in flat regions is negatively affected.

It is worthwhile to note that small step sizes may also increase the tendency of the

gradient algorithm to get stuck in local minima. This is particularly relevant in the

realm of highly multimodal problems, where a large number of bad local minima may

exist. In this thesis, however, gradient algorithms are primarily employed for their local

optimisation characteristics. While the possibility of the gradient algorithms to overshoot

bad local minima does exist, rather than relying on this possibility, the task of finding

good areas to explore is largely left to the particles in the hybrid swarm which are not

using gradient methods.
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Step sizes decreasing with time

The step size can be made to be a function of time, where time is the number of iterations

the algorithm has encountered. One approach might be to define lower and upper bounds

for the step size, and to interpolate the step size between these two extremes, based on

the progress of the algorithm. The progress would typically be calculated as the number

of iterations performed out of the maximum allowed.

However, this approach does not completely address the issue. Starting with a large

step size puts the algorithm at risk of region-hopping, or even leaving the feasible area

entirely. Furthermore, the mechanism works under the assumption that the gradient of

the objective function would be smaller with increased time steps. While this assumption

holds for many benchmark functions, it is not always the case.

Clamping of position updates

The concept of Vmax (definition 2.31 from chapter 2) can also be applied to gradient-

based algorithms. When a steep gradient is encountered (which would potentially cause

a large update in position), the change in position can be limited to some predefined

maximum amount.

Such clamping mechanisms are typically implemented per-dimension, so that the

gradient component in each dimension is updated in isolation from the other gradient

components. This process results in a change of direction when clamping is applied. The

method is typically preferred over more complex ones because it is easy to implement

and computationally less intensive.

One issue with clamping is that its application changes the direction and length

of the position update vector, as mentioned in Section 2.4.6 and [20]. In the case of

the LeapFrog algorithm, where conservation of momentum of the particle is a primary

concern [52], the application of Vmax would not be advisable. It should be noted that

the LeapFrog algorithm already implements a mechanism for the control of the size of

position updates via the parameter δ.
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Application to gradient-based PSO

In hybrid algorithms such as the GDPSO and LFPSO, gradient-based algorithms are

employed specifically for their exploitation, i.e. local search ability. In this situation,

even if the algorithm finds a solution in a new region of better quality than the previous

region, it could be argued that this region-hopping behaviour is undesirable, even if in

some cases it may be beneficial. By overshooting the local minimum, the algorithm has

displayed an inability to fully exploit its immediate surroundings. Furthermore, finding

new regions of interest is a function of exploration rather than exploitation, and therefore

should be handled by the other algorithms in the hybrid.

With the above reasoning in mind, it is proposed that when employing a gradient-

based algorithm to perform local search in PSO, it is undesirable to have the gradient

algorithm perform region-hopping. By appropriately limiting the function of the gradient

algorithm to exploitation only, the workings of the hybrid algorithm are more easily

understood. This makes the task of selecting reasonable default parameters much easier,

as well as applying logic to select any modifications to the hybrid algorithm.

3.4 Gradient Estimation

In real-world scenarios, it cannot be assumed that gradient information will be available

for the problem at hand. In this section, a way of calculating a relatively accurate

estimate of the gradient is shown.

Given a function, f(x), where x ∈ Rn, an estimate of ∇f(x) needs to be calculated.

From first principles [31], ∇f(x) can be expanded as follows:

∇f(x) = [
∂

∂x1

f(x),
∂

∂x2

f(x), ...,
∂

∂xn
f(x)]T (3.1)

In turn, the partial derivatives can be written as:

∂

∂xj
f(x) = lim

∆x→0

f([x1, ..., xj + ∆x, ..., xn])− f([x1, x2, ..., xn])

∆x
(3.2)

where j ∈ [1, n].
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An approximate solution for equation (3.2) can be found by assigning an arbitrarily

small value for ∆x.

The original HGPSO [40] uses this method of gradient approximation, stated in a

slightly different form in equation (2.43):

∂

∂xi
f(x) =

f(x + Eiε)− f(x)

ε
(3.3)

where ε is an arbitrarily small number, conceptually identical to ∆x, and Ei is the

ith standard basis vector for Rn. The notation used to describe the HGPSO is thus

mathematically identical, but manages to be more terse by using a vector notation.

By using small values for ∆x, this approach can be used to obtain gradient approxi-

mations that exhibit a high degree of accuracy (as evident from equation (3.2)). Whilst

a simple mechanism to implement, it unfortunately does not scale well with increasing

dimensionality; to approximate the gradient of a function of n dimensions, n evaluations

of the function are required.

In this thesis, the actual gradient of the benchmark functions was used for experimen-

tal runs with the exception of the HGPSO algorithm [40], which was originally created

with a means for estimating the gradient. The actual gradient is defined as the partial

derivative of the function with respect to each dimension.

3.5 Conclusion

This chapter discussed the concept of making use of gradient information within PSO.

An approach for the creation of heterogeneous gradient hybrid PSOs was given, along

with the rationale behind such an algorithm. The differences and similarities between

this new approach and existing ones was investigated. The GDPSO and LFPSO were

introduced, along with a generalisation of the two, the GLSPSO. The potential problems

of using gradient information, namely premature convergence and large gradients, was

investigated. Finally, an approach to estimate the gradient of a function by first principles

was given. The remainder of the thesis will be concerned with empirical experimentation,

specifically the experimental process used, the empirical evidence itself, and conclusions

derived from it.
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Experimental Methodology

The experimental methodology used to obtain empirical results is discussed in this chap-

ter. Section 4.1 details the benchmark functions used. Section 4.2 discusses the process

used to shift the functions. The use of external libraries is discussed in section 4.3, while

section 4.4 describes the selection of algorithm parameters. A range of implementation

specific topics is discussed in section 4.5. Sections 4.6 and 4.7 discuss measurements

and statistical comparisons, respectively. Finally, a conclusion to the chapter is given in

section 4.8.

The intention of this chapter is to disclose in full the experimental process used to

obtain empirical evidence, as well as any implementation-specific details.

4.1 Benchmark Functions

Benchmark functions are sample objective functions which can be used to compare the

performance of algorithms.

The functions in this section have been selected in part for their use in related litera-

ture [45, 52, 53, 54, 9], which makes them suitable for empirical analysis and comparison

to other algorithms. Their availability and correctness as part of the Computational In-

telligence Library (CILib) [41] was an important consideration as well (see section 4.3).

The functions also exhibit different characteristics, which allow for testing hypotheses

which attempt to find a correlation between the performance of specific algorithms and

66
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the characteristics of the benchmark functions. Below are a list of characteristics that

were taken into consideration during the selection process - the definitions are applicable

in the context of function minimisation algorithms:

� Modality: A function is said to be unimodal if it has a single mode. In terms of

function minimisation this implies a single trough, i.e., a single “best” solution.

A multimodal function has many troughs of varying depths, representing solutions

that are sub-optimal on a global scale, but are the best solutions in their immediate

area. These are known as local minima, and algorithms which focus on finding good

solutions in a localised area (known as local optimisers) have a tendency to become

trapped in these sub-optimal solutions. Gradient-based algorithms traditionally

fall into this category.

� Interaction between components: Many benchmark functions do not have inter-

action between their components (e.g. the Spherical function below). Certain

algorithms might take advantage of this fact, reducing a complex problem of n di-

mensions into n one-dimensional problems. The search space of possible solutions

would then scale in a linear fashion with increased dimensionality, instead of ex-

ponentially as is the case where there is interaction between the components. This

fact played a role in the selection of functions that do exhibit interaction between

components, such as the Rosenbrock function.

� Symmetry: Benchmark functions display symmetry to different degrees. Some,

such as the Spherical function, exhibit several types of symmetry, such as reflection

symmetry (where some part of the function is mirrored or reflected through some

axis) and rotation symmetry (where the function is the same after a certain amount

of rotation). Other functions may display different, more subtle types of symmetry

(e.g. localised parts of Six Hump Camel Back), or no symmetry at all (Schwefel,

Quartic function with noise).

� Variation in gradients: Gradient methods can have trouble in dealing with func-

tions which have large gradients (refer to section 3.3.2). It’s important to select

functions which exhibit a selection of relatively flat and hilly terrains.
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The use of gradient algorithms necessitated the availability of gradient information.

While section 3.4 discussed the concept of gradient estimation, the mechanism given in

that section was not used for experimental runs involving GD, GDPSO and LFPSO.

The actual gradient was used for all experiments, with the exception of the HGPSO

algorithm [40], which was originally created with a means for estimating the gradient.

This played an important role in the selection of the functions, since they would ideally

need to be differentiable, and by implication also continuous. The partial derivative with

respect to each component was calculated in order to provide the actual gradient.

A definition and description of each of the benchmark functions used in this thesis

follows. Each function is also accompanied by one or two graphs showing various features

in a graphical way. These renditions are a two-dimensional representation of the actual

function, where x = x1 and y = x2, and the z-axis represents the value of the objective

function at the relevant coordinates. It is important to note that the graphs do not

necessarily show the entire domain of the function, but rather a limited domain selected

in order to highlight interesting features of the function.

Spherical (f1):

Spherical is a simple, unimodal function with no interaction between its components.

It is one of the simplest optimisation problems available. It exhibits both reflection

and rotation symmetry, and also has a special condition which allows certain gradient

algorithms to trivially solve it; specifically, the gradient of the function is exactly twice

the change in position needed to reach the global minimum, for all points on the function.

This allows, for example, a gradient descent algorithm with δ = 0.5 to find the global

minimum in exactly one iteration.

A formal definition of the spherical function is given in equation (4.1), followed by the

partial derivative given in equation (4.2). A graphical representation of the 2-dimensional

version of the spherical function is given in figure (4.1).

f1(x) =
n∑
i=1

x2
i (4.1)

∂

∂xi
f1(x) = 2xi (4.2)
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Spherical(x,y)
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Figure 4.1: f1 - The Spherical function

where xi ∈ [−5.12, 5.12], n = 30 and x∗ = [0, ..., 0] with f1(x∗) = 0.

Rosenbrock (f2):

Rosenbrock exhibits a parabolic valley which is shallow enough that gradient optimisers

have trouble finding a good direction towards the minimum [52, 53, 54]. There is also

some interaction between the components of the function. Later on, in the experimental

results chapter’s table 5.5, it will be shown that Rosenbrock also exhibits the largest

differences in its gradient of any of the benchmark functions. This also makes it difficult

to configure algorithms such as Gradient Descent to perform well on it.

A formal definition of the Rosenbrock function is given in equation (4.3). The partial

derivative is given in equations (4.4), (4.5) and (4.6). A graphical representation of the

2-dimensional version of the Rosenbrock function is given in figure (4.2).

f2(x) =
n−1∑
i=1

[
100(xi+1 − x2

i )
2 + (xi − 1)2

]
(4.3)

∂

∂x1

f2(x) = −400x1x2 + 400x3
1 − 2 + 2x1 (4.4)
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Rosenbrock(x,y)
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Figure 4.2: f2 - The Rosenbrock function

∂

∂xi
f2(x) = 200xi − 200x2

i−1 − 400xixi+1 + 400x3
i − 2 + 2xi (4.5)

where 2 <= i <= n− 1.

∂

∂xn
f2(x) = 200xn − 200x2

n−1 (4.6)

where xi ∈ [−2.048, 2.048], N = 30 and x∗ = [1, ..., 1] with f2(x∗) = 0.

Quartic Function with Noise (f3):

The Quartic Function with Noise (Quartic) is a unimodal function with steep sides that

level out rapidly towards the origin, making it difficult for optimisation algorithms to

find good directions. A random noise component, sampled from a uniform distribution,

is added to the function to simulate real-world conditions. The addition of the random

noise also means that the function does not exhibit any symmetries. Without the random

component, the function displays both reflection and rotational symmetry.

A formal definition of the quartic function with noise is given in equation (4.7),

followed by the partial derivative given in equation (4.8). Figures (4.3) and (4.4) give
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graphical representations of the 2-dimensional version of the quartic function without

and with random noise, respectively.
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Figure 4.3: f3 - The Quartic function, without random noise
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Figure 4.4: f3 - The Quartic function, with random noise

f3(x) =
N∑
i=1

ix4
i + random[0, 1) (4.7)

∂

∂xi
f3(x) = 4ix3

i (4.8)

where xi ∈ [−1.28, 1.28], N = 30 and x∗ = [0, ..., 0] with f3(x∗) = 0. The random

component is sampled from a uniform distribution.

Generalised Schwefel’s Problem 2.26 (f4):

Generalised Schwefel’s Problem (Schwefel) is a multimodal function with a large number

of local minima. The function differs from the previous functions in that the global
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minimum is located close to the boundary constraint of the function. The Schwefel

function does not seem to exhibit any symmetries.

A formal definition of the generalised Schwefel’s problem is given in equation (4.9),

followed by the partial derivative given in equation (4.10). A graphical representation of

the 2-dimensional version of the generalised Schwefel’s problem is given in figure (4.5).
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Figure 4.5: f4 - The Schwefel function

f4(x) = −
N∑
i=1

(
xisin(

√
|xi|
)

(4.9)

∂

∂xi
f4(x) = −xicos(

√
|xi|)

1

2
|xi|−

1
2
xi
|xi|
− sin(

√
|xi|) (4.10)

where xi ∈ [−512, 512], N = 30 and x∗ = [−420.9687,−420.9687, ...,−420.9687] with

f4(x∗) = 0.

Generalised Rastrigin Function (f5):

The generalised Rastrigin function (Rastrigin) is a multimodal function, with a large

number of local minima.

A formal definition of the Rastrigin function in equation (4.11), followed by the partial

derivative given in equation (4.12). Figures (4.6) and (4.7) give graphical representations
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of the 2-dimensional version of the Rastrigin function. The Rastrigin function exhibits

both reflection and rotational symmetry.
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Figure 4.6: f5 - The Rastrigin function, shown over a large domain
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Figure 4.7: f5 - The Rastrigin function, shown over a small domain

f5(x) =
N∑
i=1

[
x2
i − 10cos(2πxi) + 10

]
(4.11)

∂

∂xi
f5(x) = 2xi + 20πsin(2πxi) (4.12)

where xi ∈ [−5.12, 5.12], N = 30 and x∗ = [0, ..., 0] with f5(x∗) = 0.

Ackley’s Function (f6):

Ackley’s function (Ackley) is a multimodal function, first defined in [1] and later gener-

alised in [3]. It exhibits no interaction between the components, but is highly multimodal.

 
 
 



Chapter 4. Experimental Methodology 74

A formal definition of the Ackley’s function in equation (4.13), followed by the partial

derivative given in equation (4.14). Figures (4.8) and (4.9) give graphical representations

of the 2-dimensional version of the Ackley function. The Ackley function exhibits both

reflection and rotational symmetry.
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Figure 4.8: f6 - Ackley’s function, shown over a large domain
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Figure 4.9: f6 - Ackley’s function, shown over a small domain
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where xi ∈ [−30, 30], N = 30 and x∗ = [0, ..., 0] with f6(x∗) = 0.
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Generalised Griewank Function (f7):

The generalised Griewank function (Griewank) is a highly multimodal function, where

the product term introduces significant interaction between its components.

A formal definition of the Griewank function is given in equation (4.13), followed by

the partial derivative given in equation (4.16). Figures (4.10) and (4.11) give graphical

representations of the 2-dimensional version of the Griewank function. Griewank has

been shown to become easier to solve in higher dimensions [62]. The Griewank function

exhibits both reflection and rotational symmetry.
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Figure 4.10: f7 - The Generalised Griewank function, shown over a large domain
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Figure 4.11: f7 - The Generalised Griewank function, shown over a small domain
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where xi ∈ [−600, 600], N = 30 and x∗ = [0, ..., 0] with f7(x∗) = 0.

Six Hump Camel Back Function (f8):

The six hump camel back function is a relatively simple, 2-dimensional function with 6

possible minima in the domain.

A formal definition of the six hump camel back function is given in equation (4.17).

The partial derivative is given in equations (4.18) and (4.19). A graphical representation

of the 2-dimensional version of the problem is given in figure (4.12).
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Figure 4.12: f8 - Six-hump Camel-Back function

f8(x) = 4x2
1 − 2.1x4

1 +
1

3
x6

1 + x1x2 − 4x2
2 + 4x4

2 (4.17)

∂

∂x1

f8 = 8x1 + 8.2x3
1 + 2x5

1 + x2 (4.18)

∂

∂x2

f8 = x1 − 8x2 + 16x3
2 (4.19)

where x1 ∈ [−3, 3], x2 ∈ [−2, 2] and x∗ = [−0.0898, 0.7126], [0.0898,−0.7126] with

f8(x∗) = −1.0316.
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4.2 Shifted Benchmark Functions

Liang et al. [32] argued that in recent years, optimisation algorithms have been developed

to exploit certain characteristics in typical benchmark functions. These characteristics

in benchmark functions detract from their value as good benchmark functions. Liang et

al. listed the following characteristics that can be unfairly exploited by algorithms:

1. global optimum has the same value for different dimensions;

2. global optimum is at the origin;

3. global optimum is lying at the centre of the search range;

4. global optimum is lying on the boundary;

5. local optima are lying along coordinate axes or there is no linkage between dimen-

sions.

Liang et al. [32] suggest shifting and rotating the functions to alleviate the above

problems. Whilst function rotation is usually a good way to deal with the above issues,

it greatly complicates the calculation of the partial derivatives (and hence the gradient)

of the function. It was decided that for this reason, only function shifting would be used.

This allowed for the partial derivatives of the non-shifted function to be used on the

shifted versions. The method of function shifting was adopted from Liang et al. [32]:

F (x) = f(x− onew + oold) (4.20)

where f(x) is the original function, F (x) is the shifted function, oold is the global

optimum of the original function and onew is the new global optimum. The value of onew

is selected so that the new global optimum has different values for different dimensions,

and it is not in the centre of the search space.

In order to ensure fair comparison across the different algorithms, each function was

paired with a single, randomly generated onew. As a result, the various algorithms were

tested on the same functions, with the same random shift in global optimum for each

algorithm. The random numbers were obtained using the Mersenne Twister [36] random

number generator.
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Two main issues needed to be addressed when deciding on the range for the random

shifts:

� The shifted global optimum should still be within the domain of the original func-

tion, and

� the shift must not introduce new global minima to the function.

To address the first issue, onew was sampled from a random distribution such that:

onew,i ∈ [−shiftboundaryi, shiftboundaryi] (4.21)

where shiftboundaryi = min(oold,i−lbi, ubi−oold,i); lbi and ubi are the lower and upper

boundary constraint respectively of the function being shifted, in the i-th dimension.

The issue regarding the introduction of new global minima is a more difficult problem

to deal with. Essentially, an analysis of each function needed to be done to ensure that

a shift in the function does not introduce any new global minima, or alternatively that

the area outside the original domain does not contain any new global minima (this is

relatively simple with unimodal functions, for example). This analysis can be done using

several different approaches, a full treatment of which is outside the scope of this thesis.

Functions Spherical, Quartic, Rastrigin, Ackley and Griewank were shifted by a ran-

dom amount sampled from each respective function’s complete domain. Since in the

case of the above functions the global optimum is located at the center of the domain

for each dimension, this ensured that the shifted global optimum would still be part of

the original domain. In the case of Rosenbrock, the global optimum is located off-center,

and as a result the random shift was selected from a range that would ensure the global

optimum remains in the original domain. The unshifted Schwefel function’s global opti-

mum is already significantly shifted compared to the origin, and the area outside of the

domain also contains better minima than the original global minimum. As a result, it

was decided that the Schwefel function would not be shifted. The six hump camel back

function is likewise already shifted to different degrees on both of its two dimensions,

therefore no further shifting was required. The exact range and random seed values used

for the shift generation process is summarised in table (4.1). The precise shift amounts
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that resulted from the above process are given fully in Appendix A for completeness. All

empirical results presented in this thesis were obtained using the above shifted versions

of the functions.

4.3 External Libraries Used

To ensure openness and implementation correctness, the University of Pretoria’s open

source Computational Intelligence Library (CILib) [41] was used for all experiments. A

private fork of the source code was eventually maintained due to the rapid development of

the library and the associated breaking changes, as well as for the complete repeatability

of experiments.

4.4 Algorithm Parameters

The algorithms benchmarked have various parameters which can affect the algorithm’s

performance. The values of these parameters play a significant role in the suitability of

a given algorithm for a specific problem. Unless otherwise stated, reasonable defaults

were used. In general, this includes the PSO parameters c1, c2 and w, where the defaults

have been obtained from Van den Bergh’s suggested values [9], since they satisfy Van den

Bergh’s convergence condition, w > 1
2
(c1+c2)−1. In specific experiments, attempts were

made to counter specific behaviour by varying c1 and c2, or delaying the introduction

of gradient information. In these cases, the experiments and algorithms were clearly

labelled according to the schemes given in sections 4.4.2 and 4.4.3.

Table 4.2 lists the default PSO parameters used by all algorithms, unless specifically

stated otherwise.

4.4.1 Algorithm Parameters for GCPSO

All GCPSO-specific parameters were set to the default CILib parameters [41], which are

identical to the ones suggested by Van den Bergh [9], and are given in table 4.3. The

standard PSO defaults were used for all other parameters, given in table 4.2.
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Table 4.1: Function Shift Parameters

Function Shifted Shift Range Random Seed

Spherical (f1) Yes [-5.12, 5.12] 5001

Rosenbrock (f2) Yes [-1, 1] 5002

Quartic (f3) Yes [-1.28, 1.28] 5003

Schwefel (f4) No

Rastrigin (f5) Yes [-5.12, 5.12] 5005

Ackley (f6) Yes [-30, 30] 5006

Griewank (f7) Yes [-600, 600] 5007

Six Hump Camel Back (f8) No

4.4.2 Algorithm Parameters for GDPSO

The experiments make use of the following labeling scheme to differentiate between

slightly different versions of GDPSO:

� GDPSO: The basic version of GDPSO, which uses the PSO defaults, and a function

specific step-size (given in table 4.4).

� GDPSOM : GDPSO, but with function specific values for c1 and c2, in order to

counter premature convergence.

� GDPSOD: GDPSO, but with delayed introduction of gradient information. The

values for c1 and c2 are the PSO defaults, but function specific values are used

to introduce the gradient algorithm at a certain percentage of completion of the

experiment, according to the mechanism discussed in section 3.3.1.

� GDPSODM : GDPSO with both function specific values for c1 and c2, as well as

delayed introduction of gradient information.

Table 4.4 gives the parameters used by GDPSO, where δ represents the step size,

and ρdelay the factor by which the introduction gradient information is delayed for the

GDPSOD variant. The optimised parameter values were obtained via experimentation

with different combinations of values, the values which seemed to result in the best
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Table 4.2: Default Algorithm Parameters for PSO

Parameter Value

w 0.729844

c1 1.496180

c2 1.496180

performance being used. To minimise the complexity of the experiments, the values were

optimised in isolation, with the exception of c1 and c2. It should be pointed out that

the standard GDPSO (as opposed to the variants GDPSOM , GDPSOD and GDPSODM)

uses the unoptimised PSO defaults for c1 and c2, given in table 4.2.

4.4.3 Algorithm Parameters for LFPSO

The parametrisation scheme for LFPSO is similar to that used for GDPSO given in

section 4.4.2. As with GDPSO, four versions of LFPSO are labelled distinctly. LFPSO

represents a basic version with values for c1 and c2 from table 4.2. LFPSOD is the same

algorithm, but with the introduction of gradient information being delayed according to

the mechanism discussed in section 3.3.1. LFPSOM is LFPSO with values for c1 and c2

being set to different values per function. LFPSODM uses both function specific values

for c1 and c2 as well as the delayed introduction of gradient information.

The parameters used for LFPSO are given in table 4.5. As in the case of GDPSO, the

standard LFPSO (as opposed to LFPSOM , LFPSOD and LFPSODM) uses the standard

PSO defaults for c1 and c2, given in table 4.2.

4.4.4 Algorithm Parameters for Mutating PSO

The standard CILib [41] PSO parameters given in table 4.2 were used for Mutating PSO.

4.4.5 Algorithm Parameters for HGPSO

Since both the GDPSO and HGPSO make use of the gradient descent algorithm, the

process yielding optimised values for δ was identical in both cases, yielding to the same

values being obtained. The values used for δ in HGPSO are given in table 4.6. The
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Table 4.3: Default Algorithm Parameters for GCPSO

Parameter Value

ρ 1

sc 5

fc 5

ρ expansion coefficient 1.2

ρ contraction coefficient 0.5

Table 4.4: Default Algorithm Parameters for GDPSO

Function δ c1 c2 ρdelay

Spherical 0.5 1.5 1.0 0.0

Rosenbrock 0.0004 0.25 1.5 0.25

Quartic 0.001 1.5 1.5 0.0

Schwefel 0.001 0.75 1.5 0.75

Rastrigin 0.0005 0.25 1.75 0.25

Ackley 0.005 0.25 1.3 0.25

Griewank 11.0 0.25 2.5 0.25

Six Hump Camel Back 0.01 1.5 0.25 0.0

Table 4.5: Default Algorithm Parameters for LFPSO

Function ∆t c1 c2 ρdelay

Spherical 0.5 1.5 1.0 0.0

Rosenbrock 0.00005 0.75 1.25 0.0

Quartic 0.00001 0.75 1.0 0.0

Schwefel 1.0 1.5 1.5 0.5

Rastrigin 0.0001 1.5 1.5 0.0

Ackley 1.0 1.49 1.49 0.25

Griewank 0.5 1.0 0.25 0.25

Six Hump Camel Back 0.001 1.5 0.25 0.0
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CILib defaults for the standard PSO parameters c1, c2 and w were used, given in table

4.2.

4.5 Further Algorithm Assumptions

In this section, a range of implementation-specific topics are discussed. The scheme

used to initialise swarms is discussed in section 4.5.1, followed by a discussion of the

calculation of random values in section 4.5.2. The exact definition of gbest and lbest

used is given in section 4.5.3. Swarm and neighbourhood size is defined in section 4.5.4.

The treatment of particles which leave the acceptable domain is detailed in section 4.5.6.

Section 4.5.7 discusses the usage of inertia weights and velocity clamping, while section

4.5.8 clarifies whether the synchronous or asynchronous update model was used.

4.5.1 Initialisation Scheme

Throughout the experiments, the Mersenne Twister [36] random number generator al-

gorithm was used to create a uniform distribution of random numbers. The Mersenne

Twister is generally considered to be a high quality random number generator for Monte

Carlo simulations, and is the default in a number of mathematical and statistical suites,

including R [57] and MATLAB.

The positions of all particles were initialised randomly using the Mersenne Twister,

using the domain of the function to be optimised as the bounding area for initialisation.

4.5.2 Other Stochastic Factors

All random numbers, unless explicitly stated otherwise, were sampled from a uniform

distribution obtained using the Mersenne Twister algorithm. Specifically, this includes

the PSO random components r1 and r2.

4.5.3 Global and Neighbourhood Best

As discussed in section 2.4.1, the PSO global best position is defined as the best position

found by any particle so far (refer to equation (2.27)).
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Table 4.6: Default Algorithm Parameters for HGPSO

Function δ

Spherical 0.5

Rosenbrock 0.0004

Quartic 0.001

Schwefel 0.001

Rastrigin 0.0005

Ackley 0.005

Griewank 11.0

Six Hump Camel Back 0.01

4.5.4 Swarm and Neighbourhood Size

All swarms were set up with 20 particles. In the case of swarms where the lbest PSO

was used, the neighbourhood size was set to 3.

4.5.5 Stopping Conditions

Unless otherwise stated, all PSO algorithms were executed for 104 iterations. Under

normal circumstances, given the swarm size of 20 particles, this would equate to 2 x 105

function evaluations. In the case of gradient PSOs, however, this statement is impossible

to confirm, since the gradient particles do not directly evaluate the function itself, but

rather its derivative. An attempt at formally equating the evaluation of a function and

the evaluation of the partial derivative of a function is outside the scope of this thesis.

An exception to this rule is made in section 5.1, where a Gradient Descent algorithm is

compared directly to a PSO with 20 particles, giving the PSO an unfair advantage. In

this special case, the experiments were run so that the GD algorithm was given the same

number of function evaluations as the PSO algorithm.

4.5.6 Domain Constraints

Every function used in the experimental analysis has a finite domain. In certain cases,

the regions outside the given boundary may contain better solutions than the global best
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inside the domain. For this reason, it is essential to use some mechanism to ensure that

the swarms do not explore the regions outside the domain of the function. The function

minimisation error F (xi) was calculated as follows:

F (xi) =

{
∞ if ∃ j | xi,j /∈ [xmin,j, xmax,j]

f(xi) otherwise
(4.22)

where f(x) is the benchmark function, xi is the position of particle i, xi,j is the value of

the j-th dimension of particle i, and xmin,j and xmax,j are the minimum and maximum

allowable values in the j-th dimension of the domain of the function f .

The above scheme was used to ensure that areas outside of the defined boundaries

of the problem were not considered as valid results. Since all particles are initialised

within the bounds of the problem initially, there will always be a valid gbest position,

and all particles will have valid pbest positions. When a particle leaves the bounds of the

problem, the fitness of the particle will be worse than at any position within the bounds

of the problem, ensuring that gbest and pbest are never updated to positions outside

of the boundaries. In this way, swarms that are configured with convergent parameters

for w, c1 and c2, as per equation (2.30), should return to an area within the boundary

constraints of the problem.

4.5.7 Inertia Weights and Velocity Clamping

The method of limiting particle velocities was inertia weights, as defined in equations

(2.33) and (2.34).

Velocity clamping, as defined in equation (2.31), was not used to limit particle ve-

locities. The use of inertia weights and convergent choices for c1, c2 and w meant that

velocity clamping would be effectively redundant. Velocity clamping has also been shown

to alter the direction and magnitude of the velocity of particles [20], which, in the specific

case of the LeapFrog PSO, is not desirable since it interferes with the algorithm’s own

attempts to manage the kinetic energy of the particle.

It should be noted that the HGPSO [40], which originally made use of velocity clamp-

ing, was implemented using inertia weights instead. This was done in order to highlight
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that the differences in performance (if any) are due to the core differences in the algo-

rithms, not the choice of velocity clamping versus inertia weights.

4.5.8 Velocity Updates

In all experiments, the synchronous PSO (as defined in algorithm 2.3), rather than

the asynchronous PSO (as defined in algorithm 2.5) was used. Discussed in sections

2.4.6 and 3.3.1, an asynchronous PSO implies faster spread of information through the

swarm, potentially accelerating the tendency for premature convergence. As a result,

the synchronous PSO model was used.

4.6 Measurements

In this section, several measurements relating to algorithm performance are described.

The equation for the calculation of mean error is given in section 4.6.1. Reliability and

efficiency are discussed in sections 4.6.2 and 4.6.3, respectively. The swarm diversity

measurement is discussed in section 4.6.4.

4.6.1 Mean Error

The best solution found at the end of a specified number of swarm iterations or function

evaluations will be used to represent the solution from the entire algorithm.

For any given algorithm and function f , the mean error xf for is given by:

xf =

∑S
s=1 f(ŷs)

S
(4.23)

where S is the number of experimental runs performed. The experiments in this thesis

were performed with S = 50.

The mean error is thus simply the average of the best solutions found by the swarm

in each experimental run. The values are not modified in order to have a minimum

value of 0, although many of the benchmark functions are designed so that their global

minimum yields an error of 0. Since we are dealing with minimization problems, small

values represent better quality solutions.
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4.6.2 Reliability

The reliability of algorithms was measured as the percentage of experimental runs that

achieved a mean error below some arbitrary threshold.

Table 4.7 gives the reliability thresholds used. Where thresholds were provided by

Van den Bergh [9], they were used in this thesis. Other thresholds were arbitrarily set

at some level that would result in some difference being shown between the algorithms

being tested.

4.6.3 Efficiency

In this thesis, efficiency is measured as the average number of swarm iterations elapsed

before the above reliability threshold was reached. Experimental runs which did not

achieve a mean error below the threshold are excluded from the calculation.

4.6.4 Swarm Diversity

Swarm diversity is a measure of the degree to which the particles in the swarm are

dispersed. It is an important aspect of swarm-based algorithms, since it allows for a

measure of the degree to which a swarm has converged. Swarm diversity was calculated

using the following equations (4.24) and (4.25), as taken from [20, 30, 60].

diversity(S(t)) =
1

n

ns∑
i=1

√√√√ nx∑
j=1

[xij(t)− x̄j(t)]2 (4.24)

where x̄j(t) is the average of the j-th dimension over all particles:

x̄j =

∑xn
i=1 xij(t)

ns
(4.25)

4.7 Statistical Comparisons

An open-source statistical tool, the R Project for Statistical Computing [57], was used

to perform all statistical calculations. The version of the software used was 2.6.2.

 
 
 



Chapter 4. Experimental Methodology 88

Table 4.7: Reliability Thresholds

Problem Threshold

Spherical 1.0e-025

Rosenbrock 1.0e+002

Quartic 0.4e+000

Schwefel 6.0e+003

Rastrigin 1.0e+002

Ackley 5.0e+000

Griewank 1.0e+000

Six Hump Camel Back 0.0e+000

To determine whether a particular set of data is normally distributed, the Shapiro-

Wilk test [49] for normality at the 0.05 level was used.

In all cases in this thesis, one or more of the data sets would not be normally dis-

tributed, and as a result non-parametric statistics would be used to validate hypotheses.

To validate hypotheses, the Mann-Whitney U test [34] at the 0.05 level was used.

The Bonferroni correction was used to guard against type I errors, where a rejection of

the null hypothesis occurs even though the null hypothesis is true. In order to protect

against type II errors, the failure to reject the null hypothesis when the null hypothesis is

false, a reasonably large sample size of 50 samples was used. In all cases, an uncorrected

p-value is given for completeness.

Mean error measurements are provided as the mean and a 95% confidence interval,

calculated using the mean obtained from the samples and the t-function with 49 degrees

of freedom.

4.8 Conclusion

This chapter has provided a detailed account of the experimental methodology used to

obtain empirical results in this thesis. The benchmark functions themselves, as well

as their partial derivatives, were given in full. The rationale and process behind the

shifting of the functions is given. All assumptions regarding algorithm implementation
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and algorithm parameters are given, and the supporting rationale is provided where

relevant. The measurements taken during the experiments are detailed, as well as the

statistical process used to evaluate the results.

The full disclosure of the experimental methodology is important for the repeatability

of experiments and results. Additionally, the transparency in the process allows for

validation that the empirical evidence obtained in the remaining chapters was obtained

in a scientific and statistically fair way.

 
 
 



Chapter 5

Experimental Results

This chapter presents and analyses empirical results using statistical methods. Section

5.1 examines the difference in performance of gradient descent and PSO. Section 5.2

examines the performance of the GDPSO hybrid algorithm, followed by an analysis of

modifications to the GDPSO algorithm in section 5.3. The performance of LFPSO is

investigated in section 5.4, followed by an analysis of how gradient information affects

the diversity of gradient-hybrid swarms in section 5.4.3. The performance of GDPSO

and LFPSO is compared against that of three existing PSOs, the HGPSO, GCPSO and

Mutating PSO in section 5.5. Finally, conclusions are given in section 5.6.

5.1 Gradient Algorithms Compared Against PSO

This section examines the performance of gradient descent (GD) against that of standard

PSO. Section 5.1.1 aims to determine whether there is any significant difference between

the performance of the two algorithms. Section 5.1.2 examines the characteristics of the

benchmark functions and correlates these to the results found. Section 5.1.3 formalises

the main performance trends, and Section 5.1.4 investigates some additional aspects of

the experiment. Section 5.1.5 provides a summary of the findings.
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5.1.1 Difference in Performance of GD and PSO

In order to highlight the main differences in the performance of gradient-based algorithms

and PSO, the following hypothesis is proposed:

Hypothesis 5.1 PSO and gradient-based algorithms are not equal in performance.

To validate hypothesis 5.1, Experiment 1 was created, in which the gradient descent

algorithm (GD) is compared against a standard PSO on the 8 benchmark functions

described in section 4.1. The shifted versions of the functions, as discussed in section

4.2, were used for Experiment 1, and all experiments in this thesis.

Table 5.1 shows the mean error obtained for each algorithm and problem. Table

5.2 gives the Mann-Whitney U test p-values prior to correction, indicating whether

there is a significant difference between the distributions of the error measurement of

the respective algorithms. Table 5.3 provides another aspect of algorithm performance,

namely reliability. Reliability is defined in the section 4.6.2. In addition, the table also

provides the mean number of position updates taken to reach the threshold.

Table 5.2 shows a significant difference in the performance of the two algorithms

across all of the benchmark functions. As a result, hypothesis 5.1 is valid.

5.1.2 Correlation of Results and Function Characteristics

Table 5.2 showed that the algorithms exhibited a significant difference in accuracy on

all of the benchmark functions. The mean error from Table 5.1 indicates that on some

functions PSO performed better than GD, while on others the situation was reversed.

The performance of the algorithms can be summarised as follows:

� PSO exhibited superior performance on Schwefel, Rastrigin, Ackley, Griewank and

Six Hump Camel Back.

� GD showed superior performance on Spherical, Rosenbrock and Quartic.

 
 
 



Chapter 5. Experimental Results 92

Table 5.1: Mean Error for Experiment 1

Problem Algorithm Error

Spherical
GD 0.000e+000 ± 0.000e+000

PSO 8.883e-029 ± 3.384e-028

Rosenbrock
GD 7.973e-001 ± 1.611e+000

PSO 4.471e+000 ± 4.496e+000

Quartic
GD 4.354e-001 ± 1.462e-001

PSO 6.128e-001 ± 1.291e-001

Schwefel
GD 9.833e+003 ± 2.364e+003

PSO 4.307e+003 ± 5.039e+002

Rastrigin
GD 5.405e+002 ± 1.677e+002

PSO 1.254e+002 ± 3.469e+001

Ackley
GD 1.987e+001 ± 3.020e-001

PSO 1.007e+001 ± 6.727e+000

Griewank
GD 1.555e+003 ± 2.770e+002

PSO 1.430e-001 ± 4.716e-001

Six Hump Camel Back
GD 9.210e-001 ± 1.177e+000

PSO -2.845e-005 ± 0.000e+000

Table 5.2: Mann-Whitney U Test P-Values for Experiment 1

Problem P-Value

Spherical 2.20e-016

Rosenbrock 3.64e-013

Quartic 1.65e-004

Schwefel 2.20e-016

Rastrigin 2.20e-016

Ackley 2.20e-016

Griewank 2.20e-016

Six Hump Camel Back 1.02e-009
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Table 5.3: Reliability and Efficiency for Experiment 1

Function Algorithm Reliability Efficiency

Spherical
GD 100% 2.000e+001

PSO 100% 4.958e+004

Rosenbrock
GD 100% 1.000e+003

PSO 100% 4.760e+003

Quartic
GD 42% 4.340e+003

PSO 4% 6.604e+004

Schwefel
GD 12% 1.017e+004

PSO 100% 4.400e+003

Rastrigin
GD 0% —

PSO 22% 6.273e+003

Ackley
GD 0% —

PSO 36% 8.833e+003

Griewank
GD 0% —

PSO 96% 7.938e+003

Six Hump Camel Back
GD 44% 1.000e+003

PSO 100% 1.020e+003

Function Modality

Categorising the benchmark functions can help explain the polarisation in results. Table

5.4 shows the list of the benchmark functions, whether the function is unimodal or mul-

timodal, and which algorithm performed better in Experiment 1. The results suggest

that the modality of the problem plays an important role in the performance of the algo-

rithms on each of the benchmark functions, specifically suggesting that GD is superior

on unimodal problems while PSO is superior on multimodal problems.

Hypotheses 5.2 and 5.3 in the following section are used to formally state and validate

the above finding.
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Table 5.4: Problem Characteristics and Algorithm Performance for Experiment 1

Problem Superior Algorithm Problem Modality

Spherical GD Unimodal

Rosenbrock GD Unimodal

Quartic GD Unimodal

Schwefel PSO Multimodal

Rastrigin PSO Multimodal

Ackley PSO Multimodal

Griewank PSO Multimodal

Six Hump Camel Back PSO Multimodal

5.1.3 Performance of GD and PSO versus Modality

The experimental results obtained to validate Hypothesis 5.1 strongly suggested a corre-

lation between algorithm performance and the modality of the problem. In this section,

these findings are formally validated.

Hypothesis 5.2 Gradient-based algorithms perform better with respect to accuracy than

standard PSO on unimodal problems used in this study.

Using results from Table 5.1, it can be seen that gradient descent produced a lower

mean error on the unimodal functions Spherical, Rosenbrock and Quartic. Table 5.2

shows that these results are significant at the 0.05 level. Consequently, it can be stated

that Hypothesis 5.2 is valid.

Hypothesis 5.3 Standard PSO performs better than gradient-based algorithms on mul-

timodal problems.

Using results from Table 5.1, it can be seen that PSO produced a lower mean error on

the multimodal functions Schwefel, Rastrigin, Ackley, Griewank and Six Hump Camel

Back. Table 5.2 shows that these results are significant at the 0.05 level. Consequently,

it can be stated that Hypothesis 5.3 is valid.

 
 
 



Chapter 5. Experimental Results 95

5.1.4 Additional Performance Characteristics

Table 5.3 provides two additional measures of algorithm performance for Experiment 1,

namely algorithm reliability and efficiency. These measurements were defined in sections

4.6.2 and 4.6.3 respectively.

The general finding that PSO outperforms GD on multimodal functions seems to

hold here as well. On each multimodal function, PSO showed higher reliability than

GD. In the case of the unimodal functions Spherical and Rosenbrock, reliability was

tied at 100%. Comparing the efficiency measurements, GD was able to optimise the

Spherical function far more efficiently than PSO, however the numbers were far closer

on Rosenbrock.

The difference in the behaviour of GD on Spherical and Rosenbrock can be attributed

to the nature of the respective functions. Section 3.3.2 discussed the topic of large

gradients affecting gradient algorithms negatively. Consider Table 5.5, which shows

some estimated statistics concerning the gradient of the 2-dimensional version of each

of the benchmark functions. The data is the result of sampling the gradient at equally

spaced positions in the domain of the function. It is immediately apparent that the

Rosenbrock function exhibits some of the largest gradients of all the functions used.

There is a also a large difference between the mean gradient and the maximum gradient,

and the standard deviation is also the highest of all the functions shown. Gradient-

based algorithms, such as GD, are typically configured such that they are able to deal

with the largest gradients in the domain of the function, without completely leaving the

search space. This means that when the algorithm finds itself in the banana-shaped

valley of Rosenbrock - which typically exhibits very small gradients - the algorithm is

ill-configured to efficiently find the global minimum, taking a larger number of iterations

than would otherwise be necessary.

5.1.5 Summary

Hypothesis 5.1 showed that with respect to accuracy, the performance of GD is not equal

to that of PSO for the benchmark functions used. Further analysis yielded that with

respect to accuracy, GD performed better than PSO on unimodal functions (Hypothesis
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Table 5.5: Gradient Characteristics for Benchmark Functions Where N = 2
Function Gradient

Name Domain Maximum Mean Std. Dev.

Spherical [-5.12, 5.12] 10.240 5.125 2.959

Rosenbrock [-2.048, 2.048] 5119.791 642.812 829.993

Quartic [-1.28, 1.28] 4.194 0.789 0.979

Schwefel [-512.03, 511.97] 11.097 5.031 3.130

Ackley [-30, 30] 0.940 0.234 0.166

Rastrigin [-5.12, 5.12] 71.331 39.547 19.670

Griewank [-600, 600] 1.290 0.377 0.275

Six Hump Camel Back [-3, 3], [-2, 2] 285.198 31.084 52.117

5.2), while PSO performed better than GD on multimodal functions (Hypothesis 5.3).

5.2 GDPSO Compared Against PSO

This section examines the performance of the first proposed gradient-based hybrid PSO,

the Gradient Descent PSO (GDPSO). First, motivation for the GDPSO is given in

section 5.2.1, followed by a comparison against standard PSO in section 5.2.2.

5.2.1 Motivation for a Gradient Hybrid PSO

Section 5.1 showed that there is a significant difference between the performance of GD

and PSO. The gradient algorithm excels on unimodal problems, while PSO performed

well on multimodal problems. In order to perform well on a unimodal problem, an

algorithm needs to exhibit strong exploitation characteristics, whereas good performance

on multimodal problems indicates strong exploration characteristics. It seems possible

that a hybrid algorithm which combines both gradient-based methods as well as PSO

would exhibit both strong exploitation and strong exploration capabilities, a desirable

characteristic for an optimisation algorithm.
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5.2.2 Performance of GDPSO and PSO

A hybrid gradient-based PSO, the GDPSO (Algorithm 3.1) is compared with the stan-

dard PSO. Hypotheses 5.4 and 5.5 test whether the hybrid algorithm has successfully

incorporated the the gradient algorithm’s performance on unimodal problems while re-

taining PSO’s performance on multimodal.

Experiment 2 was created to validate Hypotheses 5.4 and 5.5, by testing GDPSO and

standard PSO on the 8 benchmark functions. Tables 5.6 and 5.7 give the mean error,

and Mann-Whitney U test p-values, respectively, for the experiment. Table 5.8 provides

the reliability and efficiency measurements.

Hypothesis 5.4 GDPSO performs better than standard PSO on unimodal problems,

with respect to accuracy.

Table 5.6 shows that for the unimodal functions Spherical, Rosenbrock and Quartic,

GDPSO had a lower mean error than standard PSO. The Mann-Whitney U test p-values

from Table 5.7 show that for these functions, there was a significant difference in the

error found by the algorithms. It is therefore possible to say that GDPSO exhibited

a significantly lower mean error than standard PSO for all the unimodal functions in

the benchmark suite. Hypothesis 5.4 is therefore valid. The reliability and efficiency

measurements from Table 5.8 further support the findings, with both reliability and

efficiency of GDPSO being either lower or equal to that of PSO, for all the unimodal

functions.

Hypothesis 5.5 GDPSO performs no worse than standard PSO on multimodal prob-

lems.

The Mann-Whitney U test p-values from Table 5.7 reveal that for the Six Hump

Camel Back and Griewank functions, there was no significant difference between the

performance of PSO and GDPSO. The remaining 3 multimodal functions did show a

significant difference, and Table 5.6 shows that in each case, PSO had a lower mean error

than GDPSO. This result indicates that GDPSO was not able to retain the performance

of standard PSO for all multimodal functions; thus Hypothesis 5.5 is false. Table 5.8

once again provides further evidence, showing that GDPSO exhibited lower reliability

and efficiency than PSO on several of the multimodal functions.
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Table 5.6: Mean Error for Experiment 2

Problem Algorithm Error

Spherical
PSO 2.480e-028 ± 1.403e-027

GDPSO 0.000e+000 ± 0.000e+000

Rosenbrock
PSO 5.739e+000 ± 9.887e+000

GDPSO 5.582e-001 ± 1.397e+000

Quartic
PSO 5.668e-001 ± 1.816e-001

GDPSO 4.571e-001 ± 1.526e-001

Schwefel
PSO 4.239e+003 ± 5.857e+002

GDPSO 4.666e+003 ± 7.258e+002

Rastrigin
PSO 1.244e+002 ± 3.447e+001

GDPSO 1.527e+002 ± 4.162e+001

Ackley
PSO 8.669e+000 ± 6.784e+000

GDPSO 1.550e+001 ± 4.475e+000

Griewank
PSO 7.189e-002 ± 1.004e-001

GDPSO 1.191e-001 ± 2.222e-001

Six Hump Camel Back
PSO -2.845e-005 ± 0.000e+000

GDPSO -2.845e-005 ± 0.000e+000

Table 5.7: Mann-Whitney U Test P-Values for Experiment 2

Problem P-Value

Spherical 2.20e-016

Rosenbrock 2.79e-013

Quartic 6.03e-002

Schwefel 9.71e-004

Rastrigin 2.32e-004

Ackley 2.07e-006

Griewank 1.37e-001

Six Hump Camel Back 1.00e+000
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Table 5.8: Reliability and Efficiency for Experiment 2

Function Algorithm Reliability Efficiency

Spherical
PSO 100% 4.970e+004

GDPSO 100% 1.000e+003

Rosenbrock
PSO 100% 5.072e+003

GDPSO 100% 1.340e+003

Quartic
PSO 20% 3.910e+004

GDPSO 38% 2.110e+004

Schwefel
PSO 100% 4.736e+003

GDPSO 94% 5.043e+003

Rastrigin
PSO 20% 6.480e+003

GDPSO 14% 9.429e+003

Ackley
PSO 50% 7.488e+003

GDPSO 2% 7.000e+003

Griewank
PSO 100% 7.872e+003

GDPSO 98% 8.898e+003

Six Hump Camel Back
PSO 100% 1.020e+003

GDPSO 100% 1.000e+003

5.2.3 Rate of Exploitation of PSO and GD

The gradient of a function represents the direction of the greatest change in fitness in

the immediate vicinity of any given point. Gradient-based optimisers use this property

to find the nearest minimum in the search space. Given a unimodal region and relatively

uniform slopes, gradient-based algorithms can rapidly exploit their local areas.

Contrasting the rate of exploitation of gradient algorithms with non gradient algo-

rithms on a unimodal surface can reveal some interesting characteristics and challenges.

Consider Figure 5.1, which shows standard PSO compared to GD, with respect to accu-

racy. After only 100 iterations, the single GD algorithm achieves a function minimisation

error dozens of orders of magnitude smaller than the PSO algorithm.

Gradient-based algorithms are well suited to optimise the Spherical function, however
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the above result highlights the potential difference in the rate of improvement of fitness

between PSOs and gradient-based algorithms under ideal conditions.
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Figure 5.1: PSO and GD Performance on the Spherical Function

In order to predict the effect of the GD algorithm within GDPSO, the construction

of the algorithm needs to be considered. Specifically, the GDPSO algorithm prescribes

that the gbest (or lbest) particle in each iteration of the swarm will use the GD algorithm

instead of the standard PSO velocity update.

Consider a multimodal function, with several local minima in the search space, where

each local minimum is located in a relatively uniform and smooth region. In the case of a

standard PSO, the global best particle would act as an attractor to the other particles in

the swarm, causing them to explore the area in between their current position and that of

the global best particle. During this exploration, the likelihood of the swarm uncovering

areas with better solutions than the previous gbest particle’s region is relatively high.

GDPSO, however, changes the balance by giving the gbest particle an unfair advantage

when compared with the rest of the swarm, in the form of the gradient descent algorithm.

Considering the ability of GD to rapidly exploit a local region, it seems reasonable

that the occurrence of situations where the rest of the swarm finds new areas that

immediately outperform the GD-enabled gbest particle is rarer than with standard PSO.

The end result of this new behaviour is that the swarm converges prematurely, severely

compromising the swarm’s ability to effectively explore the search space.
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Figure 5.2 shows the performance of GDPSO and standard PSO on the Rastrigin

function. The mean error for the first 200 swarm iterations from Experiment 2 is shown

against the iteration number. It is important to keep in mind that for GDPSO has been

configured identically to standard PSO Experiment 2; the only difference is the presence

of the gradient descent algorithm. The performance of GDPSO in the initial 15 swarm

iterations is superior to that of PSO. The rapid decrease in mean error is in line with

the ability of GD to rapidly exploit its region. This rapid exploitation is also negatively

affecting the exploration of the search space, which can be seen after iteration 25. The

slope of the PSO mean error is steeper than that of the GDPSO. At 125 iterations,

the algorithms have roughly equal mean error, and at 200 iterations, standard PSO has

developed a distinct advantage over GDPSO. The results from Experiment 2 show that

the trend carries on, and standard PSO exhibits performance that is superior to the

GDPSO at the 0.05 level.

The above tendency of GDPSO to prematurely converge on multimodal problems is

also detectable on the Schwefel, Ackley and Griewank functions.
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Figure 5.2: GDPSO and PSO Behaviour on the Rastrigin Function
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5.2.4 Summary

Hypothesis 5.4 showed that by combining gradient descent and PSO, GDPSO was able

to outperform standard PSO on unimodal functions. Performance on multimodal func-

tions was not retained however, as shown by Hypothesis 5.5. Analysis of the rate of

exploitation of PSO and GD indicated that the inclusion of GD in the PSO algorithm

could lead to premature convergence.

5.3 Modifications to GDPSO

In this section, three possible modifications to the GDPSO algorithm are examined,

aiming to improve on the algorithm in light of the findings in section 5.2.3. The effect

of modifications to the social and cognitive acceleration coefficients in order to lower

the tendency for premature convergence is examined in section 5.3.1, followed by an

examination of how delaying the introduction of gradient information affects performance

in section 5.3.2. Finally, the impact of the lbest topology is examined in section 5.3.3.

5.3.1 Modified Acceleration Coefficients

The PSO algorithm includes the social and cognitive acceleration coefficients, c1 and c2,

which control the degree to which particles are attracted to their neighbourhood’s best

particle and their own personal best position, respectively. The acceleration coefficients

provide a natural way to change the balance of forces within the swarm, which can be

used to lessen the tendency for premature convergence.

Hypothesis 5.6 states that by adjusting the above coefficients, equality in performance

(with respect to accuracy) to PSO on the multimodal functions can be achieved. In order

to highlight the difference in the configuration of the algorithm, GDPSO with modified

acceleration coefficients is referred to as GDPSOM . The term modified acceleration

coefficients refers to the adjustment of the acceleration coefficients c1 and c2 on a per-

problem basis, as defined in section 4.4.2.

Hypothesis 5.6 By adjusting social and cognitive acceleration coefficients, GDPSOM

performs no worse than standard PSO on multimodal problems, with respect to accuracy.
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Experiment 3 aims to evaluate Hypothesis 5.6. A series of experimental runs were

created in order to identify the best values for c1 and c2. Combinations of values such

that c1, c2 ∈ [0.1, 2.0] were tested. Table 5.9 lists the values obtained. In each case, the

combination resulting in the lowest mean error was taken.

Tables 5.10 and 5.11 provide the mean error, and Mann-Whitney U test p-values

respectively, for Experiment 3. Table 5.12 gives the reliability and efficiency measures.

Standard PSO is shown to have lower error on the Ackley function at the 0.05 level,

meaning that Hypothesis 5.6 is false. It should be noted that the format of Table 5.11

differs to that of Tables 5.2 and 5.7. In each of the latter cases, only two algorithms were

being compared against each other, resulting in a single p-value per function. In the case

of Experiment 3, there were 3 algorithms involved, resulting in 3 possible pairings, each

having a separate p-value.

Further analysis of the results reveals the following:

� The results for GDPSOM on Schwefel are not significantly worse than standard

PSO. Adjusting the acceleration coefficients has helped narrow the gap between

PSO and GDPSO.

� On the Rastrigin function, GDPSOM actually has a lower mean error than standard

PSO. However, the p-values show this difference not to be significant. As with

Schwefel, the adjustment to the acceleration coefficients has helped.

� On the Ackley function, PSO still significantly outperformed both GDPSO and

GDPSOM . There was no significant difference between the performance of the

latter two.

The above results indicate that adjusting the social and cognitive acceleration coeffi-

cients can help decrease the tendency of the swarm to prematurely converge on certain

functions. The result on the Ackley function, however, means that 5.6 is not valid.

This result is nevertheless useful, since it states that the modification of acceleration

coefficients alone cannot solve the problem of premature convergence in GDPSO.
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The efficiency and reliability results in Table 5.12 are less clear than the accuracy

measurements given in Table 5.10. While the modified acceleration coefficients have

resulted in greatly increased reliability and efficiency in the case of the Rastrigin function,

as well as a moderate increase in reliability on the Schwefel function, reliability seems to

have suffered on the Ackley function. The difference on the latter function can possibly

be attributed to small variances between experimental runs, since the reliability level

of 2% for GDPSO meant that a single sample out of 50 reached the required threshold

for the reliability measure. It seems reasonable that given another experimental run, a

slightly different result might emerge, as in this case.

5.3.2 Delayed Introduction of Gradient Information

Section 5.2.3 strongly suggested that the premature convergence exhibited by GDPSO

was caused by rapid exploitation of inferior regions by the gradient descent algorithm.

One possible approach to avoiding this effect is to prevent the usage of gradient infor-

mation in the initial stages of the GDPSO algorithm.

The mechanism for managing the delayed introduction of gradient information was

described in section 3.3.1.

Hypothesis 5.7 proposes that the delayed introduction of gradient information will

lead to performance parity with PSO on multimodal functions.

Hypothesis 5.7 By making use of delayed gradient information, GDPSOD performs no

worse than standard PSO on multimodal problems, with respect to accuracy.

Experiment 4 was designed to validate hypothesis 5.7 by testing the performance of

GDPSO using delayed gradient information on the multimodal functions where GDPSO

performed worse than standard PSO in Experiment 2.

It is important to note that Experiment 4 is only concerned with the multimodal func-

tions Schwefel, Rastrigin and Ackley. The remaining multimodal functions Griewank and

Six Hump Camel Back showed no significant difference in the performance of GDPSO

and standard PSO. Since GDPSOM with ρdelay = 1 and ρdelay = 0 is logically equiv-

alent to standard PSO and standard GDPSO respectively, it is unnecessary to re-test
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Table 5.9: Acceleration Coefficients for Experiment 3

Problem c1 c2

Schwefel 1.5 1.5

Rastrigin 1.5 1.75

Ackley 1.4 1.3

Table 5.10: Mean Error for Experiment 3

Problem Algorithm Error

Schwefel

GDPSO 4.666e+003 ± 7.258e+002

PSO 4.239e+003 ± 5.857e+002

GDPSOM 4.543e+003 ± 5.813e+002

Rastrigin

GDPSO 1.527e+002 ± 4.162e+001

PSO 1.244e+002 ± 3.447e+001

GDPSOM 1.107e+002 ± 2.933e+001

Ackley

GDPSO 1.550e+001 ± 4.475e+000

PSO 8.669e+000 ± 6.784e+000

GDPSOM 1.640e+001 ± 4.548e+000

Table 5.11: Mann-Whitney U Test P-Values for Experiment 3

GDPSO PSO GDPSOM

Schwefel

GDPSO 9.71e-004 2.57e-001

PSO 9.71e-004 1.37e-002

GDPSOM 2.57e-001 1.37e-002

Rastrigin

GDPSO 2.32e-004 1.64e-007

PSO 2.32e-004 7.25e-002

GDPSOM 1.64e-007 7.25e-002

Ackley

GDPSO 2.07e-006 4.38e-002

PSO 2.07e-006 1.89e-008

GDPSOM 4.38e-002 1.89e-008
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Table 5.12: Reliability and Efficiency for Experiment 3

Function Algorithm Reliability Efficiency

Schwefel

GDPSO 94% 5.043e+003

PSO 100% 4.736e+003

GDPSOM 100% 5.072e+003

Rastrigin

GDPSO 14% 9.429e+003

PSO 20% 6.480e+003

GDPSOM 40% 3.338e+004

Ackley

GDPSO 2% 7.000e+003

PSO 50% 7.488e+003

GDPSOM 0% —

performance on the Griewank and Six Hump Camel Back functions for the purpose of

Hypothesis 5.7.

Table 5.13 provides the mean error, and Table 5.14 the Mann-Whitney U test p-

values respectively for Experiment 4. Table 5.15 provides the efficiency and reliability

measures for the experiment.

Table 5.14 shows that there is no significant difference in the performance of GDPSOD

and standard PSO, validating Hypothesis 5.6. Furthermore, a significant difference be-

tween the performance of GDPSOD and GDPSO was shown, in each case with a lower

mean error for GDPSOD.

The reliability and efficiency measures in Table 5.15 further support the findings

above, with the reliability of GDPSOD being higher than that of GDPSO on all functions

in the experiment. Perhaps more importantly, the reliability of GDPSOD is very close

to the reliability of PSO, showing that the delayed introduction of gradient information

has greatly helped the performance of the GDPSO algorithm on multimodal functions.

5.3.3 The lbest Topology

The results in the previous sections were obtained using the GDPSO algorithm with the

gbest topology. It is therefore reasonable to explore the effects of the lbest topology on

the GDPSO algorithm. It is important to bear in mind the exact implementation for the
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Table 5.13: Mean Error for Experiment 4

Problem Algorithm Error

Schwefel

GDPSO 4.666e+003 ± 7.258e+002

PSO 4.239e+003 ± 5.857e+002

GDPSOD 4.232e+003 ± 6.385e+002

Rastrigin

GDPSO 1.527e+002 ± 4.162e+001

PSO 1.244e+002 ± 3.447e+001

GDPSOD 1.211e+002 ± 3.445e+001

Ackley

GDPSO 1.550e+001 ± 4.475e+000

PSO 8.669e+000 ± 6.784e+000

GDPSOD 7.624e+000 ± 5.328e+000

lbest topology in terms of GDPSO algorithm 3.1, which states that each neighbourhood

will have one gradient-based particle. This means that each particle in the swarm will be

directly influenced by a gradient algorithm via the social component, however the delay

of information between neighbourhoods may serve to counter premature convergence.

Experiment 5 was created to compare the lbest topology GDPSO against standard

PSO. Table 5.16 gives the mean error for each function, and table 5.17 gives the Mann-

Whitney U test p-values prior to correction. Table 5.18 provides the efficiency and

reliability measurements.

The following hypothesis is proposed:

Hypothesis 5.8 By making use of the delayed introduction of gradient information,

GDPSOlbest performs no worse than standard PSO on multimodal problems, with respect

to accuracy.

Table 5.17 shows that a significant difference exists for multimodal functions Schwefel,

Rastrigin, Ackley and Griewank. Considering table 5.16, it can be seen that GDPSOlbest

performed better on Griewank, standard PSO was still superior for functions Schwefel,

Rastrigin and Ackley. Hypothesis 5.8 is thus false.

The efficiency and reliability meausres in Table 5.18 further support the above find-

ing. While the use of the lbest topology in the GDPSOlbest algorithm did result in
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Table 5.14: Mann-Whitney U Test P-Values for Experiment 4

GDPSO PSO GDPSOD

Schwefel

GDPSO 9.71e-004 9.71e-004

PSO 9.71e-004 9.95e-001

GDPSOD 9.71e-004 9.95e-001

Rastrigin

GDPSO 2.32e-004 1.46e-004

PSO 2.32e-004 5.84e-001

GDPSOD 1.46e-004 5.84e-001

Ackley

GDPSO 2.07e-006 3.31e-010

PSO 2.07e-006 6.97e-001

GDPSOD 3.31e-010 6.97e-001

increased reliability on the Schwefel, Ackley and Griewank functions, reliability as well

as effciency was actually decreased on the Rastrigin function. Compared with standard

PSO, GDPSOlbest still exhibited lower reliability on the multimodal functions Schwefel,

Rastrigin and Ackley.

The failure of the lbest topology to yield significant improvements over the gbest in

the GDPSO algorithm led to a decision to present only the results for the gbest topology

for the rest of the chapter. This decision greatly simplifies and shortens the number of

experiments in the chapter.

5.3.4 Summary

Hypothesis 5.6 showed that modifying the acceleration coefficients of GDPSO did not

improve performance significantly enough to make GDPSOM on par with standard PSO

on the multimodal functions. The delayed introduction of gradient information as used

in the GDPSOD algorithm, worked well, and Hypothesis 5.7 showed that the modified

GDPSO algorithm was on par with standard PSO on the multimodal functions. The

usage of the lbest topology did not improve the GDPSO algorithm enough to bring it up

to par with the standard PSO, as shown in hypothesis 5.8.

The significance of the above finding is that it is possible to create a hybrid gradient-

PSO algorithm which displays the good characteristics of both of its parent algorithms,
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Table 5.15: Reliability and Efficiency for Experiment 4

Function Algorithm Reliability Efficiency

Schwefel

GDPSO 94% 5.043e+003

PSO 100% 4.736e+003

GDPSOD 100% 4.376e+003

Rastrigin

GDPSO 14% 9.429e+003

PSO 20% 6.480e+003

GDPSOD 26% 6.769e+003

Ackley

GDPSO 2% 7.000e+003

PSO 50% 7.488e+003

GDPSOD 42% 8.095e+003

Table 5.16: Mean Error for Experiment 5

Problem Algorithm Error

Spherical
PSO 2.480e-028 ± 1.403e-027

GDPSOlbest 0.000e+000 ± 0.000e+000

Rosenbrock
PSO 5.739e+000 ± 9.887e+000

GDPSOlbest 4.836e-002 ± 9.100e-002

Quartic
PSO 5.668e-001 ± 1.816e-001

GDPSOlbest 4.500e-001 ± 1.252e-001

Schwefel
PSO 4.239e+003 ± 5.857e+002

GDPSOlbest 4.884e+003 ± 5.589e+002

Rastrigin
PSO 1.244e+002 ± 3.447e+001

GDPSOlbest 1.656e+002 ± 4.828e+001

Ackley
PSO 8.669e+000 ± 6.784e+000

GDPSOlbest 1.692e+001 ± 5.137e+000

Griewank
PSO 7.189e-002 ± 1.004e-001

GDPSOlbest 1.669e-002 ± 2.518e-002

Six Hump Camel Back

PSO -2.845e-005 ± 0.000e+000

GDPSOlbest -2.845e-005 ± 0.000e+000
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Table 5.17: Mann-Whitney U Test P-Values for Experiment 5

PSO GDPSOlbest

Spherical

PSO 2.20e-016

GDPSOlbest 2.20e-016

Rosenbrock

PSO 2.94e-013

GDPSOlbest 2.94e-013

Quartic

PSO 7.71e-003

GDPSOlbest 7.71e-003

Schwefel

PSO 5.90e-007

GDPSOlbest 5.90e-007

Rastrigin

PSO 6.42e-006

GDPSOlbest 6.42e-006

Ackley

PSO 5.82e-009

GDPSOlbest 5.82e-009

Griewank

PSO 3.46e-005

GDPSOlbest 3.46e-005

Six Hump Camel Back

PSO 1.00e+000

GDPSOlbest 1.00e+000

while suppressing the negatives.

5.4 Performance of LFPSO

The performance of a second proposed gradient-based hybrid PSO, the LeapFrog PSO

(LFPSO), is examined. First, motivation for the LFPSO is given in section 5.4.1, fol-

lowed by a comparison against standard PSO and GDPSOD in section 5.4.2. The effect

of gradient information on the diversity of gradient-hybrid swarms is examined in sec-

tion 5.4.3. The performance of modified LFPSO is investigated in section 5.4.4, and a

summary is given in section 5.4.5.
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Table 5.18: Reliability and Efficiency for Experiment 5

Function Algorithm Reliability Efficiency

Spherical

PSO 100% 4.970e+004

GDPSO 100% 1.000e+003

GDPSOlbest 100% 1.000e+003

Rosenbrock

PSO 100% 5.072e+003

GDPSO 100% 1.340e+003

GDPSOlbest 100% 1.000e+003

Quartic

PSO 20% 3.910e+004

GDPSO 38% 2.110e+004

GDPSOlbest 38% 1.734e+004

Schwefel

PSO 100% 4.736e+003

GDPSO 94% 5.043e+003

GDPSOlbest 98% 2.324e+004

Rastrigin

PSO 20% 6.480e+003

GDPSO 14% 9.429e+003

GDPSOlbest 6% 8.567e+004

Ackley

PSO 50% 7.488e+003

GDPSO 2% 7.000e+003

GDPSOlbest 10% 1.242e+005

Griewank

PSO 100% 7.872e+003

GDPSO 98% 8.898e+003

GDPSOlbest 100% 1.400e+004

Six Hump Camel Back

PSO 100% 1.020e+003

GDPSO 100% 1.000e+003

GDPSOlbest 100% 1.000e+003

5.4.1 Motivation for the LFPSO

It has been shown in the previous sections, that gradient-based algorithms such as GD

have good characteristics that can be successfully combined into a hybrid PSO algorithm
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such as the GDPSO. The work in sections 5.1.1 - 5.4.2 built upon the gradient descent

algorithm, since it is the simplest of gradient-based algorithms. The LeapFrog algorithm

is generally considered to be a more sophisticated gradient-based algorithm, and it is

possible that its use in a hybrid PSO might result in even better performance.

5.4.2 Performance of Unmodified LFPSO

In order to establish a baseline for the performance characteristics of LFPSO, the fol-

lowing hypothesis is proposed:

Hypothesis 5.9 LFPSO performs no worse than GDPSOD with respect to accuracy.

To validate hypothesis 5.9, Experiment 6 was created. Here the standard LFPSO

algorithm is compared to the GDPSOD from Experiment 4, across all 8 benchmark func-

tions described in section 4.1. The LFOP1(b) version of the LeapFrog algorithm is used

for all LFPSO implementations. The GDPSOD algorithm was selected for comparison,

because out of the 3 modifications to GDPSO, with respect to accuracy, the delayed

introduction of gradient information provided the best results.

Table 5.19 shows the mean error obtained for each algorithm and problem. Table

5.20 gives the Mann-Whitney U test p-values prior to correction, indicating whether

there is a significant difference between the distributions of the error measurement of the

respective algorithms. Table 5.21 shows the reliability measurements for the experiment.

The p-values from Table 5.20 show a significant difference only for the functions

Rosenbrock and Quartic. In both of these, LFPSO showed a lower mean error, thus out-

performing GDPSOM . The other 6 benchmark functions showed no significant difference

between the algorithms, proving hypothesis 5.9.

5.4.3 Gradient Information and Diversity

Section 5.2.2 investigated the performance of GDPSO in relation to standard PSO, and

found that the inclusion of gradient information negatively influenced the ability of the

algorithm to find good results on certain problems. Section 5.2.3 investigated the possible

causes for this, and found that for in some cases, the gradient algorithms were able to
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Table 5.19: Mean Error for Experiment 6

Problem Algorithm Error

Spherical
GDPSOD 0.000e+000 ± 0.000e+000

LFPSO 0.000e+000 ± 0.000e+000

Rosenbrock
GDPSOD 1.757e+001 ± 2.797e+000

LFPSO 9.384e-001 ± 3.044e+000

Quartic
GDPSOD 5.854e-001 ± 1.540e-001

LFPSO 4.485e-001 ± 1.488e-001

Schwefel
GDPSOD 4.232e+003 ± 6.385e+002

LFPSO 4.421e+003 ± 6.816e+002

Rastrigin
GDPSOD 1.211e+002 ± 3.445e+001

LFPSO 1.145e+002 ± 4.625e+001

Ackley
GDPSOD 7.624e+000 ± 5.328e+000

LFPSO 1.065e+001 ± 9.557e+000

Griewank
GDPSOD 1.179e-001 ± 1.250e-001

LFPSO 9.351e-002 ± 1.197e-001

Six Hump Camel Back
GDPSOD -2.845e-005 ± 0.000e+000

LFPSO -2.845e-005 ± 0.000e+000

rapidly exploit their local region, resulting in a situation where the areas around the

initial gbest position of the search space was given greater focus early on. This pattern

of behaviour tended to yield better results early on for the GDPSO, but eventually

resulted in the standard PSO achieving lower error over the duration of the experiment.

The above observation raises the question of in what way (if any) the inclusion of

gradient information affects swarm diversity. With the LFPSO now also introduced, this

question can be examined in more detail. Figure 5.3 shows the change in diversity of

standard PSO, GDPSO, and LFPSO swarms as the experimental iterations progressed,

for the Spherical, Rosenbrock, Quartic and Schwefel functions, while Figure 5.4 shows

the same information for functions Rastrigin, Ackley, Griwank, and Six Hump Camel

Back.

In the context of the heterogeneous construction of the GDPSO and LFPSO, the
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Table 5.20: Mann-Whitney U Test P-Values for Experiment 6

GDPSOD LFPSO

Spherical

GDPSOD 1.00e+000

LFPSO 1.00e+000

Rosenbrock

GDPSOD 2.20e-016

LFPSO 2.20e-016

Quartic

GDPSOD 1.47e-003

LFPSO 1.47e-003

Schwefel

GDPSOD 1.43e-001

LFPSO 1.43e-001

Rastrigin

GDPSOD 3.83e-001

LFPSO 3.83e-001

Ackley

GDPSOD 5.93e-001

LFPSO 5.93e-001

Griewank

GDPSOD 3.00e-001

LFPSO 3.00e-001

Six Hump Camel Back

GDPSOD 1.00e+000

LFPSO 1.00e+000

following observations can be made from the figures:

� Overall, there is no strong tendency for gradient information to decrease diversity.

The diversity of the swarms was very closely matched for all functions except

Rosenbrock and Ackley. This finding is reasonable, considering that in the gbest

swarms, gradient information is only applied directly to one particle in the swarm,

and the convergence behaviour itself for the rest of the particles is in no way

modified.

� The Rosenbrock function provided some deviations from the general trend, with the

gradient optimisers having slightly lower diversity initially, and later on exhibiting

higher diversity than the standard PSO. Unlike the standard swarm particles, the

gradient-driven gbest particles are not influenced by constriction of the swarm, and
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Table 5.21: Reliability and Efficiency for Experiment 6

Function Algorithm Reliability Efficiency

Spherical
GDPSOD 100% 4.000e+002

LFPSO 100% 2.080e+003

Rosenbrock
GDPSOD 100% 1.120e+003

LFPSO 100% 1.160e+003

Quartic
GDPSOD 12% 1.289e+004

LFPSO 40% 1.624e+004

Schwefel
GDPSOD 100% 4.376e+003

LFPSO 100% 3.740e+003

Rastrigin
GDPSOD 26% 6.769e+003

LFPSO 40% 5.105e+004

Ackley
GDPSOD 42% 8.095e+003

LFPSO 44% 7.677e+004

Griewank
GDPSOD 100% 8.160e+003

LFPSO 100% 8.040e+003

Six Hump Camel Back
GDPSOD 100% 1.000e+003

LFPSO 100% 1.000e+003

may perform relatively large steps from time to time, resulting in an increase in

the diversity of the swarm. The tendency of gradient based algorithms to oscillate

from one position to the other on the Rosenbrock function was noted by Snyman

[52]. The initial decrease in diversity can potentially be explained by the fact that

Rosenbrock is a unimodal function, although a similar tendency was not observed

on the other unimodal functions, Spherical and Quartic.

� The Ackley function also provided some deviations from the general trend, with the

LFPSO exhibiting higher diversity than the GDPSO and standard PSO. Neither

of the gradient-based hybrids exhibited lower diversity than the standard PSO,

however.

� The plot for the Six Hump Camel Back reveals a greater tendency for variation
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Figure 5.3: Diversity for functions f1 to f4

than for the rest of the functions. The overall trend for all three algorithms is

nevertheless a gradually decreasing diversity with successive iterations. The higher

variation in the diversity measurement can be attributed to the fact that the Six

Hump Camel Back is a two-dimensional function, and as a result, the diversity

measure has not been averaged out as much as in the case of the rest of the

benchmark functions, each of which is 30-dimensional.

In summary, the diversity of the gradient-based GDPSO and LFPSO swarms was

not negatively influenced by gradient information. This finding implies that the negative

influence of gradient information on multimodal functions (as shown and discussed in

section 5.2.2), can not be attributed solely to a lack of diversity.
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Figure 5.4: Diversity for functions f5 to f8

5.4.4 Performance of Modified LFPSO

Sections 5.3.1 and 5.3.2 investigated the effects of modified acceleration coefficients, as

well as the delayed introduction of gradient information in GDPSO, with positive effects.

In this section, similar modifications to the LFPSO are investigated.

Experiment 7 was designed to assess the relative difference between standard LFPSO

and a variant with modified acceleration coefficients and delayed introduction of gradient

information. The latter variant is labelled LFPSODM . The experiment also compares

the performance of the above LFPSO algorithms against a GDPSO variant with similar

modifications as LFPSODM , namely modified acceleration coefficients as well as delayed

introduction of gradient information. This GDPSO variant is labelled GDPSODM , and

differs from both the GDPSOD and GDPSOM algorithms in that both modifications

have been enabled for the same algorithm.

 
 
 



Chapter 5. Experimental Results 118

Tables 5.22 and 5.23 show the mean error obtained for each algorithm and problem,

and Mann-Whitney U test p-values prior to correction, respectively. Table 5.24 provides

the reliability and efficiency measurements.

The following hypothesis is proposed:

Hypothesis 5.10 LFPSODM performs no worse than LFPSO with respect to accuracy.

There exist problems where LFPSODM exhibits superior performance to LFPSO.

Table 5.23 shows the following regarding the relative performance of LFPSO and

LFPSODM :

� No significant difference can be found for functions Spherical, Quartic, Schwefel,

Rastrigin and Six Hump Camel Back.

� Functions Rosenbrock, Ackley and Griewank do show a significance difference.

Table 5.22 shows that for the above functions which did show a significant difference,

in each case LFPSODM exhibited a lower mean error. This proves hypothesis 5.10.

The reliability and efficiency measurements from Table 5.24 provide mixed results.

In the case of the Ackley function, the LFPSODM exhibits both better reliability and

efficiency when compared to the LFPSO, which no significant differences can be seen for

the Rosenbrock function. The Quartic function is an interesting case, since as shown by

Table 5.22 and Table 5.23, the LFPSODM exhibited a lower mean error than the LFPSO,

while the Mann-Whitney U test p-values showed that this result was significant. Con-

trary to this, Table 5.24 results show a slight decrease in reliability and efficiency for the

LFPSODM . The difference in the reliability and efficiency figures is small enough, how-

ever, to be explained as a difference in the experimental sampling of the measurements,

especially given the stochastic nature of the function.

In order to explore the performance of LFPSODM and GDPSODM , the following

hypothesis is proposed:

Hypothesis 5.11 LFPSODM performs no worse than GDPSODM with respect to accu-

racy. There exist problems where LFPSODM exhibits superior performance to GDPSODM .
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Table 5.22: Mean Error for Experiment 7

Problem Algorithm Error

Spherical

GDPSODM 0.000e+000 ± 0.000e+000

LFPSO 0.000e+000 ± 0.000e+000

LFPSODM 0.000e+000 ± 0.000e+000

Rosenbrock

GDPSODM 1.196e+000 ± 1.845e+000

LFPSO 9.384e-001 ± 3.044e+000

LFPSODM 8.771e-001 ± 1.668e+000

Quartic

GDPSODM 4.532e-001 ± 1.401e-001

LFPSO 4.485e-001 ± 1.488e-001

LFPSODM 4.557e-001 ± 1.432e-001

Schwefel

GDPSODM 4.394e+003 ± 6.324e+002

LFPSO 4.421e+003 ± 6.816e+002

LFPSODM 4.226e+003 ± 5.085e+002

Rastrigin

GDPSODM 8.674e+001 ± 2.136e+001

LFPSO 1.145e+002 ± 4.625e+001

LFPSODM 1.175e+002 ± 5.177e+001

Ackley

GDPSODM 1.034e+001 ± 5.489e+000

LFPSO 1.065e+001 ± 9.557e+000

LFPSODM 2.260e+000 ± 6.190e+000

Griewank

GDPSODM 6.968e+002 ± 1.925e+002

LFPSO 9.351e-002 ± 1.197e-001

LFPSODM 1.182e-003 ± 7.072e-003

Six Hump Camel Back

GDPSODM -2.845e-005 ± 0.000e+000

LFPSO -2.845e-005 ± 0.000e+000

LFPSODM -2.845e-005 ± 0.000e+000

Table 5.23 shows the results regarding the relative performance of GDPSODM and

LFPSODM :

� No significant difference can be found for functions Spherical, Quartic, Schwefel

and Six Hump Camel Back.
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Table 5.23: Mann-Whitney U Test P-Values for Experiment 7

GDPSODM LFPSO LFPSODM

Spherical

GDPSODM 1.00e+000 1.00e+000

LFPSO 1.00e+000 1.00e+000

LFPSODM 1.00e+000 1.00e+000

Rosenbrock

GDPSODM 3.19e-001 5.60e-004

LFPSO 3.19e-001 6.86e-004

LFPSODM 5.60e-004 6.86e-004

Quartic

GDPSODM 9.04e-001 7.70e-001

LFPSO 9.04e-001 9.64e-001

LFPSODM 7.70e-001 9.64e-001

Schwefel

GDPSODM 6.82e-001 2.51e-001

LFPSO 6.82e-001 1.22e-001

LFPSODM 2.51e-001 1.22e-001

Rastrigin

GDPSODM 1.50e-003 1.33e-003

LFPSO 1.50e-003 6.47e-001

LFPSODM 1.33e-003 6.47e-001

Ackley

GDPSODM 9.09e-001 9.46e-012

LFPSO 9.09e-001 3.08e-007

LFPSODM 9.46e-012 3.08e-007

Griewank

GDPSODM 2.20e-016 2.20e-016

LFPSO 2.20e-016 2.22e-016

LFPSODM 2.20e-016 2.22e-016

Six Hump Camel Back

GDPSODM 1.00e+000 1.00e+000

LFPSO 1.00e+000 1.00e+000

LFPSODM 1.00e+000 1.00e+000

� Functions Rosenbrock, Rastrigin, Ackley and Griewank do show a significance

difference.

Table 5.22 shows that in the case of functions Rosenbrock, Ackley and Griewank,

LFPSODM has a lower mean error than GDPSODM . The situation was reversed how-

ever for Rastrigin, with GDPSODM showing a lower mean error. This result may be

unexpected, however nevertheless shows hypothesis 5.11 to be false.
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Table 5.24: Reliability and Efficiency for Experiment 7

Function Algorithm Reliability Efficiency

Spherical

GDPSODM 100% 1.000e+003

LFPSO 100% 2.080e+003

LFPSODM 100% 2.100e+003

Rosenbrock

GDPSODM 100% 4.880e+003

LFPSO 100% 1.160e+003

LFPSODM 100% 1.300e+003

Quartic

GDPSODM 36% 1.864e+004

LFPSO 40% 1.624e+004

LFPSODM 34% 2.388e+004

Schwefel

GDPSODM 98% 5.776e+003

LFPSO 100% 3.740e+003

LFPSODM 100% 4.580e+003

Rastrigin

GDPSODM 76% 2.187e+004

LFPSO 40% 5.105e+004

LFPSODM 34% 7.306e+004

Ackley

GDPSODM 12% 5.667e+003

LFPSO 44% 7.677e+004

LFPSODM 88% 3.543e+004

Griewank

GDPSODM 0% —

LFPSO 100% 8.040e+003

LFPSODM 100% 5.398e+004

Six Hump Camel Back

GDPSODM 100% 1.000e+003

LFPSO 100% 1.000e+003

LFPSODM 100% 1.000e+003

5.4.5 Summary

Hypothesis 5.9 showed that an unmodified LFPSO was able to perform as well as a

GDPSOM with optimised acceleration coefficients. Tables 5.19 and 5.20 also showed that
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in some cases, the LFPSO was able to significantly outperform the GDPSOM algorithm.

This result seems to suggest that PSOs making use of LeapFrog algorithm are less prone

to premature convergence than ones which make use of GD.

By modifying the acceleration coefficients and delaying the introduction of gradient

information in the LFPSODM algorithm, further performance gains were obtained. This

result is formalised in hypothesis 5.10. A combination of the same two modifications on

the GDPSO algorithm yielded the GDPSODM algorithm, which was compared against

LFPSODM . Although significantly outperformed by LFPSODM on Rosenbrock, Ackley

and Griewank, the GDPSODM algorithm performed surprisingly well on the Rastrigin

function, making it impossible to confirm hypothesis 5.11. The implication of the above

finding is that neither LFPSODM or GDPSODM can be said to be of superior performance

for the benchmark suite used.

5.5 Gradient PSOs Compared To Other PSO Vari-

ants

This section compares the gradient algorithms GDPSODM and LFPSODM to other PSO

variants. Section 5.5.1 gives motivation for the comparisons. The GDPSODM and

LFPSODM are compared with the HGPSO in section 5.5.2. This is followed by a compar-

ison of the above gradient-based algorithms with GCPSO in section 5.5.3. GDPSODM

and LFPSODM are compared to the Mutating PSO in section 5.5.4. Finally, a summary

of the findings is given in section 5.5.5.

5.5.1 Motivation

The differences between PSOs and gradient-based algorithms have been explored in the

preceding chapters, and new hybrid algorithms, the LFPSO and GDPSO, have been

benchmarked against each other and the standard PSO algorithm. This was done in

order to systematically and critically argue the positive and negative aspects of including

gradient information in PSO. Since the introduction of the original PSO [14], a significant

portion of the research around Particle Swarm Optimisers have been to introduce new
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and novel ways to improve their performance [22, 30, 33, 40, 45, 56, 9, 60]. The result

of this research is that the original algorithm’s performance is no longer the best frame

of reference for new algorithms.

Three algorithms, the GCPSO [9], Mutating PSO [16] and HGPSO [40] have been

selected for comparison against the GDPSO and LFPSO. The GCPSO was selected due

to the significant amount of research behind it and the good performance it exhibits

[45, 9]. The Mutating PSO was selected due to similarly good performance [16], but also

due to the nature of the modifications it brings to standard PSO. Specifically, Mutating

PSO adds a stochastic element of mutation to the PSO algorithm, which serves as

an interesting contrast to the exploitation-oriented gradient-based PSOs. The HGPSO

was selected simply because it is one of the few gradient-based PSO implementations

available.

5.5.2 GDPSODM , LFPSODM and HGPSO

In this section, the gradient PSO variants GDPSODM and LFPSODM are compared

to the HGPSO. Experiment 8 was designed to contrast the performance of the above

algorithms. Table 5.25 shows the mean error, while table 5.26 gives the Mann-Whitney

U test p-values prior to correction. Table 5.27 provides reliability and efficiency figures.

In order to explore the relative performance of LFPSODM and HGPSO, the following

hypothesis is proposed:

Hypothesis 5.12 LFPSODM performs no worse than HGPSO with respect to accuracy.

There exist problems where LFPSODM exhibits superior performance to HGPSO.

Table 5.26 shows that no significant difference in mean error exists for the problems

Spherical, Rosenbrock and Six Hump Camel Back. It is worthwhile noting that the

results for the Rosenbrock function in table 5.25 seem to show a rather large difference

in mean error, however this seems to be caused by outliers in the results. Table 5.27

is provided as supporting evidence for the above observation, specifically, the reliability

measure indicates that roughly 6% of the HGPSO solutions were not within the threshold

for the Rosenbrock function. The relatively high p-value, however, indicates that the

rest of the solutions were closely matched with the solutions from LFPSODM .
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Considering the functions where a significant difference was indicated, namely Quar-

tic, Schwefel, Rastrigin, Ackley and Griewank, table 5.25 clearly shows that the LFPSODM

algorithm achieved lower mean error. Hypothesis 5.12 is therefore valid.

Table 5.27 further supports the above finding, clearly showing that the LFPSODM

exhibited better reliability than the HGPSO on the functions with a significant difference

in error.

The following hypothesis is proposed in order to evaluate the performance of GDPSODM

and HGPSO:

Hypothesis 5.13 GDPSODM performs no worse than HGPSO with respect to accuracy.

There exist problems where GDPSODM exhibits superior performance to HGPSO.

The p-values from table 5.26 indicate that only the functions Quartic, Schwefel, Ras-

trigin, Ackley and Griewank showed a significant difference. Table 5.25 shows that while

GDPSODM exhibited lower mean error on Quartic, Schwefel, Rastrigin and Ackley, HG-

PSO exhibited significantly lower mean error on Griewank. One possible explanation

for this result is that Griewank has been shown to behave more like a unimodal func-

tion at higher dimensions [62], where the HGPSO algorithm might have an advantage.

Nevertheless, this result clearly invalidates hypothesis 5.13.

The reliability results from Table 5.27 also support the above finding. The perfor-

mance of the GDPSODM algorithm on the Griewank function was such that none of the

experimental runs found a solution of good enough quality to contribute to the reliability

measurement, leading to a reliability figure of 0%. In the case of the remaining functions

which exhibited significant differences in error, namely Quartic, Schwefel, Rastrigin and

Ackley, GDPSODM was found to have superior reliability to the HGPSO.

5.5.3 GDPSODM , LFPSODM and GCPSO

The gradient PSO variants GDPSODM and LFPSODM are compared to the GCPSO.

Experiment 9 was designed to contrast the performance of the above algorithms. Table

5.28 shows the mean error, while table 5.29 gives the Mann-Whitney U test p-values

prior to correction. Table 5.30 gives the reliability and efficiency measurements.
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Table 5.25: Mean Error for Experiment 8

Problem Algorithm Error

Spherical

GDPSODM 0.000e+000 ± 0.000e+000

LFPSODM 0.000e+000 ± 0.000e+000

HGPSO 0.000e+000 ± 0.000e+000

Rosenbrock

GDPSODM 1.196e+000 ± 1.845e+000

LFPSODM 8.771e-001 ± 1.668e+000

HGPSO 4.028e+002 ± 1.826e+003

Quartic

GDPSODM 4.532e-001 ± 1.401e-001

LFPSODM 4.557e-001 ± 1.432e-001

HGPSO 7.711e-001 ± 1.434e-001

Schwefel

GDPSODM 4.394e+003 ± 6.324e+002

LFPSODM 4.226e+003 ± 5.085e+002

HGPSO 5.227e+003 ± 5.754e+002

Rastrigin

GDPSODM 8.674e+001 ± 2.136e+001

LFPSODM 1.175e+002 ± 5.177e+001

HGPSO 2.660e+002 ± 6.395e+001

Ackley

GDPSODM 1.034e+001 ± 5.489e+000

LFPSODM 2.260e+000 ± 6.190e+000

HGPSO 1.842e+001 ± 2.199e+000

Griewank

GDPSODM 6.968e+002 ± 1.925e+002

LFPSODM 1.182e-003 ± 7.072e-003

HGPSO 8.444e-001 ± 1.924e+000

Six Hump Camel Back

GDPSODM -2.845e-005 ± 0.000e+000

LFPSODM -2.845e-005 ± 0.000e+000

HGPSO -2.845e-005 ± 3.140e-017

The following hypothesis is proposed in order to evaluate the performance of LFPSODM

and GCPSO:

Hypothesis 5.14 LFPSODM performs no worse than GCPSO with respect to accuracy.

There exist problems where LFPSODM exhibits superior performance to GCPSO.
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Table 5.26: Mann-Whitney U Test P-Values for Experiment 8

GDPSODM LFPSODM HGPSO

Spherical

GDPSODM 1.00e+000 1.00e+000

LFPSODM 1.00e+000 1.00e+000

HGPSO 1.00e+000 1.00e+000

Rosenbrock

GDPSODM 5.60e-004 2.48e-002

LFPSODM 5.60e-004 6.57e-001

HGPSO 2.48e-002 6.57e-001

Quartic

GDPSODM 7.70e-001 8.05e-014

LFPSODM 7.70e-001 3.80e-013

HGPSO 8.05e-014 3.80e-013

Schwefel

GDPSODM 2.51e-001 4.73e-009

LFPSODM 2.51e-001 3.59e-012

HGPSO 4.73e-009 3.59e-012

Rastrigin

GDPSODM 1.33e-003 2.20e-016

LFPSODM 1.33e-003 6.69e-016

HGPSO 2.20e-016 6.69e-016

Ackley

GDPSODM 9.46e-012 2.89e-010

LFPSODM 9.46e-012 2.38e-014

HGPSO 2.89e-010 2.38e-014

Griewank

GDPSODM 2.20e-016 2.20e-016

LFPSODM 2.20e-016 2.20e-016

HGPSO 2.20e-016 2.20e-016

Six Hump Camel Back

GDPSODM 1.00e+000 3.27e-001

LFPSODM 1.00e+000 3.27e-001

HGPSO 3.27e-001 3.27e-001

The p-values from table 5.29 indicate that no significant difference between the algo-

rithms could be found for functions Quartic, Schwefel and Six Hump Camel Back. Table

5.28 shows that while LFPSODM exhibited lower mean error on Spherical, Rosenbrock

and Griewank, GCPSO exhibited significantly lower mean error on functions Rastrigin

and Ackley. This clearly invalidates hypothesis 5.14.

The reliability and efficiency figures from Table 5.30 highlight similar trends as above.

The LFPSODM algorithm provided 100% reliability on the Spherical function, while the

GCPSO did not manage to reach the threshold for the measurement. On the Rosenbrock
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Table 5.27: Reliability and Efficiency for Experiment 8

Function Algorithm Reliability Efficiency

Spherical

GDPSODM 100% 1.000e+003

LFPSODM 100% 2.100e+003

HGPSO 100% 9.000e+003

Rosenbrock

GDPSODM 100% 4.880e+003

LFPSODM 100% 1.300e+003

HGPSO 94% 1.000e+003

Quartic

GDPSODM 36% 1.864e+004

LFPSODM 34% 2.388e+004

HGPSO 0% 1.401e+005

Schwefel

GDPSODM 98% 5.776e+003

LFPSODM 100% 4.580e+003

HGPSO 94% 3.957e+003

Rastrigin

GDPSODM 76% 2.187e+004

LFPSODM 34% 7.306e+004

HGPSO 0% —

Ackley

GDPSODM 12% 5.667e+003

LFPSODM 88% 3.543e+004

HGPSO 0% —

Griewank

GDPSODM 0% —

LFPSODM 100% 5.398e+004

HGPSO 86% 1.721e+004

Six Hump Camel Back

GDPSODM 100% 1.000e+003

LFPSODM 100% 1.000e+003

HGPSO 100% 1.020e+003

and Griewank functions, both algorithms were tied at 100% for reliability, with the

LFPSODM proving more efficient on the Rosenbrock function, and the GCPSO on the

Griewank. On both of the functions where the GCPSO exhibited a significantly lower

mean error, namely Rastrigin and Ackley, the GCPSO also showed greater reliability
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Table 5.28: Mean Error for Experiment 9

Problem Algorithm Error

Spherical

GDPSODM 0.000e+000 ± 0.000e+000

LFPSODM 0.000e+000 ± 0.000e+000

GCPSO 8.937e-023 ± 1.699e-022

Rosenbrock

GDPSODM 1.196e+000 ± 1.845e+000

LFPSODM 8.771e-001 ± 1.668e+000

GCPSO 1.886e+001 ± 1.150e+001

Quartic

GDPSODM 4.532e-001 ± 1.401e-001

LFPSODM 4.557e-001 ± 1.432e-001

GCPSO 5.443e-001 ± 1.556e-001

Schwefel

GDPSODM 4.394e+003 ± 6.324e+002

LFPSODM 4.226e+003 ± 5.085e+002

GCPSO 4.192e+003 ± 5.881e+002

Rastrigin

GDPSODM 8.674e+001 ± 2.136e+001

LFPSODM 1.175e+002 ± 5.177e+001

GCPSO 8.178e+000 ± 3.807e+000

Ackley

GDPSODM 1.034e+001 ± 5.489e+000

LFPSODM 2.260e+000 ± 6.190e+000

GCPSO 1.432e+000 ± 4.927e+000

Griewank

GDPSODM 6.968e+002 ± 1.925e+002

LFPSODM 1.182e-003 ± 7.072e-003

GCPSO 1.431e-002 ± 1.743e-002

Six Hump Camel Back

GDPSODM -2.845e-005 ± 0.000e+000

LFPSODM -2.845e-005 ± 0.000e+000

GCPSO -2.845e-005 ± 0.000e+000

than the LFPSODM .

A similar hypothesis is proposed to evaluate the performance of GDPSODM and

HGPSO:

Hypothesis 5.15 GDPSODM performs no worse than GCPSO with respect to accuracy.
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Table 5.29: Mann-Whitney U Test P-Values for Experiment 9

GDPSODM LFPSODM GCPSO

Spherical

GDPSODM 1.00e+000 2.20e-016

LFPSODM 1.00e+000 2.20e-016

GCPSO 2.20e-016 2.20e-016

Rosenbrock

GDPSODM 5.60e-004 2.20e-016

LFPSODM 5.60e-004 2.20e-016

GCPSO 2.20e-016 2.20e-016

Quartic

GDPSODM 7.70e-001 8.37e-003

LFPSODM 7.70e-001 5.29e-003

GCPSO 8.37e-003 5.29e-003

Schwefel

GDPSODM 2.51e-001 2.40e-001

LFPSODM 2.51e-001 8.39e-001

GCPSO 2.40e-001 8.39e-001

Rastrigin

GDPSODM 1.33e-003 2.20e-016

LFPSODM 1.33e-003 2.20e-016

GCPSO 2.20e-016 2.20e-016

Ackley

GDPSODM 9.46e-012 8.95e-014

LFPSODM 9.46e-012 2.40e-008

GCPSO 8.95e-014 2.40e-008

Griewank

GDPSODM 2.20e-016 2.20e-016

LFPSODM 2.20e-016 1.10e-009

GCPSO 2.20e-016 1.10e-009

Six Hump Camel Back

GDPSODM 1.00e+000 1.00e+000

LFPSODM 1.00e+000 1.00e+000

GCPSO 1.00e+000 1.00e+000

There exist problems where GDPSODM exhibits superior performance to GCPSO.

The p-values from table 5.29 indicate that for functions Quartic, Schwefel and Six

Hump Camel Back, no significant difference between the algorithms could be found.

Table 5.28 shows that while GDPSODM exhibited lower mean error on Spherical and

Rosenbrock, GCPSO exhibited significantly lower mean error on functions Rastrigin,

Ackley and Griewank. Hypothesis 5.15 is thus invalid.

The above findings are once again supported by the reliability and efficiency measures

in Table 5.30. In the case of the Spherical function, GDPSODM exhibited superior
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Table 5.30: Reliability and Efficiency for Experiment 9

Function Algorithm Reliability Efficiency

Spherical

GDPSODM 100% 1.000e+003

LFPSODM 100% 2.100e+003

GCPSO 0% —

Rosenbrock

GDPSODM 100% 4.880e+003

LFPSODM 100% 1.300e+003

GCPSO 100% 5.920e+003

Quartic

GDPSODM 36% 1.864e+004

LFPSODM 34% 2.388e+004

GCPSO 16% 4.502e+004

Schwefel

GDPSODM 98% 5.776e+003

LFPSODM 100% 4.580e+003

GCPSO 100% 4.060e+003

Rastrigin

GDPSODM 76% 2.187e+004

LFPSODM 34% 7.306e+004

GCPSO 100% 1.114e+004

Ackley

GDPSODM 12% 5.667e+003

LFPSODM 88% 3.543e+004

GCPSO 92% 1.291e+004

Griewank

GDPSODM 0% —

LFPSODM 100% 5.398e+004

GCPSO 100% 7.380e+003

Six Hump Camel Back

GDPSODM 100% 1.000e+003

LFPSODM 100% 1.000e+003

GCPSO 100% 1.120e+003

reliability. The reliability measurements were tied at 100% for Rosenbrock, however

GDPSODM did exhibit superior efficiency. In the case of all the functions where GCPSO

was found to have a significantly lower mean error than GDPSODM , namely Rastrigin,

Ackley and Griewank, the GCPSO exhibited superior reliability.
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The following hypothesis is proposed in order to correlate the performance differences

between the algorithms to the problem types:

Hypothesis 5.16 Considering the functions where a significant difference in perfor-

mance was found, GCPSO outperforms GDPSODM and LFPSODM on multimodal prob-

lems with respect to accuracy, and the opposite is true on unimodal problems.

The functions that exhibited a significant difference in the performance of the above

algorithms are Spherical, Rosenbrock, Rastrigin, Ackley and Griewank. GCPSO outper-

formed the gradient algorithms on Rastrigin and Ackley, which are clearly multimodal

functions. The gradient algorithms outperformed GCPSO on Spherical and Rosenbrock,

which are classified as unimodal problems. The performance of the algorithms on the

Griewank function, however, causes a problem for hypothesis 5.16. Griewank is a mul-

timodal function which tends to become unimodal at higher dimensions [62], making it

difficult to classify as outright multimodal or unimodal. The results in table 5.25 for

the Griewank function would be problematic in either case; LFPSODM outperformed

GCPSO, which in turn outperformed GDPSODM . This exception to the above pattern

means that 5.16 cannot be outright confirmed, and is thus invalid.

Hypotheses 5.14 and 5.15 have been shown to be invalid. It can thus be said that

none of the algorithms is outright superior to any other algorithm. The failure of hy-

pothesis 5.16 to confirm the trend of gradient algorithms performing better on unimodal

problems also highlights the difficulty of categorising the performance characteristics of

these algorithms.

5.5.4 GDPSODM , LFPSODM and Mutating PSO

The gradient PSO variants GDPSODM and LFPSODM are compared to the Mutating

PSO. Experiment 10 was designed to contrast the performance of the above algorithms.

Table 5.31 shows the mean error, while table 5.32 gives the Mann-Whitney U test p-

values prior to correction. Table 5.33 provides the reliability and efficiency measurements

for the experiment.

The following hypothesis is proposed in order to evaluate the performance of LFPSODM

and Mutating PSO:
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Table 5.31: Mean Error for Experiment 10

Problem Algorithm Error

Spherical

GDPSODM 0.000e+000 ± 0.000e+000

LFPSODM 0.000e+000 ± 0.000e+000

Mutating PSO 1.013e-029 ± 5.911e-029

Rosenbrock

GDPSODM 1.196e+000 ± 1.845e+000

LFPSODM 8.771e-001 ± 1.668e+000

Mutating PSO 1.273e+001 ± 2.057e+000

Quartic

GDPSODM 4.532e-001 ± 1.401e-001

LFPSODM 4.557e-001 ± 1.432e-001

Mutating PSO 5.518e-001 ± 1.578e-001

Schwefel

GDPSODM 4.394e+003 ± 6.324e+002

LFPSODM 4.226e+003 ± 5.085e+002

Mutating PSO 7.077e+002 ± 5.466e+002

Rastrigin

GDPSODM 8.674e+001 ± 2.136e+001

LFPSODM 1.175e+002 ± 5.177e+001

Mutating PSO 1.124e+001 ± 5.896e+000

Ackley

GDPSODM 1.034e+001 ± 5.489e+000

LFPSODM 2.260e+000 ± 6.190e+000

Mutating PSO 1.700e-014 ± 6.531e-014

Griewank

GDPSODM 6.968e+002 ± 1.925e+002

LFPSODM 1.182e-003 ± 7.072e-003

Mutating PSO 1.553e-002 ± 1.678e-002

Six Hump Camel Back

GDPSODM -2.845e-005 ± 0.000e+000

LFPSODM -2.845e-005 ± 0.000e+000

Mutating PSO -2.845e-005 ± 0.000e+000

Hypothesis 5.17 LFPSODM performs no worse than Mutating PSO with respect to ac-

curacy. There exist problems where LFPSODM exhibits superior performance to Mutating

PSO.

Considering the p-values from Table 5.32, no significant difference can be seen for the
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Table 5.32: Mann-Whitney U Test P-Values for Experiment 10

GDPSODM LFPSODM Mutating PSO

Spherical

GDPSODM 1.00e+000 2.20e-016

LFPSODM 1.00e+000 2.20e-016

Mutating PSO 2.20e-016 2.20e-016

Rosenbrock

GDPSODM 5.60e-004 2.20e-016

LFPSODM 5.60e-004 2.20e-016

Mutating PSO 2.20e-016 2.20e-016

Quartic

GDPSODM 7.70e-001 3.00e-003

LFPSODM 7.70e-001 4.00e-003

Mutating PSO 3.00e-003 4.00e-003

Schwefel

GDPSODM 2.51e-001 2.20e-016

LFPSODM 2.51e-001 2.20e-016

Mutating PSO 2.20e-016 2.20e-016

Rastrigin

GDPSODM 1.33e-003 2.20e-016

LFPSODM 1.33e-003 2.20e-016

Mutating PSO 2.20e-016 2.20e-016

Ackley

GDPSODM 9.46e-012 2.20e-016

LFPSODM 9.46e-012 2.20e-016

Mutating PSO 2.20e-016 2.20e-016

Griewank

GDPSODM 2.20e-016 2.20e-016

LFPSODM 2.20e-016 2.81e-011

Mutating PSO 2.20e-016 2.81e-011

Six Hump Camel Back

GDPSODM 1.00e+000 1.00e+000

LFPSODM 1.00e+000 1.00e+000

Mutating PSO 1.00e+000 1.00e+000

Quartic and Six Hump Camel Back functions. In the case of the remaining functions,

Table 5.31 shows that Mutating PSO outperformed LFPSODM on Schwefel, Rastrigin

and Ackley. The situation was reversed for functions Rosenbrock and Griewank, however

the above result nevertheless renders hypothesis 5.17 invalid. If Griewank is classified

as a unimodal function, it can be said that the general tendency was for the LFPSODM

to perform better on unimodal functions, while the Mutating PSO performed better on

multimodal ones.

The reliability measure from Table 5.33 provides further support for the above finding.
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Table 5.33: Reliability and Efficiency for Experiment 10

Function Algorithm Reliability Efficiency

Spherical

GDPSODM 100% 1.000e+003

LFPSODM 100% 2.100e+003

MutatingPSO 100% 1.224e+005

Rosenbrock

GDPSODM 100% 4.880e+003

LFPSODM 100% 1.300e+003

MutatingPSO 100% 6.300e+003

Quartic

GDPSODM 36% 1.864e+004

LFPSODM 34% 2.388e+004

MutatingPSO 26% 4.804e+004

Schwefel

GDPSODM 98% 5.776e+003

LFPSODM 100% 4.580e+003

MutatingPSO 100% 7.760e+003

Rastrigin

GDPSODM 76% 2.187e+004

LFPSODM 34% 7.306e+004

MutatingPSO 100% 1.076e+004

Ackley

GDPSODM 12% 5.667e+003

LFPSODM 88% 3.543e+004

MutatingPSO 100% 9.720e+003

Griewank

GDPSODM 0% —

LFPSODM 100% 5.398e+004

MutatingPSO 100% 1.568e+004

Six Hump Camel Back

GDPSODM 100% 1.000e+003

LFPSODM 100% 1.000e+003

MutatingPSO 100% 1.320e+003

While for the functions Schwefel, Rosenbrock and Griewank, the reliability measurement

was tied at 100%, on the Rastrigin and Ackley functions, the Mutating PSO exhibited

superior reliability to the LFPSODM .

In order to compare the performance of GDPSODM and Mutating PSO, the following
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hypothesis is proposed:

Hypothesis 5.18 GDPSODM performs no worse than Mutating PSO with respect to

accuracy. There exist problems where GDPSODM exhibits superior performance to Mu-

tating PSO.

Table 5.32 shows that of all the functions, only Quartic and Six Hump Camel Back

did not show a significant difference. Table 5.31 indicates that GDPSODM was indeed

superior on the Rosenbrock function, while Mutating PSO was superior on Schwefel,

Rastrigin, Ackley and Griwank. Hypothesis 5.18 is thus shown to be invalid.

Taking into consideration the reliability measurement from Table 5.33, the above

finding can be reinforced. With the exception of the measurement for Rosenbrock,

which was tied at 100%, the reliability of the Mutating PSO was superior to that of the

GDPSODM on Schwefel, Rastrigin, Ackley and Griwank.

The results are similar to that of the LFPSODM , GDPSODM , GCPSO comparison

from section 5.5.3. It is perhaps worthwhile to re-evaluate hypothesis 5.16, this time

with Mutating PSO in place of GCPSO:

Hypothesis 5.19 On functions which exhibited a significant difference, Mutating PSO

outperforms GDPSODM and LFPSODM on multimodal problems with respect to accuracy,

and the opposite is true on unimodal problems.

As in the case of hypothesis 5.16, we can see that the gradient algorithms offer

improved performance on Spherical and Rosenbrock, the two unimodal functions that

showed a significant difference in their p-values. Mutating PSO is superior on multimodal

functions Schwefel, Rastrigin and Ackley. The result for Griewank is once again the

problem; as was the case in hypothesis 5.16, LFPSODM exhibits a significantly lower

mean error than Mutating PSO. Mutating PSO outperforms GDPSODM , making it

inconsequential to argue the case of whether the Griewank function should be considered

unimodal or multimodal. Hypothesis 5.19 is thus shown to be false.

All 3 hypotheses in this section (5.17, 5.18, 5.19), as was the case with section 5.5.3

have been shown to be invalid. It can thus be said that none of the algorithms are

outright superior to each other. The failure of hypothesis 5.19 to show with absolute
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certainty the superiority of Mutating PSO for multimodal problems nevertheless does

not detract from a strong lean towards that conclusion.

5.5.5 Summary

The performance of GDPSODM and LFPSODM was contrasted against HGPSO, GCPSO

and Mutating PSO. The modified PSO algorithms introduce significant improvements to

the standard PSO algorithm, and this was reflected in the results in general. Hypotheses

5.12 - 5.19 attempted to indicate whether one algorithm was superior to another, with

only hypothesis 5.12 shown to be valid. In all other cases, contradictory results made it

impossible to state that one algorithm was preferred over another.

The results obtained for the Griewank function in sections 5.5.3 and 5.5.4 prevented

the further refinement of the hypotheses into comparisons which take into account the

modality of the problem.

These results show that the GDPSODM and LFPSODM algorithms are generally

competitive with other PSOs which are considered to exhibit good performance.

5.6 Conclusions

This chapter provides empirical evidence and an analysis of the performance characteris-

tics of standard PSO, gradient-based algorithms, the new gradient-based PSOs, GDPSO

and LFPSO, and some existing PSO algorithms, namely the GCPSO, HGPSO and Mu-

tating PSO.

A systematic approach was used to highlight the different performance characteristics

of the algorithms, and to justify the direction of the experiments. A series of hypotheses

were given, each one building upon the findings of the previous ones.

The strength of the gradient-based methods, including standard GD, but also specif-

ically GDPSO and LFPSO was shown on unimodal functions. The gradient-based algo-

rithms generally tend to find solutions of better quality, with higher reliability and speed.

The gradient-based PSOs retain this performance characteristic on unimodal functions,

which is their primary benefit.
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It has been shown that without any modifications, the GDPSO exhibited decreased

performance, with respect to accuracy, on multimodal functions. The logical construction

of the algorithms, however, lent itself well to simple yet effective means of countering the

problems of premature convergence. The approach which resulted in the best results was

the delayed introduction of gradient information. Using delayed introduction of gradient

information, the GDPSOD algorithm achieved equal performance to standard PSO even

on multimodal functions. The LFPSO, even without any modifications, performed on par

with GDPSOD, and thus standard PSO. This result seems to indicate that the LFPSO

is slightly more robust than the GDPSO, although later results made it impossible to

say that LFPSO always outperforms GDPSO.

The diversity of the gradient-hybrid swarms was contrasted to that of the standard

PSO. The inclusion of gradient information did not seem to affect the diversity of the

swarms, in general. This result is logical, considering that only one particle per swarm

was directly influenced by gradient information. Nevertheless, the performance of un-

modified gradient-hybrid swarms on multimodal functions was negatively influenced.

In order to be competitive with the remaining non-standard PSO algorithms, namely

HGPSO, GCPSO and Mutating PSO, both modified acceleration coefficients and delayed

introduction of gradient information were employed. Under these conditions, the GDPSO

and LFPSO were found to perform well against the HGPSO, with the LFPSO achieving

a lower mean error than the HGPSO on all functions where a statistically significant

difference was shown. The GDPSO and LFPSO performed reasonably well against the

GCPSO and Mutating PSO, with the gradient algorithms generally performing well

on unimodal functions and worse on multimodal functions. In all cases, exceptions to

this general rule made it impossible to categorically state this tendency. Nevertheless,

the ability of the GDPSO and LFPSO to compete against advanced PSOs (which are

arguably more designed for and suited to multimodal functions) even on multimodal

functions, is encouraging.

To summarise the conclusions of this chapter, the new gradient based algorithms

GDPSO and LFPSO were found to perform well overall. A general tendency for prema-

ture convergence was found, but could be effectively countered using simple methods.

The main strength of the new algorithms lies in solving unimodal problems, but they

 
 
 



Chapter 5. Experimental Results 138

perform reasonably well on multimodal ones as well.

 
 
 



Chapter 6

Conclusions

The conclusions of the thesis are summarised in section 6.1. Section 6.2 suggests direc-

tions for future research.

6.1 Summary

This thesis investigated the construction and performance characteristics of gradient

based particle swarm optimisers.

Chapter 3 investigated the concept of using gradient information in PSO.

Two new gradient based PSOs were constructed, the Gradient Descent PSO (GDPSO;

algorithm 3.1), and the LeapFrog PSO (LFPSO; algorithm 3.2). The concept of viewing

PSO algorithms as either homogeneous or heterogeneous was discussed in section 3.1.

The Generalised Local Search PSO (GLSPSO; algorithm 3.3) was introduced purely as

a formalisation of this concept.

Chapter 5 used empirical evidence was to investigate the performance characteristics

of gradient based algorithms, as well as to test the performance of the GDPSO and the

LFPSO.

Section 5.1 showed that gradient algorithms are excellent at exploitation, evidenced

by their efficacy when dealing with unimodal problems.

Section 5.2 showed that gradient algorithms can be combined with PSO. The decrease

in performance of the gradient-hybrid algorithm was shown to most likely be a result
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of premature convergence, due to the rapid exploitation capabilities of the gradient

algorithm.

Section 5.3 systematically proposed and evaluated several measures to counter the

premature convergence of the GDPSO algorithm. Delayed introduction of gradient in-

formation, specifically, was shown in section 5.3.2 to be an effective means of preventing

premature convergence.

The LFPSO’s performance was investigated in section 5.4, showing that an unmod-

ified LFPSO performed equally well or better than a GDPSO with delayed gradient

information (section 5.4.2). This result seems to suggest that the LeapFrog algorithm

is less parameter dependent than gradient descent, as well as having less of a tendency

to cause the swarm to prematurely converge. Section 5.4.4 compared the performance

of LFPSO against GDPSO, with each algorithm being optimally configured for each

function, resulting in similar performance characteristics.

Section 5.5 tested optimised versions of LFPSO and GDPSO against the HGPSO,

GCPSO and Mutating PSO.

In the comparison against HGPSO (section 5.5.1), the new gradient-hybrid algorithms

performed well, often outperforming their HGPSO counterpart. LFPSO specifically

was formally shown to exhibit either equal or superior performance when compared

to HGPSO. The difference in performance can possibly be explained by the fact that

HGPSO is a homogeneous algorithm, while the LFPSO and GDPSO are heterogeneous

(discussed in section 3.1). This characteristic may allow the latter algorithms to better

retain the performance characteristics of the original PSO algorithm.

Sections 5.5.3 and 5.5.4 tested the gradient hybrid algorithms GDPSO and LFPSO

against GCPSO and Mutating PSO, respectively. Both GCPSO and Mutating PSO

exhibited good performance on multimodal problems, with the exception of the Griewank

function. The exception with Griewank made it impossible to formally confirm the

hypothesis that these algorithms outperform the gradient algorithms on multimodal

problems.

This thesis set out to show that gradient information can be incorporated into PSO

without adversely affecting its performance on multimodal functions, while still gain-

ing benefits on unimodal ones. This result has been clearly confirmed using empirical
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evidence.

The comparisons against the modified PSOs (HGPSO, GCPSO, Mutating PSO)

showed that GDPSO and LFPSO were often able to outperform their counterparts on

unimodal problems. Surprisingly, it was not possible to show that the gradient algorithms

were inferior to GCPSO and Mutating PSO on multimodal problems. This result seems

to confirm the argument for the heterogeneous construction of these new gradient-hybrid

PSO algorithms.

6.2 Further Research

This section discusses some possible directions for future research.

6.2.1 Combining Gradient PSOs and Mutation

This thesis has reinforced the general notion that gradient algorithms are good exploiters,

primarily suited for unimodal problems. By combining a gradient-PSO with mutation,

it may be possible to construct a new PSO which is ideally suited to both unimodal and

highly multimodal problems. Several different approaches might be investigated:

� Random selection of particles and dimensions for mutation.

� Mutation of the worst performing particles in the swarm after each iteration.

� The introduction of a new particle type which is concerned primarily with explo-

ration. This particle’s movements could be a completely random, or alternatively

it could be given a few iterations to exploit a new area before being mutated again.

6.2.2 Advanced PSO Topologies

Section 2.4.3 discussed several PSO topologies. This thesis has been primarily concerned

with the gbest and lbest topologies, but it is possible that some of the other topologies

would help in preventing premature convergence by delaying the distribution of infor-

mation throughout the swarm. A standard topology which has these benefits would be
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superior to the delayed introduction of gradient information and modification of accel-

eration constants used in this thesis, since it would have less dependence on reasonable

parameters, which can be function specific.

6.2.3 Swarm Gradient Estimation

It can be argued that gradient information is rarely available in real-world scenarios.

Section 3.4 showed that it is possible to estimate gradients relatively accurately. How-

ever, the method is computationally expensive, and does not scale well with increasing

dimensions. One interesting possibility is to enable sharing of information in the swarm

to estimate the gradient.

The approach here would involve using the position and fitness of other, physically

nearby particles in the swarm in order to approximate the gradient at the position of

any given particle. While this approach seems similar to other, spacial position aware

PSOs, it is different due to the fact that the approximated gradient would not serve

as a means of a neighbourhood best selector mechanism, but rather as an input into a

gradient algorithm.
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Appendix A

Shifting of Benchmark Functions

Section 4.2 discussed the need for, and rationale behind, the shifting of benchmark

functions. All experimental results given in this thesis have been obtained using shifted

functions, in order to counter the problems with traditional benchmark functions as

described by Liang et al. [32]. The following tables contain the specific values by which

the dimensions of the benchmark functions were shifted. Table (A.1) contains the shift

values for the Spherical (f1), Rosenbrock (f2), Quartic (f3) and Schwefel (f4) functions.

Table (A.2) contains the shift values for the remaining functions, namely Rastrigin (f5),

Ackley (f6), Griewank (f7) and Six Hump Camel Back (f8) functions.

The shift amounts were obtained using the procedure described in section 4.2. The

values are given here per dimension per function, up to an accuracy of 5 decimal places.

The functions Schwefel and Six Hump Camel Back are exceptions to the general proce-

dure and have shift amounts of 0, since they are already shifted. The rationale for not

shifting these specific functions further was discussed in detail in section 4.2.
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Table A.1: Function shifts for functions f1, f2, f3 and f4

Dimension Spherical f1 Rosenbrock f2 Quartic f3 Schwefel f4

1 -3.13106 -0.23551 -0.90072 0.00000

2 4.45136 0.39465 1.15233 0.00000

3 1.43454 -0.89321 -1.12649 0.00000

4 4.92868 -0.93500 -0.25146 0.00000

5 -0.36802 -0.84764 -0.15765 0.00000

6 -5.04586 -0.53109 -0.85430 0.00000

7 3.87438 -0.36262 -1.13078 0.00000

8 4.00724 0.91614 1.09432 0.00000

9 2.03782 -0.65749 0.94920 0.00000

10 -0.52178 -0.88368 1.04792 0.00000

11 2.07289 -0.32709 0.05436 0.00000

12 3.15103 0.27325 1.24261 0.00000

13 4.23762 -0.52578 -0.66383 0.00000

14 -2.66532 0.18985 0.17855 0.00000

15 -1.29870 0.55900 0.30678 0.00000

16 -0.93053 0.89719 -0.69735 0.00000

17 1.09594 -0.33170 0.14283 0.00000

18 -1.59012 0.23425 -0.19033 0.00000

19 -2.33478 -0.29136 -0.25675 0.00000

20 -1.80866 0.70062 -0.88586 0.00000

21 -0.43572 -0.32650 1.20915 0.00000

22 -0.89456 -0.69322 0.30756 0.00000

23 -0.58677 0.96943 0.95485 0.00000

24 3.69869 0.11325 -0.51853 0.00000

25 4.48195 -0.09759 -0.12721 0.00000

26 2.35420 -0.31656 0.34183 0.00000

27 -4.72619 -0.55338 -0.07495 0.00000

28 2.35521 0.19870 0.18935 0.00000

29 0.84086 0.27555 1.07900 0.00000

30 2.39426 -0.73669 -0.66545 0.00000
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Table A.2: Function shifts for functions f5, f6, f7 and f8

Dimension Rastrigin f5 Ackley f6 Griewank f7 Six Hump Camel Back f8

1 -0.45841 19.42716 310.46545 0.00000

2 0.68643 -11.48837 -160.05151 0.00000

3 -3.31322 -4.61634 549.22287 0.00000

4 -3.27040 -27.04160 -210.58835 0.00000

5 -4.66849 15.94852 -458.97169 0.00000

6 -3.32058 -10.57587 104.46982 0.00000

7 2.33490 0.67070 -24.49712 0.00000

8 -4.97177 22.49589 -217.09175 0.00000

9 -4.57901 1.33919 107.91198 0.00000

10 1.00048 -0.13621 446.99340 0.00000

11 -3.32037 -26.37463 69.94157 0.00000

12 -4.76122 18.22032 -69.95599 0.00000

13 1.05141 -28.85380 -264.63363 0.00000

14 -0.43623 -16.10003 -15.86234 0.00000

15 0.07128 -11.54899 -56.99282 0.00000

16 -2.76391 -12.69936 -113.19206 0.00000

17 -1.02548 -0.79516 -310.52274 0.00000

18 -4.60372 -7.00874 -44.45474 0.00000

19 1.67487 7.24158 -165.09234 0.00000

20 4.22423 27.48397 -72.77065 0.00000

21 2.90555 17.31374 -486.70688 0.00000

22 -1.16946 0.15826 -438.76460 0.00000

23 -3.39534 23.40222 236.13066 0.00000

24 1.63388 -19.24791 -564.52950 0.00000

25 -0.48505 -25.99182 424.16727 0.00000

26 2.89194 -14.41666 -506.07972 0.00000

27 -1.71638 12.97958 292.08257 0.00000

28 1.28075 -7.33662 -452.79065 0.00000

29 -2.75574 21.79688 -242.46736 0.00000

30 -0.83711 4.29590 95.25796 0.00000
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CILib Configuration

The Computational Intelligence Library (CILib) used to perform all experiments in this

thesis is configured using XML files. While the large number of XML files and their

verbosity mean that all XML files used in this thesis cannot be presented here, the

configuration of the new algorithms is given below.

The GDPSO and LFPSO specific settings are given in sections B.1 and B.2, respec-

tively. The HGPSO is also new to the CILib, and its configuration is described in section

B.3. The configuration of function shifting is discussed in section B.4, and finally, a short

but complete XML file is provided in section B.5. It is important to note that while the

XML samples given here are accurate at the time of writing, changes due to refactoring

in the CILib project may lead to changes in the configuration XML as well.

B.1 GDPSO

The following XML snippet shows a typical configuration of the GDPSO algorithm:

<algorithm id=" GDPSO" class="PSO.GDPSO" particles ="20" stepSize ="0.01"

socialAcceleration ="1.496180" cognitiveAcceleration ="1.496180"

gradientVelocityUpdateCondition ="0.0" >

<topology class =" Entity.Topologies.GBestTopology" />

<addStoppingCondition class=" StoppingCondition.MaximumIterations"

iterations ="10000" />

</algorithm >
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The GDPSO class extends the standard PSO implementation, and as a result all

XML attributes defined for PSO are also defined for GDPSO. Specifically, these include

id, particles, socialAcceleration and cognitiveAcceleration, and their meaning

is unchanged. The class attribute specifies the use of the relevant PSO.GDPSO class.

The attributes that are new and specific to the GDPSO are stepSize and gradientVe-

locityUpdateCondition. The stepSize setting controls the gradient descent algorithm

parameter δ, while gradientVelocityUpdateCondition setting controls the delayed in-

troduction of gradient information, and is expressed as a scalar ∈ [0, 1], as described in

section 3.3.1.

The topology and addStoppingCondition elements are identical in both their syn-

tax and their use to the standard PSO.

It is worthwhile noting that in the case of complex experimental runs involving mul-

tiple functions and per-function paramaterised algorithms, it is necessary to use unique

values for the id attribute. Typically in these cases, the id of the algorithm was the

concatenation of the name and algorithm parameters used, which ensured uniqueness.

B.2 LFPSO

The following XML snippet shows a typical configuration of the LFPSO algorithm:

<algorithm id=" LFPSO" class="PSO.LFPSO" particles ="20"

socialAcceleration ="1.496180" cognitiveAcceleration ="1.496180"

deltaT ="0.001" gradientVelocityUpdateCondition ="0.0" >

<topology class =" Entity.Topologies.GBestTopology" />

<addStoppingCondition class=" StoppingCondition.MaximumIterations"

iterations ="10000" />

</algorithm >

The configuration of the LFPSO algorithm is similar to the GDPSO algorithm. The

standard attributes id, particles, socialAcceleration and cognitiveAcceleration

are again present, and their meaning is unchanged. The class attribute specifies the

use of the LFPSO class, specifically PSO.LFPSO. The LFPSO algorithm differs from the

GDPSO in that parameter δ from GD is no longer present, and that the LeapFrog

parameter ∆t is used. In the XML, this setting is referred to as deltaT. The gradi-
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entVelocityUpdateCondition attribute works in an identical way as with the GDPSO

above.

The topology and addStoppingCondition elements are identical in syntax and use

to the standard PSO.

B.3 HGPSO

The following XML snippet shows a typical configuration of the HGPSO algorithm:

<algorithm id=" HGPSO" class="PSO.HGPSO" particles ="20"

stepSize ="0.01" socialAcceleration ="1.496180"

cognitiveAcceleration ="1.496180" >

<topology class =" Entity.Topologies.GBestTopology" />

addStoppingCondition class=" StoppingCondition.MaximumIterations"

iterations ="10000" />

</algorithm >

Since both the GDPSO and the HGPSO make use of the gradient descent algorithm,

the configuration of the two algorithms is almost identical. The class attribute specifies

the use of the PSO.HGPSO class, and the GD parameter δ can be configured using the

stepSize parameter.

B.4 Shifting of Functions

To achieve the shifting of benchmark functions as discussed in section 4.2 and Appendix

A, a function decorator was used. This decorator was termed the ShiftedFunction-

Decorator, and the XML snippet below shows its usage:

<function class=" Functions.Continuous.ShiftedFunctionDecorator"

shiftDataFile =" Function Shifts\SixHumpCamelBack.txt" >

<function class =" Functions.Continuous.SixHumpCamelBack"

domain ="R(-3,3),R(-2,2)"/>

</function >

The shiftDataFile attribute specifies an input file, from which the shift values for

each dimension are read. A single scalar value for each dimension is stored, and the
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values are separated by end of line characters. The exact values used in this thesis have

been given in Appendix A. The second parameter to the decorator is the function to be

shifted, defined in the function element.

B.5 A Short but Complete CILib XML Sample

A short, complete CILib XML file is given below, showing an experimental run of the

LFPSO algorithm on the Six Hump Camel Back function. It has been configured with

the relevant stopping condition and measurement settings for an experimental run, as

used in this thesis.

<?xml version ="1.0" encoding ="UTF -8"?>

<!DOCTYPE simulator [

<!ATTLIST algorithm id ID #IMPLIED >

<!ATTLIST problem id ID #IMPLIED >

<!ATTLIST measurements id ID #IMPLIED >

]>

<simulator >

<algorithms >

<algorithm id="LFPSO" class="PSO.LFPSO" particles ="20"

socialAcceleration ="1.496180"

cognitiveAcceleration ="1.496180"

deltaT ="0.001"

gradientVelocityUpdateCondition ="0.0" >

<topology class =" Entity.Topologies.GBestTopology" />

<addStoppingCondition

class=" StoppingCondition.MaximumIterations"

iterations ="10000" />

</algorithm >

</algorithms >

<problems >

<problem id=" SixHumpCamelBack"

class=" Problem.GradientFunctionMinimisationProblem">

<function

class=" Functions.Continuous.ShiftedFunctionDecorator"

shiftDataFile =" Function Shifts\SixHumpCamelBack.txt">

<function

class=" Functions.Continuous.SixHumpCamelBack"

domain ="R(-3,3),R(-2,2)"/>

</function >

</problem >

</problems >

<measurements id=" measurements" class =" Simulator.MeasurementSuite"

samples ="50" resolution ="50" >

<addMeasurement class =" Measurement.FitnessEvaluations" />

<addMeasurement class =" Measurement.FunctionOptimisationError" />

<addMeasurement class =" Measurement.Diversity" />

</measurements >

<simulations >
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<simulation >

<algorithm idref ="LFPSO"/>

<problem idref=" SixHumpCamelBack "/>

<measurements idref=" measurements" file=" measurements.txt"/>

</simulation >

</simulations >

</simulator >
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