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Summary

The study is focused on finding the origins of optical transitions from ZnO doped by the

impurities such as Li, Al, Ga and In using ordinary photoluminescence and magneto-

photoluminescence spectroscopy.

We have employed group theoretical methods to study the symmetry of these free dopants

before and after putting into the ZnO crystalline field. The group theory allows the classi-

fication of the states of dopants in the crystalline field. The symmetry of the free atoms is

full rotational group which is reduced to the symmetry operators of the point group of ZnO

when they are put into ZnO crystal. The states of these dopants are doublets (2s+1=2)

and exhibit anomalous Zeeman splitting. In ZnO, these dopants become shallow donors

(Al, Ga and In) to which excitons of symmetries Γc
7 ⊕ Γv

7(A), Γc
7 ⊕ Γv

9(B) and Γc
7 ⊕ Γv

7(C)

are bound.

We have demonstrated a correlation between ionized and neutral donor bound excitons of

the same chemical identity in ZnO. For greater understanding of these excitonic transi-

tions, we have studied the electronic band structure of ZnO and established the excitonic

selection rules in the absence and presence of time reversal symmetry (TRS). We have

proven that the inclusion of TRS does not change the existing selection rules compared to

those in the absence of TRS. Only, it introduces new states of the same symmetry.
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1 Introduction

The excitonic state of a crystal is an excited state of the whole crystal and thus the electron-

hole pair is mobile and can move throughout the lattice. In semiconductors, such as the

III-VI compound crystals, the electron-hole pairs are loosely bound and are called Wannier

excitons. However, in insulators such as the alkali-halides and alkali earth fluorides the

excitons are tightly bound electron-hole pairs. These excitons exhibit more local atomic

character and are termed Frenkel excitons.

1.1 Free excitons

The valence band is split into three bands due to the influence of crystal-field and spin-orbit

interactions. The near-band-gap intrinsic absorption and emission spectrum is dominated

by transition from these three valence bands. The related free-exciton transitions from

the conduction band to these three valence bands or vice versa are usually denoted by

A (also referred to as the heavy hole), B (also referred to as the light hole), and C (also

referred to as the crystal-field split band). Recent availability of high-quality ZnO single

crystals has paved the way to observe intrinsic exciton transitions in low temperature

photoluminescence (PL), magnetoluminescence, and reflectance measurements. However,

the ordinary PL technique can only probe A-excitons at k = 0 of symmetries Γ5 and

Γ6(Γ
c
7 ⊗ Γc

9 = Γ5 ⊕ Γ6 = Γ5(↑↓) + Γ6(·)). The shoulder lines at around 3.3750eV and

3.3775eV might be related to Γ5(anti-parallel spins) and Γ6 (parallel spins) respectively

Fig.15.

1.2 Bound excitons

By the term bound exciton is meant an electronic excitation of a crystal in which an

electron-hole pair is localized near an imperfection in the crystal. Bound excitons are ex-

trinsic transitions and are related to dopants and defects, which usually create electronic

states in the band gap, and therefore influence both optical-absorption and emission pro-

cesses. They are observed as sharp-line optical transitions in photoluminescence. The

excitons could be bound to neutral donor or acceptor to form molecular states, or to ion-

ized donor or acceptor to form molecular ion states. In high-quality bulk ZnO substrates,

the neutral shallow donor bound excitons (DBE) often dominate because of the presence
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Table 1: Free and bound exciton recombinations. AL and AT are the longitudinal and transversal free
A-exciton states. AT is the reference for the determination of the bound exciton localisation energy.

Line Wavelength Energy Localisation Donor binding Chemical
(nm) (eV) energy(meV) energy(meV) identity

Al 367.12 3.3772

AT 367.26 3.3759

I0 367.63 3.3725 3.4

I1 367.71 3.3718 4.1

I1a 368.13 3.3679 8.0

I2 368.19 3.3674 8.5

I3 368.29 3.3665 9.4

I3a 368.34 3.3660 9.9

I4 368.34 3.3628 13.1 46.1 H

I5 368.86 3.3614 14.5

I6 368.92 3.3608 15.1 51.55 Al

I6a 368.96 3.3604 15.5 53

I7 369.01 3.3600 15.9

I8 369.03 3.3598 16.1 54.6 Ga

I8a 369.08 3.3593 16.6

I9 369.37 3.3567 19.2 63.2 In

of donors due to unintentional (or dopant) impurities and/or shallow donorlike defects. In

samples containing acceptors, the acceptor bound excitons (ABE) are observed.

Fig.15 shows two types of exciton complexes related to impurities in ZnO: Neutral donor-

bound exciton (I6a, I7, I8 and I9) and ionized donor-bound excitons (I0, I1 and I2). Table 1

shows the free and bound excitons with their localisation energies and chemical identities.
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The studies of these lines are carried out by means of Zeeman spectroscopy. It is our

aim to develop briefly the theory of the Zeeman effect.

The Zeeman effect denotes the splitting of the spectral lines emitted by atoms located in a

magnetic field. This effect was first observed in 1896 by Zeeman . Lorentz found a classical

explanation of this effect, according to which each spectral line of an atom should split into

three components [1]. This Lorentz triplet was referred to as the normal Zeeman effect

(NZEef). Many atoms were also found whose spectral lines split into more complicated

structures, this effect was named the anomalous Zeeman effect (AnZEef).

The said effect could only be explained with the help of the hypothesis of electron spin,

which was formulated in 1925 by Goudsmit and Uhlenbeck. This success ultimately con-

tributed to the general acceptance of the theory of electron spin and the associated intrinsic

magnetic moment of the electron.

The Zeeman effect leads to many applications:

In experimental spectroscopy, by analyzing the splittings of the spectral lines of an atom,

the spectroscopist can determine the splittings of the energy levels of the atoms (µβBg).

The most easily interpreted evidence for the splitting of atomic energy levels in an external

magnetic field is electron spin resonance (ESR)[2]. If atoms in their ground state are placed

in a region containing electromagnetic radiation of frequency ν, and a steady magnetic field

B is applied to the region, the electromagnetic energy will be strongly absorbed when the

photons have energy hν which just equals the Zeeman splitting of the two components

of the ground state energy level. The photons are able to induce transitions between the

components in which they are absorbed.

A type of Zeeman effect can also be observed in the hyperfine structure when the nucleus

and spin are interacting.

In Magnetophotoluminescence, the Zeeman effect measurement leads to impurity and exci-

ton complexes analysis in a semiconductor with greater confidence and accuracy in a strong

magnetic field. Indeed, the pholuminescence peaks of the spectrum corresponding to exci-

ton bounds for impurities are due to optical transitions. The relative intensities of these

peaks in the spectra reflect the relative concentration of impurities of the semiconductor[3].

In magnetoabsorption, the Zeeman measurement provides information about the band

structure of a semiconductor. This involves the transitions between the valence band and

the conduction band as well as between the valence band and the bound exciton levels.
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The Zeeman effect associated with magnetoabsorption will also furnish information about

transitions between the degenerate and the split-off bands in a semiconductor[4]. It is our

aim to study the optical properties of ZnO doped with Lithium by means of low tempera-

ture photoluminescence and magneto-photoluminescence.

The organisation of the present thesis is as follows:

The first section introduced the thesis with an oveview of free and bound excitons in ZnO.

In the second section, an atom in an external magnetic field is discussed and the observed

normal and anomalous Zeeman effects is studied. The spectral terms of free atoms: Li, Al,

Ga and In dopants of ZnO are given and by employing the group theory we demonstrate

how the atomic levels of the Li, Al, Ga and In split in the crystalline field of ZnO.

In section three we describe the band structure of the wurtzite ZnO at k = 0 and study

the selection rules in the absence and presence of Time Reversal Symmetry.

In section four the experimental results are discussed.

Section five concludes the thesis with a brief summary followed by the reference list and

appendix.
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2 An atom in an external magnetic field

In this section, we briefly recall the classical theory of the normal Zeeman effect with regards

to an atom placed in an external magnetic field. We study the effect of an external magnetic

field on spectral terms of free atoms. In order to analyse the ordinary Photoluminescence

and Magnetophotoluminescence (PL, MPL) spectra, we also recall the theories of NZEef

and the AnZEef.

2.1 Normal Zeeman effect

The normal Zeeman effect disregards the spin of the electrons and consequently the spin-

orbit and spin-spin interactions are not taken into account.

An atom in a magnetic field can be modelled as a simple harmonic oscillator. The restoring

force on the electron is the same for the displacements in all directions and the oscillator

has the same resonance frequency ω0 for motion along the x,y, and z directions (when

there is no magnetic field). In magnetic field B the equation of motion for an electron with

charge −e, position r and velocity v = ṙ is:

me
d~v

dt
= −meω

2
0~r− e~v ×B (1)

With

~r = ~r0e
−iωt (2)

Substituting eq. 2 into 1, we obtain the frequencies: ω = ωo, ω = ωo − ΩL, ω = ωo + ΩL of

the electrons oscillating along the x,y and z axes in a magnetic field: see appendix A and

Figs.1, 2.

An electron in a free atom, when there is no external perturbation applied, does not emit

light. When external steady state magnetic field B is applied, the oscillating electron acts

as a classical dipole and emits the radiative electromagnetic waves. In other words the

external magnetic field induces in an atom a dipole moment. It is shown by calculations

and experimental spectra that the emitted light consists of three different frequencies.
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Figure 1: For the normal Zeeman effect, a simple model of an atom explains the frequencies of the light
emitted : ω0 − ΩL ,ω0, and ω0 + ΩL

Figure 2: A simple model of an atom as an electron that undergoes simple harmonic motion explains the
features of the Zeeman effect of a magnetic field (along the z-axis).The three eigenvectors of the motion
are:êzcosω0t and cos({ω0 ± ΩL} t)êx ± sin({ω0 ± ΩL} t)êy

14

 
 
 



The magnetic field does not affect the motion along the z axis and the angular frequency

of the oscillator remains ωo. The interaction with the magnetic field causes the motions

in the x and y directions to be coupled together. This results in two circular motions in

opposite directions in the xy plane, as illustrated in Fig 2. These circular motions have

frequencies shifted up, or down, from ωo by the Larmor frequency.

This classical model of the Zeeman effect explains the polarisation of light as well as

the splitting of the lines into three components. The calculation of the polarization of

the radiation at each of the three different frequencies for the general direction of the

observation is straightforward using vectors. However, only the particular cases where the

radiation propagates parallel and perpendicular to the magnetic field are considered: the

longitudinal and transverse directions of the observation respectively. The π-component of

the line is observed in all directions except along the magnetic field. The σ- components

in contrast to the π- components are seen in the longotudinal observation Fig.3 and 4.

15

 
 
 



Figure 3: For the normal Zeeman effect, a simple model of an atom explains the frequency of the light
emitted and its polarization indicated by the arrows for transverse observations

Figure 4: For the normal Zeeman effect, a simple model of an atom explains the frequency of the light
emitted and its polarization indicated by the arrows for the cases of longitudinal observation
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Figure 5: Term diagram of normal Zeeman effect
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Fig.5 dipects the normal Zeeman effect on the 1s2p1P − 1s3d1D2 line in helium. These

levels split into three and five mj states respectively. Both levels have s = 0 and g = 1 so

that the allowed transitions between the states create the same pattern of three components

as the classical model. This is the historical reason why it is termed the normal Zeeman

effect. Any other pattern is called the anomalous Zeeman effect, although such patterns

have a direct explanation in quantum mechanics and arise whenever S 6= 0. e.g. all atoms

with one valence electron have S = 1
2
. The π- and σ-components arise from ∆mj = 0 and

∆mj = ±1 transitions, respectively. The positions of the energy levels of the atom are

given by the relation:

E = mlµβgB (3)

With ml, the orbital magnetic moment, µβ, the Bohr magneton = e~/2mc, g the Landé

factor from Fig.5 g = 1(See Eq. 8 section 2.31).

The Figs. 3, 4 show the frequency of light emitted and its polarization. Fig.5 illustrates

the selection rules governing the transitions between the states.

2.2 Selection rules for optical transitions in free atoms

The selection rules that govern allowed transitions arise from the angular integral

τang =

∫ 2π

0

∫ π

0

Y ∗
l2,m2

(θ, φ)r̂ · êradYl1,m1(θ, φ) sin θdθdφ (4)

which contains the angular dependence of the interaction r̂ · êrad for a given polarisation of

the radiation. The mathematics requires that we calculate τang for an atom with a well-

defined quantisation axis and radiation that has a well-defined polarization and direction

of propagation. This corresponds to the physical situation of an atom experiencing the

Zeeman effect of an external magnetic field and indicates that treatment of the electron

as a classical oscillator showed that the components of different frequencies within the

Zeeman pattern have different polarisations. We employ the same nomenclature of π- and

σ-transitions here. Transverse observation refers to radiation emitted perpendicular to the

magnetic field, and longitudinal observation lies along the z-axis.

1. π- transitions

These are transitions arising from the transverse observations referring to radiations

emitted perpendicular to the magnetic field. For this polarisation the magnetic quan-

18

 
 
 



tum number does not change, ∆ml = 0.

2. σ-transitions

These are transitions arising from the longitudinal observations referring to radia-

tions emitted along the magnetic field (z-axis). For this polarisation, the magnetic

quantum number changes, and the selection rule is ∆ml, = ±1. where the ml is the

orbital magnetic quantum number.

2.3 The anomalous Zeeman effect

In subsection 2.1 it has been shown that the normal Zeeman effect, which disregards the

spin of the electron, can be discribed by the classical Lorentz Theory.

In the anomalous Zeeman effect, the interaction between the electron’s spin magnetic dipole

moment and the weak magnetic field is taken into account. The total atom’s magnetic

moment has orbital and spin contributions:

µ̃ = −µ̃βL− gsµ̃βS (5)

For a single electrons model, e.g. alkali atoms, the Hamiltonian can then be written

H = − }
2

2m
O2 + V (r) + ξ(r)L.S + Bγ0(Lz + 2Sz) (6)

with γ0 = e/2mc, where the first two terms of the Hamiltonian describe the kinetic and

potential energy respectively, the third term describes the spin-orbit interaction, and the

last term describes the Zeeman effect.

The interaction of the atom with the external magnetic field is described by HZE = −µ.B

In the vector model the magnetic moment is projected along J (see Fig.6).
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Figure 6: The contributions to the total magnetic moment from the motion and spin are projected along
J.
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The Zeeman energy is :

EZE = gjµBBMJ (7)

Where the landé g− factor is (See Appedix B for rigid derivation)

gJ =
3

2
+

s(s + 1)− l(l + 1)

2j(j + 1)
(8)

and the µB = eh/2mc is the Bohr magneton. Fig.7 dipects the typically term diagram of

the anomalous Zeeman effect.

The singlet terms have S = 0 so J = L and gJ . The singlets all displays the same Zee-

man splitting between MJ states, and transitions between singlet terms exhibit the normal

Zeeman effect Fig.5. The ∆MJ ± 1 transitions have frequencies shifted by ±µβB/h with

respect to the ∆MJ = 0 transitions. In both the normal and anomalous Zeeman effects

the π - transitions (∆MJ = 0) and σ -transitions (∆MJ = ±1) exhibit the same polar-

izations as in the classical model. The Zeeman effect observed for 2P
1
2

−2 S 1
2

and 2P
1
2

−2 S 1
2

transitions that arise between the fine-structure components of the alkalis is shown in Fig.7.
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For example, we can consider the emission due to electric dipole transitions between

an excited p-state and a ground s-state. The energy level with and without a magnetic

field are shown in Fig. 7. The ground state is S 1
2
(J = 1

2
) and splits into two Zeeman levels

for mj = ±1
2

while p-state is split by spin-orbit coupling into two states P 3
2
(j = 3

2
) and

P 1
2
(J = 1

2
) which are then further split by the magnetic field into a quartet, mj = ±3

2
,±1

2
,

and doublet, mj = ±1
2
. The allowed transitions are also shown and are of two types; there

are σ transitions for mj = ±1 which give rise to luminescence which is circularly polarized,

when observed parallel to the magnetic field or linearly polarized perpendicular to B if

observed normal to B. There are also π transitions for mj = 0 which give radiation linearly

polarized parallel to the magnetic field when observed normal to it.

Figure 7: Energy level diagram showing the allowed transitions between a p-state and an s-state in the
presence of a magnetic field. The transitions are grouped according to the polarizations,σ+, π and σ−.
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In the next section we will discuss the magneto-photoluminescence spectral for ZnO-Li,

in terms of the theory discussed here.

2.4 Spectral terms of free atoms: Li, Ga, Al, and In dopants of

ZnO crystal

2.4.1 Electronic configuration of Li, Ga, Al, and In

The ground states of these elements displays the following electronic configurations [5]:

Table 2: The Electronic Configurations of the Li, Al, Ga and In

Shell K L M N Q Normal

n 1 2 3 4 5 state

Subshell (l) 0 1 0 1 0 1 2 0 1 2 0 1

Li 1s2 2s 2S 1
2

Al 1s2 2s2 2p6 3s2 3p 2P 1
2

Ga 1s2 2s22p6 3s23p63d0 4s2 4p 2P 1
2

In 1s2 2s22p6 3s23p63d10 4s2 4p64d10 5s2 5p 2P 1
2
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2.4.2 Spectroscopic nomenclature of free atoms

In general, the spectroscopic nomenclature of free atoms consists of the 2S+1XJ symbols,

where:

- 2S + 1 stands for the spin degeneracy

- X ⇒ L ⇒ S, P, D, F, · · · stands for the orbital angular momentum

- S stands for the total spin of the free atom

- J = L + S, stands for the total angular momentum.

The spectroscopic nomenclatures of Li and Al elements are listed below:

- For Li : 2S 1
2
⇒ S ⇒ L = 0; 2 = 2S + 1, S = 1

2
; J = L ±S = 1

2

- For Al : 2P 1
2

and 2P 3
2
⇒ P ⇒ L= 1, 2 = 2S + 1, S = 1

2
; J = L ± S ⇒ 1

2
, 3

2
.

Let us consider the Li element and determine the possible spectral terms. The ground

state is : 1S22S.

For 1S2 terms; n = 1, l = 0, s = 0;

For 2S terms; n = 2, l = 0, s = 1
2

and the spectral term is 2S 1
2
.

The shell 1S2 with zero total spin zero and no angular momentum l = 0 is totally fullfilled

and does not contribute to excited states of Li.

Therefore, 2S shell alone will contribute to the excited states by increasing the n and l

quantum numbers.

Consider n = 2, l = 1, s = 1
2

for the L shell (see table 1): J = 1 ± 1
2
; the spectral terms

are: 2P 1
2

and 2P 3
2
.

Consider n = 3, l = 2, s = 1
2

for M shell : j = 2± 1
2
, the spectral terms are: 2D 3

2
and 2D 5

2
.

Consider n = 4, l = 3, s = 1
2

for the N shell : j = 3 ± 1
2
; the spectral terms are: 2F 5

2
and

2F 7
2

etc.

Because from the ground state to the excited states the total spin remains half (s = 1
2
),

the terms are doublets. Therefore, the normal triplet Zeeman effect can not be observed

in Li, Ga, Al, and In.

The normal state 2s arises from the electron configuration 1s22s. If the atom is to be

excited now, the last bound and most easily moved electron 2s may potentially move to

any of the higher states, for example to 2p, 3s, 3p, 3d, 4s, 4p etc...
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If the excited electron is in the 3d state, for example, the complete electron configuration

of the atom is designated as 1s23d and the energy level as 32D.
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Figure 8: Energy level diagrams of the Al, Ga, and In

Figure 9: Energy level diagram of li
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2.4.3 Absorption and emission experimental spectra of the free atoms

Energy levels of the free atoms have been measured experimentally by absorption and

emission and are shown in Fig.8. The localisation energies for different transitions between

the states are calculated Figs.8, 9 and listed in tables 3-6.

Table 3: Transitions and Localisation energy for Al

Transitions Wavelength(Ȧ) Localisation energy(eV)

3p - 4s 3944 3.144
3p - 3d 3082 4.023
32p - 4s 3961 3.130
32p - 3d 3092 4.010

Table 4: Transitions and Localisation energy for Ga

Transitions Wavelength(Ȧ) Localisation energy(eV)

4p - 4s 4032 3.075
4p - 4d 2874 4.314
42p - 5s 4172 2.972
42p - 4d 2943 4.213

Table 5: Transitions and Localisation Energy for In

Transitions Wavelength(Ȧ) Localisation Energy(eV)

5p -6s 4101 3.023
5p - 5d 3039 4.079
52p - 6s 4511 2.745
52p -5d 3256 3.808

Table 6: Transitions and Localisation energy for Li

Transitions Wavelength(Ȧ) Localisation Energy(eV)

2s -3s 3676 3.373

2p - 3p 6242 1.986

3d - 4d 18742 0.662

4f-5f 40415 0.307
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2.5 Group theoretical classifications of free atomic levels.

In this section we investigate the symmetry of free atoms before being planed into a crystal.

In particular, we are interested in the classification of states of spectral terms of atoms.

Theafter, we study the effect of the crystalline field on the spectral terms of an atom or

ion in a crystal.

1. Symmety of a free atom

The full rotation group of a free atom follows the solution of the Laplace equation

[6].

∇2ψ = 0 (9)

The transformation (rotation) which takes the points in a three-dimentional space

from their initial to their final positions is described in terms of Euler angles α, β, γ

and the operators of the full rotation group (FRGr) are ÔR(α, β, γ). These are con-

tinuous and infinite groups.

The basis for the operators ÔR(α, β, γ) is the well known spherical harmonics Y l
m(θ, φ).

The representations are obtained from:

ÔR(α, β, γ)Y l
m(θ, φ) =

∑

m′
Y l

m(θ, φ)Dl
m′,m(α, β, γ) (10)

Where l is the orbital angular momentum quantum number, ml = −l, ...., +l is

the orbital magnetic moment quantum number and Dl
m′,m(α, β, γ) is the matrix of

R(α, β, γ) in the representation Dl based on the spherical harmonics of order l.

The representations D0, D1, D2,... etc constitute a complete set of single-valued irre-

ducible representations and

Dl
m′m(α, β, γ) = e−im′γdl

m′m(0, β, 0)e−imα (11)

where the matrix elements of dl(β) are:

dl
m′,m(β) =

∑
t

(−1)t

√
(l + m′)!(l −m′)!(l + m)!(l −m)!

(l + m′ − t)!(l −m− t)!(t + m−m′)!

×
(

cos
β

2

)2l+m′−m−2t

·
(

sin
β

2

)2t+m−m′

(12)
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and the sum is taken over all values of t which lead to nonnegative factorials.

For instance Dl
m′m for l = 1 and m,m’; -1, 0, 1: using Eq.12, we obtain

D1
m′m(α, β, γ) =




e−iα 1+cos β
2

e−iγ −e−iα sin β√
2

e−iα 1−cos β
2

eiγ

sin β√
2

e−iγ cos β − sin β√
2

eiγ

eiα 1−cos β
2

e−iγ eiα sin β√
2

eiα 1+cos β
2

eiγ




(13)

When the symmetry of the FRG Ô(α, β, γ)) is reduced to C6 point group we have

α = γ = 0 and β = φ = 0, π
3
, 2π

3
, π, 4π

3
, 5π

3
(see Fig.10). In other words Dl(0, β, 0) will

be one of the irrps of C6. The characters of Dl(0, β, 0) will depend on the angle of

rotation φ as will be demonstrated later. It follows that if l =1

D1(β) = d1
m′m(β) =




d1
11 d1

10 d1
1−1

d1
01 d1

00 d1
0−1

d1
−11 d1

−10 d1
−1−1




(14)

where:

d1
11 = d1

−1−1 = cos2(
β

2
)

d1
1−1 = d1

−11 = sin2(
β

2
) (15)

d1
01 = d1

−10 = −d1
0−1 = −d1

10 =
sin β√

2

d1
00 = cos β

For the six angles we obtain a set of six matrices 3 × 3 which is one of the reduced

SV representations of C6 in the hexagonal basis shown in Fig. 10.

Similarly for l = 2, ( m, m’ -2, -1, 0, 1, 2, ), we obtain the irreducible representation
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of the full rotation group.

D2
m′m(α, β, γ) =




e−2iαd2
22e

−2iγ e−2iαd2
21e

−iγ e−2iαd2
20 e−2iαd2

2−1e
iγ e−2iαd2

2−2e
2iγ

e−iαd2
12e

−2iγ e−iαd2
11e

−iγ e−iαd2
10 e−iαd2

1−1e
iγ e−iαd2

1−2e
2iγ

d2
02e

−2iγ d2
01e

−iγ d2
00 d2

0−1e
iγ d2

0−2e
2iγ

eiαd2
−12e

−2iγ eiαd2
−11e

−iγ eiαd2
−10 eiαd2

−1−1e
iγ eiαd2

−1−2e
2iγ

e2iαd2
−22e

−2iγ e2iαd2
−21e

−iγ e2iαd2
−20 e2iαd2

−2−1e
iγ e2iαd2

2−2e
2iγ




(16)

If l = 2 for α = γ = 0 and β = φ, the matrix becomes:

d2
m′m(β) =




d2
22 d2

21 d2
20 d2

2−1 d2
2−2

d2
12 d2

11 d2
10 d2

1−1 d2
1−2

d2
02 d2

01 d2
00 d2

0−1 d2
0−2

d2
−12 d2

−11 d2
−10 d2

−1−1 d2
−1−2

d2
−22 d2

−21 d2
−20 d2

−2−1 d2
−2−2




(17)

Where

d2
22 = d2

22 = cos4β

2

d2
21 = −d2

12 = −d2
−2−1 = d2

−1−2 = −1

2
sin β(1 + cos β)

d2
20 = d2

02 = d2
−20 = d2

0−2 =

√
3

8
sin2 β

d2
2−1 = d2

1−2 = −d2
−21d

2
22 = −d2

−12 =
1

2
sin β(cos β − 1)

d2
2−2 = d2

−22 = sin4(
β

2
) (18)

d2
11 = d2

−1−1 =
1

2
(2 cos β − 1)(cos β + 1)

d2
1−1 = d2

−11 =
1

2
(2 cos β + 1)(1− cosβ)

d2
10 = d2

0−1 = −d2
01 = −d2

−10 = −
√

3

2
sin β cos β

d2
00 =

1

2
(3 cos2 β − 1)
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For j = l + s, the matrix elements of Dj are given by [7]:

dj
m′m(β) =

∑
t

(−1)k

√
(j + m)!(j −m)!(j + m′)!(j −m′)!

(j + m− k)!(j −m′ − k)!(k + m′ −m)!

×
(

cos
β

2

)2j−m′+m−2k

·
(
− sin

β

2

)2k+m′−m

(19)

where the sum is taken over all values of k which lead to non negative factorials.

In case of j = 1
2
(m, m′ : 1

2
,−1

2
) the matrix elements of dj becomes:

D
1
2

m′m(α, β, γ) =


e

−i(α+γ)
2 cos β

2
−e

−i(α−γ)
2 sin β

2

e
i(α−γ)

2 sin β
2

e
i(α+γ)

2 cos β
2


 (20)

Again, for the six angles we obtain a set of six matrices 2 × 2 which is one of the

reduced DV representations of C6 in the hexagonal basis shown in Fig. 10.

As earlier discussed, the matrix of Dj(β) with β = φ will be one of the irrps of C6

and the characters will depend on the angle φ.

d
1
2

m′m(0, β, 0) =




d
1
2
1
2

1
2

d
1
2
1
2
− 1

2

d
1
2

− 1
2

1
2

d
1
2

− 1
2
− 1

2


 (21)

where

d
1
2
1
2

1
2

= d
1
2

− 1
2
− 1

2

= cos
β

2

d
1
2

− 1
2

1
2

= −d
1
2
1
2
− 1

2

= sin
β

2
(22)

and for j = 3
2
(m, m′ : 3

2
, 1

2
, −1

2
, −3

2
) we have:
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D
3
2 (0, β, 0) = d

3
2

m′m(β) =




d
3
2
3
2

3
2

d
3
2
3
2

1
2

d
3
2
3
2
−1
2

d
3
2
3
2
−3
2

d
3
2
1
2

3
2

d
3
2
1
2

1
2

d
3
2
1
2
−1
2

d
3
2
1
2
−3
2

d
3
2
−1
2

3
2

d
3
2
−1
2

1
2

d
3
2
−1
2
−1
2

d
3
2
−1
2
−3
2

d
3
2
−3
2

3
2

d
3
2
−3
2

1
2

d
3
2
−3
2
−1
2

d
3
2
−3
2
−3
2




(23)

where

d
3
2
3
2

3
2

= d
3
2

− 3
2
− 3

2

= cos3 β

2

d
3
2
3
2

1
2

= d
3
2
−1
2
−3
2

= −d
3
2
1
2

3
2

= −d
3
2
−3
2
−1
2

= −
√

3 cos2 β

2
sin

β

2

d
3
2
3
2
−1
2

= d
3
2
−1
2

3
2

= d
3
2
1
2
−3
2

d
3
2
−3
2

1
2

=
√

3 cos
β

2
sin2 β

2
(24)

d
3
2
3
2
−3
2

= −d
3
2
−3
2

3
2

= − sin3 β

2

d
3
2
1
2

1
2

= d
3
2
−1
2
−1
2

= cos
β

2
(3 cos2 β

2
− 2)

d
3
2
1
2
−1
2

= −d
3
2
−1
2

3
2

= sin
β

2
(3 sin2 β

2
− 2)

For the φ = 0, π
3
, 2π

3
, π, 4π

3
, 5π

3
, we have a set of six matrices 4 × 4 which is one of

the reduced DV representations of C6, that can be decompsed in spinor irreducible

representations of C6.

The above considerations are related to the full spherical symmetry of free atom in

cartesian coordinates (x, y, z). However, concerning other coordinate systems like

the hexagonal, the meaning of the Euler angles (α, β, γ) will change.

Since the character of a rotation depends only on the angle of rotation and not on

the direction of the rotation axis, we can find the characters of dl as:

χl(φ) =
sin(l + 1

2
)φ

sin(φ
2
)

(25)

for SV irrps.

and

χj(φ) =
sin(j + 1

2
)φ

sin(φ
2
)

(26)
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for DV irrps. Where the angle φ is an arbitrary angle of rotation about any direction

of the rotation axis.

We have considered the symmetry of free atoms and the classification of their states

according to reducible Dl and Dj of the full rotation group. In the next section, we

study the splitting of atomic spectral terms due to the crystalline field.

2.6 Splitting of atomic levels of Li, Ga, Al, and In in the

crystalline field of ZnO.

Each level of the free atom will belong to one of the irreducible representations of the

full rotation group. If an atom is put into a crystal, the electrons will be perturbed

by the crystalline field, i.e, by the electric field which is produced at the position

of the atom by all other atoms in the crystal, as has been shown in many studies.

The electric field will have the symmetry of one of the crystal point groups. In this

present case, the levels of unperturbed system will be classified according to the

representations of the full rotation group. The level belonging to l -representation

will be (2l +1)-fold degeneracy for (SV) irrps and (2j + 1)- fold degeneracy for (DV)

irrps [6].

For rotation point groups C4, C6, O, etc. the matrices of the FRG, will be reduced to

a finite set of matrices which are the reducible representations for the point groups.

For example the matrix for C6 point group will be reduced to the six matrices 3× 3

(the reducible representation of C6).

Similarly, for φ = 2π
n

we have the forms :

χl(
2π

n
) =

sin(l + 1
2
)2π

n

sin(2π
n

)
(27)

and

χj(
2π

n
) =

sin(j + 1
2
)2π

n

sin(2π
n

)
(28)

For example, using the above equations for C2, C3, C4 and C6 rotations, we obtain

table 7
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Table 7: Characters table in (2l+1)-dimensional representation Dl of rotation group

l 0 1 2 3 4 5

χ(l)(C2) 1 -1

χ(l)(C3) 1 0 -1

χ(l)(C4) 1 1 -1 -1

χ(l)(C6) 1 2 1 -1 -2 -1

for l -integer, and similarly for j -half integer we obtain for D′
4 point group:

For φ = 0 : χ1 = 2j + 1, χ2 = −χ1

For φ = π : χ5 = χ6 = χ7 = 0

For φ = π
2

: χ3 =
sin(j+ 1

2
)π
2

sin π
4

=
√

2, 0 and
√

2 for j = 1
2
, (j = 3

2
, 7

2
) and j = 5

2

χ4 = −χ3

Table 8: Characters table in (2j+1)-dimensional representation Dj of rotation group

j E R C3
4 C3

4R C4 C4R C2 C2R C2′ C2′R C2
4 C2

4R
1
2

2 -2 -
√

2
√

2
√

2 −√2 0 0 0 0 0 0

3
2

4 -4 0 0 0 0 0 0 0 0 0 0

5
2

6 -6
√

2 −√2 −√2
√

2 0 0 0 0 0 0

7
2

8 -8 0 0 0 0 0 0 0 0 0 0

In case of ZnO the crystal point group is C6v. The characters for (SV) irrps and

(DV) irrps are calculated and tabulated in tables 10 and 12.

For φ = 0 : χ1 = 2l + 1

Table 9: Single - Valued Representations of C6v

C6v E C3
6 C2

6(2) C6(2) σv(3) σv′(3)
Γ1 1 1 1 1 1 1
Γ2 1 1 1 1 -1 -1
Γ3 1 -1 1 -1 1 -1
Γ4 1 -1 1 -1 -1 1
Γ5 2 2 -1 -1 0 0
Γ6 2 -2 -1 1 0 0
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For φ = π
3

: χ =
sin(l+ 1

2
)π
3

sin π
6

= 1, 2, 1, and -1 for l = 0, 1, 2, and 3, respectively.

For φ = 2π
3

: χ =
sin(l+ 1

2
) 2π

3

sin π
3

= 1, 0, -1, and 1 for l = 0, 1, 2, and 3, respectively

For φ = π : χ =
sin(l+ 1

2
)π

sin π
2

= 1, -1, 1, and -1 for l = 0, 1, 2, and 3, respectively

For φ = 4π
3

: χ =
sin(l+ 1

2
) 4π

3

sin 2π
3

= 1, 0,-1, and 1 for l = 0, 1, 2, and 3, respectively

For φ = 5π
3

: χ =
sin(l+ 1

2
) 5π

3

sin 5π
6

= 1, 1, 1, and -1 for l = 0, 1, 2, and 3, respectively

we obtain the following table

Table 10: Characters of classes of C6v in the (2l + 1)-dimensional representation Dl and the resolution of
Dl into irreducible representation of C6v

l E C3
6 C2

6(2) C6(2) σv(3) σv′(3)
0 1 1 1 1 1 1 D0 = Γ1

1 3 −1 0 2 −1 −1 D1 = Γ2 + Γ5

2 5 1 −1 1 1 1 D2 = Γ1 + Γ5 + Γ6

3 1 −1 1 −1 −1 −1 D3 = Γ2 + Γ3 + Γ4 + Γ5 + Γ6

4 9 1 0 −2 1 1 D4 = Γ1 + Γ3 + Γ4 + Γ5 + 2Γ6

5 11 −1 −1 −1 −1 −1 D5 = Γ2 + Γ3 + Γ4 + 2Γ5 + 2Γ6

6 13 1 1 1 1 1 D6 = 2Γ1 + Γ2 + Γ3 + Γ4 + 2Γ5 + 2Γ6

Table 11: Double-Valued Representations of C6v

C3
6 C4

6 C6 C2
6 C5

6 σv(3) σv′(3)

C6v E R C3
6R C2

6R C5
6R C4

6R C6R σvR(3) σv′R(3)

Γ7 2 −2 0 1
√

3 −1 −√3 0 0

Γ8 2 −2 0 1 −√3 −1
√

3 0 0

Γ9 2 −2 0 −2 0 2 0 0 0

For φ = 0 : χ1 = 2j + 1, χ2 = −χ1

For φ = π
3

: χ3 =
sin(j+ 1

2
)π
3

sin π
6

=
√

3, 0 for j = (1
2
, 3

2
) and 5

2
, respectively.

For φ = 2π
3

, χ4 =
sin(j+ 1

2
) 2π

3

sin π
3

= 1, -1, and 0 for j = 1
2
, 3

2
and 5

2
, respectively.

For φ = π : χ5 = 0
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For φ = 4π
3

: χ6 =
sin(j+ 1

2
) 4π

3

sin 2π
3

= -1, 1, and 0 for j = 1
2
, 3

2
, 5

2
, respectively.

For φ = 5π
3

: χ7 =
sin(j+ 1

2
) 5π

3

sin 5π
6

= −√3, 0 for j = (1
2
, 3

2
) and j = 5

2
, respectively.

Finally, we obtain the table 12.

Table 12: Characters of C6v in the (2j + 1)-dimensional representation and the resolution of Dj into
irreducible representations of C6v

.

j K1 K2 K3 K4 K5 K6 K7 K8 K9
1
2

2 −2 0 1
√

3 −1 −√3 0 0 D
1
2 = Γ7

3
2

4 −4 0 −1
√

3 1 −√3 0 0 D
3
2 = Γ7 + Γ9

5
2

6 −6 0 0 0 0 0 0 0 D
5
2 = Γ7 + Γ8 + Γ9

7
2

8 −8 0 1 −√3 1
√

3 0 0 D
9
2 = Γ7 + 2Γ8 + Γ9

9
2

10 −10 0 −1 −√3 1
√

3 0 0 D
9
2 = Γ7 + 2Γ8 + 2Γ9

11
2

12 −12 0 0 0 0 0 0 0 D
11
2 = 2Γ7 + 2Γ8 + 2Γ9

Reducing the continuous angles 0 ⊆ φ ⊆ 2π for full rotation groups (FRG), to the

particular point group rotations C6(φ = 0, π
3
, 2π

3
, 3π

2
, 4π

2
, 5π

2
), we have calculated the

characters of χl(φ) and χj(φ) for given l and j. On the other hand, the point group

C6 has got its own irrps tabulated(CDML) (see tables 9 and 11). For l = 1 and

φ : 0, π
3
, 2π

3
, 3π

2
, 4π

2
, 5π

2
), the matrix of Dl is one of 3× 3 which is not in the set of irrps

of C6 group. It follows that Dl=1(φ) is one of the reducible representations of the C6

group, with hexagonal base (x, y, z) shown in Fig.10.

For the orbital angular momentum l-integer, the spectral terms of an atom are

classified according to single-value irreducible representations (SV irrps) Dl(α, β, γ

- Euler angles) of the full rotation group of the atom, while for the total angular

momentum j = l ± s (half integer: spin included) the states are classified according

to the double-valued (DV) irreducible representations Dj(αβγ). The characters of

the SV irrps (Dl) and DV irrps (Dj) of the 32 crystallographic point groups and 230

space groups are readily available in CDML tables.

The Dl=1 and Dl=2 representations etc... can be reduced into irrps of C6 by means
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Figure 10: Hexagonal crystal basis

of the reduction formulas

aµ =
1

g

∑
µ

giχ
l
i(φ)χ

(µ)
i (φ) (29)

aσ =
1

g

∑
σ

giχ
j
i (φ)χ

(σ)
i (φ) (30)

for l integer and j half-intenger, respectively.

The χl and χj stand for the characters of the full rotation group (α, β, γ ) reduced

in crystal to rotations of a point group φ, and χµ are characters of a point group of

the crystalline field. µ ≡ Γ1, Γ2, ...., Γ6 and σ ≡ Γ7, Γ8, Γ9.

The characters χl(φ) while χj(φ) are listed in tables 9 and 11 with the characters of

Γi ( i = 1 - 6) and Γk ( k = 7 - 9) tabulated in tables 8 and 10.

Using the reduction formulas Eq. 29 and 30, we determined the splittings of the spectral

terms of free atoms and for greater understanding we have shown and derived that if the

free atoms placed in the ZnO crystal, the levels split into new terms belonging to the

irreducible representations of the crystal group (C6V ) see tables 10 and 12.

Consider l = 1 and µ = Γ1 and Γ6.

From the reduction formula we have:

For = µ = Γ2 : 1
12

[(3× 1) + (−1× 1) + 2(0× 1) + 2(2× 1) + 3(−1×−1) + 3(−1×−1)] = 1
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For = µ = Γ6 : 1
12

[(3× 2) + (−1×−2) + 2(0×−1) + 2(2× 1) + 3(−1× 0) + 3(−1× 0)] = 1

We conclude that D1 = Γ1 + Γ6 : The p- state splits into Γ1 and Γ6 belonging to SV irrps

of C6v.

Consider l = 2 and µ = Γ1, Γ5 and Γ6.

For µ = Γ1 : 1
12

[(5× 1) + (1× 1) + 2(−1× 1) + 2(1× 1) + 3(1× 0) + 3(1× 1)] = 1

For µ = Γ5 : 1
12

[(5× 2) + (1× 2) + 2(−1×−1) + 2(1×−1) + 3(1× 0) + 3(1× 0] = 1

For µ = Γ6
1
12

[(5× 2) + (1×−2) + 2(−1×−1) + 2(1× 1) + 3(1× 0) + 3(×0)] = 1

We conclude that D2 = Γ1 + Γ5 + Γ6 : The d- state splits into Γ1, Γ5 and Γ6 belonging to

SV irrps of C6v.

Consider j = 1
2

and µ = Γ7

The reduction formula gives:

For µ = Γ7 : 1
24

[(2× 2) + (−2×−2) + 2(0× 0)+

2(
√

3×√3) + 2(−1×−1) + 2(−√3×−√3)] = 1

D
1
2 = Γ7; the s-state doesn’t split.

consider j = 3
2

and µ = Γ7 and Γ9

For µ = Γ7:

1
24

[(4× 2) + (−4×−2) + 2(0× 0) + 2(−1× 1) + 2(
√

3×√3)+

2(1×−1) + 2(−√3×−√3) + 6(0× 0) + 6(0× 0)] = 1

For µ = Γ9:

1
24

[(4× 2) + (−4×−2) + 2(0× 0) + 2(−1×−2) + 2(
√

3× 0) + 2(1× 2) +

2(−√3× 0) + 6(0× 0) + 6(0× 0)] = 1

The j = 3
2

level splits into Γ7 and Γ9 symmetries of C6v. D
3
2 = Γ7 + Γ9

More results regarding the splitting of atomic levels when an atom is placed in the ZnO

crystal are tabulated in tables 10 and 12.
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3 Band structure of wurtzite ZnO at k = o and selec-

tion rules for optical transitions in the absence and

presence of Time Reversal Symmetry.

3.1 Introduction

The lattice structure of ZnO belongs to the hexagonal system (space group C4
6V ). Based on

its thermal, electric and opto-electronic properties ZnO is a material with enormous present

applications. One device with promising commercial potential is a UV light-emitting diode

(LED) which could be combined with phosphors to produce solid-state lighting. Another

is a transparent field effect transitors, which could serve as an active element in large-area

displays. The free exciton in ZnO has a binding energy of about 60meV; thus efficient

excitonic emission processes can persist in ZnO at room temperature and higher [8]. fur-

thermore bound excitons exhibit large binding energy. Particularly excitons bound to

shallow donors: Al, Ga, and In give rise to the sharp transition peaks which can be useful

in UV light-emitting diode devices. All these excitonic transitions originate at the k = 0

centre of the Brillouin zone where the band structure is described by DV irrps. Therefore

we will discuss the electronic band structure of ZnO in the next section.

3.2 Band structure of the wurtzite ZnO at

k = 0

ZnO is a wide direct band gap semiconductor (Eg ∼ 3.3eV ).

The band stracture of wurtzite compounds has been investigated by many authors[9].

However the effect of time reversal symmetry has not been considered.

Disregarding the spin-orbit (S-O) interaction, crystalline field (CF) and TRs effect, the free

electrons occupy S-like conduction band (CB) states and free holes P (Px, Py, Pz) valence

band (VB) states. The S-like states transform according to an irreducible representation

(irrp) Γc
1 of the C6v- ZnO point group, while the P (Px, Py, Pz) hydrogenic like orbitals

transform like X, Y, Z, according to the so-called vector representation V(x, y, z) [10]

The crystalline field splits the Px, Py, Pz states into Px, Py(Γ5(x, y)) and Pz(Γ1(z)) states.

The vector representation for ZnO is reducible to Γ1 and Γ5 irrps V = Γ1(z)+Γ5(x, z). The

inclusion of S-O interaction results in further splittings : Γc
1⊗D 1

2
= Γc

7; Γv
5⊗D 1

2
= Γv

7 +Γv
9
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and Γv
1 ⊗ D 1

2
= Γv

7 (see Fig.14). This yields the historically established valence band

ordering : Γv
9(A) Γv

7(B) Γv
7(C), where the letters A, B, and C label the three different types

of excitons respectively (see Fig.11 and 12)[11].

The free electrons in the conduction band (CB) and holes in the valence bands (VBs) are

classified according to double-valued irrps.

Figure 11: Band structure and symmetry of
hexagonal ZnO in case of Γv

7(A) Γv
9(B) Γv

7(C)
valence band ordering

Figure 12: Band structure and symmetry of
hexagonal ZnO in case of Γv

9(A) Γv
7(B) Γv

7(C)
valence band ordering
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3.3 The effect of TRS on band structure and classification of

states

Replacing t by -t and taking the complex conjugate of any time-dependent Schrödinger

equation, we obtain ψ?
i (r̃, t) wave functions which are also an eigenfunctions of Ĥsch to-

gether with the ψi(r̃, t). The ψi are the basis of the D irrp of the group of Ĥsch while ψ?

are the basis of D?. When D and D? are complex the state of a system (energy term) will

be classified by the joint D ⊕D? irrps. Clearly, the degeneracy of a state increases twice.

In order to determine whether or not the TRS is present in a system, one must to to find

all complex irrps of a symmetry group of a Hamiltonian. Froöbenius and Schur [12] showed

that it is sufficient to know only the characters of irrps in order to determine whether a

representation is real or complex. The characters of 32 crystallographic point groups and

230 space groups are readily available in CDML tables [13]. I have tested all the irrps all

irrps of the C6v group. The following irrps are TRS degenerate:

Single-valued irrps for classification of spinless particle states (like phonons):A1,2,3,4,5,6, ∆1,2,3,4,5,6, H1,2,

L1,2,3,4, U1,2,3,4, P1,2,3 and S1,2 of high symmetry points.

Double-valued irrps for particles with S = 1
2
, 3

2
...(spinors): Γ6,7,8 of point and space groups.

The double-valued irrps of 32 crystallographic point groups and 230 space groups are nor-

mally complex and therefore TR degenerated. Consequently, the states of free electrons

and holes at K̈ = 0 in ZnO are supposed to be classified by joint irrps Γc
7⊕ (Γc

7)
?, Γv

9⊕ (Γv
9)

?

and Γv
7 ⊕ (Γv

7)
?. Fig.14 displays the effect of TRS on the band structure.

41

 
 
 



3.4 Selection rules for optical transitions in wurtzite structure

in the absence of TRS

In the absence of accidental degeneracy and TRS, the matrix elements of a perturbation f̂

between the conduction CB and VB states take the form
∫

(Ψc
i)
∗f̂ϕv

jd~r, which is non-zero

when the corresponding Kronecker product Γc ⊗Df ⊗ Γv contains the unit representation

normally denoted as Γ1 or A1[13]. The Df is a representation (not necessarly irreducible)

according to which the perturbation operator transforms. In the case of absorption (emis-

sion) of electromagnetic radiation, the dipole moment operator: f̂ = d̂ for the electric

dipole radiation transforms like X, Y, Z (vector rep V = Γ1(z) + Γ5(x, y)) in ZnO.

For Ẽ ‖ c (c-hexagonal axis along Z) the SRs are: Γc
7 ⊗ Γ1(z) ⊗ Γv

7 = Γ1 + Γ2 + Γ5

(allowed transitions for A-and C-excitons) and Γc
7 ⊗ Γ1(z) ⊗ Γv

9 = Γ5 + Γ6 (B-excitons,

forbidden transition since the Kronecker product does not contain Γ1 rep).

For Ẽ ⊥ c, we have : Γc
7 ⊗ Γ5(x, y) ⊗ Γv

7 = Γ1 + Γ2 + 2Γ5 + Γ6 and Γc
7 ⊗ Γ5(x, y) ⊗ Γv

9 =

Γ1 + Γ2 + Γ6 + Γ3 + Γ4 + Γ5. For Ẽ ⊥ c polarisation all transitions for A-, B-, C-excitons

are allowed and observed experimentally [14].
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3.5 Optical selection rules in the presence of TRS

As mentioned the electron and hole states are TR degenerated and therefore their states

are classified according to the joint reps: D ⊕ D?. Consequently, the respective selection

rules are: For Ẽ ‖ c: (Γc
7 ⊕ (Γc

7)
∗)⊗ Γ1(z)⊗ (Γv

9 ⊕ (Γv
9))

∗). The decomposition of the KPs

reveals 4Γ5 and 4Γ6 states. All the states have a different basis for functions and those can

be obtained by Clebsch-Gordon Coefficients methods. The B-excitons are still forbidden

as in the absence of TRS.

For Ẽ ‖ c:

(Γc
7 ⊕ (Γc

7)
∗)⊗ Γ1(z)⊗ (Γv

7 ⊕ (Γv
7)
∗) = 4Γ1+ 4Γ2 + 4Γ5. The transitions are also allowed as

in the absence of TRS.

For Ẽ ⊥ c:

(Γc
7 ⊕ (Γc

7)
∗)⊗ Γ5(x, y)⊗ (Γv

9 + (Γv
9)
∗) = (Γ5 + Γ6)⊗ Γ5 + . . . The transition is allowed for

a B-exciton, since Γ1 ∈ in KP Γ5 ⊗ Γ5

For Ẽ ⊥ c:

(Γc
7⊕ (Γc

7)
∗)⊗Γ5(x, y)⊗ (Γv

7 +Γv
7) = 4(Γ1 +Γ2 +Γ3 +Γ4 +Γ5 +Γ6). Again these transitions

are allowed.

Clearly the TRS does not change the existing SRs introducing only a number of new states

of the same symmetry Fig.13 All the states are based on different wave functions, which

correspond to different energy levels. Further splitting due to TRS is possible. The effect of

TRS on phonons and TR splitting has been experimentally observed[15]. Recent studies of

the electronic band structure of ZnO, by means of first-principles calculations and density-

functional theory clearly evidence the existence of TRS on high symmetry point A and ∆

line in ZnO and other wurtzite compounds.
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Figure 13: Time Reversal degeneracy

4 Experimental results and discussions

4.1 Introduction

When crystals are excited by laser or other radiation, electrons are removed from the

valence band, and placed in the conduction band leaving holes in the valence band. Because

of the mutual attraction between the electrons and holes, these particles can exist as pairs

or excitons which can move throughtout the crystal. The excitons can be trapped at donors

or acceptors in either neutral or ionized states or can be localized in such a way that the

electron-hole recombination processes produce an emission spectrum with many different

components. The purpose of this section is to introduce the interpretation of the spectra.
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Figure 14: Band structure and selection rules for wurtzite compounds at the Γ symmetry point (k = 0).
The V stands for 3 × 3 dimensional vector representation which is reducible to Γ1(z) + Γ5(x, y). There
are a number of wurtzite compounds for which the above band structure is valid. In some of them the
crystalline field is rather negligeable. For them the very first left diagram of band structure may be
relevant. Our figure can be directly compared with figure 1 in [16]. Birman assigned the top valence band
of ZB structure to Γ4 rep. The Γ4 rep is one of the irrps of the ZB space group and it is simultaneously a
vector representation of the group. For wurtzite, similar assignment on Birman’s figure is missing

.
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Figure 15: Free and bound excitons: Free excitons (AT , AL), ionised donor (I0, I1 and I2) and neutral
donor (I6a, I7, I8 and I9)

4.2 Photoluminescence from ZnO

Photoluminescence (PL) is a technique which is used to investigate the extrinsic optical

properties of a material. It is a process in which a substance absorbs photons and then

re-radiates photons. Quantum mechanically, this can be described as an excitation to a

higher energy state accompanied by the emission of a photon. This is one of many forms of

luminescence (light emission) and is distinguished by photoexcitation (excitation by pho-

ton).

If the material is irradiated with electromagnetic radiation, the resultant emission is termed

photoluminescence. Luminescence excited by bombardment by the energetic electrons is

termed cathodoluminescence.

X-ray luminescence follows irradiation by X-rays.
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Chemiluminescence follows excitation by chemical reactions. Electroluminescence is lumi-

nescence excited by applying a voltage to the materials.

There are several advantages of PL such as: it is possible to determine the band gap, any

impurities and defects in the materials, recombination mechanisms and quality of material.

• Experimental Procedure

Lithium doped ZnO epilayers were grown by chemical vapour deposition on ZnO sub-

strates. Photoluminescence (PL) and Magneto-photoluminescence (MPL) measurements

were performed using a 325nm HeCd laser. Fig.16 displays the photoluminescence at 4.2

Kelvin in the energetic range of the free and bound excitons.

The most prominent excitonic transition lines are the I9 (3.3567 eV), I8(3.3598 eV ),

I6a(3.3604 eV), I2(3.3674 eV), I1(3.3718 eV), and I0(3.3726 eV).
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Figure 16: PL spectra of lithium doped high quality ZnO grown by CVD at a temperature of 4.2 Kelvin.
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Table 13: Symbols in common use for labelling recombination processes

Free exciton X +-

Donor D0 ⊕ -

Acceptor A0 ª +

Exciton bound at neutral donor D0, X ⊕ = +

Exciton bound at ionized donor D+,X ⊕ - +

Exciton bound at neutral acceptor A0,X ª ++ -

Exciton bound at ionized acceptor A−,X ª + -

Free electron to acceptor e,A0

Donor to free hole D0,h

Previous studies have shown that I9, I8 and I6a are neutral exciton complexes bound

to an indium [17], gallium [18] and aluminium [19] impurity, respectively. These lines are

accompanied by the higher lines I0, I1 and I2. The neutral bound exciton line I9 is corre-

lated to I2, I8 to I1 and I6a to I0. In fact, all investigated samples exhibit only I0 to I2

excitons if the related excitons I6a to I9 are present as well. Due to a similar scaling in

intensity and energetic position, it is likely that these correlated pairs of transition lines

are excitons bound to an impurity of the same chemical identity but in a different charge

state.

Consequently, we attribute I0, I1 and I2 to ionized donor bound related to Al, Ga and In

impurities, respectively. Concerning the I1 complex, this correlation is in agreement with

data published by Johnston et al. [18]., who reported a simultaneous decrease of the I8

and I1 intensity for ZnO crystals doped with a radioactive Ga isotope.

The various bound exciton complexes with their localisation energies and suggested chem-

ical identities are summarized in table14.
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Table 14: Bound exciton complexes in ZnO. Energetic positions are given for T = 4.2 Kelvin

Line E(eV ) Eb(eV ) Complex Chem. element

I9 3.3567 19.2 D0X In

I8 3.3598 16.1 D0X Ga

I6a 3.3604 15.5 D0X Al

I2 3.3674 8.5 D+X In

I1 3.3718 4.1 D+X Ga

I0 3.3726 3.3 D+X Al

4.3 Magnetophotoluminescence from ZnO

The charge states of the bound exciton complexes are investigated by magneto-photoluminescence

spectroscopy. Excitons bound to ionized impurities can be distinguished from those bound

to neutral impurities by a nonlinear splitting of energy levels in the magnetic field perpen-

dicular to the c axis of the crystal, while excitons bound to neutral impurities exhibit a

linear splitting behaviour for ~B ⊥ c [20] Fig.17.

Futhermore, an additional low energy transition due to zerofield splitting appears for I0

and I1 if a magnetic field is applied. Such an interaction can not occur in transitions origi-

nating from excitons bound to neutral impurities, since the spin of the two equal particles

are anti-parallel.

For ionized bound excitons at low magnetic fields, only a high energy Zeeman compo-

nent, resulting from a Γ5 state is visible, whereas the low energy component, originating

from Γ1 to Γ6, transition is forbidden by selection rules. However, for larger magnetic

fields, the selection rules can be relaxed due to a spin-spin interaction of Γ5 states with

anti-parallel spin, mixed with Γ6 states with parallel spin, thus allowing the appearance of

a new line associated with the Γ6.

50

 
 
 



Figure 17: Zeeman splitting of neutral and ionized donor bound excitons for magnetic fields of 0-3 Tesla.
Spectra are taken at 1.8 Kelvin in Voigt geometry ( ~B ⊥ c).
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Figure 18: PL: I6a Zeeman splitting

The extrapolation of the peaks positions to B = 0 Tesla reveals the presence of zerofield

splitting, ascribed to spin-spin interaction energy Fig.18

.
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Figure 19: Zeeman splitting I8, I7 and I6a bounds excitons in B ‖ C and B ⊥ c

As we introduced before, the atomic ground states of the elements listed in table 2 are

Li(n =2 2S 1
2
), Al(n = 3 2P 1

2
), Ga (n = 4 2P 1

2
) and In (n = 5 2P 1

2
), where n is the principal

quantum number. These states are doublets (2s+1 =2) and therefore exhibit anomalous

Zeeman splitting. In ZnO, these dopants become shallow donors to which the excitons of

symmetries Γc
7⊕Γv

7 (A), Γc
7⊕Γv

9(B) and Γc
7⊕Γv

7(C) are bound. The excitons bound to the

dopants states do not contribute to the spin states of complexes. These complexes remain

doublets. Consequently, it follows that, the band I6a (and others up to I9) originates

from the complexes (neutral donor excitons) of the total spin S = 1
2
. These are doublets

(S = 1
2
, 2S + 1 = 2), ms = −1

2
, 1

2
(Fig19).
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5 Conclusion

ZnO exhibits a strong potential for various short-wavelength optoelectronic device applica-

tions. In order to attain the potential offered by ZnO, both high-quality n-and p-type ZnO

are indispensable. The ZnO with a wurtzite structure is naturally an n-type semiconductor

because of a deviation from stoichiometry due to the presence of intrinsic defects such as

O vacancies and Zn interstitials.

Undoped ZnO shows intrinsic n-type conductivity with very high electron densities of about

1021cm−3.

The bound exciton complexes are observed as sharp-line optical transitions in photolumi-

nescence (PL). I9 is correlated to I2, I8 to I1, and I6a to I0. While I9, I8, I6a, are neutral

exciton complexes bound to an In, Ga and Al impurity, respectively and I0, I1 and I2 are

ionized donor bound excitons related to Al, Ga and In, respectively (see fig 16).

The existence of a correlation between ionized and neutral bound excitons has been demon-

strated.

The inclusion of extra degeneracy due to TRS reveals a number of new states of the same

symmetries and essentially does not change the existing optical selection rules.

The selection rules discussed are related to absorption (emission) transitions observed by

reflectivity measurements [21, 22]. Using the selection rules we have investigated allowed

transitions between the conduction and valence bands.
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Appendix

1. Determination of the frequencies of the electronS oscillating in a magnetic

field: Normal Zeeman effect

In the absence of any external perturbation like a steady state magnetic B̄, and

electric field Ē or alternate laser light ~E = ~E0e
−i(k~r−ωt) and others the equation of

an electron is

me
d~v

dt
= −meω

2
0~r − e~v × ~B. (31)

~r = ~r0e
−iω0t (32)

It follows that the electron trajectory along the axis x, y, and z oscillates with the

frequency ω0. Applying a steady state magnetic field along the z axis we have

Bz = B 6= 0 and Bx = By = 0

~r × ~B =




~i ~j k

x y z

0 0 B


 =~i(yB)−~j(xB)

ω2
0

(
~ix +~jy + ~kz

)
= i e

me
ω

(
~iyB −~jxB + ~k.0

)
+ ω2

(
x~i + y~j + z~k

)

ω2
0x = 2i eB

2me
ωy + ω2x

ω2
0y = −2i eB

2me
ωx + ω2y

ω2
0z = ω2z.

substituting eB
2me

= ΩL we obtain:

ω2
0x− 2iωΩLy − 0z = ω2x

2iωΩLx + ω2
0y + 0z = ω2y

ω2
0z = ω2z 



ω2
0 −2iωΩL 0

2iωΩL ω2
0 0

0 0 ω2
0







x

y

z


 = ω2




x

y

z


 (33)

∣∣∣∣∣∣∣∣∣

ω2
0 − ω2 −2iωΩL 0

2iωΩL ω2
0 − ω2 0

0 0 ω2
0 − ω2

∣∣∣∣∣∣∣∣∣
= 0 (34)

This gives :

{ω4 − (2ω2
0 − 4Ω2

L) ω2 + ω4
0} (ω2 − ω2

0) = 0

ω4 − (2ω2
0 + 4Ω2

L) ω2 + ω4
0 = 0
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(ω4 − 2ω2
0ω

2 + ω4
0)− 4Ω2

Lω2 = 0

Taking : ω2 = p we get

p2 − (2ω2
0 + 4Ω2

L) p + ω4
0 = 0; generally we have

ap2 + bp + c = 0 with a = 1, b = − (2ω2
0 + 4Ω2

L) and c = ω4
0

The solution of the above equation yields the frequencies of an oscillating electron in

a magnetic field B.

p1/2 = −b±√∆
2a

with ∆ = b2 − 4ac
√

∆ = ±4ΩL

√
Ω2

L + ω2
0

But: ΩL ⊂⊂ ω0

Therefore
√

∆ = ±4ΩLω0

(ω2)1/2 = ω2
0 + 2Ω2

L ± 4ΩLω0

Dropping 2 in: 2Ω2
L because : ΩL ⊂⊂ ω0 we have : (ω2)1/2 = (ω0 ± 2ΩL)2. Finally

we obtain: ω ∼= ω0 ± ΩL. Substituting ω ∼= ω0 ± ΩL into Eq 34 we have:

r =




cos(ωo − ΩL)t

−sin(ωo − ΩL)t

0


 ,




0

0

cosω0t


 and




cos(ωo + ΩL)t

sin(ωo + ΩL)t

0


 (35)

The physical interpretation of the above solution is presented in section 2.

2. The calculation of the Landé g factor

The components of the magnetic moments µLand µS combine to give a resultant µJ

along J, which can be expressed by

µJ = −gµβJ (36)

The classical interaction of µJ with an applied magnetic field B is

H = −µJ.B = gµβJ.B = gµβB|J|cosθ (37)

Where θ is the angle between J and B. MJ = J, J - 1,..., -J. From the vector model

of Fig.1. cosθ =MJ |J|. Substituting of this value in Eq. 37 gives the allowed Zeeman

energies as:

E = gµβMJB (38)

58

 
 
 



The well-known formula can be derived from the vector model of Fig.1. For example

µJ = µLcos(L,J) + µScos(S,J) (39)

with µJ = gµ− βJ, µL = µβL and µS = 2µβS . This gives

g =
µβ [Lcos(L, J) + 2Scos(S, J)]

J
(40)

From the law of cosine, cos(L,J) = (J2 + L2 − S2)/2LJ) and cos(S,J) = (J2 + S2 − L2)/2SJ.

Substituting of the eigenvalues J2 = j(j+1),L2 = l(l+1),S2 = s(s+1) in the cosines,

yields the Landé factor for the atom:

g =
3

2

s(s + 1)− l(l + 1)

2j(j + 1)
(41)

The physical interpretation of the above formula is presented in section 2.

Figure 20: Vector model of an atom in an applied field where there is no nuclear coupling

3. Time Reversal Symmetry
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Let us first consider the time-dependent Schrödinger equation involving no spin,

i~
∂ψ(t)

∂t
= Hψ(t) (42)

By denoting the time variable as t’ instead of t, the complex conjugate to Eq.42 is

−i~
∂ψ∗(t′)

∂t′
= H∗ψ∗(t′) = Hψ∗(t′) (43)

in which H∗ = H is assumed. Replacing t’ by the -t, one obtains

i~
∂ψ∗(−t)

∂t
= Hψ∗(−t) (44)

which shows that ψ∗(−t) is also the solution of Eq.44. ψ∗(−t) represents the states

in which all velocities have opposite directions to those ψ(t). State θψ(t) ≡ ψ∗(−t)

is called the time reversed state of ψ(t).

In time-dependent problems, the time-reversed state of ψ(r) is given

θψ(r) = K0ψ(r) = ψ∗(r) (45)

K0 is a time reversal operator for the orbital functions. Using the well-known relation,

K0Ylm(θϕ) = Y ∗
lm(θϕ) = (−1)mYl−m(θϕ) (46)

one can show that the orbital angular momentum operator is transformed byK0 as

K0IK
−1
0 = −I (47)

which confirms the property of time reversal of K0. Similarly one can prove the

transformation K0SK−1
O = −S
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