

UNIVERSITY OF PRETORIA
Faculty of Engineering, Build and

Information Technology

Department of Computer Science

Semantos: A semantically smart information query language

by

Theodorus Crous

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Master of Science (Computer Science)

In the Faculty of Engineering, Built

Environment and Information Technology

University of Pretoria

2008

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Semantos: A semantically smart information query language ii

Acknowledgement

I would like to thank the following people for all their assistance during my studies:

• Debbie-Lee for understanding and supporting the weekends and late nights spent

reading papers and running experiments.

• My family for always believing in me and encouraging me to pursue my studies

further.

• Professor Judith Bishop who has patiently guided and assisted me during my

studies.

• Anne Archer for nursing the language in my transcripts.

Finally, many thanks to the National Research Foundation for the bursary that

funded my studies.

Semantos: A semantically smart information query language iii

Abstract

Semantos: A semantically smart information query language

By

Theodorus Crous

Supervisor: University-Professor Dr. Judith Bishop

Enterprise Information Integration (EII) is rapidly becoming one of the pillars of modern

corporate information systems. Given the spread and diversity of information sources in an

enterprise, it has become increasingly difficult for decision makers to have access to

relevant and accurate information at the opportune time. It has therefore become critical to

seamlessly integrate the diverse information stores found in an organization into a single

coherent data source. This is the job of EII and one of the key components to making it

work is harnessing the implied meaning or semantics hidden within data sources. Modern

EII systems are capable of harnessing semantic information and ontologies to make

integration across data stores possible. These systems do not, however, allow a consumer

of the integration service to build queries with semantic meaning. This is due to the fact

that most EII systems make use of XQuery, SQL, or both, as query languages, neither of

which has the capability to build semantically rich queries. In this thesis Semantos (from

the Greek word sema for “sign or token”) is proposed as a viable alternative: an

information query language based in XML, which is capable of exploiting ontologies,

enabling consumers to build semantically enriched queries. An exploration is made into the

characteristics or requirements that Semantos needs to satisfy as a semantically smart

information query language. From these requirements we design and develop a software

implementation. The benefit of Semantos is that it possesses a query structure that allows

automated processes to decompose and restructure the queries without human intervention.

We demonstrate the applicability of Semantos using two realistic examples: a query

enhancement- and a query translation service. Both expound the ability of a Semantos

query to be manipulated by automated services to achieve Information Integration goals.

Keywords: Enterprise Information Integration, Semantics, Ontologies, Query Language,

XML.

Semantos: A semantically smart information query language iv

Table of Contents – Chapters

CHAPTER 1: Introduction ... 1

1.1. Background ... 1

1.2. Semantos Overview .. 7

1.3. Implementation Environment and Limitations .. 12

1.4. Evaluation Criteria.. 12

1.5. Differences from other works and Our contributions 15

1.6. Outline of the Dissertation .. 15

CHAPTER 2: Semantic Language Fundamentals ... 17

2.1. RDF/RDFS .. 18

2.2. RDF Query Languages ... 20

2.3. Summary ... 29

CHAPTER 3: Semantos Overview ... 30

3.1. A semantic language .. 30

3.2. Syntax ... 31

3.3. Summary ... 39

CHAPTER 4: Design and Implementation ... 40

4.1. Language Integrated Query (LINQ) .. 40

4.2. Processing Algorithm .. 42

4.3. Summary ... 51

CHAPTER 5: Evaluation ... 53

5.1. Evaluation Data Set .. 53

5.2. XML representation ... 54

Semantos: A semantically smart information query language v

5.3. XML output ... 57

5.4. Mutually embeddable with XML .. 60

5.5. Server-side processing ... 66

5.6. No schema required ... 68

5.7. Programmatic manipulation .. 69

5.8. Support new data types ... 71

5.9. Summary ... 74

CHAPTER 6: Use Cases.. 75

6.1. Semantos as intermediary language .. 75

6.2. Query Enhancement Service .. 84

6.3. Summary ... 93

CHAPTER 7: Conclusions and Future Work .. 94

7.1. Conclusions .. 94

7.2. Future Work .. 97

References ... 99

APPENDIX A: XML Schema .. 105

APPENDIX B: Examples ... 110

Semantos: A semantically smart information query language vi

List of Tables

Table 1 How Semantos weights up against other query languages........................... 2

Table 2 Semantos measured against evaluation criteria. .. 74

Table 3 Possible replacement values for query using “dig” 93

Semantos: A semantically smart information query language vii

List of Figures

Figure 1 The process of Information Integration (Hauch, Miller and Cardwell

2005) .. 4

Figure 2 The new semantic web stack (Berners-Lee, Hall and Hendler 2006) 7

Figure 3 a) The relational data model ... 8

Figure 3 b) The hierarchical data model .. 9

Figure 3 c) The graph data model .. 10

Figure 4 Mapping ontologies for Information Integration (Heflin, Dimitrov and

Qasem 2006) .. 11

Figure 5 An example RDF graph. .. 18

Figure 6 RDF/XML structure example ... 19

Figure 7 Example statement in N3 ... 19

Figure 8 Example of an RQL query .. 20

Figure 9 BNF grammar for RQL ... 22

Figure 10 Example of an RDQL query .. 23

Figure 11 BNF grammar for RDQL ... 25

Figure 12 An example of a SPARQL query .. 26

Figure 13 Full BNF grammar for SPARQL .. 29

Figure 14 An example of a Semantos query .. 33

Figure 15 The Semantos fetch element ... 34

Figure 16 The Semantos source element .. 34

Figure 17 The Semantos ontology element ... 34

Figure 18 The Semantos namespace element .. 35

Figure 19 The Semantos entity element .. 35

Figure 20 The Semantos attribute element ... 36

Figure 21 The Semantos graph element .. 36

Figure 22 The Semantos triple element .. 37

Figure 23 The Semantos filter element .. 37

Figure 24 The Semantos condition element .. 38

Semantos: A semantically smart information query language viii

Figure 25 The Semantos condition element, with a list ... 38

Figure 26 XLinq without the DOM object ... 41

Figure 27 Programmatically creating a Semantos query in LINQ. 42

Figure 28 Simple query processing algorithm ... 43

Figure 29 Fetch and collate source documents .. 44

Figure 30 Load all triple elements ... 45

Figure 31 Loop through triple lists .. 46

Figure 32 Processing of the first triple .. 46

Figure 33 Processing of subsequent triples ... 48

Figure 34 Constructing the results table ... 49

Figure 35 Supporting data structures .. 51

Figure 36 Excerpt from Open Directory structure dump file 54

Figure 37 Excerpt from Open Directory content dump file .. 54

Figure 38 Semantos query one .. 56

Figure 39 Semantos query two .. 56

Figure 40 Excerpt from data results for query one .. 59

Figure 41 Excerpt from data results for query two .. 60

Figure 42 Semantos query embedded in XML .. 61

Figure 43 Results for Semantos query embedded in XML .. 62

Figure 44 XML embedded in Semantos query .. 63

Figure 45 Results for Query with embedded XML .. 64

Figure 46 Combination Semantos query ... 65

Figure 47 XHTML result opened in Internet Explorer .. 65

Figure 48 Web service code to handle Semantos query. ... 66

Figure 49 Calling the Semantos web service ... 67

Figure 50Randomly modify an XML string. ... 69

Figure 51Programmatic manipulation of Semantos query. 71

Figure 52 Excerpt from data source file .. 72

Figure 53 Semantos data type verification query ... 73

Figure 54 Code comparing decimal and strange data types. 74

Semantos: A semantically smart information query language ix

Figure 55 XML as a communication intermediary ... 76

Figure 56 The SPARQL include component ... 77

Figure 57 The RQL include component ... 77

Figure 58 The Semantos include component .. 77

Figure 59 The SPARQL attribute component .. 78

Figure 60 The RQL attribute component .. 78

Figure 61 The Semantos attribute component... 78

Figure 62 The SPARQL graph component .. 79

Figure 63 The RQL graph component .. 79

Figure 64 The Semantos graph component ... 80

Figure 65 Semantos as RDF language intermediary .. 81

Figure 66 Semantos to SPARQL code example ... 84

Figure 67 Software agent enhanced through query enhancement service 86

Figure 68 Who R U Interface .. 89

Figure 69 Who R U layer architecture .. 90

Figure 70 Making statements about yourself ... 91

Figure 71 Full Semantos schema ... 109

Figure 72 First Semantos example query .. 112

Figure 73 Projected columns from contextual graph for Example 1 112

Figure 74 Second Semantos query example ... 114

Figure 75 Third Semantos query example .. 116

Semantos: A semantically smart information query language x

List of Works

• Danzfuss, T, T Crous, A Liebenberg and A Moolman. “Adaptive Object

Modelling using the .NET Framework.” 3rd Conf .NET Technologies. Plzen,

May 2005.

• Crous, T and J Bishop. “Semantos: XML-based Query Enhancement of RDF

for Agents in the Semantic Web.” Eighth International Conference on Web

Engineering ICWE 2008. New York, July 2008. Note: Accepted, but unable to

attend due to logistical problems.

Semantos: A semantically smart information query language 1

CHAPTER 1: INTRODUCTION

“Give me a lever long enough and a fulcrum on which to place it, and I shall move

the world.” -- Archimedes

1.1. BACKGROUND

This thesis explores how to leverage the semantics and ontologies captured in

Enterprise Information Integration systems. In order to write meaningful queries in

very large, decentralized data spaces (like the web) semantic information is required

to provide the context mediation (Madnick 1995). This is where the family of

technologies surrounding the Semantic Web comes into play. The Semantic Web is

built around technologies that tag information, such as the resource description

framework (RDF), and technologies that link meaning to these tags, like the

resource description framework schema (RDFS) (Brickley and Guha 2000). When

combined, RDF and RDFS allow for semantics or “meaning” to be linked to vast

quantities of information. This information can then be interpreted and queried, in

an intelligent way, by machines or agents (Shadbolt, Berners-Lee and Hall 2006).

Semantos is a technology which is primarily focused on how this information is

queried; specifically the query language used. There are currently many query

languages that can be selected for use in Information Integration systems. These

languages range from the standard enforced XQuery (Boag and Chamberlin 2007)

to the more recent and perhaps more applicable SPARQL (Prud'hommeaux and

Seaborne 2007). It is the position of this researcher, that these standard languages

are inadequate, as they do not facilitate the simple manipulation of these queries by

people, software or, more importantly, software agents. This can be rectified by the

use of a query language built from XML structures, instead of a language built on

custom built syntax constructs. Both man and machine can process XML with ease.

(Bray, et al. 2006).

Semantos: A semantically smart information query language 2

 Data Model
Query allows

ontologies

Query

constructs

Queries at

abstraction level

SQL Relational No Standard Syntax Syntactic

XQuery Hierarchical Sometimes Custom Syntax Syntactic

SPARQL Graph Yes Custom Syntax Semantic

Semantos Graph Yes Pure XML Semantic

Table 1 How Semantos weights up against other query languages

Table 1 provides a summary of how Semantos compares to other information query

languages. From this summary we can see that Semantos has a graph data model,

the concept of which is further explained a little further in this chapter. Semantos

also allows ontology information to be used alongside normal query syntax to

further enhance the expressive capabilities of the language. The queries are

expressed as XML snippets, taken to mean that a Semantos query need not confirm

to all the specifications of the XML DOM document specification, it does still have

to be valid XML though. Semantos queries are executed at the semantic level of

abstraction, of which a further discussion is made in chapter 3. Taking into account

all these facets, it can be concluded that Semantos is better suited as a semantically

smart information query language than SQL or XQuery, and although SPARQL

weights up equally to Semantos in all other respects, it will be shown in this thesis

that the addition of a pure XML syntax, permits several new and useful

possibilities.

Before getting to grips with Semantos and the processes of querying large scale

enterprise information sources using semantic technologies, we present a brief

background regarding the two “technology spaces” which Semantos will have to

successfully straddle. These two technologies are Enterprise Information Integration

and the Semantic Web.

Semantos: A semantically smart information query language 3

1.1.1. ENTERPRISE INFORMATION INTEGRATION

Corporate data is hoarded in all manner of places and formats. Even the most

modest of companies store a vast amount of data in the strangest of places. With

tools like e-mail, word processing, spreadsheets, presentation documents, data

bases, company portals and websites being part of every corporate work day, it is no

wonder that companies spend a very large amount of time and effort trying to find

information that they already posses. Not being able to find necessary information

leads to duplication of effort and in many cases discrepancies in the information

itself. This may be fine when ordering the stationary for the week, but consider

when a company needs to decide whether or not they can afford to pay employee

benefits based on the financial performance of the last year. In a corporate

environment every piece of information is vital and to this point it is crucial that

decision makers have access to the correct information at the opportune time. It is

for this purpose that the concept of Information Integration was created (Giachetti

2004).

The two motivating factors behind Information Integration are access to real time

information, and the need to integrate various forms of data. A good working

definition of Information Integration, or, as it is better known, Enterprise

Information Integration (EII), is provided by John (JT) Taylor from Software AG:

“EII is the integration of data from multiple systems into a unified, consistent and

accurate representation geared toward the viewing and manipulation of the data.

Data is aggregated, restructured and relabeled (if necessary) and presented to the

user.” In other words, Information Integration is rooted in Virtual Database

technology and its accompanying disciplines, such as distributed query processing

and data modeling (Delen, Nikunj and Perakath 2005). Information integration

focuses on the integration of data from multiple systems into a unified, consistent

and accurate representation without first loading the data into warehouse (Halevy, et

al. 2005), which is then used for the viewing and manipulation of that data.

Semantos: A semantically smart information query language

The process of integration is outlined in

problems that need to be

The first issue that needs to be re

be stored in the same location and/or that data might

format or storage medium. This is usually achieved by aggregating data into

intermediate format and merging the data formats into a data source at a common

location. The second issue

between different data sources, meaning that a name field in one data source may be

20 characters long and 30 chara

accomplished by mapping attributes to meta data and then assigning structural

relationships between matching attributes.

information representations to be matched up when they carry a similar meaning.

This can be explained by

information about peo

This matching can again be accomplished with meta data, although in this instance

the meta data should also be

table and a person table is

employee table can also contain voter data. The final step is to merge the results

from all the different data sources and representations into a coherent view of the

data. Information Integration

required to deal with multiple systems on a daily basis. In a nutshell, the main

purpose of an Information Integration platform is to make a collection of

miscellaneous data sources look like a single databas

Figure 1 The process of

Data warehousing and its foundational ETL (Extract, Transform and Load)

technologies have been around for many years and have also been providing

Defeat geographic

distribution and

infrastructure

heterogenity issues

semantically smart information query language

The process of integration is outlined in Figure 1, and demonstrates the different

problems that need to be overcome in order to successfully integrat

The first issue that needs to be resolved is to overcome the fact

me location and/or that data might not be stored in the same

format or storage medium. This is usually achieved by aggregating data into

intermediate format and merging the data formats into a data source at a common

location. The second issue is to resolve the structural heterogeneity

between different data sources, meaning that a name field in one data source may be

20 characters long and 30 characters long in another data source. This can be

accomplished by mapping attributes to meta data and then assigning structural

relationships between matching attributes. The third issue requires different

information representations to be matched up when they carry a similar meaning.

This can be explained by the example that an employee table would also store

information about people and would then technically also count as a people table.

This matching can again be accomplished with meta data, although in this instance

the meta data should also be inferable: if an employee table is relative to a person

table and a person table is relative to a voter table, it should be

employee table can also contain voter data. The final step is to merge the results

from all the different data sources and representations into a coherent view of the

Information Integration provides immediate benefit to end users who are

required to deal with multiple systems on a daily basis. In a nutshell, the main

purpose of an Information Integration platform is to make a collection of

miscellaneous data sources look like a single database.

The process of Information Integration (Hauch, Miller and Cardwell

Data warehousing and its foundational ETL (Extract, Transform and Load)

technologies have been around for many years and have also been providing

Match semantically

compatible source

attributes

Arbitrate diverse

information

representations

4

, and demonstrates the different

in order to successfully integrate information.

solved is to overcome the fact that data might not

not be stored in the same

format or storage medium. This is usually achieved by aggregating data into an

intermediate format and merging the data formats into a data source at a common

heterogeneity that may exist

between different data sources, meaning that a name field in one data source may be

ters long in another data source. This can be

accomplished by mapping attributes to meta data and then assigning structural

The third issue requires different

information representations to be matched up when they carry a similar meaning.

that an employee table would also store

count as a people table.

This matching can again be accomplished with meta data, although in this instance

: if an employee table is relative to a person

relative to a voter table, it should be reasonable that an

employee table can also contain voter data. The final step is to merge the results

from all the different data sources and representations into a coherent view of the

provides immediate benefit to end users who are

required to deal with multiple systems on a daily basis. In a nutshell, the main

purpose of an Information Integration platform is to make a collection of

tion (Hauch, Miller and Cardwell 2005)

Data warehousing and its foundational ETL (Extract, Transform and Load)

technologies have been around for many years and have also been providing

Merge data

instances from

multiple data

sources

Semantos: A semantically smart information query language 5

corporate consumers with the ability to cross-examine and analyze data from

several sources in a cohesive view. The two main drawbacks these systems suffer

from though, is the inherent latency involved with the gathering and stockpiling of

the data in central data stores, -warehouses and –marts and the focus on primarily

catering for structured data which resides in databases. Information Integration

addresses both these disadvantages by means of its virtualized database approach.

First, Information Integration focuses on both structured and unstructured data, i.e.

documents, images, and other media files. Second, it provides real-time access to

information by means of federated queries over integrated views of disparate data

sources. In short, EII holds the promise of providing decision makers with the tools

to timely access relevant information in aid of underpinning important corporate

choices.

1.1.2. SEMANTIC WEB

The World Wide Web is a very large, information rich, data store, which can be

described as the “library of humanity”. The key problem with all very large libraries

concerns the extraction of relevant information at the desired time. Considerable

effort has gone into building very complex information retrieval systems for the

Web, most notably the modern search engine, which is the incarnation of the

librarian in the digital age. The aid of this librarian is indispensable as far as finding

pertinent information at the required time is concerned. So far, these “librarians”

have done an adequate job of keeping track of the individual “books” or documents

on the web, but, as is becoming evident, merely keeping tabs on books, is not

sufficient for contemporary information retrieval needs. What is required, is access

to the “paragraphs” of information contained inside the “books”. Furthermore, it is

necessary that the details or content of these Web documents can, in turn be

searched, aggregated, categorized and analyzed.

This fundamental problem is the main reason for the invention of the Semantic

Web. The Semantic Web may realize the full potential of the enormous digital

Semantos: A semantically smart information query language 6

library that is the Web. By tagging individual elements of data, the Semantic Web is

able to open the door for very refined searches on the information contained inside

web documents. These tags are different from the traditional HTML mark-up tags

used on the Web today. In the first place, they have nothing to do with document

layout and visual styles. Most importantly, they describe the semantic relationships

between data elements, and so provide a reasonable conceptual framework for

automated software agents to “think” about the information contained within the

document.

Tim Berners-Lee’s initial vision for the Semantic Web in 2001 (Berners-Lee,

Hendler and Lassila 2001) entailed information avatars or software agents crawling

the web, looking for information that would be relevant to our personal needs. This

is one of the foundations of the Semantic Web: making information available to

automated software systems. Such a system would allow us to manage the vast

quantity of information on the web by allowing machines to do the searching,

categorization and analysis for us. Now, several years later, this agent assisted

framework has not realized its full global potential and is still relegated to academic

implementations - with a few exceptions (Shadbolt, Berners-Lee and Hall 2006).

The primary driving force behind the semantic web is to address the large volume

of data in the World Wide Web. When he originally envisioned the semantic web

Tim Berners-Lee attempted to untangle the mess of large data spaces by exposing

the implied semantic associations between data items in an explicit way. This would

enable machines to reason about the information contained in data and not just fetch

the data. Because it takes inhuman reasoning abilities to search the internet for the

right information, the process needs to become automated to the extent where a

person can make a simple request in a natural human language. The request should

then be carried out by a digital agent on the World Wide Web, which is tasked with

searching the internet (Ding, et al. 2004), tirelessly looking for matches to the

originator’s request, by using its reasoning and logic capabilities. The true benefit of

this idea can be sampled by using a normal web browser today. However, when

Semantos: A semantically smart information query language 7

searching for anything in the internet, the best search engines may occasionally fail

to comply with even the most modest request. This is not due in any matter to the

simplicity of search engines as, in fact, they have become complex examples of

software engineering in themselves. The problem posed to search engines, rather, is

that due to the sheer volume of data on the internet, the information has become un-

indexable. Figure 2 provides the architecture of the semantic web.

Figure 2 The new semantic web stack (Berners-Lee, Hall and Hendler 2006)

1.2. SEMANTOS OVERVIEW

An information query language does not exist in a vacuum and is subject to many

external motivating factors. Various technologies and decisions influence the way in

which a language is constructed and ultimately the way in which it is used. In this

section some of the elements that influence the construction of Semantos are

identified and discussed.

Semantos: A semantically smart information query language 8

1.2.1. DATA MODELS

When deciding which data model to use for Information Integration purposes, there

are three distinct models to choose from. The choice of model is important, as it

influences what type of data can be stored and, specifically, how the stored data

may be queried. The first model is the relational data model which has become quite

a commonplace and standard model for storing and retrieving data. The relational

data model is queried using SQL (International Organization for Standardization

2003). Another popular data model is the hierarchical data model, which is

normally represented by XML and may be queried using XQuery (Boag and

Chamberlin 2007). The final data model which may be selected, is the graph model,

which is a newcomer to the scene and can be queried using languages like SPARQL

(Prud'hommeaux and Seaborne 2007). Each of these three data models has different

strengths and weaknesses, so that some are more suitable than others for

Information Integration (Melton 2006).

Figure 3 a) The relational data model

The relational data model is more suited to structured data and is the model most

employed in traditional Data Base Management Systems (DBMS). In the relational

model data is represented as rows and columns (see Figure 3a). Each row represents

a fundamental piece of information and each column signifies a projected attribute

of the information. Another aspect of the relational model is that all the rows of

information must possess the same attribute set. It is not possible to store biscuit

recipes in the same space as the specifications for a helicopter. It is possible

however, to group different data “things” together in containers called tables. Each

table has a unique set of columns and can contain data with similar attributes. Given

ID USERNAME PASSWORD

1 tcrous secret01

ACTIVE

yes

2 droets flower yes

3 lkruger racingxxx no

Semantos: A semantically smart information query language 9

its broad appeal in Relational DBMS (RDBMS) systems, a lot of research and

development has gone into the efficiency and capacity of the relational data model.

It is therefore suited to manipulate very large amounts of data with great ease.

Figure 4 b) The hierarchical data model

The hierarchical data model is more suited for semi-structured- , “messy”- or

incomplete data (omitted values, duplicates values etc.). Markup languages are the

technologies that practically underwrite the hierarchical model. These markup

languages notably include HTML for creating web pages and XML for storing and

transporting more general data. The hierarchical data model relies on a tree like

structure to store information. Each piece of information can be seen as a node and

each node may have zero or more children. Nodes may not however have ancestral

nodes as child nodes, prohibiting loops from taking place (see Figure 3b). What the

hierarchical model offers, that the relational model can’t, is the ability to store

dissimilar or unrelated data together. It is therefore not necessary to work with

artificial data containers or tables, nor is it necessary to have predetermined

columns or projections.

The graph model is suited to unstructured data and tends to be more complex in its

processing requirements than the previous models. The largest data store on the

planet, the World Wide Web, is arguably the best example of a graph data model

around. If we were to take each web page as a node and the hyper links between

pages as edges, then we would have a graph: a tree like structure that allows

ancestral nodes to be child nodes. It is interesting to note that these models imply

each other, in that the hierarchical model can be used to represent relational models,

ACTIVE yes

USERNAME tcrous

PASSWORD secret01

ID 1

ACTIVE yes

USERNAME droets

PASSWORD flower

ID 2

ACTIVE no

USERNAME lkruger

PASSWORD racingxxx

ID 3

Semantos: A semantically smart information query language 10

and the graph model can in turn be used to represent hierarchical models. This is

illustrated in Figure 3a, Figure 3b and Figure 3c. The columns of a relational model

can be represented by nodes in the hierarchical model. Each node then represents a

column and the row relationship between data artifacts can be represented by

grouping the nodes together. It is a simple task for the graph model to represent a

hierarchical model, as a hierarchical model is already a graph model, except with

the constraint of no loops. Notably however this process cannot be easily reversed

without losing some data fidelity. As the crux of Information Integration is to draw

information from as many different data sources (structured-, semi-structured and

unstructured), the only viable data model for Semantos appears to be the graph

model.

Figure 5 c) The graph data model

1

tcrous

secret01

yes

PASSWORD

USERNAME
ACTIVE

2

droets

flower

yes

PASSWORD

USERNAME
ACTIVE

3

lkruger

racingxxx

no

PASSWORD

USERNAME
ACTIVE

Semantos: A semantically smart information query language 11

1.2.2. SEMANTIC WEB FOR INTEGRATION

At the core of the semantic web recommendations is the RDF graph (Klyne and

Carrol 2004), which is proposed as a universal data structure. In essence, an RDF

graph is a set of triples (S, P, O), where P names a binary predicate over (S, O); S is

the subject and O the object. Using mapping ontologies (Heflin, et al. 2006) in

combination with the RDF universal data structure allows Information Integration

across a wide variety of data sources, including structured (i.e. RDB); semi-

structured (i.e. XML) and unstructured (i.e. HTML) (Gutierrez, Hurtado and

Mendelzon 2004). The use of mapping ontologies for integration purposes is shown

in Figure 6. This powerful flexibility of the semantic web makes it the perfect

choice for an integration technology. It is therefore pivotal for Semantos to be able

to query RDF data sources and interact with the semantic web in order to be an

information query language.

Figure 6 Mapping ontologies for Information Integration (Heflin, Dimitrov and Qasem 2006)

Local

Ontology A

Structured

Data A

Semi-Structured

Data B

Unstructured

Data C

Local

Ontology B

Local

Ontology C

Mapping

Ontology A+B

Mapping

Ontology B+C

Distributed Query Processor

Semantos: A semantically smart information query language 12

1.3. IMPLEMENTATION ENVIRONMENT AND LIMITATIONS

The current implementation of Semantos uses RDF/RDFS data sources, this is

however merely an implementation choice and can be changed, as the Semantos

syntax is not bound to any RDF/RDFS constructs. The Semantos query is parsed,

inferred and executed by a .NET RDF/RDFS engine. For the purposes of this thesis

the details of query optimization, are alluded to, but it is noteworthy that Semantos

queries need to be optimized in order to implement a successful information query

language (Greco, Greco and Trubitsyna 2005).

Semantos is implemented in C# using the Microsoft .Net 3.5 framework. The

choice of implementation technology was made based on the flexibility of the

language and its ease of use. Another deciding factor was the availability of

ADO.NET, which provides enhanced data access features for Information

Integration purposes (Baldassarre, Caivano and Visaggio 2005). The most

important benefit gained from using the Microsoft .Net 3.5 framework, is the

enhanced features for working with XML data sources. These features are part of

the LINQ technology; which is examined in a later section. The core of Semantos is

implemented as a web service; which leverages the service oriented architecture

(SOA) (Sikka 2005), enabling greater flexibility and a wider range of integration

options for the technology.

1.4. EVALUATION CRITERIA

Before designing the query language, it is necessary to identify the characteristics

the language must possess and the requirements it should satisfy. The design criteria

for Semantos share similarities with the characteristics of an XML query language

(Bonifati and Ceri 2000). The criteria for Semantos are outlined below.

Semantos: A semantically smart information query language 13

1.4.1. XML OUTPUT

The resultant output from a Semantos query must be in XML format. This has many

benefits, including aiding the composition of queries and the ability to have derived

entities (data views) defined via a single query. Probably the greatest benefit is the

ability to manipulate the resultant data via XSLT or any other XML handling

technology. It is also possible to embed the results from a Semantos query directly

into HTML for simple and easy result representation on the Web.

1.4.2. XML REPRESENTATION

A Semantos query must be represented by XML. This property ensures the simple

storage and transportation of queries. It also satisfies the programmatic

manipulation criteria. A multitude of doors are opened when the language is

actually presented in XML format. Not only is modification of the language syntax

a simple matter of updating the schema, but many additional benefits are also

gained by the inherent serializability of XML and its popularity on the web.

1.4.3. MUTUALLY EMBEDDABLE WITH XML

It must be possible to embed a Semantos query within an XML document. The

converse is also possible: having arbitrary XML markup embedded within a

Semantos query. Semantos elements are identified by the namespace in arbitrary

XML documents. The great benefit of this is that it is possible to embed a Semantos

query directly into an XHTML markup page. The query could be processed before

the results are passed from the server to the client and the embedded XML inside

the Semantos tags could be used to format the results. This is very similar to what

XQuery does (Miller, Seaborne and Reggiori 2002).

Semantos: A semantically smart information query language 14

1.4.4. SERVER-SIDE PROCESSING

Semantos must be suitable for server-side processing. Queries are self-contained

and remotely executable. They are not dependent on resources available at the time

of creation, when they are being evaluated. This is probably the most important

language attribute that a query language for the Semantic Web should possess.

1.4.5. NO SCHEMA REQUIRED

Semantos must be capable of querying a data source without prior knowledge of its

structure or schema. This capability means that it is possible for the language to be

used against an XML source with limited knowledge of the structure of the data

source. This property is important when considering the heterogeneity of data

structures available on the Web.

1.4.6. PROGRAMMATIC MANIPULATION

It must be possible to create and manipulate Semantos queries using programs. This

capability is necessary, as most queries will not be written by users, but rather by

tools in application development environments. Programmatic manipulation goes to

the heart of the usefulness of the language in agent assisted searching.

1.4.7. SUPPORT NEW DATA TYPES

Semantos must be fully extended with regards to data types and the language itself

holds no relevance to the type of data being processed. This is especially important

when considering that the language should be able to query data sources where the

data types are not known upfront.

Semantos: A semantically smart information query language 15

1.5. DIFFERENCES FROM OTHER WORKS AND OUR CONTRIBUTIONS

The contribution this thesis strives to make is the development of a new information

query language which enables Information Integration on a semantic level. Neither

the idea of Information Integration nor the idea of a semantic query language is

new. Information Integration has been studied in depth and although the common

consensus suggests that it is more a goal than a product, research in this domain is

carried out every day. Even more active is the research field of the Semantic Web

and specifically in our case query languages: for example (Karvounarakis and

Magkanaraki 2003) and (Vdovjak, et al. 2003). What makes Semantos different and

unique is that it is a query language that is as easy to manipulate for machines as it

is for people. This key differentiator will in the opinion of the author result in better

take up of semantically smart search technologies and therefore also improve the

global appeal of the Semantic Web.

In the introductory text we have presented key characteristics or requirements to

which Semantos must adhere. Given these requirements we designed and developed

a software implementation of the Semantos language framework. Armed with the

implementation we carried out rigorous experimentation and testing against each of

the criteria. We succesfully proved that it is indeed possible to develop and program

a Semantos software framework: it is not just a theoretical model. We demonstrate

the applicability of Semantos using two realistic examples: a query enhancement

service and a query translation service. Both cases clearly illustrate the ability of a

Semantos query to be manipulated by automated services to achieve Information

Integration goals.

1.6. OUTLINE OF THE DISSERTATION

The following outlines the remaining chapters that forms part of this research and

serves as a roadmap of the work done:

Semantos: A semantically smart information query language 16

Chapter 2 – Semantic Language Fundamentals: This chapter presents a literature

study on RDF query languages. The fundamentals learned from current semantic

languages are applied to Semantos at the design level.

Chapter 3 – Semantos Overview: In this chapter we present the language

specification for Semantos. This determines the syntax and capabilities of the

language. Each element of the language structure is also further explored

Chapter 4 – Design and Implementation: A Semantos implementation is

illustrated in this section. Attention is paid to the processing loop and a step by step

account is provided of the query processing itself.

Chapter 5 – Evaluation: Based on the evaluation criteria set out in the first

chapter, this chapter continues to evaluate the implementation of Semantos from

chapter 4 and provides feedback on the success and failure of Semantos to meet the

initial requirements.

Chapter 6 – Use Cases: This chapter provides 2 distinct use cases that exemplify

the unique implementation possibilities that Semantos offers. The first looks at the

possibility of using Semantos as an intermediary language between existing RDF

languages and the second investigates the use of Semantos in a query enhancement

service.

Chapter 7 – Conclusions and Future work: This chapter identifies future work

and concludes by listing the contributions made by this work.

Appendix A – XML Schema: A full XML schema for the Semantos query

language constructs.

Appendix B – Examples: This chapter presents several examples of Semantos

queries and the processing logic behind them.

Semantos: A semantically smart information query language 17

CHAPTER 2: SEMANTIC LANGUAGE FUNDAMENTALS

“A scientific truth does not triumph by convincing its opponents and making them

see the light, but rather because its opponents eventually die and a new generation

grows up that is familiar with it.” -- Max Planck

The fundamental purpose of a semantic language is to be able to construct questions

about the connections between resources in a manner that allows software to

interpret and act upon these questions and connections. In its most basic form the

semantic web boils down to the description of these connections between resources

and is designed to allow reasoning and inference capabilities to be added to the

descriptions. This includes stating facts such as ''a hex-head bolt is a type of

machine bolt'' (Berners-Lee, Hendler and Lassila 2001), but also stretches to the

deduction of complicated inter-relationships. This important characteristic is what

allows intelligent software agents to not only collect descriptions but to interpret

and act on them as well. The semantic web works on top of the existing web, by

adding machine-readable information without modifying the currently existing web.

At the core of the semantic web recommendations is the RDF graph (Klyne and

Carrol 2004), which is proposed as a universal data structure. In essence, an RDF

graph is a set of triples (S, P, O), where P names a binary predicate over (S, O); S is

the subject and O the object. These triples allow for the creation of expressive

statements regarding resources or in other words to create connections between

them. Figure 7 presents a simple RDF graph describing an article written by “Cody

Burlson”. The most fundamental benefit of RDF compared to other meta-data

approaches is that using RDF, you can say anything about anything. Anyone can

make RDF statements about any identifiable resource. Using RDF, the problems of

extending meta-data and combining meta-data of different formats, from different

schemas disappear, as RDF does not use closed documents (Nilsson 2001).

Semantos: A semantically smart information query language 18

Figure 7 An example RDF graph.

2.1. RDF/RDFS

The semantic web backbone is the W3C’s RDF/RDFS (Brickley and Guha 2000).

At its core, the RDF model defines subject-predicate-object triples that are used to

tag pieces of data and align them to a bigger picture or RDF graph (Carroll and

Stickler 2004). This graph then represents all the information in the data source.

RDFS defines additional relationships between these triples and provides for the

ability to create rich ontologies or namespaces that define the objects, terminologies

and semantics that are used in an RDF graph. This allows the user to query two

related data sources, even if they use different triple assignments. That is, provided

there is a unifying ontology that maps triples from the one graph to the other.

Semantos is a RDF/RDFS query language, based in XML. The expression of RDF

triples can be constructed in many forms, of which the most popular is to use XML,

an example of which is provided in Figure 8.

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:dc="http://purl.org/dc/elements/1.1/">

Semantos: A semantically smart information query language 19

 <rdf:Description

 rdf:about="http://www.retrorabbit.co.za/aboutus.aspx">

 <dc:title>About Us</dc:title>

 </rdf:Description>

</rdf:RDF>

Figure 8 RDF/XML structure example

The same statement in Figure 8 can also be expressed in Notation 3, also known as

simply “N3” (Berners-Lee 2006). N3 is a less verbose way of constructing triples,

as can be seen by the same statement as before in N3 notation, Figure 9.

@prefix dc: <http://purl.org/dc/elements/1.1/>.

<http://www.retrorabbit.co.za/aboutus.aspx> dc:title "About Us";

Figure 9 Example statement in N3

Although RDF/RDFS has been commonly acknowledged as the language to

describe metadata information on the semantic web, the question of which query

language to use for the RDF/RDFS metadata, has been hotly contested for the last

couple of years. These languages include RQL (Karvounarakis, et al. 2002), RDQL

(Miller, Seaborne and Reggiori 2002) and even purely mathematical languages

(Frasincar, et al. 2004). Formal definitions for RDF query languages have been

compiled (Gutierrez, Hurtado and Mendelzon 2003) and various comparisons

between the languages have also been done (Haase, et al. 2004), these results are

not reproduced in this report. However, for the purposes of Semantos it is pertinent

to note that it is the first RDF query language to be fully represented in XML.

Unlike XQueryX (Melton and Muralidhar 2005) which is simply a mapping of

XQuery syntax onto an XML representation, Semantos is an altogether XML native

construct.

Semantos: A semantically smart information query language 20

2.2. RDF QUERY LANGUAGES

There are several languages available with which RDF data sources may be queried.

Although they all support different subsets of features, these languages have a lot in

common. All the query languages provide some syntax with which to project the

attribute result set, as well as providing some syntax for defining the data graph that

needs to be queried. All the languages also provide features to limit the result set as

well as include external namespaces. A short list of common RDF query languages

are provided here.

2.2.1. RQL

RQL is a query language for RDF and RDF Schema, which is loosely based on

OQL (Karvounarakis, et al. 2002). RQL has a powerful feature in its ability to

address RDF Schema semantics in the language itself. Specific language constructs

cater for class instance relationships, class property subsumption, domains and

ranges (Broekstra 2004). An example of a typical RQL query is provided below, in

Figure 10:

 SELECT

 name, spousename

 FROM

 {person}, human:name, {name},

 {person}, human:hasSpouse, {spouse},

 {spouse}, human:name, {spousename},

 {person}, rdf:type, {X : human:Woman}

 WHERE

 name = “Theo”

 USING NAMESPACE

 rdf = http://www.w3.org/1999/02/22-rdf-syntax-ns#,

 human = http://www.inria.fr/2006/12/05/humans.rdfs#

Figure 10 Example of an RQL query

Semantos: A semantically smart information query language 21

RQL is a typed language following a functional approach and supports generalized

path expressions, featuring variables on both nodes and edges, or classes and

properties. In contrast to other triple-based RDF query languages RQL relies on a

formal graph model that captures the RDF modeling primitives. The formal graph

permits the interpretation of resource descriptions by means of one or more

schemas. RQL supports (Karvounarakis and Christophides 2003):

• XML Schema data types (for filtering literal values)

• grouping primitives (for constructing nested values)

• arithmetic operations (for converting literal values)

• aggregate functions (for extracting statistics)

• namespace facilities (for handling different schemas)

• metaschemas querying (for browsing schemas)

• duplicate elimination (select distinct)

• quantification iterators (EXISTS, FORALL)

• recursive traversal of class and property hierarchies (for pattern-matching)

The RQL software consists of four modules: the parser, which analyzes the syntax

of queries; the graph constructor, which collects the semantics of queries, especially

concerning typing and interdependencies; the SQL translator, which rewrites RQL

to efficient SQL queries; and the evaluation engine, which executes the SQL queries

against the underlying PostgreSQL database. Below, Figure 11 provides the full

BNF grammar of RQL.

ns_query ::= (query | strict_query) ["using namespace" nsdeflist]

query ::= "(" query ")"

 | "subClassOf" ["^"] "(" query ")"

 | "superClassOf" ["^"] "(" query ")"

 | "subPropertyOf" ["^"] "(" query ")"

 | "superPropertyOf" ["^"] "(" query ")"

 | "topclass"

 | "topproperty"

 | "leafclass" ["(" query ")"]

 | "leafproperty" ["(" query ")"]

 | "nca" "(" query "," query ")"

 | "domain" "(" query ")"

 | "range" "(" query ")"

Semantos: A semantically smart information query language 22

 | "typeOf" "(" query ")"

 | "namespace" "(" query ")"

 | "count" "(" (query | strict_query) ")"

 | "avg" "(" (query | strict_query) ")"

 | "min" "(" (query | strict_query) ")"

 | "max" "(" (query | strict_query) ")"

 | "sum" "(" (query | strict_query) ")"

 | "bag(" query, [query]")"

 | "seq(" query, [query]")"

 | query "[" query "]"

 | query "in" (query | strict_query)

 | (query | strict_query) set_op (query | strict_query)

 | query comp_op query

 | query bool_op query

 | "not" query

 | constant

 | identifier

 | var

 | sfw_query

 | "exists" var "in" (query | strict_query) "such that"

 query

 | "forall" var "in" (query | strict_query) "such that"

 query

strict_query ::= "^" identifier

 | "^" var

 | "(" strict_query ")"

sfw_query ::= "select" ["distinct"] projslist "from" rangeslist [

 "where" query]

comp_op ::= "<" | "<=" | ">" | ">=" | "=" | "!=" | "like"

set_op ::= "union" | "intersect" | "minus"

bool_op ::= "and" | "or"

constant ::= integer_literal

 | real_literal

 | quoted_string_literal

 | quoted_char_literal

 | date

 | "true"

 | "false"

 | "&" identifier

var ::= data_var | class_var | type_var | property_var

data_var ::= identifier

class_var ::= "$" identifier

type_var ::= "$" "$" identifier

property_var ::= "@" identifier

projslist ::= "*" | query { "," query }

rangeslist ::= pathexpr { "," pathexpr }

pathexpr ::= pathelem { "." pathelem }

pathelem ::= ["{" from_to "}"] (query | strict_query) ["{"

 from_to "}"]

from_to ::= [data_var] [";" ["^"] (class_var | type_var |

 identifier)] | class_var | type_var

nsdeflist ::= nsdef { "," nsdef }

nsdef ::= identifier "= " "&" identifier

Figure 11 BNF grammar for RQL

Semantos: A semantically smart information query language 23

2.2.2. RDQL

The RDF Data Query Language or RDQL is a query language for RDF based on

SquishQL (Miller, Seaborne and Reggiori 2002). The syntax for RDQL follows a

select pattern comparable to SQL, where the “from” clause is similarly omitted

(Haase, et al. 2004). RDQL does not support the incorporation of RDF Schema

information. A typical RDQL query is provided below, in Figure 12:

 SELECT

 ?name, ?spousename

 WHERE

 (?person, human:name, ?name),

 (?person, human:hasSpouse, ?spouse),

 (?spouse, human:name, ?spousename),

 (?person, rdf:type, human:Woman)

 AND

 ?name = “Theo”

 USING

 rdf FOR <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

 human FOR <http://www.inria.fr/2006/12/05/humans.rdfs#>

Figure 12 Example of an RDQL query

An RDQL query consists of a graph pattern, expressed as a list of triple patterns.

Each triple pattern is comprised of named variables and RDF values which can be

URI’s or literals. The query can also have a set of constraints on the values of the

variables, and a list of variables required for the result set. The RDF graph is treated

as data by an RDQL query, if inference is provided by the graph, it will appear as

"virtual triples" and RDQL will include these triples as possible matches for triple

patterns. There is therefore no distinction between inferred- and ground triples. The

BNF grammar for RDQL is provided in Figure 13.

Semantos: A semantically smart information query language 24

Lexical Tokens:

QuotedURI ::= '<' URI characters (from RFC 2396) '>'

NSPrefix ::= NCName As defined in XML Namespace v1.1 and XML 1.1

LocalPart ::= NCName As defined in XML Namespace v1.1 and XML 1.1

SELECT ::= 'SELECT' Case Insensitive match

FROM ::= 'FROM' Case Insensitive match

SOURCE ::= 'SOURCE' Case Insensitive match

WHERE ::= 'WHERE' Case Insensitive match

AND ::= 'AND' Case Insensitive match

USING ::= 'USING' Case Insensitive match

Identifier ::= ([a-z][A-Z][0-9][-_.])+

EOF ::= End of file

COMMA ::= ','

INTEGER_LITERAL ::= ([0-9])+

FLOATING_POINT_LITERAL ::= ([0-9])*'.'([0-9])+('e'('+'|'-')?([0-9])+)?

STRING_LITERAL1 ::= '"'UTF-8 characters'"' (with escaped \")

STRING_LITERAL2 ::= "'"UTF-8 characters"'" (with escaped \')

LPAREN ::= '('

RPAREN ::= ')'

COMMA ::= ','

DOT ::= '.'

GT ::= '>'

LT ::= '<'

BANG ::= '!'

TILDE ::= '~'

HOOK ::= '?'

COLON ::= ':'

EQ ::= '=='

NEQ ::= '!='

LE ::= '<='

GE ::= '>='

SC_OR ::= '||'

SC_AND ::= '&&'

STR_EQ ::= 'EQ' Case Insensitive match

STR_NE ::= 'NE' Case Insensitive match

PLUS ::= '+'

MINUS ::= '-'

STAR ::= '*'

SLASH ::= '/'

REM ::= '%'

STR_MATCH ::= '=~' | '~~'

STR_NMATCH ::= '!~'

DATATYPE ::= '^^'

AT ::= '@'

Grammar:

CompilationUnit ::= Query <EOF>

CommaOpt ::= (<COMMA>)?

Query ::= SelectClause (SourceClause)? TriplePatternClause

 (ConstraintClause)? (PrefixesClause)?

SelectClause ::= (<SELECT> Var (CommaOpt Var)* | <SELECT> <STAR>)

SourceClause ::= (<SOURCE> | <FROM>) SourceSelector

 (CommaOpt SourceSelector)*

SourceSelector ::= QName

TriplePatternClause ::= <WHERE> TriplePattern

 (CommaOpt TriplePattern)*

ConstraintClause ::= <SUCHTHAT> Expression

 ((<COMMA> | <SUCHTHAT>) Expression)*

TriplePattern ::= <LPAREN> VarOrURI CommaOpt VarOrURI CommaOpt VarOrConst

 <RPAREN>

VarOrURI ::= Var

Semantos: A semantically smart information query language 25

 | URI

VarOrConst ::= Var

 | Const

Var ::= "?" Identifier

PrefixesClause ::= <PREFIXES> PrefixDecl (CommaOpt PrefixDecl)*

PrefixDecl ::= Identifier <FOR> <QuotedURI>

Expression ::= ConditionalOrExpression

ConditionalOrExpression ::= ConditionalAndExpression

 (<SC_OR> ConditionalAndExpression)*

ConditionalAndExpression ::= StringEqualityExpression

 (<SC_AND> StringEqualityExpression)*

 StringEqualityExpression ::= ArithmeticCondition (<STR_EQ>

 ArithmeticCondition | <STR_NE> ArithmeticCondition |

 <STR_MATCH> PatternLiteral | <STR_NMATCH> PatternLiteral)*

ArithmeticCondition ::= EqualityExpression

EqualityExpression ::= RelationalExpression

 (<EQ> RelationalExpression | <NEQ> RelationalExpression)?

RelationalExpression ::= AdditiveExpression (<LT> AdditiveExpression |

 <GT> AdditiveExpression | <LE> AdditiveExpression |

 <GE> AdditiveExpression)?

AdditiveExpression ::= MultiplicativeExpression (

 <PLUS> MultiplicativeExpression |

 <MINUS> MultiplicativeExpression)*

MultiplicativeExpression ::= UnaryExpression (<STAR> UnaryExpression |

 <SLASH> UnaryExpression | <REM> UnaryExpression)*

UnaryExpression ::= UnaryExpressionNotPlusMinus

 | (<PLUS> UnaryExpression | <MINUS> UnaryExpression)

UnaryExpressionNotPlusMinus ::= (<TILDE> | <BANG>) UnaryExpression

 | PrimaryExpression

PrimaryExpression ::= Var

 | Const

 | <LPAREN> Expression <RPAREN>

Const ::= URI

 | NumericLiteral

 | TextLiteral

 | BooleanLiteral

 | NullLiteral

NumericLiteral ::= (<INTEGER_LITERAL> | <FLOATING_POINT_LITERAL>)

TextLiteral ::= (<STRING_LITERAL1> | <STRING_LITERAL2>) (

 <AT> Identifier)? (<DATATYPE> URI)?

PatternLiteral ::=

BooleanLiteral ::= <BOOLEAN_LITERAL>

NullLiteral ::= <NULL_LITERAL>

URI ::= <QuotedURI>

 | QName

QName ::= <NSPrefix> ':' (<LocalPart>)?

Unlilke XML Namespaces, the local part is optional

Identifier ::= (<IDENTIFIER> | <SELECT> | <SOURCE> | <FROM> | <WHERE>

 | <PREFIXES> | <FOR> | <STR_EQ> | <STR_NE>)

Figure 13 BNF grammar for RDQL

2.2.3. SPARQL

SPARQL (pronounced "sparkle") is an RDF query language. The name is a

recursive acronym, which stands for SPARQL Protocol and RDF Query Language.

SPARQL is being designed and standardized by the RDF Data Access Working

Semantos: A semantically smart information query language 26

Group (DAWG) of the World Wide Web Consortium (Prud'hommeaux and

Seaborne 2007). A SPARQL query example is provided below, in Figure 14:

 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

 PREFIX human: <http://www.inria.fr/2006/12/05/humans.rdfs#>

 SELECT

 ?name ?spousename

 WHERE {

 ?person human:name ?name.

 ?person human:hasSpouse ?spouse.

 ?spouse human:name ?spousename.

 ?person rdf:type human:Woman.

 FILTER

 (?name = “Theo”)

 }

Figure 14 An example of a SPARQL query

A SPARQL query contains a set of triple patterns forming a basic graph pattern.

These triple patterns are similar to RDF triples, except that the subject, predicate,

object or any combination thereof may be a variable. This basic graph pattern

matches to a sub graph of the RDF data. Any of the RDF terms from that sub graph

may be substituted for the variables and the result is an RDF graph equivalent to the

sub graph. The main features of SPARQL are:

• ability to express queries across diverse data sources

• capable of querying required and optional graph patterns

• can query graph pattern conjunctions and disjunctions

• supports extensible value testing and constraining queries by source RDF

graph

• SPARQL query results can be results sets or RDF graphs

The BNF grammar for SPARQL is provided below in Figure 15.

Semantos: A semantically smart information query language 27

Query ::= Prologue

 (SelectQuery | ConstructQuery | DescribeQuery | AskQuery)

Prologue ::= BaseDecl? PrefixDecl*

BaseDecl ::= 'BASE' IRI_REF

PrefixDecl ::= 'PREFIX' PNAME_NS IRI_REF

SelectQuery ::= 'SELECT' ('DISTINCT' | 'REDUCED')? (Var+ | '*')

 DatasetClause* WhereClause SolutionModifier

ConstructQuery ::= 'CONSTRUCT' ConstructTemplate DatasetClause*

 WhereClause SolutionModifier

DescribeQuery ::= 'DESCRIBE' (VarOrIRIref+ | '*') DatasetClause*

 WhereClause? SolutionModifier

AskQuery ::= 'ASK' DatasetClause* WhereClause

DatasetClause ::= 'FROM' (DefaultGraphClause | NamedGraphClause)

DefaultGraphClause ::= SourceSelector

NamedGraphClause ::= 'NAMED' SourceSelector

SourceSelector ::= IRIref

WhereClause ::= 'WHERE'? GroupGraphPattern

SolutionModifier ::= OrderClause? LimitOffsetClauses?

LimitOffsetClauses ::= (LimitClause OffsetClause? | OffsetClause

 LimitClause?)

OrderClause ::= 'ORDER' 'BY' OrderCondition+

OrderCondition ::= (('ASC' | 'DESC') BrackettedExpression)

 | (Constraint | Var)

LimitClause ::= 'LIMIT' INTEGER

OffsetClause ::= 'OFFSET' INTEGER

GroupGraphPattern ::= '{' TriplesBlock? ((GraphPatternNotTriples

 | Filter) '.'? TriplesBlock?)* '}'

TriplesBlock ::= TriplesSameSubject ('.' TriplesBlock?)?

GraphPatternNotTriples ::= OptionalGraphPattern |

 GroupOrUnionGraphPattern | GraphGraphPattern

OptionalGraphPattern ::= 'OPTIONAL' GroupGraphPattern

GraphGraphPattern ::= 'GRAPH' VarOrIRIref GroupGraphPattern

GroupOrUnionGraphPattern ::= GroupGraphPattern ('UNION'

 GroupGraphPattern)*

Filter ::= 'FILTER' Constraint

Constraint ::= BrackettedExpression | BuiltInCall | FunctionCall

FunctionCall ::= IRIref ArgList

ArgList ::= (NIL | '(' Expression (',' Expression)* ')')

ConstructTemplate ::= '{' ConstructTriples? '}'

ConstructTriples ::= TriplesSameSubject ('.' ConstructTriples?)?

TriplesSameSubject ::= VarOrTerm PropertyListNotEmpty |

 TriplesNode PropertyList

PropertyListNotEmpty ::= Verb ObjectList (';' (Verb ObjectList)?)*

PropertyList ::= PropertyListNotEmpty?

ObjectList ::= Object (',' Object)*

Object ::= GraphNode

Verb ::= VarOrIRIref | 'a'

TriplesNode ::= Collection | BlankNodePropertyList

BlankNodePropertyList ::= '[' PropertyListNotEmpty ']'

Collection ::= '(' GraphNode+ ')'

GraphNode ::= VarOrTerm | TriplesNode

VarOrTerm ::= Var | GraphTerm

VarOrIRIref ::= Var | IRIref

Var ::= VAR1 | VAR2

GraphTerm ::= IRIref | RDFLiteral | NumericLiteral | BooleanLiteral |

 BlankNode | NIL

Expression ::= ConditionalOrExpression

ConditionalOrExpression ::= ConditionalAndExpression ('||'

 ConditionalAndExpression)*

ConditionalAndExpression ::= ValueLogical ('&&' ValueLogical)*

Semantos: A semantically smart information query language 28

ValueLogical ::= RelationalExpression

RelationalExpression ::= NumericExpression ('=' NumericExpression |

 '!=' NumericExpression | '<' NumericExpression |

 '>' NumericExpression | '<=' NumericExpression |

 '>=' NumericExpression)?

NumericExpression ::= AdditiveExpression

AdditiveExpression ::= MultiplicativeExpression (

 '+' MultiplicativeExpression | '-' MultiplicativeExpression

 | NumericLiteralPositive | NumericLiteralNegative)*

MultiplicativeExpression ::= UnaryExpression ('*' UnaryExpression

 | '/' UnaryExpression)*

UnaryExpression ::= '!' PrimaryExpression | '+' PrimaryExpression

 | '-' PrimaryExpression | PrimaryExpression

PrimaryExpression ::= BrackettedExpression | BuiltInCall

 | IRIrefOrFunction | RDFLiteral | NumericLiteral

 | BooleanLiteral | Var

BrackettedExpression ::= '(' Expression ')'

BuiltInCall ::= 'STR' '(' Expression ')'

 | 'LANG' '(' Expression ')'

 | 'LANGMATCHES' '(' Expression ',' Expression ')'

 | 'DATATYPE' '(' Expression ')' | 'BOUND' '(' Var ')'

 | 'sameTerm' '(' Expression ',' Expression ')'

 | 'isIRI' '(' Expression ')' | 'isURI' '(' Expression ')'

 | 'isBLANK' '(' Expression ')'

 | 'isLITERAL' '(' Expression ')'

 | RegexExpression

RegexExpression ::= 'REGEX' '(' Expression ','

 Expression (',' Expression)? ')'

IRIrefOrFunction ::= IRIref ArgList?

RDFLiteral ::= String (LANGTAG | ('^^' IRIref))?

NumericLiteral ::= NumericLiteralUnsigned |

 NumericLiteralPositive | NumericLiteralNegative

NumericLiteralUnsigned ::= INTEGER | DECIMAL | DOUBLE

NumericLiteralPositive ::= INTEGER_POSITIVE

 | DECIMAL_POSITIVE | DOUBLE_POSITIVE

NumericLiteralNegative ::= INTEGER_NEGATIVE

 | DECIMAL_NEGATIVE | DOUBLE_NEGATIVE

BooleanLiteral ::= 'true' | 'false'

String ::= STRING_LITERAL1 | STRING_LITERAL2

 | STRING_LITERAL_LONG1 | STRING_LITERAL_LONG2

IRIref ::= IRI_REF | PrefixedName

PrefixedName ::= PNAME_LN | PNAME_NS

BlankNode ::= BLANK_NODE_LABEL | ANON

@terminals

IRI_REF ::= '<' ([^<>\"{}|^`\\]-[#x00-#x20])* '>'

PNAME_NS ::= PN_PREFIX? ':'

PNAME_LN ::= PNAME_NS PN_LOCAL

BLANK_NODE_LABEL ::= '_:' PN_LOCAL

VAR1 ::= '?' VARNAME

VAR2 ::= '$' VARNAME

LANGTAG ::= '@' [a-zA-Z]+ ('-' [a-zA-Z0-9]+)*

INTEGER ::= [0-9]+

DECIMAL ::= [0-9]+ '.' [0-9]* | '.' [0-9]+

DOUBLE ::= [0-9]+ '.' [0-9]* EXPONENT | '.' ([0-9])+ EXPONENT

 | ([0-9])+ EXPONENT

INTEGER_POSITIVE ::= '+' INTEGER

DECIMAL_POSITIVE ::= '+' DECIMAL

DOUBLE_POSITIVE ::= '+' DOUBLE

INTEGER_NEGATIVE ::= '-' INTEGER

DECIMAL_NEGATIVE ::= '-' DECIMAL

Semantos: A semantically smart information query language 29

DOUBLE_NEGATIVE ::= '-' DOUBLE

EXPONENT ::= [eE] [+-]? [0-9]+

STRING_LITERAL1 ::= "'" (([^#x27#x5C#xA#xD]) | ECHAR)* "'"

STRING_LITERAL2 ::= '"' (([^#x22#x5C#xA#xD]) | ECHAR)* '"'

STRING_LITERAL_LONG1 ::= "'''" (("'" | "''")?

 ([^'\\] | ECHAR))* "'''"

STRING_LITERAL_LONG2 ::= '"""' (('"' | '""')?

 ([^"\\] | ECHAR))* '"""'

ECHAR ::= '\\' [tbnrf\\"']

NIL ::= '(' WS* ')'

WS ::= #x20 | #x9 | #xD | #xA

ANON ::= '[' WS* ']'

PN_CHARS_BASE ::= [A-Z] | [a-z] | [#x00C0-#x00D6] | [#x00D8-#x00F6]

 | [#x00F8-#x02FF] | [#x0370-#x037D] | [#x037F-#x1FFF]

 | [#x200C-#x200D] | [#x2070-#x218F] | [#x2C00-#x2FEF]

 | [#x3001-#xD7FF] | [#xF900-#xFDCF] | [#xFDF0-#xFFFD]

 | [#x10000-#xEFFFF]

PN_CHARS_U ::= PN_CHARS_BASE | '_'

VARNAME ::= (PN_CHARS_U | [0-9]) (PN_CHARS_U | [0-9] | #x00B7

 | [#x0300-#x036F] | [#x203F-#x2040])*

PN_CHARS ::= PN_CHARS_U | '-' | [0-9] | #x00B7 | [#x0300-#x036F]

 | [#x203F-#x2040]

PN_PREFIX ::= PN_CHARS_BASE ((PN_CHARS|'.')* PN_CHARS)?

PN_LOCAL ::= (PN_CHARS_U | [0-9]) ((PN_CHARS|'.')* PN_CHARS)?

@pass: [\t\r\n]+ | '#' [^\r\n]*

Figure 15 Full BNF grammar for SPARQL

2.3. SUMMARY

In this chapter, we have introduced the languages used for the purposes of querying

RDF data sources. We have made explicit the syntax to which these languages

adhere and have provided some history behind these languages.

Semantos: A semantically smart information query language 30

CHAPTER 3: SEMANTOS OVERVIEW

“The saddest aspect of life right now is that science gathers knowledge faster than

society gathers wisdom.” -- Isaac Asimov

For any query or access language to be an effective and efficient semantic language

it must be equally capable of interrogating raw data, meta-data or even meta-meta-

data. The language syntax itself must therefore support the possibility of querying

multiple levels of data encapsulation. Foremost, Semantos must be a semantic

language and as such be capable of interacting with data at various meta levels and

viewing data as a graph of connected nodes.

3.1. A SEMANTIC LANGUAGE

In the process of querying data, it is possible to view these data source at three

levels of abstraction. This is especially true of RDF data sources. The three levels

are (Broekstra, Kampman and van Harmelen 2001):

• The syntactic level (raw data level)

• The structure level (subject-predicate-object triplets)

• The semantic level (1 or more graphs with predefined semantics)

3.1.1. THE SYNTACTIC LEVEL

An RDF data source/model can be represented as a simple XML document

(Brickley and Guha 2000). It is then possible to query this XML document with any

of the available XML query language, e.g. XQuery. This is, however, not an

adequate solution, as much of the inherent information in an RDF model is not

apparent from its hierarchical structure, but is rather derived from the relationships

established in the ontology. Any language querying at this level would be

Semantos: A semantically smart information query language 31

dependent on the structure of the XML. In the case of RDF this structure is flexible,

making it nearly impossible to query the syntactic level of disparate data sources.

3.1.2. THE STRUCTURE LEVEL

Any RDF data source represents a set of triples, with each triple representing a

statement of the form Subject-Predicate-Object. Querying at the structure level has

a clear advantage over that of the syntactic level, as it is independent of the

underlying XML structure which has been chosen to represent the RDF data source.

At this level, the query directly interprets the RDF model. The problem with any

structure level query language, however, is that it only interprets explicitly defined

triplets. It does not take inferred triplets into account.

3.1.3. THE SEMANTIC LEVEL

Query languages operating at the semantic level are superior to other query

languages, in that they are capable of interpreting inferred triplets in data sources, if

provided with appropriate ontologies. It is at this level that Semantos queries data

sources.

3.2. SYNTAX

The syntax of Semantos can be formalized as a XML schema. However it would be

useful, for the sake of brevity, to explain the syntax and structure of the language,

by means of an example first. This example is provided below in Figure 16.

<semantos:fetch>

 <semantos:source

 name="rdf source"

 uri="http://www.retrorabbit.co.za/data/example1.rdf"/>

Semantos: A semantically smart information query language 32

 <semantos:ontology

 name="rdfs source"

 uri="http://www.retrorabbit.co.za/data/ontology1.rdfs"/>

 <semantos:namespace

 name="rdf"

 value="http://www.w3.org/1999/02/22-rdf-syntax-ns#" />

 <semantos:namespace

 name="people"

 value="http://www.retrorabbit.co.za/data/humans.rdfs#" />

 <semantos:entity

 name="firstnames">

 <semantos:attribute

 name="name"/>

 <semantos:attribute

 name="spousename"/>

 <semantos:graph>

 <semantos:triple

 subject="person"

 predicate="human:name"

 object="name"/>

 <semantos:triple

 subject="person"

 predicate="rdf:type"

 object="human:Woman"/>

 <semantos:triple

 subject="person"

 predicate="human:hasSpouse"

 object="spouse"/>

 <semantos:triple

 subject="spouse"

 predicate="human:name"

Semantos: A semantically smart information query language 33

 object="spousename"/>

 </semantos:graph>

 <semantos:filter>

 <semantos:condition

 attribute="name"

 operator=="eq"

 value=="Theo"

 </semantos:filter>

 </semantos:entity>

</semantos:fetch>

Figure 16 An example of a Semantos query

The first thing to note is that Semantos uses the “semantos” namespace. This is to

identify Semantos queries when embedded in other XML documents. The syntax or

structure of a query itself is quite simple; each element type found in the query

above, is addressed below.

3.2.1. FETCH <SEMANTOS:FETCH>

The outer most element of any Semantos query is the fetch element, as seen below

in Figure 17. It contains all the necessary ingredients to process a query and format

the results. A fetch element may be embedded inside another XML document (i.e.

an XHTML page) in order to stream the results directly into the document’s format.

This supports the required characteristic identified in (Bonifati and Ceri 2000). It

should be noted that XQuery also supports the idea of embedding a query (World

Wide Web Consortium 2007).

Semantos: A semantically smart information query language 34

Figure 17 The Semantos fetch element

3.2.2. SOURCE <SEMANTOS:SOURCE>

Each fetch element requires at least one source element as illustrated below in

Figure 18. The source element identifies the source of the data, and, for integration

purposes, may declare multiple data sources. Currently, Semantos requires that

these data sources be RDF compatible, meaning that either the data source must be

an actual RDF document or the data source should be exposed as an RDF data

source. This is simply a limitation of the implementation at this stage, as any graph

representative markup can potentially be used.

Figure 18 The Semantos source element

3.2.3. ONTOLOGY <SEMANTOS:ONTOLOGY>

The ontology tag is probably one of the more important elements in a Semantos

query as shown in Figure 19; it indicates the existence of associated ontologies.

Each fetch element may contain zero or more ontology elements, which makes it

possible to do ontology mappings, using multiple ontologies or to query the data

source as is, without any semantic representation/inference. Semantos currently

requires these ontologies to be RDFS documents, but this is only a limitation of this

specific implementation, and any ontology format should be workable.

Figure 19 The Semantos ontology element

<semantos:ontology

name="onto"

uri="http://www.retrorabbit.co.za/semantos/people.rdfs" />

<semantos:source

 name="rdf source"

 uri="http://www.retrorabbit.co.za/data/example1.rdf" />

<semantos:fetch>…</semantos:fetch>

Semantos: A semantically smart information query language 35

3.2.4. NAMESPACE <SEMANTOS:NAMESPACE>

In order to circumvent the necessity of providing long fully qualified names for the

identification of node elements, Semantos supports namespaces, as declared with

the namespace tag shown in Figure 20. Each fetch element may have zero or more

namespaces. These namespace declarations are later used in the element tags, to

simplify node identification.

Figure 20 The Semantos namespace element

3.2.5. ENTITY <SEMANTOS:ENTITY>

The result of a Semantos query is an entity list. An entity is a logical processing

unit, similar to a class structure in object oriented programming. An entity possesses

attributes. Each fetch element has exactly one entity element, shown in Figure 21,

which helps to define the structure of the results. The entity element also allows the

query results to be shaped by adding non Semantos XML tags in the body of the

entity element. These tags will then be repeated for each returned result.

Figure 21 The Semantos entity element

3.2.6. ATTRIBUTE <SEMANTOS:ATTRIBUTE>

In order to fully structure the data response, the result entity requires attributes.

Each entity element may have one or more attribute elements, shown in Figure 22,

<semantos:entity

name="a">

…

</semantos:entity>

<semantos:namespace

name="rdf"

value="http://www.w3.org/1999/02/22-rdf-syntax-ns#" />

Semantos: A semantically smart information query language 36

each of which maps to a variable node in the query graph. The attribute elements

give structure to the data projection.

Figure 22 The Semantos attribute element

3.2.7. GRAPH <SEMANTOS:GRAPH>

Creating a semantic query requires the creation of a context graph. The graph

identifies the structure of the data being queried. Each entity node must have

exactly one graph element as shown in Figure 23. A graph is a set of triples

(Gutierrez, Hurtado and Mendelzon 2004), which is responsible for mapping the

tree/graph structure of information into a structured tuple data set, which can be

used in this specific result set.

Figure 23 The Semantos graph element

3.2.8. TRIPLE <SEMANTOS:TRIPLE>

The triple tag is used to create the triples that build the context graph. A graph

element may contain one or more triple elements. The triple element has three

attributes matching either the subject, predicate or object section as shown in Figure

24. The values of these properties are fully qualified XML element names. If a

namespace element is declared in the query, it is possible to write out the full node

name via a shortcut format, i.e. “human:name” would translate to

“http://www.retrorabbit.co.za/human#name”. It is also possible to assign any of

these three properties as a placeholder or variable node, meaning that any possible

<semantos:graph>

…

</semantos:graph>

<semantos:attribute

name="name"/>

Semantos: A semantically smart information query language 37

node in any possible graph may match to the node. A variable node is indicated by

prefixing the name of the attribute with the “?” symbol.

Figure 24 The Semantos triple element

3.2.9. FILTER <SEMANTOS:FILTER>

The entity element may contain zero or one filter elements as shown in Figure 25. A

filter is used to further sieve out the tuples that are returned from the graph

processing. Nested filters may be encountered. A filter may either be an “and” filter

or an “or” filter. The type is applied on the nested filters and conditions contained

within a filter element.

Figure 25 The Semantos filter element

3.2.10. CONDITION <SEMANTOS:CONDITION>

The condition element has “attribute”, “operator” and “value” properties as shown

in Figure 26 below. These are used to build conditions for the filter. The “attribute”

property represents one of the query attributes, as specified by the attribute

elements.

<semantos:filter

type="and">

…

</ semantos:filter>

<semantos:triple

subject="person"

predicate="human:name"

object="?name"/>

Semantos: A semantically smart information query language 38

Figure 26 The Semantos condition element

The operator indicates what type of condition is to be imposed. Possible values

include:

• eq: Equals

• lt: Less than

• gt: Greater than

• ge: Greater than, or equals

• le: Less than, or equals

• ne: Not equal

• null: Null or empty

• not-null: Not null or not empty

• like: Like

• not-like: Not like

• in: In

• not-in: Not in

For the operators “in” and “not-in” it is possible to specify a list of values, this

syntax is shown in Figure 27.

Figure 27 The Semantos condition element, with a list

<semantos:condition

attribute="human:name"

operator="in">

 <value>Debbie-Lee</value>

 <value>Christine</value>

 <value>Connie</value>

</semantos:condition>

<semantos:condition

attribute="human:name"

operator="eq"

value="theo"/>

Semantos: A semantically smart information query language 39

3.3. SUMMARY

In this chapter we have established the level at which a Semantos query interrogates

a data source. We have also provided the syntax of the Semantos language by

means of an example, illustrating each aspect of the language structure. The syntax

of Semantos as established in this chapter is used as the base building block for the

engineering of the software in later chapters. The software must adhere strictly to

the requirements set out in chapter 1 as well as the syntactic constructs laid out in

chapter 3.

Semantos: A semantically smart information query language 40

CHAPTER 4: DESIGN AND IMPLEMENTATION

“Each problem that I solved became a rule, which served afterwards to solve other

problems.” -- Rene Descartes

Armed with the requirements and language specification from previous chapters,

this chapter embarks on the design and implementation of a Semantos query

processing engine. The framework presented here provides a working test case for

the Semantos query language structure and will be tested against the language

specification as set out in chapter 1. The major goal of this chapter is to establish a

working version of the Semantos framework and to further illustrate the workings

of Semantos specification. With regards to the code snippets provided in this

chapter, the new C# language features, as they appear in the code, will also be

investigated. This is to aid the reader’s digestion of the code.

4.1. LANGUAGE INTEGRATED QUERY (LINQ)

Semantos makes use of the Language Integrated Query or LINQ technology, which

arrives on the scene along with .C# 3.0 and VB.NET 9.0 (Meijer, Torgersen and

Bierman 2007). The main philosophy around LINQ is the integration it provides

between object, relational and semi structured data models (Meijer, Schulte and

Bierman 2003). It achieves this by way of generalization, rather than by ad-hoc

specializations. In particular, extensive use is made of Xlinq, provided by the

System.XML.Xlinq namespace. Xlinq strives to make XML documents or

document fragments first class citizens, meaning XML values can be constructed,

loaded, passed, transformed and updated in a type-safe manner (Meijer, Schulte and

Bierman 2003). As the example below illustrates, the heavy use of the DOM object

has been removed (Meijer, Beckman and Bierman 2006), as can be seen in Figure

28, and has freed up XML construction, navigation and querying drastically, with

Semantos: A semantically smart information query language 41

regards to code efficiency, execution speed and memory requirements (Microsoft

2006).

XElement contacts = new XElement("contacts",

 from c in customers

 where c.Country == "USA"

 select new XElement("contact",

 new XElement("name", c.CompanyName),

 new XElement("phone", c.Phone)

)

);

Figure 28 XLinq without the DOM object

Another benefit which may be obtained by using LINQ, stems from LINQ’s origins

in the experimental programming language Cω (C Omega). One of the original

design goals for Cω, was to evolve C# in such a way that it provides an integration

of the object, relational and semi-structured data models (Bierman, Meijer and

Schulte 2005). As one of the primary purposes of Semantos is to be an Information

Integration query language, it would be appropriate to leverage the integration

features provided by the LINQ extensions. This would allow access to all three of

the mentioned data models: relational, hierarchical and graphical.

The use of XLinq may further be justified by the fact that the programmatic

construction of Semantos queries is far more robust and concise (see Figure 29)

when using the “functional construction” methodologies introduced with .NET 3.5.

XDocument query = new XDocument(

 new XDeclaration("1.0", null, null),

 new XElement(semantos + "fetch",

 new XElement(semantos + "source",

 new XAttribute(semantos + "name", "WhoRU Full User Profile"),

 new XAttribute(semantos + "uri",

 @"http://localhost/whoru/fullprofile.aspx")),

Semantos: A semantically smart information query language 42

 new XElement(semantos + "entity",

 new XAttribute(semantos + "name", "knownpeople"),

 new XElement(semantos + "attribute",

 new XAttribute(semantos + "name", "@name"))),

 new XElement(semantos + "graph",

 new XElement(semantos + "triple",

 new XAttribute(semantos + "subject", whoru + "person"),

 new XAttribute(semantos + "predicate", whoru + "myname"),

 new XAttribute(semantos + "object", "@name"));

Figure 29 Programmatically creating a Semantos query in LINQ.

4.2. PROCESSING ALGORITHM

The core Semantos query processing algorithm is provided below. This algorithm

does not make provision for ontology processing, so no logical reasoning is

required on a semantic level. It is convenient to think of the algorithm as executing

in three different phases: a preparation, a processing and a cleanup phase. The

preparation phase interrogates the Semantos query to retrieve all the information

required for the execution of the query. The processing phase is tasked with looping

through all the triple pairs discovered in the query by the preparatory phase and to

query the information sources regarding the triple pairs. The cleanup phase collates

all the retrieved information into a single coherent result, which may be a data table

or XML document to be returned to the requesting process. Figure 30 below

provides a graphical representation of the algorithm in full. All the code provided in

this chapter compiles in C#, using the Microsoft .Net 3.5 framework. Short

descriptions are also provided to aid the reader in understanding the code snippets.

Semantos: A semantically smart information query language 43

Figure 30 Simple query processing algorithm

4.2.1. PREPARATION PHASE

As stated previously, the preparation phase interrogates the Semantos query, in

order to retrieve all the information required for the execution of the query. The first

Fetch the source documents

Load all triple elements from

query into list A

Iterate through triple list A

Check if results have already

been obtained from previous

iteration

Retrieve and store all elements

that comply with the triple

subject, predicate and object

Add Subject, Predicate and

Object triple elements to result

list

Determine which projected

columns to join on and store

triple elements to results list

Retrieve and store all elements

that comply with the triple

subject, predicate and object

Create and return the result set

Join the results with the results

from previous iterations

No prior results Prior results

Semantos: A semantically smart information query language 44

step is to fetch the RDF source documents and collate them into a single XML

document to simplify processing. The code snippet below makes use of several new

C# language features, including an implicitly typed local variable declaration,

where the type of the variable is inferred. The second language addition which is

made use of is the query expression. Query expressions are language integrated

syntax for queries. This syntax is similar to other query languages like SQL

(relational) and XQuery (hierarchical). The final new language feature that is

apparent in this code snippet is the appearance of the XDocument class, which

comes from the new System.Xml.Linq namespace, as can be found in Figure 31.

// Fetch the source documents

var rdf_sources =

from s in query.Descendants(semantos+"source")

select (string)s.Attribute(semantos+"uri");

// Collate source documents into single XML document

XDocument source = new XDocument(new XElement("rdfsources"));

foreach (string s in rdf_sources)

source.Add(XDocument.Load(s));

Figure 31 Fetch and collate source documents

The next step is to retrieve all the triple elements from the Semantos query and store

them in an enumerable list of triple objects. The code snippet below uses a new C#

language feature, called object initializer; which reduces the instantiation of the

Triple object to a single line of code, shown in Figure 32. Another XLinq feature

that is shown in this snippet is the XNamespace object which is instantiated by via

the syntax semantos + “triple”, where semantos is an XNamespace object that

resolves to the URI: “http://www.retrorabbit.co.za/semantos#”. This allows us to

fully qualify all the XML elements with namespaces, without a great deal of

trouble.

Semantos: A semantically smart information query language 45

// Load all triple elements from query into list A

IEnumerable<Triple> triple_list =

(from s in query.Descendants(semantos+"triple")

select new Triple {

Subject = ((string)s.Attribute(semantos+"subject")).ToString(),

Predicate = ((string)s.Attribute(semantos+"predicate")).ToString(),

Object = (string)s.Attribute(semantos+"object")

}).ToList<Triple>();

Figure 32 Load all triple elements

4.2.2. PROCESSING PHASE

The processing phase is tasked with looping through all the triple pairs discovered

in the query by the preparatory phase and to query the information sources

regarding the triple pairs. This is achieved by searching through the information

source for any XML element matches to the triple. In other words, an XML element

with the name specified in the subject part of the triple is searched for; which also

has a direct descendant or child element with the name specified in the predicate

part of the triple. Thereafter, it is confirmed that the value of the elements matching

to the predicate part of the triple is equal to the value specified in the triple object

part; or, if the object part is a value holder (in other words it starts with an “?”

symbol), allowance is made for any XML value in the predicate element.

QueryResult queryResult = new QueryResult();

// Loop through triple list A

foreach (Triple triple in triple_list)

{

// Have results already been obtained from previous iteration?

if (queryResult.ProjectedColumnValues == null)

{

ProcessFirstTriple(queryResult, source, triple);

}

Semantos: A semantically smart information query language 46

else

{

ProcessNonFirstTriple(queryResult, source, triple);

}

}

Figure 33 Loop through triple lists

The processing of the triple varies, depending on whether or not it is the first triple,

and if results have already been obtained, as can be seen from Figure 33. If results

have already been obtained, then a join operation must also be executed. The

method for executing the first triple is simpler, and is provided below in Figure 34:

private void ProcessFirstTriple(

QueryResult queryResult,

XDocument source,

Triple triple)

{

// Retrieve and store all elements that comply with the triple

// subject, predicate and object restrictions

queryResult.ProjectedColumnValues =

 (from s in source.Descendants(triple.Subject)

 from p in s.Elements(triple.Predicate)

 where ((string)p == triple.Object) ||

triple.Object.StartsWith("?")

select new ElementList(s, p, p.FirstNode)).ToList<ElementList>();

// Add Subject, Predicate and Object triple elements to result list

queryResult.ProjectedColumnNames = new List<string>();

queryResult.ProjectedColumnNames.Add(triple.Subject);

queryResult.ProjectedColumnNames.Add(triple.Predicate);

queryResult.ProjectedColumnNames.Add(triple.Object);

}

Figure 34 Processing of the first triple

The more complex method for processing triple pairs that need to be joined (all but

the first) is provided below, in Figure 35. This method differs from the previous,

Semantos: A semantically smart information query language 47

with regard to the joining discovery and processing. The first task this method

executes is to discover the two projected columns that need to be joined. This is

achieved by matching all the exiting projected column names that come from the

Semantos triple expressions to the subject, predicate and object parts of the current

triple being queried. Once a match is found, the method searches for all triple

matches in the manner described above, but with the addition of also

simultaneously joining the new result set with the previous result set.

private void ProcessNonFirstTriple(

QueryResult queryResult,

XDocument source,

Triple triple)

{

int leftsidepcolumn = 0;

int rightsidepcolumn = 0;

int rightsidepcolumn_include1 = 0;

int rightsidepcolumn_include2 = 0;

// Determine which projected columns to join on and store

// triple elements to results list

for (int i = 0; i < queryResult.ProjectedColumnNames.Count; i++)

{

if (queryResult.ProjectedColumnNames[i] == triple.Subject)

{

 leftsidepcolumn = i;

 rightsidepcolumn = 0;

 rightsidepcolumn_include1 = 1;

 rightsidepcolumn_include2 = 2;

 queryResult.ProjectedColumnNames.Add(triple.Predicate);

 queryResult.ProjectedColumnNames.Add(triple.Object);

 break;

}

 else if (queryResult.ProjectedColumnNames[i] == triple.Predicate)

 {

 leftsidepcolumn = i;

 rightsidepcolumn = 1;

Semantos: A semantically smart information query language 48

 rightsidepcolumn_include1 = 0;

 rightsidepcolumn_include2 = 2;

 queryResult.ProjectedColumnNames.Add(triple.Subject);

 queryResult.ProjectedColumnNames.Add(triple.Object);

 break;

 }

 else if (queryResult.ProjectedColumnNames[i] == triple.Object)

 {

 leftsidepcolumn = i;

 rightsidepcolumn = 2;

 rightsidepcolumn_include1 = 0;

 rightsidepcolumn_include2 = 1;

 queryResult.ProjectedColumnNames.Add(triple.Subject);

 queryResult.ProjectedColumnNames.Add(triple.Predicate);

 break;

 }

}

IEnumerable<XElement> source_descendants =

 (triple.Subject.StartsWith("@")) ?

 source.Descendants() : source.Descendants(triple.Subject);

// Retrieve and store all elements that comply with the

// triple subject, predicate and object restrictions and

// join the results with the results from previous iterations

queryResult.ProjectedColumnValues =

 (from r in

 (from r in queryResult.ProjectedColumnValues select r)

 join q in

 (from s in source_descendants

 from t in s.Elements(triple.Predicate)

 select new ElementList(s, t, t.FirstNode))

 on r.List[leftsidepcolumn] equals q.List[rightsidepcolumn]

 select

 r.Append(q.List[rightsidepcolumn_include1])

 .Append(q.List[rightsidepcolumn_include2]))

 .ToList<ElementList>();

}

Figure 35 Processing of subsequent triples

Semantos: A semantically smart information query language 49

4.2.3. CLEANUP PHASE

The cleanup phase collates all the retrieved information into a single coherent result,

which may be a data table or XML document which is to be returned to the

requesting process. The method that constructs a DataTable object from the query

results, is shown below in Figure 36. This is achieved by first adding a new data

column to an empty data table for each projected column from the query results.

After the data table structure is defined, a new data row is added to the data table for

each of the value tuples retrieved from the query.

private DataTable BuildResultTable(

 XDocument query,

 QueryResult

 queryResult)

{

 DataTable tblTemp = new DataTable();

 foreach (string attribute in

 from s in query.Descendants(semantos + "attribute")

 select (string)s.Attribute(semantos + "name"))

 {

 tblTemp.Columns.Add(attribute, typeof(string));

 }

 for (int i = 0; i < queryResult.ProjectedColumnValues.Count; i++)

{

 DataRow newrow = tblTemp.NewRow();

 foreach (DataColumn column in tblTemp.Columns)

 {

 newrow[column] = queryResult[i, column.ColumnName];

 }

 tblTemp.Rows.Add(newrow);

}

return tblTemp;

}

Figure 36 Constructing the results table

Semantos: A semantically smart information query language 50

The last bit of code to be shown, is the supportive data structures that have been

used in the code snippets above These structures are shown below in Figure 37. The

first class is a simple storage container used to programmatically store the triple set

retrieved from the Semantos query in memory. The second class stores the results of

a single tuple or result set. For example if one were to query an employee database

for people, each person retrieved would be stored as a single ElementList object.

The final class contains the query results. The projected column names list stores

the names of the columns as they are added after each iteration of the main

processing loop. The projected column value list stores the values of the returned

tuples or value sets from each iteration of the loop. In terms of the employee

database example above, this would translate into the list of all retrieved employees.

public class Triple

{

 public string Subject { get; set; }

 public string Predicate { get; set; }

 public string Object { get; set; }

}

public class ElementList

{

 public List<XNode> List { get; set; }

 public ElementList(XNode columnNode1, XNode columnNode2,

 XNode columnNode3)

 {

 List = new List<XNode>();

 List.Add(columnNode1);

 List.Add(columnNode2);

 List.Add(columnNode3);

 }

 public ElementList Append(XNode columnNode)

 {

 List.Add(columnNode);

 return this;

Semantos: A semantically smart information query language 51

 }

}

public class QueryResult

{

 public List<string> ProjectedColumnNames { get; set; }

 public List<ElementList> ProjectedColumnValues { get; set; }

 public QueryResult()

 {

 ProjectedColumnNames = null;

 ProjectedColumnValues = null;

 }

 public XNode this[int index, string name]

 {

 get

 {

 for (int i = 0; i < ProjectedColumnNames.Count; i++)

 {

 if (ProjectedColumnNames[i] == name)

 {

 return ProjectedColumnValues[index].List[i];

 }

 }

 return null;

 }

 }

}

Figure 37 Supporting data structures

4.3. SUMMARY

This chapter established a working software version of the Semantos query

language. The chapter also introduced a working design for the query processing

pipeline, divided into a multi stage or phase process that supports the logical design

of the software. Code examples were provided in C#, illustrating an implementation

of the designed processing pipeline. These code examples also introduce LINQ

Semantos: A semantically smart information query language 52

technology features and how they can be used in Semantos processing engines, as

made available with the latest version of Microsoft’s .NET framework version 3.5.

The software constructed in this chapter will be used as a benchmark in establishing

whether or not the requirements from the evaluation criteria in chapter 1 can indeed

be satisfied.

Semantos: A semantically smart information query language 53

CHAPTER 5: EVALUATION

"The most important thing is not to stop questioning." -- Albert Einstein

Empowered with a working Semantos query processing engine from the previous

chapter, this chapter evaluates the software and langauge syntax against the

evaluation criteria established in chapter 1. Through testing and inspection this

chapter will show that Semantos does indeed meet all the established criteria and

expectations.

5.1. EVALUATION DATA SET

For the purpose of evaluation we will be making use of Open Directory RDF dumps

(Open Directory RDF Dump 2004) to test Semantos queries against, unless stated

otherwise. Open Directory is the largest internet index database maintained by real

people. Open Directory makes two dumps available to the public, the first is the

structure dump file, shown in Figure 38, which provides hierarchy information

regarding the categories used in the second file. The second file contains all the

indexed and categorized web links as shown in Figure 39.

<Topic r:id="Top/Arts/Movies">

 <catid>38</catid>

 <aolsearch>movies</aolsearch>

 <dispname>Movies</dispname>

 <d:Title>Movies</d:Title>

 <d:Description>This category is for information on anything about

 movies, the motion-picture medium, or the film industry, including

 actors, actresses, filmmakers, and individual films. </d:Description>

 <altlang r:resource="Arabic:Top/World/Arabic/ا�ـ�م/����ـ�"/>

 <altlang r:resource="Romanian:Top/World/Română/Artă/Cinema"/>

 <altlang r:resource="Slovak:Top/World/Slovensky/Umenie/Film"/>

 <altlang r:resource="Serbian:Top/World/Srpski/Umetnost/Film"/>

 <symbolic r:resource="DVD:Top/Arts/Movies/Home_Video/DVD"/>

 <symbolic r:resource="Music:Top/Arts/Music/Movies"/>

 <symbolic r:resource="People:Top/Arts/Movies/Filmmaking/People"/>

 <lastUpdate>2004-04-23 03:47:16</lastUpdate>

 <narrow r:resource="Top/Arts/Movies/Characters"/>

 <narrow r:resource="Top/Arts/Movies/News_and_Media"/>

 <narrow r:resource="Top/Arts/Movies/Filmmaking"/>

Semantos: A semantically smart information query language 54

 <narrow r:resource="Top/Arts/Movies/Awards"/>

 <narrow r:resource="Top/Arts/Movies/Release_Schedules"/>

 <editor r:resource="jeffconn"/>

 <editor r:resource="rob13"/>

 <editor r:resource="jennyhorm"/>

 <newsGroup r:resource="news:rec.arts.movies.current-films"/>

 <newsGroup r:resource="news:rec.arts.movies.movie-going"/>

 <newsGroup r:resource="news:rec.arts.movies.past-films"/>

</Topic>

<Alias r:id="DVD:Top/Arts/Movies/Home_Video/DVD">

 <d:Title>DVD</d:Title>

 <Target r:resource="Top/Arts/Movies/Home_Video/DVD"/>

</Alias>

Figure 38 Excerpt from Open Directory structure dump file

<Topic r:id="Top/Arts/Movies/Titles/1/13th_Warrior,_The">

 <catid>54809</catid>

 <link r:resource="http://www.geocities.com/darkdaze18/"/>

 <link r:resource="http://www.boxofficemojo.com/13thwarrior.html"/>

 <link r:resource="http://ter.air0day.com/13thwarrior.shtml"/>

 <link r:resource="http://www.metacritic.com/video/titles/13thwarrior"/>

 <link r:resource="http://us.imdb.com/title/tt0120657/"/>

</Topic>

<ExternalPage about="http://www.geocities.com/darkdaze18/">

 <d:Title>The 13th Warrior Domain</d:Title>

 <d:Description>Fan site, includes a review, video and sound clips, and

 photographs.</d:Description>

 <topic>Top/Arts/Movies/Titles/1/13th_Warrior,_The</topic>

</ExternalPage>

<ExternalPage

about="http://apolloguide.com/mov_revtemp.asp?Title=13th+Warrior,+The">

 <d:Title>Apollo Leisure Guide</d:Title>

 <d:Description>Includes a review, cast list, and links.</d:Description>

 <topic>Top/Arts/Movies/Titles/1/13th_Warrior,_The</topic>

</ExternalPage>

Figure 39 Excerpt from Open Directory content dump file

5.2. XML REPRESENTATION

This evaluation criteria establishes that a Semantos query must be represented by

valid XML. In other words, a Semantos query should be seen as a valid XML

document conforming to a provided schema. Evaluation of this criteria will be

accomplished by means of schema validation.

Semantos: A semantically smart information query language 55

5.2.1. METHOD

In order to satisfy this requirement Semantos queries must adhere to a valid XML

schema. To illustrate this assertion about Semantos we will construct several valid

Semantos queries and XML schema validators will then be used to validate these

queries against the Semantos schema provided in Appendix A. These queries will

be validated by means of the publicly available schema validator which may be

found at the URL “http://tools.decisionsoft.com/schemaValidate/”. The schema

validator allows a user the validate XML documents against appropriate schemas.

Secondly the Semantos XML schema itself will be validated for correctness. This

will be accomplished by using the online W3C schema validator at the URL

“http://www.w3.org/2001/03/webdata/xsv”. Showing that the schema is a valid and

correct XML schema allows us to make the statement that any Semantos query that

is validated by the Semantos schema is indeed valid and well formed XML.

5.2.2. RESULTS

For the evaluation of this criteria several Semantos queries were constructed and

tested against the schema validator. All of the queries pass the validation without

any warnings. The results from the schema validation is provided below, for two of

the tested queries.

<semantos:fetch

xmlns:semantos="http://www.retrorabbit.co.za/semantos/schema"

 <semantos:source name="Open Directory Content Dump"

 uri="http://www.retrorabbit.co.za/data/od_structure.rdf"/>

 <semantos:namespace name="rdf"

 uri="http://www.w3.org/1999/02/22-rdf-syntax-ns#" />

 <semantos:namespace name="purl"

 uri="http://purl.org/dc/elements/1.0/#" />

 <semantos:namespace name="dmoz"

 value=" http://dmoz.org/rdf#" />
 <semantos:entity name="topicresources">

 <semantos:attribute name="?topicname"/>

 <semantos:attribute name="rdf:resource"/>

 <semantos:graph>

 <semantos:triple subject="dmoz:Topic" predicate="rdf:id"

 object="?topicname"/>

 <semantos:triple subject="dmoz:Topic" predicate="dmoz:link"

Semantos: A semantically smart information query language 56

 object="rdf:resource"/>

 </semantos:graph>

 <semantos:filter>

 <semantos:condition attribute="rdf:id" operator="eq"

 value="Top/Arts/Movies/Titles/1/10_Rillington_Place" />

 </semantos:filter>

 </semantos:entity>

</semantos:fetch>

Figure 40 Semantos query one

Using the online validator, query one as shown in Figure 40 is approved as both a

well formed XML document and successfully passes schema validation.

<semantos:fetch

xmlns:semantos="http://www.retrorabbit.co.za/semantos/schema">

 <semantos:source name="Open Directory Content Dump"

 uri="http://www.retrorabbit.co.za/data/od_structure.rdf"/>

 <semantos:namespace name="rdf"

 uri="http://www.w3.org/1999/02/22-rdf-syntax-ns#" />

 <semantos:namespace name="purl"

 uri="http://purl.org/dc/elements/1.0/#" />

 <semantos:namespace name="dmoz"

 uri=" http://dmoz.org/rdf#" />
 <semantos:entity name="topicresources">

 <semantos:attribute name="?title"/>

 <semantos:attribute name="?description"/>

 <semantos:graph>

 <semantos:triple subject="dmoz:ExternalPage"

 predicate="purl:Title" object="?title"/>

 <semantos:triple subject="dmoz:ExternalPage"

 predicate="purl:Description" object="?description"/>

 </semantos:graph>

 </semantos:entity>

</semantos:fetch>

Figure 41 Semantos query two

Query two, as provided in Figure 41, also passes the online schema validation test

successfully validating against both the well formed XML document criteria as well

as the schema validation.

Validating the Semantos schema (from Appendix A) against the W3C schema

validator yielded positive results. The report from the validator confirms that the

Semantos: A semantically smart information query language 57

Semantos query schema is in fact a valid XML schema, as the report below

indicates:

Schema validating with XSV 3.1-1 of 2007/12/11 16:20:05

 * Target: file:/usr/local/XSV/xsvlog/tmp5dC7couploaded

 (Real name: schema.xml)

 * docElt: {http://www.w3.org/2001/XMLSchema}schema

 * Validation was strict, starting with type [Anonymous]

 * The schema(s) used for schema-validation had

 no errors

 * No schema-validity problems were found in the target

5.3. XML OUTPUT

The second evaluation criteria establishes that a Semantos query must provide

results in a valid XML format. In order to evaluate this criteria, several requests are

sent to the Semantos service and each result set returned is then checked against an

XML validator. Although this test does not conclusively establish that all Semantos

queries will result in valid XML it does illustrate a method to test the XML validity

of Semantos results.

5.3.1. METHOD

For the purposes of this experiment we have used two validators to test for valid

XML. First the free and online W3C DOM XML evaluater is used to validate the

XML result. This evaluator is available from the URL

“http://www.w3schools.com/Dom/dom_validate.asp” and is capable of validating

XML provided in a text box as well as a publicly available file. Secondly, use is

made of the production software XMLSpy® 2008 from Altova software. The

software can be downloaded for a free trial from the URL

“http://www.altova.com/products/xmlspy/xml_editor.html”. By proofing the results

against both XML validators it is possible for us to experimentally verify that in all

likelihood a Semantos query would yield well formed XML results.

Semantos: A semantically smart information query language 58

5.3.2. RESULTS

For the input to this experiment, the results from the queries used in the XML

representation evaluation above are used. All result sets passed the XML validation

test successfully. Provided below, are the query results and XML validation results

for the two queries shown from the previous evaluation.

<semantos:dataset

xmlns:semantos="http://www.retrorabbit.co.za/semantos/schema">

 <semantos:result>

 <semantos:topicname>

 Top/Arts/Movies/Titles/1/1984_-_1984

 </semantos:topicname>

 <semantos:resource>

 http://www.geocities.com/aaronbcaldwel/1984.html

 </semantos:resource>

 </semantos:result>

 <semantos:result>

 <semantos:topicname>

 Top/Arts/Movies/Titles/1/1984_-_1984

 </semantos:topicname>

 <semantos:resource>

 http://orwell.ru/a_life/movies/m84_01.htm

 </semantos:resource>

 </semantos:result>

 <semantos:result>

 <semantos:topicname>

 Top/Arts/Movies/Titles/1/1984_-_1984

 </semantos:topicname>

 <semantos:resource>

 http://us.imdb.com/title/tt0087803/

 </semantos:resource>

 </semantos:result>

 <semantos:result>

 <semantos:topicname>

 Top/Arts/Movies/Titles/1/187

 </semantos:topicname>

 <semantos:resource>

 http://www.wbmovies.com/187/

 </semantos:resource>

 </semantos:result>

 <semantos:result>

 <semantos:topicname>

 Top/Arts/Movies/Titles/1/187

 </semantos:topicname>

 <semantos:resource>

 http://www.movieweb.com/movie/187/index.html

 </semantos:resource>

 </semantos:result>

 <semantos:result>

 <semantos:topicname>

 Top/Arts/Movies/Titles/1/187

 </semantos:topicname>

 <semantos:resource>

Semantos: A semantically smart information query language 59

 http://us.imdb.com/title/tt0118531/

 </semantos:resource>

 </semantos:result>

</semantos:dataset>

Figure 42 Excerpt from data results for query one

The data result, excerpt in Figure 42, for query one is validated as both a well

formed XML document and successfully passes schema validation, using both

validating tools.

<semantos:dataset

xmlns:semantos="http://www.retrorabbit.co.za/semantos/schema">

 <semantos:result>

 <semantos:title>

 British Horror Films: 10 Rillington Place

 </semantos:title>

 <semantos:description>

 Review which looks at plot especially the shocking features of it.

 </semantos:description>

 </semantos:result>

 <semantos:result>

 <semantos:title>

 Top 100 Movie Lists: 1984

 </semantos:title>

 <semantos:description>

 Photos, sounds [Real Audio], and a review.

 </semantos:description>

 </semantos:result>

 <semantos:result>

 <semantos:title>

 George Orwell's Movies – 1984

 </semantos:title>

 <semantos:description>

 Review.

 </semantos:description>

 </semantos:result>

 <semantos:result>

 <semantos:title>

 187

 </semantos:title>

 <semantos:description>

 Official site. Includes synopsis, trailer, cast biographies,

 background information, reviews, production notes, and related links.

 </semantos:description>

 </semantos:result>

 <semantos:result>

 <semantos:title>

 FilmScouts: 187

 </semantos:title>

 <semantos:description>

 Production information, synopsis, filmmaker and cast biographies,

 and video clips.

 </semantos:description>

Semantos: A semantically smart information query language 60

 </semantos:result>

 <semantos:result>

 <semantos:title>

 Cinebooks Database - When Bad Kids Happen to Good Teachers

 </semantos:title>

 <semantos:description>

 Review by Maitland McDonagh (predominantly negative), rating.

 </semantos:description>

 </semantos:result>

</semantos:dataset>

Figure 43 Excerpt from data results for query two

With the same success the data result for query two, excerpt in Figure 43, is also a

well formed XML document and passes schema validation.

5.4. MUTUALLY EMBEDDABLE WITH XML

This evaluation criteria establishes that a Semantos query should be embeddable

within another XML document and conversely that arbitrary XML markup should

be embeddable within a Semantos query.

5.4.1. METHOD

In order to evaluate this criteria we will be testing three different scenarios. The first

is a Semantos query that is nested within a random XML markup document. We

will test for this scenario by adding a Semantos query inside an XHTML document,

post Semantos processing the results should then yield an XHTML document with

the Semantos query part replaced by the results of the Semantos query. The second

scenario represents a Semantos query with random XML embedded in the result

shaping part, similar to the constructs found in XSLT. To test against this scenario

we will construct a Semantos query with some XHTML elements added to give the

results the structure of an XHTML list. The third and final scenario looks at having

Semantos embedded inside XML and some more XML embedded in the Semantos

query itself, essentially combining scenarios one and two.

Semantos: A semantically smart information query language 61

5.4.2. RESULTS

The first scenario requires XHTML tags around the Semantos query itself. Shown

below, in Figure 46, is the XHTML embedded Semantos query:

<html>

<head>

<title>Semantos Result Page</title>

</head>

<body>

<h1>Semantos Result Page</h1>

<div>

<semantos:fetch

xmlns:semantos="http://www.retrorabbit.co.za/semantos/schema">

 <semantos:source name="Open Directory Content Dump"

 uri="http://www.retrorabbit.co.za/data/od_structure.rdf"/>

 <semantos:namespace name="rdf"

 uri="http://www.w3.org/1999/02/22-rdf-syntax-ns#" />

 <semantos:namespace name="purl"

 uri="http://purl.org/dc/elements/1.0/#" />

 <semantos:namespace name="dmoz"

 uri=" http://dmoz.org/rdf#" />
 <semantos:entity name="topicresources">

 <semantos:attribute name="?title"/>

 <semantos:attribute name="?description"/>

 <semantos:graph>

 <semantos:triple subject="dmoz:ExternalPage"

 predicate="purl:Title" object="?title"/>

 <semantos:triple subject=" dmoz:ExternalPage"

 predicate="purl:Description" object="?description"/>

 </semantos:graph>

 </semantos:entity>

</semantos:fetch>

</div>

</body>

</html>

Figure 44 Semantos query embedded in XML

The XHTML embedded query resulted in Figure 45 shown below:

<html>

<head>

<title>Semantos Result Page</title>

</head>

<body>

<h1>Semantos Result Page</h1>

<div>

<semantos:dataset

xmlns:semantos="http://www.retrorabbit.co.za/semantos/schema">

Semantos: A semantically smart information query language 62

 <semantos:result>

 <semantos:title>

 British Horror Films: 10 Rillington Place

 </semantos:title>

 <semantos:description>

 Review which looks at plot especially the shocking features of it.

 </semantos:description>

 </semantos:result>

 <semantos:result>

 <semantos:title>

 Top 100 Movie Lists: 1984

 </semantos:title>

 <semantos:description>

 Photos, sounds [Real Audio], and a review.

 </semantos:description>

 </semantos:result>

 <semantos:result>

 <semantos:title>

 George Orwell's Movies – 1984

 </semantos:title>

 <semantos:description>

 Review.

 </semantos:description>

 </semantos:result>

 <semantos:result>

 <semantos:title>

 187

 </semantos:title>

 <semantos:description>

 Official site. Includes synopsis, trailer, cast biographies,

 background information, reviews, production notes, and related links.

 </semantos:description>

 </semantos:result>

 <semantos:result>

 <semantos:title>

 FilmScouts: 187

 </semantos:title>

 <semantos:description>

 Production information, synopsis, filmmaker and cast biographies,

 and video clips.

 </semantos:description>

 </semantos:result>

 <semantos:result>

 <semantos:title>

 Cinebooks Database - When Bad Kids Happen to Good Teachers

 </semantos:title>

 <semantos:description>

 Review by Maitland McDonagh (predominantly negative), rating.

 </semantos:description>

 </semantos:result>

</semantos:dataset>

</div>

</body>

</html>

Figure 45 Results for Semantos query embedded in XML

Semantos: A semantically smart information query language 63

The second scenario requires XHTML tags embedded within the Semantos query.

This specific query is given below in Figure 46:

<semantos:fetch

xmlns:semantos="http://www.retrorabbit.co.za/semantos/schema">

 <semantos:source name="Open Directory Content Dump"

 uri="http://www.retrorabbit.co.za/data/od_structure.rdf"/>

 <semantos:namespace name="rdf"

 uri="http://www.w3.org/1999/02/22-rdf-syntax-ns#" />

 <semantos:namespace name="purl"

 uri="http://purl.org/dc/elements/1.0/#" />

 <semantos:namespace name="dmoz"

 uri=" http://dmoz.org/rdf#" />
 <semantos:entity name="topicresources">

 <semantos:attribute name="?title"/> -

 <semantos:attribute name="?description"/>

 <semantos:graph>

 <semantos:triple subject="dmoz:ExternalPage"

 predicate="purl:Title" object="?title"/>

 <semantos:triple subject=" dmoz:ExternalPage"

 predicate="purl:Description" object="?description"/>

 </semantos:graph>

 </semantos:entity>

</semantos:fetch>

Figure 46 XML embedded in Semantos query

The result for the query in Figure 46 is given below in Figure 47:

<semantos:dataset

xmlns:semantos="http://www.retrorabbit.co.za/semantos/schema">

 <semantos:result>

 <semantos:title>

 British Horror Films: 10 Rillington Place

 </semantos:title> -

 <semantos:description>

 Review which looks at plot especially the shocking features of it.

 </semantos:description>

 </semantos:result>

 <semantos:result>

 <semantos:title>

 Top 100 Movie Lists: 1984

 </semantos:title> -

 <semantos:description>

 Photos, sounds [Real Audio], and a review.

 </semantos:description>

 </semantos:result>

 <semantos:result>

 <semantos:title>

 George Orwell's Movies – 1984

 </semantos:title> -

Semantos: A semantically smart information query language 64

 <semantos:description>

 Review.

 </semantos:description>

 </semantos:result>

 <semantos:result>

 <semantos:title>

 187

 </semantos:title> -

 <semantos:description>

 Official site. Includes synopsis, trailer, cast biographies,

 background information, reviews, production notes, and related links.

 </semantos:description>

 </semantos:result>

 <semantos:result>

 <semantos:title>

 FilmScouts: 187

 </semantos:title> -

 <semantos:description>

 Production information, synopsis, filmmaker and cast biographies,

 and video clips.

 </semantos:description>

 </semantos:result>

 <semantos:result>

 <semantos:title>

 Cinebooks Database - When Bad Kids Happen to Good Teachers

 </semantos:title> -

 <semantos:description>

 Review by Maitland McDonagh (predominantly negative), rating.

 </semantos:description>

 </semantos:result>

</semantos:dataset>

Figure 47 Results for Query with embedded XML

Combining both the above scenarios into a single query results in the following, as

illustrated in Figure 48:

<html>

<head>

<title>Semantos Result Page</title>

</head>

<body>

<h1>Semantos Result Page</h1>

<div>

<semantos:fetch

xmlns:semantos="http://www.retrorabbit.co.za/semantos/schema">

 <semantos:source name="Open Directory Content Dump"

 uri="http://www.retrorabbit.co.za/data/od_structure.rdf"/>

 <semantos:namespace name="rdf"

 uri="http://www.w3.org/1999/02/22-rdf-syntax-ns#" />

 <semantos:namespace name="purl"

 uri="http://purl.org/dc/elements/1.0/#" />

 <semantos:namespace name="dmoz"

 uri=" http://dmoz.org/rdf#" />

Semantos: A semantically smart information query language 65

 <semantos:entity name="topicresources">

 <semantos:attribute name="?title"/> -

 <semantos:attribute name="?description"/>

 <semantos:graph>

 <semantos:triple subject="dmoz:ExternalPage"

 predicate="purl:Title" object="?title"/>

 <semantos:triple subject=" dmoz:ExternalPage"

 predicate="purl:Description" object="?description"/>

 </semantos:graph>

 </semantos:entity>

</semantos:fetch>

</div>

</body>

</html>

Figure 48 Combination Semantos query

As can be seen from the result in the experiments above, Semantos is indeed

mutually embeddable with XML. Opening the results from the combination query

in an internet browser window, yields the image as shown in Figure 49.

Figure 49 XHTML result opened in Internet Explorer

Semantos: A semantically smart information query language 66

5.5. SERVER-SIDE PROCESSING

This particular evaluation criteria ensures that Semantos can be used in a distributed

web environment. The criteria establishes that a query should be self contained and

that they are remotely executable.

5.5.1. METHOD

The test for this evaluation criteria is fairly simple. We will wrap the Semantos

processing engine in a hosted web service. From a remote machine a query is then

constructed and passed to the web service for processing. If the web service is

capable of yielding results, then we satisfy both the self containment and remotely

executable conditions.

5.5.2. RESULTS

Creating a small snippet of code (see Figure 50) for the web service is a relatively

simple task. The only job that the web service has to complete is to forward a query

request to the Semantos processing assembly and return the yielded results. This is

possible because the Semantos processing engine works with URI resource

locations, which means that it can only process a request, if the required resources

are globally available.

[WebMethod (Description="Process a Semantos query provided as a string

and return the resultant XML response as a string.")]

public string ProcessQuery(string query)

{

 XDocument query = XDocument.Parse(query);

 XDocument result = Semantos.Instance.ProcessQuery(query);

 return result.ToString();

}

Figure 50 Web service code to handle Semantos query.

Semantos: A semantically smart information query language 67

To call the web service from another application, a web service reference is added,

pointing to the hosted Semantos web service. The exposed service methods are then

capable of receiving queries in string format. Figure 51 below provides an example

of using the web service.

Semantos.PublicService service = new Semantos.PublicService();

XNamespace semantos = "http://www.retrorabbit.co.za/semantos#";

string query =

 new XDocument(

 new XDeclaration("1.0", null, null),

 new XElement(semantos + "fetch",

 new XElement(semantos + "source",

 new XAttribute(semantos + "name", "source"),

 new XAttribute(semantos + "uri",

 @"http://www.retrorabbit.co.za/data/od_structure.rdf")),

 new XElement(semantos + "namespace",

 new XAttribute(semantos + "name", "rdf"),

 new XAttribute(semantos + "uri",

 @" http://www.w3.org/1999/02/22-rdf-syntax-ns#")),
 new XElement(semantos + "namespace",

 new XAttribute(semantos + "name", "purl"),

 new XAttribute(semantos + "uri",

 @" http://purl.org/dc/elements/1.0/#")),
 new XElement(semantos + "namespace",

 new XAttribute(semantos + "name", "dmoz"),

 new XAttribute(semantos + "uri",

 @" http://dmoz.org/rdf#")),

 new XElement(semantos + "entity",

 new XAttribute(semantos + "name", "topicresources"),

 new XElement(semantos + "attribute",

 new XAttribute(semantos + "name", "?topicname"))),

 new XElement(semantos + "attribute",

 new XAttribute(semantos + "name", "rdf:resource"))),

 new XElement(semantos + "graph",

 new XElement(semantos + "triple",

 new XAttribute(semantos + "subject", "dmoz:Topic"),

 new XAttribute(semantos + "predicate", "rdf:id"),

 new XAttribute(semantos + "object", "?topicname"))

 new XElement(semantos + "triple",

 new XAttribute(semantos + "subject", "dmoz:Topic"),

 new XAttribute(semantos + "predicate", "dmoz:link"),

 new XAttribute(semantos + "object", "rdf:resource"))

))).ToString();

string result = service.ProcessQuery(query);

Figure 51 Calling the Semantos web service

Semantos: A semantically smart information query language 68

By comparing the results from using the Semantos assembly library on its own,

with the results of using the Semantos public webservice it is found that the results

are exactly alike. The conclusion can therefore be made that Semantos can be used

in server side processing arrangements because it can be exposed as a web service

(or any other remoting technology for that matter) and uses URI address locations

to access data.

5.6. NO SCHEMA REQUIRED

This evaluation criteria establishes that Semantos should be able to query a data

source without any prior knowledge (usually in the form of an XML schema)

regarding the data source being queried.

5.6.1. METHOD

Validating this criteria requires a devious test. In order to test for a query against a

data source for which Semantos would not possibly have a schema, we will modify

the structure of the data source randomly, before the Semantos query is executed.

This modification will be along the lines of exchanging some of the root elements

with a newly created differently named element, ensuring that Semantos could not

possibly have had prior knowledge of the structure of the data. The query should

still yield results where possible, i.e. where the structure of the data has not been

malformed from our randomization and where the data matches the filter provided

in the query.

5.6.2. RESULTS

Shown in Figure 52 is the process of taking an existing XML document and

replacing 1000 of the child elements with a newly created and renamed XML

element.

Semantos: A semantically smart information query language 69

protected XElement RandomSelectLeafNode(Random rand, XElement current)

{

 XElement newcurrent = null;

 if (current.Descendants().Count() == 0)

 return newcurrent;

 else

 return RandomSelectLeafNode(rand,

 current.Descendants().

 ElementAtOrDefault(rand.Next(document.Descendants().Count()));

 return null;

}

protected XDocument RandomizeXml(XDocument document)

{

 // Randomly change a 1000 elements names

 Random rand = new Random();

 XElement current = null;

 for (int i = 0; i < 1000; i++)

 {

 // Randomly select 1000 leaf nodes and replace them with

 empty elements of different name.

 current = RandomSelectLeafNode(rand, current);

 current.ReplaceWith(new XElement("RandomElementNumber" + i));

 }

 return document;

}

Figure 52Randomly modify an XML string.

Experimentation with the schema randomization code above indicates that the

results returned from Semantos with random nodes is similar to results obtained by

not modifying the XML schema at all. This draws the conclusion that even though

the schema drastically changed, the Semantos engine was still capable of returning

the correct results.

5.7. PROGRAMMATIC MANIPULATION

This evaluation criteria establishes programmatic manipulation and creation of

Semantos queries. Programmatic manipulation ensures that it should be possible to

construct and change a Semantos query from code.

5.7.1. METHOD

In order to satisfy this requirement it must be possible to build a Semantos query

using code. We will set up a small experiment where a Semantos query is

Semantos: A semantically smart information query language 70

programatically constructed from a few user provided inputs. Given these inputs the

code will construct a query without any user intervention, demonstrating that it

possible to build queries from code.

5.7.2. RESULTS

It is very simple to show the programmatic manipulation of Semantos queries. The

code in Figure 53 shows a method that receives two string parameters. These

parameters modify the Semantos query – it is also possible to modify the structure

of the Semantos query using conditional and repeating constructs.

private string BuildQuery(string topicLikeParameter1,

 string topicLikeParameter2)

{

XNamespace semantos = "http://www.retrorabbit.co.za/semantos/schema";

 string query = new XDocument(

 new XDeclaration("1.0", null, null),

 new XElement(semantos + "fetch",

 new XElement(semantos + "source",

 new XAttribute(semantos + "name", "source"),

 new XAttribute(semantos + "uri",

 @"http://www.retrorabbit.co.za/data/od_structure.rdf")),

 new XElement(semantos + "namespace",

 new XAttribute(semantos + "name", "rdf"),

 new XAttribute(semantos + "uri",

 @" http://www.w3.org/1999/02/22-rdf-syntax-ns#")),

 new XElement(semantos + "namespace",

 new XAttribute(semantos + "name", "purl"),

 new XAttribute(semantos + "uri",

 @" http://purl.org/dc/elements/1.0/#")),

 new XElement(semantos + "namespace",

 new XAttribute(semantos + "name", "dmoz"),

 new XAttribute(semantos + "uri", @" http://dmoz.org/rdf#")),

 new XElement(semantos + "entity",

 new XAttribute(semantos + "name", "topicresources"),

 new XElement(semantos + "attribute",

 new XAttribute(semantos + "name", "?topicname"))),

 new XElement(semantos + "attribute",

 new XAttribute(semantos + "name", "rdf:resource"))),

 new XElement(semantos + "graph",

 new XElement(semantos + "triple",

 new XAttribute(semantos + "subject", "dmoz:Topic"),

 new XAttribute(semantos + "predicate", "rdf:id"),

 new XAttribute(semantos + "object", "?topicname")),

 new XElement(semantos + "triple",

Semantos: A semantically smart information query language 71

 new XAttribute(semantos + "subject", "dmoz:Topic"),

 new XAttribute(semantos + "predicate", "dmoz:link"),

 new XAttribute(semantos + "object", "rdf:resource"))),

 new XElement(semantos + "filter",

 new XAttribute(semantos + "type", "or"),

 new XElement(semantos + "condition",

 new XAttribute(semantos + "attribute", "topicname"),

 new XAttribute(semantos + "operator", "like"),

 new XAttribute(semantos + "value", topicLikeParameter1),

 new XElement(semantos + "condition",

 new XAttribute(semantos + "attribute", "topicname"),

 new XAttribute(semantos + "operator", "like"),

 new XAttribute(semantos + "value", topicLikeParameter2))

)).ToString();

 return query;

}

Figure 53Programmatic manipulation of Semantos query.

5.8. SUPPORT NEW DATA TYPES

The data type evaluation criteria establishes that Semantos queries are not restricted

by data types and it should be possible to build a Semantos query given any

arbitrary data type.

5.8.1. METHOD

For this criteria we will devise a simple test. In order to satisfy the criteria of data

type independence a new arbitrary data type is created, this data type represents

floating point numbers and is stored in the format ##%## where # represents any

number of integer numerals. The number is then a calculated value of dividing the

two integer numbers seperated by the % sign. This is not a very useful data type, but

it does allow us to see if Semantos is capable of working with arbitrary data types.

When working with a dataset of unknown type, Semantos will default the behaviour

of that type to a string representation, requiring post processing of the data if and

when required. A dataset loaded with these data types is loaded and queried against,

verifying whether or not Semantos handles the data type properly.

Semantos: A semantically smart information query language 72

5.8.2. RESULTS

The data set used in the testing of this criteria is presented below in Figure 54. The

source is a very simple data set giving each unique test case an identification

number (id), a decimal value accurate to 4 decimal places (decimal_representation)

and then the same value in the decimal_representation tag is repeated again in the

strange data type (strange_representation).

<testcases>

 <testcase>

 <id>1</id>

 <decimal_representation>1.0000</decimal_representation>

 <strange_representation>2441%2441</strange_representation>

 </testcase>

 <testcase>

 <id>2</id>

 <decimal_representation>0.1509</decimal_representation>

 <strange_representation>234%1551</strange_representation>

 </testcase>

 <testcase>

 <id>3</id>

 <decimal_representation>13.1492</decimal_representation>

 <strange_representation>8021%610</strange_representation>

 </testcase>

 <testcase>

 <id>4</id>

 <decimal_representation>2.0000</decimal_representation>

 <strange_representation>6%3</strange_representation>

 </testcase>

 <testcase>

 <id>5</id>

 <decimal_representation>0.7952</decimal_representation>

 <strange_representation>66%83</strange_representation>

 </testcase>

...

<testcases>

Figure 54 Excerpt from data source file

Verifying that Semantos returns the values accurately is a simple matter of running

the query provided (Figure 55) and then verifying that the strange representation

does indeed match the decimal representation.

<semantos:fetch

xmlns:semantos="http://www.retrorabbit.co.za/semantos/schema">

 <semantos:source name="Custom Data Type Verification"

Semantos: A semantically smart information query language 73

 uri="http://www.retrorabbit.co.za/data/custom_type.rdf"/>

 <semantos:namespace name="rdf"

 uri="http://www.w3.org/1999/02/22-rdf-syntax-ns#" />

 <semantos:entity name="testcases">

 <semantos:attribute name="?id"/>

 <semantos:attribute name="?decimal_representation"/>

 <semantos:attribute name="?strange_representation"/>

 <semantos:graph>

 <semantos:triple subject="testcase"

 predicate="id" object="?id"/>

 <semantos:triple subject="testcase"

 predicate="decimal_representation"

 object="?decimal_representation"/>

 <semantos:triple subject="testcase"

 predicate="strange_representation"

 object="?strange_representation"/>

 </semantos:graph>

 </semantos:entity>

</semantos:fetch>

Figure 55 Semantos data type verification query

The results from the query are then compared line by line. The comparison

compares the decimal representation with the calculated value of the strange

representation. The code below, Figure 56, only returns results where the two

representations did not match. Yielding no erroneous representations (all the

representations matched), the conclusion can be made that Semantos is indeed

capable of working with new data types, as long as these data types are serializable.

private decimal GetDecimalRepresentation(string strangeRepresentation)

{

 string[] parts = strangeRepresentation.Split(new char[] { '%' });

 return Math.Round(

 Convert.ToDecimal(parts[0]) /

 Convert.ToDecimal(parts[1]), 4, MidpointRounding.AwayFromZero);

}

private void RunTest(string query)

{

 XNamespace semantos = "http://www.retrorabbit.co.za/semantos/schema";

 XDocument query = XDocument.Parse(query);

 XDocument result = Semantos.Instance.ProcessQuery(query);

 var incorrect = from n in result.Root.Elements(semantos + "result")

 where Convert.ToDecimal(

 n.Element(semantos + "decimal_representation").Value) !=

 GetDecimalRepresentation(

 n.Element(semantos + "strange_representation").Value)

 select new {

 Id = n.Element(semantos + "id").Value,

Semantos: A semantically smart information query language 74

 DecR = n.Element(semantos + "decimal_representation").Value,

 StrR = n.Element(semantos + "strange_representation").Value};

 Console.Out.WriteLine("Number of erroneous matches: " +

 incorrect.Count());

}

Figure 56 Code comparing decimal and strange data types.

5.9. SUMMARY

Semantos successfully passed all the evaluation criteria tests posed to the language,

as summarized below in Table 2 . This indicates that Semantos is indeed a language

consisting of pure XML syntax and is fully embeddable with XML. It also shows

that Semantos has query language constructs for projecting information, is machine

processable and can work in a distributed fashion.

Criteria Evaluation

XML representation PASSED

XML output PASSED

Mutually embeddable with XML PASSED

Server-side processing PASSED

No schema required PASSED

Programmatic manipulation PASSED

Support new data types PASSED

Table 2 Semantos measured against evaluation criteria.

Semantos: A semantically smart information query language 75

CHAPTER 6: USE CASES

"Tell me and I forget. Teach me and I remember. Involve me and I learn." --

Benjamin Franklin

The primary strength of the Semantos query language, is the fact that a Semantos

query can be manipulated by either a software agent, or a human developer and with

equal ease. This benefit may seem obvious, but the advantage of enabling software

agents to manipulate the query, and not merely process it, is that a whole new range

of applications is opened up for investigation.

As a semantically smart query language, the future applications for Semantos are as

varied as they are interesting. Apart from the obvious application of using Semantos

as a stock, standard RDF query language, there are two other unique applications.

These applications will be provided here, in order to highlight the flexibility of the

language. The first application is the use of Semantos as an intermediary language,

operating between other RDF query languages. This would benefit the

interoperability of different RDF data sources, as discussed below. The second,

perhaps more interesting, application is the use of “query enhancers”. The next

section illustrates the possibility of enhancing a distributed Semantos query by

injecting it with ontology knowledge from different query enhancement services.

6.1. SEMANTOS AS INTERMEDIARY LANGUAGE

It has already been established that XML has the strength to facilitate

communication between disparate systems. It achieves this through the translation

of information and instructions from system A into a serializable XML format,

which is then transported to system B, as illustrated in Figure 57. System B then has

the ability to extract the data and instructions from the XML into information native

to system B.

Semantos: A semantically smart information query language 76

Figure 57 XML as a communication intermediary

Semantos, as an XML query language, inherits this positive trait from its

technological ancestor, and may therefore be used to similarly facilitate

communication between systems. In the case of Semantos the systems that we are

translating between, are RDF data source systems. In order to be able to translate

queries from one RDF language to another, a thorough mapping between language

constructs from other languages and language constructs from Semantos takes

place, as will be demonstrated. In particular, in this case, SPARQL and RQL are

used as they are the most widely used. However, this exercise may be repeated for

any other languages.

6.1.1. MAPPING QUERY CONSTRUCTS

In this section a close correlation between the language constructs of Semantos and

the language constructs of SPARQL and RQL will be highlighted. This correlation

facilitates the mapping of queries from SPARQL or RQL to Semantos and back.

Once Semantos constructs have been mapped to SPARQL and RQL constructs

individually, Semantos may be used as an intermediary, to map between SPARQL

and RQL. This process may be applied to any arbitrary RDF query language,

enabling any Semantos construct compatible query language to interact with any

other RDF language matching the same criteria.

To show the correlation between language constructs, the basic components of an

RDF query namely: the “include component”, the “attribute component” and the

“graph component”, will be examined. Examples from each of the three language

System A

XML Representation

System A

Format

System B

Format

System B

Semantos: A semantically smart information query language 77

components will be provided, and the importance of these language components or

constructs, will be discussed.

The “include component”: The “include component” allows the query in question

to incorporate ontology information from external sources. These sources may be

from any ontology language; in the case of RDF this would be in the form of an

RDF Schema (RDFS) document. The ontology information referenced by a query

prefix is included in the query processing at the reasoning stage. The ontology

information provides the query processing engine with knowledge about a certain

domain, in order for it to reason effectively about the domain in question. By

allowing queries to include any arbitrary ontology, the reasoning power of the

language is improved drastically.

• SPARQL: possesses the ability to include or reference ontology information

in schema documents through the PREFIX keyword, as illustrated in Figure

58.

PREFIX human: <http://ontology/humans.rdfs#>

Figure 58 The SPARQL include component

• RQL: via the USING NAMESPACE syntax, RQL is able to import any

number of schema or ontology references, as shown in Figure 59.

using namespace human = http://ontology/humans.rdfs#

Figure 59 The RQL include component

• Semantos: uses the ontology tag to define and include external ontologies or

schema documents, this can be seen in Figure 60.

<semantos:ontology name="human" uri="http://ontology/humans.rdfs" />

Figure 60 The Semantos include component

Semantos: A semantically smart information query language 78

The “attribute component”: The “attribute component” identifies the information

column projections, which need to be retrieved by the query. In relational database

terminology this would be the column set returned by the query. The same applies

for RDF queries, although in this case the “attribute component” identifies attributes

that map to variable nodes in the semantic query graph.

• SPARQL: utilizes a very simple solution which employs the SELECT

keyword followed by a space delimited list of required attributes, as shown

in Figure 61.

SELECT ?name ?spousename

Figure 61 The SPARQL attribute component

• RQL: implements the same syntax for defining the result set attributes as

SPARQL. The only difference is that RQL has an extra @ character in front

of attributes when they are bound to a predicate. An example of a RQL

projection is provided in Figure 62.

SELECT name, spousename

Figure 62 The RQL attribute component

• Semantos: provides a more involved attribute selection component by

allowing the definition of entities, which in turn contain attributes. This

construct is shown in Figure 63.

<semantos:entity name="person">

 <semantos:attribute name="name"/>

 <semantos:attribute name="spousename"/>

 ...

</semantos:entity>

Figure 63 The Semantos attribute component

Semantos: A semantically smart information query language 79

The “graph component”: The “graph component” is responsible for constructing a

context graph, which identifies the structure of the data being queried. Any nodes in

the RDF data source that match the “shape” of the context graph, may be returned

by the results of the query. In conjunction with the “attribute component”, the

“graph component” fully identifies and describes the shape and nature of the

projected data set which will be returned by the query.

• SPARQL: employs a very straight forward approach to defining the graph,

by way of the WHERE keyword. The keyword is followed by an unordered

list of context graph triples, illustrated in Figure 64.

WHERE { ?person human:name ?name.

 ?person human:hasSpouse ?spouse.

 ?spouse human:name ?spousename.

 ?person rdf:type human:Woman. }

Figure 64 The SPARQL graph component

• RQL: The RQL graph declaration is defined by the FROM keyword. The

triple sets are uncomplicated and provide the enhanced ability to bind types

to the subject and object. An example of such a declaration can be found in

Figure 65.

FROM

 {person}, human:name, {name},

 {person}, human:hasSpouse, {spouse},

 {spouse}, human:name, {spousename},

 {person}, rdf:type, {X : human:Woman}

Figure 65 The RQL graph component

• Semantos: The Semantos graph component is elementary; employing the

graph and triple tags to define the shape of the context graph, shown in

Figure 66.

Semantos: A semantically smart information query language 80

<semantos:graph>

 <semantos:triple subject="person" predicate="human:name"

 object="name"/>

 <semantos:triple subject="person" predicate="rdf:type"

 object="human:Woman"/>

 <semantos:triple subject="person" predicate="human:hasSpouse"

 object="spouse"/>

 <semantos:triple subject="spouse" predicate="human:name"

 object="spousename"/>

 </semantos:graph>

Figure 66 The Semantos graph component

6.1.2. IMPLEMENTATION

By defining a one-to-many relationship between the language components of

Semantos and the language components of RQL and SPARQL, it has been

demonstrated that it is indeed possible so find a one-to-one mapping between

Semantos and any other arbitrary RDF query language. This concept is

diagrammatically shown in Figure 67.

Semantos: A semantically smart information query language 81

SPARQL
Data Source

Semantos

QuerySPARQL

Query

RQL

Query

RQL
Data Source

Arbitrary
Data Source

Arbitrary

Query

Figure 67 Semantos as RDF language intermediary

As an example of how simple such a translating application would be, an extract

from a language converting web service written in C#, is included below. This

extract is a method for transforming a Semantos query, provided as an

XmlDocument, into a SPARQL query. The implementation is somewhat crude, but

still very effective (Figure 68):

public static QueryPart[] ConvertToSparQL(XmlDocument query)

{

 // Get the prefixes

 XmlNamespaceManager namespaceManager =

 new XmlNamespaceManager(query.NameTable);

 namespaceManager.AddNamespace("semantos",

 @"http://semantos.retrorabbit.co.za/");

Semantos: A semantically smart information query language 82

 StringBuilder builder = new StringBuilder();

 XmlNodeList namespaces =

 query.SelectNodes("//semantos:namespace", namespaceManager);

 foreach (XmlNode n_namespace in namespaces)

 {

 builder.AppendFormat(" PREFIX {0}: <{1}> ",

 n_namespace.Attributes["name"].Value,

 n_namespace.Attributes["value"].Value);

 }

 string prefixes = builder.ToString();

 builder = new StringBuilder();

 ArrayList tmpList = new ArrayList();

 XmlNodeList entities = query.SelectNodes("//semantos:entity",

 namespaceManager);

 foreach (XmlNode n_entity in entities)

 {

 builder = new StringBuilder(" SELECT ");

 XmlNodeList attributes =

 n_entity.SelectNodes("//semantos:attribute",

 namespaceManager);

 foreach (XmlNode n_attribute in attributes)

 {

 builder.AppendFormat("?{0} ",

 n_attribute.Attributes["name"].Value);

 }

 builder.Append(" WHERE { ");

 XmlNodeList conditions =

 n_entity.SelectNodes("//semantos:filter/semantos:condition",

 namespaceManager);

 foreach (XmlNode n_condition in conditions)

 {

 string _subject =

 (n_condition.Attributes["subject"].Value.IndexOf(":")==-1)

 ? ("?" + n_condition.Attributes["subject"].Value) :

 (n_condition.Attributes["subject"].Value);

Semantos: A semantically smart information query language 83

 string _predicate =

 (n_condition.Attributes["predicate"].Value.

 IndexOf(":")==-1)

 ? ("?" + n_condition.Attributes["predicate"].Value) :

 (n_condition.Attributes["predicate"].Value);

 string _object =

 (n_condition.Attributes["object"].Value.IndexOf(":") == -1)

 ? ("?" + n_condition.Attributes["object"].Value) :

 (n_condition.Attributes["object"].Value);

 builder.AppendFormat("{0} {1} {2}.",

 _subject, _predicate, _object);

 }

 builder.Append("}");

 XmlNode n_source = n_entity.SelectSingleNode("semantos:source",

 namespaceManager);

 XmlNode n_ontology =

 n_entity.SelectSingleNode("semantos:ontology",

 namespaceManager);

 tmpList.Add(new QueryPart(n_source.Attributes["uri"].Value,

 n_ontology.Attributes["uri"].Value,

 prefixes + builder.ToString()));

 }

 return (QueryPart[])tmpList.ToArray(typeof(QueryPart));

}

public struct QueryPart

{

 public string rdf;

 public string rdfs;

 public string query;

 public QueryPart(string rdf, string rdfs, string query)

 {

 this.rdf = rdf;

 this.rdfs = rdfs;

Semantos: A semantically smart information query language 84

 this.query = query;

 }

}

Figure 68 Semantos to SPARQL code example

6.2. QUERY ENHANCEMENT SERVICE

The Semantic Web is built up of Resource Description Framework (Brickley and

Guha 2000) tags that associate data by building a semantic or concept graph. The

RDF tags build this graph by specifying subject-predicate-object triples. Anyone

publishing information in RDF format is free to use any subjects, predicates or

objects that they wish. There is no “master list” of standard elements that may be

used, as it is simply impossible to formulate such a standard list. Everyone is

therefore free to create their own RDF vocabulary or ontology. However, while the

publishing community may enjoy endless freedom, the consumers of this published

information experience endless problems! Without a detailed knowledge of the

ontology that the information is expressed in, it is generally difficult to construct a

query against the information. When considering small established communities in

the Web, the problem is manageable – arguably everyone writing about tropical fish

could agree on a single ontology that describes their little corner of the Web very

well, but what about the entire World Wide Web? It would most certainly not be

possible to construct a single, all-encompassing ontology. The diverse set of

ontologies existing and yet to be created are therefore nevertheless indispensable,

and it is the task of the information retrieval system to make do with what it has at

hand.

When a person makes a request from a modern search engine for something as

simple as “tropical fish” hundreds of thousands of results will typically be returned.

These results are fortunately returned in an order determined by the number of

“appearances“ on the web, in other words, how many times the specific page is

linked to or referenced. Therefore, the topmost link should be the most frequently

Semantos: A semantically smart information query language 85

accessed page of its kind on the Web. This does not imply that the specific page

returned is the one desired; it is merely the result of a best effort approach from the

search indexer to retrieve the information required. Fortunately, this best effort is

usually more than sufficient. If this same approach can be distilled and applied to

the Semantic Web and its growing list of RDF data sources, it would be possible to

search and index RDF triples in a similar manner. If, for example, a RDF triple

equivalent of the search engine could be created, it would be possible for a software

agent to query this RDF search engine and find the “most used” RDF triple,

describing the concept it wishes to search for. It would then get far more search

results by using the “most used” triple element, instead of its own.

6.2.1. QUERY ENHANCEMENT

What exactly is query enhancement? When querying information on a network as

large as the web, query enhancement could fall into one of two categories, viz.

• optimizing the efficiency of the query in terms of speed and resource utilization,

or

• enhancing the quality of the results retrieved by the query.

These goals may also only be achieved by altering the structure or makeup of the

query, as it would be extremely challenging to change the structure of data across a

large distributed network of indeterminate nodes. This use case is concerned with

the optimization of the quality of the results. Specifically, it attempts to increase the

volume of returned results, by adapting elements of the query to be in line with

what is most commonly used on the web. In terms of the Semantic Web: context

graph edges will be replaced with edges that are used more regularly on the

Semantic Web.

Semantos: A semantically smart information query language 86

6.2.2. AGENT ENABLEMENT

The process of query optimization is relatively simple. On the user end of the

process the following steps occur, as illustrated in Figure 69. The query originator,

which may be a person or a piece of software, builds a Semantos query that would

retrieve the desired results. This query is then loaded into a software agent capable

of traversing the Semantic Web. The agent starts looking for RDF data sources and

executes its queries against those sources. At some indeterminate stage, the agent

may visit a query enhancement service. This may be a deliberate response to not

achieving a satisfactory volume of results from the first few data sources, or it may

be by happenstance, as the agent may just so happen to pass by a service in any

case. Regardless of when the agent visits the service, the Query Enhancement

Service (QES) subsequently modifies the agent’s query so as to yield better results.

After being enhanced, the agent moves along to the following data sources, and

perhaps even some more query enhancement services. When the agent has

completed its run, it returns to the query originator with its payload.

 Figure 69 Software agent enhanced through query enhancement service

Query
Enhancement

Service

RDF
Data Source 1

Query
Originator

2

3

4

RDF
Data Source 2

6

Software
Agent

Agent travels to Data Source and
executes query

Agent travels to QES and query
gets enhanced

Agent travels to second data
source; with enhanced query

Agent returns to origin with
enhanced query results

5

Agent travels to third data

source; with enhanced query
RDF

Data Source 3

1

Origin requests information from

Semantic Web through an agent.

Semantos: A semantically smart information query language 87

6.2.3. CRAWLING THE SEMANTIC WEB

Query enhancement attempts to replicate the successes of search engines on the web

by reproducing key elements of these search engines. Prime amongst these is the

ability of search engines to “crawl” the web and harvest information about websites.

One of the most important pieces of information that is harvested in this fashion is

the amount of web links which reference the particular page. From this amount, it is

possible to ascertain the popularity of the particular page, and therefore produce

more relevant search results. We duplicate this behaviour by crawling the Semantic

Web and counting the number of times and individual predicate or subject occurs on

any of the Semantic Web documents. By counting the occurrences of individual

elements in the Semantic Web, it is possible to determine trends as to which mark-

up elements are favoured. This information is then stored by the query enhancement

service.

The next step is to determine the “likeness” or similarity of elements in the

compiled/harvested dictionary. Several algorithms and techniques have been

proposed for addressing this problem, and all are from the ontology mapping or

alignment domain. Examples of techniques include Anchor-PROMPT (Noy and

Musen 2003), GLUE (Doan, Domingos and Halevy 2003) and Quick Ontology

Mapping (QOM). In this thesis, string similarity is used to measure the similarity of

two elements on a scale from 0 to 1 (Maedche and Staab 2002) based on

Levenshtein’s edit distance (Levenshtein 1966).

��������	�, �� ≔ max �0, min	|c|, |d|� − ed	c, d�
min	|c|, |d|�

�

Once the similarity between elements and the occurrence probability in the World

Wide Web, have been determined all the information necessary for the

enhancement of queries, will have been obtained.

Semantos: A semantically smart information query language 88

6.2.4. ENHANCEMENT

Once a query is submitted to the enhancement service, the service starts by

replacing the predicate values of the triple elements. It is also possible to replace the

subject and object elements, although experimentation has suggested that the results

from queries enhanced in such a manner are a little untrustworthy. The predicate

values are compared to the values contained in the dictionary (compiled by crawling

the web). Although it would be far more effective to use statistical methods to

compare elements, a simpler solution exists. Replacement is proposed as a function

of the occurrence ratio in the wild, multiplied by the similarity index provided by

Levenshtein’s edit distance. This gives a weighted “appropriateness” value for each

value in the dictionary, which allows the best selection to be made based on the

highest value.

����ℎ�	�, �� ≔ ��������	�, �� × ��� !����	��

Using LINQ, it is then a simple matter to replace the value of the predicate attribute

with the most suitable value; which translates into replacing the context graph edge

with a more appropriate edge. This operation is repeated for each of the triple

elements in the query. After the query has been modified, it is returned to the

requester; who, in turn, is now free to execute the query with the knowledge that the

predicates used in the queries context graph, occur with some regularity on the web.

6.2.5. IMPLEMENTATION

The practical implementation of query enhancement requires a sandbox approach to

test the ideas, as it would be rather unworkable to implement such an experiment

across the entire web. The sandbox chosen for the purpose of this thesis reflects the

current trend of social networking in Web 2.0. The system is tested against a custom

social network implementation, called Who R U, shown in Figure 70. The system

allows a user to register and then provide details about him or her self. This is

Semantos: A semantically smart information query language 89

achieved by making statements about oneself, such as “I like fish”, which translates

to a subject (I) predicate (like) and object (fish). It is then possible for the user to

further describe the object in question at various levels of detail, for example “I like

fish”, becomes “I like (tropical) fish”.

Figure 70 Who R U Interface

Who R U, provides the user with a blank canvas to publish as much (or as little)

information about themselves as he or she may wish. It is then possible for other

people to query this information, perhaps to find out who else likes “tropical fish”,

and start a chat group.

Semantos: A semantically smart information query language 90

As Figure 71 points out, there are four main elements to this application. At the

very top of the layer architecture, is the Who R U website. This is the main

graphical user interface that allows users to interact with the system. The website

would also be described as the view component in a model-view-controller (MVC)

architecture. The website interacts with the query enhancement service, which is a

web service. Implementing the QES as a web service opens its functionality up for

other applications to run on top of it, without any difficult integration- or glue code.

Both the web site and the web service make extensive use of the query engine

library, which is a dynamically linked library (DLL). The query engine provides the

routines, algorithms and internal data structures which enable Semantos to execute

queries against RDF data sources. At the bottom of the stack are the RDF

documents. Each RDF document represents a single person and all the statements

he has made of himself.

Semantos Query Engine

Query Aid Service

Who R U Website

Individual RDF data sources

Figure 71 Who R U layer architecture

Although this test-bed application does not have a software agent implementation to

execute the searches, it is easy to see the possibility of implementation. Each RDF

document would represent a different data source; which, in this case, just so

happens to be in the same physical location. Also, the Semantic Web crawler is

omitted for the same reason – the RDF documents are all in the same location,

extracting and counting the edge information in the RDF context graphs is simply a

Semantos: A semantically smart information query language 91

matter of iterating through the documents in a folder. In a real live application

however, these RDF documents would be distributed all over the Web, and an agent

and Web crawler would both be required in order to get to the information. This

test-bed application, again shown in Figure 72, does serve as a suitable and

interesting general implementation, so that for the purposes of this thesis theoretical

ideas may be experimented with accordingly.

Figure 72 Making statements about yourself

Semantos: A semantically smart information query language 92

6.2.6. SYNONYMS

As this implementation is concerned with written statements or comments, it would

be prudent to modify the element matching function slightly, to incorporate lexical

synonyms for words. A dictionary would, for example, classify the words “love”

and “adore” as synonyms, and the words would therefore be considered a good

match. In these instances the calculated distance between the words are forced to

the maximum value of one, yielding a modified weight function as below:

����ℎ�	�, �� ≔ "�#	��������	�, ��, �$���$"	�, ��� × ��� !����	��

Now, given that people have different vocabularies (read ontologies), and that Who

R U allows users complete freedom to use any word they like, it is quite likely that

people will use different words that essentially mean the same thing. Someone may,

for example, have commented about themselves: “I dig tropical fish”, using “dig” as

a synonym for “like”. If this particular user were to look for people who also like

fish, he would probably unknowingly, use the term “dig”, which, as he may be the

only person to phrase his interest in such a manner, perhaps yield poor results. This

is where the QES comes into play, by changing the word “dig” into “like”. This

replacement would not yield all the possible results, as it is a best effort approach,

meaning that the users who similarly stated that they “dig” fish will be omitted, but

the users who “like” fish will be returned. This is a better result, as more people will

be returned by a query looking for people who “like” fish.

Table 3 below illustrates the use of the synonym function with respect to the

distance function. From this table it may be gathered that, when a synonym is

present, the weight of the value is solely determined by the occurrence column.

Please also note that Z represents the Levenshtein distance between the word “dig”

and the word in the value column. It is also noteworthy that the index table uses the

word, “dig”, as a synonym for itself. What this boils down to is, that this application

favours synonyms with high occurrence values over words that look similar.

Semantos: A semantically smart information query language 93

Value Occurrence Distance Synonym Weight

Dig 320 Z 1 320

Like 1288 Z 1 1288

Enjoy 896 Z 1 896

Dug 2 Z 0 Z x 2

Digger 38 Z 0 Z x 38

Table 3 Possible replacement values for query using “dig”

6.3. SUMMARY

This chapter provided two distinct use cases that exemplify the unique

implementation possibilities that Semantos offers. These examples were chosen to

illustrate the versatility of Semantos and to justify the introduction of another RDF

query language. The first example showed the possibility of using Semantos as an

intermediary language between existing RDF languages, thereby strengthening

Semantos’s credibility as a language for integration applications. The second use

case investigated the use of Semantos as a query enhancement service, whereby a

search engine like functionality is enhanced with stored semantic knowledge about

key phrases and RDF triples.

Semantos: A semantically smart information query language 94

CHAPTER 7: CONCLUSIONS AND FUTURE WORK

“We can lick gravity, but sometimes the paperwork is overwhelming.” -- Wernher

von Braun

In this chapter we will state the conclusions that may be made from the research and

experiments conducted. These conclusions will also indicate the strengths and

weaknesses of the language as discovered from experimentation and design. In the

future work section the following research steps are indicated. This future work

does not only go toward establishing a “wish list“ for Semantos, but indicates

towards a vision of establishing a functioning and usefull semantic language

capable of integration across a broad spectrum of data sources.

7.1. CONCLUSIONS

In this research, we found that the query languages for Enterprise Information

Integration systems rarely provide sufficient functionality related to the leveraging

of semantic information stored in corporate data stores. Due to this shortcoming it is

more often than not very difficult to build queries related to the semantics of

information. This is especially true if different data sources in the same coporate

structure employs different semantics. In order to address this shortcoming in EII

systems we have designed and implemented an information query language called

Semantos. Given the criteria specified in the introduction to this research we

evaluated the performance of Semantos and found it to be a suitable query language

for Information Integration as it is an XML based RDF query language. We also

demonstrated the applicability of Semantos using two realistic examples: a query

enhancement service and a query translation service. Both cases clearly illustrated

the ability of a Semantos query to be manipulated by automated software services to

achieve key Information Integration goals.

Semantos: A semantically smart information query language 95

In the final analysis, the Semantos language possesses the following strengths;

which make it a strong candidate for any EII query language:

• Built on XML

• Serializable

• Human and machine interpretable

• Supports semantics

7.1.1. BUILT ON XML

This makes it a simple matter to parse, extend and work with the language. The

XML base of Semantos makes it a very open and accessible query language. With

more advanced XML processing technologies (like XLINQ) becoming available,

working with XML becomes a logical choice.

7.1.2. SERIALIZABLE

For any web language it is critical for the query to be serializable. This endows a

language with the strength to travel effortlessly over the web, as is very often

required. This also provides an additional benefit regarding the language’s role as

an EII query language, as it is very often necessary to save and later analyze the

results of a query.

7.1.3. HUMAN AND MACHINE INTERPRETABLE

In the modern age man and machine are collaborating more than ever to achieve

goals and/or tasks. Semantos possesses great flexibility in the fact that it can be

constructed, modified and interpreted by both people and computers. This

versatility contributes to the virtual symbiosis between man and machine.

Semantos: A semantically smart information query language 96

7.1.4. SUPPORTS SEMANTICS

In an information rich environment, there is often a mismatch in meaning between

two or more different data sources. This is more apparent on the World Wide Web

than anywhere else. If there should be any hope of achieving even partial analysis of

these heterogeneous data sources, it becomes critical for the semantics of these data

sources to be made concrete and available.

For all its strengths, Semantos also suffers from a few shortcomings. These

shortcomings are, paradoxically, a direct result of the strengths provided above.

Therefore it would be necessary to manage these shortcomings, as they cannot be

mitigated all together. These weaknesses include:

• Bulky

• Possibly too complicated for query optimization

• Not a backed standard

7.1.5. BULKY

As a direct result of the XML nature of the language, queries tend to be longer than

languages that make use of custom syntax. This weakness can be overcome by

using tools to process the language instead of hand crafting queries, which may

become confusing if the query is longer and more complex.

7.1.6. POSSIBLY TOO COMPLICATED FOR QUERY OPTIMIZATION

Given that the Semantos query may be split up into different segments and

distributed over the web for processing in different domains, to yield a single result,

it is possible for the queries to be too complex for any form of useful optimization

to take place. This is rather a result of the distributed and heterogeneous nature of

the data sources, than of the query language. However, as this is the only environ in

which the language will operate, it becomes an innate part of the language itself.

Semantos: A semantically smart information query language 97

7.1.7. NOT A BACKED STANDARD

In a global landscape it becomes essential for any new technology, if it is to achieve

any success, to be backed by a standard. Languages like XQuery and SPARQL are

backed by the World Wide Web Consortium and that gives these languages a

distinct advantage over Semantos. This is a weakness that may hopefully be

overcome with time.

7.2. FUTURE WORK

Although this thesis has covered much ground with regard to the definition and

creation of the information query language Semantos, there is still a great deal of

work remaining. Several unexplored branches of research still need to be

investigated more fully. Some of these branches will be highlighted below, so as to

suggest to the reader the future direction which Semantos may take:

7.2.1. FULLY COMPLIANT PROCESSING ENGINE

Although several parts of the Semantos language processing code have been

completed and have had some level of success at parsing and executing queries, the

implementation needs to be taken further. Parts of the language processing code

where reduced in functionality and one or two pieces have been left out all together.

Although not key to the specification and definition of the language, which is the

goal of this thesis, it would be vital for the continued level of research into the

domain of the Semantos query language for the programming of a fully compatible

and compliant query processing engine.

7.2.2. USE CASE SCENARIOS

In this thesis, two possible use case scenarios where the immediate benefits of

Semantos could be seen have been presented. In order for the language to grow in

maturity, and to solidify and benchmark the usefulness of an XML based

Semantos: A semantically smart information query language 98

information query language, more implementations and use cases are required. It

would also be pertinent to determine how Semantos then measures up against other

query languages. Measuring the levels of success when attempting the same

problem with another language may also provide valuable insight into this existing

query language and would benefit the Semantic Web community as a whole.

7.2.3. UPDATES

It is important to note that none of the established RDF query languages support any

form of data modification or update syntax. Semantos also does not support update

queries at this stage, although it is possible to implement the syntax, with ease, as

XML is being used. Implementation of the update query processing itself, however,

might be much more involved. It would therefore be very beneficial if this work

could elaborate on possible update structures.

7.2.4. QUERY OPTIMIZATION

No work has been completed towards measuring the efficiency of the Semantos

processing engine. As such, it is impossible to indicate how successful it would be

when querying distributed or very large data sources. An equally important

consideration would be to investigate possible query optimization techniques, as

these would become important when scaling the language to a global data source

network.

7.2.5. TRANSPORT PROTOCOL

Although it would be simple to suggest a standard transport protocol for a Semantos

query, there may be a need to define a custom protocol. The SPARQL query

language defines both a query language and a transport protocol for the web.

Investigation into the usefulness of such a protocol may yield some efficiency

improvements which may be made with regard to transporting data across the web.

Semantos: A semantically smart information query language 99

REFERENCES

• Abiteboul, S, and A Bonifati. “Dynamic XML documents with distribution and

replication.” ACM SIGMOD Conference. San Diego: ACM, 2003. 527-538.

• Baldassarre, M, D Caivano, and G Visaggio. “Enterprise Information Integration

Management System (EII_MS).” Proceedings of the Ninth European Conference on

Software Maintenance and Reengineering (CSMR’05). Washington: IEEE Computer

Society, 2005. 192.

• Berners-Lee, T, J Hendler, and O Lassila. “The Semantic Web.” Scientific American, May

2001. 34–43.

• Berners-Lee, T, W Hall, and Hendler. A Framework for Web Science (Foundations and

Trends(R) in Web Science). Hanover: Now Publishers Inc, 2006.

• Berners-Lee, Tim. Notation 3: A readable RDF syntax. 9 March 2006.

http://www.w3.org/DesignIssues/Notation3.html (accessed June 22, 2008).

• Bierman, G, E Meijer, and W Schulte. “The essence of data access in C Omega.” ECOOP

2005 - Object-Oriented Programming, 19th European Conference. Glasgow: Springer,

2005. 287-311.

• Boag, S, and D Chamberlin. XQuery 1.0: An XML Query Language. 2007.

http://www.w3.org/TR/xquery (accessed August 18, 2007).

• Bonifati, A, and S Ceri. “Comparative analisys of five XML query languages.” ACM

SIGMOD Record, 29(1), March 2000. 68-79.

• Braumandl, R, and M Keidl. “ObjectGlobe: Ubiquitous Query Processing on the

Internet.” VLDB Journal: Very Large Data Bases, Volume 10, number 1, 2001. 48-71.

• Bray, T, J Paoli, C Sperberg-McQueen, E Maler, and F Yergeau. Extensible Markup

Language (XML) 1.0 (Fourth Edition). 29 September 2006.

http://www.w3.org/TR/2006/REC-xml-20060816 (accessed August 18, 2007).

• Brickley, D, and R Guha. Resource Description Framework (RDF) Schema Specification

1.0. 2000. http://www.w3.org/TR/2000/CR-rdf-schema-20000327 (accessed August

18, 2007).

Semantos: A semantically smart information query language 100

• Broekstra, J. “Sesame RQL: a Tutorial.” www.openrdf.org. 10 February 2004.

http://www.openrdf.org/doc/rql-tutorial.html (accessed August 23, 2007).

• Broekstra, J, A Kampman, and F van Harmelen. “Sesame: An Architecture for Storing

and Querying RDF Data and Schema Information.” In Semantics for the WWW, by D

Fensel, J Hendler, H Lieberman and W Wahlster. MIT Press, 2001.

• Carroll, J, and P Stickler. “RDF Triples in XML.” Extreme Markup Languages 2004®:

Proceedings. Montréal, 2004.

• Choi, B, M Fernandez, and J Simeon. The XQuery formal semantics: A foundation for

implementation and optimization. May 2002.

http://citeseer.ist.psu.edu/choi02xquery.html (accessed August 18, 2007).

• Christophides, V, G Karvounarakis, and I Koffina. “The ICS-FORTH SWIM: A Powerful

Semantic Web Integration Middleware.” Proceedings of the First International Workshop

on Semantic Web and Databases (SWDB), Co-located with VLDB 2003. Berlin, 2003. 381-

393.

• De Laborda, C, and S Conrad. “Querying Relational Databases with RDQL.” Berliner XML

Tage, 2005. 161-172.

• Delen, D, D Nikunj, and B Perakath. “Integrated modelling: the key to holistic

understanding of the enterprise.” Communications of the ACM Volume 48, Issue 4, April

2005. 107-112.

• Ding, L, T Finin, A Joshi, R Pan, S Cost, Y Peng, P Reddivari, V Doshi, and J Sachs.

“Swoogle: A Search and Metadata Engine for the Semantic Web.” Proceedings of the 13th

ACM international conference on Information and Knowledge Management. Washington:

ACM, 2004. 652-659.

• Doan, A, P Domingos, and A Halevy. “Learning to match the schemas of data sources: A

multistrategy approach.” VLDB Journal 50, 2003. 279-301.

• Frasincar, F, G Houben, R Vdovjak, and P Barna. “RAL: An Algebra for Querying RDF.”

World Wide Web, 2004. 83-109.

• Giachetti, R. “A framework to review the information integration of the enterprise.”

International Journal of Production Research, 2004. 1147-1166.

Semantos: A semantically smart information query language 101

• Greco, G, S Greco, and I Trubitsyna. “Optimization of bound disjunctive queries with

constraints.” Theory and Practice of Logic Programming, November 2005. 713-745.

• Grust, T, S Sakr, and J Teubner. “XQuery on SQL hosts.” Proceedings of the 30th

International Conference on Very Large Data Bases (VLDB). Toronto: VLDB Endowment,

2004. 252-263.

• Gutierrez, C, C Hurtado, and A Mendelzon. “Formal aspects of querying RDF databases.”

Proceedings of First International Workshop on Semantic Web and Databases. Berlin,

2003. 293-307.

• —. “Foundations of Semantic Web Databases.” ACM Symposium on Principles of

Database Systems (PODS). Paris: ACM, 2004. 95-106.

• Haase, P, J Broekstra, A Eberhart, and R Volz. A Comparison of RDF Query Languages.

2004. http://www. aifb.uni-karlsruhe.de/WBS/pha/rdf-query/rdfquery.pdf (accessed

August 18, 2007).

• Halevy, A, N Ashish, D Bitton, M Carey, D Draper, J Pollock, A Rosenthal and V Sikka.

“Enterprise information integration: successes, challenges and controversies.”

Proceedings of the 2005 ACM SIGMOD international conference on Management of data.

Baltimore: ACM, 2005. 778-787.

• Hauch, R, A Miller, and R Cardwell. “Information intelligence: metadata for information

discovery, access, and integration.” Proceedings of the 2005 ACM SIGMOD international

conference on management of data. Baltimore: ACM, 2005. 793-798.

• Heflin, J, D Dimitrov, A Qasem, and N Wang. “Information Integration via an End-to-End

Distributed Semantic Web System.” The Semantic Web - ISWC 2006, 5th International

Semantic Web Conference, ISWC 2006. Athens: Springer, 2006. 764-777.

• International Organization for Standardization. “ISO/IEC 9075:2003, Information

technology - Database languages - SQL.” 2003.

• Karvounarakis, G, and Magkanaraki. “Querying the Semantic Web with RQL.” Computer

Networks, 42(5), 2003. 617-640.

• Karvounarakis, G, and V Christophides. The RDF Query Language (RQL). 18 July 2003.

http://139.91.183.30:9090/RDF/RQL/ (accessed June 22, 2008).

Semantos: A semantically smart information query language 102

• Karvounarkis, G, S Alexaki, V Christophides, D Plexousakis, and M Scholl. “RQL: A

declarative query language for RDF.” In Proceedings of the Eleventh International World

Wide Web Conference. 2002. 592-603.

• Klyne, G, and J Carrol. Concepts and Abstract Syntax. 2004. http://www.w3.org

(accessed August 18, 2007).

• Levenshtein, I.V. Binary codes capable of correcting deletions, insertions, and reversals.

Cybernetics and Control Theory. 1966.

• Madnick, S. “From VLDB to VMLDB (Very MANY Large Data Bases): Dealing with Large-

Scale Semantic Heterogeneity.” Proceedings of the 21st VLDB Conference. Zurich:

Morgan Kaufmann Publishers Inc, 1995. 11-16.

• Maedche, A, and S Staab. “Measuring similarity between ontologies.” Proceedings of the

European Conference on Knowledge Acquisition and Management (EKAW). Siguenza:

Springer, 2002. 251-263.

• Maier, D. “Database desiderata for an XML query language.” QL’98 – The Query

Language Workshop. Boston, 1998.

• Manolescu, I, D Florescu, and D Kossmann. “Answering XML queries over heterogenous

data sources.” Proceedings of the 27th International Conference on Very Large Databases.

Roma, 2001. 241-250.

• Meijer, E, B Beckman, and G Bierman. “LINQ: Reconciling Objects, Relations and XML in

the .NET.” SIGMOD 2006. Chicago: ACM, 2006. 706.

• Meijer, E, M Torgersen, and G Bierman. “Lost In Translation: Formalizing Proposed

Extensions to C#.” OOPSLA 2007. Montreal: ACM, 2007. 479-498.

• Meijer, E, W Schulte, and G Bierman. “Programming with Circles, Triangles and

Rectangles.” Proceedings of the XML 2003 Conference. Philadelphia, 2003.

• —. “Unifying Tables, Objects and Documents.” Proceedings of DP-COOL 2003. Uppsala,

2003.

• Melton, J. “SQL, XQuery, and SPARQL: Whats Wrong With This Picture?” XTech

2006:Building Web 2.0. 2006.

Semantos: A semantically smart information query language 103

• Melton, J, and S Muralidhar. XML Syntax for XQuery 1.0 (XQueryX), W3C Working Draft.

2005. http://web4.w3.org/TR/2005/WD-xqueryx-20050404 (accessed August 18,

2007).

• Microsoft. “DryadLINQ.” http://research.microsoft.com/en-us/projects/dryadlinq/. May

2006. http://research.microsoft.com/en-us/projects/dryadlinq/xlinq_overview.doc

(accessed November 12, 2008).

• Miller, L, A Seaborne, and A Reggiori. “Three Implementations of SquishQL, a Simple

RDF Query Language.” The Semantic Web - ISWC 2002. Sardinia: Springer-Verlag, 2002.

423-435.

• Nilsson, Mikael. Cetis. 6 September 2001.

http://zope.cetis.ac.uk/content/20010927172953/#foot173 (accessed June 22, 2008).

• Noy, N.F, and M.A Musen. “The PROMPT suite: interactive tools for ontology merging

and mapping.” International Journal of Human-Computer Studies 59, 2003. 983-1024.

• Onose, N, and J Simeon. XQuery at your web service. 2004.

http://citeseer.ist.psu.edu/onose04xquery.html (accessed August 18, 2007).

• Open Directory RDF Dump. 04 05 2004. http://rdf.dmoz.org/ (accessed 08 13, 2008).

• Prud'hommeaux, E, and A Seaborne. SPARQL Query Language for RDF. 14 June 2007.

http://www.w3.org/TR/rdf-sparql-query (accessed August 18, 2007).

• Shadbolt, N, T Berners-Lee, and W Hall. “The Semantic Web Revisited.” IEEE Intelligent

Systems 21(3), 2006. 96-101.

• Sikka, V. “Data and metadata management in service-oriented architectures: some open

challenges.” Proceedings of the 2005 ACM SIGMOD international conference on

Management of data. Baltimore: ACM, 2005. 849-850.

• Vdovjak, R, F Frasincar, G Houben, and P Barna. “Engineering semantic web

information systems in hera.” Journal of Web Engineering 2(1&2) (Rinton Press), 2003.

3-26.

• World Wide Web Consortium. 2007. http://www.w3.org/ (accessed August 18, 2007).

Semantos: A semantically smart information query language 104

• Zillner, S, and W Winiwarter. “Integrating ontology knowledge into a query algebra for

multimedia meta objects.” Proceedings of Web Information Systems - WISE 2004, 5th

International Conference on Web Information Systems Engineering. Brisbane, 2004. 629-

640.

Semantos: A semantically smart information query language 105

APPENDIX A: XML SCHEMA

The full and formal XML schema for the Semantos query structure is provided here,

in Figure 73, in order to aid future development of Semantos applications. This

schema provides the fully detailed specification so as to resolve any remaining

ambiguity regarding the XML structure of a Semantos query.

<?xml version="1.0" encoding="utf-8"?>

 <xs:schema

 xmlns:semantos="http://www.retrorabbit.co.za/semantos/schema"

 attributeFormDefault="unqualified"

 elementFormDefault="qualified"

 targetNamespace="http://www.retrorabbit.co.za/semantos/schema"

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element

 name="fetch">

 <xs:complexType>

 <xs:sequence>

 <xs:element

 name="source"

 minOccurs="1">

 <xs:complexType>

 <xs:attribute

 name="name"

 type="xs:string"

 use="required" />

 <xs:attribute

 name="uri"

 type="xs:string"

 use="required" />

Semantos: A semantically smart information query language 106

 </xs:complexType>

 </xs:element>

 <xs:element

 name="ontology"

 minOccurs="0">

 <xs:complexType>

 <xs:attribute

 name="name"

 type="xs:string"

 use="required" />

 <xs:attribute

 name="uri"

 type="xs:string"

 use="required" />

 </xs:complexType>

 </xs:element>

 <xs:element

 maxOccurs="unbounded"

 name="namespace"

 minOccurs="0">

 <xs:complexType>

 <xs:attribute

 name="name"

 type="xs:string"

 use="required" />

 <xs:attribute

 name="uri"

 type="xs:string"

 use="required" />

Semantos: A semantically smart information query language 107

 </xs:complexType>

 </xs:element>

 <xs:element

 name="entity">

 <xs:complexType>

 <xs:sequence>

 <xs:element

 maxOccurs="unbounded"

 name="attribute">

 <xs:complexType>

 <xs:attribute

 name="name"

 type="xs:string"

 use="required" />

 </xs:complexType>

 </xs:element>

 <xs:element

 name="graph">

 <xs:complexType>

 <xs:sequence>

 <xs:element

 maxOccurs="unbounded"

 name="triple">

 <xs:complexType>

 <xs:attribute

Semantos: A semantically smart information query language 108

 name="subject"

 type="xs:string"

 use="required" />

 <xs:attribute

 name="predicate"

 type="xs:string"

 use="required" />

 <xs:attribute

 name="object"

 type="xs:string"

 use="required" />

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element

 name="filter">

 <xs:complexType>

 <xs:sequence>

 <xs:element

 name="condition">

 <xs:complexType>

 <xs:attribute

 name="attribute"

 type="xs:string"

 use="required" />

Semantos: A semantically smart information query language 109

 <xs:attribute

 name="operator"

 type="xs:string"

 use="required" />

 <xs:attribute

 name="value"

 type="xs:string"

 use="required" />

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute

 name="name"

 type="xs:string"

 use="required" />

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

Figure 73 Full Semantos schema

Semantos: A semantically smart information query language 110

APPENDIX B: EXAMPLES

Presented in this appendix are several examples of Semantos queries. They are

provided here in order to improve the reader’s understanding of the language

constructs.

1. First Example

The first example, Figure 74, queries a company’s data stores to find all the

employees that work under a specific manager. What is interesting about this

example is that it has multiple data source documents, one for the employees and

another for managers. It also makes use of two namespaces, providing shortcuts to

the XML namespaces regarding people and workplaces.

 <semantos:fetch>

 <semantos:source

 name="employees"

 uri="http://www.rr.co.za/data/employees.rdf"/>

 <semantos:source

 name="managers"

 uri="http://www.rr.co.za/data/managers.rdf"/>

 <semantos:namespace

 name="people"

 uri="http://www.rr.co.za/data/humans#" />

 <semantos:namespace

 name="workplace"

 uri="http://www.rr.co.za/data/workplace#" />

 <semantos:entity

 name="employees">

Semantos: A semantically smart information query language 111

 <semantos:attribute

 name="fullname"/>

 <semantos:attribute

 name="number"/>

 <semantos:attribute

 name="salary"/>

 <semantos:graph>

 <semantos:triple

 subject="person"

 predicate="people:fullname"

 object="fullname"/>

 <semantos:triple

 subject="person"

 predicate="workplace:ispaid"

 object="salary"/>

 <semantos:triple

 subject="person"

 predicate="workplace:code"

 object="number"/>

 <semantos:triple

 subject="manager"

 predicate="workplace:manages"

 object="person"/>

 <semantos:triple

 subject="manager"

 predicate="people:surname"

 object="surname"/>

 </semantos:graph>

 <semantos:filter

 type="and">

Semantos: A semantically smart information query language 112

 <semantos:condition

 attribute="surname"

 operator="eq"

 value="Crous" />

 </semantos:filter>

 </semantos:entity>

</semantos:fetch>

Figure 74 First Semantos example query

The attribute elements specify which nodes of the context graph are to be projected

to form the result set. Figure 75 illustrates this relationship between the graph nodes

and the attributes. The filter provided for this query specifies the condition that the

surname of the manager entity must be equal to “Crous”. This query will therefore

return the full names, numbers and salaries of all employees that are managed by

anyone with the surname “Crous”.

Figure 75 Projected columns from contextual graph for Example 1

2. Second Example

The second example, Figure 76, queries a comedians’ list of categorized jokes. In

this particular query we are looking for all jokes that are suitable for a specific

audience with specific tastes. In this example we introduce some more complex

fullname number salary

Peter Kane 008339 100 000

Ben 008376 120 000

Sally Strut 008329 80 000

person

salary

fullname

number
manager

surname

Semantos: A semantically smart information query language 113

filters, which include nested filters and conditions. This query also illustrates the

fact that ontologies and namespaces are optional.

 <semantos:fetch>

 <semantos:source

 name="jokes"

 uri="http://www.rr.co.za/data/jokes.rdf"/>

 <semantos:entity

 name="jokes">

 <semantos:attribute

 name="name"/>

 <semantos:attribute

 name="description"/>

 <semantos:graph>

 <semantos:triple

 subject="joke"

 predicate="joke-name"

 object="name"/>

 <semantos:triple

 subject="joke"

 predicate="joke-description"

 object="description"/>

 <semantos:triple

 subject="joke"

 predicate="joke-category"

 object="category"/>

 <semantos:triple

 subject="joke"

 predicate="joke-age"

 object="agerestriction"/>

 </semantos:graph>

Semantos: A semantically smart information query language 114

 <semantos:filter

 type="and">

 <semantos:condition

 attribute="agerestriction"

 operator="le"

 value="16" />

 <semantos:filter

 type="or">

 <semantos:condition

 attribute="category"

 operator="eq"

 value="oneliner" />

 <semantos:condition

 attribute="category"

 operator="eq"

 value="knockknock" />

 </semantos:filter>

 </semantos:filter>

 </semantos:entity>

</semantos:fetch>

Figure 76 Second Semantos query example

This query is very simple in the sense that it does not have a very complex context

graph. It also only projects two of the graphs’ nodes, namely the joke’s name and

description. The filter constructs are more interesting and illustrate several filter

element features of Semantos. The filter above can be expressed as follows:

���!���!������ ≤ 16 AND 	������!$ = oneliner OR ������!$ = knockknock�

Semantos: A semantically smart information query language 115

3. Third Example

Example 3 provides more insight into the ontological strengths of Semantos, as seen

in Figure 77. In this query we will illustrate the use of ontologies by querying a pet

shop data store for all pets suitable for being kept in a small apartment. In this query

we also make use of the “in” operator for filtering the results returned.

 <semantos:fetch>

 <semantos:source

 name="pets"

 uri="http://www.rr.co.za/data/pets.rdf"/>

 <semantos:namespace

 name="pet"

 uri="http://www.rr.co.za/data/pets#" />

 <semantos:ontology

 name="people"

 uri="http://www.rr.co.za/ont/humans.rdfs#" />

 <semantos:entity

 name="pets">

 <semantos:attribute

 name="name"/>

 <semantos:graph>

 <semantos:triple

 subject="pet"

 predicate="pets:name"

 object="name"/>

 <semantos:triple

 subject="pet"

 predicate="canLive"

Semantos: A semantically smart information query language 116

 object="indoors"/>

 </semantos:graph>

 <semantos:filter

 type="and">

 <semantos:condition

 attribute="size"

 operator="in">

 <value>tiny</value>

 <value>small</value>

 <value>medium</value>

 </condition>

 </semantos:filter>

 </semantos:entity>

</semantos:fetch>

Figure 77 Third Semantos query example

	FRONT
	Title page
	Acknowledgement
	Abstract
	Key words
	Table of Contents
	List of Tables
	List of Figures
	List of Works

	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	CHAPTER 6
	CHAPTER 7
	REFERENCES
	APPENDICES

