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Abstract

In this dissertation, we investigate a very interesting class of quasi-linear stochastic partial

differential equations. The main purpose of this article is to prove an existence result for

such type of stochastic differential equations with non-standard growth conditions. The

main difficulty in the present problem is that the existence cannot be easily retrieved

from the well known results under Lipschitz type of growth conditions [42].
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Chapter 1

Introduction

1.1 Motivation and Preliminaries

The study of quasi-linear partial differential equations with p(x)-growth conditions, in

the deterministic case, has received much attention recently see for instance [18], [36],

[37], [50], [66], and reference given therein. Different approaches are taken in the above

papers to establish the existence of solutions for the problems in question. The present

work extends a result in Samokin [66] to a class of stochastic partial differential equations.

The passage to the result relies heavily on the variable exponent theory of generalized

Lebesgue-Sobolev spaces. We study the notion of probabilistic weak solutions of the

initial-boundary value problem for equations that generalize the equations of polytropic

elastic filtration with random perturbations.

Let D be an open and bounded domain of the Euclidean space Rn, n ≥ 1 with C2

boundary ∂D. We consider the cylindrical domain QT = (0, T ) × D with some given

final time T > 0 and denote by Qt the cylinder (0, t) × D for t 6 T . We investigate

3

 
 
 



CHAPTER 1. INTRODUCTION 4

the initial boundary value problem (I-BVP) for the stochastic parabolic equation

du−
n∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣p(x)−2

∂u

∂xi

)
dt =

f(t, u(t, x))dt+G(t, u(t, x)) dW (t) inQT = (0, T )×D, (1.1)

u(t, x) = 0 on Γ = (0, T )× ∂D, (1.2)

u(0, x) = u(x) in D, (1.3)

where u is unknown function, the nonlinear terms f(t, u) and G(t, u) are known functions

depending on u, u0(x) is a given function in L2(D), W is a Rd-standard Wiener process,

d a positive integer and p is a measurable function over D with values in the interval

[1,∞] and is independent of t. Equations of this type appear in the mathematical

modeling of various physical phenomena. They model processes ranging from the theory

of non-Newtonian fluids to Continuum Mechanics. For more detailed information about

the physical applications of these models we refer to [4]-[12], [43], [45], [65] and the

bibliography therein. Equation (1.1) is degenerate when the gradient vanishes (∇u = 0).

If p(x) = 2 then we obtain the Laplacian equation. Polytropic filtration describes a large

class of non-Newtonian fluids such as natural gas, extraction processes of crude oil,

etc.... For more physical background we refer to [4]- [12], [43], [51] and [65]. They

have properties such as global existence, global nonexistence, existence and uniqueness,

blow-up, qualitative behavior, localization properties of solutions, etc.... We set

Au(t) = −
n∑
i=1

∂

∂xi

(∣∣∣∣∂u(t, x)

∂xi

∣∣∣∣p(x)−2
∂u(t, x)

∂xi

)
, (1.4)

with 1 < p(x) <∞.

We can motivate the spaces W
1,p(x)
0 (D) through the following example of transmission

problems for nonlinear elliptic equations.

Let D be bounded domain in Rn with boundary Γ. Let D1 be a proper sub-domain

of D with the boundary Γ1, and D2 the domain D \ D1. Then D2 is bounded by Γ1

and Γ2. We assume that Γ1 and Γ2 are sufficiently smooth. Let −→n 1 (resp. −→n2) be

the field of unit normal vectors to Γ1(resp. Γ2) oriented toward the interior of D2, and

p1, p2 ∈ (1,∞) are constants.
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We consider the operator

∆pkϕ = div

(∣∣∣∣∂ϕ∂x
∣∣∣∣pk−2

∇ϕ

)
, (1.5)

∇ denotes the gradient.

We consider the following transmission problem

∆pkuk = fk on Dk, k = 1, 2, (1.6)

u1(x) = u2(x) on Γ1 (1.7)

∂∆p2
u2

∂n1

(x) =
∂∆p1

u1

∂n1

(x) on Γ1 (1.8)

u2 = 0 on Γ2, (1.9)

where,
∂∆pk

ϕ

∂n
=

∣∣∣∣∂ϕ∂x
∣∣∣∣pk−2

∇ϕ.n.
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Integrating by parts with test functions ϕk on Dk we get

2∑
k=1

∫
Dk

div

(∣∣∣∣∂uk∂x

∣∣∣∣pk−2

∇uk

)
ϕk dx

= −
2∑

k=1

∫
Dk

∣∣∣∣∂uk∂x

∣∣∣∣pk−2

∇uk∇ϕk dx+
2∑

k=1

∫
∂Dk

∣∣∣∣∂uk∂x

∣∣∣∣pk−2

ϕ∇uknk dx, (1.10)

by using the transmission conditions (1.7) and (1.8) in (1.10) with ϕk = uk we end up

with

2∑
k=1

∫
Dk

div

(∣∣∣∣∂uk∂x

∣∣∣∣pk−2

∇uk

)
ukdx =

2∑
k=1

∫
Dk

|∇uk|pk dx. (1.11)

Defining

p(x) =

 p1 if x ∈ D1,

p2 if x ∈ D2 ∪ Γ2.

We can rewrite (1.11) as

‖u‖
W

1,p(x)
0

(D) =

∫
D

|∇u|p(x) dx, (1.12)

where,

u =

 u1 in D1,

u2 in D2.

The relations (1.10)-(1.12) suggests that it may be reasonable to seek for an appropri-

ate weak solution u of problem (1.6)-(1.9) in the functional setting of Sobolev space

W
1,p(x)
0 (D) for a.e t ∈ [0, T ]. Our aim is to establish an existence result of a probabilistic

solution u to the stochastic parabolic problem (1.1)-(1.3).

In the deterministic version of problem (1.1)-(1.3) Samokin gave a detailed investiga-

tion of the weak solvability of the problem (1.1)-(1.3) in [66] with G(t, u) = 0; further

references can be found therein. A special interest in the study of such equations is

motivated by their application in Science. They appear in the mathematical modeling

of non-Newtonian fluids and Continuum Mechanics such as the processes of electro-

rheological(ER) fluids (see [43], [65]), filtration through inhomogeneous anisotropic

porous media (see [6], [7]). Actually, they are frequently used in optical application

such as the processing of digital image, image recovery, etc.... For more information on
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the possible applications of the real world processes we refer to [4]-[12], [43], [65], [51],

[89] where further references can be found. In the last decade, several authors have

studied and obtained many results on problems with non-standard growth conditions.

For more details we refer to [1], [2], [12], [32].

More recently, similar problems were discussed by many authors; among them, we re-

fer to [85]. The authors of [85] gave a detailed investigation of nonlinear parabolic

initial-boundary value problem with p(x)-growth conditions with respect to u and ∇u

by introducing a compactness method combined with the Galerkin approximation.

The purpose of this dissertation is to prove an existence result for the initial-boundary

value problem (1.1)-(1.3) in the functional setting of generalized Sobolev spaces W 1,p(x)(D).

For the proof we use a Galerkin approximation scheme combined with some deep analytic

and probabilistic compactness results.

They are variety of closely related problems that we could not include all the references

in this dissertation, we can only cite few [45], [73], [78] and [89]. The case of doubly

degenerate parabolic equations with non-standard growth was initially studied by Sango

in [70].

For fundamental properties of the generalized Lebesgue space Lp(x)(D) and the corre-

sponding Sobolev space W k,p(x)(D) we refer to the work of Samokin [66] and the work

of Andrej Kováčik, Žilina and Rákosńik [48], where some examples and counter examples

on the sobolev embedding theorems can be found. We also note more recently, the works

of L. Diening [25], D.E. edmunds and J. Rákosńik [30, 31] and X.L Fan [34]. It has

been shown in [65] that the crucial difference between the spaces Lp(x)(D) and the usual

Lebesgue spaces Lp(D) is the fact that the elements of the generalized Lebesgue spaces

Lp(x)(D) are not in general p(x)-mean continuous (see definition 3). For applications of

the spaces Lp(.) in mathematical modeling of electro-rheological fluids we refer to [65].

In the case when p(x) = p is a constant function, many results have been obtained

on the existence and regularity properties of the solutions, for instance we refer to the

works in the bibliography [53] and [71]. For a localization property of weak solutions for

parabolic equations with nonstandard growth conditions, we refer to [41].

The framework followed in this dissertation has proved successful in [14], [21], [23], [63],
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[69]-[72] and [90].

Stochastic quasi-linear parabolic equations with non-standard growth are being investi-

gated for the first time in the present dissertation.

The non-standard growth introduces new difficulties in the derivation of a priori estimates

which were absent in the standard growth case. The work provides a new framework for

applications of generalized sobolev spaces to stochastic partial differential equations.

1.2 Organization of the thesis

The present dissertation consists of three chapters.

In chapter one, we motivate the reason for the study of the present class of quasi-linear

stochastic partial differential equations. This is basically motivated by an application

arising in mathematical physics (see [43] and [66], for instance). Chapter two of the

dissertation concerns a characterization of various type of functions spaces which are

essential in the proof of the main result of the present work. Such a characterization

can be found in Kufner [50]. The main result of this work in contained in chapter 3, see

Theorem 24: Existence theorem. In this chapter, as a passage to the existence result,

several results concerning estimates of the weak solution of the quasi-linear SPDEs are

given under certain conditions. The derivation of these estimates is non-trivial.

1.3 Notation

Throughout this dissertation we denote by |A| the Lebesgue measure of any subset A of

D and by χA its characteristic function. By P(D) we denote the set of all measurable

functions p on D that range in the interval [1,∞]. We denote here by ‖f‖X the norm

of a measurable function on a space X.
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For p ∈ P(D) we write

Dp
1 = {x ∈ D : p(x) = 1},

Dp
∞ = {x ∈ D : p(x) =∞},

Dp
0 = D \ (Dp

1 ∪Dp
∞),

p∗ = ess inf
Dp0

p(x), and p∗ = ess sup
Dp0

p(x) if |Dp
0| > 0

and p∗ = p∗ = 1 if |Dp
0| = 0,

Cp = ‖χDp0‖L∞(D) + ‖χDp1‖L∞(D) + ‖χpD∞‖L∞(D)

and rp = Cp + 1/p∗ − 1/p∗. Here we consider the use of the convention
1

∞
= 0.

 
 
 



Chapter 2

Function spaces

2.1 Introduction

Following [66], we give some definitions and establish some basic facts of properties of

the theory of the generalized Lebesgue and Sobolev spaces. Moreover the generalized

Lebesgue spaces Lp(x)(D) and the usual Lebesgue space Lp(D) have many common

properties. In contrast to the classical Lebesgue space Lp(D) and Orlicz spaces the

generalized Lebesgue spaces Lp(x)(D) are in general invariant with regard to the trans-

lation operator (see [48] for p(x)-mean continuity of their elements). By this, we mean

the elements of Lp(x)(D) are not in general p(x)-mean continuous (see Definition 3

below). For this reason, many problems can arise with regard to convolutions, Sobolev

embeddings, denseness of smooth functions in W
1,p(x)
0 (D) and boundedness of integral

operators. For further details we refer to [24]-[27], [34] and [48].

10
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2.2 Generalized Lebesgue spaces

Let p ∈ P(D). On the set of functions (all functions here are considered to be measur-

able), we define the mapping %p by

%p (f) =

∫
D\D∞

|f(x)|p(x) dx+ ess sup
x∈D∞

|f(x)|. (2.1)

and the norm

‖f‖Lp(x)(D) = inf{λ > 0; %p(f/λ) 6 1}. (2.2)

It has been shown in [66] and [48] that the functional %p has the following properties:

%p (f) > 0. (2.3)

%p (f) = 0 if and only if f = 0. (2.4)

%p (f) is a convex functional. (2.5)

%p (−f) = %p (f) for every function f. (2.6)

The modular space Lp(x)(D) generated by the functional %p can be defined as follows:

Lp(x)(D) = {f : D −→ R, lim
λ→0+

%p(λ f) = 0}

The functional %p preserves ordering, i.e.

If |f(x)| > |g(x)| ∀x ∈ D and if %p(f) <∞, then %p(f) > %p(g); (2.7)

the last inequality is strict if |f(x)| 6= |g(x)|.

Thus the space Lp(x)(D) is a special and particular case of Musielak-Orlicz space called

sometime Nakano space.

Definition 1. The functional %p is

(i) left-continuous, if limλ→1− %p(λf) = %p(f), ∀ f ∈ Lp(x)(D),

(ii) right-continuous, if limλ→1+ %p(λf) = %p(f), ∀ f ∈ Lp(x)(D),

(iii) continuous, if it is both, left-continuous and right-continuous.
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If 0 < %p(f) < ∞, then the function λ 7→ %p(f/λ) is continuous and nonincreasing on

the interval [1,∞). By continuous here we mean that the function %p(
f
λ
) is both left

continuous and right continuous in the space Lp(x)(D). We have the following properties

%p(f/‖f‖Lp(x)(D)) 6 1 ∀ f ∈ Lp(x)(D), with 0 < ‖f‖Lp(x)(D) <∞. (2.8)

If p∗ <∞, %p(f/α) = 1⇔ 0 < ‖f‖Lp(x)(D) = α < ∞, (2.9)

∀ f ∈ Lp(x)(D) with 0 < ‖f‖Lp(x)(D) <∞.

The following property is a straight forward consequence of (2.5), (2.4) and (2.8).

If ‖f‖Lp(x)(D) 6 1, then %p(f) 6 ‖f‖Lp(x)(D). (2.10)

We can summarize all the above properties by

Lemma 1. Consider f ∈ Lp(x)(D), then

(i) ‖f‖Lp(x)(D) 6 1(> 1) if and only if %p(f) 6 1(> 1)

(ii) If ‖f‖Lp(x)(D) < 1, then ‖f‖p
∗

Lp(x)(D)
6 %p(f) 6 ‖f‖p∗

Lp(x)(D)

(iii) If ‖f‖Lp(x)(D) > 1, then ‖f‖p∗
Lp(x)(D)

6 %p(f) 6 ‖f‖p
∗

Lp(x)(D)

We give here the definition of the generalized Lebesgue space Lp(x)(D)

Definition 2. The generalized Lebesgue space is the class of functions f defined on D

such that %p(λf) is a positive finite number for some strictly positive λ depending on f .

Shortly

Lp(x)(D) = {f, f : D −→ R+ : %p(λ) <∞ for some λ = λ(f) > 0}.

When the Lebesgue measure of Dp
∞ vanishes i.e. |Dp

∞| = 0, then the space Lp(x)(D)

endowed with the norm

‖f‖Lp(x)(D) = inf{λ > 0 :

∫
D\D∞

|f(x)|p(x) dx 6 1
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becomes a Banach space. When |Dp
∞| > 0, then the space Lp(x)(D) can be introduced

as

Lp(x)(D) =
{
f : D −→ R, %p(f/λ) <∞, ‖f‖Lp(x)(D) 6 1

}
.

This space is a Banach space.

If p(x) ≡ p is a constant function, then the generalized Lebesgue space coincide with

the usual Lp space and we also have

‖f‖Lp(x)(D) = ‖f‖Lp(D) =

(∫
D

|f(x)|pdx
) 1

p

,

and there is no confusion of notations.

Definition 3. f ∈ Lp(x)(D) is p(x)-mean continuous if ∀ε > 0 there exists a positive

number δ = δ(ε) > 0 such that %p(fh − f) < ε for h ∈ Rn, |h|Rn < δ, where

fh(x) = f(x + h), x ∈ Rn and the symbol |h|Rn stands for the Euclidean norm in the

Euclidean space Rn.

For more examples, theorems and details about the above definition we refer to [48].

For a given measurable function p ∈ P(D), we shall define the dual function pointwise

known as the conjugate exponent function q ∈ P(D) to p ∈ P(D) is defined as

q(x) =


∞ for x ∈ Dp

1,

1 for x ∈ Dp
∞,

p(x)
p(x)−1

for x ∈ Dp
0.

The following result is the generalized Hölder’s inequality:

Theorem 1. Let p ∈ P(D). Then the inequality∫
D

|f(x) g(x)| dx 6 rp ‖f‖Lp(x)(D) ‖g‖Lq(x)(D) (2.11)

is valid for each function f ∈ Lp(x)(D) and g ∈ Lq(x)(D) with the constant rp defined

in section 1.3 above.

For a given measurable function f on D, we shall introduce the generalized Lebesgue

norm ||| · |||p on the space Lp(x)(D) generated by the functional %p defined in (2.1).
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More details about the connection between the two norms ||| · |||p and ‖ · ‖Lp(x)(D) can

be found in [56]. From the generalized Hölder inequality established in theorem 1, we

can characterize the norm ||| · |||p by the following theorem.

Theorem 2. Let f and g be measurable functions such that

%q(g) =

∫
D\Dq∞

|g(x)|q(x) dx + ess sup
x∈Dq∞

|g(x)| 6 1.

For functions f we define

|||f |||p = sup

{∫
D

f(x) g(x) dx ; %q(g) 6 1

}
. (2.12)

Following [66] and [48], ||| · |||p is a norm on the class of functions f with |||f |||p <∞.

This is an analogue of the Orlicz norm defined in [56]. The next result shows the

connection between the norms ‖ · ‖Lp(x)(D) and ||| · |||p.

Theorem 3. With the new norm defined by (2.12) in theorem 2, One can have:

Lp(x)(D) = { f : D −→ R : |||f |||p 6∞},

the following inequalities

C−1
p ‖f‖Lp(x)(D) 6 |||f |||p 6 rp‖f‖Lp(x)(D) ,

hold, where Cp and rp are constants form subsection 1.3.

Proof 1. For the detailed proof of this theorem we refer to [48].

In particular, for the norm ||| . |||p, we have the Hölder inequality∣∣∣∣∫
D

f(x) g(x) dx

∣∣∣∣ 6 rp ‖f‖Lp(x)(D)|||g|||p, ∀f ∈ Lp(x)(D), g ∈ Lq(x)(D), (2.13)

where
1

p(x)
+

1

q(x)
= 1.

In order to investigate any kind of norms convergence for sequences in the generalized

Lebesgue spaces Lp(x)(D), we first have to provide those spaces with a suitable notion of

convergence. Since, spaces Lp(x)(D) can be seen as modular spaces, it is more convenient
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to replace the notion of norms convergences by those of modular convergences.

We describe the modular convergence as follows:

we consider a sequence of functions (fn) ⊂ Lp(x)(D), we shall say that fn converge

modularly to a function f ∈ Lp(x)(D), if

lim
n−→∞

%p(fn − f) = 0.

In [48] and [56], it has been shown that in the generalized Lebesgue space Lp(x)(D) and

Orlicz spaces there is a substantial difference between the norm convergence and the

modular convergence. In [48] it has been shown that the norm convergence is stronger

than the modular convergence.

The dual space (Lp(x)(D))∗ of the space Lp(x)(D) is the space of all continuous linear

functionals over Lp(x)(D). Letting

Lq(x)(D) := {f : D −→ R such that

∫
D

|g(x)|q(x) dx <∞}.

The following equivalence result characterizes the dual Lq(x)(D) of the space Lp(x)(D).

Theorem 4. The following statements are equivalent

i) p ∈ L∞(D);

ii) for any functional J ∈
(
Lp(x)(D)

)∗
there exists a unique function g ∈ Lq(x)(D)

such that

J(g)(x) =

∫
D

f(x) g(x) dx, f ∈ Lp(x)(D);

and

C−1
p ‖g‖Lq(x)(D) 6 ‖J‖(Lp(x)(D))

∗ 6 rp‖g‖Lq(x)(D).

Proof 2. See [48] for the proof of this theorem.

The following results can be found in [48].

Corollary 1. ( cf. [48])
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(i) The dual space of Lp(x)(D) is the space Lq(x)(D) if and only if p ∈ L∞(D);

(ii) The space Lp(x)(D) is reflexive if and only if

1 < ess inf
D
p(x) 6 ess sup

D
p(x) < ∞; (2.14)

Given two Banach spaces X and Y , we denote the continuous embedding of the space

X into the space Y by the symbol X 	 Y .

Theorem 5. Let 0 < |Ω| < ∞ and consider two measurable functions p and q on Ω .

Then the following conditions are equivalent

(i)

Lq(x)(D) 	 Lp(x)(D) for 0 < |D| <∞. (2.15)

(ii)

p(x) 6 q(x) for a.e x ∈ Ω. (2.16)

Theorem 6. If p ∈ P(D) ∩ L∞(D), then the space Lp(x)(D) is separable.

2.3 Generalized Sobolev Spaces

We shall consider D a bounded open domain of Rn with smooth boundary ∂D, n ≥ 1

and let k and m be natural numbers.

Consider a multi-index α = (α1, . . . , αn) ∈ Nn
0 of order |α| = α1 + , . . . , +αn 6 k

and set Dα = Dα1
1 . . . Dαm

m , where Di = ∂/∂xi is the generalized derivative operator.

Definition 4. Let p ∈ P(D) and k ∈ N. The generalized Sobolev space W k,p(x)(D)

is the class of all measurable functions f : D −→ R such that for each multi-index

α with order |α| 6 k, the generalized derivatives of f of order α, Dαf (x) exists and

belongs to Lp(x)(D). Shortly
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W k,p(x)(D) = {f, f : D −→ R, Dαf ∈ Lp(x)(D)}.

Definition 5. We define the norm in W k,p(x)(D) by

‖f‖Lp(x)(D) =
∑
|α|6k

‖Dαf(x)‖Lp(x)(D), f ∈ W k,p(x)(D). (2.17)

We define C∞0 (D) to be the space of infinitely differentiable functions, with compact

support in D.

Definition 6. We define

W
k,p(x)
0 (D) = C∞0

Wk,p(x)(D)
,

that is the space W
k,p(x)
0 (D) is the closure of the space C∞0 of infinitely differentiable

functions with respect to the norm of W k,p(x)(D).

Next, we shall give the definition of the norm on the space W
1,p(x)
0 (D).

Definition 7. If f ∈ W 1,p(x)
0 (D), we define its norm by

‖f‖
W

1,p(x)
0 (D)

=
n∑
i=1

∥∥∥∥ ∂f∂xi
∥∥∥∥
Lp(x)(D)

. (2.18)

The norm (2.18) is equivalent to the norm (2.17) (with k = 1).

The space W
k,p(x)
0 (D) is a proper subspace of W k,p(x)(D), provided that D is a proper

subset of Rn. If k = 0, since D is open bounded domain of Rn, we have the density

result.

Theorem 7. Let p ∈ P(D) ∩ L∞(D). Then the set C∞0 (D) is dense in Lp(x)(D).

Theorem 8. Let p ∈ P(D). The spaces W k,p(x)(D) and W
k,p(x)
0 (D) are Banach spaces

under their respecttive norms (2.17) and (2.18). They are separable if p ∈ L∞(D) and

reflexive if 1 < ess infx∈D p(x) 6 ess supx∈D p(x) < ∞.
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Consider two Banach spaces X and Y . We denote their continuous embedding by 	.

As a consequence of Theorem 5 we have the following trivial embedding:

If q(x) 6 p(x) for a.e. x ∈ D, then W k,p(x)(D) 	 W k,q(x)(D). (2.19)

The compact embedding of X into Y will be symboled X 		 Y .

Theorem 9. Let D and p satisfy one of the following conditions:

(i) p is continuous on D̄;

(ii) there exist numbers pi and ri and subsets Gi ⊂ D, i = 1, 2, . . . ,m, that contain

finitely many components with Lipschitzian boundaries such that |D \ ∪mi=1Gi| =

0, the interiors of Gi are mutually disjoint, 1 = p1 < p2 < r1 < p3 < r2 <

· · · < pm−1 < rm−2 < n < pm < rm−1 < rm = ∞, ri < npi/(n − pi),

i = 1, 2, . . . ,m− 1 and pi 6 p(x) 6 ri for i = 1, 2, . . . ,m and for all x ∈ Gi.

Then the space W
1,p(x)
0 (D) is compactly embedded in the space Lp(x)(D):

W
1,p(x)
0 (D) 		 Lp(x)(D).

We shall write ( , ) to denote the inner product in L2(D).

Using the generalized Holder inequality and the characterization of the dual
(
Lp(x)(D)

)∗
,

we have the following characterization of the dual space
(
W

k,p(x)
0 (D)

)∗
of W

1,p(x)
0 (D):

Theorem 10. Let p ∈ P(D) ∩ L∞(D), then for any functional J ∈
(
W

k,p(x)
0 (D)

)∗
there exists a unique system of functions {gα ∈ Lq(x)(D) : |α| 6 k} such that

J(f) =
∑
|α|6k

∫
D

Dαf(x) gα(x) dx,

for every function f ∈ W
1,p(x)
0 (D).

Next, we introduce some other sorts of Lebesgue and Sobolev spaces of measurable

functions defined on the closed interval [0, T ], with values in various Banach spaces.

They are essential in order to construct generalized solutions to the initial boundary

value problem (I-BVP).
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Definition 8. The space

Lr
(

0, T ; W
1,p(x)
0 (D)

)
consists of all measurable functions u that are defined on the closed interval [0, T ] ,

taking values in the space W
1,p(x)
0 (D), satisfying ‖u(t, x)‖

W
1,p(x)
0 (D)

∈ Lr([0, T ]). We

endow this space with the following norm

‖u(t, x)‖
Lr

“
0,T ;W

1,p(x)
0 (D)

” =

(∫ T

0

‖u(t, x)‖r
W

1,p(x)
0 (D)

dt

) 1
r

.

Next, we introduce an intermediary space which is important for the construction of our

probabilistic weak solution.

Definition 9. The space

V̊ (QT )

consists of all measurable functions u defined on [0, T ] and taking values in W
1,p(x)
0 (D).

We endow V̊ (QT ) with the finite norm

‖u(t, x)‖V̊ (QT ) =
n∑
i=1

∥∥∥∥∂u(t, x)

∂xi

∥∥∥∥
Lp(x)(QT )

=
n∑
i=1

inf

{
λi>0 :

∫
QT

(∣∣∣∣∂u(t, x)

∂xi

∣∣∣∣ /λi)p(x)

dt dx 6 1

}
, (2.20)

where QT = (0, T )×D.

The space V̊ (Qt) is introduced similarly, where Qt = (0, t)×D, 0 6 t 6 T .

Following [66] and [85], from previous theorems 1, 4, 8 and the completeness of the

spaces Lp(x)(D), W 1,p(x)(D) and W
1,p(x)
0 (D) we can derive the following result.

Theorem 11. The space V̊ (QT ) with the norm ‖ . ‖V̊ (QT ) defined above is a Banach

space.

If p ∈ P(D) ∩ L∞(D), then V̊ (QT ) is separable.

If p(x) ≥ 2, then V̊ (QT ) is reflexive.

From the characterization of the generalized Lebesgue and Sobolev spaces we see that

it is necessary to give the characterization of the dual space (V̊ (QT ))∗ of the space
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V̊ (QT ). We equip the dual space (V̊ (QT ))∗ of V̊ (QT ) with the norm

‖f‖(V̊ (QT ))∗ = sup
‖u‖V̊ (QT )61

|〈f , u〉| = inf
∑
|α|61

∫ T

0

‖fα(t)‖Lq(x)(QT )dt,

where the infimum is taken over all possible decompositions

f(t) =
∑
α

Dα
xfα(t), fα(t) ∈ Lq(x)(QT ).

We have the following result. For the proof we follow the lines of [85] (Lemma 2.10

page 316), but with appropriate changes.

Lemma 2. Let p ∈ P(D) such that p ∈ C(D̄) or p ∈ L∞(D), and moreover, let p(x) ≥

2. Then the following continuous embedding holds: V̊ (QT ) 	 L2(0, T ;W
1,p(x)
0 (D))

Proof 3. For every number λ > 1, we have λ%p(u) 6 %p(λu).

Therefore λ%p(
∂u
∂xi
/λ) 6 %p(

∂u
∂xi

). We use the fact that∥∥∥∥∥
∂u
∂xi

‖ ∂u
∂xi
‖Lp(x)(D)

∥∥∥∥∥
Lp(x)(D)

= 1

and Lemma 1 to get ∫
D

∣∣∣∣∣
∂u
∂xi

‖ ∂u
∂xi
‖Lp(x)(D)

∣∣∣∣∣
p(x)

dx = 1.

If
‖ ∂u
∂xi
‖Lp(x)(D)

‖ ∂u
∂xi
‖Lp(x)(QT )

≥ 1,

∫
D

∣∣∣∣∣∣∣
∣∣∣ ∂u∂xi ∣∣∣∥∥∥ ∂u

∂xi

∥∥∥
Lp(x)(QT )

∣∣∣∣∣∣∣
p(x)

dx =

∫
D

∣∣∣∣∣∣∣
∥∥∥ ∂u
∂xi

∥∥∥
Lp(x)(D)∥∥∥ ∂u

∂xi

∥∥∥
Lp(x)(QT )

∣∣∣ ∂u∂xi ∣∣∣∥∥∥ ∂u
∂xi

∥∥∥
Lp(x)(D)

∣∣∣∣∣∣∣
p(x)

dx

=

∫
D


∥∥∥ ∂u
∂xi

∥∥∥
Lp(x)(D)∥∥∥ ∂u

∂xi

∥∥∥
Lp(x)(QT )


p(x) ∣∣∣∣∣∣∣

| ∂u
∂xi
|∥∥∥ ∂u

∂xi

∥∥∥
Lp(x)(D)

∣∣∣∣∣∣∣
p(x)

dx,

p(x) ≥ 2, since

∥∥∥ ∂u
∂xi

∥∥∥
Lp(x)(D)∥∥∥ ∂u

∂xi

∥∥∥
Lp(x)(QT )

≥ 1, then


∥∥∥ ∂u
∂xi

∥∥∥
Lp(x)(D)∥∥∥ ∂u

∂xi

∥∥∥
Lp(x)(QT )


p(x)

≥


∥∥∥ ∂u
∂xi

∥∥∥
Lp(x)(D)∥∥∥ ∂u

∂xi

∥∥∥
Lp(x)(QT )


2

.
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Therefore

∫
D

∣∣∣∣∣∣∣
∣∣∣ ∂u∂xi ∣∣∣∥∥∥ ∂u

∂xi

∥∥∥
Lp(x)(QT )

∣∣∣∣∣∣∣
p(x)

dx ≥

∥∥∥ ∂u
∂xi

∥∥∥2

Lp(x)(D)∥∥∥ ∂u
∂xi

∥∥∥2

Lp(x)(QT )

∫
D

∣∣∣∣∣∣∣
| ∂u
∂xi
|∥∥∥ ∂u

∂xi

∥∥∥
Lp(x)(D)

∣∣∣∣∣∣∣
p(x)

dx

≥

∥∥∥ ∂u
∂xi

∥∥∥2

Lp(x)(D)∥∥∥ ∂u
∂xi

∥∥∥2

Lp(x)(QT )

.

Thus we obtain ∥∥∥ ∂u
∂xi

∥∥∥2

Lp(x)(D)∥∥∥ ∂u
∂xi

∥∥∥2

Lp(x)(QT )

6
∫
D

∣∣∣∣∣∣∣
| ∂u
∂xi
|∥∥∥ ∂u

∂xi

∥∥∥
Lp(x)(QT )

∣∣∣∣∣∣∣
p(x)

dx+ 1.

The intergration of this inequality with respect to t from 0 to T and use of Lemma 1

yields

∫ T

0

∥∥∥ ∂u
∂xi

∥∥∥2

Lp(x)(D)∥∥∥ ∂u
∂xi

∥∥∥2

Lp(x)(QT )

dt 6
∫ T

0

∫
D

∣∣∣∣∣∣∣
| ∂u
∂xi
|∥∥∥ ∂u

∂xi

∥∥∥
Lp(x)(QT )

∣∣∣∣∣∣∣
p(x)

dx dt+ T

=

∫
QT

∣∣∣∣∣∣∣
| ∂u
∂xi
|∥∥∥ ∂u

∂xi

∥∥∥
Lp(x)(QT )

∣∣∣∣∣∣∣
p(x)

dx dt+ T = 1 + T.

Hence, we obtain the inequality∫ T

0

∥∥∥∥ ∂u∂xi
∥∥∥∥2

Lp(x)(D)

dt 6 (1 + T )

∥∥∥∥ ∂u∂xi
∥∥∥∥2

Lp(x)(QT )

.

This implies (
n∑
i=1

∫ T

0

∥∥∥∥ ∂u∂xi
∥∥∥∥2

Lp(x)(D)

dt

)1/2

6 C
n∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥
Lp(x)(QT )

= C‖u‖V̊ (QT ).

Since,∫ T

0

‖u‖2

W
1,p(x)
0 (D)

dt =

∫ T

0

(
n∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥
Lp(x)(D)

)2

dt 6 C

n∑
i=1

∫ T

0

∥∥∥∥ ∂u∂xi
∥∥∥∥2

Lp(x)(D)

dt,
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It follows with an appropriate choice of the constant C that(∫ T

0

‖u‖2

W
1,p(x)
0 (D)

dt

)1/2

6 C ‖u‖V̊ (QT ) .

It follows that V̊ (QT ) ⊂ L2(0, T ;W
1,p(x)
0 (D)); thus we can get the embedding

V̊ (QT ) 	 L2(0, T ;W
1,p(x)
0 (D)).

From the continuous embedding of the generalized Lebesgue spaces we easily have the

following continuous embedding

Ls
(
0, T ;W 1,s

0 (D)
)
	 V̊ (QT ) 	 Lr

(
0, T ;W 1,r

0 (D)
)
,

where 2 6 r = ess infx∈D p(x) 6 s = ess supx∈D p(x) < ∞. And then clearly the

embedding of their duals follows:

Lr/(r−1)
(

0, T ;W
−1,r/(r−1)
0 (D)

)
	
(
V̊ (QT )

)∗
	 Ls/(s−1)

(
0, T ;W

−1,s/(s−1)
0 (D)

)
.

2.4 Functional-Analytic Statement of the Problem

We consider the family of operators A(t) : W
1,p(x)
0 (D) −→

(
W

1,p(x)
0 (D)

)∗
, for t ∈ [0, T ]

such that

(Au(t), v) =
n∑
i=1

∫
D

∣∣∣∣∂u(t, x)

∂xi

∣∣∣∣p(x)−2
∂u(t, x)

∂xi

∂v

∂xi
dx (2.21)

holds for all u, v ∈ W 1,p(x)
0 (D) and for s ∈ [0, t].

If u ∈ V̊ (QT ) then Au(s) ∈
(
V̊ (QT )

)∗
.

We next introduce some probabilistic evolutions spaces.

2.4.1 Some results from probabilistic evolutions spaces

Given a Banach space B, for 1 6 q 6∞, we denote by Lq(0, T ;B) the set of functions

defined on [0, T ] and taking values in B. We endow Lq(0, T ;B) with the norm

‖u‖Lq(0,T ;B) =

(∫ T

0

‖u(t)‖qB dt
)1/q

if 1 6 q <∞.
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When q = ∞, the space L∞(0, T ;B) is the space of all essentially bounded functions

on the closed interval [0, T ] with values in B with the norm

‖u‖L∞(0,T ;B) = ess sup
[0, T ]

‖u‖B < ∞.

Let B be a Banach space, we assume that (Ω,F ,P) is a probability space and let

(Ft)06t6T be a filtration i.e. an increasing and right continuous family of sub σ-algebra

of F with F0 contains all the P-null sets of the filtration. Throughout we denote by E

the mathematical expectation with respect to the probability measure P.

Let 1 6 p 6∞. The space

Lp (Ω,F ,P, Lq (0, T ;B)) (2.22)

consists of all random functions u(t, x, ω) defined on [0, T ]× Ω and taking values in B

such that the function u is measurable w.r.t. (t, ω) and for almost all t, u is measurable

w.r.t. the filtration F . We furthermore endow this space with the norm

‖u‖Lp(Ω,F ,P,Lq(0,T ;B)) =
(
E‖u‖pLq(0,T ;B)

)1/p

. (2.23)

When q =∞, then the norm in the space Lp(Ω,F ,P, L∞(0, T ;B)) is given by

‖u‖Lp(Ω,F ,P,L∞(0,T ;B)) =
(
E ‖u‖pL∞(0,T ;B)

)1/p

.

Theorem 12. Lp(Ω,F ,P, Lq(0, T ;B)) with the norm defined in (2.23) is a Banach

space.

We shall give some useful compactness results.

Lemma 3. Let (gκ)κ=1,2,... and g be some functions in the space Lq(0, T ;Lq(D)) with

1 < q <∞ such that

‖gκ‖Lq(0,T ;Lq(D)) 6 C, ∀κ

and as κ −→∞ gκ −→ g for almost all (t, x) ∈ QT . Then gκ converges weakly to g

in Lq(0, T ;Lq(D)).

Proof 4. For a detailed proof see [53, Chap. 1, Lemma 1.3].
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Remark 1. The above lemma is still valid if instead of Lq(0, T ;Lq(D)) we have

Lp(Ω,F , P, Lq(QT )) for almost all (t, x, ω).

In order to sharpen our result, we collect the next lemma from [75, sect. 8, Theorem 5].

Lemma 4. Given some Banach spaces B, F and H with F a subset of H such that

B is compactly embedded into F . For any p, q ∈ [1,∞], let V be a bounded set in

Lq(0, T ;B) such that

lim
θ−→∞

∫ T−θ

0

‖v(t+ θ)− v(t)‖pH dt = 0, uniformly for all v ∈ V.

Then V is relatively compact in Lp(0, T, F ).

2.4.2 Some Facts and definitions from Stochastic Calculus

In this section, we give some fundamental definitions of probabilistic concepts and provide

some well-known prerequisites from probability theories and stochastic calculus, which

will be used throughout the dissertation. For more details about these basic results we

refer for example to [16], [17], [20], [44], [46], [60], [76], [77], [86], [87], [74].

A probability space is a triple (Ω,F ,P), where

•Ω is the set of all elements ω (ω are called sometimes elementary events),

•F is the Borel σ-field of subsets of Ω

•P is a probability measure.

If (Ω,F ,P) is a given probability space, and (E,G) a measurable space, then a function

f : (Ω,F) −→ (E,G) is called F -measurable if

f−1(B) = {ω ∈ Ω; f(ω) ∈ B} ∈ F ,

for all sets B ∈ G(or, equivalently, for all subset B of E); f is also called E-valued

random variable.
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Expectation

Next, we shall define the expectation EX of an arbitrary random variable without giving

any of its properties.

Definition 10. Let (Ω,F ,P) be a probability space.

We define the expectation of the random variable X by

EX =

∫
Ω

X(ω) P(dω) or

∫
Ω

X dP.

Conditional Expectation

In this section we shall define the conditional expectations with respect to a σ-algebra

G (sub-σ-algebra of F). The concept of conditional expectation is of major importance

in the definition of martingale. Suppose again (Ω,F ,P) is a probability space and that

G is a sub-σ-field of F .

Definition 11. Suppose that X is an E-valued integrable random variable defined on

the probability space (Ω,F ,P). Then the conditional expectation of X with respect

to the σ-field G (conditional expectation of X given G) is the (a.s. unique) integrable

random variable E[X|G] satisfying

1 E[X|G] is G-measurable;

2 for every B ∈ G∫
H

X dP =

∫
H

E[X|G] dP, or E[XIB] = E[E[X|G]IB], for all H ∈ G. (2.24)

Note that the existence and uniqueness of E[X|G] follows from the following result

known as the Radon-Nikodym theorem.

Theorem 13. Let µ be the measure on G defined by

µ(H) =

∫
H

X dP; H ∈ G.
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Then µ is absolutely continuous with respect to P|G, so there exists a P|G-unique G-

measurable random variable Y on Ω such that

µ(H) =

∫
H

Y dP for all H ∈ G.

Thus the conditional expectation E[X|G] is a modification (see definition below) of Y .

The random variable Y =: E[X|G] is indeed unique a.s. with respect to the measure

P|G.

Filtration

Our basic structure is a measurable space (Ω,F).

Definition 12. A filtration is an increasing sequence of σ-algebras on a measurable

space. That is, given a measurable space (Ω,F), a filtration is a sequence of σ-algebras

{Ft}06t6T with Ft ⊆ F for each t ∈ [0, T ] and satisfying

s 6 t =⇒ Fs ⊂ Ft.

Similarly, a filtered probability space (known as a stochastic basis) is a probability space

equipped with a filtration of its σ-algebras. When T =∞ we define F∞ as the σ-algebra

generated by the infinite union of the Ft’s, which is also contained in F :

F∞ = σ

 ⋃
t∈[0,T )

Ft

 ⊆ F .
As a convention we write F∞ =

∨
tFt.

We define Ft+ =
⋂
s>tFs and, for t > 0, we define Ft− =

∨
s<tFs.

The filtration is said to be right continuous if Ft = Ft+ .

Stopping Time

We pass next to the definition of stopping times.
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Definition 13. Suppose that we are given a measurable space (Ω,F) equipped with a

filtration F = {Ft}06t6T . A random variable τ : Ω −→ [0,∞] is called a stopping

time with respect to the filtration F (or an F -stopping time or simply a stopping time

if there is no confusion) if the event {τ 6 t} = {ω : τ(ω) 6 t} ∈ Ft, for every t, t ≥ 0.

Stochastic Process

We assume as given a probability space (Ω,F ,P).

Definition 14. A stochastic process X defined on a measurable space (Ω,F) with

values in a measurable space (E,G) is a family of random variables (X(t))06t6T with

values in E, indexed by t ∈ [0, T ].

(1) For a fixed sample point ω ∈ Ω, the function t 7→ X(t, ω); 0 6 t 6 T is the

sample path of the process X associated with ω.

(2) X is continuous if its sample paths X(t, ω) is a continuous funtions of t, for almost

all (almost everywhere) ω ∈ Ω.

Definition 15. Suppose that F = {Ft}, 0 6 t 6 T is a filtration of the measurable

space (Ω,F), and X is a stochastic process defined on (Ω,F) with values in (E,G).

Then X is said to be adapted to the filtration (Ft)06t6T (or Ft-adapted) if X(t) ∈ Ft
that is Ft-measurable random variable, for each t ∈ [0, T ].

Definition 16. Suppose that X = {X(t)}06t6T is a stochastic process defined on a

measurable space (Ω,F), and taking values in the measurable space (E,G). Then X is

said to be measurable process if the map (t, ω) 7−→ X(t, ω) is measurable provided

that [0, T ]× Ω is given the product σ-field B([0, T ])⊗ F , where B([0, T ]) denotes the

Borel σ-fields.

We shall introduce one of the most important theorems for constructing Wiener process.

For further proofs and more information about these theorems and definitions we refer

to [58].
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Theorem 14. ( Kolmogorov Extension Theorem)

For all t1, t2, . . . , tk ∈ [0, T ], k ∈ N let νt1 , . . . , νtk be probability measures on Rnk such

that

νtσ(1),...,...tσ(k)
(F1 × · · · × Fk) = νt1,...tk

(
Fσ−1(1) × · · · × Fσ−1(k)

)
(2.25)

for all permutations σ on {1, 2, . . . , k} and

νt1,...,...tk (F1 × · · · × Fk) = νt1,...tk,tk+1,...,tk+m
(F1 × · · · × Fk × Rn × · · · × Rn) (2.26)

for all m ∈ N, where the set on the right hand side has a total of m+ n factors.

Then there exists a probability space (Ω,F ,P) and a stochastic process X = {X(t)}

on Ω, X(t) : Ω −→ Rn, such that

νt1,...,...tk (F1 × · · · × Fk) = P [X(t1) ∈ F1, · · · , X(tk) ∈ Fk] ,

for all ti ∈ [0, T ], k ∈ N and all Boral sets Fi.

In order to contruct Wiener process we need the following.

Fix x ∈ Rn and define

p(t, x, y) = (2πt)−n/2 exp

(
−|x− y|R

n

2t

)
for y ∈ Rn, t > 0.

If 0 6 t1 6 t2 6 · · · 6 tk define a measure νt1,...,tk on Rn by

νt1,...,tk (F1 × · · · × Fk) =∫
F1×···×Fk

p(t1, x, x1)p(t2 − t1, x1, x2) · · · p(tk − tk−1, xk−1, xk) dx1 · · · dxk, (2.27)

where dx = dx1 · · · dxk stands for the Lebesgue measure and the p(0, x, y)dy = δx(y),

is the unit point mass at x. The extension of this definition rest on (2.25). It is clear

that p(t, x, y) satisfies
∫

Rn p(t, x, y) dy = 1 for all t ∈ [0, T ], hence property (2.26) is

valid. Then we apply Theorem 14 to find a probability space (Ω,F ,Px) and a stochastic

process W = {W (t)}06t6T on Ω such that the finite dimensional distributions on W (t)

are given by

Px (Wt1 ∈ F1, · · · ,Wtk ∈ Fk) =∫
F1×···×Fk

p(t1, x, x1)p(t2 − t1, x1, x2) · · · p(tk − tk−1, xk−1, xk) dx1 · · · dxk. (2.28)

 
 
 



CHAPTER 2. FUNCTION SPACES 29

Definition 17. A process W = {W (t)}t∈[0,T ] satisfying properties (2.27) and (2.28)

above is called Wiener process on a measurable space (Ω,F) with a family of probability

measures Px, i.e, Px(W0 = x) = 1, and W is a Wiener process starting at x under Px.

A Wiener process is characterized by the following properties:

(i) W (t) is a Gaussian process, i.e. for all 0 6 t1 6 · · · 6 tk the random variable

W = {W (t)}t∈[t1,tk] has a normal distribution.

(ii) W (t) has independent increments, i.e.

Wt1 ,Wt2 −Wt1 , · · · ,Wtk −Wtk−1

are independent for all 0 6 t1 < t2 < · · · < tk.

Definition 18. Two stochastic processes X = {X(t)} and Y = {Y (t)} defined on the

same probability space (Ω,F ,P) with values in (E,G) are said to be a modification of

(or a version of) each other if

P (ω : X(t, ω) = Y (t, ω)) = 1, ∀t ∈ [0, T ].

Note that if X(t) is a modification of Y (t), then X(t) and Y (t) have the same finite-

dimensional distributions.

Next, we introduce another famous theorem of Kolmogorov which can help to justify

the existence of a continuous version of Wiener process:

Theorem 15. ( Kolmogorov’s continuity theorem). Suppose that the process X =

{X(t)}t∈[06t6T satisfies the following condition: for all T > 0 there exist positives

constant α, β, C such that

E [|X(t+ h)−X(t)|α] 6 C|h|1+β; 0 6 t, h 6 T.

Then there exists a continuous version of X.

Theorem 16. Let W be a Wiener process. Then there exists a modification of W which

has continuos paths a.s.
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To check whether or not a given proess W (t) is a Wiener process, we need the following

necessary and sufficient condition: for and arbitrary n, 0 = t0 < t1 < · · · < tn = T , and

z0, z1, . . . , zn

E exp

{
i

n∑
k=1

zk [W (tk)−W (tk−1)] + iz0W (t0)

}
= exp

{
−1

2

n∑
k=1

z2
k(tk − tk−1)

}
.

Martingale

Definition 19. A stochastic process X = (X(t))06t6T taking values in E, adapted

to the filtration F = {Ft} is called a martingale( or martingale with respect to the

filtration) if  i) X(t) ∈ L1(dP); that is, E (|X(t)|) <∞, ∀t ∈ [0, T ],

ii) E (X(t)|Fs) = Xs, P− a.s., for any t > s ≥ 0.

The main ingredient in the theory of integration is the concept of square integrable

martingales.

Definition 20. A random variable X is said to be square integrable if it has a finite

second moment (or mean square), that is E[X2] <∞. A process X = {X(t)}t∈[0,T ] is

square integrable if supt∈[0,T ] E[X(t)2] <∞. If the process X satisfies the following:

a) X is a martingale,

b) X is square integrable,

then X is called square integrable martingale.

Let 1 6 p <∞. We denote by

Lp(Ω,F ,P)

the space of all stochastic processes (resp. martingales) X = {X(t)}06t6T with values

in E, that satisfy the following two properties

i) ‖X(t)‖E is measurable,
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ii) E[‖X(t)‖pE] <∞.

Any stochastic process X for which the above two properties hold is called p-th integrable

stochastic (resp. p-th integrable martingale) process.

Definition 21. (cf. [47])

An adapted process X = {X(t)}06t6T with values in E is said to be a local martingale

if there exists an increasing sequence of of stopping times τn, such that

(i) τn −→∞ almost surely as n −→∞,

(ii) for each n the stopped processes X(t∧ τn) is uniformly integrable ( the definition

will follow ) martingale in t.

Stochastic Integrals

In this section we shall introduce the definition of the stochastic integral∫ T

0

X(t) dW (t) (2.29)

of a process X = X(t) for any t ∈ [0, T ] with respect to a standard one dimensional

Wiener process W .

Let X be an Ft-measurable process for each t, for which∫ T

0

X2(t) dt <∞.

Then we can define the Itô integral (2.29) for the process X as follows:∫ T

0

X(t) dW (t) = lim
n−1∑
i=0

X(ti)
(
W (tni+1)−W (tni )

)
, (2.30)

as |δn| −→ 0 and n −→∞, where for each n, {tni }, is a partition of the interval [0, T ],

and the limit is taken over all partitions with δn = max16i6n−1(tni+1 − tni ) is the mesh

of the partition tni = {tn0 < tn1 < · · · < tnn = T} of the interval [0, T ].
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Theorem 17. For a process X(t) possessing the above properties, the stochastic inte-

grals ∫ t

0

X(s) dW (s)

are continuous martingales in t with zero mean, that is

E
∫ .

0

X(t) dW (t) = 0.

Suppose that h is an Ft-adapted process such that∫ T

0

h2(t) dt <∞ almost surely,

now consider Y (t) to be an R-valued Itô integral with respect to a Rm standard Brownian

motion defined by

Y (t) =

∫ t

0

h(s) dW (s).

Then, the corresponding Itô integrals are defined for any t 6 T and they are local

martingales.

Stochastic differential and Itô processes

Consider the Itô integral

Y (t) =

∫ t

0

X(s)dW (s).

A process Y = {Yt}06t6T is said to be an Itô process if for any 0 6 t 6 T it can be

expressed as follows:

Y (t) = Y (0) +

∫ t

0

µ(s) ds+

∫ t

0

σ(s) dW (s), (2.31)

where processes µ(t) and σ(t) satisfy the properties:

(i) µ(t) is adapted and
∫ T

0
|µ(t)| dt <∞ almost surely

(ii) σ(t) is predictible and
∫ T

0
σ2(t) dt <∞ almost surely.
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We now introduce the notion of stochastic differential with respect to a standard brow-

nian motion. The differential relation

dY (t) = X(t) dW (t)

is called by convention stochastic differential with respect to a standard brownian motion.

If Y is an Itô process given by (2.31), we will then say that the process Y (t) has a

stochastic differential on the interval [0, T ]

dY (t) = µ(t) dt+ σ(t) dW (t), 0 6 t 6 T. (2.32)

If µ and σ depend on t through the process Y (t), we then write

dY (t) = µ(Y (t)) dt+ σ(Y (t)) dW (t), 0 6 t 6 T. (2.33)

Itô’s formula

In the following result we introduce the Itô’s formula for ϕ(X(t)).

Theorem 18. Let X(t) have a stochastic differential for 0 6 t 6 T

dX(t) = b(s) ds+ h(s) dW (s),

where b(t) is an R-valued, Ft-measurable and integrable process over [0, T ].

Suppose that ϕ(x) is once continuously differentiable in t and twice continuously dif-

ferentiable in x. Then the the process Y (t) = ϕ(X(t)) also possesses a stochastic

differential and is given by

dϕ(X(t)) = ϕ′(X(t)) dX(t) +
1

2
ϕ′′(X(t))h2(t) dt (2.34)

=

[
ϕ′(X(t))b(t) +

1

2
ϕ′′(X(t))h2(t)

]
dt+ ϕ′(X(t))h(t) dW (t). (2.35)

In integral notations

ϕ(X(t)) = ϕ(X(0)) +

∫ t

0

ϕ′(X(s)) dX(s) +
1

2
ϕ′′(X(s))h2(s) ds. (2.36)
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Formula (2.36) is called Itô’s formula for ϕ(X(t)).

We shall introduce a useful result which is known as the Burkholder-Davis-Gundy in-

equality. This gives bounds for the maximum of a martingale in terms of the quadratic

variations. The proof of the Burkholder-Davis-Gundy inequality can be found in [61] and

[64].

Theorem 19. Suppose that Y (t) =
∫ t

0
X(s) dW (s) is the Itô’s integral process such

that

E
(∫ τ

0

X2(t) dt

)p/2
<∞.

Then, for any real number p > 0 there are constants cp > 0 and 0 < Cp <∞ depending

only on p, such that for any stopping time τ

cpE
[∫ τ

0

X2(t) (dW (t))2

]p/2
6 E sup

06t6τ

∣∣∣∣∫ t

0

X(s) dW (s)

∣∣∣∣p 6 CpE
[
X2(s) ds

]p/2
.

(2.37)

We collect some powerful theorems from Prokhorov [60] and Skorohod [76] which are

compactness results . A detailed proof of these results can be found in [20].

We firstly introduce the tightness of probability measures.

We shall consider E to be a separable complete metric space and consider its Borel

σ-field B(E). We have the following definitions of relative compactness and of tightness

of probability measure.

Definition 22. A family of probability measures Πn on (E,B(E)) is said to be relatively

compact if from every sequence of elements of Πn we can extract a subsequence Πnj

such that Πnj converges weakly to the measure Π. This can also be formulated as

follows:

For any continuous and bounded function φ on E

lim
j−→∞

∫
E

φ(s) dΠnj −→
∫
E

φ(s) dΠ.

We define the tightness of Πn by
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Definition 23. A family of probability measures Πn on (E,B(E)) is tight if for any

ε > 0, we can find a compact subset Kε of E such that

P(Kε) ≥ 1− ε for every P ∈ Πn.

Theorem 20 (Prokhorov). The family of probability measures Πn is relatively compact

if and only if it is tight.

The weak convergence of probability measures can also be related to the almost every-

where convergence of random variables by the following theorem from [76].

Theorem 21 (Skorokhod). For any sequence of probability measures Πn on (E,B(E))

which converges weakly to a probability measure Π, there exists a probability space

(Ω′,F ′,P′) and random variables X,X1, . . . , Xn, . . . with values in E such that the

probability law of Xn is Πn and that of X is Π and

lim
n→∞

Πn = Π, P′ − a.s.

Uniform Integrability

The concept of uniform integrability is very important in Probability Theory. Assume that

we are given a probability space (Ω,F ,P) and L1(Ω,F ,P) is the space of (equivalence

classes) of real random variables X such that ‖X‖L1(Ω,F ,P) = E[|X|] <∞.

Definition 24. A family of random variables is said to be uniformly integrable provided

that

sup
n

∫
{|Xn|>c}

|Xn(ω)| dP(ω) (2.38)

converges to 0 uniformly as c −→∞, or in a different notation,

sup
n

E
[
|Xn(ω)|I{|Xn|>c}

]
(2.39)

converges to 0 uniformly, as c −→∞.
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The definition of uniformly integrable random variables is very useful in limit theorems,

as the generalization of dominated Lebesgue’s convergence theorem. That is known

as Vitali’s theorem (see definition below). The following result is very useful test for

uniform integrability test and is known as de la Vallée-Poussin theorem.

Theorem 22. Let {Xn}n∈N be a sequence of integrable random variables. That is

E[|Xn|] < ∞. Let ϕ = ϕ(t) : [0, T ] −→ [0,∞) be a nonnegative increasing, convex

function (ϕ(λx+ (1−λ)y) 6 λϕ(x) + (1−λ)ϕ(y)) for all x, y ∈ [0, T ], λ ∈ [0, 1] such

that

lim
t−→∞

ϕ(t)

t
=∞; (2.40)

and

sup
n∈N

∫
Ω

ϕ(|Xn(ω)|) dP(ω) <∞. (2.41)

Then the family {Xn}n∈N is uniformly integrable if and only if (2.40) and (2.41) hold.

Note: the function ϕ defined above is called a u.i. (uniform integrability) test function.

Corollary 2. If the process X = {Xt}06t6T is square integrable, that is, sup06t6T E[X2
t ] <

∞, then X is uniformly integrable.

We introduce a necessary and sufficient condition for a family {Xn}n∈N of random

variables to be uniformly integrable. That will help us to relate the two, i.e., uniform

integrability and the convergence to random variables. For the proof of the following

results, we refer to [74, page 186-189 and 191] and the bibliography therein.

Theorem 23 (Vitali’s Theorem). Suppose that {Xn}n∈N is sequence of intergrable

random variables, that is Xn ∈ L1(Ω,F ,P) with E(|Xn|) < ∞. Suppose as well that

Xn converges in probability to the random variable X with E(|X|) < ∞. Then, the

following properties are equivalent

i) the sequence of random variables (|Xn|)n∈N are uniformly integrable,
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ii) In probabilistic language, a sequence of integrable random variables (Xn)n∈N con-

verges to X in mean. That is, E[|Xn|] −→ E[|X|],

iii) a sequence {Xn}n∈N converges to X in the L1-norm. That is, Xn −→ X in

L1(Ω,F ,P).

Hölder’s inequality. Let 1 < p, q < ∞, and
1

p
+

1

q
= 1. If E[|X|p] < ∞ and

E[|Y |q] <∞, Then E[|XY |] <∞ and

E[XY ] 6 (E[|X|p])1/p (E[|Y |q])1/q . (2.42)

 
 
 



Chapter 3

SETTING AND MAIN RESULT

In this section we shall give the definition of the weak probabilistic solution to our prob-

lem, formulate our main result and prove the existence theorem of the weak probabilistic

solutions by using the monotonicity of the operator A introduced in (2.21) subsection

2.4.

3.1 Assumptions

We now introduce the conditions on the nonlinear operators in equation (1.1).

We assume that

f : (0, T )× L2(D) −→ L2(0, T ; (W
1,p(x)
0 (D))∗), measurable

a.e. (t, u) −→ f(t, u) : continuous w.r.t the second variable

‖f(t, u)‖
L2(0,T ;(W

1,p(x)
0 (D))∗)

6 C
(
1 + ‖u‖L2(QT )

)
(3.1)

G : (0, T )× L2(D) −→
(
L2(D)

)d
, measurable

a.e. (t, u) −→ G(t, u) : continuous from w.r.t the second variable

‖G(t, u)‖(L2(D))d 6 C(1 + ‖u(t)‖L2(D)). (3.2)

38
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Suppose that p(x) ≥ 2 and satisfies the inequalities

2 6 r = ess inf
x∈Dp0

p(x) 6 s = ess sup
x∈Dp0

p(x) <∞. (3.3)

Next, we shall define the concept of probabilistic weak solution of the I-BVP (1.1)-(1.3)

as follows:

Definition 25. A probabilistic weak solution of the I-BVP (1.1-1.3) is a probabilistic

system

(Ω,F , (Ft)06t6T ,P,W, u) , (3.4)

where

(1) (Ω,F ,P) is a probability space, Ft is a filtration on it,

(2) W is an d-dimensional Ft-standard Wiener process,

(3) u(t) is Ft-measurable,

(4) u(t) is an element of

Lq(Ω,F ,P, L∞(0, T ;L2(D))) ∩ V̊ (Q) ∩ Lq/2(Ω,F ,P, Lr(0, T ;W
1,p(x)
0 (D)))

for any q ∈ [2, 2r′

r′−1
],

(5) for a.e t ∈ [0, T ], u(t) satisfies the integral identity

(u(t), v)−
∫ t

0

(A(s)u(s), v)ds = (u0, v) +

∫ t

0

(f(s, u(s), v) ds+

+

(∫ t

0

G(s, u(s)) dW (s), v

)
, (3.5)

for all v ∈ W 1,p(x)
0 (D).

Our main result is
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3.2 Main Result

Theorem 24 (Existence theorem). Let p(x) ≥ 2 be a measurable function such that

p ∈ C(D̄) and moreover p(x) satisfies the second condition in Theorem 9. In addition,

assume that (3.1), (3.2), (3.3) hold and u0 ∈ L2(D). Then there exists a probabilistic

weak solution (Ω,F , (Ft)06t6T ,P,W, u) in the sense of the above definition.

The equivalent stochastic parabolic problem to (3.5) is written as follows:

du− Audt = f dt+GdW in (W 1,p(x)(D))∗. (3.6)

Remark 2. By virtue of Theorems 9 and 10, W
1,p(x)
0 (D) 		 L2(D) ⊂ (W

1,p(x)
0 (D))∗,

for p(x) ≥ 2. Identity (3.5) with the inclusion V̊ (Q)∩Lr(0, T ;W 1,r
0 (D)) ⊂ L2(Q), im-

plies that u is weakly continuous with values in the dual space (W
1,p(x)
0 (D))∗. Following

[79, subsect 1.4, page 263], we argue that, since the function u(ω) belongs to the space

L∞(0, T ;L2(D)), then u is weakly continuous with values in L2(D); therefore the initial

condition for u for t = 0 is meaningful.

3.3 Proof of the Existence Theorem

In order to prove our main theorem, as an essential auxiliary tool, we use the Galerkin

method.

Our existence proof will proceed in several steps and it follows the scheme of BENSOUS-

SAN [14] for the case of stochastic nonlinear parabolic equation, but with appropriate

changes. We shall prove the existence by firstly constructing approximate solutions to the

I-BVP (1.1)-(1.3) through a Galerkin scheme of the problem (1.1)-(1.3). At the second

step we derive a “priori” estimates for the approximating solutions of these Galerkin

systems. At the third step we pass to the limit in the finite dimensional equation by

choosing from the sequence of solutions (um) a subsequence
(
umµ

)
which converges

weakly in appropriate topologies. Then at the final step, we shall prove that the limit u
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of um is a solution of the I-BVP (1.1)-(1.3) by using the monotonicity of the operator

A.

3.3.1 Construction of an approximating sequence

Let w1(x), w2(x), . . . , wm(x), . . . be a basis in the space W
1,p(x)
0 (D). For each m ∈ N

let us denote the span of {w1(x), . . . , wm} by Sm.

Consider the probabilistic system

(Ω̄, F̄ , {F̄t}06t6T , P̄, W̄ ).

We seek approximate solutions um(t) of the problem (1.1)-(1.3) in the form

um(t, x) =
m∑
j=1

Cjm(t)wj(x). (3.7)

The functions C1m(t), C2m(t), . . . , Cmm(t) in the expansion (3.7) are found from the

system of stochastic ordinary differential equations

(dum(t) , wj) + (Aum(t) , wj) dt

= (f(t, um(t)), wj) dt+

∫
D

G(t, u(t))wj dx dW̄ (t), j = 1, 2, . . . ,m, t ∈ [0, T ],

(3.8)

with the initial conditions C1m(0) = C1, C2m(0) = C2 . . . , Cmm(0) = Cm, where the

constants Ck , k = 1, 2, . . . ,m, . . ., are the coefficients in the expansion of u0(x) with

respect to the basis w1(x), w2(x), . . . , wm(x), . . . in L2(D). Hence

um(0, x) = u0m(x) =
m∑
j=1

Cjm(0)wj(x) −→ u0(x) strongly inL2(D), asm −→∞.

Then we can rewrite explicitly system (3.8) in the form

m∑
k=1

C ′jm(t)(wk, wj) +
n∑
i=1

∫
D

∣∣∣∣∣
m∑
k=1

Ckm(t)

∣∣∣∣∣
p(x)−2( m∑

k=1

Ckm(t)
∂wk(x)

∂xi

)
∂wj(x)

∂xi
dx

= (f(t, um(t)), wj) dt+

∫
D

G(t, um(t))wj dx dW̄ (t), j ∈ [1,m], t ∈ [0, T ]. (3.9)
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Under our conditions on f and G, the system (3.9) satisfies the conditions of existence

(see [77, page 121, Theorem 2], [76], and [81]). The solution um exists on some interval

[0, tm], tm 6 T . The a priori estimates of the functions um(t) obtained below implies

that um exists on the interval [0, T ].

3.3.2 A ”priori” estimates for the approximate solutions

We shall now establish a priori estimates for the Galerkin approximate solutions um.

To do that, we shall introduce a stopping time argument.

For each natural number k ≥ 1, consider the following Ft-stopping times:

τmk =


inf
{
t ∈ [0, T ] : ‖um(t)‖L2(D) ≥ k

}
,

if
{
ω̄ ∈ Ω̄ : ‖um(t)‖L2(D) ≥ k

}
6= ∅,

T, if
{
ω̄ ∈ Ω̄ : ‖um(t)‖L2(D) ≥ k

}
= ∅.

We shall give the first main result in the following lemma from which follows the existence

of um over the entire closed interval [0, T ].

Lemma 5. There exists a positive constant K independent of m such that the following

a priori estimates hold

Ē sup
06t6T

‖um(s)‖2
L2(D) 6 K, (3.10)

Ē ‖um‖V̊ (Q) 6 K. (3.11)

Here Ē is the mathematical expectation on the probability space (Ω̄, F̄ , P̄).

Proof 5. Let um(t) ∈ Sm = Span{wj(x)}mj=1. By multiplying equation (3.8) by

Cjm(t, ω) and by summing the resulting relations over j from 1 to m we obtain

(dum, um) +

∫
D

n∑
i=1

∣∣∣∣∂um(t, x)

∂xi

∣∣∣∣p(x)−2
∂um(t, x)

∂xi

∂um(t, x)

∂xi
dxdt

= (f(t, um(t)), um(t)) dt+

∫
D

G(t, um(t))um(t)dxdW (t) for j = 1, 2, . . . ,m.

(3.12)
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By applying Ito’s formula to equation (3.12) we get

d‖um(t)‖2
L2(D) = 2

[
−

n∑
i=1

∫
D

∣∣∣∣∂u(t, x)

∂xi

∣∣∣∣p(x)

dx + (f(t, um(t)), um(t))

]
dt+

+

∫
D

‖G(t, um(t))‖2
(L2(D))d dx dt+ 2

∫
D

G(t, um(t, x)um(t, x) dx dW (t).

The integration of this relation over the interval [0, t] yields the following

I ≡ ‖um(t)‖2
L2(D) + 2

∫ t

0

n∑
i=1

∫
D

∣∣∣∣∂u(s, x)

∂xi

∣∣∣∣p(x)

dx ds = 2

∫ t

0

(f(s, um(s)), um(s)) ds+

+ 2

∫ t

0

1

2

∫
D

‖G(s, um(s, x))‖2
(L2(D))d dx ds+ 2

∫ t

0

∫
D

G(s, um(s, x))um(s, x) dx dW (s) +

‖u0m‖2
L2(D). (3.13)

Hence, we obtain the inequality

I 6 2K1‖um‖L2(0,T ;W
1,p(x)
0 (D))

‖f(t, um(t))‖
L2

“
0,T ;

“
W

1,p(x)
0 (D)

”∗” +

+

∫ t

0

‖G(s, um(s, x))‖2
(L2(D))d ds+ 2

∫ t

0

(G(s, um(s, x)), um(s)) dW (s) + ‖u0m‖2
L2(D),

(3.14)

where the positive constant K1 is independent of m.

By applying Young’s inequality to the first term on the right-hand side of relation (3.14)

and using the continuous embedding established in Lemma 2, we obtain

I

6 C(ε)‖f(t, um(t))‖
r
r−1

L2
“

0,T ;
“
W

1,p(x)
0 (D)

”∗” + Cεr‖um‖rV̊ (Qt)
+ ‖u0m‖2

L2(D)

+

∫ t

0

‖G(s, um(s))‖2
(L2(D))d ds+ 2

∫ t

0

(G(s, um(s)), um(s)) dW (s), (3.15)

where ε is a positive constant to be chosen later.

We consider the following alternatives. Either ‖um‖V̊ (Qt)
≥ 1, or ‖um‖V̊ (Qt)

6 1.

If ‖um‖V̊ (Qt)
≥ 1, we set

λ =
n∑
i=1

∫ t

0

∫
D

∣∣∣∣∂um∂xi

∣∣∣∣p(x)

dx dt,
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by definition

‖um‖V̊ (Qt)
=

n∑
i=1

inf

{
λi > 0 :

∫ t

0

∫
D

(∣∣∣∣∂um∂xi

∣∣∣∣ /λi)p(x)

dx dt 6 1

}
,

and from Lemma 1 we obtain λ ≥ 1. Since, 2 6 r 6 p(x), we have 1
p(x)
6 1

r
. This

implies
1

λ1/r
6

1

λ1/p(x)
. We have

1 =

∑n
i=1

∫ t
0

∫
D

∣∣∣∣∂um∂xi

∣∣∣∣p(x)

dx dt

∑n
i=1

∫ t
0

∫
D

∣∣∣∣∂um∂xi

∣∣∣∣p(x)

dx dt

=
n∑
i=1

∫ t

0

∫
D

∣∣∣∣∂um∂xi
/λ1/p(x)

∣∣∣∣p(x)

dx dt;

which implies that

n∑
i=1

∫ t

0

∫
D

∣∣∣∣∂um∂xi
/λ1/r

∣∣∣∣p(x)

dx dt 6
n∑
i=1

∫ t

0

∫
D

∣∣∣∣∂um∂xi
/λ1/p(x)

∣∣∣∣p(x)

dx dt = 1.

This inequality, together with the definition of the norm in the space V̊ (Qt) enable us

to say that

‖um‖V̊ (Qt)
=

n∑
i=1

∥∥∥∥∂um∂xi

∥∥∥∥
Lp(x)(Qt)

6 λ1/r,

hence, ‖um‖rV̊ (Qt)
6 λ. Thus chosing ε sufficiently small in (3.15), we get

‖um(t)‖2
L2(D) + ‖um‖rV̊ (Qt)

6

+ C(ε)‖f(t, um(t))‖r/(r−1)

L2
“

0,T ;
“
W

1,p(x)
0 (D)

”∗” + ‖u0m‖2
L2(D)+∫ t

0

‖G(s, um(s, x))‖2
(L2(D))d ds+ 2

∫ t

0

∫
D

G(s, um(s))um(s) dx dW (s). (3.16)

Let now ‖um‖V̊ (Qt)
6 1. Then

‖um‖rV̊ (Qt)
6 1. (3.17)

By (3.15) and (3.17) we have

‖um(t)‖2
L2(D) 6

C(ε)‖f(t, um(t))‖r/(r−1)

L2
“

0,T ;
“
W

1,p(x)
0 (D)

”∗” + C̃ε + ‖u0m‖2
L2(D)+∫ t

0

‖G(s, um(s, x))‖2
(L2(D))d ds+ 2

∫ t

0

∫
D

G(s, um(s))um(s)dx dW (s). (3.18)
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Conbining (3.16) and (3.18) we come up with

‖um(t)‖2
L2(D) + ‖um‖rV̊ (Qt)

6

C + C(ε)‖f(t, um(t))‖r/(r−1)

L2
“

0,T ;
“
W

1,p(x)
0 (D)

”∗” + ‖u0m‖2
L2(D)+∫ t

0

‖G(s, um(s, x))‖2
(L2(D))d ds+ 2

∫ t

0

∫
D

G(s, um(s))um(s) dx dW (s). (3.19)

Since r ≥ 2 then its conjugate
r

r − 1
6 2. We have by (3.1) and the result of Young’s

inequality

‖f(t, um(t))‖r/(r−1)

L2
“

0,T ;
“
W

1,p(x)
0 (D)

”∗” 6 C1(ε) + C2(ε)‖f(t, um(t))‖2

L2
“

0,T ;
“
W

1,p(x)
0 (D)

”∗”
6 C

(
1 + ‖um‖L2(Qt)

)2
. (3.20)

Let us take the supremum over the interval [0, t ∧ τmk ] and pass to the expectation in

(3.19). Then we can estimate the terms in the resulting right-hand side.

We have

Ē sup
s∈[0, t∧τmk ]

‖um(s)‖2
L2(D) + Ē‖um‖rV̊ (Qt∧τm

k
)
6

C + C(ε)Ē‖um(s)‖2
L2(Qt∧τm

k
) + Ē‖u0m‖2

L2(D) +

Ē
∫ t∧τmk

0

‖G(s, um(s, x))‖2
(L2(D))d ds + 2Ē sup

s∈[0,t∧τmk ]

∫ s

0

∫
D

G(s, um(s))um(s)dx dW (s).

(3.21)

Here we have used the notation t ∧ τmk = min{t , τmk } and t ∈ [0, τmk ].

By assumption (3.2) we have∫ t∧τmk

0

‖G(s, um(s))‖2
(L2(D))d ds 6 C

∫ t∧τmk

0

(
1 + ‖um(s)‖2

L2(D)

)
ds. (3.22)

We proceed to estimate the stochastic integral term in the right-hand side of (3.21).
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We use the Burkholder-Gundy-Davis inequality. We have for any η > 0,

Ē sup
s∈[0,t∧τmk ]

∣∣∣∣∫ s

0

∫
D

G(l, um(l))um(l) dx dW (l)

∣∣∣∣
6 CĒ

(∫ t∧τmk

0

( G(s, um(s)) , um(s) )2 ds

) 1
2

6 CĒ
(∫ t∧τmk

0

‖G(s, um(s))‖2
(L2(D))d ‖um(s)‖2

L2(D) ds

) 1
2

6 C Ē
(∫ t∧τmk

0

[1 + ‖um(s)‖L2(D)]
2‖um(s)‖2

L2(D) ds

)1/2

6 C Ē sup
s∈[0,t∧τmk ]

‖um(s)‖L2(D)

(∫ t∧τmk

0

[1 + ‖um(s)‖L2(D)]
2 ds

)1/2

6 η Ē sup
s∈[0,t∧τmk ]

‖um(s)‖2
L2(D) + Cη Ē

∫ t∧τmk

0

[1 + ‖um(s)‖L2(D)]
2 ds. (3.23)

Here we have used (3.2), Hölder’s and Young’s inequalities.

Combining the above inequalities with an appropriate choice of the parameter η, we

obtain

Ē sup
s∈[0, t∧τmk ]

‖um(s)‖2
L2(D) + Ē‖um‖rV̊ (Qt∧τm

k
)
6

‖u0m‖2
L2(D) + C + C Ē

∫ t∧τmk

0

[1 + ‖um(s)‖L2(D)]
2 ds. (3.24)

This implies that for all s ∈ [0, t ∧ tmk ] and for all m, k ≥ 1

Ē sup
s∈[0,t∧τmk ]

‖um(s)‖2
L2(D) + Ē‖um‖rV̊ (Qt∧τm

k
)
6 K, (3.25)

where K is a positive constant independent of m. As k −→ ∞, the sequence t ∧ τmk
converges to t. Then passing to the limit in (3.25) as k −→ ∞, we obtain the key

estimates

Ē sup
t∈[0,T ]

‖um(t)‖2
L2(D) 6 K, (3.26)

Ē‖um‖rV̊ (QT )
6 K, (3.27)

for all m ≥ 1 and hence the proof of the lemma is complete.
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Lemma 6. Let q ∈ [2, 2r′

r′−1
], then um satisfies the estimate

E sup
06t6T

‖um(s)‖qL2(D) 6 C, (3.28)

where C is positive constant independent of m and r′ is the conjugate of r.

Proof 6. Let q ≥ 4. Applying Ito’s formula to (3.13), we get

d‖um‖q/2L2(D) =
q

2
‖um‖(q−4)/2

L2(D) × (−2) (Aum(t), um(t)) dt+

q‖um‖(q−4)/2

L2(D)

[
(f(t, um) , um(t)) dt+

∫
D

G(t, um)umdx dW (t)

]
+
q

2

(q − 4)

4
‖um(t)‖(q/2)−4

L2(D) ‖G(t, um)‖2
(L2(D))ddt.

After integrating this relation over the closed interval [0, t], we obtain the inequality

‖um(t)‖q/2L2(D) + q

∫ t

0

‖um(s)‖(q/2)−2

L2(D)

∫
D

n∑
i=1

∣∣∣∣∂um∂xi

∣∣∣∣p(x)

dx ds

6 ‖u0m‖q/2L2(D) + q

∫ t

0

‖um(s)‖(q/2)−2

L2(D)

∫
D

f(s, um(s))um(s)dx ds

+
q

2

∫ t

0

‖um(s)‖(q/2)−2

L2(D) (G(s, um(s)), um(s)) dW (s)+

+
q

2

q − 4

4

∫ t

0

‖um(s)‖(q/2)−4

L2(D) ‖G(s, um(s))‖2
(L2(D))d ds.

It follows that

J ≡ sup
06s6t

‖um(s)‖q/2L2(D) +
q

2

n∑
i=1

∫ t

0

‖um(s)‖(q/2)−2

L2(D)

∫
D

∣∣∣∣∂um∂xi

∣∣∣∣p(x)

dx ds

6 ‖u0m‖q/2L2(D) + q

∫ t

0

‖um(s)‖(q/2)−2

L2(D) (f(s, um(s)) , um(s)) ds+

+
q

2
sup

06s6t

∫ t

0

‖um(s)‖(q/2)−2

L2(D) ‖G(s, um(s))‖(L2(D))d‖um(s)‖L2(D)dW (s)+

+

∫ t

0

‖um(s)‖(q/2)−4

L2(D) ‖G(s, um(s))‖2
(L2(D))d ds. (3.29)

To estimate the terms in the right-hand side of (3.29), we take the square and the

mathematical expectation in both sides of this inequality. By using assumption (3.1),
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Hölder’s and Young’s inequalities we have

Ē
(∫ t

0

‖um(s)‖(q/2)−2

L2(D) (f(s, um(s)) , um(s)) ds

)2

6 CĒ

[
sup
s∈[0,t]

‖um(s)‖q−4
L2(D)

(∫ t

0

(f(s, um(s)) , um(s)) ds

)2
]

6 CĒ

[
sup
s∈[0,t]

‖um(s)‖q−4
L2(D)‖f(s, um(s))‖2

L2
“

0,t;
“
W

1,p(x)
0 (D)

”∗”‖um‖2

L2
“

0,t;W
1,p(x)
0 (D)

”
]

6 CĒ

[
‖um‖2

V̊ (Qt)
sup
s∈[0,t]

‖um(s)‖q−4
L2(D)

(
1 + ‖um‖L2(Qt)

)2

]
6 C(ε)Ē‖um‖rV̊ (Qt)

+ εĒ sup
s∈[0,T ]

‖um(t)‖r
′(q−4)

L2(D) + εĒ‖um(t)‖r
′(q−2)

L2(D)

6 C(ε)Ē‖um‖rV̊ (Qt)
+ ε′Ē sup

s∈[0,T ]

‖um(t)‖r
′(q−4)

L2(D) + C(ε′).

Since
2r′

r′ − 1
≥ q then r′(q − 2) 6 q. Therefore by Young’s inequality

Ē
(∫ t

0

‖um(s)‖(q/2)−2

L2(D) (f(s, um(s)) , um(s)) ds

)2

6 CĒ‖um‖rV̊ (Qt)
+ εĒ sup

t∈[0,T ]

‖um(t)‖qL2(D) + C.

Similarly, we have by assumption (3.2),

Ē
(∫ t

0

‖um(s)‖(q−4)/2

L2(D) ‖G(s, um(s))‖2
(L2(D))d ds

)2

6 CĒ
(∫ t

0

‖um(s)‖(q/2)−2

L2(D)

(
1 + ‖um(s)‖L2(D)

)2
ds

)2

6 CĒ
(∫ t

0

[
‖um(s)‖(q/2)−2

L2(D) + ‖um(s)‖q/2L2(D)

]
ds

)2

6 CĒ
(∫ t

0

[
‖um(s)‖q/2L2(D) + 1

]
ds

)2

6 C T Ē
∫ t

0

(
‖um(s)‖qL2(D) + 1

)
ds.
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Let us estimate the stochastic integral in (3.29). We use martingale inequality

Ē

(
sup
s∈[0, t]

∫ s

0

‖um(l)‖(q/2)−2

L2(D) (G(l, um(l)) , um(l)) dW (l)

)2

6 CĒ
∫ t

0

‖um(s)‖q−4
L2(D)(G(s, um(s)) , um(s))2 ds

6 CĒ
∫ t

0

‖um(s)‖q−4
L2(D)‖G(s, um(s))‖(L2(D))d‖um(s)‖L2(D)ds

6 CĒ
∫ t

0

‖um(s)‖q−4
L2(D)‖um(s)‖2

L2(D)

(
1 + ‖um(s)‖L2(D)

)2
ds

6 CĒ
∫ t

0

(
‖um(s)‖q−2

L2(D) + ‖um(s)‖qL2(D)

)
ds

6 C T Ē
∫ t

0

(
‖um(s)‖qL2(D) + 1

)
ds. (3.30)

Combining these estimates for sufficiently small ε and ε′ with an appropriate choice of

the constants C(ε) and C(ε′), we obtain

Ē sup
s∈[0, t]

‖um(s)‖qL2(D) + Ē

(
n∑
i=1

∫ t

0

‖um(s)‖(q/2)−2

L2(D)

∫
D

∣∣∣∣∂um∂xi

∣∣∣∣p(x)

dx ds

)2

6 C T Ē
∫ t

0

(
‖um(s)‖qL2(D) + 1

)
ds. (3.31)

This implies that

Ē sup
s∈[0, t]

‖um(s)‖qL2(D) 6 C T Ē
∫ t

0

(
‖um(s)‖qL2(D) + 1

)
ds.

Hence, we obtain the inequality

Ē
(

sup
06t6T

‖um(t)‖qL2(D)

)
6 C. (3.32)

3.3.3 Estimates involving the dual space
(
W

1,p(x)
0 (D)

)∗
In this subsection, we shall derive an estimate on the norm of the difference

um(t+ θ)− um(t) in the dual space (W
1,p(x)
0 (D))∗.

Lemma 7. The followins holds

Ē sup
06|θ|6δ61

∫ T

0

‖um(t+ θ)− um(t)‖2

(W
1,p(x)
0 (D))∗

dt 6 Cδ (3.33)
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Proof 7. Noting that the functions {Cjm(t)wj(x)}j=1,2,... form an orthonormal ba-

sis of the dual
(
W

1,p(x)
0 (D)

)∗
of W

1,p(x)
0 (D), we introduce the orthogonal projection of(

W
1,p(x)
0 (D)

)∗
onto the span of Sm = {C1m(t)w1(x),. . . ,Cjm(t)wj(x),. . . ,Cmm(t)wm(x)};

Pm : (W
1,p(x)
0 (D))∗ −→ Sm; (3.34)

Pmξ =
m∑
i=1

Cjm(t)〈ξ, wj〉W 1,p(x)
0 (D)×

“
W

1,p(x)
0 (D)

”∗ wj(x), (3.35)

where 〈· , ·〉
W

1,p(x)
0 (D)×

“
W

1,p(x)
0 (D)

”∗ denotes the duality pairing between the space W
1,p(x)
0 (D)

and its dual
(
W

1,p(x)
0 (D)

)∗
.

Then writing (3.12) in integrated form as an equality between random variables with

values in the space
(
W

1,p(x)
0 (D)

)∗
,

um(t, x) +

∫ t

0

Pm [A(s)um(s)− f(s, um)] ds = u0m +

∫ t

0

Pm(G(s, um))dW (s).

(3.36)

For positive θ such that um(t+ θ) is defined for t ∈ [0, T ], we have

um(t+ θ)− um(t)

= −
∫ t+θ

t

PmAum(s)ds+ Pm

(∫ t+θ

t

f(s, um(s))ds+

∫ t+θ

t

G(s, um(s))dW̄ (s)

)
;

(3.37)

and then by definition

‖um(t+θ)−um(t)‖
(W

1,p(x)
0 (D))∗

= sup
ϕ∈W 1,p(x)

0 (D):‖ϕ‖
W

1,p(x)
0 (D)

=1

∫
D

(um(t+θ)−um(t))ϕ(x)dx.

We set

yt(θ) =

∥∥∥∥−∫ t+θ

t

Pm [Aum(s)− f(s, um)] ds+

∫ t+θ

t

PmG(s, um) dW̄ (s)

∥∥∥∥“
W

1,p(x)
0 (D)

”∗ .
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From this we have the following

‖um(t+ θ)− um(t)‖
(W

1,p(x)
0 (D))∗

= yt(θ)

6

∥∥∥∥∫ t+θ

t

PmAum(s) ds

∥∥∥∥“
W

1,p(x)
0 (D)

”∗ +

+

∥∥∥∥Pm ∫ t+θ

t

f(s, um(s)) ds

∥∥∥∥“
W

1,p(x)
0 (D)

”∗ +

+

∥∥∥∥∫ t+θ

t

PmG(s, um(s)) dW̄ (s)

∥∥∥∥“
W

1,p(x)
0 (D)

”∗ .
(3.38)

Since A is bounded from W
1,p(x)
0 (D) −→ (W

1,p(x)
0 (D))∗, we have by Fubini’s theorem

and Hölder’s inequality∥∥∥∥∫ t+θ

t

PmAum(s)ds

∥∥∥∥
(W

1,p(x)
0 (D))∗

= sup
ϕ∈W 1,p(x)

0 (D):‖ϕ‖
W

1,p(x)
0 (D)

=1

∫
D

(∫ t+θ

t

PmAum(s)ϕ(x)ds

)
dx

6
∫ t+θ

t

‖PmAum(s)‖
(W

1,p(x)
0 (D))∗

ds

6 C

∫ t+θ

t

‖um(s)‖
W

1,p(x)
0 (D)

ds

6 Cθ1/2

(∫ t+θ

t

‖um(s)‖2

W
1,p(x)
0 (D)

)1/2

. (3.39)

Similarly we also have∥∥∥∥Pm ∫ t+θ

t

f(s, um(s))ds

∥∥∥∥
(W

1,p(x)
0 (D))∗

6
∫ t+θ

t

‖f(s, um(s))‖
(W

1,p(x)
0 (D))∗

ds

6 Cθ1/2

(∫ t+θ

t

‖f(s, um(s))‖2

(W
1,p(x)
0 (D))∗

ds

)1/2

.

(3.40)

According to (3.37), (3.39) and (3.40) and taking into account the inequality (3.38), we
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have

‖um(t+ θ)− um(t)‖
(W

1,p(x)
0 (D))∗

6 Cθ1/2

[(∫ t+θ

t

‖um(s)‖2

W
1,p(x)
0 (D)

ds

)1/2

+

(∫ t+θ

t

‖f(s, um(s))‖2

(W
1,p(x)
0 (D))∗

ds

)1/2
]

+

∥∥∥∥∫ t+θ

t

PmG(s, um(s))dW̄ (s)

∥∥∥∥
(W

1,p(x)
0 (D))∗

. (3.41)

Taking the square in (3.41), we get

‖um(t+ θ)− um(t)‖2“
W

1,p(x)
0 (D)

”∗
6 Cθ

∫ t+θ

t

‖um(s)‖2

W
1,p(x)
0 (D)

ds+

+ Cθ

∫ t+θ

t

‖f(s, um(s))‖2

(W
1,p(x)
0 (D))∗

ds

+

∥∥∥∥∫ t+θ

t

G(s, um(s))dW̄ (s)

∥∥∥∥2

(W
1,p(x)
0 (D))∗

. (3.42)

We fix δ < 1 and we take the supremum over θ 6 δ, then we obtain

sup
06θ6δ<1

[yt(θ)]
2

6 CTδ2 sup
06t6T

‖um(t)‖2

W
1,p(x)
0 (D)

+ Cδ sup
06θ6δ<1

∫ t+δ

t

‖f(s, um(s))‖2

(W
1,p(x)
0 (D))∗

ds

+ sup
06θ6δ<1

∥∥∥∥∫ t+θ

t

G(s, um(s))dW̄ (s)

∥∥∥∥2

(W
1,p(x)
0 (D))∗

. (3.43)

Integrating the inequality (3.43) with respect to t from δ to T − δ, we obtain

Ē sup
06θ6δ<1

∫ T−δ

δ

‖um(t+ θ)− um(t)‖2“
W

1,p(x)
0 (D)

”∗dt
6 CTδ2Ē sup

06t6T
‖um(t)‖2

W
1,p(x)
0 (D)

+ CδĒ
∫ T−δ

δ

(
sup

06θ6δ<1

∫ t+δ

t

‖f(s, um(s))‖2

(W
1,p(x)
0 (D))∗

ds

)
dt

+ Ē
∫ T−δ

δ

sup
06θ6δ<1

∥∥∥∥∫ t+θ

t

G(s, um(s))dW̄ (s)

∥∥∥∥2

(W
1,p(x)
0 (D))∗

. (3.44)
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We first estimate the second term in the right-hand side of (3.44). We have

Ē
∫ T−δ

δ

(∫ t+δ

t

‖f(s, um(s))‖2

(W
1,p(x)
0 (D))∗

ds

)
dt 6 CĒ

∫ T

0

‖f(t, um(t))‖2

(W
1,p(x)
0 (D))∗

dt

= CĒ‖f(t, um(t))‖2

L2(0,T ;(W
1,p(x)
0 (D))∗)

6 CĒ
(
1 + ‖um‖L2(Qt)

)2

6 CĒ‖um‖2
L2(Qt)

+ C

6 CĒ sup
06t6T

‖um‖2
L2(D) + C; (3.45)

and we also note that

Ē
∫ T−δ

δ

Cδ

(∫ t+δ

t

‖um(s)‖2

W
1,p(x)
0 (D)

)
dt 6 CδĒ

∫ T

0

‖um(t)‖2

W
1,p(x)
0 (D)

dt

= CδĒ‖um‖2

L2(0,T ;W
1,p(x)
0 (D))

6 CδĒ‖um‖2
V̊ (QT )

6 Cδ
(
Ē‖um‖rV̊ (QT )

) 2
r
. (3.46)

For the estimate of the stochastic integral term we use martingale’s inequality. We have

by using assumption (3.2) and Fubini’s Theorem

Ē
∫ T−δ

δ

sup
06θ6δ<1

∥∥∥∥∫ t+θ

t

G(s, um(s))dW̄ (s)

∥∥∥∥2

(W
1,p(x)
0 (D))∗

dt

6 Ē
∫ T−δ

δ

(∫ t+δ

t

[G(s, um(s))]2 ds

)
dt

6
∫ T−δ

δ

Ē
(∫ t+δ

t

‖G(s, um(s))‖2
(L2(D))d ds

)
dt

6 C

∫ T−δ

0

Ē
(∫ t+δ

t

(
1 + ‖um(s)‖L2(D)

)2

ds

)
dt

6 TCδ + Cδ

∫ T

0

Ē
(∫ t+δ

t

‖um(s)‖2
L2(D) ds

)
dt

6 TCδ + CδĒ sup
t∈[0,T ]

‖um(t)‖2
L2(D). (3.47)

Taking into account the estimates of the previous Lemmas we have

Ē
∫ T−δ

δ

sup
06θ6δ<1

∥∥∥∥∫ t+θ

t

G(s, um(s))dW̄ (s)

∥∥∥∥2

(W
1,p(x)
0 (D))∗

dt 6 Cδ. (3.48)
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Combining the inequalities (3.38)-(3.48), with the key estimates (3.26), (3.27) and

(3.28) of Lemmas 5 and 6, we obtain

Ē sup
06θ6δ<1

∫ T

0

‖um(t+ θ)− um(t)‖2“
W

1,p(x)
0 (D)

”∗dt 6 Cδ,

where the constant C is independent of δ and m. Finally, collecting all the estimates

and making a similar reasoning with θ < 0, we obtain

Ē sup
|θ|6δ<1

∫ T

0

‖um(t+ θ)− um(t)‖2“
W

1,p(x)
0 (D)

”∗dt 6 Cδ. (3.49)

This proves Lemma 8.

3.3.4 A variation of the compactness result

Following Bensoussan [13], we reformulate the Lemma 5 as;

Proposition 1. Let µn and νn be both sequences of positive real numbers such that

both sequences tend to 0 as n tends to ∞. Then, we have the following compact

embedding

Wµn,νn =

z ∈
L2
(

0, T ;W
p(x)
0 (D)

)
∩ L∞ (0, T ;L2(D))

supn
1

νn
sup|θ|6µn

(∫ T
0
‖z(t+ θ)− z(t)‖2

(W
p(x)
0 (D))∗

dt
)1/2

<∞


is compactly embedded in L2(0, T ;L2(D)).

We define the norm in the space Wµn,νn by

‖z‖Wµn,νn
= sup

06t6T
‖z(t)‖L2(D) +

(∫ T

0

‖z(t)‖2

W
1,p(x)
0 (D)

dt

)1/2

+

+ sup
n

1

νn
sup
|θ|6µn

(∫ T

0

‖z(t+ θ)− z(t)‖2

(W
p(x)
0 (D))∗

dt

)1/2

. (3.50)

The space Wµn,νn with the norm (3.50) is a Banach space.

We also consider the probabilistic evolution space

Zµn,νn
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of random variables z such that

E

(∫ T

0

‖z‖2

W
1,p(x)
0 (D)

dt

)1/2

<∞,
(
E sup

06t6T
‖z‖qL2(D)

)1/q

< ∞;

and E sup
n

1

νn
sup
|θ|6µn

(∫ T

0

‖z(t+ θ)− z(t)‖2

(W
p(x)
0 (D))∗

dt

)1/2

<∞.

The space Zµn,νn endowed with the norm

‖z‖Zµn,νn = E

(∫ T

0

‖z‖2

W
1,p(x)
0 (D)

dt

)1/2

+

(
E sup

06t6T
‖z‖qL2(D)

)1/q

+

+E sup
n

1

νn
sup
|θ|6µn

(∫ T

0

‖z(t+ θ)− z(t)‖2

(W
p(x)
0 (D))∗

dt

)1/2

,

is a Banach space. The a priori estimates established in the previous Lemmas allow us to

assert that for any q ∈
[
2, 2r′

r′−1

]
, and for µn, νn such that the series

∑∞
n=1

√
µn

νn
< ∞,

the Galerkin solutions {um : m ∈ N} remain in a bounded subset of Zµn,νn since

V̊ (QT ) 	 L2
(

0, T ;W
1,p(x)
0 (D)

)
.

Next, we shall prove the tightness property of the Galerkin solutions. Similar proof with

more details can be found in [14], [23], [63], [68], [71], [69] and [72].

3.3.5 Tightness property of Galerkin approximating solutions

We consider the set

S = C(0, T ; Rd)× L2(0, T ;L2(D)).

We equip S with its Borel σ-algebra denoted by B(S): the σ-algebra of the Borel sets

(subsets of S ) of S.

For each m, we consider the following mapping

φ : Ω̄ −→ S : ω̄  
(
W̄ (., ω̄), um(., ω̄)

)
.

For each m, we consider Πm to be the probability measure on (S,B(S)) given by

Πm(A) = P̄(φ−1(A)), (3.51)

for all borel set A ⊂ S. We have the following main result concerning the tightness of

the family of probability measures Πm on S.
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Theorem 25. The family of probability measures {Πm m = 1, 2, . . .} is tight.

Proof 8. (cf. [14], [23], [62], [63], [68], [71], [72])

We shall find for any ε > 0 compact subsets

Wε ⊂ C(0, T ; Rd), Zε ⊂ L2(0, T ;L2(D)),

such that

Πm

((
W̄ , um

)
∈ Wε × Zε

)
≥ 1− ε.

This can also be proved by the following inequality

P̄
(
ω : W̄ (., ω̄) ∈ Wε;um(., ω̄) ∈ Zε

)
≥ 1− ε (3.52)

which in its turn can be proved by the following

P̄
(
ω̄ : W̄ (., ω̄) /∈ Wε

)
6

ε

2
, (3.53)

P̄ (ω̄ : um(., ω̄) /∈ Zε) 6
ε

2
. (3.54)

For as a constant Lε depending on ε to be chosen later on and N a natural number so

that as N −→ ∞;
∑ √

µN
νN

< ∞. We consider a subdivision { j
N6} of length T

N6 of the

interval [0, T ]. We next consider the following set

Wε =


W (.) ∈ C(0, T ; Rm), such that sup

s, t ∈ [0, T ]

|t− s| < T/N6

N |W (t)−W (s)| 6 Lε


In view of Arzela-Ascoli’s Theorem, the subset Wε is compact in the space C(0, T ; Rd).

For the rest of the proof, we need the following.

Theorem 26. Let ξ be a random variable on the probability space (Ω̄, F̄ , P̄). For any

positive constant C > 0, and for any k > 0 we have

P̄ (ω : ξ(ω) ≥ C) 6
1

Ck
Ē
(
|ξ(ω)|k

)
. (3.55)

(3.55) is known as the Markov inequality.
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We have

P̄
(
ω̄ : W̄ (., ω̄) /∈ Wε

)
6 P̄


∞⋃
N=1


W (.) : sup

s, t ∈ [0, T ]

|t− s| < T/N6

|W (t)−W (s)| > Lε
N





6
∞∑
N=1

P̄




W (.) : sup

s, t ∈ [0, T ]

|t− s| < T/N6

|W (t)−W (s)| > Lε
N




(3.56)

Furthermore we get

P̄
(
ω̄ : W̄ (., ω̄) /∈ Wε

)
6
∞∑
N=1

P̄

N6⋃
j=1

 sup
(j−1)T

N6 6t6 jT

N6

|W (t)−W (s)| > Lε
N


6

∞∑
N=1

N6∑
j=1

P̄

 sup
(j−1)T

N6 6t6 jT

N6

|W (t)−W (s)| > Lε
N

 (3.57)

Next recall the following well known fact about the Wiener Process W (t);

Ē
∣∣W̄ (t)− W̄ (s)

∣∣n 6 (n− 1)! (t− s)n/2, n = 2, 3, . . . (3.58)

Combining this with Markov’s inequality (see Theorem (26)) we obtain

P̄
(
ω̄ : W̄ (., ω̄) /∈ Wε

)
6

6
∞∑
N=1

N6∑
j=1

(
N

Lε

)4

Ē

 sup
(j−1)T

N6 6t6 jT

N6

∣∣∣∣W (t)−W
(

(j − 1)T

N6

)∣∣∣∣4


6
∞∑
N=1

C

(
Lε
N

)−4

(TN−6)2N6 =
CT 2

L4
ε

∞∑
N=1

N−2. (3.59)

We take as a function of ε,

L4
ε = 2CT 2ε−1

∞∑
N=1

1

N2
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and, thus, the required inequality (3.53) is thereby proved.

Once more arguing as in [14], we establish (3.54). We choose Zε to be a ball inWµN ,νN

of center the point 0 and radius Mε with the sequences µN , νN −→ 0 such that both

sequences are taken to be independent of ε, and satisfy
∑∞

N=1

√
µN
νN

<∞. Now, applying

Proposition 1 to the ball Zε, it follows that Zε is a compact subset of L2(0, T ;L2(D)).

Furthermore, by Bienaymé-Tchebitcheff’s inequality, we have

P̄ (ω̄ : um(.ω̄) /∈ Zε) 6 P̄
(
ω : ‖um‖WµN ,νN

> Mε

)
6

Ē‖um‖WµN ,νN

Mε

6
1

Mε

‖um‖WµN ,νN

6
C

Mε

. (3.60)

We then choose Mε =
2C

ε
, and get

P̄ (ω̄ : um /∈ Zε) 6
C

Mε

=
ε

2
. (3.61)

The proof of the theorem is complete.

3.3.6 Application of Prokhorov and Skorokhod Theorems

It follows from the tightness property of Πm proved above and by Prokhorov’s Theorem,

we can extract a subsequence of probability measures Πmν which is weakly convergent

to a probability measure Π on S. It follows from Skorokhod’s Theorem that we can also

find a probability space (Ω,F ,P) and S-valued random variables Wmν , umν and W,u

such that

(Wmν , umν ) −→ (W,u) onS, P− a.s. (3.62)

The probability law of (Wmν , umν ) is Πmν and the one of (W,u) is Π.

Next, we choose the filtration {Ft}06t6T by setting

Ft = σ{W (s), u(s)}06s6t. (3.63)
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To check that the limiting process W (t) is an Ft-Wiener process we proceed as follows.

We use the following characterization of Wiener processes through their characteric

functions. For further details we refer to [68]. To fix the ideas, we show that for any

l ∈ N, 0 = t0 < t1 < · · · < tl and λ0, λ1, . . . , λl with λk ∈ Rl, k ∈ [0, l], the increments

process W (tk) −W (tk−1) are independent with respect to Ftk−1
, normally distributed

with zero mean and variance tk − tk−1. It is sufficient to prove that

E exp

{
i

l∑
k=1

λk · [W (tk)−W (tk−1)]

}
= Πl

k=1 exp

{
−1

2
|λk|2Rl(tk − tk−1)

}
; (3.64)

where i =
√
−1 the imaginary unit.

This will follow if we show that

E exp

{
i

l∑
k=1

λ · (W (t+ θ)−W (t))

}
= exp

{
−1

2
|λ|2Rlθ

}
, (3.65)

for all θ > 0 and any λ ∈ Rl.

Let (Ω,F ,P) be a probability space and let ξ and η be random variables for which E(ξ),

E(η) are defined. Let ξ be F -measurable such that E(ξ η) is defined. Then we have the

following properties of conditional expectations:

(i) E(E(η/F)) = E(η)

(ii) E(ξ η/F) = η E(ξ/F).

Then

E(X Y ) = E (X E(Y/F)).

Let Jt(W,u) be a bounded continuous functional depending on S which depends only

on the values of W (t) and u(t) for 0 < t.

To prove (3.65), it is sufficient to prove that

E [exp (iλ · (W (t+ θ)−W (t))) Jt(W (·), u(·))]

= exp

(
−1

2
|λ|2Rl

)
E [Jt(W,u)] . (3.66)
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Since Wmν is a Wiener process and the increments Wmν (t+θ)−Wmν (t) is independent

of the functional Jt(Wmν , umν ), it follows that, for any λ ∈ Rl

E (exp (iλ(Wmν (t+ θ)−Wmν (t))) Jt(Wmν , umν ))

= E (exp (i λ(Wmν (t+ θ)−Wmν (t)))) E (Jt(Wmν , umν ))

= E(exp(−|λ|2Rl θ/2)) E(Jt(Wmν , umν ))

= exp(−|λ|2Rlθ
2/2) E(Jt(Wmν , umν )). (3.67)

Using the fact that Jt is a continuous functional and taking into account the convergence

(3.62), as ν −→∞, it follows that (3.66) holds.

We set m = mν , and integrate (3.8) with respect to s over the interval [0, t]. Then

using the Wiener process Wmν instead of W̄ , we clearly see that Wmν and umν satisfy

the following equation∫ t

0

(dumν (s), wj(x))−
∫ t

0

(Aumν (s) , wj(x)) ds

=

∫ t

0

(f(s, umν (s)) , wj(x)) ds+

∫ t

0

(G(s, umν (s)) , wj(x) ) dWmν (s), (3.68)

for j = 1, 2, . . . . This equation is equivalent to the following

umν +

∫ t

0

Pmν (A(s)umν (s)) ds

= u0mν +

∫ t

0

Pmν (f(s, umν (s))) ds+

∫ t

0

Pmν (G(s, umν )) dWmν (s). (3.69)

By setting

σm(t) = um(t)−
∫ t

0

Pm (A(s)um(s)− f(s, um(s))) ds

− u0m −
∫ t

0

Pm (G(s, um(s))) dW̄ (s),

and we define

Xm =

∫ T

0

‖σm(t)‖2

(W
1,p(x)
0 (D))∗

dt.

We trivially have Xm = 0 P̄− a.s, hence

Ē
Xm

1 +Xm

= 0.
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We set

ϑm(t) = umν (t)−
∫ t

0

Pm (A(s)umν (s)− f(s, umν (s))) ds

− u0mν −
∫ t

0

Pm (G(s, umν (s))) dWmν (s)

and define Ymν the analogue of Xm with um replaced for umν and W̄ replaced for Wmν .

Then we have the expression

Ymν =

∫ T

0

‖ϑm(t)‖2

(W
1,p(x)
0 (D))∗

dt.

We shall show that

E
Ymν

1 + Ymν
= 0. (3.70)

The difficulty we are encountering here in the expression of Xm is that Xm is not a

deterministic functional of the pair um, W for the reason that there is presence of a

stochastic integral term in the expression of Xm. By using a mollification of G in t, we

can cope with this obstacle. We define the regularizing function Gε as follows:

Gε(t, u) =
1

ε

∫ T

0

ρ

(
t− s
ε

)
G(s, u(s)) ds, (3.71)

where % is a standard mollifier. Noting that by the above definition of Gε in (3.71), we

obviously have the uniform estimate

E
∫ T

0

‖Gε(t, u(t))‖2
(L2(D))m ds 6 CE

∫ T

0

‖G(t, u(t))‖2
(L2(D))m dt (3.72)

and

Gε( ·, u( · ) ) −→ G( ·, u( · )) in L2(Ω,F ,P, L2(0, T ; (L2(D))m)). (3.73)

Let us denote by Xm,ε and Ymν ,ε the analogue of Xm and Ymν with Gε instead of G.

We define the mapping

φm,ε : C
(
0, T ; Rd

)
× L2(0, T ;L2(D)) −→ (Ω̄, F̄ , P̄),
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by

φm,ε
(
W̄ , um

)
=

Xm,ε

1 +Xm,ε

.

φm,ε is a bounded continuous functional on C
(
0, T ; Rd

)
×L2(0, T ;L2(D)). In a similar

way, we introduce the mapping φmν ,ε (Wmν , umν ) given by

φmν ,ε (Wmν , umν ) =
Ymν ,ε

1 + Ymν ,ε
.

We note that by applying Prokhorov’s Theorem, we have

E
Ymν ,ε

1 + Ymν ,ε
= Eφmν ,ε (Wmν , umν ) =

∫
S

φmν ,ε(W, x) dΠmν

= Ēφmν ,ε
(
W̄ , umν

)
= Ē

Xmν ,ε

1 +Xmν ,ε

. (3.74)

By adding and substracting same terms

E
Ymν

1 + Ymν
− Ē

Xmν

1 +Xmν

= E
(

Ymν
1 + Ymν

− Ymν ,ε
1 + Ymν ,ε

)
+

+ Ē
(

Xmν ,ε

1 +Xmν ,ε

− Xmν

1 +Xmν

)
. (3.75)

Moreover, the first term in the right-hand side of this equality can be estimated as

follows:

E
∣∣∣∣ Ymν
1 + Ymν

− Ymν ,ε
1 + Ymν ,ε

∣∣∣∣ = E
∣∣∣∣ Ymν − Ymν ,ε
(1 + Ymν )(1 + Ymν ,ε)

∣∣∣∣
6 E |Ymν − Ymν ,ε|

6 C

(
E
∫ T

0

‖Gε(t, umν (t))−G(t, umν )‖
2
(L2(D))d dt

)1/2

.

(3.76)

Here we have used Burkholder-Davis-Gundy’s inequality.

In a similar way, the last term in the right-hand side of equation (3.75) can be estimated

as follows:

Ē
∣∣∣∣ Xmν ,ε

1 +Xmν ,ε

− Xmν

1 +Xmν

∣∣∣∣ 6 C

(
E
∫ T

0

‖Gε(t, umν (t))−G(t, umν (t))‖2
(L2(D))d dt

)1/2

.

(3.77)
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It follows from (3.74), (3.76) and (3.77) that∣∣∣∣∣∣∣∣E Ymν
1 + Ymν

∣∣∣∣− ∣∣∣∣Ē Xmν

1 +Xmν

∣∣∣∣∣∣∣∣ 6 ∣∣∣∣E Ymν
1 + Ymν

− Ē
Xmν

1 +Xmν

∣∣∣∣
6 C

(
E
∫ T

0

‖Gε(t, umν (t))−G(t, umν (t))‖2
(L2(D))d dt

)1/2

.

(3.78)

Letting ε tends to 0 in (3.78) and taking into account (3.73), we obtain∣∣∣∣E Ymν
1 + Ymν

∣∣∣∣ =

∣∣∣∣Ē Xmν

1 +Xmν

∣∣∣∣ = 0.

From this we deduce (3.70). Thus, the relation (3.69) is thereby proved.

We can assert that there exists a positive constant K4 independent of m such that

‖Aum‖L2
“

0,T ;
“
W

1,p(x)
0 (D)

”∗” 6 K4. (3.79)

And G(t, um(t)) remains in a bounded subset of the space L2(Ω,F , P, L2(0, T ; (L2(D))m)).

3.3.7 Passage to the limit and Monotonicity Method

In this subsection we establish some convergence properties of the sequence (umν ) ob-

tained in the previous section.

From (3.69) and the estimates on um, it follows that umν satisfies the a priori estimates

E sup
t∈[0,T ]

‖umν (t)‖
q
L2(D) 6 C, q ∈ [2,

2r′

r′ − 1
]; (3.80)

E‖umν‖rV̊ (QT )
6 C, (3.81)

E
∫ T

0

‖umν (t)‖2

W
1,p(x)
0 (D)

dt 6 C, (3.82)

E sup
06θ6δ<1

∫ T

0

‖umν (t+ θ)− umν (t)‖2

(W
1,p(x)
0 (D))∗

dt 6 C δ. (3.83)

(3.82) is a consequence of the embadding result in Lemma 2.

From the last estimates, we can extract a new subsequence from {um} still denoted umν
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such that

umν −→ u weakly ∗ in Lq(Ω,F ,P, L∞(0, T ;L2(D))); (3.84)

umν −→ u weakly in Lr
(

Ω,F ,P; V̊ (QT )
)

; (3.85)

umν −→ u weakly in L2(Ω,F ,P, L2(0, T ;W
1,p(x)
0 (D))); (3.86)

Aumν (ω) −→ χ(ω) weakly in L2
(

0, T ;
(
W

1,p(x)
0 (D)

)∗)
(3.87)

umν (T ) −→ ξ weakly in L2(Ω,F ,P, L2(D)), (3.88)

and the subsequence satisfies the followings estimates

E sup
t∈[0,T ]

‖u(t)‖qL2(D) 6 C, q ∈ [2,
2r′

r′ − 1
]; (3.89)(

E‖u‖r
V̊ (QT )

)1/r

6 C, (3.90)

E
∫ T

0

‖u(t)‖2

W
1,p(x)
0 (D)

dt 6 C, (3.91)

E sup
06θ6δ<1

∫ T

0

‖u(t+ θ)− u(t)‖2

(W
1,p(x)
0 (D))∗

dt 6 C δ. (3.92)

According to (3.62), (3.80) and Vitali’s Theorem, we get

umν −→ u in L2(Ω,F ,P, L2(0, T ;L2(D))). (3.93)

Then

umν −→ u for almost all (t, ω) w. r. t. the measure dP × dt. (3.94)

The convergence (3.94), the estimate (3.80) combined with the condition on f , and

Vitali’s Theorem imply that as ν −→∞

f( . , umν ( . )) −→ f( . , u( . )) in L2
(

Ω,F ,P, L2
(

0, T,
(
W

1,p(x)
0 (D)

)∗))
. (3.95)

The convergence (3.95) implies that for fixed j we have in particular the convergence

(f( . , umν ( . )) , wj(x)) −→ (f( . , u( . )) , wj(x)) in L2(Ω,F ,P, L2(0, T )), (3.96)

since wj ∈ W 1,p(x)
0 (D).

From (3.2), the estimate (3.80) and Vitali’s theorem we also have

(G(t, umν (t)), wj) −→ (G(t, u(t)), wj) in L2
(
Ω,F ,P, L2 (0, T )

)
. (3.97)
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Arguing as in [14], [23], [63], [68], [69], [71] and [72], we shall prove that

∀ t
(∫ t

0

G(s, umν (s)) dWmν , wj(x)

)
−→

(∫ t

0

G(s, u(s)) dW , wj(x)

)
weakly

inL2
(
Ω,F ,P, L2 (0, t)

)
. (3.98)

However (3.98) holds, if we prove that∫ T

0

G(s, umν (s)) dWmν −→
∫ T

0

G(s, u(s)) dW weakly

inL2
(
Ω,F ,P, L2 (D)

)
. (3.99)

Let Gε be the regularization of G as introduced in (3.71)

Gε(t, u) =
1

ε

∫ T

0

ρ

(
t− s
ε

)
G(s, u(s)) ds,

then one can check that for fixed mν , as ε −→ 0 we have

Gε(., umν (.)) −→ G(., u(.)) in L2(Ω,F ,P, L2(0, T, L2(D))). (3.100)

Moreover, the mapping Gε satisfies (3.72) and the uniform estimate (in ε)∫ T

0

‖Gε(t, umν (t))−Gε(t, u(t))‖2
(L2(D))d dt

6
∫ T

0

‖G(t, umν (t))−G(t, u(t))‖2
(L2(D))d dt. (3.101)

Next, integrating by parts in the stochastic term we obtain∫ T

0

Gε(t, umν (t)) dWmν (t)

= Wmν (T )Gε(T, umν (T ))−
∫ T

0

Wmν (t)G
′ε(t, umν ) dt. (3.102)

Therefore using the convergence of the pairs

(Wmν , umν ) −→ (W,u) in S, P− a.s., as ν −→∞,

for fixed ε, we have∫ T

0

Gε(t, umν (t)) dWmν (t)

−→ Gε(T, u(T ))W (T )−
∫ T

0

W (t)G′ε(t, u(t))dt (3.103)
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for almost all ω, x.

we have

Gε(T, u(T ))W (T )−
∫ T

0

W (t)G′ε(t, u(t))dt =

∫ T

0

Gε(t, u(t)) dW (t).

From (3.72), (3.2) and (3.89) we have

E
∣∣∣∣∫ T

0

Gε(t, umν (t)) dWmν (t)

∣∣∣∣2 6 CE
∫ T

0

‖G(t, u(t))‖2
(L2(D))d dt 6 C. (3.104)

From Remark 1, (3.103) and (3.104) we deduce∫ T

0

Gε(t, umν (t)) dWmν (t) −→
∫ T

0

Gε(t, u(t)) dW (t) weakly in L2
(
Ω,F ,P, L2(D)

)
.

(3.105)

Therefore, for any γ ∈ L2 (Ω,F ,P, L2(D))

E
(
γ ,

∫ T

0

Gε(t, umν (t)) dWmν (t)

)
−→ E

(
γ ,

∫ T

0

Gε(t, u(t)) dW (t)

)
, (3.106)

and it is easy to check that G satisfies the estimate

E
∣∣∣∣∫ T

0

G(t, umν (t))dWmν (t)

∣∣∣∣2 6 E
∫ T

0

‖G(t, umν (t))‖
2
(L2(D))d dt 6 C. (3.107)

Taking a function ζ ∈ L2(Ω,F ,P, L2(D)), we claim that for any γ ∈ L2(Ω,F ,P, L2(D))

and for fixed ε, as ν −→∞

E
(
γ ,

∫ T

0

G(t, umν (t)) dWmν (t)

)
−→ E (γ , ζ) . (3.108)

We next look for an identification of ζ. For that purpose, we proceed as follows.

Iε,ν ≡ E
(
γ ,

∫ T

0

G(t, umν )dWmν (t)

)
− E

(
γ ,

∫ T

0

G(t, u)dW (t)

)
= E

(
γ ,

∫ T

0

[G(t, umν )−Gε(t, umν ) +Gε(t, umν )] dWmν (t)

)
− E

(
γ ,

∫ T

0

[G(t, u)−Gε(t, u) +Gε(t, u)] dW (t)

)
.

(3.109)

Hence

|Iε,ν | 6 C (|I1,ε,mν |+ |Iε|+ |I2,ε,mν |) , (3.110)
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where

I1,ε,mν = E
(
γ ,

∫ T

0

[G(t, umν )−Gε(t, umν )] dWmν (t)

)
Iε = E

(
γ ,

∫ T

0

[Gε(t, u)−G(t, u)] dW (t)

)
I2,ε,mν = E

(
γ ,

[∫ T

0

Gε(t, umν )dWmν (t)−
∫ T

0

Gε(t, u)dw(t)

])
.

We write

I2,ε,mν = E
(
γ ,

∫ T

0

Gε(t, umν )dWmν (t)

)
− E

(
γ ,

∫ T

0

Gε(t, u) dW (t)

)
. (3.111)

Therefore, it follows according to (3.100) and (3.101) that I2,ε,mν −→ 0.

From the definition of Gε we readily get that Iε and I1,ε,mν converge to zero as ε −→ 0.

Hence Iε,ν −→ 0 as ε −→ 0, ν −→∞. Then we deduce that

ζ =

∫ T

0

G(t, u(t)) dW (t). (3.112)

Therefore (3.98) follows.

Let us set m = mν in relation (3.8). Then integrating the first term in (3.8), we get∫ T

0

(Aumν , wj(x)) dt

=

∫ T

0

(f(t, umν (t)) , wj(x)) dt+

∫ T

0

(G(t, umν (t)) , wj(x)) dW (t)

+ (umν (0, x) , wj(x))− (umν (T, x) , wj(x)), j = 1, 2, . . . ,mν . (3.113)

Recall that Sm denotes the span of the functions wj(x).

Passing to the limit in (3.113) as ν −→ ∞, and making use of all the convergence

results, we obtain∫ T

0

(χ , wj(x)) dt

=

∫ T

0

(f(t, u(t)) , wj(x)) dt+

∫ T

0

(G(t, u(t)) , wj(x)) dW (t)

+ (u0(x, ω) , wj(x))− (ξ , wj(x)), for any j = 1, 2, . . . . (3.114)
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This holds, if we replace wj(x) by any of their linear combinaitions. Hence since Sm is

dense in W
1,p(x)
0 (D), we have∫ T

0

(χ , v(x)) dt

=

∫ T

0

(f(t, u(t)) , v(x)) dt+

∫ T

0

(G(t, u(t)) , v(x)) dW (t)

+ (u0(x, ω) , v(x))− (u(T, x) , v(x)), for any j = 1, 2, . . . , (3.115)

∀t ∈ [0, T ], for any function v ∈ W 1,p(x)
0 (D).

Arguing similarly as in [66, subsect. 3.3, page 655], and taking into account the inclusion

V̊ (QT ) ∩ L2(0, T ;W
1,p(x)
0 (D)) ⊂ L2(QT ),

we see that u(., ., ω) ∈ C([0, T ];L2(D)) for a. e. ω ∈ Ω and hence the initial condition

is meaningful.

Following well known arguments from [66, page 655] and [51, page 1665] we obtain that

u(T, x) = ξ, (3.116)

u0(x) = u(0, x). (3.117)

3.3.8 Monotonicity Method

It remains to identify the limit of ∫ t

0

Aumν (s) ds,

which requires arguments of monotone operators. A similar approach can be found in

[51], [66] and [59] and the bibliography therein. We shall prove that∫ t

0

χ(ω) ds =

∫ t

0

Au(s)(ω) ds,

for any t ∈ [0, T ]. Let v be an arbitrary function in V̊ (QT ). Let us set

Xν = 2E
∫ t

0

(Aumν (s)− Av(s) , umν (s)− v(s)) ds + E‖umν (s)− v(s)‖2
L2(D).
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Passing to the limit in (3.69) with m = mν , as ν −→∞, we obtain

u(t) +

∫ t

0

χ(s) ds = u0 +

∫ t

0

f(s, u(s)) ds+

∫ t

0

G(s, u(s)) dW (s), (3.118)

and by Ito’s formula, we have

E‖u(t)‖2
L2(D) + 2E

∫ t

0

(χ(s) , u(s)) ds

= ‖u0‖2
L2(D) + 2E

∫ t

0

(f(s, u(s) , u(s))) ds+

+ E
∫ t

0

‖G(s, u(s))‖2
(L2(D))d ds+ 2E

∫ t

0

(G(s, u(s)) , u(s)) dW (s). (3.119)

For any function v ∈ W 1,p(x)
0 (D) we have

Xν

= 2
n∑
i=1

∫∫
Qt

(∣∣∣∣∂umν∂xi

∣∣∣∣p(x)−2
∂umν
∂xi

−
∣∣∣∣ ∂v∂xi

∣∣∣∣p(x)−2
∂v

∂xi

)(
∂umν
∂xi

− ∂v

∂xi

)
dx dt+

+ E‖umν (s)− v(s)‖2
L2(D). (3.120)

In view of this and the monotonicity of the operator A, we obtain

Xν ≥ 0. (3.121)

It follows from the boundedness of the sequene umν established in (3.80), (3.81) and

(3.116) that

E‖u(T, x)‖2
L2(D) 6 lim

ν−→∞
E‖umν (T, x)‖2

L2(D). (3.122)

On the other hand we have

0 6
∫ t

0

(Aumν (s)− Av(s) , umν (s)− v(s)) ds

=

∫ t

0

(Aumν (s) , umν (s)) ds−
∫ t

0

(Av(s) , umν (s)) ds

−
∫ t

0

(Aumν (s) , v(s)) ds+

∫ t

0

(Av(s) , v(s)) ds, (3.123)

 
 
 



CHAPTER 3. SETTING AND MAIN RESULT 70

and

Xν = E‖umν (t)‖2
L2(D) + 2E

∫ t

0

(Aumν (s) , umν (s)) ds+ E‖v(s)‖2
L2(D)−

− 2E
∫ t

0

(Av(s) , umν (s)− v(s)) ds− 2E
∫ t

0

(Aumν (s) , v(s)) ds−

− 2E (umν (s) , v(s)) . (3.124)

We write Xν in the form: Xν = Yν + Zν , where,

Yν =2 E
∫ t

0

(f(s, umν (s)) , umν (s)) ds− 2 E
∫ t

0

(Aumν (s) , v(s)) ds−

− 2

∫ s

0

(Av(s) , umν (s)− v(s)) ds+ E
∫ t

0

‖G(s, umν (s))‖2
(L2(D))d ds, (3.125)

and Zν is defined by the difference:

Zν = Xν − Yν = E‖u0mν‖2
L2(D) − E‖v(t)‖2

L2(D) − 2E (umν (s) , v)

+ 2E
∫ t

0

(G(s, umν (s)) , umν (s)) dWmν (s). (3.126)

Passing to the limit in the expresion of Xν as ν −→ ∞, we obtain, in view of (3.88),

(3.93), (3.121) and (3.123)

‖u0‖2
L2(D) + 2E

∫ t

0

(f(s, u(s)) , u(s)) ds+ E
∫ t

0

‖G(s, u(s))‖2
(L2(D))d ds+ E‖v(t)‖2

L2(D)

− 2 E
∫ t

0

(Av(s) , u(s)− v(s)) ds− 2 E
∫ t

0

(χ(s) , v(s)) ds− 2 E (u(t) , v(t))

+ 2 E
∫ t

0

(G(s, u(s)) , u(s)) dW (s)

≥ E
n∑
i=1

∫
Qt

(∣∣∣∣ ∂u∂xi
∣∣∣∣p(x)−2

∂u

∂xi
−
∣∣∣∣ ∂v∂xi

∣∣∣∣p(x)−2
∂v

∂xi

)(
∂u

∂xi
− ∂v

∂xi

)
dx dt. (3.127)

Hence it follows from (3.125) and (3.127) that

E‖u(t)− v(t)‖2
L2(D) + 2 E

∫ t

0

(χ(s)− Av(s) , u(s)− v(s) ) ds

≥ E
n∑
i=1

∫
Qt

(∣∣∣∣ ∂u∂xi
∣∣∣∣p(x)−2

∂u

∂xi
−
∣∣∣∣ ∂v∂xi

∣∣∣∣p(x)−2
∂v

∂xi

)(
∂u

∂xi
− ∂v

∂xi

)
dx dt.

≥ 0. (3.128)
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We have

lim
ν−→∞

supXν 6 2E
∫ t

0

(f(s, u), u) ds+ E‖u0‖2
L2(D) − 2E

∫ t

0

(χ(s) , v(s)) ds

− 2E
∫ t

0

(Av(s) , u(s)− v(s)) ds+ E
∫ t

0

(G(s, u) , u) dW (s)+

+ E
∫ t

0

‖G(s, u)‖(L2(D))d ds

= 2E
∫ t

0

(χ , u) dt− 2E
∫ t

0

(χ , v) dt− 2E
∫ t

0

(Av , u− v) dt. (3.129)

Hence, using (3.127)-(3.129), we have

2E
∫ t

0

(χ− Av , u− v) ds+ E‖u(t)− v(t)‖2
L2(D) ≥ 0. (3.130)

We pick u, v, w ∈ V̊ (Qt) such that v = u− αw, where α is a positive constant. Then

passing to the limit as ν −→∞ in (3.123) yields

E
∫ t

0

(χ , u) ds− E
∫ t

0

(Av , u) ds− E
∫ t

0

(χ , v) ds+ E
∫ t

0

(Av , v) ds ≥ 0. (3.131)

Since the operator A is monotone, taking account of (3.123), using (3.130), we can

write the term in the left-hand side of (3.131) as follows

lim
ν−→∞

Xν = E
∫ t

0

(χ , u) dt− E
∫ t

0

(χ , v) dt− E
∫ t

0

(Av , u− v) dt

= E
∫ t

0

(χ− Av , u− v) dt

= E
∫ t

0

(χ− Av , αw) dt

= E
∫ t

0

(χ− A(u− αw) , αw) ds ≥ 0; (3.132)

then we deduce after dividing the terms in (3.132) by α

E
∫ t

0

(χ− A(u− αw) , w) ds ≥ 0. (3.133)

Letting α tend to 0 in (3.133) and using the fact that the operator A is semicontinuous

we obtain the inequality

E
∫ t

0

(χ− Au , w) ds ≥ 0.
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Since w is an arbitrary function in V̊ (Qt), the last inequality implies that χ = Au.

Therefore the integral identity (6.5) is satisfied.

Thus u is a solution of the problem (1.1)-(1.3). Thus the solution u belongs to the space

L2(Ω,F ,P;C(0, T ;L2(D))) and hence u(t) is an L2(D)-valued measurable process.

The proof of the existence Theorem is thereby complete.

 
 
 



Conclusion

In this dissertation we proved the existence of probabilistic weak solutions for a class of

stochastic quasilinear parabolic partial differential equations with non-standard growth.

We have used the Galerkin method to construct an approximation to the weak prob-

abilistic solutions to our problem (1.1)-(1.3). In the proof, we combined the Galerkin

methods with some analytic and probabilistic compactness results. To recover the main

theorem of existence we used some probabilistic results from [60], [76] and [77]. The

Galerkin method solves the weak formulation of the problem by converting it into a finite

dimensional case. First, we proved that the Galerkin equations admit solutions. In the

second step, we derived a ”priori” estimates for the approximating solutions um. In

the third step, we passed to the limit in the finite dimensional equation by choosing a

subsequence (umν ) ⊂ (um), which converges weakly in appropriate topologies. In the

final step, we used the monotonicity of the operator A to prove that the limit u of um

is a solution of the problem (1.1)-(1.3). At this final step, the analysis rests on two

properties of the operator A which are the monotonicity and the semicontinuity of the

operator A.

In the future, we hope to extend and explore

1. this type of models,

2. the work on electro-rheological fluids done by M. R̊uz̀ic̀ka [65], in the framework

of stochastic evolution problems.

and possibly we hope to explore the numerical analysis of models of this type.
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