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Abstract

In this dissertation, we investigate a very interesting class of quasi-linear stochastic partial
differential equations. The main purpose of this article is to prove an existence result for
such type of stochastic differential equations with non-standard growth conditions. The
main difficulty in the present problem is that the existence cannot be easily retrieved

from the well known results under Lipschitz type of growth conditions [42].
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Chapter 1

Introduction

1.1 Motivation and Preliminaries

The study of quasi-linear partial differential equations with p(z)-growth conditions, in
the deterministic case, has received much attention recently see for instance [18], [36],
[37], [50], [66], and reference given therein. Different approaches are taken in the above
papers to establish the existence of solutions for the problems in question. The present
work extends a result in Samokin [66] to a class of stochastic partial differential equations.
The passage to the result relies heavily on the variable exponent theory of generalized
Lebesgue-Sobolev spaces. We study the notion of probabilistic weak solutions of the
initial-boundary value problem for equations that generalize the equations of polytropic
elastic filtration with random perturbations.

Let D be an open and bounded domain of the Euclidean space R", n > 1 with C?
boundary dD. We consider the cylindrical domain Q7 = (0, T') x D with some given
final time 7" > 0 and denote by @, the cylinder (0, t) x D for t < T. We investigate
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the initial boundary value problem (I-BVP) for the stochastic parabolic equation

P2 gy
du_zaxl ( 8:@-) di =

0x;
ft,u(t,x))dt + G(t,u(t,z)) dW(t) inQr = (0,T) x D, (1.1)
u(t,z)= 0onI =(0,T) x 9D, (1.2)
u(0,2) = wu(x) in D, (1.3)

where u is unknown function, the nonlinear terms f (¢, w) and G(¢, u) are known functions
depending on u, ug(z) is a given function in L?(D), W is a R%-standard Wiener process,
d a positive integer and p is a measurable function over D with values in the interval
[1,00] and is independent of ¢t. Equations of this type appear in the mathematical
modeling of various physical phenomena. They model processes ranging from the theory
of non-Newtonian fluids to Continuum Mechanics. For more detailed information about
the physical applications of these models we refer to [4]-[12], [43], [45], [65] and the
bibliography therein. Equation (1.1) is degenerate when the gradient vanishes (Vu = 0).
If p(x) = 2 then we obtain the Laplacian equation. Polytropic filtration describes a large
class of non-Newtonian fluids such as natural gas, extraction processes of crude oil,
etc.... For more physical background we refer to [4]- [12], [43], [51] and [65]. They
have properties such as global existence, global nonexistence, existence and uniqueness,

blow-up, qualitative behavior, localization properties of solutions, etc.... We set

P@=2 gyt x
Z 3o, ( M) , (1.4)

Ou(t, x)
ox;

8£Ci

with 1 < p(x) < oo.

We can motivate the spaces Wol’p(m)(D) through the following example of transmission
problems for nonlinear elliptic equations.

Let D be bounded domain in R™ with boundary I'. Let D; be a proper sub-domain
of D with the boundary I'y, and D, the domain D \ D;. Then Ds is bounded by I'y
and I';. We assume that I'; and T’y are sufficiently smooth. Let i (resp. 775) be
the field of unit normal vectors to I';(resp. I'y) oriented toward the interior of Dy, and

p1,p2 € (1,00) are constants.
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We consider the operator

V denotes the gradient.

. oy
Ay o = div (’(‘3_2:

u
UN
Y

IVE

We consider the following transmission problem

where,

Apkuk = fk on

u () = ug(x)

aAp2 U9

8711

()

_ aAmUl

8n1

us =0 on

8Apk (%2
on

dyp

ox

Pk
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Vs@) ,

Dk7 k= 1727

on Fl

(x) on I'y

P27

Pr—2

Ve.n.

(1.5)
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Integrating by parts with test functions ¢, on D, we get

8uk Pe—2
Z div Vuyg | i dx
Dy,
2
= — Z/ % Vungok dx + Z/ 8uk @Vuknk dx, (1.10)
k=1 Y Dk O 0Dy,

by using the transmission conditions (1.7) and (1.8) in (1.10) with ¢, = us we end up

with
8uk 2 p
Z div Vuy | ugdr = Z |Vug P de. (1.11)
Dy, k=1 " Dk
Defining
P1 if z S El,
p(z) = _
D2 if £ € Dy UTs.
We can rewrite (1.11) as
il (D) = / V@ da, (1.12)
0 D
where,
U1 in Dl,
u =
(%) in DQ.

The relations (1.10)-(1.12) suggests that it may be reasonable to seek for an appropri-
ate weak solution u of problem (1.6)-(1.9) in the functional setting of Sobolev space
Wolp (D) fora.et € [0,7]. Our aim is to establish an existence result of a probabilistic
solution u to the stochastic parabolic problem (1.1)-(1.3).

In the deterministic version of problem (1.1)-(1.3) Samokin gave a detailed investiga-
tion of the weak solvability of the problem (1.1)-(1.3) in [66] with G(¢,u) = 0; further
references can be found therein. A special interest in the study of such equations is
motivated by their application in Science. They appear in the mathematical modeling
of non-Newtonian fluids and Continuum Mechanics such as the processes of electro-
rheological(ER) fluids (see [43], [65]), filtration through inhomogeneous anisotropic
porous media (see [6], [7]). Actually, they are frequently used in optical application

such as the processing of digital image, image recovery, etc.... For more information on
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the possible applications of the real world processes we refer to [4]-[12], [43], [65], [51],
[89] where further references can be found. In the last decade, several authors have
studied and obtained many results on problems with non-standard growth conditions.
For more details we refer to [1], [2], [12], [32].

More recently, similar problems were discussed by many authors; among them, we re-
fer to [85]. The authors of [85] gave a detailed investigation of nonlinear parabolic
initial-boundary value problem with p(x)-growth conditions with respect to u and Vu
by introducing a compactness method combined with the Galerkin approximation.

The purpose of this dissertation is to prove an existence result for the initial-boundary
value problem (1.1)-(1.3) in the functional setting of generalized Sobolev spaces W'»(®) (D).
For the proof we use a Galerkin approximation scheme combined with some deep analytic
and probabilistic compactness results.

They are variety of closely related problems that we could not include all the references
in this dissertation, we can only cite few [45], [73], [78] and [89]. The case of doubly
degenerate parabolic equations with non-standard growth was initially studied by Sango
in [70].

For fundamental properties of the generalized Lebesgue space LP*)(D) and the corre-
sponding Sobolev space W*?@) (D) we refer to the work of Samokin [66] and the work
of Andrej Kovacik, Zilina and Rakosnik [48], where some examples and counter examples
on the sobolev embedding theorems can be found. We also note more recently, the works
of L. Diening [25], D.E. edmunds and J. Rakosnik [30, 31] and X.L Fan [34]. It has
been shown in [65] that the crucial difference between the spaces LP*)(D) and the usual
Lebesgue spaces LP(D) is the fact that the elements of the generalized Lebesgue spaces
LP®) (D) are not in general p(x)-mean continuous (see definition 3). For applications of
the spaces LP") in mathematical modeling of electro-rheological fluids we refer to [65].
In the case when p(z) = p is a constant function, many results have been obtained
on the existence and regularity properties of the solutions, for instance we refer to the
works in the bibliography [53] and [71]. For a localization property of weak solutions for
parabolic equations with nonstandard growth conditions, we refer to [41].

The framework followed in this dissertation has proved successful in [14], [21], [23], [63],
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[69]-[72] and [90].

Stochastic quasi-linear parabolic equations with non-standard growth are being investi-
gated for the first time in the present dissertation.

The non-standard growth introduces new difficulties in the derivation of a priori estimates
which were absent in the standard growth case. The work provides a new framework for

applications of generalized sobolev spaces to stochastic partial differential equations.

1.2 Organization of the thesis

The present dissertation consists of three chapters.

In chapter one, we motivate the reason for the study of the present class of quasi-linear
stochastic partial differential equations. This is basically motivated by an application
arising in mathematical physics (see [43] and [66], for instance). Chapter two of the
dissertation concerns a characterization of various type of functions spaces which are
essential in the proof of the main result of the present work. Such a characterization
can be found in Kufner [50]. The main result of this work in contained in chapter 3, see
Theorem 24: Existence theorem. In this chapter, as a passage to the existence result,
several results concerning estimates of the weak solution of the quasi-linear SPDEs are

given under certain conditions. The derivation of these estimates is non-trivial.

1.3 Notation

Throughout this dissertation we denote by |A| the Lebesgue measure of any subset A of
D and by x4 its characteristic function. By P(D) we denote the set of all measurable
functions p on D that range in the interval [1,00]. We denote here by || f||x the norm

of a measurable function on a space X.
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For p € P(D) we write

DY ={x € D:p(z) =1},
D, ={x € D :p(x) = oo},
D§ = D\ (Dy U D),

Py = €8S igpfp(x), and p* =esssupp(z) if |Di| >0

0 D}
and p,=p =1 if |Dj| =0,
Cyp = lIxplle=) + X2 2o (D) + XD | (D)

and 1, =C,+ 1/p, —1/p*. Here we consider the use of the convention
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Chapter 2

Function spaces

2.1 Introduction

Following [66], we give some definitions and establish some basic facts of properties of
the theory of the generalized Lebesgue and Sobolev spaces. Moreover the generalized
Lebesgue spaces LP(*)(D) and the usual Lebesgue space LP(D) have many common
properties. In contrast to the classical Lebesgue space LP(D) and Orlicz spaces the
generalized Lebesgue spaces LP(®)(D) are in general invariant with regard to the trans-
lation operator (see [48] for p(z)-mean continuity of their elements). By this, we mean
the elements of LP®) (D) are not in general p(z)-mean continuous (see Definition 3
below). For this reason, many problems can arise with regard to convolutions, Sobolev
embeddings, denseness of smooth functions in W;'”)(D) and boundedness of integral

operators. For further details we refer to [24]-[27], [34] and [48].

10
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2.2 Generalized Lebesgue spaces

Let p € P(D). On the set of functions (all functions here are considered to be measur-

able), we define the mapping o, by

o) = [ 1@ doess sup [7(o)] (2.1
D\Dqo €D
and the norm
[ fll e oy = Inf{A > 05 0,(f/A) < 1} (2.2)

It has been shown in [66] and [48] that the functional g, has the following properties:

op(f) =0 (2.3)
0, (f) =0 ifand only if f = 0. (2.4)
0, (f) s a convex functional. (2.5)
0, (—f) =0, (f) for every function f. (2.6)

The modular space LP) (D) generated by the functional g, can be defined as follows:
LP(D) = {f:D—R, lim g()f) =0}
The functional g, preserves ordering, i.e.
I£]f(x)] > |g(@)|¥a € D and it g,(f) < o0, theng,(f) > 0,(9);  (27)

the last inequality is strict if |f(x)| # |g(x)].
Thus the space LP(*)(D) is a special and particular case of Musielak-Orlicz space called

sometime Nakano space.

Definition 1. The functional o, is

(i) left-continuous, if limy_;- 0,(\f) = 0,(f), V f € LP@(D),
(if) right-continuous, if limy 1+ 0,(\f) = 0,(f), ¥V f € LP@) (D),

(iii) continuous, if it is both, left-continuous and right-continuous.
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If 0 < 0,(f) < o0, then the function A — g,(f/\) is continuous and nonincreasing on
the interval [1,00). By continuous here we mean that the function Qp(f) is both left

continuous and right continuous in the space L?(*)(D). We have the following properties

o(f/ N fllprpy) <1V f € LPY)(D), with 0 < [ £l Loy (py < 00 (2.8)
Ifp" < o0, gp(f/a) =10 < |l @p) =a < oo, (2.9)

V f € PP (D) with 0 < || £l o) (py < 0.
The following property is a straight forward consequence of (2.5), (2.4) and (2.8).

If Hf”LP(I)(D) <1, then Qp(f) < HfHLW)(D)- (2.10)
We can summarize all the above properties by

Lemma 1. Consider f € LP®)(D), then

() [[fll ooy py < 1(> 1) if and only if o,(f) < 1(> 1)

(iD) 1 1 fll ooy < L then | I ) < 0p(f) < U )

(i) 161 ooy > L. then | £y ) < 0(F) < I oo

We give here the definition of the generalized Lebesgue space LP(®) (D)

Definition 2. The generalized Lebesgue space is the class of functions f defined on D
such that o,(\f) is a positive finite number for some strictly positive A depending on f.

Shortly

LPO(D)y={f, f: D —R": g,(\) < oo for some A = \(f) > 0}.

When the Lebesgue measure of D?_ vanishes i.e. |D? | = 0, then the space LP(*)(D)

endowed with the norm

Hﬂbmwfﬂﬁ9>0:/ F@P® de <1
D\ Do,
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becomes a Banach space. When |DZ_| > 0, then the space L”(*)(D) can be introduced

as
D) = { D — R 0,(//2) < 00, I/ psorpy < 1}

This space is a Banach space.
If p(x) = p is a constant function, then the generalized Lebesgue space coincide with

the usual L” space and we also have

1
oo = Il = ( [ 170Paz)"
and there is no confusion of notations.

Definition 3. f € LP(®)(D) is p(x)-mean continuous if Ve > (0 there exists a positive

number 6 = §(e) > 0 such that o,(fn — f) < € for h € R", |h

rn < 0, where
fn(x) = f(x + h), x € R"™ and the symbol |h|g~ stands for the Euclidean norm in the

Euclidean space R".

For more examples, theorems and details about the above definition we refer to [48].
For a given measurable function p € P (D), we shall define the dual function pointwise

known as the conjugate exponent function ¢ € P(D) to p € P(D) is defined as

oo for x € DY,
q(z) = 1 for x € DP_,

pgfjl for x € DP.

The following result is the generalized Holder's inequality:

Theorem 1. Let p € P(D). Then the inequality

/D\f(x)g(x)\ dr < 1y [[fllzee oy 19l o Dy (2.11)

is valid for each function f € LP@®) (D) and g € LY®)(D) with the constant r, defined

in section 1.3 above.

For a given measurable function f on D, we shall introduce the generalized Lebesgue

norm ||| - |||, on the space LP®)(D) generated by the functional g, defined in (2.1).
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More details about the connection between the two norms ||| - [[|, and || - || o) (py can
be found in [56]. From the generalized Holder inequality established in theorem 1, we

can characterize the norm ||| - |||, by the following theorem.

Theorem 2. Let f and g be measurable functions such that

ol = [ @I d s sup lg(o)] < L
D\D%, zeDE,

For functions f we define
1A =sup{ [ o)ate) drias) < 1} (.12
D

Following [66] and [48], ||| - |||, is @ norm on the class of functions f with ||| f]||, < oco.
This is an analogue of the Orlicz norm defined in [56]. The next result shows the

connection between the norms || - || o) (py and [|[ - [I[,.

Theorem 3. With the new norm defined by (2.12) in theorem 2, One can have:
LP(D) = { f:D—R: [Iflll, < oo},
the following inequalities

Cy I ooy < Al < 7ol fll sy »

hold, where C,, and r,, are constants form subsection 1.3.

Proof 1. For the detailed proof of this theorem we refer to [48].

In particular, for the norm ||| .|||,, we have the Hélder inequality

<7 | lowlllglll,  ¥f € L"(D), g € LY9(D),  (2.13)

/D F(@) g() da
1

1
where — + —— =1
p(r)  q(x)
In order to investigate any kind of norms convergence for sequences in the generalized

Lebesgue spaces LP(I)(D), we first have to provide those spaces with a suitable notion of

convergence. Since, spaces L”(@(D) can be seen as modular spaces, it is more convenient
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to replace the notion of norms convergences by those of modular convergences.

We describe the modular convergence as follows:

we consider a sequence of functions (f,) C L@ (D), we shall say that f, converge

modularly to a function f € LP@®) (D), if

lim o,(f, — f)=0.

n—-aoo

In [48] and [56], it has been shown that in the generalized Lebesgue space LP(*)(D) and
Orlicz spaces there is a substantial difference between the norm convergence and the
modular convergence. In [48] it has been shown that the norm convergence is stronger

than the modular convergence.
The dual space (L@ (D))* of the space LP(*)(D) is the space of all continuous linear

functionals over LP@) (D). Letting
L®(D) := {f : D — R such that / 19(2)]7“) da < oo}
D
The following equivalence result characterizes the dual LI (D) of the space LP(*)(D).

Theorem 4. The following statements are equivalent

i) pe L>®(D);

ii) for any functional J € (Lp(m)(D))* there exists a unique function g € L% (D)

such that

J(g)(x) = /D f(@)g(z) dz, feIPP(D).

and
Cp_lHQHLq@)(D) < HJH(Lp(x)(D))* < 7"p||9||Lq(9f>(D)~

Proof 2. See [48] for the proof of this theorem.

The following results can be found in [48].

Corollary 1. (cf. [48])



gﬁ
<

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

CHAPTER 2. FUNCTION SPACES 16
(i) The dual space of LP'™")(D) is the space L™ (D) if and only if p € L>°(D);

(i) The space LP®) (D) is reflexive if and only if

1 < essi%fp(a:) < esssupp(xr) < o0; (2.14)
D

Given two Banach spaces X and Y, we denote the continuous embedding of the space

X into the space Y by the symbol X OY.

Theorem 5. Let 0 < || < oo and consider two measurable functions p and q on €2 .

Then the following conditions are equivalent

(i)

L1@(D) O LP@)(D) for 0 < |D| < . (2.15)

(ii)
p(r) < q(z) forae z€. (2.16)

Theorem 6. Ifp € P(D) N L>(D), then the space LP*)(D) is separable.

2.3 Generalized Sobolev Spaces

We shall consider D a bounded open domain of R™ with smooth boundary 0D, n > 1
and let £ and m be natural numbers.
Consider a multi-index @ = (oq,...,a,) € N§ of order |a| = a1 +,..., +a, < k

and set D* = D{' ... D% where D' = 0/0z; is the generalized derivative operator.

Definition 4. Let p € P(D) and k € N. The generalized Sobolev space W*?®) (D)
is the class of all measurable functions f : D — R such that for each multi-index
a with order |o| <k, the generalized derivatives of f of order o, D*f (z) exists and

belongs to LP@) (D). Shortly
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WkP@/(DY = {f, f: D — R, D*f € LP¥(D)}.

Definition 5. We define the norm in W*?(@) (D) by

1 lzorpy = D NP f @) ooy, f € WD), (2.17)

|| <k

We define C§°(D) to be the space of infinitely differentiable functions, with compact

support in D.

Definition 6. We define

kp(a SsWh#()(D)
Wy P (D) = Cg ,

that is the space W™ (D) is the closure of the space CS° of infinitely differentiable
functions with respect to the norm of W*»@) (D).
Next, we shall give the definition of the norm on the space W, "™ (D).

Definition 7. If f € Wy"'")(D), we define its norm by

of
axi

n

||f||W017p(93)(D) = Z

i=1

(2.18)

Lp(@) (D)

The norm (2.18) is equivalent to the norm (2.17) (with k = 1).

The space W:’p(m)(D) is a proper subspace of W*?@) (D), provided that D is a proper
subset of R™. If £ = 0, since D is open bounded domain of R", we have the density

result.
Theorem 7. Let p € P(D) N L>(D). Then the set C°(D) is dense in LP®)(D).

Theorem 8. Letp € P(D). The spaces W*P(®) (D) and W™ (D) are Banach spaces
under their respecttive norms (2.17) and (2.18). They are separable if p € L*>(D) and

reflexive if 1 < essinfyepp(xz) < esssupyepp(z) < o0.
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Consider two Banach spaces X and Y. We denote their continuous embedding by O.

As a consequence of Theorem 5 we have the following trivial embedding:
If g(z) < p(z) for a.e. x € D, then W*P@ (D) o Wha@) (D). (2.19)
The compact embedding of X into Y will be symboled X OO Y.

Theorem 9. Let D and p satisfy one of the following conditions:

(i) p is continuous on D;

(ii) there exist numbers p; and r; and subsets G; C D, i =1,2,...,m, that contain

finitely many components with Lipschitzian boundaries such that |D \ U™ ,G;| =

0, the interiors of GG; are mutually disjoint, 1 = p; < py < 11 < p3 < 19 <

C < Pt < Tmes << P < Pt < Tmo=00, 15 < npi/(n —p;),

i=1,2,....m—1andp; < p(x) <r;fori =1,2,...,m and for all z € G,.
Then the space W, * @) (D) is compactly embedded in the space LP™®)(D):

Wy (D) 0o LP@(D).

We shall write (, ) to denote the inner product in L?(D).
Using the generalized Holder inequality and the characterization of the dual (LF(*)(D))",
we have the following characterization of the dual space (W(f’p(m)(D)) of W™ (D):

Theorem 10. Let p € P(D) N L*°(D), then for any functional J € (Wf’p(z)(D)>
there exists a unique system of functions {g, € LY® (D) : |a| < k} such that

J(f)=Y_ [ Df(x)ga(x) da,

la|<k VP

for every function f € W P™(D).

Next, we introduce some other sorts of Lebesgue and Sobolev spaces of measurable
functions defined on the closed interval [0, 7], with values in various Banach spaces.
They are essential in order to construct generalized solutions to the initial boundary

value problem (I-BVP).
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Definition 8. The space
v (0, 75 Wy (D))

consists of all measurable functions w that are defined on the closed interval [0,T] ,

taking values in the space Wo"'™) (D), satisfying ||u(t, z) e L7([0,T]). We

g o

endow this space with the following norm

1
T »
L A LU ey

Next, we introduce an intermediary space which is important for the construction of our

probabilistic weak solution.

Definition 9. The space
V(Qr)

consists of all measurable functions u defined on [0, T and taking values in W, "™ (D).

We endow V (Qr) with the finite norm

n

lult, 2) v = D

i=1 Lr(@)(Qr)

:Zn:inf{kp() : / (
i=1 Qr

where Qr = (0,T) x D.

ou(t, )
8:102-

Ju(t, )
3@

p(z)
//\7;) dtdr < 1}, (2.20)

The space XO/(Qt) is introduced similarly, where Q; = (0,¢) x D, 0 <t < T.
Following [66] and [85], from previous theorems 1, 4, 8 and the completeness of the

spaces LP@) (D), W@ (D) and W, *“ (D) we can derive the following result.

Theorem 11. The space V(Qr) with the norm || . /gy defined above is a Banach
space.

If p € P(D) N L>®(D), then V(Qr) is separable.

If p(x) > 2, then V(Qr) is reflexive.

From the characterization of the generalized Lebesgue and Sobolev spaces we see that

it is necessary to give the characterization of the dual space (V(Qr))* of the space
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‘O/(QT). We equip the dual space (V(QT))* of f/(QT) with the norm
Il v@ey = sup [(f, u) =inf ) ||fa )zt (@r s
ellv(@p) St lal<1 70

where the infimum is taken over all possible decompositions

= Difa(t),  falt) € L(Qr).
We have the following result. For the proof we follow the lines of [85] (Lemma 2.10
page 316), but with appropriate changes.

Lemma 2. Letp € P(D) such thatp € C(D) orp € L>(D), and moreover, let p(z) >
2. Then the following continuous embedding holds: V(Qr) © L*(0, T; W™ (D))

Proof 3. For every number A > 1, we have \g,(u) < o,(Au).
Therefore Ao, (2% /A) < QP(&:): ). We use the fact that

ou
ox;
L R— =1
e
1212090 | oy
and Lemma 1 to get
ou p(x)
/ o | g
p | 5 | o ()
[F e
If —— >1,
ol ot (@)
o p(x) ‘ Su 8u’ p(@)
Ox; 9zi || Lp) (D Ox;
Ll = Lar 2 rmr dr
“%i Lr(@)(Qr) 0zi || Lp@) Qg |1 9%i || Lr) (D)
’ u p(z) p(x)
B 3331' Lp(z) (D) |8£E~L dx
D ’ Ou ’ ou ’
‘ ou
ox;
. || Le(@) (D
p(x) > 2, since Tp—() > 1, then
u
‘ Pill o) (@r)
‘ ou p(x) ‘ ou 2
9z; Lr(®) (D) > Oz; Lr(®) (D)
’ du B ‘ ou
il Lo (@r) Ozi || Lr(@) (Qr)




P

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

W’ YUNIBESITHI YA PRETORIA

CHAPTER 2. FUNCTION SPACES

Therefore
5 p(z) P p(z)
ou ou
Oz; 0z || 1o() (D | o
—_— dr > 5 (D) Ozi dx
92 || Lo (Qr) 971 || Lot (@) 92 || Lot ()
2
ou
9zi || o) (D)
> .
= 2
‘ ou
i || Lo (Qr)
Thus we obtain
‘ ou | p(z)
ox;
| Lr(@) (D) oz,
‘@ D ’ Qu
Oz || o) (Qr) “llLr@ (Qr)

21

The intergration of this inequality with respect to t from 0 to T' and use of Lemma 1

yields
p(z)
T ‘ Oz, .
/ D) dt\/ / - drdt +T
8@ Lr(®)(Qr) LP)(Qr)
p(z)
:/ h"# dedt+T=1+T.
- ‘ ou
9 || Lr) (Qr)
Hence, we obtain the inequality
/ g[S dt < (1+7T) H
o |0z Lp(@) (D) 0z Lp(:c)(QT)'
This implies
dt
(Z/ O%; || o) () ) Zl 8x, Lr(®) (Qr)
= CHUH\"/(QT)-

Since,

T T n
2
dt =
o= [ (3

=1

2

ou
al‘i

ou
8$7;

2 n T
ws<cy [
Lr(®) (D) . 0

i=1

Lp()(D)
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It follows with an appropriate choice of the constant C' that
1/2

T
(/ 00 dt) < Cllullyran, -

It follows that V(Qr) C L*(0, T; W(}’p“)(D)); thus we can get the embedding
V(Qr) O L2(0,T; Wy (D)).

From the continuous embedding of the generalized Lebesgue spaces we easily have the

following continuous embedding
L? (O,T; Wol’s(D)) O V(QT) OL" (0,T§ WOLT(D)) )

where 2 < r = essinf,epp(r) < s = esssup,cpp(x) < co. And then clearly the

embedding of their duals follows:

L (0,7 w D)) © (V@) 0 L (0,15 (D))

2.4 Functional-Analytic Statement of the Problem

We consider the family of operators A(t) : Wy "\") (D) — (Wol’p(m)(D)Y, fort € [0, 7]
such that

ou(t, )
(%Z

V[P gu(t,z) v

da (2.21)

(Au(t),v) Z 1™

holds for all u,v € Wg*™ (D) and for s € [0, 1].
If u e V(Qr) then Au(s) (WQT)) .

We next introduce some probabilistic evolutions spaces.

2.4.1 Some results from probabilistic evolutions spaces

Given a Banach space B, for 1 < ¢ < 0o, we denote by L%(0,T’; B) the set of functions

defined on [0, 7] and taking values in B. We endow L%(0,T’; B) with the norm

q
|ullzago,7;8) = (/ ||u(t HBdt) if 1 <gq< oo.
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When ¢ = oo, the space L>°(0,T; B) is the space of all essentially bounded functions

on the closed interval [0, 7] with values in B with the norm
||| Lo (0,r;8) = esssup|lu|lp < oo.
[0, 7]

Let B be a Banach space, we assume that (€2, F,P) is a probability space and let
(Fi)ost<r be a filtration i.e. an increasing and right continuous family of sub o-algebra
of F with Fy contains all the P-null sets of the filtration. Throughout we denote by E
the mathematical expectation with respect to the probability measure P.

Let 1 <p < oo. The space
L (Q, F,P,LY(0,T; B)) (2.22)

consists of all random functions u(t, z,w) defined on [0, 7] x €2 and taking values in B
such that the function u is measurable w.r.t. (¢,w) and for almost all ¢, u is measurable

w.r.t. the filtration F. We furthermore endow this space with the norm

1/p
||UHLP(Q,f,IP>,Lq(0,T;B)) = (E||U”I£q(oj;3)> : (2-23)

When ¢ = oo, then the norm in the space LP(2, F,P, L>=°(0,T; B)) is given by

1/p
lullnoreiorsy = (E luliegrs) -

Theorem 12. LP(Q, F, P, L9(0,T; B)) with the norm defined in (2.23) is a Banach

space.

We shall give some useful compactness results.

Lemma 3. Let (g.)x=12.. and g be some functions in the space L1(0,T; L4(D)) with

1 < q < oo such that
9|l a0 ey < Cy VK

and as Kk — 00 ¢, — ¢ for almost all (t,x) € Qr. Then g, converges weakly to g

in L9(0,T: L1(D)).

Proof 4. For a detailed proof see [53, Chap. 1, Lemma 1.3].
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Remark 1. The above lemma is still valid if instead of L(0,T; LY(D)) we have
LP(Q, F, P,LY(Qr)) for almost all (t,x,w).

In order to sharpen our result, we collect the next lemma from [75, sect. 8, Theorem 5].

Lemma 4. Given some Banach spaces B, F' and H with F' a subset of H such that
B is compactly embedded into F'. For any p, ¢ € [1,00], let V' be a bounded set in
L9(0,T; B) such that

T—6

lim lo(t + 6) — v(t)|5 dt =0, uniformly for all v € V.

60— 00 0

Then V' is relatively compact in L*(0,T, F').

2.4.2 Some Facts and definitions from Stochastic Calculus

In this section, we give some fundamental definitions of probabilistic concepts and provide
some well-known prerequisites from probability theories and stochastic calculus, which
will be used throughout the dissertation. For more details about these basic results we
refer for example to [16], [17], [20], [44], [46], [60], [76], [77], [86], [87], [74].

A probability space is a triple (2, F,P), where

e () is the set of all elements w (w are called sometimes elementary events),

e F is the Borel o-field of subsets of (2

o P is a probability measure.

If (2, F,P) is a given probability space, and (£, G) a measurable space, then a function
f:(QF)— (F,G) is called F-measurable if

fH(B)={we @ f(w) € B} € F,

for all sets B € G(or, equivalently, for all subset B of F); f is also called E-valued

random variable.
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Expectation

Next, we shall define the expectation EX of an arbitrary random variable without giving

any of its properties.

Definition 10. Let (2, F,P) be a probability space.

We define the expectation of the random variable X by

EX = /Q X (w) P(dw) or /Q X dP.

Conditional Expectation

In this section we shall define the conditional expectations with respect to a o-algebra
G (sub-o-algebra of F). The concept of conditional expectation is of major importance
in the definition of martingale. Suppose again (2, F,IP) is a probability space and that
G is a sub-o-field of F.

Definition 11. Suppose that X is an E-valued integrable random variable defined on
the probability space (2, F,IP). Then the conditional expectation of X with respect
to the o-field G (conditional expectation of X given G) is the (a.s. unique) integrable

random variable E[X |G] satisfying

1 E[X|G] is G-measurable;
2 forevery B € G

/XdIP’:/ E[X|G]dP, or E[XIp] = E[E[X|G]I5], for all H € G. (2.24)

Note that the existence and uniqueness of E[X|G] follows from the following result

known as the Radon-Nikodym theorem.

Theorem 13. Let i be the measure on G defined by

M(H):/XdIP; Heg.
H



gﬁ
<

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

CHAPTER 2. FUNCTION SPACES 26

Then p is absolutely continuous with respect to P|G, so there exists a P|G-unique G-

measurable random variable Y on €2 such that

w(H) :/ Y dP for all H € G.
H

Thus the conditional expectation E[X|G] is a modification (see definition below) of Y.
The random variable Y =: E[X|G] is indeed unique a.s. with respect to the measure

P|G.

Filtration

Our basic structure is a measurable space (2, F).

Definition 12. A filtration is an increasing sequence of c-algebras on a measurable
space. That is, given a measurable space (2, F), a filtration is a sequence of o-algebras

{Fi}oct<r with Fy C F for each t € [0, T] and satisfying
s<t=F, C F:.

Similarly, a filtered probability space (known as a stochastic basis) is a probability space
equipped with a filtration of its o-algebras. WhenT' = oo we define F, as the o-algebra

generated by the infinite union of the F;'s, which is also contained in F:
Fe=0c| |J R|CF
te[0,T)
As a convention we write Fo, = \/t Fi.

We define Fi+ = (., Fs and, fort > 0, we define F,- = \/,_, F.

s>t

The filtration is said to be right continuous if F; = Fi+.

Stopping Time

We pass next to the definition of stopping times.
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Definition 13. Suppose that we are given a measurable space (2, F) equipped with a
filtration F = {Fi}o<t<r- A random variable 7 : Q) — [0, 00] is called a stopping
time with respect to the filtration F (or an F-stopping time or simply a stopping time

if there is no confusion) if the event {1 < t} = {w: 7(w) <t} € F, foreveryt, t > 0.

Stochastic Process

We assume as given a probability space (2, F,P).

Definition 14. A stochastic process X defined on a measurable space (2, F) with
values in a measurable space (E.,G) is a family of random variables (X (t))o<i<r with

values in E, indexed by t € [0,T].

(1) For a fixed sample point w € €, the function ¢t — X (t,w); 0 < t < T is the

sample path of the process X associated with w.

(2) X is continuous if its sample paths X (¢, w) is a continuous funtions of ¢, for almost

all (almost everywhere) w € €.

Definition 15. Suppose that F = {F;}, 0 < t < T is a filtration of the measurable
space (2, F), and X is a stochastic process defined on (2, F) with values in (E,G).
Then X is said to be adapted to the filtration (F;)o<i<r (or Fi-adapted) if X (t) € F;

that is Fy-measurable random variable, for each t € [0, T].

Definition 16. Suppose that X = {X(t)}o<t<r Is a stochastic process defined on a
measurable space (2, F), and taking values in the measurable space (E,G). Then X is
said to be measurable process if the map (t,w) — X (t,w) is measurable provided
that [0, T x Q is given the product o-field B([0,T]) @ F, where B(]0,T]) denotes the
Borel o-fields.

We shall introduce one of the most important theorems for constructing Wiener process.
For further proofs and more information about these theorems and definitions we refer

to [58].
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Theorem 14. (Kolmogorov Extension Theorem)
For all ty,ty,...,t, € [0,T], k € N let v4,,...,v, be probability measures on R™ such

that

(F1 X e X Fk) = Vi, 4y, (F071(1) X X Fo-fl(k)) (225)

a(1)seerees to (k)

for all permutations o on {1,2,... k} and

Viryoty (F1 X X FR) = Vit (F1 X oo X Fg x R" x - x R™) (2.26)

for all m € N, where the set on the right hand side has a total of m + n factors.

Then there exists a probability space (2, F,P) and a stochastic process X = {X(t)}
onQ, X(t) : Q — R", such that

Viryoorty, (F1 X oo X Fy) = P[X(t1) € Fy, -+, X(tx) € Fy],

for all t; € [0,T], k € N and all Boral sets F;.

In order to contruct Wiener process we need the following.
Fix x € R™ and define

_|I—y|Rn

5 )foryER”,t>0.

p(t,z,y) = (2mt) 2 exp <
If 0 <t <ty <--- <ty define a measure v, 4, on R™ by
Uty ooty (F1 X - X Fy) =
/ p(ty, z, x1)p(ty — t1, 21, 22) - - p(ty — tp—1, Tp—1, Tg) dxy - - - dxg,  (2.27)
Fyxex Fy

where dz = dx; - - - dx), stands for the Lebesgue measure and the p(0, z,y)dy = d.(y),
is the unit point mass at x. The extension of this definition rest on (2.25). It is clear
that p(t,x,y) satisfies [, p(t,z,y)dy = 1 for all t € [0,T7, hence property (2.26) is
valid. Then we apply Theorem 14 to find a probability space (€2, F,P*) and a stochastic
process W = {W(t) }o<t<r on €2 such that the finite dimensional distributions on W (t)

are given by
P1<Wt1 EFl,"' >Wtk GFk):

/ p(ty, x,x1)p(ty — t1, 1, ) - - p(tp — th1, Tp—1, Tx) dxy - - - drg.  (2.28)
F1><~~><Fk
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Definition 17. A process W = {W (t)}ico1) satisfying properties (2.27) and (2.28)
above is called Wiener process on a measurable space (2, F) with a family of probability

measures P*, i.e, P*(Wy = x) = 1, and W is a Wiener process starting at x under P*.
A Wiener process is characterized by the following properties:

(i) W (t) is a Gaussian process, i.e. for all 0 < t; < -+ < t; the random variable

W = {W(t) }+eft, 1, has a normal distribution.
(i) W (t) has independent increments, i.e.

Wt17Wt2 _tha”' 7Wt _Wtk 1

k c—
are independent for all 0 <t <ty < -+ < ty.

Definition 18. Two stochastic processes X = {X (t)} andY = {Y(t)} defined on the
same probability space (2, F,P) with values in (E,G) are said to be a modification of

(or a version of) each other if

Pw: X(t,w) =Y(t,w)) =1, Vt € [0,T].
Note that if X (t) is a modification of Y (t), then X (t) and Y (t) have the same finite-
dimensional distributions.
Next, we introduce another famous theorem of Kolmogorov which can help to justify
the existence of a continuous version of Wiener process:

Theorem 15. (Kolmogorov's continuity theorem). Suppose that the process X =
{X(t) }iejousr satisfies the following condition: for all T > 0 there exist positives

constant «, 3, C' such that
E[X(t+h)—X®)|*] <Cp["P; 0<t, h<T.
Then there exists a continuous version of X.

Theorem 16. Let W be a Wiener process. Then there exists a modification of W which

has continuos paths a.s.
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To check whether or not a given proess W (t) is a Wiener process, we need the following

necessary and sufficient condition: for and arbitraryn, 0 =ty <t; < ---<t, =T, and

205 %Ly« 9 ”n
n 1 n
Eexp<i Y 2k [W(te) — W(tee1)] +i20Wi(ty) p =exp{ —= Y 22(t, — ti1) p .
p{;k[ (k) (k 1)] 0 (0)} p{ 2; k(k kl)}

Martingale

Definition 19. A stochastic process X = (X(t))o<t<r taking values in E, adapted
to the filtration F = {F.} is called a martingale( or martingale with respect to the
filtration) if
i) X (t) € L'(dP);that is, E (| X (¢)|) < oo, Vt € [0,T],
it) E(X(t)|Fs) = X5, P—as., forany t>s>0.
The main ingredient in the theory of integration is the concept of square integrable

martingales.

Definition 20. A random variable X is said to be square integrable if it has a finite
second moment (or mean square), that is E[X?] < co. A process X = {X(t)}epo,r] is

square integrable if sup;c(o ) E[X (t)?] < oo. If the process X satisfies the following:

a) X is a martingale,

b) X is square integrable,
then X is called square integrable martingale.

Let 1 < p < co. We denote by
LP(Q, F,P)
the space of all stochastic processes (resp. martingales) X = {X(t)}o<t<r with values

in F/, that satisfy the following two properties

i) || X (t)|| g is measurable,
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i) B[l X ()] < oo

Any stochastic process X for which the above two properties hold is called p-th integrable
stochastic (resp. p-th integrable martingale) process.

Definition 21. (cf. [47])
An adapted process X = { X (t)}o<t<r with values in E is said to be a local martingale
if there exists an increasing sequence of of stopping times T,, such that

(i) T, — oo almost surely as n — oo,

(ii) for each n the stopped processes X (t A 1,,) is uniformly integrable ( the definition

will follow ) martingale in t.

Stochastic Integrals

In this section we shall introduce the definition of the stochastic integral

/ L x@aw (2.20)

of a process X = X(t) for any t € [0,7] with respect to a standard one dimensional
Wiener process W

Let X be an F;-measurable process for each ¢, for which

T
/ X2(t) dt < oo.
0

Then we can define the 1t6 integral (2.29) for the process X as follows:

T n—1
| x@ave <im 3 xe) (V) -we). @30)
0 i=0
as |d,] — 0 and n — oo, where for each n, {t'}, is a partition of the interval [0, T7,

and the limit is taken over all partitions with ¢, = maxi<;<,—1(t7,; — t}') is the mesh

of the partition ¢ = {t{} <t} <--- <t} =T} of the interval [0, 7.
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Theorem 17. For a process X (t) possessing the above properties, the stochastic inte-

grals .
/o X(s)dW (s)

are continuous martingales in t with zero mean, that is
E/fwomwo:o
0

Suppose that h is an F;-adapted process such that
T
/ h?(t) dt < oo almost surely,
0

now consider Y'(¢) to be an R-valued It6 integral with respect to a R™ standard Brownian

motion defined by
t
Y(t):/ h(s) dW (s).
0
Then, the corresponding Ito integrals are defined for any ¢ < T and they are local

martingales.

Stochastic differential and Ito processes

Consider the Ito integral
t
Y(t) = / X (8)dW (s).
0
A process Y = {Y,}o<i<r is said to be an Ito process if for any 0 < ¢ < 7' it can be

expressed as follows:

Y@zY@+Au@%+Aa@ﬂWQ (2.31)

where processes yi(t) and o(t) satisfy the properties:

(i) w(t) is adapted and fOT |p(t)| dt < oo almost surely

(i) o(t) is predictible and fOT o2(t) dt < oo almost surely.
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We now introduce the notion of stochastic differential with respect to a standard brow-

nian motion. The differential relation
dY (t) = X (t) dW (t)

is called by convention stochastic differential with respect to a standard brownian motion.
If Y is an Ito process given by (2.31), we will then say that the process Y'(¢) has a

stochastic differential on the interval [0, 7]
dY (t) = p(t)dt +o(t)dW(t), 0<t<T. (2.32)
If 11 and o depend on ¢ through the process Y (t), we then write

dY (£) = p(Y (£)) dt + o (Y (1)) dW (), 0<t<T. (2.33)

1to’s formula

In the following result we introduce the 1t6's formula for (X (t)).

Theorem 18. Let X (t) have a stochastic differential for 0 <t < T
dX(t) = b(s)ds+ h(s)dW (s),

where b(t) is an R-valued, F;-measurable and integrable process over [0, T.
Suppose that p(x) is once continuously differentiable in t and twice continuously dif-
ferentiable in x. Then the the process Y (t) = (X (t)) also possesses a stochastic

differential and is given by

dp(X (1)) = ¢/ (X(H) X (1) + 5" (X ()R (1) di (2.34)
- [¢'<X<t>>b<t> " gwxa»m} dt + ¢ (X(0)h() dW(r).  (235)

In integral notations

PX() = o X(O) + [ JX)aX () + 5" (XEDR () s (230
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Formula (2.36) is called Ito's formula for (X ().

We shall introduce a useful result which is known as the Burkholder-Davis-Gundy in-
equality. This gives bounds for the maximum of a martingale in terms of the quadratic

variations. The proof of the Burkholder-Davis-Gundy inequality can be found in [61] and
[64].

Theorem 19. Suppose that Y (t) = fOtX(s) dW (s) is the Itd’s integral process such

E (/UT X3(t) dt)p/2 < 00.

Then, for any real number p > 0 there are constants ¢, > 0 and 0 < C, < oo depending

that

only on p, such that for any stopping time T

/X ) dW (s

< C,E [X?(s) ds}pm.

o<t

B { /0 ' X2(t) (dW (1)) ] <E sup

(2.37)

We collect some powerful theorems from Prokhorov [60] and Skorohod [76] which are
compactness results . A detailed proof of these results can be found in [20].

We firstly introduce the tightness of probability measures.

We shall consider E to be a separable complete metric space and consider its Borel
o-field B(E). We have the following definitions of relative compactness and of tightness

of probability measure.

Definition 22. A family of probability measures 11,, on (E,B(E)) is said to be relatively
compact if from every sequence of elements of II,, we can extract a subsequence II,,,
such that 11,,; converges weakly to the measure I1. This can also be formulated as
follows:

For any continuous and bounded function ¢ on E

lim ¢ ) dIL,,. —>/¢

Jj—00

We define the tightness of II,, by
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Definition 23. A family of probability measures 11,, on (E,B(E)) is tight if for any

e > 0, we can find a compact subset K. of E such that
P(K.) > 1—c¢ for every P € II,,.

Theorem 20 (Prokhorov). The family of probability measures 11,, is relatively compact

if and only if it is tight.

The weak convergence of probability measures can also be related to the almost every-

where convergence of random variables by the following theorem from [76].

Theorem 21 (Skorokhod). For any sequence of probability measures 11,, on (E, B(E))
which converges weakly to a probability measure 11, there exists a probability space
(Y, F',P") and random variables X, X1, ..., X,,... with values in E such that the
probability law of X,, is I1,, and that of X is 1l and

lim II, =1I, P —a.s.

n—oo

Uniform Integrability

The concept of uniform integrability is very important in Probability Theory. Assume that
we are given a probability space (Q, F,P) and L'(Q), F,P) is the space of (equivalence

classes) of real random variables X such that || X|| .1 7p) = E[|X]] < oo.

Definition 24. A family of random variables is said to be uniformly integrable provided

that

n

su X, (w)|dP(w 2.38
p/{xn>0}| ()| dP(w) (238)

converges to 0 uniformly as ¢ — oo, or in a different notation,

supE [|Xn(w)|l{|Xn|>c}] (2.39)

converges to 0 uniformly, as ¢ — oo.
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The definition of uniformly integrable random variables is very useful in limit theorems,
as the generalization of dominated Lebesgue's convergence theorem. That is known
as Vitali's theorem (see definition below). The following result is very useful test for

uniform integrability test and is known as de la Vallée-Poussin theorem.

Theorem 22. Let {X, },en be a sequence of integrable random variables. That is
E[|X,]] < co. Let ¢ = ¢(t) : [0,T] — [0,00) be a nonnegative increasing, convex
function (p(Ax+ (1 —=N)y) < Ap(z) + (1 = N)p(y)) for all z,y € [0,T], X € [0,1] such
that

lim 20) = o0; (2.40)
and

Sup/ng(|Xn(w)|)dP(w) < 00. (2.41)

neN

Then the family { X, }nen is uniformly integrable if and only if (2.40) and (2.41) hold.

Note: the function ¢ defined above is called a u.i. (uniform integrability) test function.

Corollary 2. Ifthe process X = { X, }o<i<r is square integrable, that is, supy, < E[X7] <

00, then X is uniformly integrable.

We introduce a necessary and sufficient condition for a family {X,},en of random
variables to be uniformly integrable. That will help us to relate the two, i.e., uniform
integrability and the convergence to random variables. For the proof of the following

results, we refer to [74, page 186-189 and 191] and the bibliography therein.

Theorem 23 (Vitali’'s Theorem). Suppose that { X, },en is sequence of intergrable
random variables, that is X,, € L'(Q, F,P) with E(]X,|) < co. Suppose as well that
X,, converges in probability to the random variable X with E(|X|) < oo. Then, the

following properties are equivalent

i) the sequence of random variables (| X,,|)nen are uniformly integrable,
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ii) In probabilistic language, a sequence of integrable random variables (X,,),en con-

verges to X in mean. That is, E[| X, |] — E[|X]],

iii) a sequence {X, }nen converges to X in the L'-norm. That is, X, — X in

LY(Q, F,P).

1 1

Holder’s inequality. Let 1 < p,g < oo, and — + - = 1. If E[|X|?] < oo and
p q

E[|Y]?] < 0o, Then E[|XY|] < co and

E[XY] < (B[ X)) (E[lY])"". (2.42)
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Chapter 3

SETTING AND MAIN RESULT

In this section we shall give the definition of the weak probabilistic solution to our prob-
lem, formulate our main result and prove the existence theorem of the weak probabilistic
solutions by using the monotonicity of the operator A introduced in (2.21) subsection

2.4.

3.1 Assumptions

We now introduce the conditions on the nonlinear operators in equation (1.1).

We assume that
f:(0,T) x L*(D) —> L*(0,T; (Wy™™ (D))*), measurable

a.e. (t,u) — f(t,u) : continuous w.r.t the second variable

”f(t, u)||L2(07T;(W017P(z)(p))*) <C (1 + ||UHL2(QT)) (31)
G:(0,T) x L*(D) — (LQ(D))d, measurable
a.e. (t,u) — G(t,u) : continuous from w.r.t the second variable

G Wl 2 pyye < CA A+ ul®)llzzw)): (3.2)

38
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Suppose that p(z) > 2 and satisfies the inequalities

2 <r=ess inf p(z) <s=esssup p(r) < oo. (3.3)
z€Dy zeDE

Next, we shall define the concept of probabilistic weak solution of the I-BVP (1.1)-(1.3)

as follows:

Definition 25. A probabilistic weak solution of the -BVP (1.1-1.3) is a probabilistic

system
(€, F, (F)ose<r, P, W), (3.4)

where

(1) (2, F,P) is a probability space, F; is a filtration on it,
(2) W is an d-dimensional F;-standard Wiener process,

(3) u(t) is Fi-measurable,

(4) u(t) is an element of

LY(Q, F,P, L=(0,T; L*(D))) N V(Q) N LY*(Q, F, P, L' (0, T; Wy ") (D)))

) r?ill ] ’

for any q € |2

(5) fora.et € (0,7, u(t) satisfies the integral identity

(u(t),v) — /Ot(A(s)u(s),v)ds = (up,v) + /Ot (f(s,u(s),v) ds+
+ (/OtG(s,u(s))dW(s),v> : (3.5)

for all v € Wy™(D).

Our main result is
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3.2 Main Result

Theorem 24 (Existence theorem). Let p(x) > 2 be a measurable function such that
p € C(D) and moreover p(x) satisfies the second condition in Theorem 9. In addition,
assume that (3.1), (3.2), (3.3) hold and uy € L*(D). Then there exists a probabilistic

weak solution (Q, F, (Fi)o<t<r, P, W, u) in the sense of the above definition.

The equivalent stochastic parabolic problem to (3.5) is written as follows:
du — Audt = fdt + GdW in (W@ (D))", (3.6)

Remark 2. By virtue of Theorems 9 and 10, Wy (D) o0 L*(D) € (W3 "™ (D))*,
for p(z) > 2. Identity (3.5) with the inclusion V (Q) N L7 (0, T; Wy (D)) C L*(Q), im-
plies that u is weakly continuous with values in the dual space (Wo"'™)(D))*. Following
[79, subsect 1.4, page 263], we argue that, since the function u(w) belongs to the space
L>=(0,T; L*(D)), then u is weakly continuous with values in L*(D); therefore the initial

condition for u for t = 0 is meaningful.

3.3 Proof of the Existence Theorem

In order to prove our main theorem, as an essential auxiliary tool, we use the Galerkin
method.

Our existence proof will proceed in several steps and it follows the scheme of BENSOUS-
SAN [14] for the case of stochastic nonlinear parabolic equation, but with appropriate
changes. We shall prove the existence by firstly constructing approximate solutions to the
I-BVP (1.1)-(1.3) through a Galerkin scheme of the problem (1.1)-(1.3). At the second
step we derive a “priori” estimates for the approximating solutions of these Galerkin
systems. At the third step we pass to the limit in the finite dimensional equation by
choosing from the sequence of solutions (u,,) a subsequence (umu) which converges

weakly in appropriate topologies. Then at the final step, we shall prove that the limit u
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of u,, is a solution of the I-BVP (1.1)-(1.3) by using the monotonicity of the operator
A.

3.3.1 Construction of an approximating sequence

Let wy(z), wa(x), . .., wn(z),. .. be a basis in the space W)™ (D). For each m € N
let us denote the span of {w;(x),...,wy,} by Sp.

Consider the probabilistic system

We seek approximate solutions w,,(t) of the problem (1.1)-(1.3) in the form
= 3" Cinlt)us(a). (37)
j=1
The functions Cy,,,(t), Copm(t), ..., Crum(t) in the expansion (3.7) are found from the

system of stochastic ordinary differential equations

(dum(t), wj) + (Aum(t) , w;) di
= (f(t,um(t)),wj)dt—l—/ G(t,u(t))wjde dW(t), j=1,2,...,m, t €[0,T],

(3.8)

with the initial conditions C',,(0) = C4, Co,(0) = Cy ..., Cpum(0) = C,,, where the

constants Cy, k = 1,2,...,m,..., are the coefficients in the expansion of ug(x) with
respect to the basis wy (), wa(x), ..., wy(x),...in L?(D). Hence
Um (0, ) = ugm(z) = Z Cim(0)w;(x) — ug(z) strongly in L*(D), asm — oo.
j=1

Then we can rewrite explicitly system (3.8) in the form

:(f(t,um(t)),wj)dt—l—/DG(t,um(t))wjdx dW(t),je[l,m],te 0.7.  (3.9)

p(z)—2
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Under our conditions on f and G, the system (3.9) satisfies the conditions of existence
(see [77, page 121, Theorem 2], [76], and [81]). The solution w,, exists on some interval
[0,t], tm < T. The a priori estimates of the functions w,,(¢) obtained below implies

that w,, exists on the interval [0, 7.

3.3.2 A "priori” estimates for the approximate solutions

We shall now establish a priori estimates for the Galerkin approximate solutions wu,,.
To do that, we shall introduce a stopping time argument.

For each natural number k£ > 1, consider the following F;-stopping times:
inf {t €[0,7]: |t (1) || L2(D) = k},
We shall give the first main result in the following lemma from which follows the existence

of w,, over the entire closed interval [0, 7.

Lemma 5. There exists a positive constant K independent of m such that the following

a priori estimates hold

E sup ||Um(3)||2L2(D) < K, (3.10)
0<t<T
E [ty < K- (3.11)

Here E is the mathematical expectation on the probability space (Q), F,P).

Proof 5. Let u,(t) € S, = Span{w;(z)}j,. By multiplying equation (3.8) by

Cjm(t,w) and by summing the resulting relations over j from 1 to m we obtain

(A, Uy / Z

= (f(t, um(t)), un(t)) dt + /D G(t, um(t))um (t)dxdW (t) forj=1,2,...,m
(3.12)

O, (t, x)

8%

P2 Ot (t, 1) O (L, )

dxdt
ox; ox; o
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By applying Ito’s formula to equation (3.12) we get

dt+

axl dw + (f(t um(t)), um(t))

Al () L20) = 2 [

—I—/ ||G(t,um(t))||(L2(D))dd:p dt—|—2/ G(t, um(t, v)um(t, x) de dW(t).
D

D

The integration of this relation over the interval [0,t] yields the following

P2 Il +2 3 [ 24

tl t
2 [ 5 [ 6t s, o)y drds +2 [ [ Glsvtn (o)) un(s.0) deaiv(s) +
0 D 0 JD

letom 221 (3.13)

ou(s, x) p(x)

Pl e ds =2 [ (f(s () un() ds+

Hence, we obtain the inequality

] < 2Kl||umHL2(O,T;W01»p(I)(D))Hf(t7um(t))||L2<0’T;(W01’P(I)(D))*> +

t t
+ /(; HG(Sa um(57 m))H?LQ(D))d ds + 2/(; (G<S> Um(S, *1'))7 um(s)) dW(S) + HUOmH%Z(D),
(3.14)
where the positive constant K is independent of m.

By applying Young's inequality to the first term on the right-hand side of relation (3.14)

and using the continuous embedding established in Lemma 2, we obtain

r

CENfEumE)y

22 (0,15(wy (D)) ")

n / 1G5, () |22 yye A5 + 2 / (G5, tum(3)), tm(5)) W (s),  (3.15)

+ Ce"[|umllf g, + ltom 1220

where € is a positive constant to be chosen later.

We consider the following alternatives. Either |[u ||y o, = 1, or [|umlly (g, < 1.

Sy

=1

If lumlly (g, = 1, we set

p()

dx dt,

Oy,

al’i
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by definition

n t ou p(z)
. — inf . . Zm ) <1
[l g ;m Ai >0 /0 /D(‘ oz, ‘//\,) dx dt :

and from Lemma 1 we obtain A > 1. Since, 2 < r < p(x), we have ﬁ < % This

1 1
implies —- i S W. We have

8um p(z)

S fo I

dx dt p(2)

- ox; aum \1/p(@) ‘

- |2 _Z// N
— dx
z 1JoJD
which implies that

n t p(x) n t p(x)
Z// %“m/xl/r dmdt<2// ?—m/Al/p@) dz dt = 1.
i=1 /0 i iz J0 JD | O

This inequality, together with the definition of the norm in the space \0/(Qt) enable us

to say that
O,

< )\1/7“,
a.’lﬂ'i

Lr@)(Qy)

[l = Z

i=1

) < A. Thus chosing € sufficiently small in (3.15), we get

i (022 () + N1l g,
C(e) | (2 (e >>u;/jgo; (i) T Tom o
¢ ¢
/0||G(s,um(s,a:))||?L2(D))dds+2/0 /DG(s,um(s))um(s)dxdW(s). (3.16)

Let now |||y g,y < 1. Then

gy < 1. (3.17)

By (3.15) and (3.17) we have

[t (D) 122 <

CEN w7y T O om o+

/OHG(S,um(s,x))H?Lg(D))dds+2/0 /DG(s,um(s))um(s)dxdW(s). (3.18)
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Conbining (3.16) and (3.18) we come up with

Hum(t)”%Q(D) + H“m%(@t) S

r/(r—1
C+Celf, um<t)>|\L/j(0 Y (o)) F luom|[72(p)+
1 0

/0||G(s,um(s,a:))||?L2(D))dds+2/0 /DG(S,um(s))um(s)dxdW(s). (3.19)

Since r > 2 then its conjugate r ] < 2. We have by (3.1) and the result of Young's

inequality

L w0 < C1(E) + O ) *

LQ(O,T;<W01’Z’(“)(D)>*> X 7 Wol’p(“”)(D)) )
2
<O (1 llumllzen) (3.20)
Let us take the supremum over the interval [0,t A 7] and pass to the expectation in

(3.19). Then we can estimate the terms in the resulting right-hand side.
We have

E sup Jun(s)[3p) + Ellulf,

<
s€[0, tAT]"] QMTIT)

C + C()E|[um(5)lIz2(q, ) + Elluomllz o) +

B t/\T,T - s
E / 1G5, (5, 2)) [Egapype ds + 2B sup / / G (5, 1 () )t () ATV (5).
0 1Jo JD

se[0 AT
(3.21)
Here we have used the notation t A 7" = min{t, 7"} and t € [0, 7}"].
By assumption (3.2) we have
tATm tATm
/0 1G5, () 2y ds < C / (14 (e ) ds. (3:22)

We proceed to estimate the stochastic integral term in the right-hand side of (3.21).
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We use the Burkholder-Gundy-Davis inequality. We have for any nn > 0,

E sup

s€[0,tAT]"]

/0 S /D G (L, (1) (1) d dW(l)‘

<oz (Gl un(5)) () ds);

[N

B t/\TIz”
< CE ( [ 160 D Brso i 3) ds)
0
1/2

3 7&/\7';6qu
< CE ( [ 1+ T P ds)

B t/\T]z” 1/2
S CE sup  |um(s)| 2oy </ 1+ Hum(s)HLQ(D)]2 ds)
s€[0,tATI"] 0
B 3 t/\T,Z”
<0E sw i)l +GE [ L ) pof b (329)
s€[0,tAT]"] 0

Here we have used (3.2), Holder's and Young's inequalities.
Combining the above inequalities with an appropriate choice of the parameter 1, we
obtain

E  sup ||um(s)||22 ) + El|tm]” <
5l + Bl

3 AT
[uoml|72(py + C + CE / (1 + [t ()]l 2(0))? ds. (3.24)
0
This implies that for all s € [0,t A t}*] and for all m, k > 1

B _swp un(s) o + Elunlig,, 0 < K (3.25)
k

s€[0,tnT"

where K is a positive constant independent of m. As k — oo, the sequence t A 7"
converges to t. Then passing to the limit in (3.25) as k — oo, we obtain the key

estimates

E sup ||um(t)||%g(D) <K, (3.26)
te[0,7)
Bl ) < K. (3.27)

for all m > 1 and hence the proof of the lemma is complete.
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Lemma 6. Let g € [2, ?fl], then u,, satisfies the estimate

E sup [um(s)72py < C, (3.28)
ost<T

where C' is positive constant independent of m and 1’ is the conjugate of r.
Proof 6. Let ¢ > 4. Applying Ito’s formula to (3.13), we get

dlfun | 2 ) = Sl p) % (—2) (At (£), i (1)) dlt

[ 72 H mlrzpy” % (=2) (Aum(t), um(t)) di+

qllwmll i 4)/2 [(f(t,um), U (t)) dt —I—/ G(t, um)umdx dW(t)}

D
q(q— ) 2)
o N ) NG ) [ pyyect.

After integrating this relation over the closed interval [0,t], we obtain the inequality

e () W-w/wmuw /2:

2 2
< oy + 0 [ T V12257 [ 505 m(s) () s

p(z)

Otim dz ds

ox;

/mmnw (G5t (5)) s n(5)) W (5)+
L [ )1 225 050 5

It follows that

q
J= sup Jlum() |22, Z/nm|u%2

0<s<t

p(z)

dx ds

m

2)
|mmmym/mmngm<@%@xw@ww

-ww/MmWW|MHM»MmMM@M@M%H

2 0<s<

/wmnﬂvm@w@wmww- (3.29)

To estimate the terms in the right-hand side of (3.29), we take the square and the

mathematical expectation in both sides of this inequality. By using assumption (3.1),
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Holder’s and Young's inequalities we have
2
2)
( / )5 501 () )

CE | s lun(9I ( [ st s d)]

S CE | sup [um(s)]l7:

selo.d Hf(S um( ))HLQ(Ot( Lp@)(p ) )H mHLQ(OtWIp(x)( ))]

2
< CE [unlf g, 51 lem (55l (14 omlizca) ]

< CEBllunfyq, + B sup (O + Ellum @475
s€lo,

< CEEunlly g, +<E sup lum(OI74f5) +C(e):
se|0,

/

Since — 1 > q then r'(q — 2) < q. Therefore by Young's inequality

(/ [um(s)l 7 q/2 ( (8, U (5)) , Um(s)) ds)2

< CEllum|l} o, + aEtSB%HUm(t)Hquw) +C.

Similarly, we have by assumption (3.2),
2
4)/2
E ([ am 816 o D) )
2
2
< CE (/ | () ||ng/(21)))2 (1 + [|um(s) ||l z2my) ds)
2
< OB ([ [lumo 12257 + om0 )
2
(/ [ q/2 )—i-l] ds)
CTE [ (Jun(s) ey +1) .
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Let us estimate the stochastic integral in (3.29). We use martingale inequality

<sup / ot (D425 3Gt (1)) 0 (1) dwu))

s€l0,t]

< CE/ 1t ()52 (G5, m(5)) s wm(5))? ds

< CB [ (545 655D 50 52
< CB [ ()5t i) ) (1 ) 20)” s
<ce [ (||um< ey + N () ) s
< CTE/Dt <||um( Meapy +1) ds. (3.30)

Combining these estimates for sufficiently small € and €' with an appropriate choice of

the constants C'(¢) and C(¢’), we obtain

2)—2
B sup [fum () |2 ) + ( / (1357 |

m

p(z) 2
dz ds

t
< CTIE/ (Hum(s)Hqu(D) + 1) ds. (3.31)
0

This implies that

t
E sup [Jum ()% p) < CT]E/O (e

s€[0,¢]

s€(0, t]

Hence, we obtain the inequality

B ( sup Ol ) <. (3.2

0<t<T

3.3.3 Estimates involving the dual space (Wol’p(x)(D)Y

In this subsection, we shall derive an estimate on the norm of the difference

U (t + 0) = upn(t) in the dual space (W™ (D))*.

Lemma 7. The followins holds

sup / |t (t + 6) — wp(t )H W) (e dt < C6 (3.33)

0<|e\<5<1
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Proof 7. Noting that the functions {C},,(t)w;(z)};=12,. form an orthonormal ba-

sis of the dual (Wg’p(m)(D)> " of WP (D), we introduce the orthogonal projection of
(Wol’p(’”)(D)Y onto the span of Sy, = {Cm ()w1 (@), .. ,Cium(E)w; (@) . ., Conm ()10 ()}

Py, (WiPP(D))* — S,.: (3.34)

Pné = Z Cim(t)(E, wi)wgm)(p)x(wolm)(p))* wj(z), (3.35)

i=1

where (-, -) - denotes the duality pairing between the space W, ™) (D)

Wolap(z) (D) X (Wolap(z) (D))
and its dual <W01’p(x)(D)> .
Then writing (3.12) in integrated form as an equality between random variables with

values in the space (Wol’p(m)(D)) ,

U (T, ) +/0 P [A(S)um(s) — f(s,um)] ds = uom +/0 P (G(s,um))dW(s).

(3.36)

For positive 6 such that u,,(t + 0) is defined for t € [0,T], we have

(£ 4 0) =y (8)
_ /t B (s)ds + Py ( /t T b5y tm(s))ds + /t HaG(s,um(s))dVV(s)) ;
(3.37)

and then by definition

[t (E40) =t ()] gy 1 000 1)+ = sup (i (T4+0) =t (1) ) o () doz.
(W5 (D)) Lo
PEW DYl 1)y =1 P

We set

@)= [ P unts) = 5w s+ [ P ) 5 -
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From this we have the following
[t (t +0) = wm ()] 431 20 ) = 9:(6)
+

t+6
/ P Aupn,(s)ds
t (Wol,P(z)(D))*

P, /ttw F(5,um(s)) ds

<

~

.

.

+
(we ™ (D))

t+6 _
/t PG (5,1 (5)) AWV (5)

(e )"
(3.38)

Since A is bounded from Wy ™ (D) — (W™ (D))*, we have by Fubini’s theorem

and Holder's inequality

t+6
‘ / P Au,y,(s)ds
t (WP (D))

_ sup 1 /D ( /t " PmAum(s)go(x)ds> iz

W " (DYl 1) )=

t+6
g/ 1Bt At ()] g -
' t+6
<c/n%umw>m
t

» 40 , 1/2
<0W(/”%®MW@Q . (3.39)
t

Similarly we also have

t+6 t+60
‘m[ £ (5, tn(5))ds < [ 1 D o

t+0
< O (/t | f (s, tm(s ))HQ WP (D)) ds )
(3.40)

(WOLP(I) (D))*
1/2

According to (3.37), (3.39) and (3.40) and taking into account the inequality (3.38), we



P
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORI

Y YUNIBESITHI YA PRETORI A

CHAPTER 3. SETTING AND MAIN RESULT 52

have

[t (t 4 0) = ()] 3372 200

t+6
2
(/ num<s>uwg,p(m>w)d5)

1/2
< 091/2

t+6 1/2
2
(I DI s ) ]

t+0 B
+ ‘/ PG (8, um(s))dW (s) : (3.41)
t (Wo "™ (D))*
Taking the square in (3.41), we get
[t ( +0) — w1 )H( 120 )
t+6
<O [ 5]y st
t 0
t+0
2
oo [ Hf(s,um(S))H(W&,pm(D))*ds
t+6 ~ 2
+ ‘/ G(s,um(s))dW (s) . (3.42)
t (Wo @ (D))*
We fix 0 < 1 and we take the supremum over < O, then we obtain
2
sup [y:(6)]
0<0<o<1
t+6
< CT6? sup ||luy, e 4+ Cd su / s, U (3))])? 1 p(z ds
5 (g, + O s [ (s D
t+6 - 2
+ sup / G(s,um(s))dW (s) : (3.43)
Integrating the inequality (3.43) with respect to t from § to T — 0, we obtain
- T—6
B osup [t 4 6) — )y
0<0<6<1 Js (ws )>
< CTOE m (| 1pe
OiltlgTHu Oly200 )
TS t+5
+C’5]E/ ( su / s, U (9))]]? 1oz ds> dt
s 0<9<1§<1 . Hf( ( ))H(WO’ ( )(D))*
T8 t+0 ~ 2
+E/ sup / G(s,um(s))dW (s) : (3.44)
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We first estimate the second term in the right-hand side of (3.44). We have

53

T—6 t+6 T
) 2 . 2
E / ( / ||f<s,um<s>>||(wg,p<z>(m)*ds) it < CE / 70 ) P10

= CEHf(t?um( >)||L2 OT(W1 P(l)(D)) )

< CE (1+ l|umllz2qn)”

< CEllumllz2q,) + €

< CE sup [lun3ap) + C;

o<t

and we also note that

TS t+6 ,
[ o ||um<s>||W01,p(m>(D) < CoR / o (110

< OO |2 o,

< 06 (Ellunllyyq,)”

L2 0,T;W ™) (D))

(3.45)

(3.46)

For the estimate of the stochastic integral term we use martingale’s inequality. We have

by using assumption (3.2) and Fubini's Theorem

75 t46 B
E/ sup / G(S, U (s))dW (s)
s o<o<o<t ||y

-5 t+8
(/ [G(s,um(s))]st) dt
Téfé tt+5
B ( /t 1G5, () 2oy ds) dat

T-6 t+6 9

/0 E (/t (1 + Hum<S)HL2(D)> dS) dt
T t+6

<TOS + 05/ E </t et (31122 ds) gt

< TCOS + COE sup ||, (t )”%2(1))-

t€[0,T]

2

dt
(W " (D))

<

S— &

<

<

~

Q

Taking into account the estimates of the previous Lemmas we have

T
E/ sup
5§ 0<o<o<1

2

/t G (s, () AV (5)

(Wo " (D))

dt < Co.

(3.47)

(3.48)
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Combining the inequalities (3.38)-(3.48), with the key estimates (3.26), (3.27) and
(3.28) of Lemmas 5 and 6, we obtain
su U (t+6) — ps «dt < C9,
0«&/H )0
where the constant C is independent of & and m. Finally, collecting all the estimates

and making a similar reasoning with 6 < 0, we obtain

T
E su U (t + 0) — u,,(2)||? (e «dt < C0. 3.49
|9|<5p<1 0 || ( ) ( )H(WOL ( )(D)> ( )

This proves Lemma 8.

3.3.4 A variation of the compactness result

Following Bensoussan [13], we reformulate the Lemma 5 as;

Proposition 1. Let p,, and v, be both sequences of positive real numbers such that
both sequences tend to 0 as n tends to co. Then, we have the following compact
embedding

L2 (0 T WW)(D)) N L (0, T; L*(D))

Wim = 2 € 1 ) 1/2
sup;, suprMn (fo |z(t +0) — (t)H(W(f(z)(D))* dt) < 00

is compactly embedded in L*(0,T; L*(D)).

We define the norm in the space W, ... by

1/2
o = 510 12Oz + ([ 10110 0)

\\

_|_
1 T 1/2
+ sup — sup (/ |z(t+6) — Z(t)H?Wg’(””)(D))* dt) : (3.50)
0

n Vn 0] <pn
The space W,,,, ,,, with the norm (3.50) is a Banach space.

We also consider the probabilistic evolution space

Zﬂn,l’n
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of random variables 2z such that

T 1/2 1/q
E 2 e, dt] <00, E a < o0;
([ 1 gy t) <00 (B s [l < o

<"
1/2

1 T
and Esup — sup (/ |z(t+0) — z(t)H?Wé,(z)(D))* dt) < 00.
0

n Un 101 <pn

The space Z, endowed with the norm

n,Vn

T 1/2 1/q
s = 8 ([ Vs t) o+ (B s lell) +
1

0<t<T
1/2

T
+Esup — sup </ l|z(t+0) _Z<t)H?WOP<”>(D))* dt) :
0

n Un 0] <pin
is a Banach space. The a priori estimates established in the previous Lemmas allow us to

Zo—lﬂ < 0,

21 ] and for fi,,, v, such that the series > 7

’rl—1

assert that for any ¢ € [2

n
the Galerkin solutions {u,, : m € N} remain in a bounded subset of Z, ,. since

V(Qr) o 12 (0,737 (D).
Next, we shall prove the tightness property of the Galerkin solutions. Similar proof with

more details can be found in [14], [23], [63], [68], [71], [69] and [72].

3.3.5 Tightness property of Galerkin approximating solutions

We consider the set

S =C(0,T;RY x L*(0,T; L*(D)).

We equip S with its Borel o-algebra denoted by B(S): the o-algebra of the Borel sets
(subsets of S') of S.

For each m, we consider the following mapping
¢:Q— S 0w~ (W(,0),tun(,0)).
For each m, we consider II,,, to be the probability measure on (S, B(S)) given by
I (A) = P(¢~'(A4)), (3.51)

for all borel set A C S. We have the following main result concerning the tightness of

the family of probability measures II,, on S.
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Theorem 25. The family of probability measures {I1,, m = 1,2,...} is tight.

Proof 8. (cf. [14], [23], [62], [63], [68], [71], [72])

We shall find for any ¢ > 0 compact subsets
W. C C(0,T;R%), Z. c L*(0,T; L*(D)),
such that
L, (W, um) € We x Z:) 21 —e.
This can also be proved by the following inequality
Pw:W(,0) € Waup(.,@)€Z.)>1—¢ (3.52)
which in its turn can be proved by the following

P(w:W(,0)¢W,) < (3.53)

P(@:un(,0) ¢ 2.) < (3.54)

€
57
€

5
For as a constant L. depending on € to be chosen later on and N a natural number so

that as N — o0; ) *{/ENN < 00. We consider a subdivision {L} of length -L; of the

interval [0,T]. We next consider the following set

( 3

W. = W(.) € C(0,T;R™), such that sup N|W(t)—W(s)| < L.
s,t € [0,7]
It —s| < T/N°®

\ /

In view of Arzela-Ascoli’s Theorem, the subset W, is compact in the space C(0,T;R?).

For the rest of the proof, we need the following.

Theorem 26. Let ¢ be a random variable on the probability space (Q, F',IP). For any

positive constant C' > 0, and for any k > 0 we have
_ 1 _
Pw:€w)20) < B (16w (3.55)

(3.55) is known as the Markov inequality.
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We have
( )
_ _ _ | L.
P@:W(o)e¢Ww.) < P|[{JIW(): sup W) -Wi(s) >+
N=1 s,t € 0,7
\ |t —s| < T/N°® )
( )
< il@ W(.): sup (W (t) —Wi(s)| > L.
N
N=1 s,t € 10,7
\ [t —s| < T/N® )
(3.56)
Furthermore we get
o) N6 I
P(o:W(,@)¢W.) < P su W(t) —W(s)| > =
@ W gw) <TR{U( s W0 -WEl> 5
= J= N6 "6
oo NS I
< B _ il
<Y Z]P s W) - W(s) >+ (3.57)
N=1 j=1 e st<Ls

Next recall the following well known fact about the Wiener Process W (t);
E|W(t) - W(s)}n < (m=DI{t—s)"? n=23,... (3.58)
Combining this with Markov's inequality (see Theorem (26)) we obtain

P(w:W(,0)¢W,) <
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and, thus, the required inequality (3.53) is thereby proved.
Once more arguing as in [14], we establish (3.54). We choose Z. to be a ball in W, ..

of center the point 0 and radius M. with the sequences i, vy — 0 such that both
N

VN

sequences are taken to be independent of ¢, and satisfy > \n_, < 00. Now, applying
Proposition 1 to the ball Z., it follows that Z. is a compact subset of L*(0,T; L*(D)).

Furthermore, by Bienaymé-Tchebitcheff’s inequality, we have

P(@: um(@) ¢ Z:) <P (w: umlw,, ., > M)

IE’H,u"”n||1/Vu]\/,u]\7

N ME
1
< MHUmHWuN,VN
C
< —. 3.60
T (3.60)
2
We then choose M, = —C and get
€
_ C
P@:un ¢ 2:) < 3 = g (3.61)

The proof of the theorem is complete.

3.3.6 Application of Prokhorov and Skorokhod Theorems

It follows from the tightness property of I1,,, proved above and by Prokhorov's Theorem,
we can extract a subsequence of probability measures 11,,,, which is weakly convergent
to a probability measure IT on S. It follows from Skorokhod's Theorem that we can also
find a probability space (2, F,P) and S-valued random variables W,,, , u,,, and W,u

such that
(Wi, Um,) — (W u) on S, P — a.s. (3.62)

The probability law of (W,,,, uy,, ) is I1,,, and the one of (W, w) is II.

Next, we choose the filtration {F;}o<i<r by setting

Fir = a{W(s),u(s)}ocs<t- (3.63)
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To check that the limiting process W (t) is an F;-Wiener process we proceed as follows.
We use the following characterization of Wiener processes through their characteric
functions. For further details we refer to [68]. To fix the ideas, we show that for any
leN,0=ty<t; <---<tpand \g, A1, ..., \; with \y € R!, k € [0,1], the increments
process W (tx) — W (tr—1) are independent with respect to F;,_,, normally distributed

with zero mean and variance t;, — t,_1. It is sufficient to prove that

Eexp {izxk Wt W(tk_m} T, exp {—éw@z(tk - tk_o} - (364)

where i = y/—1 the imaginary unit.

This will follow if we show that

Eexp {z SN (Wt +6) - W(t))} = exp {_%y%e} , (3.65)

for all # > 0 and any )\ € R'.
Let (2, F,P) be a probability space and let £ and 7 be random variables for which E(¢),
[E(n) are defined. Let £ be F-measurable such that E({n) is defined. Then we have the

following properties of conditional expectations:

(i) E(E(n/F)) = E(n)

(i) E€n/F) = nE(/F).
Then
E(XY)=E(XE(Y/F)).

Let J;(W,u) be a bounded continuous functional depending on S which depends only
on the values of W (t) and u(t) for 0 < t.

To prove (3.65), it is sufficient to prove that
Efexp (iA - (W(t +0) = W(1))) (W (), u(-))]

— exp <—%|A|§l) E [J,(W,u)]. (3.66)
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Since W), is a Wiener process and the increments W,,, (t+6)—W,, (t) is independent

of the functional J;(W,,,, U, ), it follows that, for any A € R

E (exp (IA(Wi, (t +6) = Wi, (1) (Wi, » i, ))

= E (exp (i AW, (t + 0) = Wi, (1)) E (Je(Win,, tm, ))

= E(exp(—[ Al 0/2)) E(Jl( Wi, , i, ))

= exp(—[A[z:0%/2) E(Ji(Win, , tm, ))- (3.67)

Using the fact that J; is a continuous functional and taking into account the convergence
(3.62), as v — o0, it follows that (3.66) holds.

We set m = m,, and integrate (3.8) with respect to s over the interval [0,¢]. Then
using the Wiener process W,, instead of W, we clearly see that W,, and u,,, satisfy

the following equation

[ 51560 = [ e 5). w0 s

= [t ) w) s+ [ (Gssm, (), w0 AW (), (358)
for j = 1,2, ... . This equation is equivalent to the following

i [ P (A, () s

— om, + /0 P (f(5. 1 (5))) ds + /0 B (Gls.un)) AW (s). (3.69)
By setting

onlt) = nt) = [ P (A (5) = s (5) s
~ton = [ B (G, n) V),
and we define
X = [ 1m0

We trivially have X,, = 0P — a.s, hence

_ X,
E

=0.
1+ X,
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We set

ﬁmu>——umyu>—¥£ P (A3t (5) — £ (5t (5)) s
—wm—lf%@%wm@mﬂ%dﬁ

and define Y,,, the analogue of X,,, with u,, replaced for u,,, and W replaced for Wi,

e = [ 1m0

Then we have the expression

We shall show that

Y,
E-——"
1+Y,,

~0. (3.70)

The difficulty we are encountering here in the expression of X,, is that X,, is not a
deterministic functional of the pair u,,, W for the reason that there is presence of a
stochastic integral term in the expression of X,,,. By using a mollification of GG in ¢, we

can cope with this obstacle. We define the regularizing function G* as follows:

GE(t, ) = l/oTp (t - S) G(s,u(s)) ds, (3.71)

€ €

where o is a standard mollifier. Noting that by the above definition of G¢ in (3.71), we

obviously have the uniform estimate
r 2 r 2
B[ G Doy @5 < OB [ IGE w®) oy 8 (372
and

Let us denote by X,,. and Y, . the analogue of X,, and Y,,, with G* instead of G.
We define the mapping

Gme : C (0, T;RY) x L*(0,T; L*(D)) — (0, F,P),
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by
Xme
14+ Xpe

¢, is a bounded continuous functional on C' (0, T; R?) x L?(0,T; L*(D)). In a similar

(bm,z-: (W, um) =

way, we introduce the mapping ¢, (Wi, , Um,) given by

Yin, e

Gmye Winy, Um,) = T4y, o

We note that by applying Prokhorov's Theorem, we have

Y,
— Tt =E my e my s Um my € de
e = Bl (W ) = [ oW, 2)dTL,
A L+ X, e
By adding and substracting same terms
Yo . ¢ Yo, Yo, e
v _E v :]E v _ Vs
14 Y, 14+ X, (1+me 1—|—me’6)+
T Xm € Xm
E o — - . 3.75
B onys) 6w

Moreover, the first term in the right-hand side of this equality can be estimated as
follows:

Yin, Yin, e
14+Y, 1+Y, .

Ym,, - me,a
(]‘ + Ymu)(]‘ + le,,a)

< E ’Ym,, - me,E|

E

T 1/2
<0 (B [ 1670w 0) = 61t wn Mo 1)
(3.76)

Here we have used Burkholder-Davis-Gundy's inequality.

In a similar way, the last term in the right-hand side of equation (3.75) can be estimated

as follows:

1/2
| X e X, “( 9
Bl e <0 (B [ 16 )~ GOt (O )

(3.77)
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It follows from (3.74), (3.76) and (3.77) that

Y,
1+ Y,

1+Y,,  1+X,

I

_ me
1+ X,

' Yo, D

T 1/2
<0 (B [ 1670 1 0) = Gt () o )

(3.78)

Letting ¢ tends to 0 in (3.78) and taking into account (3.73), we obtain

= 0.

Y,
E—"~
B

_ X
S
e

From this we deduce (3.70). Thus, the relation (3.69) is thereby proved.

We can assert that there exists a positive constant K independent of m such that

[ A | < Ky (3.79)

L2 (o,T; (Wol*”(””) (D)) )

And G(t, u,,(t)) remains in a bounded subset of the space L*(Q2, F, P, L*(0, T; (L*(D))™)).

3.3.7 Passage to the limit and Monotonicity Method

In this subsection we establish some convergence properties of the sequence (u,,,) ob-
tained in the previous section.

From (3.69) and the estimates on w,,, it follows that u,,, satisfies the a priori estimates

2r'
E sup ||umu(t)|’qu(D) <C, q€2, Tl]’ (3.80)
t€[0,T] r
T
2
E [ Ol g0, 00 < C. (362)
T
2
— < . .
B s [, (040) = 0 O <O (389)

(3.82) is a consequence of the embadding result in Lemma 2.

From the last estimates, we can extract a new subsequence from {u,,} still denoted w,,,
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such that
Uy, — u weakly * in LY(Q, F, P, L>(0,T; L*(D))); (3.84)
U, — u weakly in  L" (Q,]—", P; f/(QT)) : (3.85)
Up, — u weakly in L2(Q, F, P, L*(0,T; Wy (D))); (3.86)
Aty () — x(w) weakly in L* (0,T; (W(}’p“)(D))*) (3.87)
U, (T) — & weakly in L*(Q, F, P, L*(D)), (3.88)

and the subsequence satisfies the followings estimates

27!
E sup Hu(t)”qp(p) <C,q€e2, 1]; (3.89)
te[0,7] —
1/r
(Bluly,)  <C. (3.90)
T
B [ 1)y dt < C (3.01)
sup / [t +0) — u(t )H W) (). A< C0. (3.92)
0<6<5<1

According to (3.62), (3.80) and Vitali's Theorem, we get
U, — w in  L*(Q, F, P, L*(0,T; L*(D))). (3.93)
Then
U, — u for almost all (¢, w) w. r. t. the measure dP X dt. (3.94)

The convergence (3.94), the estimate (3.80) combined with the condition on f, and

Vitali's Theorem imply that as v — o0
Pt () — fCou()) in 22 (9, 7,2, L2 (0,7, (W (D)) . (3.95)
The convergence (3.95) implies that for fixed j we have in particular the convergence
(s tim, (1)) wi(@)) — (f( ul.)), wi(@)in L2(Q, F,P,L*(0,T)),  (3.96)

since w; € W, "™ (D).

From (3.2), the estimate (3.80) and Vitali's theorem we also have

(G(t, um, (1), w;) — (G(t,u(t)),w;) in L* (Q, F,P,L*(0,T)). (3.97)
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Arguing as in [14], [23], [63], [68], [69], [71] and [72], we shall prove that

vi ([ s D a0, — ([ Gl W o)) weakty
inL* (Q,F,P,L*(0,t)). (3.98)
However (3.98) holds, if we prove that
/O C Cls i (s) W, /0 * Gl uls)) IV weakly
inL? (Q,F,P,L*(D)). (3.99)

Let G° be the regularization of G as introduced in (3.71)

G =2 [ o (222 Gt s

e 9

then one can check that for fixed m,, as € — 0 we have
G (. tum, () — G(.,u(.) in L*Q,F,P,L*0,T, L*(D))). (3.100)
Moreover, the mapping G¢ satisfies (3.72) and the uniform estimate (in ¢)
T
[ IG tn 4) = G a0 Byt
T
< /0 |G (t, tm, (t)) — G(t,u(t))H?Lg(D))d dt. (3.101)
Next, integrating by parts in the stochastic term we obtain
T
| ¢ty awn,
0
T
= Wi, (TG (T, ty,,, (T')) —/ W, (0)G™(t, uyy, ) dt. (3.102)
0
Therefore using the convergence of the pairs
(Wi, s ) — (Wyu) in S, P—as., asv — oo,
for fixed &, we have
T
| et @) w0
0

L GE(Tu(T)) W(T) — /0 W) Gt ()t (3.103)
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for almost all w, z.

we have
G (T, u(T)) W(T) —/0 W (t) G*(t,u(t))dt :/0 Ge(t,u(t)) dW (t).

From (3.72), (3.2) and (3.89) we have

2

T
E < CE/ IG (D) oy dt < C. (3.108)
0

/O L Gt (1)) VW (1)

From Remark 1, (3.103) and (3.104) we deduce

/OT G (t, U, (1)) AWy, (1) — /OT G (t,u(t)) dW (t) weakly in L* (Q,F,P,L*(D)) .
(3.105)

Therefore, for any v € L*(Q, F,P, L*(D))

E (7, /OT Ge(t, upm, (1)) AWy, (t)) —E (7, /OT GE(t, u(t)) dW(t)> ,  (3.106)

and it is easy to check that GG satisfies the estimate

T 2 T
E| [ Gltun 0)aWo (6] <E [ 16w, )yt <C. (3107)
0 0

Taking a function ¢ € L*(Q, F,P, L?(D)), we claim that for any v € L*(Q, F, P, L*(D))

and for fixed ¢, as v — o0

E (% / TG(t,umm)dWmV(t)) L E(, Q). (3.108)

We next look for an identification of (. For that purpose, we proceed as follows.
T T
L,=FE (W, / G(t,umy)dme(t)) _E (’y, / G’(t,u)dW(t))
0 0
T
& (70 [ 16 ~ G t) + G (10 ) W 0)
0

—E (7, /0 G(t,u) — G*(t,u) + G*(t,u)] dW(t)) .
(3.109)
Hence

|IE,V‘ < C(‘Il,s,mu’ + ’IE‘ + |12,e,mu’)> (3-110)
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where
Liom, = E (% Gt t0n,) = (1, )] W, (1)
T
= ( (GE(t,u) — G(t,u)] dW(t))
’ T
Lem, =E ( { G (t, U, )dW,,, (1) —/ G%t,u)dw(t}}) .
0

We write

e, =E ('y, /OT Ga(t,umy)dme(t)) ~E (% /OT G (t,u) dW(t)) . (3.111)

Therefore, it follows according to (3.100) and (3.101) that I5.,,, — O.
From the definition of G* we readily get that /. and [ . ,,, converge to zero as ¢ — 0.

Hence I., — 0 ase — 0, v — oo. Then we deduce that

¢ = /0 ' G(t, u(t)) dW (t). (3.112)

Therefore (3.98) follows.

Let us set m = m,, in relation (3.8). Then integrating the first term in (3.8), we get
/ A, () dt
’ T T
= [ Gt ) w) i+ [ (Gl 0). ) )
+ (i, (0,2) , (7)) = (U, (T, 7), wi(x), j=1,2,...,m,. (3.113)

Recall that S,,, denotes the span of the functions w;(z).

Passing to the limit in (3.113) as ¥ — o0, and making use of all the convergence

results, we obtain
/0 (x w;(x) dt
- / (f(t,u(t)) , wy(x))dt + / (Gt ult)) , w;(x)) dW (1)

+ (up(z,w) , wi(z)) — (&, wi(z)), forany j=1,2,.... (3.114)



(0233

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

CHAPTER 3. SETTING AND MAIN RESULT 68
This holds, if we replace w;(z) by any of their linear combinaitions. Hence since S,,, is

dense in Wy "™ (D), we have
/0 (x, o)) dt
- / (F(tult)) , o(z)) dt + / (Gt ult)) , v(z)) AW (1)

+ (uo(z,w), v(x)) — (w(T,z), v(x)), forany j=12,..., (3.115)

vt € [0, T], for any function v € W ") (D).

Arguing similarly as in [66, subsect. 3.3, page 655], and taking into account the inclusion
V(Qr) N L*(0,T; Wy " (D)) € L*(Qr),

we see that u(.,.,w) € C([0,T]; L*(D)) for a. e. w € Q and hence the initial condition
is meaningful.

Following well known arguments from [66, page 655] and [51, page 1665] we obtain that

u(T,z) =&, (3.116)
up(z) = u(0, x). (3.117)

3.3.8 Monotonicity Method

It remains to identify the limit of

t
/ Aty (8) ds,
0

which requires arguments of monotone operators. A similar approach can be found in

[51], [66] and [59] and the bibliography therein. We shall prove that

t t
/ X(w)ds = / Au(s)(w) ds,
0 0
for any t € [0, 7). Let v be an arbitrary function in ‘D/(QT). Let us set

X, = 28 [ (At (5) = A0(s) 0, (5) = () s + Bl 5) = o(5) o
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Passing to the limit in (3.69) with m = m,, as v — o0, we obtain

u(t) + /Otx(s) ds = ug + /Ot f(s,u(s))ds + /OtG(s,u(s)) dW (s), (3.118)
and by Ito’'s formula, we have

() o) + 28 [ (x(5). u(s)) ds

0
= Il + 28 [ (Fls.us), u(s)) ds+
+ E/ |G (s, U(S))”?LQ(D))d ds + QE/ (G(s,u(s)), u(s)) dW (s). (3.119)
0 0

For any function v € W, "™ (D) we have

X

n aum p(z)—2 aum v p(x)—2 9 aum P
=9 v . ,
; //t ( 0x; ox; or; O, ( o, 3:161-) dx dt+
+ Elltnn, (5) = 0($) 12 (3.120)

In view of this and the monotonicity of the operator A, we obtain
X, > 0. (3.121)

It follows from the boundedness of the sequene wu,,, established in (3.80), (3.81) and
(3.116) that
ElJu(T, ) ap) < L Elun, (T.) (o) (3122)

On the other hand we have
05 [ (At (5) = A06). ) = 0(5) ds
= [ ) (9) s = [ (A005) () s
_ /0 (Auy (s) . 0(s)) ds + /0 "(Au(s) . o(s)) ds. (3.123)
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and
¢
Xy = Ellum, @)l[72(p) + QE/O (At (5), Uim, (5)) ds + Ellv(s)l[72(p)—
t ¢
— ZIE/ (Av(s), U, (s) —v(s)) ds — ZE/ (A, (s), v(s)) ds—
0 0
—2E (tupm, (s), v(s)). (3.124)
We write X, in the form: X, = Y, + Z,,, where,
t t
Y, =2 ]E/ (f(s,Um,(8)), Um,(s))ds —2 IE/ (At (5), v(s))ds—
0 0
s t
=2 [ (0]t (5) = o(5)) d + B [ 605, () rzgopeds, (3:125)
0 0
and Z, is defined by the difference:
Z,=X,-Y, = ]EHuOmu“%?(D) - E”v@)H%Q(D) — 2E (um, (), v)
t
+ ZE/ (G(8,Um, (), Um, (8)) AWy, (S). (3.126)
0

Passing to the limit in the expresion of X, as ¥ — oo, we obtain, in view of (3.88),

(3.93), (3.121) and (3.123)

ot 22 + 2E / (f(5,u(s)), u(s)) ds +E / 1G5, w() oo 45 + Ello(®) 220,
- ZE/O (Av(s), u(s) —v(s)) ds — 2E/0 (x(s), v(s)) ds —2E (u(t), v(t))
L 9E /0 (Gs,u(s)) , u(s)) W (s)

-2y

i=1 t

p(z)—2 ou
8@-

ov
8aci

pE)=2 gy ou  Ov
— . 12
a@) ( o 8xi> dz dt (3.127)

Hence it follows from (3.125) and (3.127) that

Ellu(t) — o(t) 22 + 2E / (x(s) — Au(s) ,u(s) — v(s)) ds

u P@)=2 gy ou  Ov
> E — dx dt.

> 0. (3.128)

p(z)—2 ou

azv,-

ou
al’i

ov
a.fl?i
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We have

t t
lim sup X, < 21@/ (f(5,10), u) ds + ElJu |22, —21@/ (x(s), v(s)) ds
V—>00 0 0
t t
- QE/ (Av(s), u(s) —v(s)) ds +E/ (G(s,u), u) dW(s)+
0 0
t
+B [ 1600l ds
t t t
:2]E/ (X,u)dt—QE/(X,v)dt—ZE/(Av,u—v)dt. (3.120)
0 0 0
Hence, using (3.127)-(3.129), we have

t
21@:/ (x = Av, u—v) ds+ Elut) — v(t)|2sp) > 0. (3.130)
0

We pick u,v,w € XD/(Qt) such that v = u — aw, where « is a positive constant. Then

passing to the limit as v — oo in (3.123) yields

E/Ot(x,u)ds—E/Ot(Av,u)ds—]E/Ot(X,v)ds—l—E/Ot(Av,v)dsZO. (3.131)

Since the operator A is monotone, taking account of (3.123), using (3.130), we can

write the term in the left-hand side of (3.131) as follows

¢ ¢ t
lim XI,:E/ (x, u)dt—E/ (x, U)dt—E/ (Av, u—wv)dt
T 0 0 0
¢
—IE/ (x — Av, u—wv)dt
o
:E/ (x — Av, aw)dt
0
t
= E/ (x — A(u — aw) , aw) ds > 0; (3.132)
0
then we deduce after dividing the terms in (3.132) by «

E/Ot (x — A(u — aw) , w) ds > 0. (3.133)

Letting o tend to 0 in (3.133) and using the fact that the operator A is semicontinuous

we obtain the inequality

t
E/ (x — Au, w) ds > 0.
0
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Since w is an arbitrary function in ‘O/(Qt), the last inequality implies that y = Au.

Therefore the integral identity (6.5) is satisfied.
Thus w is a solution of the problem (1.1)-(1.3). Thus the solution u belongs to the space
L*(Q,F,P;C(0,T; L*(D))) and hence u(t) is an L?*(D)-valued measurable process.

The proof of the existence Theorem is thereby complete.
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Conclusion

In this dissertation we proved the existence of probabilistic weak solutions for a class of
stochastic quasilinear parabolic partial differential equations with non-standard growth.
We have used the Galerkin method to construct an approximation to the weak prob-
abilistic solutions to our problem (1.1)-(1.3). In the proof, we combined the Galerkin
methods with some analytic and probabilistic compactness results. To recover the main
theorem of existence we used some probabilistic results from [60], [76] and [77]. The
Galerkin method solves the weak formulation of the problem by converting it into a finite
dimensional case. First, we proved that the Galerkin equations admit solutions. In the
second step, we derived a "priori” estimates for the approximating solutions u,,. In
the third step, we passed to the limit in the finite dimensional equation by choosing a
subsequence (u,,,) C (u,,), which converges weakly in appropriate topologies. In the
final step, we used the monotonicity of the operator A to prove that the limit u of u,,
is a solution of the problem (1.1)-(1.3). At this final step, the analysis rests on two
properties of the operator A which are the monotonicity and the semicontinuity of the

operator A.

In the future, we hope to extend and explore

1. this type of models,

2. the work on electro-rheological fluids done by M. Ruzicka [65], in the framework

of stochastic evolution problems.

and possibly we hope to explore the numerical analysis of models of this type.

73
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