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Abstract 
 

Recent advances in space geodetic techniques such as Very Long Baseline Interferometry, 

Global Navigation Satellite Services, Satellite Laser Ranging and advanced numerical weather- 

prediction model simulations, provide huge tropospheric data sets with improved spatial-

temporal resolution. These data sets exhibit unique fluctuations that have a spatial-temporal 

structure which are thought to mimic the complex behaviour of the atmosphere. As a result, the 

analysis of nonstationary structure in the tropospheric parameters derived from geodetic and 

numerical model simulations could be used to probe the extent of universality in the dynamics 

of the atmosphere, with applications in space geodesy. In order to identify the physical causes of 

variability of tropospheric parameters, parametric and nonparametric data analyses strategies 

which are investigated and reported in this thesis, are used to inform on the geophysical signals 

embedded in the data structure. In the first task of this research work, it is shown that the 

fluctuations of atmospheric water vapour over southern Africa are non-linear and nonstationary. 

Secondly, the tropospheric data sets are transformed to stationarity and the stochastic behaviour 

of water vapour fluctuations are assessed by use of an automatic algorithm that estimates the 

model parameters. By using a data adaptive modelling algorithm, an autoregressive-moving-

average model was found to sufficiently characterise the derived stationary water vapour 

fluctuations. Furthermore, the non-linear and nonstationary properties of tropospheric delay due 

to water vapour were investigated by use of robust and tractable non-linear approaches such as 

detrended fluctuation analysis, independent component analysis, wavelet transform and 

empirical mode decomposition. The use of non-linear approaches to data analysis is objective 

and tractable because they allow data to speak for themselves during analysis and also because 

of the non-linear components embedded in the atmosphere system. In the thesis, we establish 

that the non-linear and nonstationary properties in the tropospheric data sets (i.e., tropospheric 

delay due to water vapour and delay gradients) could be triggered from strongly non-linear 

stochastic processes that have a local signature (e.g. local immediate topography, weather and 

associated systems) and/or exogenous. In addition, we explore and report on the presence of 

scaling properties (and therefore memory) in tropospheric parameters. This self-similar 

behaviour exhibit spatial-temporal dependence and could be associated with geophysical 

processes that drive atmosphere dynamics. Satellite Laser Ranging data are very sensitive to 

atmospheric conditions, which causes a delay of the laser pulse, hence an apparent range 

increase. A test for non-linearity is applied within specialised software for these data; it is found 

that the range residuals (i.e., the observed minus computed residuals) are improved when 

possible non-linearity of the locally measured meteorological parameters as applied to a range 

delay model are considered.  
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Preface 
Geodetic time series analysis is a necessary procedure of extracting statistical properties 

and other characteristics of the data and is therefore an important process in modern 

space geodesy. In general, the analysis involves pre-processing of raw observations 

from various geodetic techniques, enhancing signals in the raw data, actual analysis 

(e.g., detection of nonlinearities and nonstationarities, statistical characterisation of the 

series) and prediction. While different methods are often applied to analyse the geodetic 

time series, estimating the deterministic (e.g., periodic variations and trend) and 

stochastic (mostly aperiodic variations) components as well as extracting specific 

oscillatory modes (which could be linked to geophysical signals) have not received 

much attention. In this current research work, the stochastic and multiscale properties in 

tropospheric parameters (hereafter Water Vapour (WV), tropospheric delay and delay 

gradients) derived from geodetic and numerical weather prediction models are assessed 

and modelled. The results indicate that WV/tropospheric delay due to WV exhibit self-

similar behaviour and that their fluctuations are non-linear and nonstationary. 

The layout of this thesis is intended to provide a logical flow of this research 

endeavour. After the general introduction in Chapter 1, the literature review (Chapter 2) 

provides an overview of space geodetic techniques, principle operation of Global 

Navigation Satellite System (GNSS) and Very Long Baseline Interferometry (VLBI) 

techniques, their applications (e.g., Earth‟s crustal deformation, plate tectonics, and 

maintenance of Terrestrial Reference Frames (TRF) as well as atmospheric remote 

sensing). Current measurements and analysis strategies of tropospheric parameters with 

application in geodetic analyses are also reviewed in this chapter. In Chapter 3, the 

sources of data that are studied in this thesis are explained. The spatial-temporal 

resolution of the geodetic (VLBI and GNSS), Numerical Weather Prediction (NWP) 

model simulations (e.g. NCEP/NCAR), radiosonde (e.g. the Southern Hemisphere 

ADditional OZonesondes (SHADOZ) network) and the HALOgen Occultation 

Experiment (HALOE) satellite data sets are described. The methods used to pre-process 

these data records are also described briefly.  

Chapter 4 examines the stationarity in geodetic WV and adaptively fits a time 

series ARMA model that describes the stochastic pattern, to the geodetic WV 

transformed from nonstationary to stationary. Chapter 5 deals with the analysis of WV 

fluctuations. The SHADOZ radiosonde network is also used to infer the multiscale 
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structure of WV in low- and mid-tropical Africa. Furthermore, a model for the vertical 

profile of WV in the southern hemisphere based on the HALOE satellite and the 

SHADOZ network data is developed. In Chapter 6, firstly the scaling behaviour (testing 

the underlying memory processes) of tropospheric WV is assessed using wavelets. 

Secondly, a noise-assisted data analysis methodology is applied to the geodetic 

tropospheric zenith delay and surface temperature to determine the dominant modes of 

oscillation in data. Further, WV and surface temperature have been shown to be 

temporally correlated because the instantaneous phase differences among the associated 

modes of the Intrinsic Mode Functions (IMFs) derived from the Ensemble Empirical 

Mode Decomposition (EEMD) of WV and surface temperature have a high degree of 

synchronisation. Additionally, the benefit of introducing non-linearity and 

nonstationarity in atmospheric correction to the Satellite Laser Ranging (SLR) range is 

investigated by introducing a nonlinear function to model the azimuth dependent 

atmospheric range correction. In Chapter 7, a summary of the findings are presented and 

recommendations and future research proposed. 
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