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Summary 

GIS has been used in Veterinary Science for a couple of year and the application 

thereof has been growing rapidly. A number of GIS models have been developed to 

predict the occurrences of certain types of insect species including the Culicoides 

species (spp), the insect vectors responsible for the transmission of the African horse 

sickness (AHS) virus. AHS is endemic to sub-Saharan Africa and is carried by two 

midges called Culicoides Imicola and Culicoides Bolitinos. The disease causes severe 

illness in horses and has significant economic impact if not dealt with timeously. 

Although these models had some success in the prediction of possible abundance of the 

Culicoides spp. the complicated nature and high number of variables influencing the 

abundance of Culicoides spp. posed some challenges to these GIS models. This 

informs the need for models that can accurately predict potential abundance of 

Culicoides spp to prevent unnecessary horse deaths.  

 

This lead the study to the use of a combination of a GIS and an artificial neural 

networks (ANN) to develop a model that can predict the abundance of C. Imicola and 

C. Bolitinos. ANNs are models designed to imitate the human brain and have the 

ability to learn through examples. ANNs can therefore model extremely complex 
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features. In addition, using GIS maps to visualise the predictions will make the models 

more accessible to a wider range of practitioners. 
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Chapter 1: Introduction 

 

1. Background 

The application of Geographical Information Systems (GIS) in veterinary science dates 

back to the late 1960s when a Canadian scientist applied GIS to better understand the 

spread of foot-and-mouth disease in England (Ramirez A, 2004). Since then, the 

application of GIS in veterinary science has grown rapidly and currently includes models 

for disease monitoring (Rogers et al., 1993), biological risk management (Boone et al. 

2007), scenario planning (Genchi et al., 2005) and animal health surveillance (Ramirez, 

2004). A number of GIS models have also been developed to predict occurrences of certain 

types of insect species including the Culicoides species (spp) responsible for the 

transmission of the African horse sickness (AHS) virus. Baylis et al. (1999) for example 

used GIS to understand the causes of the geographical variation in the quantity of 

Culicoides spp in South Africa whilst Wittmann et al. (2001) used climate data to map the 

potential distribution of C.Imicola in Europe. The former study is the only current model 

developed in South Africa to predict the abundance of Culicoides spp. Although these 

models have had some success in predicting potential Culicoides occurrences, the exact 

relationships among the different variables causing the occurrence of these species could 

not be determined. The complicated nature of the study and the high number of variables 

that influence the abundance of the Culicoides spp  pose challenges to the development of 

GIS models. This has led to the development and incorporation of artificial neural 

networks (ANN) within GIS as an additive tool to improve spatial decision making. ANNs 

are models designed to imitate the human brain and have the ability to derive meaning 

from complicated and imprecise data (Thurston, 2002; Stergiou, 1995). Combining GIS 
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and ANN for decision making has been used by a number of researchers  for example in 

mining applications (Pradan et al.,2008), to forecast possible changes in land use (Vafeidis 

et al., 2007) and to model deforestation (Mas et al., 2003). Recent advances in computer 

technology and associated applications are allowing decision makers to deal with 

increasing levels of complexity in decision making. While these complex challenges deals 

with many dimensions and uncertainties it limits the effectiveness of exact methods of 

analysis. A number of applications displaying these complex characteristics are found in 

areas such as water quality management (Jiang et al, 2008), ecology (Bessa-Gomes et al, 

2003, Lusk et al, 2002) and veterinary science (Cavero et al, 2008, Ward et al, 2006). 

Given the importance of agriculture in the South African economy, an application 

displaying these characteristics from within the veterinary science was selected as a case 

study. One such problem that is very complex with a strong spatial component is the 

prediction of abundance of Culicoides spp. that causes AHS. 

 

2. Research Aim 

This study aims to use GIS and ANN to predict the abundance of two Culicoides spp. 

responsible for transmitting the AHS virus in South Africa. In doing so the study outlines 

the increasing role and integration of artificial intelligence within mainstream GIS 

applications.  

 

The secondary aims of the study are: 

• to evaluate the process of integrating  a GIS and ANN; and 
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• to demonstrate the integration of GIS and ANN by means of a case study. In this 

case to predict the abundance of C. imicola and C. bolitinos in the Western Cape 

Province of South Africa. 

3. The Case Study 

In order to demonstrate the integration of a GIS and ANN an application with the 

following characteristics was selected: 

• A strong spatial component to illustrate the value of a GIS in decision making and 

allow broader use of the results through visualisation, making it more accessible,  

• integration of multiple data sources; and 

• significant complexity without exact solutions indicating the need for integration of 

the two systems. 

 

This case study focuses on the occurrence of C. imicola and C. bolitinos in the Western 

Cape Province of South Africa. (See Figure 1) The Western Cape Province is located in the 

south west of the country and is historically an AHS-free zone even though the vector 

species occur naturally in the area. Since the first recorded outbreak of AHS in this 

province, in Stellenbosch in 1999, there have been further outbreaks however, specifically 

in the Knysna/George area (Lord et al., 2005).  This is cause for concern since such 

outbreaks could lead to legislation to restrict the movement of horses – especially race 

horses – countrywide, and could also impact on the export of horses and the hosting of 

international events (Lord et al. 2002).  
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Figure 1.1: Location of the Western Cape Province 

4. The Structure of the Study 

The study is structured into three sections. The first section examines the importance of 

GIS and ANNs as decision-making tools. GIS and neural networks are two separate, 

potentially complementary systems that can be used to improve decision-making. GIS is 

explained in terms of various definitions and applications. A detailed explanation of the 

processes involved in developing and training an ANN is given. In addition, various 

applications of GIS and ANNs will be discussed. 

 

The second section uses a case study to illustrate how ANN can enhance the decision-

making capabilities of a GIS.  By combining the GIS and ANN a model is developed that 

predicts the abundance of Culicoides spp. in the Western Cape Province. A full description 

of the development of the model is given.  
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The final section focuses on the results obtained from the developed models. The ANN 

models are tested to select the best prediction model. The model is subsequently used to 

predict the potential abundance of the Culicoides spp. The results are displayed on a map 

using a GIS. 

 

5. Chapter Overview 

The following table provides an overview of the chapters in this study to illustrate the 

logical flow of the paper to the reader. 

Chapter Contents 

1 

An introduction to the study with short descriptions for the reasons for 

undertaking the study, a description of the study area, the research aims and 

secondary aims. 

2 

GIS and ANN are examined and explained in terms of their definitions, 

processes and applications. The process of developing and training an ANN 

is explained. 

3 

An ANN and GIS is used to develop a model to predict the possible 

abundance of Culicoides spp. in. The process followed to develop the GIS 

and the ANN will be explained in detail 

4 

The results obtained from the model are discussed. The various ANN 

models will be tested to determine the best prediction model. The final 

predictions are imported in the GIS to present the final result of the model. 
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5 
The project is summarised and a final conclusion is made to indicate 

whether the research aims and secondary aims has been reached. 
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Chapter 2: Geographical 

Information Systems and Artificial 

Intelligence 

 

A GIS can be defined as ‘a computer-based system to aid in the collection, maintenance, 

storage, analysis, output and distribution of spatial data and information’ (Bolstad, 2005, 

p1). Demers (2000, p7) defines GIS in broader terms as ‘a tool that allows for the 

processing of spatial data into information, generally information tied explicitly to, and 

used to make decisions about, some portion of the earth’.  A definition that is relevant to 

this study is given by Davis (2001, p.13) as: ‘a computer-based technology and 

methodology for collecting, managing, analysing, modelling and presenting geographic 

data for a wide range of applications’. New applications of GIS are emerging on a 

continuous basis as a result of their widespread appeal. For example, GIS have been used 

as an analytical tool to assist in crime analysis (Breetzke, 2006); to monitor wildlife 

movement (Walker et al.,1997); to reduce pollution (McDonald et al., 2000); to cope with 

natural disasters (Barredo, 2007; to analyse AIDS epidemics (Kalipeni et al., 2008); and to 

improve  public health ( All et al., 2008). Over the past few decades the focus of GIS has 

been on providing knowledge and understanding of spatial data, while their significance as 

a decision making tool has often been overlooked (Thurston, 2002). GIS combined with 

artificial intelligence (AI) can make a valuable contribution to the decision making 

process. Especially with recent advances in software which now make AI more accessible 

by making it possible to run AI from desktop computers. 
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6. The use of GIS and Artificial Intelligence 

Artificial Intelligence (AI) is a well-developed science with new fields of application 

emerging rapidly. A broad definition of artificial intelligence is ‘the study of how to make 

computers do things at which, at the moment, people are better’ (Rich, 1983, p1). Another 

definition by Winston (1992, p5) defines AI as ‘the study of the computations that make is 

possible to perceive, reason, and act’. Artificial intelligence has also been described as a 

science that seeks to understand, build and construct intelligent entities (Russel, 1995).  

 

There are a number of applications of the use of AI in GIS including waste-water 

management (Ha et al., 2003); environmental-health management ( Bédard et al., 2003);  

habitat-suitability prediction (Garzón et al., 2006); vegetation management (Deadman et 

al.,  1997);  land-quality assessment (Ochola et al., 2004); evaluation of wildlife habitat 

(Pope et al., 1998).  The complementary use of GIS and AI can make information more 

valuable for decision making (Thurston, 2002) as well as bring more intelligence to other 

computer-based technologies (Deadman et al., 1997). AI with decision making 

functionalities includes ANN, fuzzy logic, decision trees, Markov models and evolutionary 

computation (Thurston, 2002). This thesis concentrates on the use of ANNs to assist GIS in 

the decision making process. 

 

7. ANNs 

An ANN is a type of artificial intelligence based on how the human brain functions 

(McCloy, 2006). Explanations of the way in which ANNs operate are moving away from 

this notion towards an applied mathematical technique which incorporates some biological 

 
 
 



 

 
  

 15 

terminology (Hewitson et al., 1994). ANNs have incorporated two important 

characteristics of the human brain: their ability to learn through examples, and their ability 

to interpolate from incomplete information (Hewitson et al., 1994). As a result of these two 

characteristics, ANNs can model extremely complex features. ANNs have also emerged as 

an important tool for classification and is a promising alternative to conventional classifiers 

(Zhang, 2000). The technique has been applied to a variety of applications in classification 

tasks including bankruptcy prediction (Lacher et al., 1995); speech recognition (Bourlard 

et al., 1993); medical diagnosis (Baxt, 1990); and handwriting recognition (Guyon, 1991). 

Although the use of ANNs requires some heuristic knowledge on the working, structure, 

training and interpretation of an ANN, the level of knowledge needed to successfully apply 

ANNs is often much lower than would be the case for many other statistical methods. 

 

The functioning of an ANN is broadly modelled on the brain. Accordingly, an ANN 

consists of neurons, called processors (nodes), which are connected by weighted links 

(Hewitson, 1994). The basic elements of an ANN consist of a number of inputs –these may 

be from the original data set or from the output of other neurons – which are linked to a 

neuron via weighted links. Each neuron has a transfer function which, together with the 

weights, determines an output. These basic elements of an ANN are illustrated in Figure 

1.2.  
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Figure 1.2: Basics Elements of an ANN (Adapted from Saha, 2003) 

 

These basic elements are arranged together to form an ANN. The most generalised type of 

ANN consists of three separate layers: an input layer, a hidden layer, and an output layer. 

These layers are shown in Figure 2.2.  

 

 

 

 

 

 

 

 

 

 

Figure 2.2:  Layers of an ANN (Adapted from Saha, 2003) 
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The input to an ANN consists of raw data. The raw data is linked to the input layer, which 

consists of neurons which are connected to the neurons in the hidden layers. The hidden 

neurons are connected to the output neurons in the output layer (Stergiou et al., 1996), each 

link having a weight associated with it. The links can be negative (i.e. have an inhibitory 

effect) or positive (i.e. have an excitatory effect). The output neurons in the output layer 

are linked to the final output (Saha, 2003). Once an ANN has been compiled it can be 

trained on the existing data to make predictions for unknown cases.  

2.1 How to Construct and Run an ANN 

When an ANN is used as a classifier to assist in decision-making, a basic process must be 

followed in order to design and implement it. This process is illustrated in Figure 2.3. The 

first step in the process is the same as the first step of the GIS process which will be dealt 

with in the following chapter while the rest of the steps will be explained in more detail in 

this current chapter. 
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Figure 2.3: Implementing an ANN 

2.1.1 Acquiring data for use in an ANN 

The acquisition and input of raw data in an ANN is an important first step. The data that is 

subsequently used for the training of an ANN must typically include a number of cases 

consisting of input variables and their corresponding output variables (Statsoft, 2008). The 

most important decision to be made is which input variables to include in an ANN. This 

choice is guided by the user’s intuition and experience in the field. Best practice is 

typically to include all variables that may influence the output of an ANN and then to 

narrow down the variables to select the essential ones. According to Statsoft (2008), the 

following need to be taken into consideration when selecting input variables: 
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• Since ANNs work on a multidimensional surface, each additional input adds 

another dimension in which the data cases reside, and can hinder the 

performance of the ANN; 

• Each input variable must be independently assessed for usefulness, so that only 

the most crucial variables are included in an ANN. In practice, it is seldom 

possible to do this as the variables and their relationships are not always known;  

• It is possible that a number of variables can, to some extent, carry the same 

information (e.g. the height and build of a person can be an indication of their 

weight). If the variables are correlated, it may be sufficient to include only 

some of the variables. 

 

ANNs can handle both numeric and non-numeric (or nominal) values. All non-numeric 

values must, however, be represented as a numeric value. In some cases the non-numeric 

values are easy to manipulate (for example, gender, where male can be set as male=1 and 

female=2). ANNs do not perform well with nominal variables that have a large number of 

possible values, for instance, date and time variables. Such variables must, therefore, be 

converted to an offset value from a starting date or time. The next challenge in data 

acquisition is the problem of missing values, which are interpreted as zero by an ANN.  All 

missing numerical values must be identified and substituted with a statistically calculated 

value (e.g. mean value) of that variable, or be removed from the data set. 

 

One of the real strengths of ANNs is their ability to handle noisy data, that is, data with 

corrupted or incorrect values. However, this has its limitations. If there are outliers far 

outside the normal range, they may skew the data set and bias the training process. So, it is 

important that outliers are identified and removed from the data sets, or replaced using 
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some statistical calculation, e.g. a mean, minimum or maximum value. Once the data cases 

have been collected, some pre-processing is required before the data can be imported into 

an ANN. 

2.1.2 Preparing data for use in an ANN 

The preparation of data for use in an ANN is an important step as this determines the 

success of the training of the ANN. Two issues need to be addressed before the training of 

a network can begin: the scaling of variables, and the replacement of nominal values. 

Scaling, which brings two variables closer in term of their numeric value and facilitates the 

training process, is performed when there is a large difference between the minimum and 

maximum output variables. Raw variables are usually scaled using linear scaling. 

However, if a variable is exponentially distributed, non-linear scaling using logarithms, for 

example, may be necessary. The replacement of nominal variables may be two-state or 

multi-state. A two-state variable is easily transformed into a numeric value (e.g. dog = 1, 

cat = 2). Multi-state variables are more difficult to interpret when in a numeric form. An 

ordinal value can be used (for example, dog = 1, cat = 2, bird = 3; this gives the variables 

some sense of order, so that dog may be seen as first or as more important than cat or bird). 

Another approach is known as the one-of-N encoding. In this approach a list of numeric 

variables is used  to represent the nominal value (for example, dog = (1,0,0), cat = (0,1,0), 

bird = 0,0,1). However, a nominal variable with a large number of states can cause an 

increase in the network size and complicate the learning process (Statsoft, 2008). 

 

Once all the variables have been scaled and nominal values replaced, the number of cases 

must be subdivided into three data sets: a training set, a verification set and a test set. 

These three sets must also be representative of the underlying model and must also be 
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independently representative of real-world outputs. The training set is used for the initial 

training of an ANN, while the verification set is used to test the output of the model with 

real-world outputs and adapt the weights of the links until a minimum error is reached. The 

test set is used to test the trained network and compare the outputs of the network with the 

real world before a prediction model is run. It is important that the training data set is 

carefully selected, otherwise the network cannot be trained properly and the output error 

will be high. According to Statsoft (2008), the following issues need to be taken into 

account when selecting a training data set: 

• Training data are always selected from a historical data set. If circumstances 

have changed, some relationships between the variables may no longer be valid. 

• All possible occurrences of the variables must be covered by the training data 

set (e.g. if a maximum rainfall of 100mm is used to train a network, the network 

cannot be expected to make the correct prediction if the rainfall variable is 

entered as 200mm). To make correct predictions an ANN must be trained using 

all minimum and maximum cases that can be anticipated. 

• During the training process an ANN tries to minimise overall error. The 

proportion of different types of data represented in the training set is therefore 

critical. Assume an ANN is required to determine a ‘good’ or ‘bad’ output.  If 

the network is trained using 900 good cases and only 100 bad cases, the trained 

network will be biased towards the good cases. The best approach is to ensure 

an even representation of all the different cases 

 

Once the data have been structured into the three data sets, the actual construction of the 

ANN can start. The first important decision will be the choice of ANN architecture. 
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2.1.3 Selection of an ANN Architecture. 

 There are two main types of ANN architecture: feed-forward networks, and recurrent 

networks. Feed-forward networks have a simple structure and are mostly used when 

constructing ANNs. The neurons in a feed-forward network have a distinctly layered 

pattern with the signals in the network travelling in only one direction. A feed-forward 

network can have any number of hidden layers (Saha, 2003; Statsoft 2008). When the 

network is executed, the input variables (or raw data) are placed in the input units. The 

hidden and output layers are then executed progressively. Each layer calculates an 

activation value by multiplying the weight of the link with the input value. Theses values 

are then passed through the network to produce the output. This procedure is illustrated 

below. 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: An example of a Feed-Forward ANN (From Saha, 2003) 

Some connections are not possible in a feed-forward ANN. As illustrated in Figure 2.5, the 

neurons in one layer cannot be connected to each other on the same layer. Neurons can 
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only connect to neurons or hidden neurons in the next layer. In addition, links between 

neurons cannot jump a layer (Saha, 2003).  

 

 

 

 

 

 

 

 

 

Figure 2.5:  Connections not possible in a Feed-Forward ANN (From Saha, 2003) 

 

The second type of ANN is the recurrent network. In contrast with the feed forward 

network, backward connections are introduced in the recurrent network, i.e. from later to 

earlier neurons in order for signals to travel in both directions. The network will run in a 

loop until equilibrium is reached – that is, where the weights are determined and the output 

error is a minimum. It will stay at this equilibrium point until the input is changed and a 

new equilibrium needs to be found (Stergiou et al., 1996). An example of a recurrent 

network is illustrated in Figure 2.6. 
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Figure 2.6: An example of a Recurrent Network (From Stergiou et al, 1996) 

 

The successful functioning of these two architectural types of ANN depends on the 

successful training of the networks. 

2.1.4 Training an ANN 

There is no fixed strategy in the training of an ANN with most of the training being done 

through trial and error (Saha, 2003). The most commonly used training algorithms for 

feed-forward ANNs is the back propagation algorithm. Although other algorithms can be 

used to train an ANN, the back propagation algorithm is the easiest to understand (Statsoft, 

2008). (Other algorithms will be mentioned later in this chapter). When training an ANN, 

the back propagation algorithm progresses iteratively through a number of epochs (an 

epoch is defined as a single movement through the entire training set followed by testing of 

the test set). During each epoch, the training cases are submitted to the network and the 

calculated output of the ANN is compared with the actual output. The error is calculated 
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and, together with the surface gradient, is used to adjust the weights of the ANN through 

back propagation (Statsoft, 2008). The whole process is repeated until training is stopped. 

The training process is basically an exploration of an error surface which is calculated by 

running all the training cases through the network and calculating an output. This 

calculated output is then compared with the desired output and the mean square error is 

calculated (Statsoft, 2008). An error surface is illustrated in Figure 2.7. 

 

 

 

 

 

 

 

 

 

Figure 2.7: A typical error surface (From Saha, 2003) 

When using the back propagation algorithm the gradient vector of the error surface is 

calculated. The gradient vector indicates the line of steepest decline from a current point 

(See Figure 2.7). The point moves along the gradient vector to find the global minima in 

order to decrease the output error. The process of calculating the gradient vector and the 

movement along the gradient are repeated until a minimum error is reached. The 

movement along the gradient occurs in a series of steps which determine the adjustments in 

weight sizes, which is the learning rate. The size of the steps determines the direction of 

movement and how the point moves down a slope. If the steps are too large, the point may 

overstep the solution or it may bounce from side to side as it moves down a slope. The 
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network then struggles to find the global minima. If the steps are very small, the current 

point may move in the right direction but this requires a high number of iterations, slowing 

the training process. The correct learning rate depends on the application and is typically 

chosen by experiment. The algorithm also includes momentum, which encourages the 

movement of the point in a specific direction. If several steps are taken in the same 

direction, the movement becomes faster over flat spots and gives the network the ability to 

escape local minima. The training of an ANN stops when a given number of epochs elapse 

or when the output error reaches an acceptable level. The challenge is that the user usually 

does not know when a minimum error is met. The best practice is to stop the training if the 

prediction error increases, or if the overall changes in weights decrease (Saha, 2003). An 

ANN is not capable of relearning. Consequently, if a different input is added, the whole 

system needs to be retrained (Thurston, 2002). 

 

A major problem with the training process outlined above is that it does not minimise the 

expected error made by the network when new cases are submitted. In this regard ANNs 

can suffer from over-fitting, under-fitting and over-learning. Under-fitting occurs when an 

ANN is not sufficiently complex to model the problem. Over-fitting occurs when an ANN 

is too complex for the model and responds to the noise in the data and not to the general 

signal in the data (Statsoft, 2008). Over-fitting and under-fitting are best illustrated by 

making use of polynomials (See Figure 2.8 below). 
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Under-fitting

Over-fitting

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Polynomial illustration of Under-Fitting and Over-Fitting (From Statsoft, 2008) 

 

The best way to avoid over- and under-fitting is to test the network against a verification 

set. An indication of over-fitting is when the verification set stops decreasing and starts 

increasing; training of the data should be stopped immediately. Over-fitting occurring 

during the training process is called over-learning: the network is too well-trained for the 

available data. This will lead to a very small error in the training data, but the network will 

have poor generalisation power on unseen data (Saha, 2003). In this case it is best to 

decrease the number of hidden units or hidden layers and restart the training process. 

  

Other more sophisticated training algorithms such as the conjugate gradient descent, quasi 

Newton, Levenberg Marquard and Delta bar Delta algorithms are also used (Statsoft, 

2008).  However, in this study the back propagation algorithm is preferred because it is 

quick and performs better on smaller data sets. 
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Figure 2.9: Illustration of a typical Lift Chart (From Abouzakhar et al., 2003) 

 

After training an ANN, a lift chart can be created to indicate the effectiveness of the 

predictive model. The greater the area between the baseline and the lift curve the better the 

predictive capabilities of the model (Abouzakhar et al., 2003).  A typical lift chart is 

illustrated in Figure 2.9. Once the network has been trained and tested on the test set, the 

model can be used as a predictive model.  

 

2.1.5 Interpreting the results of an ANN 

The output layer of an ANN attempts to assign the value of a specific class. The output of 

an ANN is a correlation of the input variables and indicates the possibility that the output 

belongs to a specific class.  Correlation is a statistical technique that indicates how strongly 

two or more variables are related. There are various statistical techniques for determining 

the correlation between variables. A technique used most often is the Pearson correlation 

coefficient (r), and values range from –1.00 to +1.00. A correlation coefficient of –1.00 

represents a perfect negative correlation, which means that if one variable tends to decrease 
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another variable tends to increase. A correlation coefficient of +1.00 represents a perfect 

positive correlation, which means that an increase in the value of one variable will lead to 

an increase in the value of a related variable. A correlation coefficient of 0 indicates that 

there is no correlation between the variables. Although correlation coefficients are reported 

as a value between – 1 and +1, squaring the value and expressing it as a percentage makes 

it easier to understand: for example, if  r = 0.2, the square = 0.4, the decimal is ignored and 

the correlation coefficient is 40%.  

 

In the case of interpreting an ANN, a value of +1 indicates that the input of the prediction 

case correlates with the collective, trained inputs of the network related to a specific class.  

An output value of zero means that there is no correlation between the input of the 

prediction case and the collective, trained inputs of the network related to that specific 

class. This means that the input falls 100% outside the class. Values between +1 and 0 are 

an indication of the probability that the output will fall within a specific class. An output 

value of 0.75 indicates a 75% probability that a set of inputs will fall inside the class 

whereas a value of 0.25 indicates a 25% probability that a set of inputs will fall inside the 

class. A 50% probability indicates that the inputs may or may not fall inside the class. 

 

2.2 Why use ANNs? 

Not all problems can be solved using ANNs. ANNs are best suited for cases where there is 

a known relationship between the variable inputs and outputs, but the exact nature of the 

relationship is not known.  ANNs are indicated in cases where the relationship between the 

different variables requires a complex mathematical model which has not yet been 

developed (Deadman et al., 1997). ANNs have the added capability to extract patterns and 
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trends from data sets too complicated for the human brain to recognise or for conventional 

computers to calculate (Stergiou et al., 1996). An additional benefit of ANNs is their 

capability to incorporate uncertainty or noise in the data sets (Yang et al., 2001). 

Furthermore, ANNs make no assumptions regarding the statistical nature of the data and 

can integrate nominal and ordinal data. ANNs can be trained using comparatively fewer 

points than any other statistical model and it is not necessary to choose a data distribution 

model (German et al., 1997).  Trained ANNs can be envisaged as ‘experts’ in the data on 

which they have been trained (Stergiou et al., 1996).  

 

2.3 ANNs vs. Exact Classifiers 

Classification is common in decision making and can be described as a method whereby an 

object is assigned to a specific category based on a set of predefined conditions (Bolstad, 

20005). One major limitation of traditional classifiers is that the predefined conditions 

must be known and satisfied in order for the object to be assigned to a specific category. 

The user must therefore have a good knowledge of the variables influencing the conditions 

and the correlations between the different variables (Zhang, 2000). In contrast, an ANN 

relies on statistical methods, including probabilities, to classify variables. An ANN is 

therefore an example of a probabilistic or statistical classifier. For example an ANN 

predicts the probability that an outcome will fall into a specific class and does not assign a 

discrete class. (Stergiou et al., 1996). Since ANNs rely on statistical methods, ANNs can 

be trained to adapt to any circumstance whereas a GIS is limited to solving problems that 

the user understands or knows (Stergiou et al., 1996), and only if the steps to solve the 

problems are known to the user. ANNs have unpredictable outcomes; this is so because 

they cannot be programmed to perform specific tasks, they need to be trained for each 
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specific problem, learning by example, and they solve problems on their own. By contrast, 

the outcomes of GIS are predictable; this is because the algorithm is known. It is important 

to emphasise that ANNs and exact classifiers are not mutually exclusive but are 

complementary and can be used together to solve problems. Some tasks are best solved 

with an algorithmic approach, others with an ANN, yet others with a combination of the 

two approaches (Stergiou et al., 1996).  

 

2.4 Integration of GIS and ANN 

GIS and ANN can be mutually beneficial. Indeed, ANN can benefit from the powerful 

processing capabilities of spatial data from a GIS, which in turn can provide the ANN with 

the necessary input data for training of the network. The GIS can also display the results of 

the ANN in a visual and user friendly format. The ANN on the other hand with its strong 

decision making capabilities and ability to handle fuzzy data can determine and describe 

the relationships between the different variables extracted from a GIS. A cursory review of 

existing literature indicated that the integration of the two systems are not well developed 

and in most projects the data was transferred from the GIS to the ANN and back (see 

Rigol-Sanchex et al, 2002, Pijanowski et al, 2002, Pradhan et al, 2008). ANN software that 

can be used externally to the GIS includes the well known MATLAB (Pradhan et al, 2008) 

and Tiberius (Sarip, 2005). Examples where ANN was developed specifically for use in a 

GIS include an ANN interface in GRASS GIS (Muttiah, et al, nd); and an application in 

ArcGIS using Visual Basic scripts to specifically predict tunnelling performance in routine 

tunnel design (Yoo et al, 2006). The latter example was specifically developed for use in 

tunnel prediction and cannot be applied on other examples. The ANN developed in 

GRASS GIS can be trained for use in any application. However, the effectiveness of the 
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integration use of the two systems has been proven and various examples of the 

complementary use of GIS and ANN exist. 

 

8. Applications of GIS and ANN 

Applications using a combined GIS/ANN approach include a study to predict human 

population growth and distribution using historical census data (Graham and Goswani, 

2001). In this study a customised graphical user interface (GUI) was developed to allow 

the extraction of data for analysis using a GIS. An ANN was subsequently developed and 

trained to use the extracted data to make numerical projections and display these in a GIS.  

Another example includes the use of an integrative GIS/ANN approach to predict landslide 

susceptibility based on an analysis of factors such as slope, curvature, soil texture, soil 

drainage, soil-effective thickness, timber age and timber diameter (Lee et al., 2001). 

Finally, Pijanowski et al (2001) used integrative GIS/ANN approach to predict the location 

of new urban uses in the year 2020 in the Minneapolis–St. Paul and Detroit metropolitan 

areas. Other reports of  GIS/ANN applications include agricultural land-suitability analysis 

(Wang,1994); determining the potential location of a road for military land management 

(Wu et al. 2004); developing a system for rapid feedback of potential ecological risks in a 

flood diversion zone (Ni and Xue, 2003);  developing a model  to predict water quality 

(Jiang and Nan, 2006); determining the sedimentology of Gothenburg harbour, a study 

which shows how an ANN can be used to solve support engineering and harbour 

management problems (Yang and Rosenbaum, 2001); improving the accuracy of 

valuations of residential properties by minimising the influence of subjectivity (Sarip, 

2005). 
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In veterinary science, ANNs have been used for three main purposes: for diagnosis; for the 

determination of species distribution; and for identification of species. The application of 

ANNs for diagnostic purposes typically involves the identification of diseases. ANNs have 

been  used to identify the bacterial cause of mastitis in dairy herds (Heald et al.,2000); to 

develop  a model for early detection of mastitis in cows milked with an automatic milking 

system (Cavero et al.,2008); to detect lameness in milking cows (Pastell et al.,2007); to 

develop a model to assist in the diagnosis of Ascites in broilers (Roush et al.,1997); and to 

identify the type of ANN that best predicts susceptibility of chickens to pulmonary-

hypertension syndrome (Roush et al., 2001). ANNs have been used to study species 

distribution of Colinus virginianus (Lusk et al., 2002); wolves (Bessa-Gomes et al., 2003); 

and Limanda limanda in UK marine waters (Ward et al., 2006). ANNs have also been used 

in species identification. In one study, fish species, using parasites as biological tags, were 

identified through an ANN (and other artificial intelligence techniques including random 

forests) (Perdiguero-Alonso et al., 2008). 

 

A cursory study of local and international research failed to reveal any known application 

of ANNs specifically in relation to the prediction of the abundance of Culicoides spp. in 

South Africa or elsewhere. However, two relevant published reports using a GIS were 

located. In the first study GIS was used to map the potential distribution of C. imicola in 

Europe using climate data (Wittman et al., 2000)1. In the other, a GIS was used to model 

the distribution of C. imicola in southern Africa using climate and satellite data (Baylis et 

                                                 
1  Although AHS does not occur in Europe the same vectors carry diseases such as bluetongue (BT). This is of major international 

concern as it affects the import and export of animals and meat (Wittman et al. 2000). 
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al., 1999). In the forthcoming case study a GIS and an ANN are used to predict the 

potential abundance of Culicoides spp, the insect vectors of the AHS virus. 
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Chapter 3: Case Study 

 

This chapter demonstrates how a GIS combined with an ANN can be used to predict the 

abundance of Culicoides spp and the areas at risk of AHS outbreaks in the Western Cape 

Province. What follows is a description of the data requirements and method used to 

develop just such a GIS/ ANN model. A specific process was followed when integrating 

GIS and ANN (see Figure 3.1). These steps are specific to this case study and may differ 

from other applications. 

 

Figure 3.1: Integration of GIS and ANN (Compiled by S P Eksteen, 2009) 

9. Aims of the Case Study 

The aim of the case study is to develop a GIS incorporating an ANN model that can predict 

the abundance of C. imicola and C. bolitinos in the Western Cape Province of South 

Africa. 

 
 
 



 

 
  

 36 

 

The secondary aims of the study are: 

• to determine the variables influencing the occurrence of the Culicoides spp.; 

and 

• to predict the abundance of Culicoides at trap points where counts were not 

made for the particular months during the study period.  

 

10. Data Requirements 

The selection of data for the study was based on the research undertaken by Baylis et al. 

(1999) and Wittman et al. (2000).The occurrence of the Culicoides spp. in abundance is 

dependent on various climate factors, the presence of clayey soils, water bodies, livestock 

density and irrigated fields.  The following data sets for the Western Cape for the time 

period December 2005 to December 2006 were obtained. 

 

 (i) Climate Data 

Climate data was obtained from the South African Weather Service (SAWS) and 

the Agricultural Research Council (ARC). The following variables - as monthly 

averages - were calculated from the climate data: 

• total rainfall 

• average rainfall 

• maximum rainfall  

• minimum rainfall  

• maximum of the maximum temperatures 

• minimum of the maximum temperatures 
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• average of the maximum temperatures 

• maximum of the minimum temperatures 

• minimum of the maximum temperatures 

• average of the minimum temperatures 

• maximum humidity 

• minimum humidity 

• average humidity  

A one-kilometre raster surface was calculated for each of these variables using 

spatial interpolation.   

 

Long-term monthly minimum and maximum temperatures and rainfall were used to 

calculate anomalies – deviations from long-term averages – that could possibly 

favour an upsurge in Culicoides spp. population density:  

• monthly maximum temperature anomalies 

• monthly minimum temperature anomalies 

• monthly rainfall anomalies 

 

 (ii) Distribution of Culicoides spp. 

Total daily counts and the  geographic distribution of C. imicola and C. bolitinos, 

were obtained from the Entomology Division of the Onderstepoort Veterinary 

Institute as GPS points. These were imported and displayed in the GIS. The 

Entomology Division relies on the traps being set up by farmers and since this was 

erratic, counts for most months were incomplete. There were no Culicoides counts 

for June, July and October 2006. 
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Monthly averages and monthly totals of the Culicoides spp. were also calculated 

for each species and for both species combined. (See Annexure 2 for a map of trap 

locations in the Western Cape. province) Species counts should be seen not as an 

accurate count of absolute numbers. Rather they should be seen as an indication of 

whether or not Culicoides spp. occur in abundance (Venter, 2008, personal 

communication), a Culicoides spp. count greater than 1000 Culicoides spp. being 

regarded as an abundant population density (Venter, 2008, personal 

communication).  

 

 (iii) Clay Areas and Water Bodies 

The location of potential breeding sites for Culicoides spp. (Wittman et al., 2001)   

– clay areas and water bodies – was obtained in electronic format from the 

Environmental Potential Atlas as released by the Department of Environmental 

Affairs and Tourism. Since Culicoides spp. can easily spread as much as two 

kilometres away from their breeding sites (Meiswinkel et al., 2004), a two-

kilometre buffer zone was created around all the water bodies and clay areas and 

converted to a one-kilometre raster layer. 

 

 (iv) Normalised Difference Vegetation Index (NDVI) and Land Surface 

Temperature 

Land surface temperature and NDVI data were obtained as one-kilometre grid 

raster images from the Moderate Resolution Imaging Spectroradiometer (Modis) 

website (http://modis.gsfc.nasa.gov/). NDVIs were obtained as monthly averages 

for the time period covered, while images with the lowest possible cloud cover per 

month for the land surface temperature were used as a raster layers in the GIS.  
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(v) Altitude 

Altitude plays a significant role in the geographic distribution of Culicoides spp. 

(Baylis et al., l999, Wittmann et al., 2001). Accordingly, a one-kilometre digital 

terrain model (DTM) of South Africa was obtained from the Department of 

Geography, Geoinformatics and Meteorology, University of Pretoria.  

 

 (vii) Livestock and Field Boundaries 

The geographic distribution of livestock per magisterial district – indicating the 

total number of cattle, sheep, poultry and horses in a magisterial district – was 

obtained from the Directorate: Animal Health of the Department of Agriculture. 

Livestock density per magisterial district was calculated by dividing the total 

animal population for a district by its area. These values were then converted to a 

one-kilometre raster layer for further use in the GIS. This layer is significant since 

Culicoides spp. breed and can survive cold winters in cattle dung, and animals 

other than horses also serve as hosts for Culicoides spp. (Meiswinkel et al., 2004).   

 

Field boundaries were obtained from the Department of Agriculture. No 

information regarding farming methods was available, so, for the purpose of this 

study, all cultivated fields were assumed to be irrigated. A two-kilometre buffer 

zone was created around all irrigated fields as the Culicoides spp. can easily spread 

two kilometres beyond their breeding sites. These buffer zones were converted to a 

one-kilometre raster layer and imported into the GIS for further analysis. 
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11. Construction and Analysis of the GIS database 

The data sets described above were combined into a GIS and stored on a monthly basis for 

the period December 2005 to December 2006. Since climate has a delayed effect on the 

population growth of Culicoides spp. of 15-30 days (Meiswinkel et al., 2004; Venter, 

2008, personal communication), species counts for a specific month were combined with 

the NDVI and climate data for the previous month.   

 

3.1 Extraction of Data from the GIS 

After incorporation into the GIS, the data were extracted for use in the ANN. For the 

purpose of extracting the data the Culicoides spp. capture sites of the Culicoides spp. were 

used as extraction points. Raster values for each capture site (or trap) were extracted for 

each layer and combined in an Excel spreadsheet containing raster values for all the GIS 

layers per month (See Figure 3.2). The ‘Extract values per point’ available in ArcGIS 9.2 

was used for this purpose. 
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Figure 3.2: Extraction of data per trap 

The raster values for climate, altitude, livestock density, NDVIs and LSTs were actual 

values.  These values were either measured in the field or estimated using spatial 

interpolation. (Spatial interpolation is the calculation of values at unmeasured locations 

(Bolstad, 2005). ) The raster values for the buffer zones calculated for the clay areas, water 

bodies and cultivated fields were assigned a value 1 or 0. A value of 1 indicates that an 

extraction point is located within a two-kilometre buffer zone calculated for a relevant 

feature. A value of 1 indicates therefore that the probability of the abundance of Culicoides 

spp. is high. A value of 0 indicates that the extraction point is located beyond a two-

kilometre buffer zone and the probability of the abundance of Culicoides spp. is low.  

Figure 3.3 illustrates the model developed in ArcGIS 9.2 using the Model Builder tool to 

execute extraction of monthly data. 
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Figure 3.3: Model to extract data per month  
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A separate model was developed to extract the values for all variables on a monthly basis 

that stay the same during the time period studied. These layers include altitude, livestock 

density, clay soils and the buffers around the water bodies and irrigated farms. This model 

is shown in Figure 3.4 

 

Figure 3.4: Model to extract all other Data Sets (Compiled by S P Eksteen, 2009) 

 

The data extracted from the various GIS layers were combined in an Excel spreadsheet 

which became the input for the ANN. (See Figure 3.1: Integration of GIS and ANN.) Table 

3.1 contains a list of all the variables included in the spreadsheet that is extracted per 

month per point for the time period December 2005 to December 2006.  

 

 
 
 



 

 
  

 44 

 

Table 3.1: List of variables extracted for use in the ANN 

Variable Raster Value 

Average Counts of Culicoides Average Calculated 

Total Rainfall Interpolated Value 

Average Rainfall Interpolated Calculated Value 

Maximum Rainfall  Interpolated Calculated Value 

Minimum Rainfall  Interpolated Calculated Value 

Maximum of The Maximum Temperature Interpolated Calculated Value 

Minimum of The Maximum Temperature Interpolated Calculated Value 

Average of The Maximum Temperature Interpolated Calculated Value 

Maximum of The Minimum Temperature Interpolated Calculated Value 

Minimum of The Maximum Temperature Interpolated Calculated Value 

Average of The Minimum Temperature Interpolated Calculated Value 

Maximum Humidity Interpolated Value 

Minimum Humidity Interpolated Value 

Average Humidity  Interpolated Calculated Value 

Long-Term Maximum Temperature Anomalies Interpolated Calculated Value 

Long-Term Minimum Temperature Anomalies Interpolated Calculated Value 

Long-Term Rainfall Anomalies Interpolated Calculated Value 

Clay Areas 1= Inside Buffer, 0 = Outside Buffer 

Water Bodies 1= Inside Buffer, 0 = Outside Buffer 

Ndvi Actual Value 

Lst Actual Value 

Altitude Actual Value 

Livestock Density Calculated Value 

Cultivated Fields 1= Inside Buffer, 0 = Outside Buffer 

 
 
 



 

 
  

 45 

12. Constructing and running the ANN 

The monthly average count of the Culicoides spp. was used as the output variable in the 

ANN. All the variables extracted from the GIS were used as input variables for the ANN. 

A total of 99 traps were set up in the Western Cape Province which was to be counted at 

regular time intervals during January 2006 to December 2006. Therefore a total  of 1189 

traps were to be counted of which only 337 were done. The averages and total counts of 

the Culicoides spp. as well as the frequency per month are summarised in Table 3.2   (See 

Annexure 2 for a summary of the counts per trap per year.) The frequency indicates the 

number of counts that had been done per trap. NNClass that incorporates all the algorithms 

for ANN training and prediction in an Excel spreadsheet was used as ANN software.  

 

Table 3. 2: Average, total and frequency of counts of Culicoides spp. per month for 2006 

for all 337 traps. 

Month Total  Average Frequency 

January 166040 2218 46 

February 559496 4929 30 

March 303753 7364 12 

April 341167 2527 68 

May 245282 7214 13 

June 6650 116 20 

July 2993 61 46 

August 12813 249 7 

September 9398 414 10 

October 8635 328 7 

November 126498 1095 53 

December 34270 650 25 

 

All 337 records in the spreadsheet were investigated to identify the minimum and 

maximum values for the variables in order to include these values in the training set. The 

data set was then subdivided into the training set, the verification set and the test set. The 
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training set consists of 271 records (80%) and the records were chosen so that all the 

identified minimum and maximum values of the variables were included in the training set. 

The training set was also geographically representative of the study area and includes 

records from all climate seasons for the year 2006. The training set included the 

verification set as the ANN software will randomly select a verification set during the 

training process. The test set consists of 66 records (20%) and will be used at a later stage 

to select the best ANN model for the prediction of the occurrence of Culicoides spp. 

 

The process of training the ANN was now ready to commence. The training and 

verification set was imported into the ANN software. The software uses a feed forward 

network with back propagation as a training algorithm. The training of the network started 

by including all the variables and with the number of epochs set on 50. The number of 

epochs were then raised and lowered together with changes in the momentum and learning 

rate until a minimum percentage misclassification on the training and validation sets were 

reached. The changes in the parameters also ensured that the ANN finds a global minimum 

on the error surface. As soon as an acceptable  percentage misclassification on the training 

and validation set was reached the training of the network was stopped. Some of the 

variables were then omitted and the whole process was repeated.   

 

After the ANN models were trained a number of the models with the least percentage 

misclassified was chosen and tested using the test set. The best predictive model was 

chosen and used to predict the occurrence of Culicoides spp. at the 852 trap points where 

no counts where made for the particular month. The results from the ANN were imported 

back into ArcGIS 9.2 and a classification map of the occurrence of Culicoides in the 

Western Cape province was created
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Chapter 4: Results and Discussion 

of the Case Study 

 

Chapter 4 highlights the results of the study and identifies the variables and model used to 

predict the abundance of Culicoides imicola and Culicoides bolitinos. Subsequently the 

model is used to predict the abundance of Culicoides imicola and Culicoides bolitinos in the 

Western Cape province. The chapter concludes with recommendations for future research. 

13. Results 

Various combinations of variables were used in the training of the ANN. During each 

attempt various ANN models were trained as to ensure that the model finds the global 

minimum and minimise the output error. This is done by retraining the model using the 

same predictors but changing the number of epochs and hidden layers. A summary of the 

results of the training of the networks is given in Table 4.1. All variables were included in 

the model in the first attempt to train the ANN. This  resulted in a 13% misclassification of 

the predicted value when tested against the training set. With the second attempt, no 

categorical data (irrigated fields, clay areas and water bodies) were included in the training 

set. This resulted in a slight increase in the percentage misclassified on the predicted values 

when tested against the training and validation sets. In an attempt to determine the effects 

of the LST and the NDVI, all other variables were excluded from the model. This resulted 

in an increase in the percentage misclassified on the predicted values when tested against 

the training set. The models developed subsequently focused mainly on the inclusion or 

exclusion of climate data. Most had an acceptable percentage misclassified on the 

predicted values when tested against both the training and validation sets. 
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 Table 4.1: Model results  

Variables included 
% 
Misclassified 
Trainings Set 

% 
Misclassified 
Validation Set 

1. Model 1: All variables included 13.89 18.18 

2. Model 3: All variables included 15.74 18.18 

3. Model 6:  All variables included 14.35 20 

4. Model 8: All variables included 13.43 16.36 

5. Model 10: All variables included 15.74 14.55 

6. Model 12: Categorical data excluded 18.06 10.91 

7. Model 14: Categorical data excluded 12.96 18.18 

8. Model 15: Categorical data excluded 11.11 16.36 

9. Model 18: Only NDVI and LST 21.3 18.18 

10. Model 19: Only NDVI and LST 21.76 16.36 

11. Model 25: NDVI and LST, altitude, anomalies 16.67 18.18 

12. Model 27: NDVI and LST, altitude, anomalies 19.91 14.55 

13. Model 32: NDVI and LST, altitude, anomalies 16.2 20 

14. Model 38: NDVI and LST, altitude 21.3 20 

15. Model 41: NDVI and LST, altitude 20.83 18.18 

16. Model 45: All rain, all temperature, NDVI, LST 18 21 

17. Model 46: All rain, all temperature, NDVI, LST 17 21.82 

18. Model 47: All temperature NDVI, LST 18.98 20 

19. Model 53: All temperature NDVI, LST 18.98 14.55 

20. Model 54: All temperature NDVI, LST 14.81 21.82 

21. Model 57: All temperature NDVI, LST, rain anomalies 17.59 14.55 

22. Model 58: All temperature NDVI, LST, rain anomalies 15.28 18.18 

23. Model 59: All temperature NDVI, LST, rain anomalies 13.43 18.18 

24. Model 65: Only Climate data ( anomalies, humidity excluded) 18 20 

25. Model 66: Only Climate data (anomalies, humidity excluded) 15.74 18.18 

26. Model 80: Climate and anomalies (no long-term or averages) 18.98 10.91 

27. Model 84: Climate and anomalies (no long-term  or averages) 17.13 16.36 
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The models with the lowest percentage misclassification of the predicted values when 

tested against the training and verification sets were chosen and tested using the test set.  

 

Table 4.2: Results obtained from testing the models 

Variables included 
% Correctly 
classified as 
category 0 

% Correctly 
classified 
category 1 

% 
Correctly 
classified 

1. Model 8: All variables included 92 49 83 

2. Model 15: Categorical data excluded 90 23 77 

3. Model 18: Only NDVI and LST 0 0 0 

4. Model 19: Only NDVI and LST 0 0 0 

5. Model 27: NDVI and LST, altitude, anomalies 0 0 0 

6. Model 41: NDVI and LST, altitude 98 23 69 

7. Model 46: All rain, all temperature, NDVI, LST 98 1 80 

8. Model 53: All temperature NDVI, LST, 100 15 83 

9. Model 57: All temperature, NDVI, LST, rain 

anomalies  
88 38 79 

10. Model 66: All Climate data only (no anomalies) no 

humidity 
94 23 80 

11. Model 84: Climate and anomalies, (no long-term or 

averages.) 
88 15 75 

 

As can be seen in Table 4.2 above, not all the models were accurate predictors. Models 18 

and 19, which included only NDVIs and LST, for instance, has an acceptable 21% 

misclassification of the predicted values when tested against the training set but performed 

poorly when the predictive capabilities of the models were tested. This poor predictive 

capability is also seen in the lift chart (see Figure 4.1) developed after using the LST and 

NDVIs to train the ANN. (Lift charts were explained in Chapter 3.) 
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Figure 4.1: Lift Chart for Model 19 
 

Based on the highest percentage correctly classified predictions, Model 8 was selected as 

the model with the best prediction capabilities. The good prediction capabilities of this 

model are also illustrated in the lift chart developed after training the ANN (see Figure 4.2) 

 

 

 

 

 

 

 

Figure 4.2: Lift Chart for Model 8 
 
 

The variables included in Model 8 which were found to be significant factors in the 

predictive accuracy of the abundance of Culicoides were: 

• NDVI 

• LST 
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• total rainfall  

• average rainfall  

• maximum rainfall 

• minimum rainfall 

• long-term rainfall 

• maximum of the maximum temperature 

• average of the maximum temperature 

• minimum of the maximum temperature 

• long-term maximum temperature 

• maximum of the minimum temperature 

• average of the minimum temperature 

• minimum of the minimum temperature 

• long-term minimum temperature 

• maximum humidity 

• minimum humidity 

• average humidity 

• livestock density 

• fields 

• clay areas 

• rain anomalies 

• maximum temperature anomalies 

• minimum temperature anomalies 
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Model 8 was subsequently used to predict the abundance of Culicoides in the Western 

Cape Province at trap points where counts were not made for the particular months during 

the study period.  

 

 
Figure 4.3: Predicted abundance of C. imicola and C. bolitinos: January 2006 

 

The predicted abundance of C. imicola and C. bolitinos for January 2006 (see Figure 4.3) 

for the George district coincided with an outbreak of AHS.  
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Figure 4.4: Predicted Abundance of C. imicola and C. bolitinos: February 2006 

 

The abundance of Culicoides predicted by the ANN model for the Stellenbosch 

district for February (see Figure 4.4) and March 2006 (see Figure 4.5) coincided with 

the actual count. For the George district for both February and March 2006 (Figure 

4.4 and 4.5), and for the Robertson district for March 2006 (Figure 4.5) the predicted 

abundance coincided with an outbreak of AHS 
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Figure 4.5: Predicted Abundance of C. imicola and C. bolitinos: March 2006 
 
 

Figure 4.6: Predicted Abundance of C. imicola and C. bolitinos: April 2006 
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There was an outbreak of AHS in the Murraysburg and Beaufort West districts (see Figure 

4.6) in April 2006, and in the Murraysburg, Beaufort West and Oudtshoorn districts in 

May 2006 (see Figure 4.7). No predictions of the abundance of Culicoides in these districts 

were made. The reason for this is the unequal distribution of traps the in the study area that 

has lead to the under representation of these districts in the ANN model. (See also 

annexure 2 for the location of traps in the study area.) The predicted values for the months 

April and May 2006 also coincided with actual counts or are in the vicinity of outbreaks of 

AHS.  

Figure 4.7: Predicted Abundance of C. imicola and C. bolitinos: May 2006 

 

The ANN model predicted a zero probability of abundance of Culicoides for June, July and 

October, and there were no outbreaks of AHS during this time. During August 2006 there 

was only one counted abundance of Culicoides in the Robertson district, and during 

September 2006 in the Stellenbosch district and no abundance of the vectors were 
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predicted. For the experimental results it was deemed not necessary to do predictions for 

November 2006 since most of traps had been set up by the farmers for the counting of 

Culicoides. 

 

14. Validation of the Model 

The model was validated against the actual counts done by the Department of Agriculture 

while training the ANN (called the verification set) and also by testing the model against 

the test set.  The validation of the model during the training process and the testing against 

the verification set has indicated a 86% and 82% accuracy respectively. The validation of 

the model against the test has indicated that 92% of the predictions were correctly 

classified as no abundance of Culicoides whereas 49% has correctly classified an 

abundance of Culicoides. In total 83% of the predictions where correctly classified. 

Furthermore, the predicted abundance of the Culicoides was compared with the counted 

abundance and the actual outbreaks of AHS. The outbreak of AHS occurs under certain 

climate conditions and correlates strongly with the abundance of Culicoides spp. 

(Meiswinkel et al., 2004). The outbreaks of AHS are published by the Department of 

Agriculture per district and the exact locations of the outbreaks are not known. Since the 

diseases spreads rapidly the whole district as well as the adjacent districts will be warned if 

at risk. If an abundance of Culicoides are known due to actual counts or predictions the 

district will be warned as such. Therefore if an abundance of Culicoides spp. can be 

predicted in a district where there was an outbreak of AHS it is an indication of the good 

prediction capabilities of the model.  
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Although the actual and predicted counts of the Culicoides are done at a specific point it 

should not be interpreted as such as the midges are not restricted to that specific point and 

can travel long distances especially on prevailing winds.( Meiswinkel et al., 2004) 

Therefore if the predicted abundance of Culicoides are in the vicinity of actual counts 

indicating an abundance it is a further indication of the good prediction capabilities of the 

model. 

 

15. Discussion 

The ANN model proved to be highly accurate in predicting the abundance of C. imicola and 

C. bolitinos, with a prediction capability of 83%, which roughly corresponds to that of the 

GIS model developed by Wittman et al. (2001). The variables included in the GIS models 

of Baylis et al. (1999) and of Wittman et al. (2001) to predict the probable abundance of 

Culicoides spp. were mostly included in the current ANN model. For the Baylis et al. 

(1999) GIS model, rainfall was considered not to be a significant factor, while for the 

Wittman et al. (2001) model the specific site for which abundance was predicted 

determined whether or not rainfall was significant. The ANN model described here 

performed better as a predictor with rainfall included. This is supported by the research of 

Meiswinkel et al. (2004), which showed a clear link between abundance of Culicoides spp. 

and above-average rainfall. The ANN model also performed better when climate 

anomalies, not included in the GIS models mentioned above, were included. 

 

Improved accuracy of prediction of the ANN model over these two GIS models was 

achieved with the inclusion of livestock density data and field boundary data (Meiswinkel 

et al., 2004; Baylis et al., 1999). Field boundaries, however, still do not indicate the 
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farming practices, insecticides used, and management of animal dung, all of which can 

lead to an abundance of Culicoides (Baylis et al., 1999). In contrast to the findings of 

Baylis et al. (1999), simplifying the ANN model by using only NDVI and LST was 

unsuccessful with the model having poor prediction capabilities. Although the resultant 

ANN model includes many variables, data for these are readily obtainable and available in 

electronic format, with the exception of Culicoides counts. Counts involve costly field 

work, a factor which may hamper further development of the model (Venter, 2008, 

personal communication). However, once the model is fully developed to include extreme 

minimum and maximum climate anomalies, further field work setting up traps to count 

Culicoides should not be necessary. 

 

The ANN model described here does not take into account the effect of wind conditions on 

the abundance and distribution of Culicoides spp. This is a shortcoming also of the GIS 

models developed by Baylis et al. (1999) and Wittman et al. (2001). Prevailing winds 

influence the number of Culicoides caught in the traps: in strong winds the Culicoides may 

become stationary and fewer will be trapped. On the other hand, Culicoides can travel for 

long distances on prevailing winds and cause outbreaks of diseases in unsuspected areas. 

(Meiswinkel et al., 2004) Another limitation of the ANN model, and also of the GIS model 

of Baylis et al. (1999), is the uneven distribution of Culicoides traps. There was a high 

density of traps in the Stellenbosch, Paarl, Malmesbury, George, Wellington districts, but 

no traps in the Prince Albert, Beaufort West, Murrayburg, VanRynsdorp, Vredendal and 

Clanwilliam districts. So, the ANN model is well-trained to predict Culicoides in 

abundance for districts where there are many traps but poorly trained for areas with fewer 

or no traps. If the actual counts of the Culicoides are evenly distributed throughout the 

study area it may be possible to predict the abundance of the Culicoides for the whole 
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study area and not just at specific points. The ANN model is not trained to do predictions 

in certain areas because there are no actual counts that can be used to train the ANN. One 

drawback of the combined use of a GIS and an ANN to predict the abundance of 

Culicoides spp. is that there is no direct interface between the GIS and the ANN: a high 

level of software knowledge and computer training is still required.  

 

The use of ANN models to predict abundance of Culicoides spp. is important in the 

modelling of outbreaks of diseases carried by these insects. Such predictions can lessen the 

impact of the outbreak of vector-borne diseases by vaccinating animals at risk in time 

(Lord et al., 2002). The ANN model was used successfully to predict the abundance of C. 

imicola and C. bolitinos for the year 2006 at sites where no counts were made. The model 

can also be used to predict the abundance of Culicoides for subsequent years provided that 

there are minor anomalies in the monthly temperature or rainfall.  

 

16. Recommended Future Research 

This project leads to many further research opportunities. These include firstly, the 

adaptation of the model to make not only monthly but also seasonal predictions of the 

abundance of Culicoides spp. Monthly predictions should be more accurate as these 

models include more detailed information but would involve the acquisition of many 

variables per month. The model can also be expanded to include other Culicoides species, 

whose possible role in the transmission of AHS cannot be ruled out (Lord et al., 2002). 

Secondly, the model can also be expanded to predict outbreaks of AHS. Although the 

outbreaks of AHS correlate with the abundance of Culicoides certain climate variables also 

play an important role. The relationships among the outbreak of AHS, abundance of 
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Culicoides and the climate variables are also not known (Mellor et al., 2004). Thirdly, the 

ANN model can also be expanded to include the prediction of outbreaks of other vector-

borne diseases, such as bluetongue, epizootic haemorrhagic disease and equine 

encephalitis, which also are associated with abundance of Culicoides spp.  The principle of 

combining a GIS and ANN could also be tested and applied to predict other diseases of 

which the exact relationships among the variables are not known. This study combines a 

GIS and ANN but a GIS can also be combined with other artificial intelligence systems 

e.g. decision trees or Markov models.  
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Chapter 5: Conclusion 

  

This dissertation illustrated how a GIS and ANN can be combined for improved decision 

making in situations that combine spatial issues with significant complexity. A case study 

was conducted to illustrate the improved decision making capabilities obtained by utilising 

both a GIS and an ANN. In particular, the case study focused on predicting the abundance 

of Culicoides spp. in the Western Cape Province using a combination of a GIS and an 

ANN. This project was chosen because of its complex nature and the high number of 

predictors influencing the abundance of Culicoides spp. The presence of Culicoides spp. in 

abundance can lead to the outbreak of various vector-borne diseases, including African 

horse sickness. Such outbreaks can be avoided by identifying sites where abundance of 

Culicoides is likely to occur and vaccinating animals at risk. Accurate prediction of sites of 

probable abundance of Culicoides spp. has therefore great veterinary and economic 

benefits. Although GIS models have been developed which are able to predict abundance 

of Culicoides spp., there is still uncertainty as to which variables can be used as predictors 

and what the exact nature of the relationship among these variables is. In order to clarify 

this problem a combined GIS-ANN approach was employed.  

 

Chapter 2 defined the field of study: namely GIS and ANN. The processes for the 

construction and implementation of these technologies were explained. GIS is still an 

evolving science while ANNs as a sub-field of computational or artificial intelligence is 

relatively well-developed. Chapter 3 captured the methodology used to illustrate the 

complementary use of GIS and ANN. It focused on the use of a GIS and ANN to predict 

the abundance of C. imicola and C. bolitinos in the Western Cape Province. The data sets 
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included in the development of the model were based on the GIS models developed 

respectively by Baylis et al. (1999) and by Wittman et al. (2000). Two models were 

developed and tested, and a best predictive model selected. Chapter 4 outlined the models 

that were developed and tested, as well as the model finally used for the prediction. The 

model with the highest accuracy and best prediction capability was chosen. The ANN 

model was subsequently used to predict the abundance of Culicoides at sites where counts 

were not done for certain months. These predicted values were then imported into the GIS 

and a classification map indicating the counted occurrence of Culicoides and predicted 

abundance was displayed. The predicted results were also compared with the actual counts 

of Culicoides spp. and outbreaks of AHS where available. 

 

The research aims of the thesis were reached in the following ways: 

 

1. Highlight the increasing role and integration of artificial intelligence within 

mainstream GIS applications.  

 

Through the theoretical development and specifically the validation with a specific 

case study, the potential and role of the integration of artificial intelligence 

techniques in mainstream GIS applications was illustrated. It is important to note 

that this study is largely indicative of the role and potential of this integrated 

approach and did not attempt to address the full spectrum of integration possible 

between GIS and artificial intelligence.  
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2. Evaluation of the process of integrating  a GIS and ANN 

 

A cursory study of published literature indicated that the integration of GIS and 

ANNs from a systems perspective is lacking. In most projects using GIS and ANNs 

the data was exported from the GIS to the ANN and the results from the ANN 

imported into the GIS. This essentially illustrates that the combination rather than 

the close integration of the two systems is the dominant use scenario. Significant 

opportunities exist to integrate rather than just combine the GIS and ANN.  

 

Since not all GIS software include a direct interface between the GIS and ANN, a 

higher level of computer literacy is required for the complimentary use of the two 

systems than when tightly integrated. This stems from the need to deal effectively 

with data exchange as well as knowledge of two systems instead of one. The 

visualisation of the predictive result in the GIS makes the results understandable to 

a wider range of practitioners. 

 

3. Demonstrate the integration of GIS and ANN by means of a case study 

 

A GIS/ANN model was developed to predict the abundance of the two Culicoides 

spp. in the Western Cape province of South Africa. The case study has a strong 

spatial component illustrating the value of a GIS in decision making and allows for 

the broader use of the results through visualisation, making it more accessible. It 

features the integration of multiple data sources and has significant complexity 

without exact solutions, indicating the need for integration of GIS and ANN’s 
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strengths. The developed model performed well with a prediction accuracy of 83% 

comparing favourable with GIS-only studies. These predicted values were then 

imported into the GIS and a classification map indicating the counted occurrence of 

Culicoides and predicted abundance was displayed. The predicted results were also 

compared with the actual counts of Culicoides spp. and outbreaks of AHS where 

available as further validation of the model.  

 

4 Determine the variables influencing the occurrence of the Culicoides spp 

 

Various ANN models were trained to determine the predictors influencing the 

abundance of Culicoides spp in the Western Cape province. The model with the 

best prediction capabilities was identified. The variables included in the model 

were NDVIs, LST, total rainfall, average rainfall, maximum rainfall, minimum 

rainfall, long-term rainfall, maximum of the maximum temperatures, average of the 

maximum temperatures, minimum of the maximum temperatures, long-term 

maximum temperatures, maximum of the minimum temperatures, average of the 

minimum temperatures, minimum of the minimum temperatures, long-term 

minimum temperatures, maximum humidity, minimum humidity, average 

humidity, livestock density, field boundaries, clay areas, rain anomalies, maximum 

temperature anomalies and minimum temperature anomalies. 

 

5. Predict the abundance of Culicoides at trap points where counts were not made for 

the particular months during the study period. 
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The GIS/ANN model developed for the case study was subsequently used to 

predict the abundance of Culicoides spp. at trap points where no counts were made 

for particular months for the year 2006.  The prediction of abundance were in the 

vicinity of actual counts of abundance of Culicoides or coincides with outbreaks of 

AHS (indicating abundance of Culicoides spp. ). This is an indication of the good 

prediction capabilities of the model. 

 

17. Assessing the Scientific Meaning of the Study 

The scientific value of this study can be assessed by examining the research aims that were 

reached (presented above) and the contribution towards and the contribution from the 

various disciples used to conduct this study namely geoinformatics (geographical 

information systems and science), artificial intelligence and veterinary science. 

 

Firstly, the study outlined the suitability of the complementary use of GIS and ANN for 

better decision making capabilities. The study indicates that GIS has good decision making 

capabilities and performs particularly well in cases where exact relationships among the 

variables impacting the issue are known. In cases where the relationships among the 

variables are unknown or the data are noisy, an ANN can be used in synenergy with the 

GIS to enhance the decision making capabilities of the system. The complementary use of 

GIS and ANN involves both the disciplines of geoinformatics and artificial intelligence. 

 

Secondly, the study contributes towards the discipline of veterinary science. The model 

described in this study lays the foundation for the development of ANN models to predict 

the likelihood of outbreaks of other diseases where the relationship among the variables is 
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not known.  Once the model is fully developed, the need for further costly field work will 

be reduced. The application potential of the model can be expanded since other diseases 

like Blue Tongue are carried by the same vectors and occur under the same circumstances. 

The study further contributes towards veterinary science since a cursory study indicated 

that there is no published attempt to predict the abundance of Culicoides spp. using a 

GIS/ANN model.  

 

18. Final summation 

The use of GIS and ANN to predict the occurrence of Culicoides in abundance has 

demonstrated successfully how techniques such as ANNs can assist GIS in decision 

making, especially where the datasets incorporate uncertainty or if the relationships 

between the variables are not known. The results of the study are encouraging and provide 

a rich set of scenarios for further research. Exploration of this juncture between exact GIS 

and non-parametric methods such as ANN provides significant scope for other applications 

and multi-disciplinary research. 
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Annexure 3: List of Traps summarised per year (2006) 
 
Name of Trap Total Average Frequency 

Botrivier, Klein Paradys 2387.52746 596.881865 4 

Cape Town, Hyjo 13 3.25 4 

Cape Town, Milnerton Race Course 2 0.166665 4 

Cape Town, Philippi training centre 0 0 3 

Cape Town, Philippi, Golden Grove Farm 0 0 1 

Cape Town, Philippi, Kings Kraal 0 0 1 

George, Anne & Caprice 14 14 1 

George, Barnyard 147 36.75 4 

George, EL-BE-AR ranch 409 409 1 

George, Fancourt 1813.22432 233.27804 4 

George, Farmlands 3061.93981 3061.93981 1 

George, Forest Hill Farm 743 122.8 5 

George, George Riding Club 863 147.2 5 

George, Hoekwil, Bajaanskloof 3429.23596 1143.078653 3 

George, Hoekwil, Kiddbuddie 2174.35208 56.70491 10 

George, Hoekwil, Kingfisher Lodge 48 48 1 

George, Morning Star 1533.72561 383.4314025 4 

George, Oakhurst 27 27 1 

George, Outeniqua miniture horses 30013.99889 3334.88877 1 

George, Perdepoort 1966.20475 393.24095 5 

George, Rocky Mountain Trails 118 59 1 

George, Tarentaalbos 343 343 1 

George, The Ark 2663.02909 665.7572725 4 

George, Victoria Bay, Carmel Equestrian C 580 290 2 

George, Wilderness Adventures 1918.26441 304.1274017 6 

George, Wilderness, Hirschberg 379 379 1 

Gordens Bay, Broadlands 164871.2814 3673.698175 11 

Gordens Bay, Cindy's Livery 513 513 1 

Gordens Bay, Firlands Equestrian Centre T 905 452.5 1 

Gordens Bay, Hillside 1168.5 233.7 5 

Gordens Bay, Stellentia 494 177.25 2 

Hermanus, High Seasons 181 45.25 4 

Knysna, Horse rescue 3446.55552 136.48611 4 

Piketberg, (Porterville) Rietvlei Noord 1726.39896 575.46632 3 

Piketberg, Metonshoek stud 53468.35912 2593.211016 8 

Piketberg, Smitsvlei 1457.15705 364.2892625 4 

Piketberg, Wilgerbosdrift 114813.7725 2542.253059 12 

Robertson, Alchemy 579 193 3 

Robertson, Alfalfa Dairy calves 3090.77077 975.534055 2 

Robertson, Dageraad 36451.26379 1355.830848 4 

Robertson, Galloway 569 569 1 

Robertson, Highlands stables 1911.5082 955.7541 2 

Robertson, Highlands Stallions 147 147 1 

Robertson, Highlands yearlings 3953.36044 1976.68022 2 

Robertson, Litchfield 1112 224 3 

Robertson, Maine Chance 45439.82876 2765.014523 8 

Robertson, Normandy 321 160.5 2 

Robertson, Riverton 2377.46018 792.4867267 3 
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Robertson, Rondeheuwel 3509.09792 600.1829867 3 

Robertson, Showgrounds 12257.18024 4085.726747 3 

Robertson, Zandvliet 379 189.5 2 

Stellenbosch, Animal Zone 227 227 1 

Stellenbosch, Arc en Ciel 2117.08463 705.6948767 3 

Stellenbosch, Avontuur 70 3.413888333 6 

Stellenbosch, Beaumont Stud 2654.01049 459.0017467 3 

Stellenbosch, Bona Vista 1245 284.875 4 

Stellenbosch, Brakenfell, Connemara 35479.67933 3026.580925 4 

Stellenbosch, Briza kennels and cattery 5554.47764 819.9417467 6 

Stellenbosch, Del Vera 337 36.25 3 

Stellenbosch, El Dorado 3528.32948 882.08237 4 

Stellenbosch, Elsenburg 1730 88.375 8 

Stellenbosch, Fairyhouse 112 28 4 

Stellenbosch, Highflyer 352 88 4 

Stellenbosch, Inca Vale 3017.5794 1005.8598 3 

Stellenbosch, Juhanta 12234.73953 3058.684883 4 

Stellenbosch, Klein Optenhorst 46091.29942 15363.76647 3 

Stellenbosch, La Pitite Rochelle 503.22649 167.7421633 3 

Stellenbosch, L'Auberge Rosendal 31839.65344 7959.91336 4 

Stellenbosch, Linquenda 513718.0292 20627.42355 9 

Stellenbosch, L'ormarins 147 36.75 4 

Stellenbosch, Moseoatuania 1613.74967 537.9165567 3 

Stellenbosch, Mr Burger 112 112 1 

Stellenbosch, Natte Vallei 99 24.75 4 

Stellenbosch, Pine Ranch 1803 450.75 4 

Stellenbosch, Reinel stud 1126 375.3333333 3 

Stellenbosch, Rhodes Food Group 332 83 4 

Stellenbosch, Riverworld 654 163.5 4 

Stellenbosch, Robertsvallei 1139 37.25555556 9 

Stellenbosch, Sorento 90 45 2 

Stellenbosch, Spieka 0 0 1 

Stellenbosch, Spier 1325 1325 1 

Stellenbosch, Steadfast 345 86.25 4 

Stellenbosch, Steinmetz 614.64811 204.8827033 3 

Stellenbosch, Tatooine Lane 379 94.75 4 

Stellenbosch, Trough End 600429.3108 21825.32092 8 

Stellenbosch, Tygerberg Zoo 660 310.5 2 

Stellenbosch, Varsfontein 1010.93686 252.734215 4 

Stellenbosch, Vredenheim 6625.80702 331.465351 10 

Stellenbosch, Welgemeend 7 7 1 

stellenbosch, Wellington, Afton Grange 4331.98208 4331.98208 1 

Stellenbosch, Wellington, Arc-en-Ciel 2917.45574 2917.45574 1 

Stellenbosch, Wellington, Oaklands 29 29 1 

Stellenbosch, Woodhill racing stud 19178.29825 2649.402175 4 

Struisbaai, Elandsdrift 297.09548 297.09548 1 

Struisbaai, Kraskalk, Dohne sheep 10 10 1 

Struisbaai, Melkhout 103 103 1 

Struisbaai, Morning Glory Beach Rides 0 0 1 

Struisbaai, Vlooikraal 963.33333 963.33333 1 

Struisbaai, Wiesdrift 51 51 1 
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