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Abstract

The search for multiple solutions is applicable to many fields (Engineering [54][67],

Science [75][80][79][84][86], Economics [13][59], and others [51]). Multiple solutions

allow for human judgement to select the best solution from a group of solutions that

best match the search criteria. Finding multiple solutions to an optimisation prob-

lem has shown to be difficult to solve. Evolutionary computation (EC) and more

recently Particle Swarm Optimisation (PSO) algorithms have been used in this field

to locate and maintain multiple solutions with fair success. This thesis develops and

empirically analyses a new method to find multiple solutions within a convoluted

search space. The method is a hybrid of the NichePSO [14] and the sequential niche

technique (SNT)[8]. The original SNT was developed using a Genetic Algorithm

(GA). It included restrictions such as knowing or approximating the number of so-

lutions that exist. A further pitfall of the SNT is that it introduces false optima

after modifying the search space, thereby reducing the accuracy of the solutions.

However, this can be resolved with a local search in the unmodified search space.

Other sequential niching algorithms require that the search be repeated sequentially

until all solutions are found without considering what was learned in previous it-

erations, resulting in a blind and wasteful search. The NichePSO has shown to be

more accurate than GA based algorithms [14][15]. It does not require knowledge of

the number of solutions in the search space prior to the search process. However,

the NichePSO does not scale well for problems with many optima [16]. The method

developed in this thesis, referred to as the derating NichePSO, combines SNT with

the NichePSO. The main objective of the derating NichePSO is to eliminate the

inaccuracy of SNT and to improve the scalability of the NichePSO. The derating

 
 
 



NichePSO is compared to the NichePSO, deterministic crowding [23] and the orig-

inal SNT using various multimodal functions. The performance of the derating

NichePSO is analysed and it is shown that the derating NichePSO is more accurate

than SNT and more scalable than the NichePSO.
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Chapter 1

Introduction

Every day life is filled with small and large goals. For example, an athlete will

train every day to win a gold medal or to simply beat another competitor. Another

example of a goal, is a mechanical engineer that adjusts an engine to run at its peak

performance with the least possible frictional damage to the pistons of the engine.

A goal of an aeronautical designer would be to improve the aerodynamics of an

aeroplane thereby reducing the drag experienced in flight. In retrospect, a goal can

be described as an objective or an optimum to be achieved. Problems for which an

optimum to an objective is to be found, are referred to as optimisation problems.

Several methods have been developed to solve optimisation problems for systems

that are described by mathematical models. The goal of an optimisation technique

is to find the minimum or maximum of a function. Minimisation involves finding

the lowest value of f and maximisation involves searching for the highest value of f .

The optimum of a continuous function, f(x), is defined as the point where f ′(x) = 0,

where x is a point in the search space.

Classical numerical optimisation methods can be divided into derivative and

derivative-free based methods. Derivative-based methods, such as gradient descent

[65], were developed to optimise continuous functions. These derivative-based nu-

merical methods are, however, dependent on the existence of f ′. That is, f ′ must

be known prior to the search process. Non-derivative based methods, such as the

golden ratio search [65] and the Nelder-Mead method [68], are not dependent on

1

 
 
 



2

f ′. Both derivative and derivative-free based methods are prone to errors, such as

inaccuracy, incorrectly identifying the optimum, or the method may get trapped in

a local optimum if more than one optimum exists in the search space. Furthermore,

many real-world problems do not have a continuous objective function, in which

case derivative based methods cannot be applied.

In the Computational Intelligence (CI) field, many optimisation methods have

been developed, which address the above mentioned problems. These optimisation

methods do not necessarily require derivative information, and usually implement

mechanisms to escape local optima. This thesis focuses on two paradigms of CI,

namely evolutionary computation (EC) and swarm intelligence (SI).

EC represents a group of a variety of computational models that use evolutionary

processes to solve mathematical problems [89]. These computational models are

often referred to as evolutionary algorithms (EAs). In essence, all EAs share the

common principle of survival of the fittest [19]. An example of an EA is the genetic

algorithm (GA). The GA is premised on the natural evolution of a population of

individuals modelled traditionally as a string of numbers. The GA is characterised

by randomly applying recombination operators as well as selection and mutation

[6]. Each individual represents a position in the search space, and all individuals are

evolved to optimise the function which describes the search.

SI is the study of collective behaviour in decentralised, self-organising systems.

Such systems consist of a population of agents that interact with each other, which

leads to a global behaviour of the swarm. Examples of natural swarm systems

include, ant colonies, bird flocking, bacteria molding, and fish schooling [55]. The

most popular computational models of swarm behaviour are ant algorithms [60] and

particle swarm optimisation (PSO) methods [50][24]. This thesis focusses on PSO.

PSO is a stochastic, population-based optimisation technique where a swarm of

particles moves through an n-dimensional search space with the goal of converging

on an optimum of the function to be optimised. PSO is modelled after simulation

studies of bird flocks revealed that birds kept the formation of the flock even after a

sudden change in direction. ACO is also a stochastic, population-based optimisation

approach, developed to solve discrete, combinatorial optimisation problems. ACO
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models the foraging behaviour of social ants [60].

CI algorithms have been successfully applied to locate the optimum in many

different problem domains, including finance [13][59], engineering [54][67], medicine

[79][84][86] and others [51]. Developing new search methods and enhancing current

algorithms are essential to improving scalability, accuracy and efficiency such that

difficult problem domains can be explored. This thesis focuses on problem domains

with multiple optima and the objective is to discover all optima that exist in the

search space. The remainder of this chapter presents the objectives, motivation and

outline for the rest of the thesis.

1.1 Objectives

The objective of this thesis is to develop and evaluate a new PSO algorithm for

locating and maintaining multiple optima to the same optimisation problem. Such

algorithms are referred to as niching algorithms. Derating NichePSO is a new niching

algorithm that is a hybrid of the sequential niching technique (SNT) [8] (refer to

Chapter 3) and the NichePSO [14] (refer to Chapter 4). Further sub-objectives

include a literature overview of state-of-the-art niching algorithms in EC and PSO

in-order to identify problems with current techniques (in particular the NichePSO

and SNT).

Brits [14] has shown that the number of particles for the NichePSO increases

exponentially as the number of dimensions of the problem space increases. It is

discovered that this behaviour results from the possibility that particles may unnec-

essarily converge on optima that have already been discovered, which reduces the

ability of the NichePSO to explore the search space and therefore a larger number

of particles are required. To resolve this dilemma the NichePSO is combined with

the SNT. That is, the NichePSO is executed several times and in each execution

the solutions found in previous executions are removed from the search space. This

is achieved by modifying the search space near solutions found by subswarms and

thus preventing the surrounding search area from being re-explored unnecessarily.

However, as with SNT, the modifications to the search space introduces false local
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optima, which are incorrectly identified as local optima [8]. The derating NichePSO

minimises these errors by refining and maintaining solutions in the unmodified search

space so that subswarms may converge on valid solutions.

The success of the derating NichePSO to overcome the drawbacks of the NichePSO

and SNT are empirically demonstrated by comparing their scalability and accuracy.

The influence of several parameters on the derating NichePSO, including the num-

ber of particles, iterations, executions, and niche radius are investigated. Finally, it

is concluded that the derating NichePSO is more scalable than the NichePSO and

overcomes the inaccuracy problems of the SNT.

1.2 Motivation

When people are confronted with a problem, they often seek to find more than one

solution so as to compare each one and then choose the solution that best suites

their situation. A simple example would be a newly wedded couple searching for

a home. Natural instinct would tell the couple what they like, and common sense

would tell the couple not to select the first house they find. The couple should

rather explore the market and find all the houses that are of interest to them and

then select the best buy.

The search for multiple solutions is applicable in many fields of study, in partic-

ular Engineering, Science and Economics. For example, an electrical engineer may

be interested in the location of resonance points in a mechanical or electrical system

above a particular threshold to reduce or enhance the signal [22]. Other applications

that produce multiple solutions include the search for the sequence of all nucleotide

base-pairs in a DNA molecule [75], finger print recognition [80], calculation of aster-

oid orbits [4], and stock market speculation [87]. Lastly, performing a search using

a search engine such as Google (http://www.google.com) returns multiple results

that best match the search criteria.

CI algorithms, such as GA and PSO, were designed to find only a single solution.

To aid in finding multiple solutions, Mahfoud et al [62], De Jong et al [48], and

Beasely et al [8] researched and extended the GA to find multiple optima. These
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extended algorithms are generally referred to as niching algorithms, or speciation

methods. Niching approaches can be divided into parallel and sequential techniques.

Sequential niching methods find multiple solutions through repetitive application of

the optimisation algorithm, while parallel niching methods use a single application

of an optimisation algorithm to find as many optima as possible at the completion

of the algorithm. Examples of parallel niching methods include crowding [48] [61],

deterministic crowding (DC) [61], fitness sharing GA [36], multinational GA [93],

niche clustering [32], restricted tournament selection [41] and island models [10].

Examples of sequential algorithms include the sequential niche technique (SNT) [8],

objective function stretching [70], and the deflection technique [72].

Recently, Particle Swarm Optimisation (PSO) approaches have been developed

to find multiple solutions. Brits et al [14] [16] [15] developed the nbest PSO and

NichePSO as swarm based niching techniques. The nbest PSO algorithm was de-

veloped specifically to solve systems of unconstrained equations, however it can

also be applied to general multimodal optimisation problems. A drawback of the

nbest PSO algorithm is that it cannot maintain local optima [14]. The NichePSO

overcame this disadvantage and has shown to be more efficient and scalable than

GA based algorithms (specifically DC and SNT) [14]; which is the motivation for

improving the NichePSO’s performance. Other PSO based niching algorithms in-

clude the vector-based PSO [82], parrallel vector-based PSO [83], objective function

stretching [70][73] and PSO with speciation [69].

The contributions of this thesis include:

• A new PSO niching method, referred to as the derating NichePSO which

combines the advantages of the NichePSO and SNT.

• A formula is empirically derived to be used as a heuristic to determine the

number of particles needed to locate a required number of solutions.

1.3 Outline of Thesis

The thesis is organised as follows:
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• Chapter 2 defines important concepts, including the optimisation problem,

minimisation, maximisation, local and global optima, unimodal, multimodal

and multi-objective optimisation (MOO). The differences and similarities be-

tween MOO and multi-modal optimisation are pointed out as well. Popular

derivative and non-derivative based numerical methods used to find the local

optimum of a function are discussed. A review of the standard GA and PSO

algorithms are presented to serve as a platform for the remainder of the the-

sis. The chapter is concluded with the argument that the standard GA and

PSO algorithms are not suitable for niching, and need to be adapted to enable

niching

• Chapter 3 covers various GA based niching techniques, including SNT, dy-

namic niche sharing, crowding, and deterministic crowding. Much focus is

given to the details of how the SNT algorithm searches for multiple solutions.

The pitfalls and benefits of the SNT are listed and discussed in depth.

• Chapter 4 reviews various PSO algorithms that have been developed to locate

multiple solutions, including objective function stretching, vector-based PSO,

parallel vector-based PSO, nbest PSO, species-based PSO, and NichePSO. The

pitfalls and benefits of the NichePSO are listed and discussed in detail.

• Chapter 5 introduces the derating NichePSO. The focus of this chapter is

to discuss the development of the derating NichePSO. In this discussion, it is

shown how the derating NichePSO addresses the false local optima problem

of the SNT and the scalability problem of NichePSO.

• Chapter 6 evaluates DC, SNT, NichePSO and derating NichePSO on various

benchmarks. The evaluation examines the scalability and accuracy of the

derating NichePSO and a detailed comparison is made amongst the algorithms.

It is empirically shown that the derating NichePSO has similar accuracy and

is more scalable than the NichePSO. The sensitivity of the derating NichePSO

towards fluctuations in the niche radius, number of particles, and the number

of executions is analysed. A formula is derived for the relationship between the
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number of particles, the number of executions, and the number of solutions in

the search space, to serve as a guideline for selecting the swarm size.

• Chapter 7 concludes the dissertation and summarises avenues for further

research.

 
 
 



Chapter 2

Background

What is a niche? Where are niches found in the real world? How are niches found if

they exist? Why are niches important? What is the relationship between niches and

optima? This chapter answers these questions and defines useful niching concepts.

Several numerical methods that are used to find the local optimum of a function are

discussed. These methods include minimisation using derivatives (section 2.2.1), the

steepest descent or gradient method (section 2.2.2), the golden ratio search (section

2.3.1), and the Nelder-Mead method (section 2.3.2). A problem with these methods

is that they are not suitable for functions with more than one optimum as they

are susceptible to local optima. Algorithms to optimise multimodal functions are

then discussed. These algorithms include the genetic algorithms in section 2.4.1 and

particle swarm optimisation in section 2.4.2. However, these algorithms, in their

standard form, are not applicable to multiple solutions as discussed in section 2.5.

The differences between multimodal and multi-objective functions are discussed in

section 2.6. The chapter is concluded in section 2.7 which states the focus of this

research and provides a short prelude to the following chapters.

2.1 Introduction

In terms of computational terminology, optimisation refers to the process of finding

the location in a function’s domain where the function has its maximum or minimum

8
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(a) (b)

Figure 2.1: (a) The surface plot and (b) contour plot of the function defined by

equation (2.1)

value. These values are referred to as the function’s optima. A function with a single

optimum is referred to as unimodal and a function with multiple optima is referred

to as multimodal. For multimodal functions, optima can be local or global. A local

minimum is defined as the point p, if there exists a point p in an open interval In,

where n is the dimension of the function f , such that f(p) ≤ f(x) for all x ∈ In,

and In is a subset of the function’s domain. If p does not exist, then the function

has no local minimum. Similarly, the local maximum of a function is defined as the

point p, if there exists a point p in an open interval In such that f(x) ≤ f(p) for

all x ∈ In. The function f is said to have a local extremum or local optimum if it

has either a local maximum or local minimum value at p. The global minimum of

a function is similar to the local minimum, except that the interval In is defined as

the entire domain of the function; that is, p is the global minimum if f(p) ≤ f(x)

for all x (similarly for the global maximum).

To illustrate local maxima and minima, consider figure 2.1 which is modelled by

the two dimensional wave equation,

f(x1, x2) = 0.02 sin(x1) sin(x2) − 0.03 sin(2x1) sin(x2)+

0.04 sin(x1) sin(2x2) + 0.08 sin(2x1) sin(2x2) (2.1)

Figures 2.1 (a) and (b), show that the function has a local maximum, and a global

maximum, as well as a local minimum, and a global minimum. Numerical methods

can be used to approximate that the local minimum is located at f(2.5351, 0.6298) =

−0.0264 and the global minimum is located at f(0.8278, 2.3322) = −0.1200. The

 
 
 



CHAPTER 2. BACKGROUND 10

(a) (b)

Figure 2.2: A unimodal function, f . Using f ′(x) to find the minimum value of the

unimodal function f(x) on the interval [a, b] (a) If f ′(p0) < 0 then p lies in [p0, b] (b)

If f ′(p0) > 0 then p lies in [a, p0]

local maximum can be approximated at f(2.3979, 2.2287) = 0.0853 and the global

maximum at f(0.9241, 0.7640) = 0.0998 [65]. The following sections briefly discuss a

few numerical methods that are available to find the minimum of unimodal functions

(the theorems and definitions have been adapted from [65]).

2.2 Derivative-based Methods

If the derivative of a one dimensional function f(x) is available, then solving f ′(x) =

0 will find all optima of the function. In some instances solving f ′(x) = 0 is com-

putationally complex. If this is the case, then the following search methods can be

used to find the optima of a one dimensional function.

2.2.1 Minimisation Using Derivatives

This section considers a derivative method specifically for one dimensional functions.

Assume that f(x) is a one dimensional function that is defined over [a, b], and f ′(x)

is unimodal and defined at all points in [a, b]. This means that f(x) has a unique

minimum at point p. This method sequentially finds better approximations to p

until the desired accuracy is achieved, that is f ′(p) ≈ 0.

Define p0 as a starting point to lie in the interval (a, b). There are three possi-

bilities [65]:
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1. If f ′(p0) < 0 then p lies to the right of p0 in [p0, b] (refer to figure 2.2 (a)).

2. If f ′(p0) > 0 then p lies to the left of p0 in [a, p0] (refer to figure 2.2 (b)).

3. f ′(p0) = 0 then the optimum has been found, and p = p0

Now that the direction in which p is relative to p0 is known, the next step is to

find p1 and p2. The values p1 and p2 define a new smaller interval in which p lies.

The values of p1 and p2 are defined as:

1. p1 = p0 + h

2. p2 = p0 + 2h

If f ′(p0) < 0 then p lies to the right of p0 and h should be positive. If f ′(p0) > 0

then p lies to the left of p0 and h should be negative. The value of h must be chosen

so that p1 and p2 satisfy the following criterion:

f(p0) > f(p1) and f(p1) < f(p2) (2.2)

The next step is to determine pmin = p0 + hmin such that pmin is a better

approximation to p than p0. The calculation of hmin is achieved using the Lagrange

polynomial based on p0, p1 and p2 [65]:

Q(x) =
y0(x − p1)

2h2
− y1(x − p0)(x − p2)

h2
+

y2(x − p0)(x − p1)

2h2
(2.3)

where y0 = f(p0), y1 = f(p1) and y2 = f(p2).

Q′(x) =
y0(2x − p1 − p2)

2h2
− y1(2x − p0 − p2)

h2
+

y2(2x − p0 − p1)

2h2
(2.4)

Solving for Q′(p0 + hmin) = 0 yields

0 =

(
y0(2(p0 + hmin) − p1 − p2)

2h2

)
−
(

y1(2(p0 + hmin) − p0 − p2

h2

)

+

(
y2(2(p0 + hmin) − p0 − p1)

2h2

)
(2.5)
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Solving for hmin gives:

−hmin(2y0−4y1+2y2) = y0(2p0−p1−p2)−y1(4p0−2p0−2p2)+y2(2p0−p0−p1) (2.6)

hmin =
h(4y1 − 3y0 − y2)

4y1 − 2y0 − 2y2
(2.7)

The value of pmin = p0 + hmin is a better approximation to p than p0 (this is

based on Lagrange properties and is out of the scope of this thesis). To determine

a closer approximation to p, set p0 = pmin and recalculate p1 and p2 to find a new

hmin and pmin. The process continues to find better approximations of p until the

desired accuracy is achieved.

Finding the minima of a function using derivatives is a complex task for high

dimensional search spaces, and the global minimum of the function is not guaranteed

to be found if the function is multimodal [65].

2.2.2 Steepest Descent or Gradient Method

The steepest descent (or gradient method) [3] can be used to find the minimum

of a function with n variables. Define an n-dimensional function as f(x), where

x = (x1, x2, . . . , xn). The gradient of f is then defined as a vector function:

∇f(x) = (f1, f2, . . . , fn) (2.8)

where the partial derivatives fk = ∂f
∂xk

are evaluated at point x. The vector ∇f(x)

points locally in the direction of the greatest rate of increase of f(x). Therefore,

−∇f(x) points locally in the direction of the greatest rate of decrease. Initially,

a starting point p0 is assumed to exist in the domain. The search then continues

along the line (or hyper-dimensional plane for n > 1) through p0, in the direction

s0 = −∇f/ ‖∇f‖, where ‖∇f‖ is the length of the vector ∇f . Point p1 is found

where a local minimum occurs when the point x is constrained to lie on the line

(or plane) x = p0 + ts0. The process can be repeated to recalculate ∇f(p1) and a

new search direction s1 = −∇f/ ‖∇f‖ to find a new point p2 which is constrained

to lie on x = p1 + ts1. A sequence of points {pk} can be defined with property
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f(p0) > f(p1) > . . . > f(pk) > . . . Then, the limit limk→∞ pk = p and f(p) will be

a local minimum for f(x) [65].

The gradient method is strongly dependent on the starting point, p0. If the

function has a long, narrow valley structure and p0 is not close to the minimum,

then many iterations are required for the minimum to be found [3]. The algorithm

is guaranteed to converge on a local minimum, however, there is no guarantee that

global minimum will be found [25].

2.3 Derivative-free Methods

The calculation of the derivative of a function is not always a feasible option because

of the computational complexity, or in some instances the derivative does not even

exist. In these cases, search methods that are not dependent on the derivative of a

function need to be employed. To find an optimum usually requires many evaluations

of the objective function. To reduce computation time, it is important to limit the

number of function evaluations. This section discusses two non-derivative based

methods that reduce the number of function evaluations: the golden ratio search

and the Nelder-Mead method.

2.3.1 The Golden Ratio Search

In this discussion the author is assuming the minimisation of a one dimensional

function. A precondition to using the golden ratio search is that the function f(x)

must be unimodal. This allows an interval to be defined such that the minimum

point, p, is contained within the new interval. The golden ratio method reduces

the size of the interval while still ensuring that p is in the interval. The method

terminates once the interval is sufficiently small to identify p. For example, let the

original interval be [0, 1] and define r as, 0.5 < r < 1 then 0 < 1 − r < 0.5. This

creates three sub-intervals: [0, 1− r], (1− r, r), [r, 1]. There are two possible actions

that can be taken next:

1. Reduce the interval, [0, 1], from the right to create a new interval [0, r] (refer
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Figure 2.3: Illustration of Golden Ratio Search (a) Reduce the interval from the

right and the new interval is [0, r] (b) Reduce the interval from the left and the new

interval is [1 − r, 1]

to figure 2.3(a)).

2. Reduce the interval, [0, 1] from the left to create a new interval [1− r, 1] (refer

to figure 2.3(b)).

A decision process (described below) is used to determine which action to take.

The value of r is chosen so that the ratio (1 − r) : r is the same as the ratio r : 1.

Therefore, r can be calculated as:

1 − r = r2 (2.9)

⇒ r2 + r − 1 = 0 (2.10)

⇒ r = (
√

5 − 1)/2 (2.11)

To decide which action to take, define two interior points, c and d, in the interval

[a, b], where a = 0 and b = 1, as

1. c = a + (1 − r)(b − a)

2. d = a + r(b − a)

This results in a < b < c < d. f(c) and f(d) are guaranteed to be less than

max{f(a), f(b)} because f(x) is a unimodal function. There are now two possibili-

ties:
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(a) (b)

Figure 2.4: Illustration of Golden Ration Search (a) If f(c) ≤ f(d) then reduce from

the right and use [a, d] (b) If f(d) < f(c) then reduce from the left and use [c, b].

1. f(c) ≤ f(d): the minimum must occur in the subinterval [a, d]. Set b =

d to create a new interval and continue the search in the new interval by

recalculating r, c and d; that is, reduce the interval from the right (refer to

figure 2.4 (a)).

2. f(d) < f(c): the minimum must occur in the subinterval [c, b]. Set a =

c to create a new interval and continue the search in the new interval by

recalculating r, c and d; that is, reduce the interval from the left (refer to

figure 2.4 (b)).

The search is terminated once the interval width is sufficiently small to estimate the

location of the local minimum, p, and f(a) ≈ f(b).

The golden ratio search experiences inaccuracy problems where the function is

flat near the minimum as f(a) ≈ f(b), but the interval width is still significantly

large [65]. Many function evaluations will be required if the interval is large, which

makes the method computationally expensive. Furthermore, the golden ratio search

does not extend well for higher dimensional problems [65]. A search method that

overcomes these drawbacks is the Nelder-Mead method, discussed in the next sec-

tion.

2.3.2 The Nelder-Mead Method

Nelder and Mead developed a simplex method to find the local minimum of a func-

tion that has several variables [68]. For a two variable problem, a simplex is a
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triangle [96]. The method compares the function values at the vertices of the trian-

gle. The worst vertex, defined as the vertex where the function value is the largest,

is replaced with a new vertex (discussed below) and a new triangle is formed. As

the search progresses, a sequence of triangles are generated and the function values

of the vertices decrease. The coordinates of the minimum point are found once the

size of the triangle has reduced sufficiently [65].

For a two variable problem, the simplex is a triangle defined by vertices b =

(x1, y1), g = (x2, y2), and w = (x3, y3) (b is the best vertex, g is good or the second

best vertex, and w is the worst vertex). To find the new vertex that replaces w the

midpoint of the line bg must first be calculated as,

m =
b + g

2
=

(
x1 + x2

2
,
y1 + y2

2

)
(2.12)

There are four options when calculating the new vertex: reflection, expansion,

contraction and shrinking. Each option is tried in sequence. The current iteration is

terminated when an option produces a new vector that has a function value smaller

than w.

Reflection

The function decreases along the lines wg and wb. Thus, it is presumed that smaller

values lie away from w. A test point r is obtained by reflecting the triangle through

the line segment bg. r is calculated as,

r = m + (m− w) = 2m− w (2.13)

The new triangle formed is bgr, illustrated in figure 2.5(a).

Expansion

If reflection produces a new vertex, r, that is better than b, then it is assumed

that the function may continue to decrease farther than r. The new vertex, e, is

calculated as,

e = r + (r− m) = 2r− m (2.14)
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The new triangle formed is bge, illustrated in figure 2.5(b).

Contraction

If reflection and expansion do not produce a better vertex than b, then two more

vertices are defined, c1 and c2. c1 is the midpoint of line segment wm and c2

is the midpoint of line segment mr. The vertex with the smallest function value

(comparing c1 and c2) is called c. This forms the new triangle bgc, illustrated in

figure 2.5(c).

Shrink Towards b

The final option is to calculate the midpoint s, between vertex b and w to form the

new triangle bsm, illustrated in figure 2.5(d).

The above four options are tried in sequence for several iterations until the

triangle formed is small enough to approximate the minimum.

The Nelder-Mead method experiences difficulty with four and higher dimensional

functions having a long, curved, valley with steep sides [65]. It has been shown in

[68] that this method has the problem of converging on a point other than the

global minimum. This means that there is no guarantee that the global minimum

will be found in a multimodal function as the search process is likely to prematurely

converge on a local minimum.

2.4 Finding the Global Optimum

The numerical methods discussed above do not work well to find the global optimum

if the function is multimodal. In most cases, the method assumes that the function is

unimodal. A number of algorithms have been designed to locate the global optimum

in an n-dimensional search space with multiple optima [65]. This thesis considers

only algorithms from the field of computational intelligence, and more specifically,

evolutionary computation (EC) and swarm intelligence (SI). From the EC paradigm
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(a)

(b)

(c) (d)

Figure 2.5: Options for calculating the new vertex in the Nelder-Mead method: (a)

reflection; (b) expansion; (c) contraction; (d) shrinking [65].
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only genetic algorithms are considered (section 2.4.1), and from the SI paradigm

only particle swarm optimisation is considered (section 2.4.2). These algorithms do

not guarantee that the global optimum will be found, but have the advantage of

considering multiple points concurrently and therefore providing better exploration

of the search space.

2.4.1 Genetic Algorithm

Evolutionary computation (EC) refers to any algorithm based on the concepts of

evolution in nature. An algorithm within the EC paradigm is referred to as an

evolutionary algorithm (EA). There are various classes of EAs, which differ in im-

plementation but share the common principle of survival of the fittest. EA classes

include: genetic algorithms [42], genetic programming [52][28], evolution strategies

[5], differential evolution [74], cultural evolution [77][76], and co-evolution [1][2].

This section focuses on genetic algorithms (GAs).

Evolution is the natural ability of species to master the changing environment in

which they live. It allows them to effectively compete with other species that may

live in the same environment. At a biological level, the functioning and structure

of an organism is determined by the genetic sequence of its deoxyribonucleic acid

(DNA) which is a nucleic acid. A chromosome is a very long continuous piece of

DNA, which contains many genes [56]. Genes encode proteins and other molecules

that determine the structure and functioning of the organism. Altering the structure

of genes in an organism changes the organism’s biological structure and functioning

[56]. There are two main types of cells: prokaryotic cells and eukaryotic cells. The

difference between the two are their internal structure and nucleus. Each eukaryotic

cell contains a single chromosome. A new cell arises when one cell divides or when

two cells, like a sperm and egg cell, combine to share their DNA [56].

John Holland proposed the genetic algorithm (GA) in the 1960s [42] which is

an attempt to algorithmically model genetic evolution. The model represents an

individual (or chromosome) as a bit string, where each bit represents a single gene.

The selection of parents to produce new chromosome(s) is determined by a method

known as proportional selection; meaning that the probability of an individual to
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1. Let generation g = 0

2. Initialise the population Cg

3. While not converged:

a. g = g + 1

b. Evaluate the fitness of each individual Cg,i ∈ Cg

c. Select parents from Cg−1

d. Recombine selected parents through crossover to form a set of offspring Og

e. Mutate offspring in Og

f. Select the new generation Cg from the previous generation Cg−1 and offspring Og

Figure 2.6: Genetic algorithm

be selected as a parent is proportional to the fitness of the individual. A crossover

operator is used to construct the new chromosome(s).

The basic GA model can be split into two different phases: selection and re-

production (or crossover). The original GA model has evolved and different rep-

resentation schemes have since been used for chromosomes, various selection and

reproduction methods have been developed, and a new operator known as mutation

has been introduced.

The basic GA as it is used today is summarised in figure 2.6 [25]. The algorithm

is iterated several times until any of the convergence criteria is satisfied. These

criteria include:

1. An individual is found with an acceptable fitness,

2. the maximum number of generations has been reached, or

3. successive iterations do not produce better results.

The following subsections discuss aspects of this algorithm in more detail.
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Chromosome Representation

The chromosome representation at the biological level is far too complex to be sim-

ulated in a computer environment at this time. The chromosome can be abstracted

to any number of representations, depending on the characteristics of the search

space and problem to be solved. For binary-valued search spaces, chromosomes are

represented as a bit string containing n variables, where each variable represents

a dimension in an n-dimensional search space. For a nominal-valued search space

with a total of 2D nominal values and n dimensions, each nominal value can be rep-

resented with a bit string of length D, therefore the chromosome can be represented

as an n×D-dimensional bit string vector. For a restricted continuous-valued search

space, it is possible to use a representation similar to the nominal-valued search

space or the chromosome can be represented with a vector of integer or floating-

point values [45][20][25][85]. In essence, a chromosome can represent any value in

the search space, provided an appropriate representation can be found.

Chromosome Fitness

Each chromosome is a vector that represents a possible solution to an optimisation

problem. A fitness function is used to determine how good the solution is; that is,

how close to optimal the solution is. The fitness function, F , maps the n-dimensional

chromosome, xi, to a scalar value [25]

F : xi → ℜ (2.15)

Selection

With a population of individuals distributed throughout the search space, individ-

uals are selected for reproduction to generate new individuals. Reproduction allows

the genetic material of individuals to be combined in the hope of producing new

individuals that are better than their parents. A number of methods for selection

have been developed, for example,

• Random selection: With the random selection method, a set of two indi-
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viduals are randomly selected from the population. Fitness is not considered

in this selection method, thus the selection method does not favour any indi-

vidual.

• Proportional selection: This selection method favours the more fit individ-

uals in the population. That is, the probability of selecting an individual for

reproduction is directly proportional to the fitness of the individual. Roulette

wheel selection, summarised in figure 2.7, is an example of proportional se-

lection. The roulette wheel selection method may cause a few fit individuals

in the population to dominate the selection procedure, which is referred to as

high selection pressure. If this domination occurs early in the search process,

the algorithm may prematurely converge to a poor solution.

• Tournament selection: This method involves the selection of a random sam-

ple of individuals from the current population. Each individual in the sample

then competes with the other individuals of that sample. Individuals compete

by comparing their fitness values. The individual with the best fitness value

wins the tournament and is selected for the reproduction phase. Tournament

selection offers the advantage that the worst individual in the population will

only have a small probability of being selected for reproduction. If the sample

does not include many individuals then the reproduction process will not be

dominated by the fittest individuals. Tournament selection has a lower se-

lection pressure than roulette wheel selection, which produces a more diverse

population, and enhances the exploration of the search space.

Crossover

For the GA model, the crossover operator produces two offspring from two parents

that are selected using a selection operator. The offspring are produced by copying

values from the chromosome vector of both parents. There are a number of ways to

achieve this. Three such methods are uniform, one-point crossover and two-point

crossover.
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1. Let i = 1, where i denotes the chromosome index

2. sum = Prob(xi) = F(xi)PP
i=1 F(xi)

, where F(xi) is the fitness of individual xi and P is

the size of the population.

3. Choose a uniform random number, ξ ∼ N(0, 1)

4. While sum < ξ

a. i = i + 1

b. sum = sum + Prob(xi)

5. return xi as the selected individual

Figure 2.7: Roulette wheel

• Uniform crossover: For the first offspring, the value of the chromosome

vector at position j is determined by selecting the corresponding value from

either the first parent or the second parent. That is, the value of the offspring

at position j is randomly determined to be either the value of the first or

second parent at position j. The second offspring is determined by selecting

the chromosome value at position j from the alternate parent that the first

offspring selected. That is, if the first offspring randomly selected the first

parent for the chromosome value at position j, then the second offspring must

select the second parent for the chromosome value at position j.

• One-point crossover: A random position, j, in the chromosome vector is

found. For the first offspring, the first j values of the offspring is a copy of

the first parent and the remaining values are a copy of the second parent. For

the second offspring, the first j values of the offspring is a copy of the second

parent and the remaining values are a copy of the first parent.

• Two-point crossover: Two random positions, j1 and j2, in the chromosome

vector are found. For the first offspring, the first j1 values are copies of the
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first parent. The values between j1 and j2 are copies of the second parent.

The remaining values are copies of the first parent. For the second offspring,

alternate parents of the first offspring are selected. That is, the first j1 values

are copies of the second parent, the values between j1 and j2 are copies of the

first parent, and the remain values are copies of second parent.

For continuous-valued genes, arithmetic crossover can be used. For instance, two

offspring represented by the vectors o1 and o2 can be generated from two parents

x1 and x2 using:

o1,j = rx1,j + (1.0 − r)x2,j (2.16)

o2,j = (1.0 − r)x1,j + rx2,j (2.17)

with r ∈ U(0, 1).

Mutation

Due to random selection of the initial population, it may happen that not all gene

values are covered. If only the crossover operator is used as an adaptation mech-

anism, then only those parts of the search space as defined by all possible combi-

nations of initial gene values can be covered. That is, potential parts of the search

space (where a solution may reside), may not even be searched. Mutation has as

its objective to introduce new genetic material into a population, thereby increasing

the diversity of the population. A mutation probability, known as the mutation

rate (pm), is used to control the mutation process so as not to lose good genetic

material of an individual. The probability is usually large at the initial stages of the

search process and then decreased as the search progresses. A large mutation rate

increases the diversity of the population which aids in the prevention of premature

convergence on a local optimum. As the mutation rate decreases, less genetic mate-

rial is introduced into a population, which allows the population to converge on an

optimum.
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Drawbacks and Advantages

GAs have the ability to execute in parallel [38], which makes them well suited

for optimisation problems where good results are needed quickly. However, GAs

have been criticised for their trade-off in quality of the solution for the size of the

population [35][34][97]. The trade-off being that a large population produces better

results than a smaller population, but requires a high computational cost.

As mentioned previously, EC is a paradigm of CI. The following section discusses

another paradigm of CI, namely swarm intelligence.

2.4.2 Swarm Intelligence

Bird flocks show the ability to maintain an optimal formation while flying in a

three dimensional space, even after a sudden change in direction [24]. This social

behaviour was the inspiration upon which Eberhart and Kennedy [50] based the

development of the PSO algorithm. Instead of a bird flock, a swarm of particles move

through a high-dimensional space. The position of a particle is influenced by the

particle’s own experience and its ability to emulate the successful behaviour of other

particles. Particles form neighbourhoods on the basis of a specific social structure,

which enables particles to learn from the experience of neighbouring particles.

Let xi(t) denote the position of particle i in hyperspace at time t. The position

of i is then changed by adding a velocity component vi(t) to the current position

xi(t) = xi(t − 1) + vi(t) (2.18)

The velocity vector, vi(t), represents the cognitive and social behaviour of the par-

ticle to imitate more successful particles. When no social information is used to

update the particle’s position, the velocity component only considers the particle’s

personal best position and current position. A particle’s personal best position is

the position at which the particle has found its best fitness for the duration of the

search. The velocity for a particle with no social information is updated using the

equation
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vi(t) = vi(t − 1) + ρ(yi − x(t)) (2.19)

where ρ is a positive random number, vi(0) is randomly initialised or can be equal

to a zero vector, 0, and yi is the personal best position of the particle. This model

is known as the cognition-only model.

When a particle belongs to a neighbourhood that spans the entire swarm, the

social information used to update the position of the particle includes the position

of the best particle from the entire swarm and the particle’s personal best position.

Adding social information, the velocity equation changes to

vi(t) = vi(t − 1) + ρ1(yi − xi(t)) + ρ2(ŷ − xi(t)) (2.20)

where ρ1 = r1(t)c1 and ρ2 = r2(t)c2, with c1 and c2 being positive acceleration

constants and r1, r2 ∈ U(0, 1)n, ŷ is the global best position and is defined as the

best yi of all the particles in the entire swarm. This type of model is also referred

to as the global best (gbest) PSO using a star neighbourhood topology. The star

neighbourhood topology connects each particle to every other particle in the swarm.

Another model, known as the local best (lbest) PSO, based on a ring neighbourhood

topology, divides the swarm into overlapping neighbourhoods of particles. Instead

of having a best particle for the entire swarm, the lbest PSO keeps a best particle

for each neighbourhood, represented as ŷi.

To control the exploration and exploitation abilities of a swarm, an inertia weight

was introduced [50], as follows:

vi(t) = φvi(t − 1) + ρ1(yi − xi(t)) + ρ2(ŷ − xi(t)) (2.21)

where the inertia weight, φ, is used to control the influence of the particle’s previous

velocity on the new velocity. A large φ facilitates exploration, while a small φ

causes the swarm to exploit an area of the search space. To balance exploration and

exploitation, φ is usually initialised to a large value which is then decreased over

time.

The velocity equation is sensitive to its parameter values and various heuristics

have been suggested to ensure convergence. Kennedy [49] has empirically shown that
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values c1 and c2 should be bounded such that c1 + c2 ≤ 4 to prevent velocity and

position vectors to grow exponentially, causing particles to diverge. Van den Bergh

established that the relation between the inertia and the acceleration constants must

be φ ≥ 1
2
(c1−c2)−1 for guaranteed convergence to an equilibrium, otherwise the PSO

experiences cyclic or divergent behaviour [94]. This was also independently derived

by Trelea [92]. Clerc and Kennedy derived constriction coefficients to further ensure

convergence [17].

Guaranteed Convergence PSO

Van den Bergh [94] has shown that the standard PSO algorithm is not guaranteed to

converge even on a local optimum. When a swarm is stabilised, it simply means that

particles have converged on the best position discovered by the swarm. Assuming

gbest PSO, this position is defined for each particle as

c1yi + c2ŷ

c1 + c2
(2.22)

To show that the swarm may have prematurely converged to this point, let

xi(t) = yi(t) = ŷ(t). From equation (2.21), both the social and cognitive com-

ponents will be zero, and it is only the particle’s inertia that contributes to any

change in its position. If this condition persists for a number of iterations, then

φvi(t − 1) → 0, as φ < 0 in which case position updates become zero [26]. More

formal proofs to show that the basic PSO does not have guaranteed convergence to

a local optimum can be found in [94].

To address this problem Van den Bergh and Engelbrecht [95], and Van den Bergh

[94] adapted the PSO to force the global best to change. The resulting algorithm,

referred to as the guaranteed convergence PSO, changes the velocity update for the

global particle to

vτ,i(t + 1) = −xτ,j(t) + yj(t) + φvτ,j(t) + ρ(t)(1 − 2r3,j(t)) (2.23)

where τ is the index of the global best particle so that

yτ = ŷ (2.24)
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and ρ(t) is a scaling factor defined below in equation (2.25) and yj is the personal

best position of the global best particle. The other particles in the swarm continue

to use the normal velocity update equation (2.21). The −xτ,j resets the particle

position to yj. The vector φvj represents the current direction which is added to

the yj . The term ρ(t)(1 − 2r3,j(t)) generates a random value that is a sub-space of

lengths ρ(t). The addition of the ρ(t) term causes the PSO to perform a random

search in an area surrounding the global best position so that the global best is

forced to change. The diameter of the search is controlled by the parameter ρ(t).

The value of ρ(t) is adapted after each time step as follows,

ρ(t + 1) =






2ρ(t) if success > sc

0.5 if failures > fc

ρ(t) otherwise

(2.25)

where success and failures denote the number of consecutive successes and failures

respectively. A failure is defined as f(y(t)) ≥ f(y(t− 1)) (assuming minimization).

The parameters sc and fc are thresholds, where the optimal choice of the values

for the parameters is dependent on the search space. Van den Bergh [94] found

that ρ(0) = 1.0 produces acceptable results. The GCPSO algorithm has shown to

be efficient and robust and it has been successfully used to locate single solutions

within a search space [95][94].

2.5 Multiple Optima

The algorithms discussed thus far have been developed (in their original form) to

find a single optimum. These single solution algorithms are not suitable for finding

multiple solutions to the same optimisation problem. Algorithms that are designed

to find multiple solutions are referred to as niching algorithms. Within these algo-

rithms, individuals (or particles) speciate to form niches, where each niche represents

a single solution.

In biological terms, a niche sustains a group of species. Different species exploit

different niches in order to survive. A single niche can only sustain a certain number
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of species. Species that cannot be supported by one niche have to migrate to another

niche or evolve into another species to survive in the same niche. This adaptation

process, known as speciation, will create a new species. Allopatric speciation occurs

when a small population of a species is separated from the main population and

begins to adapt to their new environment. Parapatric speciation is the formation

of a new species through evolution. This type of speciation refers to species that

evolve in the same niche (instead of migrating to another niche), and compete with

other species that coexist in the same niche.

Niching algorithms that implement either allopatric or parapatric speciation are

discussed in further detail in the following chapters.

2.6 Multi-objective Optimisation

Problems presented thus far are single objective optimisation problems for multi-

modal and unimodal functions. The simultaneous optimisation of competing objec-

tive functions is referred to as multi-objective optimisation (MOO). An example of

competing objective functions can be found in the field of mechanical design, where

several objective functions may rate highly those designs which perform well based

on maintenance, ease of use, reliability, etc. [8]. Combining all these objectives into

a single function that rates the designs is usually complex. With multi-objective

optimisation a set of solutions is searched for, such that the objectives cannot be

all simultaneously improved. This set of solutions is referred to as the Pareto op-

timal set. The solutions contained by the Pareto optimal set are referred to as

non-dominated, or non-inferior solutions [30]. The plot of the non-dominated so-

lutions is referred to as the Pareto front. The Pareto front is described as either

concave, convex, partially concave, partially convex, discrete or continuous. More

formally, the objective of MOO is to find a set of non-dominated solutions,

x∗ = [x∗
1,x

∗
2, ...,x

∗
n]T (2.26)

satisfying multiple objectives specified as:

• m inequality constraints: gj(x
∗) ≥ 0, j = 1, 2, ..., m
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• p equality constraints: hj(x
∗) = 0, j = 1, 2, ..., p

• Optimisation of a N -dimensional vector of optimisation functions:

f(x∗) = [f1(x
∗), f2(x

∗), ..., fN(x∗)]T

The optimal solution for the objective functions may be found in different loca-

tions that conflict with each other. If there are no other solutions in the search space

that may improve the value of any one component without deteriorating another

component, then the solution is considered to be non-dominated.

MOO can broadly be classified into two main approaches: non-Pareto and Pareto

based approaches. Each of these approaches are briefly discussed in the following

subsections.

2.6.1 Non-Pareto Based Approach

Non-Pareto based approaches do not directly incorporate the concept of a Pareto

optimum. Examples of non-Pareto based approaches include the weight aggregated

approach [44], vector evaluated genetic algorithm (VEGA) [81], lexicographic or-

dering [31][9], the multi-objective version of evolutionary strategies [53], and target

vector approaches [40]. The following subsections discuss the commonly used weight

aggregated approach and VEGA.

Weight Aggregated Approach

The weighted aggregated approach replaces the multiple objectives with a single

objective, expressed as a summation of the separate objective functions, that is

f =

N∑

j=1

wjfj(x) (2.27)

where wj , j = 1, ..., N are non-negative weights. It is often assumed that
∑N

j=1 wj =

1. The weights can either be fixed or dynamically changed during the optimisation

process.

Conventional weighted aggregation (CWA) refers to the case where the weights

are fixed. This approach only allows for a single Pareto optimal solution to be found
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per search. Thus, to find the desired number of Pareto optimal solutions the search

must be executed several times. Therefore, the approach has a high computational

cost and requires prior knowledge of the search space to choose appropriate weight

values [30][46].

The Bang-Bang weighted aggregation (BWA) approach oscillates the weights

associated with each objective function. For a MOO problem with two objective

functions, the weights are calculated as

w1(t) = sign(sin(2πt/Ffreq)), (2.28)

w2(t) = 1 − w1 (2.29)

where t represents the index of the current iteration and Ffreq is the frequency at

which the weights change.

Dynamic weighted aggregation (DWA) is similar to BWA, but gradually modifies

the weights. DWA modifies the weights of a two objective MOO problem as

w1(t) = |(sin(2πt/Ffreq)| , (2.30)

w2(t) = 1 − w1 (2.31)

Vector Evaluated Genetic Algorithm

Schaffer introduced the idea of treating objective functions separately in VEGA [81].

The approach generates the next generation, g+1, as sub-populations from the cur-

rent generation, g. For N objectives and a population of size P , N sub-populations

of size P/N each is generated. The next generation is obtained by shuffling the

sub-populations together to create a new population of size P . The crossover and

mutation operators are applied to the new population as usual. Shuffling all sub-

populations results in averaging the fitness components of each objective. Thus, the

fitness of individuals corresponds to a function of the objectives [30][78]. Therefore,

non-dominated individuals are assigned different fitness values [30].
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2.6.2 Pareto Based Approach

Pareto based approaches involve ranking non-dominated individuals and a technique

to maintain population diversity. Examples of Pareto based approaches include, pure

Pareto ranking [33], multi-objective optimisation GA (MOGA) [29], non-dominated

sorting genetic algorithms (NSGA) [90], and niched Pareto GA (NPGA) [43]. The

following section briefly discusses the NPGA.

Niched Pareto Genetic Algorithm

Horn et al [43] proposed a new form of tournament selection based on Pareto dom-

inance. The new selection procedure was introduced to prevent the GA from con-

verging on a single solution and to find multiple solutions which are part of a Pareto

optimal set. The Pareto domination tournament randomly selects two individuals

from the population. The individuals selected are referred to as candidates. A

random set of individuals are selected from the population for comparison. The

candidates are compared to each of the individuals in the comparison set. If one

candidate is dominated by the comparison set, and the other is not, then the latter

wins the tournament. If neither or both are dominated by the comparison set, then

equivalence class sharing is used to select a winner. The equivalence class sharing

technique selects the winner as the candidate which has the least number of individ-

uals in its niche. This sharing technique is also regarded as a form of fitness sharing.

The niche radius is determined by dividing the total surface area by the population

size. This creates a uniform distribution to represent the possible continuous Pareto

front [43]. Individuals within the niche radius are calculated as part of the niche

size. Horn et al [43] demonstrate that the selection operator maintains a diverse

population that is able to identify the Pareto optimal set.

2.6.3 MOO and Niching Similarities

Niching and MOO have the objective to find multiple solutions, with the difference

that niching traditionally applies to single objective functions. Niching techniques

can however be applied to MOO as shown by the fitness sharing techniques in [29][33]
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and [43].

2.7 Conclusion

This chapter discussed the concept of optimisation in terms of computational ter-

minology. Several numerical methods that are used to find the optimum of a func-

tion, f , were discussed. The numerical methods presented can be categorised into

derivative and derivative-free based methods. Derivative based methods require the

existence of the derivative, f ′, of the objective function. The non-derivative based

methods discussed in this thesis require f to be unimodal. In most cases, the deriva-

tive is not known or it cannot be guaranteed that the function is unimodal. Two

popular CI methods were discussed to find the optimum for functions with multi-

ple optima or when f ′ is not known, these are GAs and PSO. These CI methods

have been applied to a wide array of problem domains where the global optimum

is needed. However, these methods are not suitable when searching for multiple

optima.

The search for multiple optima is referred to as niching. The search to opti-

mise several objectives is known as multi-objective optimisation (MOO). Niching

techniques can be applied to MOO problems, as MOO and niching both search for

multiple solutions. The next chapter provides an overview of the benefits and pitfalls

of niching techniques that have been developed based on GAs.

 
 
 



Chapter 3

GA Niching Techniques

Owing to this struggle for life, any variation, however slight and from

whatever cause proceeding, if it be in any degree profitable to an individ-

ual of any species, in its infinitely complex relationship to other organic

beings and to external nature, will tend to the preservation of that in-

dividual, and will generally be inherited by its offspring. The offspring,

also, will thus have a better chance of surviving, for, of the many indi-

viduals of any species which are periodically born, but a small number

can survive. I have called this principle, by which each slight variation,

if useful, is preserved, by the term Natural Selection, in order to mark

its relation to man’s power of selection.

Charles Robert Darwin (12 February 1809 - 19 April 1882), Origin of

Species (1859) [19].

The success of genetic algorithms (GAs) in finding the global optimum in com-

plex, high dimensional search spaces prompted research into whether GAs can find

multiple optima. This chapter presents a literature overview of GA niching tech-

niques. The techniques can be categorised into sequential and parallel niching algo-

rithms [64][63]. Sequential algorithms discussed include iteration-based niching (sec-

tion 3.2.1), and the sequential niche technique (section 3.2.2). Parallel algorithms

discussed include parallel sub-populations (section 3.3.1), fitness sharing (section

34
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3.3.2), dynamic niche sharing (section 3.3.3), crowding (section 3.3.4), and deter-

ministic crowding (section 3.3.5).

3.1 Introduction

Traditional GAs converge to a single optimum, even if the search space contains

multiple optima. This is a result of genetic drift [48] in the population. Genetic

drift refers to the inability of GAs to maintain a diverse population throughout the

search process, and thus individuals converge on a single optimum. Sequential and

parallel techniques are two classes of approaches for discovering multiple solutions

using GAs. Sequential approaches consecutively executes a GA algorithm in an

effort to discover a new optimum on each execution. Parallel approaches attempt

to maintain diverse sub-populations for the duration of the search, where each sub-

population represents a single solution. The following sections discuss methods that

have been developed for both sequential and parallel niching techniques.

3.2 Sequential Niching Techniques

Sequential niching techniques are characterised by an optimisation process that is

repeated several times. In each repetition of the optimisation process, a new op-

timum is searched for. The following sections discuss the iteration algorithm and

sequential niche technique (SNT).

3.2.1 Iterative Search

The iterative search approach repeatedly executes an optimisation algorithm to

produce multiple solutions. On each execution, the algorithm is reinitialised to start

at different positions in the search space. If the optimisation process is stochastic,

then there is a probability that successive executions will find different solutions. If

there are q optima and a single-solution optimisation algorithm is used, then the

minimum number of times that the algorithm has to be repeated is q. However, it

is possible for iterative approaches to find the same solution more than once, and
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thus there is no guarantee that it may locate all solutions irrespective of the number

of times that the optimisation algorithm is repeated. To compensate for duplicate

solutions found, the number of repetitions have to be increased by a factor, referred

to as the redundancy factor, Γ. If all optima have an equal probability of being

found, then Γ is given by [8]:

Γ =

q∑

m=1

1

m
(3.1)

Γ can be approximated [47] for q > 3, by:

Γ ≈ γ + log q (3.2)

where γ ≈ 0.577 (Eulers constant). This means, to find q unique optima the algo-

rithm must be repeated Γ × q. If the maxima are not equally likely to be found,

then the value of Γ will be much higher. Iterative approaches are therefore compu-

tationally complex.

3.2.2 Sequential Niche Technique

The iteration approach does not guarantee that a new solution will be found for

each repetition of the optimisation algorithm. The optimisation algorithm is re-

peated blindly without taking any consideration of the search area that has been

explored and the solutions that have been discovered in previous repetitions. The

sequential niche technique (SNT) counters these pitfalls by making use of knowl-

edge gained about the search space from previous executions of the optimisation

algorithm to each subsequent execution. The SNT finds multiple solutions by con-

secutively executing the optimisation algorithm multiple times, such that for each

execution a new solution is searched for. The original SNT, proposed by Beasley et

al [8], was designed using a GA as the optimisation algorithm, although any other

optimisation algorithm can be used.

Knowledge gained in previous executions of the optimisation algorithm is carried

over to subsequent executions by maintaining two fitness functions:

• The original fitness function, F , referred to as the raw fitness function, and
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• the modified fitness function, M .

The modified fitness function requires a distance metric, which quantifies how

close two chromosomes are. The modified fitness function, M(x), for an individ-

ual, x, is computed from the raw fitness function, F (x), multiplied by a number of

single-peak derating functions (a peak refers to the maximum of a function). Ini-

tially M(x) ≡ F (x). After an execution of the optimisation algorithm, the best

individual, ŷ, is found and is used to determine a single-peak derating function,

G(x, ŷ). Different derating functions have been used, including the exponential der-

ating and the power law fitness functions [8], as defined in equations (3.3) and (3.4)

respectively:

Ge(x, ŷ) =





exp(log m ∗ (r − dxby)/r) if dxby < r

1 otherwise
(3.3)

Gp(x, ŷ) =





(dxby/r)

α if dxby < r

1 otherwise
(3.4)

where dxby denotes the distance between the best individual of the current execution

and another individual x as determined by the distance metric; r is the niche radius

that is a constant defined prior to the SNT search process. The niche radius is an

assumption of the inter-niche distance in the search space. Figures 3.1 (a) and 3.1

(b) illustrate several curves of the derating functions defined in equations (3.3) and

(3.4) with r = 1. For a large α and small m the derating function increases its

strength of attenuation on the raw fitness function.

The niche radius, r, requires prior knowledge of the inter-niche distance to be

provided. Deb [21] proposed to calculate the niche radius for an n-dimensional

search space as:

r =

√
n

2 × q
√

n
(3.5)

under the following assumptions that

• there are q unique maxima each surrounded by a hypersphere of radius r,
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• the hyperspheres do not overlap, and

• the hyperspheres completely fill the n-dimensional problem space.

After each execution of the optimisation algorithm, the modified fitness function is

updated according to

Mt+1 ≡ Mt(x) ∗ G(x, ŷt) (3.6)

Figures 3.2 (a), (b) and (c) illustrate a possible search using SNT. In figure 3.2

(a), the first execution of the GA finds an optimum (shown as a cross) and modifies

the search space accordingly to produce the modified fitness function illustrated by

the broken line in figure 3.2 (b). This introduces two false peaks in the modified

fitness function search space (indicated by the brocken line in figure 3.2(b)). On

the second execution of the GA, one of the false peaks that were introduced in the

previous execution are found. This results in modifying the search space as shown

in figure 3.2 (c). Figure 3.2 (c) illustrates that the false peak is almost completely

removed from the search space.

The SNT algorithm is summarised in figure 3.3, assuming a maximisation prob-

lem. To find the minima of a function, a different type of derating function must

be used [73], or the problem should be changed into a maximisation problem. From

figure 3.3, the solution threshold represents the lower fitness limit for accepting the

candidate solution as a solution. If no information is known about the values of the

maxima of interest then a value of zero could be used [8].

Pitfalls of SNT

SNT has the disadvantage that the number of niches has to be known, because this

is used as a stopping criterion, and to calculate the niche radius. If an inappropriate

niche radius is used, then the following symptoms have been experienced [8]:

• A niche radius that is too small introduces new false optima, which may be

inaccurately reported as solutions in the search space.
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(a)

(b)

Figure 3.1: (a) Exponential derating function, equation (3.3) (b) Power law derating

function, equation (3.4), where alpha represents α
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(a)

(b)

(c)

Figure 3.2: (a) The first run of SNT finds the optimum indicated by a cross (b) The

second run of SNT finds a false optimum indicated by a cross (c) The third run of

the SNT almost completely removes the false optimum.
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1. Equate the modified fitness to the raw fitness function (meaning that the two func-

tions are exactly the same).

2. Run the GA (or any other search technique), using the modified fitness function,

keeping a record of the best individual found in the run.

3. Update the modified fitness function to give a depression in the region near the best

individual, producing a new modified fitness function.

4. If the raw fitness function of the best individual exceeds the solution threshold,

display this as a solution.

5. If all solutions have not been found, or the maximum number of executions has not

been exceeded return to step 2.

Figure 3.3: SNT algorithm

• A large niche radius may cause the introduction of new false peaks, as well

as reducing the height and shifting the position of other peaks. The height

reduction may cause a peak not to be accepted as a solution, or if the peak is

recognised as a solution, then the location will be incorrect.

In order to solve the inaccuracy problems, Beasley et al [8] suggest to find an ap-

proximate solution using the modified fitness function and then to use a local search

using the raw fitness function. Another pitfall of using SNT with a single solution

optimisation algorithm is that the optimisation algorithm needs to be executed at

least q times to find q unique optima, which increases the computational complexity.

3.3 Parallel Niching Techniques

Unlike sequential niching techniques, parallel niching techniques attempt to find mul-

tiple solutions in a single execution of the optimisation algorithm. This is achieved

by maintaining sub-populations of high diversity to prevent genetic drift. The fol-
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lowing subsections discuss several parallel niching techniques, including parallel sub-

populations, fitness sharing, dynamic niche sharing, crowding, and deterministic

crowding.

3.3.1 Parallel Sub-populations

Parallel sub-population strategies divide the population of individuals into multiple

non-overlapping sub-populations. Each sub-population is evolved independently and

in parallel with the other populations. Parallel sub-population methods are similar

to the iteration approach, and has no guarantee that all optima will be found.

Furthermore, it is possible that sub-populations may converge on the same optima,

because there is no communication between sub-populations. If communication is

allowed between the sub-populations to facilitate the spreading of good genes during

crossover, the diversity of solutions will be reduced and the whole population will

eventually converge to a single solution [39].

3.3.2 Fitness Sharing

Fitness sharing encourages diverse sub-populations by enforcing that each niche hold

a finite number of individuals. Diversity is achieved by calculating the fitness of each

individual as being inversely proportional to the number of individuals in the same

niche [37]. The shared fitness of individual xi is calculated as:

Fsh(xi) =
F (xi)∑P
j sh(dij)

(3.7)

where i 6= j, P is the number of individuals in the population, and

sh(d) =





1 − (d/σshare)

α if d < σshare

1 otherwise
(3.8)

where Fsh is referred to as the sharing function, dij is the euclidean distance between

individual xi and xj , F is the absolute fitness of the individual (i.e. the fitness

before adjustment), σshare is a threshold for determining if individuals xi and xj
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are optimising the same niche, α is a constant used to regulate the sharing function

(usually set to 1) [64][63]. If dij is less than σshare then the individuals share their

fitness based on how similar they are. The more alike the individuals are, the

lower the fitness value of the individuals. In turn, during the reproduction phase

of the GA, the selection operator selects individuals that are not similar to other

individuals. Thus, promoting diversity in the population.

Fitness sharing is based on the following assumptions:

• prior knowledge of the number of niches must be available, as it is used as a

stopping criterion for the algorithm, and

• each niche occurs a distance of at least 2σshare apart from each other.

These assumptions present certain disadvantages, namely that the number of niches

are generally not known, and depending on the value of σshare, multiple optima may

exist within 2σshare. Furthermore, to calculate the fitness of one individual in the

population, the distance to every other individual has to be calculated. The total

computational cost of calculating the fitness of all individuals in the population is

therefore O(P 2), where P is the population size. To find many optima, a large

population is needed and thus, a high computational cost is incurred [88].

3.3.3 Dynamic Niche Sharing

Dynamic niche sharing was developed to counter the computational cost of fitness

sharing [66]. The algorithm has the same assumptions as fitness sharing.

For GAs using dynamic niche sharing, individuals populate niches as the algo-

rithm iterates [66]. Dynamic niche sharing attempts to identify q niches as they

are populated. Individuals in the population are defined as belonging to a dynamic

niche (i.e. individuals within σshare of a dynamic niche) or non-niche category. The

fitness of individuals that belong to the non-niche category are calculated using the

fitness sharing function, defined in equation (3.7), whereas the fitness of individuals

that belong to a dynamic niche are calculated by first determining fitness using the

absolute (or raw) fitness function, and then dividing the value by the number of

individuals in the niche.
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Dynamic niche sharing is more efficient than standard sharing techniques. How-

ever, the same assumptions as fitness sharing are made, and therefore the algorithm

suffers from the same disadvantages caused by these assumptions.

3.3.4 Crowding

Crowding [48] is based on replacing individuals in the population with similar indi-

viduals. That is, members of a niche compete with each other for the same resource.

As more individuals join the niche, weaker members of that niche will be crowded

and replaced by stronger members [62]. Any GA which replaces individuals to

maintain a stable sub-population can be called a crowding method.

Crowding, as originally proposed by De Jong [48], replaces a fixed percentage of

the population in each generation using a reproduction operator. A random sample

of individuals are selected from the current population for the reproduction phase.

A newly generated individual replaces an individual in the sample that is the closest

to it in terms of Hamming distance. This replacement strategy reduces changes in

the population distribution from one generation to the next, which increases the

diversity of the population.

Studies have shown that the crowding method is a poor niching algorithm [61]

because of large replacement errors. Replacement errors are defined as the replace-

ment of an individual in a niche by another individual in another niche. Measures

other than the Hamming distance, such as phenotypic distance [36] have shown to

reduce replacement errors.

3.3.5 Deterministic Crowding

To eliminate replacement errors of the basic crowding algorithm, Mahfoud proposed

deterministic crowding [61]. Mahfoud demonstrated that there is a high probability

that individuals most similar to an offspring, are the offspring’s parents. Mahfoud

therefore suggests that the replacement scheme in crowding change to replacing one

of the offspring’s parents. This replacement strategy has a better maintenance of

population diversity, as the replacement strategy finds (on average) better similarity
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matches.

Deterministic crowding randomly pairs individuals in each generation, to yield

P/2 pairs, where P is the size of the population. Each selected pair undergoes

crossover, and other genetic operators (such as mutation) that are applicable during

this phase, to produce two children. The two children then compete against their

parents for inclusion in the population [62]. The parent-child tournament forces

competition between the closest parent and child (based on phenotypic distance).

That is, the only possible selection for parent-child competition can be: parent 1

against child 1 and parent 2 against child 2, or parent 1 against child 2 and parent

2 against child 1. The DC algorithm is summarised in figure 3.4, where d(·) is the

phenotypic distance function.

3.4 Conclusion

This chapter provided an overview of popular GA niching approaches. Problems

with these methods have been discussed. These problems include prior knowledge

of the number of solutions (which is generally not available), and computational

complexity caused by large population sizes of the GA, which is usually required

for niching approaches. The next chapter discusses niching techniques for particle

swarm optimisation.
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Let generation g = 0

Repeat

For i = 1 to P/2 do

1. Select 2 parents, x1 and x2, randomly from the population Cg

2. Cross x1 and x2 yielding offspring o1 and o2.

3. Apply mutation operators to o1 and o2, yielding o′
1 and o′

2

4. If [d(x1, o
′
1) + d(x2, o

′
2)] ≤ [d(x1, o

′
2) + d(x2, o

′
1)]

a. If f(o′
1) > f(x1) replace x1 with o′

1

b. If f(o′
2) > f(x2) replace x2 with o′

2

else

a. If f(o′
2) > f(x1) replace x1 with o′

2

b. If f(o′
1) > f(x2) replace x2 with o′

1

g = g + 1

Until g > maximum number generations

Figure 3.4: Deterministic crowding algorithm

 
 
 



Chapter 4

PSO Niching Techniques

This chapter provides a summary of PSO niching methods. Section 4.2 reasons

about the ability of the standard PSO to locate multiple solutions. Methods that

use or have modified the standard PSO algorithm to find multiple solutions are also

discussed. These include objective function stretching, vector-based PSO, parallel

vector-based PSO, species-based PSO, nbest, and NichePSO.

4.1 Introduction

Particle swarm optimisation (PSO) has shown to be successful in finding good solu-

tions to optimisation problems [71]. However, the standard PSO cannot be directly

applied to niching problems, as discussed in section 4.2, and needs to be modified to

support multiple solutions. Techniques that have modified the standard PSO can be

categorised into sequential and parallel methods. Objective function stretching and

vector-based PSO are two sequential methods discussed in this chapter in section

4.3.1 and 4.3.3 respectively. The nbest PSO, NichePSO, parallel vector-based PSO,

and species-based PSO are parallel methods discussed in sections 4.4.1, 4.4.2, 4.4.3,

4.4.4 respectively.

47
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4.2 Niching Ability of lbest and gbest PSO

A recent study into the niching capabilities of PSO has shown that the gbest and

lbest PSO are not suitable niching algorithms [26]. Based on formal proofs from

[94][18][27] it is emphasised that each particle of a gbest PSO will converge on a

stable point which is the weighted average of the particle’s personal best and global

best positions, defined as

c1yi + c2ŷ

c1 + c2
(4.1)

where yi is the particle’s personal best fitness, ŷ is the particle’s global best fitness,

c1 and c2 are positive acceleration constants. Based on this finding it is impossible for

the gbest PSO to locate more than one solution in a single run of the algorithm. This

proof does not, however, directly apply to the lbest PSO. While it is the case that

each particle in a neighbourhood will converge to a weighted average of the particle’s

personal best position and the neighbourhood best, there is no formal proof that

all particles will converge on one stable point. Due to overlapping neighbourhoods,

most empirical studies show that particles move towards the same point. However,

Engelbrecht et al [26] show empirically that multiple solutions can be found by

the lbest PSO, although only a small number of solutions have been located for the

tested functions, and only when large swarm sizes were used. It should also be noted

that the searches were terminated after a certain number of function evaluations has

been exceeded, at which point the swarm has not necessarily reached an equilibrium

state, and neighbourhoods may not have converged.

The gbest topology uses the social information of the entire swarm to update the

position of the particles and implicitly assumes that there will be a single optimum

solution. An iteration-based approach using gbest PSO was also reasoned to be in-

appropriate as there is no guarantee that different global best solutions will be found

for each execution of the algorithm [27][26]. In fact there is not even a guarantee

that the point to which the particles converge is a local or global optimum (formal

proofs can be found in [94]).

The cognition-only model may be used to search for multiple solutions due to
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its exploration abilities, since the cognition-only model is essentially performing

multiple stochastic searches. It is therefore possible that multiple solutions can

be found. However, an extra pre-processing step maybe required to group similar

solutions into niches.

The above discussion suggests that the standard PSO algorithm is not a suitable

niching technique, and needs to be modified to obtain multiple, unique solutions.

The following sections summarise several techniques where the standard PSO has

been modified to find multiple solutions.

4.3 Sequential Methods

This section discusses sequential niching methods using a PSO. These methods

are, objective function stretching in section 4.3.1, deflection technique in section

sec:DeflectionTechnique, and vector-based PSO in section 4.3.3.

4.3.1 Objective Function Stretching

Objective function stretching, developed by Parsopoulos et al [70][73], reduces the

number of iterations required to locate a global minimum using the PSO. The ap-

proach is similar to SNT as it modifies the search space so that the PSO does

not return to a previously discovered local minimum. When a local minimum has

been discovered, local minima situated above it are eliminated without affecting the

minima below it. The original function, f(x), undergoes a two-stage transforma-

tion, applied after a local-minimum, p, of function f has been located. The two

transformation functions are:

G(x) = f(x) + γ1
‖x − p‖ · (sign(f(x) − f(p)) + 1)

2
(4.2)

H(x) = G(x) + γ2
sign(f(x) − f(p)) + 1

2tanh(µ(G(x) − G(p)))
(4.3)

where γ1, γ2 and µ are arbitrarily chosen positive constants, and ‖x − p‖ calculates

the length of the vector, and the sign(·) function is defined as
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sign(x) ≈ logsig(x) =
2

1 + exp(−λ1x)
− 1 ∼= tanh(λ2x) (4.4)

The first transformation given in equation (4.2) removes all local minima that

are above p. The second transformation stretches the neighbourhood of p upwards,

such that higher function values are assigned to the points where local minima are

above p. In both transformations, the vector coordinates of p are not changed.

All other local minima that are located above the minima found by the stretch-

ing technique are removed. This does not make the stretching technique a true

multimodal algorithm as it does not search for all global and local minima [94].

Furthermore, the stretching technique has the problem of introducing false local

minima, similar to SNT (refer to section 3.2.2).

4.3.2 Deflection Technique

The deflection technique [72] is another method that modifies the search space. The

deflection technique is similar to the SNT as it modifies the search space at all

minima discovered. Unlike objective function stretching, the deflection technique is

able to find both the global minimum and local minima. If the minima discovered is

represented as ŷj for j = 1, . . . , q, then the deflection technique defines the modified

fitness function, M(x), as

M(x) = T1(x, ŷ1, λ1)
−1 ∗ T2(x, ŷ2, λ2)

−1 . . . Tq(x, ŷq, λq) ∗ F (x)−1 (4.5)

where F (x) is the original fitness function, λj for j = 1, . . . , q are relaxation param-

eters, and function T is defined as

T (x, ŷj, λj) = tanh(λj ‖x − ŷj‖) (4.6)

The relaxation parameters, λj , adjust the strength of attenuation on the original

fitness function. If the original fitness function is defined as

F (x) = x4 − 12x3 + 47x2 − 60x + 25 (4.7)
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Figure 4.1: The deflection technique applied to the function defined in equation 4.7

at x = 4.601 where (a) λ = 1 and (b) λ = 10.

then λ = 1 introduces large modifications to the search space (refer to figure 4.1(a)),

whereas λ = 10 introduces small modifications to the search space (refer to figure

4.1(b)).

The deflection technique introduces false minima, and shifts the height of minima

near the points of the search space that have been modified, which are similar

problems experienced by the SNT. Furthermore, the deflection technique cannot be

used on a function that has minima equal to zero, as M will also have a value of

zero at these minima, resulting in no modification to the fitness function, therefore

particles cannot be deflected from these minima.
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4.3.3 Vector-Based PSO

The vector-based PSO proposed by Schoeman and Engelbrecht [83][82] was devel-

oped with the main objective to reduce the amount of prior knowledge required of

the problem domain, such as the inter-niche distance. The vector-based PSO demar-

cates each niche such that it would only contain particles which would eventually

converge on the neighbourhood best of that niche. This demarcation is achieved

using the properties of the dot product.

The inner product of two vectors, a = a1i + a2j + a3k and b = b1i + b2j + b3k, is

defined as

a · b = a1b1 + a2b2 + a3b3 (4.8)

If a and b are non-zero vectors, then the angle, θ, between a and b is calculated as

a · b = ‖a‖ ‖b‖ cos(θ) (4.9)

with 0 ≤ θ ≤ π. The following properties of the dot product are used in the

vector-based PSO:

• If θ is in the first quadrant (0 ≤ θ < π/2) then the value of cos(θ) will be

positive.

• If θ is in the second quadrant (π/2 < θ ≤ π) then the value of cos(θ) will be

negative.

The vector-based PSO calculates the dot product between the particle’s personal

best position, yi, and the particle’s neighbourhood best position, ŷi. Then

• if yi · ŷi < 0, then the angle, θ, between the two vectors is in the second quad-

rant, and the particle is moving away from the neighbourhood best position,

or

• if yi · ŷi > 0, then the angle, θ, between the two vectors is in the first quadrant,

and the particle is moving towards the neighbourhood best position.
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This allows for a niche radius to be calculated as the distance from the particle’s

neighbourhood best position to the nearest particle with a negative dot product,

since these two particles are converging on different optima. Particles inside the niche

radius and with positive dot products are marked as belonging to that niche [83],

since they are converging on the same optimum. The particles belonging to a niche

are treated as a subswarm to be optimised. When the subswarm has converged on a

solution, all particles within that subswarm are marked as processed, and maintained

in the niche. Particles maintained in a niche are not allowed to move to another

niche, meaning that the particles are not allowed to belong to another subswarm.

The algorithm is summarised in figure 4.2 [82]. The algorithm terminates when all

particles have been marked as processed, or the number of iterations has exceeded a

maximum limit.

Vector-based PSO is a sequential algorithm as niches are optimised in turn.

Schoeman et al [82] found that because of this sequential nature, and for non-

symmetrical search spaces, more than the required number of niches are initially

identified. This implies that duplicate niches are found which impedes performance.

Schoeman et al [82] proposed the parallel vector-based PSO to eliminate duplicate

niches (refer to section 4.4.3).

4.4 Parallel Methods

This section discusses parallel niching methods using PSO. These methods are, nbest

PSO in section 4.4.1, NichePSO in section 4.4.2, parallel vector-based PSO in section

4.4.3, and species-based PSO in section 4.4.4.

4.4.1 nbest PSO

The first parallel PSO niching approach was developed by Brits et al [14]. The

proposed algorithm, known as nbest PSO, was designed to explicitly solve systems

of unconstrained equations. Brits et al modified the standard fitness function of

a particle such that the particle is rewarded when it moves closer to any possible

solution.
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1. Initialise the swarm by spawning |S| particles. For each particle, find another ran-

dom position nearby and find the position with the best fitness (lowest value of

fitness function). This position is the particle’s personal best, yi. Calculate the

vector vpi, where

vpi(t) = yi(t) − xi(t)

2. Initialize the best position in the neighbourhood, ŷi, to the personal best position

of that neighbourhood, where the neighbourhood is the entire swarm.

3. Calculate the vector vgi where vgi(t) = ŷi(t) − xi(t)

4. Calculate the dot product δ of each particle: δ = vpi · vgi

5. Set the niche radius to the distance between ŷi(t) and the nearest particle with a

negative dot product.

6. For each particle within the niche radius and with a positive dot product, update

the particle’s position using equation (2.18), yi(t), and ŷi(t), and the vectors vpi

and vgi as well as their dot product δ.

7. Update the niche radius.

8. Repeat steps 5 and 7 until stopping criteria are met.

9. Mark all particles that have converged as processed. Maintain particles in the current

niche.

10. Repeat steps 2 to 9 for the remainder of the swarm until all particles have been

marked as processed.

Figure 4.2: Vector-based PSO
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The general formula for a system of m equations is

{gκ(x) = c : κ = 1, ..., m} (4.10)

where m is the number of equations in the system. This system can be rewritten as

{fκ(x) = gκ(x) − c = 0 : κ = 1, ..., m} (4.11)

A solution is found by minimising the set of equations (4.11). The nbest PSO defines

a new fitness function as

f(xi) = min {fκ(xi)} (4.12)

The neighbourhood best of particle i is determined by first defining the topolog-

ical neighbourhood of particle i. The topological neighbourhood is defined as the

closest k particles to particle i, where k is user defined, and the closest particles are

found by calculating the Euclidean distance between particle i and all other particles

in the swarm. For each particle i, a set Bi is defined, which consists of the k closest

particles to particle i at any given time t. The neighbourhood best particle, ŷi, is

then calculated as

ŷi(t) =
1

k

k∑

h=1

Bih (4.13)

where Bih is the current position of the hth particle in the neighbourhood Bi of

particle i at time t [14]. Brits et al have shown that linearly decreasing k over time

produces the most favourable results.

The nbest PSO has shown to be an effective niching technique to solve systems of

unconstrained equations and can be applied to multiple solutions. Brits et al noticed

that nbest PSO cannot maintain local optima when local optima occur relatively

close to each other, as the nbest PSO particle neighbourhoods force the algorithm

to always prefer solutions that have better fitness [14]. The NichePSO discussed in

section 4.4.2 overcomes this problem.
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1. Initialise the main particle swarm.

2. Train the main swarm’s particles using one iteration of the cognition only model.

3. Update the fitness of each particle in the main swarm.

4. For each subswarm:

a. Train the subswarm’s particles using one iteration of the GCPSO algorithm.

b. Update each particle’s fitness.

c. Update the subswarm’s radius.

5. Allow subswarms to absorb any particles from the main swarm that moved into it.

6. Search the main swarm for any particles that meet the converging criterion. If any

is found, create a new subswarm with this particle and its closest neighbour.

7. Repeat from 2 until stopping criteria are met.

Figure 4.3: NichePSO algorithm

4.4.2 NichePSO

The NichePSO extends PSO’s unimodal nature to a multimodal technique by devel-

oping and maintaining multiple subswarms that are grown from the initial swarm,

where each subswarm represents a solution or niche [14] [15]. The NichePSO begins

with a single main swarm, S, which is trained using the cognition-only model (refer

to section 2.4.2). The cognition-only model allows particles to explore the search

space without being influenced by other particles and thereby prevents particles from

prematurely converging to a single solution. Swarm S is then inspected for parti-

cles that meet a converging criterion, which indicates whether particles have located

potential niches. If a particle is found that satisfies the converging criterion, then

that particle and its closest neighbouring particle are removed from swarm S to form

a new subswarm. Subswarms refine and maintain the solution represented by the
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niche. This is achieved through training each subswarm with the GCPSO (refer to

section 2.4.2). The GCPSO is used to enforce convergence through inclusion of the

social component. Subswarms are merged if they overlap or if the distance between

the subswarms’ best particles is less than a predefined threshold value. Particles

from swarm S that have moved into a subswarm are absorbed into that subswarm.

At the end of the search, each subswarm represents a solution or niche. Figure 4.3

gives a brief outline of the NichePSO and more detail of the algorithm is provided

in the following subsections.

Converging Criterion

When the deviation of a particles fitness over a number of iterations is less than the

niche threshold, δ, then the particle and its closest neighbour are removed from the

main swarm to form a new subswarm. Euclidean distance is used to find the closest

neighbour of a particle.

Absorption of Particles and the Merge Threshold

Only particles from the main swarm are absorbed into an already existing subswarm.

A particle from the main swarm becomes part of the subswarm if that particle falls

within the area defined by the radius of the subswarm. The radius of a subswarm is

defined as the distance from the subswarm’s best particle’s position to the particle’s

position that is furthest from the best particle (in the same subswarm). Thus,

calculating the radius involves calculating the distance from the best particle to

every other particle in the subswarm. A main swarm particle is absorbed into a

subswarm due to the following reasons [14]:

1. The inclusion of a particle that traverses the search space of an existing sub-

swarm may expand the diversity of the subswarm, thereby leading to solutions

with better fitness.

2. An individual particle moving towards a solution which is being explored by a

subswarm, will make slower progress than what would have been the case had

the social information been available.
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Subswarms are merged if it appears that they are optimising the same solution.

This is determined by detecting if the subswarms intersect. Two subswarms, s1 and

s2, intersect when

‖ŷ1 − ŷ2‖ < (R1 − R2) (4.14)

where ŷ1 and ŷ2 are the best particles found in subswarm s1 and s2 respectively, and

‖·‖ calculates the length of the vector, and R1 and R2 are the radii of the respective

subswarms.

A subswarm that forms around a potential solution is likely to have a radius that

approximates 0 as the subswarm converges on the solution. If there are more than

one subswarm converging on the same solution with radii approaching 0, then it is

possible that equation (4.14) will fail to detect multiple subswarms optimising the

same solution. To resolve this problem a merge threshold, µ, is used in which case

two subswarms merge when

‖ŷ1 − ŷ2‖ < µ (4.15)

Updating the Particle Positions

When a particle is trained on the cognition-only model, its personal best solution,

current position and the inertia component are used to change its position (refer

to section 2.4.2). Using the cognition-only model for the main swarm results in a

larger area of the search space to be explored and facilitates niche formation. While

using the GCPSO for the subswarms exploits the search space so that optima can

be efficiently and accurately found.

Stopping Criteria

A subswarm is considered to have converged once it has located a solution and

maintained it for a number of iterations. To determine if a subswarm has maintained

a solution for a number of iterations, the change in position of the best particle of a

subswarm can be tracked over a number of iterations and if no noticeable deviation
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is observed then the subswarm may be considered to have converged. The algorithm

terminates when all subswarms have converged or if a maximum number of iterations

has been exceeded.

Pitfalls

There is no restriction on where particles from the main swarm will form subswarms,

nor is there a restriction on the number of particles in a subswarm. This allows

for multiple subswarms to form around the same solution which will eventually be

merged into one large subswarm, leading to a single solution. Particles may also be

prematurely absorbed into a subswarm, which will result in much of the search space

to be left unexplored. Once a subswarm has been formed, it cannot be separated into

smaller subswarms and it will eventually converge to one solution. This arrangement

can lead to the unnecessary traversal of previously explored areas while unexplored

regions may offer alternative solutions. The consequence is an explosion in the

number of particles that are needed to find solutions in higher dimensions or in

large domains with many solutions [16]. Brits et al has empirically estimated that

the relationship between the swarm size and the number of solutions to be [14][16]

|S| = c · qa (4.16)

where c is a user-defined constant, 1 ≤ a ≤ 2 and q is the number of solutions.

The above problem is related to the diversity of the main swarm. If the diversity

of the main swarm is poor, then the number of optima that can be found decreases

and the number of particles required increases. A swarm with a high diversity is

able to explore the search space more effectively and requires fewer particles.

4.4.3 Parallel Vector-Based PSO

The process of identifying niches is similar to the vector-based PSO (discussed in

section 4.3.3), however all particles are updated simultaneously. Subswarms that

converge on the same niche are merged once the distance between the subswarms is

less than a certain threshold, ǫ. This threshold is a problem dependent parameter
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that has been introduced to facilitate the merging of subswarms. The distance

between two subswarms is calculated as the distance between the subswarm’s global

best paticle’s position. Only those particles in the subswarm that are nearer than

ǫ to the global best of the other subswarm will be merged. Schoeman et al [82]

showed that the parallel vector-based approach performs well on a number of one and

two dimensional functions, and has a significant performance improvement over the

vector-based PSO. Furthermore, duplicate niches are reduced because the parallel

vector-based PSO merges subswarms when the subswarms converge on the same

niche.

4.4.4 Species-Based PSO

Species-based PSO [69] forms neighbourhoods determined by the location of species

seeds. A species seed is the best fit individual within a predetermined radius rs. All

particles with a Euclidean distance less than rs to the species seed, belong to the

same species. The Euclidean distance between particles xi and xj is calculated as

d(xi,xj) =

√√√√
n∑

k=1

(xik − xjk)2 (4.17)

where xi = (xi1, xi2, ..., xin) and xj = (xj1, xj2, ..., xjn)

Particles of the same species set the species seed as their neighbourhood best,

which allows particles of the same species to converge on a similar solution. Because

species are located in parallel, multiple optima can be located in parallel.

A set of species seeds, Sseed, is determined by first sorting the particles in de-

scending order of fitness in a list, Lsorted, and initialising Sseed to an empty set. Each

particle in Lsorted is marked as unprocessed. The next step in determining the species

seeds is to get the first unprocessed particle from Lsorted and process the particle.

The particle is processed by determining if there are any particles in Sseed that is

within a Euclidean distance of rs. If a particle is not found, then the particles is

added to Sseed; otherwise the algorithm continues onto the next step. The particle

is marked as processed and the next unprocessed particle is fetched. The process of
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1. Let Lsorted = all particles sorted in decreasing order of fitness.

2. Let Sseed = {}
3. While Lsorted contains unprocessed particles do

a. Get the first unprocessed particle xL in Lsorted

b. Let found = FALSE

c. For each particle xS in Sseed do

c.1 If d(xS,xL) ≤ rs then

c.1.2 found = TRUE

c.1.3 Goto step d.

d. If (not found) then let Sseed = Sseed ∪ {xL}

e. Mark xL as processed.

Figure 4.4: Algorithm for determining species seeds

marking particles as processed is continued until Lsorted does not contain any parti-

cles that are marked as unprocessed. The resulting set, Sseed, contains particles, i,

that are the fittest within a radius rs of particles i. The particles in Sseed (referred

to as the species seeds) form the neighbourhood best of the particles that are within

the radius rs to the species seed. The species-based PSO updates each particle’s

velocity according to equation (2.21) and position according to equation (2.18). The

species-based PSO continues to determine the species seeds, and update the par-

ticles velocities, and positions until a maximum number of iterations is reached.

Figure 4.4 summarises the algorithm for selecting the species seeds, and figure 4.5

summarises the species-based PSO algorithm.

Species seeds are determined at every iteration of the algorithm, which prevents

the formation of duplicate species. Species-based PSO has shown to be effective for

low dimensional problems and has been successfully applied in dynamic environ-

ments [69].
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1. Generate an initial swarm with randomly generated particles.

2. Evaluate all particles in the swarm.

3. Sort all particles in descending order of their fitness values.

4. Determine the species seeds (refer to figure 4.4).

5. Assign each species seed identified as the neighbourhood best to all particles iden-

tified in the same species.

6. Adjust each particle’s velocity according to equation (2.21) and each particle’s po-

sitions according to equation (2.18).

7. If termination criteria is not met, go to step 2.

Figure 4.5: Species-based PSO algorithm

4.5 Conclusion

The standard PSO was shown to be inappropriate for finding multiple solutions.

Several modifications to the standard PSO resulted in the development of PSO

niching algorithms that can be categorised as either sequential or parallel. Objective

function stretching is a sequential algorithm that modifies the search space when

a minimum is found. Objective function stretching removes all other minima that

are of a larger value than the minima found and then continues searching for the

next minimum. Objective function stretching is not a true multimodal algorithm

as it does not find all local optima. Another sequential algorithm discussed is the

vector-based PSO, which dynamically classifies particles as belonging to a niche.

That is, the vector-based PSO does not use a niche radius to determine if particles

belong to the same niche. However, the vector-based PSO does not ensure that

unique solutions are reported.

Parallel methods discussed included parallel vector-based PSO, nbest PSO, species-

based PSO and NichePSO. Parallel vector-based PSO extends the vector-based PSO

to reduce the number of duplicate solutions reported. The nbest PSO is used to solve

systems of unconstrained linear equations, and general multimodal functions. How-

ever, nbest PSO does not maintain local optima when the local optima are situated

relatively close to each other. Species-based PSO defines species seeds at each it-
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eration of the algorithm. A species seed is the best fit particle within a predefined

radius, rs. All particles within a distance of rs to the species seed, are grouped

together to form a neighbourhood with the species seed set as the neighbourhood

best. The neighbourhoods then converge on their respective optima in parallel. The

NichePSO used the concepts of forming subswarms from a larger swarm (the main

swarm), merging subswarms, and absorbing main swarm particles into subswarms.

A subswarm is created when a particle from the main swarm begins to converge on

a solution. The new subswarm consists of the converging particle and its closest

neighbour. The NichePSO does not scale very well as the number of particles ex-

plodes for domains with many solutions. The next chapter presents a variation of

the NichePSO to improve scalability.

 
 
 



Chapter 5

Derating NichePSO

GA niching techniques have shown to be adequate for problems of small dimensions,

but do not scale well for highly multimodal functions or large dimensional problems.

The NichePSO successfully countered the pitfalls of GA niching techniques, though

it too experiences problems in large search spaces and highly multimodal func-

tions. This chapter presents the derating NichePSO which is an attempt to improve

NichePSO scalability by modifying the search space such that previously traversed

parts of the search spaces are not re-explored.

5.1 Introduction

The NichePSO has shown to accurately and efficiently locate multiple solutions in

a multimodal search space [14][15][16] if the search space is not highly multimodal.

That is, if there are many optima to locate then the number of particles required for

the NichePSO increases exponentially [14]. The exponential relationship between

the number of particles and the number of solutions is mainly due to the following

reasons:

• The radius of a subswarm s1 is the distance between the best particle in s1

and another particle in s1 that is furthest from the best particle. If this radius

is large, particles from the main swarm are easily absorbed into s1. This

effectively reduces the possible number of solutions that can be found because

64
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diversity of the main swarm, S, is reduced by having more particles exploit an

already found niche (refer to sections 4.4.2 and 6.4).

• A new subswarm is created when a particle, i1, from the main swarm satisfies

the niching criteria. The new subswarm consists of i1 and the closest particle

to i1 in the main swarm, represented here as i2. The criteria for selecting i2

does not consider the direction in which i2 is moving. That is, i2 could be

moving in the opposite direction of i1 and possibly be converging on another

niche. Furthermore, it is possible that i2 may have a better fitness value than

i1. Because social information is used when optimising the subswarm, the

velocity of i2 will be added in the velocity update of i1. Thus i1 will be pulled

towards i2 and therefore losing the niche that i1 originally identified.

• An inaccurate merge threshold implies that subswarms that satisfy the merg-

ing criteria, but are potentially optimising different niches, will intersect and

subsequently be merged to produce a new subswarm. For example, if sub-

swarm s2 is optimising a solution located at position B and subswarm s1 is

optimising a solution located at position A, and if s1 and s2 are merged to

form a new larger subswarm s3, then it is possible that either the solution at

position A or B is lost, or it might be the case that the newly formed subswarm

s3 will converge to an entirely different solution other than A or B, in which

case both solutions are lost.

• Much of the search area is re-explored as subswarms do not communicate their

knowledge about the search space to other subswarms. Consequently, more

particles are required to explore larger areas of the search space.

The above points can be classified into: absorption of particles from the main

swarm into a subswarm, formation of subswarms, merging of subswarms, and the

exploration ability of the subswarms.

The formation of subswarms problem can be addressed by determining if two

particles are moving in the same direction. However, it can only be concluded that

two particles are converging on the same niche if the search space is guaranteed
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to be unimodal or there exists prior knowledge of the inter-niche distance that can

be used to group particles. If the search space is multimodal, then although two

particles may be moving in the same direction, the particles maybe converging on

different niches, and grouping the two particles in a subswarm will be incorrect.

Subswarms can also be formed by grouping particles that are within a Euclidean

distance of a niche radius from a particle, i, that satisfies the convergence criteria,

which is similar to the species-based PSO [69] (refer to section 4.4.4). Furthermore,

the niche radius from i can be determined by finding the nearest particle from i

with a negative dot product, as done in the vector-based PSO [83] (refer to section

4.3.3). The niche radius found may be too large, which will incorrectly group many

particles into a niche. If the niche radius is defined prior to the search process, then

knowledge of the minimum inter-niche distance must be assumed, which may result

in some niches not being found if the niche radius is incorrectly chosen.

The merging of subswarms problem can be addressed by adjusting the merge

threshold, µ. Brits [14] analysed the sensitivity of the NichePSO to changes in µ. It

was noted that µ should not be greater than the lowest inter-niche distance, which

is similar to the assumptions of the inter-niche distance in fitness sharing [36] and

the niche radius of the SNT [8]. However this requires prior knowledge of the search

space which is not always available.

This thesis does not attempt to solve all problems related to the exponential

increase in the number of particles caused by increases in dimension of the problem

being optimised. Rather, the focus is on reducing the number of times the search

space is re-explored. This problem can be addressed by forcing particles to explore

unvisited regions of the search space. One way of achieving this objective is to

improve diversity between subswarms. Diversity between particles in a swarm has

been investigated by Løvberg et al [58] [57], and Blackwell et al [12][11]. Løvberg

et al presented hybrid models of the PSO and a GA, adapting the particles to

include self organised criticality and extending particles with a radius so that they

can collide with other particles. Blackwell et al introduced an electrostatic energy

to the PSO to repel particles from each other, thereby increasing diversity.
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This chapter proposes a hybrid approach that uses SNT with NichePSO to im-

prove the exploration abilities of the NichePSO algorithm.

SNT communicates information of located optima to individuals in the popu-

lation by modifying the original fitness function (refer to section 3.2.2). Using the

NichePSO as the search algorithm for SNT (instead of a GA) improves the ex-

ploration ability of subswarms, as modifications to the fitness function will allow

subswarms to explore unvisited regions of the search space for potential solutions.

As discussed in section 3.2.2, modifications to the fitness function has the disadvan-

tage of introducing false optima and removing other optima in the search space. A

possible solution to this problem, as suggested by Beasely et al [8], is to perform a

local search using the unmodified fitness function to improve accuracy once a po-

tential solution has been located. The derating NichePSO, proposed in this chapter,

makes use of this suggestion. The search for candidate solutions is performed by

the main swarm using the modified fitness function, while candidate solutions are

refined by subswarms using the original, unmodified fitness function. The details of

the derating NichePSO algorithm are discussed in the following sections.

5.2 The Derating NichePSO Algorithm

The derating NichePSO algorithm (summarised in figure 5.1) has two phases. The

first phase forms subswarms around potential solutions or niches using the modified

fitness function, M . The second phase exploits the search area using the raw fitness

function, F (or unmodified fitness function), to allow subswarms to converge on

true optima and to improve the fitness of the particles. Both phases are discussed

in more detail in this section.

In figure 5.1, Mt is the modified fitness function at execution t of the derating

NichePSO. With SNT, Mt+1 is updated using a single vector ŷt which represents

the location of the best individual in the population at execution t. The modified

fitness of an individual, x, at t + 1 is calculated as,

Mt+1 ≡ Mt(x) ∗ G(x, ŷt) (5.1)
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1. Let t = 0 and Mt ≡ F

2. Initialise the NichePSO.

3. Phase 1: Repeat until the main swarm has no particles or the maximum number

of iterations has been exceeded:

a. Train the main swarm’s particles using one iteration of the cognition-only

model in the modified search space.

b. Update the fitness of each particle in the main swarm.

c. Search the main swarm for any particles that meet the partitioning criteria.

If any is found, create a new subswarm with this particle and its closest

neighbour.

4. Phase 2: Repeat until all subswarms have converged or the maximum number of

iterations has been exceeded:

a. For each subswarm:

i. Train the subswarm’s particles using one iteration of the GCPSO

algorithm in the unmodified fitness function.

ii. Update each particle’s fitness.

iii. Update the subswarm’s radius.

b. Allow subswarms to absorb any particles from the main swarm that moved

into it.

c. Search the main swarm for any particles that meet the partitioning criteria.

If any are found, create a new subswarm with this particle and its closest

neighbour.

5. For each subswarm s, update the modified fitness function Mt+1 using the location

of the best particle in subswarm s.

6. t = t + 1

7. If no convergence goto step 2.

Figure 5.1: Derating NichePSO algorithm
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The NichePSO has the ability to find multiple solutions which are represented

by the best particle of each subswarm. To cater for multiple solutions found by the

NichePSO, the modified fitness of particle x at t + 1 is calculated as,

Mt+1 ≡Mt(x) ∗ G(x, ŷt,1) ∗ G(x, ŷt,2) ∗ ... ∗ G(x, ŷt,k) (5.2)

where k is the number of subswarms, and ŷt,k denotes the best particle from sub-

swarm k at execution t of the derating NichePSO.

To illustrate the first and second phases, consider the raw fitness function land-

scape as shown in figure 5.2(a), and the modified fitness function landscape as shown

in figure 5.2(b). F has two global optima at x = −0.5 and x = 0.5. Figure 5.2(b)

indicates that both optima have been found, with a depression superimposed on F

(to form the modified fitness function M) which prevents particles from the main

swarm re-traversing that area. Note that M now has four false optima.

The first phase searches the landscape defined by M for potential optima. This

search is performed solely by iterating the main swarm, which uses the cognition

only model. The lack of social information in the main swarm prevents particles

from prematurely converging to a single solution. Assume that, during phase 1, a

false optimum at the position indicated by a cross in figure 5.2(b) is discovered by a

particle in the main swarm, and that a subswarm is formed in that area. To prevent

this false optimum to be exploited, the subswarm continues its search in the original

landscape defined by F in phase 2, and not in the modified landscape defined by M .

The newly formed subswarm does not search the landscape defined by M . Rather,

the subswarm searches the landscape defined by F (this is only done in the second

phase). The particles that converged to a false optimum will therefore be refined to

converge to the true optimum as defined by F .

The formation of the subswarms causes the number of particles in the main

swarm to decrease. It thus stands to reason that the first phase is complete when

the main swarm does not contain any more particles. Alternatively a maximum limit

on the number of iterations on the main swarm can be used. The maximum limit is a
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a

b

Figure 5.2: (a) Raw fitness landscape, F . (b) Modified fitness landscape, M .
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safety precaution to prevent lengthy iterations of the main swarm. At the end of the

first phase, a number subswarms will have formed around potential optima based

on the modified landscape. If no subswarms exist, then no new potential optima

have been located. The algorithm terminates if this situation occurs for consecutive

iterations.

The niches or potential optima that have been located in the modified search

space are not accurate and are therefore required to be further refined. In the

second phase, the subswarms refine potential solutions with respect to the original

landscape (defined by F ), using GCPSO. Applying GCPSO with respect to the

original landscape allows subswarms to converge to true optima, and not false optima

formed in the modified space. If there are more than one subswarm converging on

the same optimum, then subswarms are merged (following the NichePSO rules for

merging subswarms). Particles that may exist within the main swarm are absorbed

into the enclosing subswarm (following the NichePSO rules for absorption of particles

into subswarms).

At the end of the second phase, the subswarms have converged on true optima.

The modified fitness function is now updated with depressions at the points of

optima located by the subswarms. A new set of particles are generated for the main

swarm, and the first and second phases are again executed until a stopping criterion

has been satisfied.

Through modifying the search space, the particles in the main swarm are forced

to explore unvisited areas of the search space, and thus preventing the re-exploration

of previously traversed areas. This improves the number of times the search space

is re-explored by the NichePSO.

5.3 Removing Duplicate Solutions

The derating NichePSO takes no precautions to ensure that duplicate solutions are

removed in the algorithm. To remove duplicate solutions, an additional merging

procedure is introduced and a history of subswarms that have converged are stored

for the entire algorithm. The history of converged subswarms are stored in a set X.
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The subswarms in X are continuously merged at each execution of the NichePSO

with the subswarms of the current execution. After the subswarms in X are merged

with the subswarms of the current execution, the search space is modified at ev-

ery solution in X. The derating NichePSO algorithm with duplicates removed is

summarised in figure 5.3.

5.4 Stopping Criteria

The derating NichePSO uses three different stopping criteria:

• Stopping criteria for the first phase: The main swarm continues to search in

the modified landscape until the main swarm does not have any more particles

or until a specified maximum number of iterations has been exceeded.

• Stopping criteria for the second phase: Subswarms continue to search in the

unmodified or original fitness landscape until all subswarms have converged

(refer to section 4.4.2) or the maximum number of iterations has been exceeded.

• Stopping criteria for the derating NichePSO: Searching is continued until all

(or a specified number of) solutions are found, or until a specified maximum

number of executions of the NichePSO has been exceeded.

If the number of solutions is not known, then an alternative stopping criterion

is to track the solutions found, and to terminate the algorithm if no new solution is

found for a number of consecutive iterations. This suggests that there are no more

solutions in the search space to locate.

5.5 Conclusion

This chapter introduced the derating NichePSO. The main objective of the derating

NichePSO is to reduce the number of times the NichePSO re-explores the search

space. By achieving this, the large number of particles required for highly multi-

modal search spaces can be decreased. To improve the exploration ability of the
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1. Let t = 0 and Mt ≡ F

2. Initialise the NichePSO.

3. Phase 1: Repeat until the main swarm has no particles or the maximum number

of iterations has been exceeded:

a. Train the main swarm’s particles using one iteration of the cognition-only

model in the modified search space.

b. Update the fitness of each particle in the main swarm.

c. Search the main swarm for any particles that meet the partitioning criteria.

If any is found, create a new subswarm with this particle and its closest

neighbour.

4. Phase 2: Repeat until all subswarms have converged or the maximum number of

iterations has been exceeded:

a. For each subswarm:

i. Train the subswarm’s particles using one iteration of the GCPSO

algorithm in the unmodified fitness function.

ii. Update each particle’s fitness.

iii. Update the subswarm’s radius.

b. Allow subswarms to absorb any particles from the main swarm that moved

into it.

c. Search the main swarm for any particles that meet the partitioning criteria.

If any are found, create a new subswarm with this particle and its closest

neighbour.

5. Set X = X ∪ {NichePSO subswarms}
6. Merge subswarms in X, according to NichePSO rules.

7. Set Mt+1 ≡ F

8. For each subswarm in X, update the modified fitness function Mt+1 using the

location of the best particle in subswarm s.

9. t = t + 1

10. If no convergence goto step 2.

Figure 5.3: Derating NichePSO algorithm (duplicates removed)
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NichePSO, the NichePSO is combined with the SNT. The combination results in an

algorithm with two phases, referred to as the derating NichePSO.

The derating NichePSO maintains two fitness functions, the modified fitness

function and the unmodified fitness function. During the first phase, the main

swarm searches in the modified landscape and subswarms are formed around poten-

tial solutions or niches. The first phase terminates when the main swarm is depleted

of particles or when a maximum number of iterations has been exceeded. During the

second phase, the subswarms search the unmodified landscape, which allows sub-

swarms to converge on optima. The second phase completes when all subswarms

have converged or when a maximum number of iterations has been exceeded. After

the second phase, a depression is created in the modified landscape at the position

where subswarms have converged on a solution. The depressions introduced into

the modified landscape forces particles in the main swarm to explore other areas of

the search space, thus improving the exploration ability of the NichePSO. To avoid

duplicate solutions, a history of converged subswarms are stored in a set for the

duration of the derating NichePSO algorithm. These subswarms are merged with

the subswarms of the current NichePSO execution. The history set therefore con-

tains subswarms which represent a unique set of solutions obtained by the derating

NichePSO.

The following chapter presents an empirical analysis and comparison of the der-

ating NichePSO, NichePSO, DC and SNT.

 
 
 



Chapter 6

Empirical Analysis

The flapping of a single butterfly’s wing today produces a tiny change in

the state of the atmosphere. Over a period of time, what the

atmosphere actually does diverges from what it would have done. So, in

a month’s time, a tornado that would have devastated the Indonesian

coast doesn’t happen. Or maybe one that wasn’t going to happen, does.

Ian Stewart, Does God Play Dice? The Mathematics of Chaos, pg. 141

[91]

This chapter presents experimental results to illustrate the efficacy of the derat-

ing NichePSO. The derating NichePSO is compared with NichePSO, SNT and DC

on a benchmark of classical multimodal functions. A sensitivity analysis of control

parameters is done, as well as a scalability study.

The chapter is organised as follows: Section 6.1 summarises the experimental

procedure. The performance of the derating NichePSO is evaluated in section 6.2

and compared with other approaches. Section 6.4 provides a scalability study, while

a parameter analysis is summarised in section 6.5. The chapter is concluded in

section 6.6.
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6.1 Evaluation Procedure

The performance of a search algorithm that produces a single solution can be eval-

uated by calculating the average accuracy over a number of simulations, where a

simulation is a single execution of the algorithm until termination. The average

accuracy, Accuracy, can be calculated as

Accuracy =

∑E
e=1 |f ′(xe)|

E
(6.1)

where function f ′ is the derivative of the function f , xe represents the solution for

simulation e and E is the total number of simulations that the algorithm was exe-

cuted. The search algorithm performs well if the value of Accuracy is approximately

0. NichePSO, SNT, DC and derating NichePSO produce multiple solutions for each

simulation and it is possible that the number of solutions found in each simulation

will not be the same. Furthermore, the solutions found by each algorithm may be

different. Such algorithms are referred to as multi-solution or niching algorithms.

The average accuracy of a multi-solution algorithm can be calculated as:

M − Accuracy =

([
k1∑

j=1

|f ′(x1,j)|
]

/k1 +

[
k2∑

j=1

|f ′(x2,j)|
]

/k2 + . . .

+

[
kE∑

j=1

|f ′(xn,j)|
]

/kE

)
/E

=
E∑

e=1

([
ke∑

j=1

|f ′(xe,j)|
]

/ke

)
/E (6.2)

where xe,j is the jth unique solution for simulation e, and ke is the number of unique

solutions found by simulation e. Equation (6.2) is the summation of the average

accuracy for each simulation, for all solutions found for that simulation.

The average number of unique solutions found over E simulations is calculated

as

Solutions =

E∑

e=1

ke/E (6.3)
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Table 6.1: DC parameter values

Parameter Value

Number of Individuals 50

Selection Procedure Tournament Selection

Mutation Rate 0.9 (decreased to 0)

Reproduction Probability 0.5

Number of Offspring created per iteration 10

Stopping Criteria Maximum Iterations = 1000

Table 6.2: SNT parameter values

Parameter Value

Number of Individuals 50

Selection Procedure Tournament Selection

Mutation Rate 0.9 (decreased to 0)

Reproduction Probability 0.5

Number of Offspring created per iteration 10

Niche Radius 0.1

Alpha (α) 0.8

Stopping Criterion for GA Maximum Iterations = 500

Stopping Criterion (sequential executions) Maximum executions = 10
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Table 6.3: NichePSO parameter values

Parameter Value

Number of Particles 500

Merge Threshold 0.01

Niche Threshold 0.00001

Stopping Criterion Maximum Iterations = 1000

c1 and c2 1.2

φ 0.7

Table 6.4: Derating NichePSO parameter values

Parameter Value

Number of Particles 50

Merge Threshold 0.01

Niche Threshold 0.00001

c1 and c2 1.2

φ 0.7

Solution Threshold for Phase 2 0.000001

Stopping Criterion (sequential executions) Maximum executions = 10

Stopping Criteria (for Phase 1) Maximum Iterations = 500 or

Main Swarm has no more particles

Stopping Criteria (for Phase 2) Maximum Iterations = 500 or

subswarm has converged.

Niche Radius 0.1

Alpha (α) 0.8
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The Success% is another measure of performance for niching algorithms, which

indicates the percentage of subswarms or individuals from the entire swarm or pop-

ulation that have converged on solutions over all simulations. For this study a

subswarm or individual with an accuracy between −0.1 < f ′(x) < 0.1 is considered

to have converged. If the Success% is low, then most individuals are still exploring

the search space, and the best solution per subswarm has not necessarily converged

yet.

The parameters used for DC, SNT, NichePSO and derating NichePSO are sum-

marised in tables 6.1 to 6.4 respectively.

Both SNT and derating NichePSO are sequential methods which repeatedly ex-

ecute the search algorithm. Each repetition is known as a run or execution. For

both the SNT and derating NichePSO the corresponding search algorithm (GA for

SNT, and NichePSO for derating NichePSO) is executed 10 times. However, this

means that SNT can only find a maximum of 10 solutions, whereas the derating

NichePSO is not purely restricted to the number of executions (refer to section 6.4

for a discussion on the maximum number of solutions that the derating NichePSO

can find). For each execution of the GA, a maximum of 500 iterations was used as

the stopping criterion for the GA. Similarly, for each execution of the NichePSO, a

maximum of 500 iterations was used during phase 1 (or until there were no particles

in the main swarm) and a further maximum of 500 iterations was used for phase

2 (or until all subswarms have converged). Subswarms converged if the standard

deviation of the best particle’s position in the subswarm was less than the niche

threshold.

Derating NichePSO repeated the NichePSO 10 times with 50 particles for each

execution, which means that a total of 500 particles were used to explore the search

space. For a fair comparison, the NichePSO on its own used 500 particles as well.

The merge threshold for both NichePSO and derating NichePSO was chosen such

that it is less than the smallest distance between optima in all evaluation functions

used. The merge threshold was kept constant at 0.01 for all search spaces to limit

the amount of prior knowledge required. The niche threshold, δ, was arbitrarily

chosen as Brits [14] found that the performance of the NichePSO is insensitive to
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changes to δ. The only penalty paid for using a small δ (less than 0.01) is an added

computational cost, as the particle will take longer to identify a niche since the

particle is now required to maintain its position with very small deviation. Similar

values for the acceleration constants, c1 and c2, and inertia, φ, were used for both

NichePSO and derating NichePSO. The values of c1, c2, and φ were arbitrarily

chosen to satisfy the heuristics, c1 + c2 ≤ 4 and φ ≥ 1
2
(c1 − c2) − 1 discussed in

section 2.4.2.

DC assumes prior knowledge of the height of the peaks to identify solutions. This

assumption was neglected by this study, which resulted in DC producing solutions

that were highly inaccurate as many of the individuals did not converge. To clearly

illustrate the DC solutions it was decided that only 50 individuals would be used.

The number of individuals for SNT was also kept at 50 which is equal to the number

of particles for the derating NichePSO. Tournament selection was used for both SNT

and DC, as it is a popular and efficient selection procedure for GAs. To improve

diversity among individuals early in the search, the mutation rate was set at 0.9 and

exponentially decreased to enable individuals to converge on a solution in the later

stages of the search.

Using equations (6.2) and (6.3) the average accuracy, and average number of

solutions were calculated for 30 simulations per evaluation function. Results re-

ported are averages and standard deviations over the results obtained from these

simulations.

The following two-dimensional functions were used for this study:

• Ackley, with 1 global maximum and many local maxima:

f(x1, x2) = 20 + e − 20 · e−0.2

r
x2
1
+x2

2
2 − e

cos(2πx1)+cos(2πx2)
2 , (6.4)

where −30 ≤ x1, x2 ≤ 30.

• Griewank, with 1 global maximum and many local maxima:
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f(x) =
1

4000

2∑

i=1

x2
i −

2∏

i=1

cos

(
xi√

i

)
+ 1, (6.5)

where −28 ≤ x1, x2 ≤ 28.

• Michalewicz, with 2 global maxima and an infinite number of local maxima:

f(x1, x2) = sin(x1) · sin20

(
x2

1

π

)
+ sin(x2) · sin20

(
2x2

2

π

)
, (6.6)

where 0 ≤ x1, x2 ≤ π.

• Rastrigin, with 1 global maximum and many local maxima:

f(x) = 20 +

2∑

i=1

x2
i − 10 cos(πxi), (6.7)

where −10 ≤ x1, x2 ≤ 10.

• Ursem F1 with 1 global maximum and 1 local maximum:

f(x, y) = sin(2x − 0.5π) + 3 cos(y) + 0.5 · x, (6.8)

where 2.5 ≤ x ≤ 3,−2 ≤ y ≤ 2.

6.2 Results

Figures 6.1 to 6.5 display the search space for each function, as well as the contour

map of each search space. The contour map is a visual aid for the reader to help

identify optima in the search space. For each algorithm, a total of 30 simulations
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Table 6.5: Ackley results

Algorithm Solutions Std Dev M − Accuracy Std Dev Success%

DC 18.540 2.363 2.517 0.034 14.028

SNT 10.000 0.000 3.297 1.960 2.334

NichePSO 94.800 5.130 0.055 0.004 98.699

Derating NichePSO 241.634 2.076 0.052 7.859E-4 94.689

were conducted for each function and the results from each function (for the re-

spective algorithm) were merged together to give a single set of unique solutions.

These sets are plotted in separate graphs, which can be compared to the contour

maps to illustrate how well the algorithms have explored the search space and how

good the located solutions are. It is important to note that these figures display

solutions for all 30 simulations. Two solutions were merged if the Euclidean distance

between them was less than 0.1, which is larger than the merge threshold used in

the NichePSO and derating NichePSO, but smaller than the inter-niche distances

for the evaluation functions used. The merged solution is the average of the two

solutions. The merged solution is compared to other solutions to determine if more

solutions could be merged.

The Ackley function is highly multimodal and for clarity the full search space

(−30 ≤ x1, x2 ≤ 30) is not displayed in figure 6.1. The large search space tested the

exploration capabilities of the algorithms, while the large number of optima tested

the scalability of the algorithms. The optima are distributed in the search space

such that the worst optima are located at the centre, and better optima are located

at the edges of the search space.

Table 6.5 contains the average number of peaks found, the average accuracy and

the Success% for each algorithm (calculated using equation (6.2)).

The following observations can be made:

• DC found optima near the centre of the map, but much of the search space

has not been explored. The accuracy is not as high compared with NichePSO

and derating NichePSO and the low percentage of converged individuals show
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(a) (b)

(c) (d)

(e) (f)

Figure 6.1: (a)Ackley 3D plot (b) Ackley contour map (c) DC results (d) SNT

results (e) NichePSO results (f) derating NichePSO results
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that many of the solutions have not converged within the maximum number

of iterations. DC is unable to maintain niches in the centre of the search space

as most individuals are located near good optima on the corners of the search

space. That is, DC solutions concentrates on the boundaries of the search

space where better solutions exist.

• SNT found the least number of optima and with the worst accuracy from

all other search algorithms in this evaluation. The percentage of successfully

converged individuals is extremely low, which means that individuals mostly

failed to converge. Individuals in SNT are distributed throughout the search

space, showing that SNT is able to diversify the population through modifying

the landscape of the fitness function, at the cost of inaccuracy.

• NichePSO was unable to find most of the optima located at the centre of

the search space because many of the particles have prematurely converged

to better optima at the corners of the search space. That is, particles move

in the direction of better optima or niches that have previously been discov-

ered. This shows that the NichePSO is able to effectively maintain the niches

found, but fails to locate other niches in the search space as particles do not

know where niches have already been found. The NichePSO has found signif-

icantly more solutions and has a better average accuracy than DC and SNT.

The low standard deviation in the average number of solutions implies that

the NichePSO has consistently found the same number of solutions for each

simulation. Furthermore, NichePSO has produced the best overall Success%

and thus many particles have converged on a solutions.

• In the early stages of the derating NichePSO search process, the particles con-

verged to better optima at the edges of the search space. However, with the

ability to modify the fitness function landscape, more of the search space was

explored resulting in the discovery of more niches than the NichePSO. Al-

though the search space was modified, the derating NichePSO has produced

an accuracy measure, and a Success% value that is similar to that of the

NichePSO. However, the derating NichePSO has found significantly more so-
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Table 6.6: Griewank results

Algorithm Solutions Std Dev M − Accuracy Std Dev Success%

DC 23.300 2.525 0.448 0.003 8.154

SNT 10.000 0.000 0.535 0.167 3.667

NichePSO 68.800 3.274 0.463 4.400E-4 6.153

Derating NichePSO 111.767 3.638 0.462 0.003 7.038

lutions.

The Griewank function is highly multimodal (refer to figure 6.2(a)) but to a

lesser degree than the Ackley function. The fitness values of the optima increase

from the centre of the map outward towards the edges, so that the best optima are

found at the edges of the map.

The following observations can be made:

• The DC algorithm has not found many optima, and the average accuracy is

only slightly better than the other algorithms. DC has a marginally higher

percentage of successfully converged individuals than NichePSO, and derating

NichePSO. However, it has not found as many solutions.

• SNT has the worst accuracy, and fails to find optima at the centre of the search

space.

• Figure 6.2(e) appears as though the NichePSO has located all optima in the

search space, however, keep in mind that these figures illustrate all the so-

lutions formed over 30 simulations. Table 6.6 shows that on average the

NichePSO locates only 68.8 optima of the 124 optima that exist.

• The derating NichePSO on the other hand, has located nearly all of the optima

on average. The accuracy is similar to the NichePSO, which demonstrates that

the modifications to the search space has not significantly effected the accuracy

of the solutions.

 
 
 



CHAPTER 6. EMPIRICAL ANALYSIS 86

(a) (b)

(c) (d)

(e) (f)

Figure 6.2: (a) Griewank 3D plot (b) Griewank contour map (c) DC results (d) SNT

results (e) NichePSO results (f) derating NichePSO results
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Table 6.7: Michalewicz results

Algorithm Solutions Std Dev M − Accuracy Std Dev Success%

DC 12.570 1.947 0.015 0.005 92.572

SNT 10.000 0.000 0.923 1.412 36.0

NichePSO 16.034 2.785 0.012 0.013 98.960

Derating NichePSO 72.967 4.874 0.005 0.004 96.710

The Michalewicz function has infinitely many local optima and one global opti-

mum (refer to figure 6.3). This tests if the search algorithms can accurately locate

the global optimum, and as many of the local optima as possible.

The following observations can be made:

• Many of the individuals in the DC algorithm have converged, but some have

stagnated on a plateau in the search space (refer to figure 6.3(c)).

• SNT has the worst accuracy, which maybe due to the modifications of the

fitness function and the lack of optimisation in the unmodified search space

after a solution is found in the modified fitness function landscape.

• SNT, NichePSO and derating NichePSO managed to always find the global

optimum. SNT managed to only locate optima on the vertical ridge, while

the PSO niching approaches found local optima on all ridges. In comparison

to the other algorithms, the solutions found by the derating NichePSO covers

more of the ridges. The derating NichePSO is the most accurate amongst the

algorithms, and has again found the most number of solutions.

• Both NichePSO and derating NichePSO accurately find the global optima.

On average the NichePSO locates far less local optima than the derating

NichePSO.

• For all approaches, except for the SNT, most individuals or particles converged.

The Rastrigin function is another highly multimodal function (refer to figure

6.4(a)) which has the worst local optimum at the centre of the search space (x1 =
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(a) (b)

(c) (d)

(e) (f)

Figure 6.3: (a) Michalewicz 3D plot (b) Michalewicz contour map (c) DC results

(d) SNT results (e) NichePSO results (f) derating NichePSO results
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Table 6.8: Rastrigin results

Algorithm Solutions Std Dev M − Accuracy Std Dev Success%

DC 20.200 2.173 41.120 0.415 9.900

SNT 10.000 0.000 20.345 17.965 9.000

NichePSO 45.100 4.414 0.083 0.235 99.039

Derating NichePSO 132.000 6.140 0.183 0.007 96.135

0, x2 = 0) and the best optima are located near the edges of the search space. The

height of the local optima increases rapidly towards the edges of the map. The

large concentration of optima in a small search space tests the ability of the search

algorithms to explore the search area without a tendency to converge to the edges

of the search space.

The following observations can be made:

• DC has not converged to all of the best solutions at the edges of the search

space (refer to figure 6.4(c)), and the Success% value indicates that most

individuals did not converge in the allowed number of generations. The average

number of solutions found is extremely low compared to the NichePSO and

derating NichePSO.

• SNT has converged to the global optima at the corners of the search space and

has not discovered other local optima.

• NichePSO has done well in terms of accuracy and has found the global optima

at the edges of the map. However, the NichePSO has failed to locate any of the

niches at the centre of the map, which illustrates that the particles converged

to better niches at the edges of the search space even though those niches have

already been discovered.

• The derating NichePSO has proved successful in locating the global optima

and other local optima in all areas of the search space. The accuracy is slightly

worse than the NichePSO but the percentage of successfully converged sub-

swarms is good. In order to improve accuracy, subswarms can be allowed to
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4: (a) Rastrigin 3D plot (b) Rastrigin contour map (c) DC results (d) SNT

results (e) NichePSO results (f) derating NichePSO results
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Table 6.9: Ursem F1 results

Algorithm Solutions Std Dev M − Accuracy Std Dev Success%

DC 20.767 2.117 1.976 0.017 9.791

SNT 10.000 0.000 2.139 0.970 0.380

NichePSO 1.970 0.185 2.262E-8 8.407E-4 100.00

Derating NichePSO 2.500 0.587 0.033 0.007 90.667

search in the unmodified search space for a longer period (refer to section 6.3

for a discussion on improving accuracy with derating NichePSO).

The Ursem F1 function is saddled shaped and has one global optimum and one

local optimum (as can be seen in figure 6.5).

The following can be deduced:

• DC finds 20.767 solutions on average, but the Success% is 9.791% which

implies that many individuals have not converged on any of the two optima.

Figure 6.5 (c) further illustrates that DC does not converge on the optima, as

many individuals are scattered throughout the search space.

• SNT is unable to converge to either the local or global optima. Modifications

to the search space have introduced many false local optima, which have been

incorrectly identified as solutions.

• NichePSO has accurately found, converged and maintained two optima for

most of the simulations.

• The derating NichePSO finds 2.5 solutions on average instead of 2.0 and

the percentage of successfully converged subswarms is less than that of the

NichePSO’s. As a result of nearly 10% of particles that have not converged,

the derating NichePSO has not been able to accurately identify the correct

number of optima. Further iterations in the second phase can help improve

accuracy (refer to section 6.3).

 
 
 



CHAPTER 6. EMPIRICAL ANALYSIS 92

(a) (b)

(c) (d)

(e) (f)

Figure 6.5: (a) Ursem F1 3D plot (b) Ursem F1 contour map (c) DC results (d)

SNT results (e) NichePSO results (f) derating NichePSO results
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6.3 Improving Derating NichePSO Results

For the Ackley, Griewank and Michalewicz evaluation functions, the derating NichePSO

has produced more solutions than any of the other search algorithms with similar

or better accuracy. For the Rastrigin evaluation function, the derating NichePSO

has produced the most number of solutions, but with poor accuracy. For the Ursem

F1 evaluation function, all subswarms of the derating NichePSO have not converged

on optima, and therefore an incorrect number of solutions is reported. To improve

the derating NichePSO’s accuracy, subswarms can be allowed to search for a longer

period in the unmodified search space. Tables 6.10 - 6.12 summarise the results of

increasing the maximum number iterations in phase 2 for the Rastrigin, Michalewicz

and Ursem F1 evaluation functions respectively.

In tables 6.10 and 6.11, the average number of optima found has decreased

slightly as the percentage of successfully converged subswarms increases. The de-

crease in the average number of solutions is a result of more particles converging on

solutions which then merge with other solutions so as to reduce the average number

of solutions found. Furthermore, the average accuracy has improved as the number

of iterations were increased. The Ursem F1 results in table 6.12 show that all sub-

swarms have converged and the number of optima is correctly reported as 2 after

1000 iterations in the second phase. Thus, increasing the number of iterations in

the second phase improves the accuracy of the derating NichePSO.

6.4 Scalability

This section examines the relationship between the size of the main swarm, |S|, and

the number of executions, R, of the NichePSO. The main aim of this section is to

evaluate the performance of the derating NichePSO as |S| and R increase for a fixed

number of solutions, q, and under increasing dimensions respectively.

NichePSO is a multi-solution algorithm, meaning that it is able to find more

than one solution in a single execution of the algorithm. The derating NichePSO

sequentially executes a reinitialised NichePSO for a number of times. For each new

execution of the NichePSO, it is hoped that new solutions are discovered. As every
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Table 6.10: Improved Rastrigin results

Iterations Solutions Std Dev M − Accuracy Std Dev Success%

500 131.167 6.234 0.184 0.021 95.806

1000 131.9 4.106 0.081 0.013 98.534

2000 130.267 4.042 0.063 0.019 99.641

4000 129.934 5.401 0.026 0.009 99.717

Table 6.11: Improved Michalewicz results

Iterations Solutions Std Dev M − Accuracy Std Dev Success%

500 70.600 5.901 0.053 0.009 96.506

1000 69.033 5.798 0.025 0.002 97.923

2000 67.167 4.537 0.011 0.001 99.404

4000 64.667 4.781 0.002 0.001 99.742

Table 6.12: Improved Ursem F1 results

Iterations Solutions Std Dev M − Accuracy Std Dev Success%

500 2.367 0.669 0.012 0.004 97.183

1000 2.000 0.000 0.000 0.000 100.000

2000 2.033 0.185 0.001 6.440E-4 100.000

4000 2.000 0.000 0.000 0.000 100.000
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subswarm needs at least 2 particles, the maximum number of solutions that can

be found by the main swarm per execution is |S| /2. Assuming that there is an

infinite number of solutions and at least a single, unique solution is found in every

execution of the NichePSO, the maximum number of solutions that can be found

by the derating NichePSO is given by

Maximum number of solutions = R × (|S| /2) (6.9)

where R is the maximum number of executions of the NichePSO. From equa-

tion (6.9), three approaches can be used to improve the scalability of the derating

NichePSO:

1. Increase the number of particles in the main swarm.

2. Increase the number of executions of the algorithm.

3. Increase both the number of particles and the number of executions.

To cover a larger area of the search space more particles can be used in the main

swarm. A larger main swarm has the potential to produce more subswarms, which

may increase the number of discovered solutions. An improvement in performance

due to an increase in the number of particles depends on how particles are initialised.

If particles are not well spread across the search space, then the number of particles

has a marginal effect on the number of solutions found, as particles may most likely

converge on a similar optimum to form a subswarm in that location. The creation

of subswarms reduces the size of the main swarm, and thus the potential number of

solutions that can be found decreases if many of the subswarms converge on similar

optima.

Increasing the number of executions has the potential of finding a larger number

of solutions, as each execution of the NichePSO may find a solution. Increasing the

number executions also increases the number of possible modifications to the search

space, which increases the number of false optima in the search space. Additional

false peaks in the search space may result in poor accuracy if subswarms do not
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converge on true optima within the maximum number of iterations in the second

phase of the algorithm.

Increasing both the number particles and the number of executions may further

improve the number of solutions found.

The above three approaches are examined in the following subsections for a fixed

dimension, and under increasing dimension.

6.4.1 Scalability For a Fixed Dimension

This subsection’s objective is to determine an equation or heuristic that can be used

to verify the relationship between |S|, R, and a specific number of optima. The

following functions were used for this objective:

• Rastrigin, equation (6.7), where −30.0 ≤ xi ≤ 30.0, n = 1, and the number of

optima is 60.

• Michalewicz, equation (6.6), where 0 ≤ x1, x2 ≤ π, and the number of optima

is infinite.

• Multimodal Function 1 (MF1)

f(x) =

n∑

i=1

sin6(5πxi), (6.10)

where 0 ≤ xi ≤ 20, n = 1, and the number of optima is 100.

These evaluation functions were chosen as the number of optima can be easily

estimated. The parameter settings for the derating NichePSO are the same as

that provided in table 6.4 except for the main swarm’s number of particles and the

number of executions. All average results are sampled from 30 simulations.

The results are summarised in table 6.13. Table 6.13 presents the evaluation

functions, and references the respective tables (given in appendix A) for the average

number of solutions found, standard deviation of the average number of solutions,

average accuracy, and the standard deviation of the average accuracy. The average
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number of solutions found are plotted on a meshed surface in figures 6.6, 6.7, and

6.8 for the respective evaluation functions.

Inspecting the average number of solutions found for MF1, which are presented

in table A.1, and illustrated in figure 6.6, the following can be observed:

• As R and |S| increase, the value of Solutions increases and plateaus at ap-

proximately the maximum number of solutions in the search space.

• The Solutions is approximately the same as either R or |S| increases.

• The average accuracy in table A.3 for the corresponding Solutions in table

A.1 are 0, or approximately 0, and the percentage of converged subswarms in

table A.5 are 100% or approximately 100%.

Similar observations can be made for the average number of solutions found for

the Rastrigin function which are presented in table A.6, and illustrated in figure

6.7. However, the Michalewicz function has an infinite number of solutions, and

therefore the Solutions found by the derating NichePSO does not reach a plateau,

as illustrated in figure 6.8. Furthermore, the Solutions differ for the respective

evaluation functions across the corresponding values of R and |S|. That is, there

does not seem to be a general relationship between R, |S|, and the number of

solutions that can be found by the derating NichePSO. Rather, the relationship is

dependent on the complexity of the search space and can be approximated by the

equation:

Solutions ≈ q ×
(

e
λ
q
(R×|S|) − e−

λ
q
(R×|S|)

e
λ
q
(R×|S|) + e−

λ
q
(R×|S|)

)

(6.11)

where λ represents a measure of how convoluted the search space is, q is the maxi-

mum number of solutions in the search space, R and |S| are positive integer values.

Equation 6.11 was empirically derived by finding the best curve to fit the results

in tables A.1 and A.6. Figure 6.9 illustrates equation (6.11) for λ = 0.35 and

q = 100, which is an approximation of the number of solutions found by the derat-

ing NichePSO for MF1. Similarly, figure 6.10 illustrates equation (6.11) for λ = 0.1
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Table 6.13: Summary of results for the scalability study in a fixed dimensional

problem space

Function Solutions Std Dev M − Accuracy Std Dev Success%

MF1 Table A.1 Table A.2 Table A.3 Table A.4 Table A.5

Rastrigin Table A.6 Table A.7 Table A.8 Table A.9 Table A.10

Michalewicz Table A.11 Table A.12 Table A.13 Table A.14 Table A.15

Figure 6.6: Average number of solutions for MF1 with increasing R and |S|

and q = 60, which is an approximation of the number of solutions found by the der-

ating NichePSO for the Rastrigin function. The value of λ is used to determine the

number of executions, R, and the size of the main swarm, |S|, required to find the

maximum number of solutions, q, in the search space. For complex search domains,

that is a search space with many optima, the value of λ approaches 0. If λ = 0, then

no solutions can be found and equation (6.11) is a flat plane on Solutions = 0 for

all values of R and |S|. If q = ∞, as with the Michalewicz function, then equation

(6.11) is undefined. Therefore, it is not possible to approximate Solutions when

q = ∞.
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Figure 6.7: Average number of solutions for Rastrigin with increasing R and |S|

Figure 6.8: Average number of solutions for Michalewicz with increasing R and |S|
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Figure 6.9: Approximation of average number of solutions for MF1 with equation

(6.11), where λ = 0.35 and q = 100

Figure 6.10: Approximation of average number of solutions for Rastrigin with equa-

tion (6.11), where λ = 0.1 and q = 60
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Table 6.14: Maximum number of solutions for Rastrigin, Griewank, MF1 and MF3,

in 2, 3 and 4 dimensional space

n Rastrigin Griewank MF1 MF3

1 4 4 4 4

2 16 18 16 16

3 64 82 64 64

4 256 368 256 256

6.4.2 Scalability Under Increasing Dimensions

To analyse the scalability of the derating NichePSO under increasing dimensional

problem spaces the following functions were used:

• Rastrigin, equation (6.7), where −2.0 ≤ xi ≤ 2.0.

• Griewank, equation (6.5), where −10.0 ≤ xi ≤ 10.0.

• Multimodal Function 1 (MF1), equation (6.10), where 0 ≤ xi ≤ 0.8.

• Multimodal Function 3 (MF3)

f(x) =

n∑

i=1

sin6(5πx
3/4
i ), (6.12)

where 0 ≤ xi ≤ 0.8.

The domain of each function was chosen such that in each dimension, all the

functions have the same number of solutions (with the exception of Griewank that

has more solutions than the other functions). The number of solutions for each

function, for the respective dimension, is summarised in the table 6.14.

The parameter settings for the derating NichePSO are the same as that provided

in table 6.4 except for the main swarm’s number of particles, number of executions,

and a maximum of 1000 iterations was used as the stopping criterion in the second

phase in order to provide sufficient time for the refinement of solutions.
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The average number of solutions found for the Rastrigin, Griewank, MF1, and

MF3 functions are illustrated in figures 6.11 to 6.14. Inspecting figures 6.11 to

6.14, it can be observed that the average number of solutions found, Solutions,

is approximately the same whether |S| or R increases. For example, the value of

Solutions for R = 8 and |S| = 4 is nearly equivalent to the value of Solutions for

R = 8 and |S| = 4 for all evaluation functions. It can be further observed, that

Solutions plateaus near the maximum number of solutions that exist in the search

space for dimensions two and three. For the fourth dimensional problem space the

number of solutions that can be found by the derating NichePSO is approximately

150, whereas the number of solutions that exist in the search space is more than

250 (refer to table 6.14). However, the surface plot in figures 6.11 to 6.14 do not

indicate that the derating NichePSO has reached a plateau in the fourth dimension.

Increasing the number of particles, or the number of executions will therefore result

in discovering further solutions.
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(a) (b)

(c)

Figure 6.11: Average number of solutions found for Rastrigin in (a) 1D (b) 2D (c)

3D
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(a) (b)

(c)

Figure 6.12: Average number of solutions found for the Griewank function in (a)

1D (b) 2D (c) 3D
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(a) (b)

(c)

Figure 6.13: Average number of solutions found for MF1 in (a) 1D (b) 2D (c) 3D
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(a) (b)

(c)

Figure 6.14: Average number of solutions found for MF3 in (a) 1D (b) 2D (c) 3D
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The accuracy of the solutions and the percentage of successfully converged sub-

swarms for MF1, MF3 and Rastrigin, as summarised in tables 6.15, 6.16, and 6.17,

indicate that most solutions are consistently and accurately located. However, the

percentage of successfully converged subswarms for the Griewank function is low,

even though the derating NichePSO discovers nearly all the solutions in the two

and three dimensional Griewank function, and a large number of solutions for the

fourth dimensional Griewank problem. Increasing the maximum number of itera-

tions in the second phase of the derating NichePSO may improve the accuracy of

the solutions (as illustrated in section 6.3).

The results in tables B.1 to B.60, and figures 6.11 to 6.14, indicate that equation

(6.11) can be used to approximate the average number of solutions found by the

derating NichePSO (refer to section 6.4.1). A similar scalability test was performed

by Brits [14] on the NichePSO where the relationship between the number of particles

of the main swarm and the number of solutions in the search space was empirically

derived as

|S| = c · qa

where c is a positive constant, q is the number of solutions in the search space, and

1 ≤ a ≤ 2 (refer to equation (4.16)). This means, for the NichePSO to find 100

solutions, that is q = 100, the size of the main swarm is

c · 100 ≤ |SN | ≤ c · 10000

where |SN | is the total number of particles required by the NichePSO. The value c

in equation (4.16) and the value of λ in equation (6.11) represent the complexity of

the search space, where values of λ that approximate 0 represent more convoluted

search spaces. Thus, the number of particles and number of executions required for

the derating NichePSO to find 100 solutions is approximately

20 ≤ R, |S| ≤ 70

where 0.1 ≤ λ ≤ 1.0. The total number of particles used by the derating NichePSO

is, R × |S|. Therefore, the total number of particles required by the derating

NichePSO to find 100 solutions is

400 ≤ |SDN | ≤ 4900
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where R = |S|, and |SDN | represents the total number of particles for the derating

NichePSO. Although the minimum of |SDN | is larger than the minimum |SN |, for

0 < c ≤ 1, the maximum of |SDN | is lower than the maximum |SN |, which shows

that the derating NichePSO improves the scalability of the NichePSO.

6.5 Niche Radius Sensitivity

Beasley et al [8] investigated problems experienced when using an inappropriate

niche radius. With the assumption that maxima are not evenly distributed in the

search space, Beasley et al found that using a small niche radius easily introduces

new peaks. Figure 6.15 (a) illustrates the fitness function landscape that is modified

using equation (3.4) for a small niche radius and various values of α. Figure 6.15 (a)

further illustrates that two false peaks are created due to introducing the modifica-

tions. Figure 6.15 (b) illustrates the fitness function landscape after applying the

derating function (3.4) for various values of α. A large niche radius still introduces

new peaks and has the additional side effect of shifting the position of neighbouring

peaks as well as reducing their height. Beasley et al suggested to increase the num-

ber of executions, which will suppress false peaks that have been introduced and to

perform a local search using the raw fitness function. This section examines how

sensitive the derating NichePSO is to different values of the niche radius. The test

functions used in this study are equations 6.7 (where −2.0 ≤ xi ≤ 2.0), 6.5 (where

−10.0 ≤ xi ≤ 10.0) and 6.12.

The maxima of MF3 (equation 6.12) are not evenly distributed in the search

space, whereas the maxima for the Rastrigin and Griewank functions are evenly

distributed (refer to figure 6.4(b)). Table 6.19 presents the results of executing the

derating NichePSO with the parameters given in table 6.18. The number of particles

was arbitrarily chosen as 16. Figure 6.16(a) plots the values in table 6.19, which

illustrates that the derating NichePSO is not sensitive to the niche radius (with

respect to average accuracy). This suggests that the subswarms are not negatively

influenced by the modifications in the search space, if subswarms improve their solu-

tions by searching in the unmodified fitness landscape. Unfortunately, the accuracy

 
 
 



CHAPTER 6. EMPIRICAL ANALYSIS 110

(a)

(b)

Figure 6.15: Side effects of a (a) Small niche radius (b) Large niche radius, where

alpha represents α
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Table 6.18: Derating NichePSO parameters

Parameter Value

Number of Particles 16

Merge Threshold 0.01

Niche Threshold 0.00001

c1 and c2 1.2

φ 0.7

Solution Threshold for Phase 2 0.000001

Stopping Criterion (sequential executions) Maximum executions = 10

Stopping Criteria (for Phase 1) Maximum Iterations = 500 or

Main Swarm has no more particles

Stopping Criteria (for Phase 2) Maximum Iterations = 5000

or subswarm has converged.

Alpha (α) 0.8

deviates for MF3. To improve accuracy, the number of particles was increased to

32. The results of this test are presented in table 6.20 and plotted in figure 6.16(b).

Figure 6.16(b) illustrates that additional particles have helped to stabilise the accu-

racy for function MF3. Furthermore, a niche radius of 1.0 and 0.7 is clearly too large

for MF3 as the domain of the function is defined in 0 ≤ x1, x2 ≤ 0.8. Ignoring those

results for a niche radius of 1.0 and 0.7, the results for MF3 now appear more sta-

ble. This demonstrates that the derating NichePSO is not as sensitive to a varying

niche radius as the SNT, since the average accuracy does not deviate considerably

(assuming that the niche radius is at least less than the size of the domain).
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(a)

(b)

Figure 6.16: Niche radius sensitivity analysis (a) 16 Particles (b) 32 Particles
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Table 6.19: Niche radius sensitivity analysis (16 Particles), with respect to average

accuracy

Niche Radius Rastrigin Griewank MF 3

0.01 0.006 ± 8.794E-5 0.228 ± 0.037 0.081 ± 0.037

0.25 0.000 ± 2.001E-4 0.230 ± 0.017 0.097 ± 0.017

0.50 0.002 ± 4.938E-4 0.233 ± 0.011 0.087 ± 0.011

0.70 0.004 ± 0.005 0.228 ± 0.016 0.122 ± 0.016

1.00 0.000 ± 7.480E-5 0.230 ± 0.016 0.065 ± 0.016

Table 6.20: Niche radius sensitivity analysis (32 Particles), with respect to average

accuracy

Niche Radius Rastrigin Griewank MF 3

0.01 0.000 ± 0.004 0.232 ± 7.133E-4 0.134 ± 0.023

0.25 0.000 ± 1.625E-4 0.246 ± 0.001 0.114 ± 0.017

0.50 0.000 ± 0.001 0.230 ± 0.001 0.065 ± 0.027

0.70 0.010 ± 0.003 0.241 ± 0.001 0.138 ± 0.009

1.00 0.000 ± 1.058E-4 0.238 ± 0.001 0.125 ± 0.014

6.6 Conclusion

Empirical results and analysis of four multimodal search algorithms, namely DC,

SNT, NichePSO and derating NichePSO, were presented in this chapter. It was

shown that the derating NichePSO is able to accurately locate many solutions in var-

ious search spaces. The maximum number of solutions that the derating NichePSO

can find was shown to be R × (|S| /2), where R is the number of executions and

|S| is the number of particles in the main swarm. The derating NichePSO was

observed to perform well for a fixed dimension and increasing problem dimensions.

The number of solutions that can be found for a given search space was empiri-

cally estimated as given in equation (6.11). Equation (6.11) was compared to the

NichePSO estimate for the number of particles required to find a certain number of
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solutions (refer to equation (4.16)), and it was concluded that the derating NichePSO

improves the scalability of the NichePSO. Further tests empirically analysed the de-

rating NichePSO as the niche radius varied, and it was concluded that the derating

NichePSO is not sensitive to changes in the niche radius.

 
 
 



Chapter 7

Conclusion

The contributions of this study are summarised in this chapter followed by thoughts

on further research.

7.1 Summary

The objective and sub-objectives of this thesis included:

• Developing and evaluating a new PSO niching algorithm that is more scalable

than the NichePSO.

• A literature overview of EC and PSO niching algorithms in order to identify

problems with current techniques.

Chapter 2 presented and discussed what a niche is in terms of a biological sys-

tem and mathematical model. In terms of a mathematical model, a niche is a

solution to a system of equations or an optimum of a function. Functions with a

single optimum are known as unimodal, and functions with multiple optima are

known as multimodal. The chapter discussed methods that are used to find the

optimum of unimodal functions and further elaborated on methods used to to find

optima of multimodal functions. The methods are categorised as numerical methods

and computational intelligence methods. Derivative based numerical search meth-

ods discussed included minimisation using derivatives and gradient descent. These

115
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methods are restricted to the precondition that the function being optimised must

be unimodal and must have a derivative to guarantee that the optimum can be

found. If the function is multimodal, then there is no guarantee that the global

optimum will be found. Non-derivative based search methods discussed included

the golden ratio search and the Nelder-Mead method. The golden ratio search ex-

periences inaccuracy if the function is flat near the optimum, and is not suitable for

high dimensional problems. The Nelder-Mead method is also inaccurate with four

and higher dimensional functions, and is not guaranteed to find the global optimum

in a multimodal search space (as with the golden ratio search).

Two paradigms of computational intelligence methods were discussed in chapter

2: Evolutionary Computation (EC), and Swarm Intelligence (SI). In particular, the

genetic algorithm (GA) was discussed as an example of EC. The genetic algorithm

consists of a population of individuals which represent positions in the search space.

Operators are applied to the population to generate new individuals that represent

a better position in the search space. The operators discussed included crossover,

mutation, and selection. GAs can execute in parallel, which makes them highly

scalable. However, GAs have a trade-off between the size of the population, and

the quality of the results. That is, a larger population produces better results

than a smaller population. Particle swarm optimisation (PSO) and guaranteed

convergence particle swarm optimisation (GCPSO) were discussed as examples of

SI. PSO maintains a swarm of particles representing positions in the search space.

Each particle is associated with a velocity as the step size of that particle. Two

models of PSO were discussed, namely the cognitive-only model, and the social-only

model. With the cognitive-only model particles move in the direction of their own

best position. With the social-only model, particles move in the direction of their

neighbourhood’s best position. The GCPSO model forces the global best particle to

change, which ensures that the swarm does not stagnate [94][95]. The GCPSO has

shown to be efficient and robust in locating single solutions in multi-modal search

spaces.

Chapter 2 further discussed non-Pareto and Pareto approaches to multi-objective

optimisation (MOO). Both niching and MOO have the objective to find multiple
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solutions, however niching traditionally applies to single objective functions.

Chapter 3 presented an overview of GA niching approaches. Several methods

were discussed, including iteration, parallel sub-populations, fitness sharing, dy-

namic niche sharing, crowding, deterministic crowding (DC), and the sequential

niche technique (SNT). In general, the chapter focused on SNT. SNT sequentially

executes the GA (or any other optimisation algorithm) and modifies the search space

at the location of a solution found in every execution. This improves the diversity

of the GA population and prevents genetic drift of the population to converge on a

single solution, but at the cost of inaccuracy due to the modifications in the search

space. Beasley et al [8] suggests that performing a local search can improve the

accuracy of solutions. The SNT finds a single solution on each execution of the GA,

thus the GA needs to be executed at least q times to find q unique optima, which

increases the computational complexity.

Chapter 4 discussed niching using PSO. The niching ability of gbest and lbest

topologies were discussed and it was shown that the topologies are not suitable for

niching. Thus, the PSO has to be modified to support multiple solutions. This led

to the discussion of several PSO niching algorithms, including objective function

stretching, vector-based PSO, parallel vector-based PSO, nbest PSO, species-based

PSO and NichePSO. The main objective of chapter 4 was to examine the NichePSO.

It was shown that NichePSO, although very accurate, does not scale well for highly

multimodal functions. This was attributed to the merging of subswarms to form

larger subswarms, which reduces the potential number of solutions that could have

been discovered. To control this problem, the merge threshold must not be greater

than the lowest inter-niche distance [14]. Even with this prior knowledge, particles

from the main swarm and subswarms retrace the search space unnecessarily. That

is, a particle may locate an already optimised niche.

Chapter 5 introduced the derating NichePSO to improve the exploration abil-

ities of the NichePSO. The method is a combination of SNT and NichePSO. To

accomplish the combination of SNT and NichePSO, the derating NichePSO uses

two fitness functions: the modified fitness function and the raw (or unmodified) fit-

ness function. The modified fitness function is the result of removing solutions from
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the raw fitness function. Derating NichePSO operates in two phases: In phase 1, the

main swarm searches the modified fitness function to find any potential solutions.

In phase 2 the subswarms created in phase 1 refine their solutions in the unmodified

search space, which improves the accuracy of the solutions. The modified fitness

function is then updated by modifying the search space at the locations of the so-

lutions found in phase 2. The search is repeated with a reinitialised NichePSO to

discover other solutions. Removing solutions from the modified search space forces

particles in the main swarm to explore areas of the search space that has not yet

been traversed. When there are no more particles in the main swarm (or when the

maximum number of iterations has been reached), phase 1 terminates, and phase

2 commences. Chapter 5 further discussed how to reduce the number of duplicate

solutions reported by the derating NichePSO, as it is possible that similar solu-

tions can be found on each execution of the NichePSO. To reduce the number of

duplicate solutions, subswarms formed in previous executions are merged with the

current subswarms.

Chapter 6 presented an evaluation of the derating NichePSO, DC, SNT, and

NichePSO. Several commonly used multimodal functions were used as a benchmark.

The results showed that the derating NichePSO found more solutions than any of the

other algorithms with similar or better accuracy than the NichePSO. Furthermore,

it was noted that DC and SNT performed badly for most evaluation functions. It

was further shown that derating NichePSO accuracy can be improved by increasing

the maximum number of iterations in phase 2.

The scalability of the derating NichePSO was examined for a fixed and increasing

problem dimensions. It was found that there are three ways in which to improve

the scalability of the derating NichePSO:

1. Increase the number of particles in the main swarm.

2. Increase the number of executions of the algorithm.

3. Increase both the number of particles and number of executions.
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The results showed that the number of solutions which the derating NichePSO

can find can be estimated by equation (6.11), which is repeated here for convenience

Solutions ≈ q ×
(

e
λ
q
(R×|S|) − e−

λ
q
(R×|S|)

e
λ
q
(R×|S|) + e−

λ
q
(R×|S|)

)

where λ represents a measure of how convoluted the search space is, q is the maxi-

mum number of solutions in the search space, R is the number of executions of the

NichePSO and |S| is the size of the main swarm. Equation (6.11) was compared

to the NichePSO’s estimate of the number of particles required for q number of

solutions, that is

|S| = c · qa

It was concluded that the derating NichePSO improves the scalability of the NichePSO.

The sensitivity of the derating NichePSO was analysed as the niche radius varied,

and it was concluded that the derating NichePSO is not sensitive to changes in the

niche radius.

7.2 Further Research

This section presents a list of potential further research avenues and improvements

of the derating NichePSO:

• There maybe benefits if the niche radius is determined dynamically as most

optima are not evenly distributed. The method of determining the niche radius

in vector-based PSO [83][82] could be used to determine the niche radius for

a specific swarm instead of having a static niche radius. It may be beneficial

to increase the niche radius as more subswarms converge to the same optima,

which is similar to fitness sharing [37] or dynamic niche sharing [66].

• Improving the diversity of the main swarm can improve the exploration abil-

ities of the NichePSO. Methods such as hybrid PSO with breeding and sub-

populations [58] and PSO with self organised criticality [7] may benefit the

main swarm of the NichePSO. These methods, applied to the main swarm,

may improve diversity and facilitate exploration.
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• The diversity of the main swarm may also be improved by considering the

diversity of the main swarm as another objective of the NichePSO, which

means that the NichePSO is optimising two functions: one being the problem

search space, and the other being a function that measures the diversity of the

main swarm.

• The scalability study of the derating NichePSO in this thesis examined the

performance of the algorithm for evaluation functions up to a maximum of

four dimensions. Further analysis in higher dimensions and with a larger

set of problems may find additional pitfalls and advantages of the derating

NichePSO.

• The application of the derating NichePSO to real world problems.

• An elaborate and comprehensive empirical comparison of all PSO niching

methods.

The PSO and SNT were respectively inspired by flocks of birds, and niches

formed by species in the natural environment. Merging the two would produce the

metaphor: various species of birds that flock in their own niche.

 
 
 



Appendix A

Derating NichePSO, Fixed

Dimension

This appendix presents the results of the derating NichePSO for 1D MF1, 1D Ras-

trigin, and 2D Michalewicz. All values are rounded-up to three decimal places.
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Appendix B

Derating NichePSO, Increasing

Dimension

This appendix presents the results of the derating NichePSO for the Griewank, MF1,

MF3, and Rastrigin in 2D, 3D, and 4D problem domains. All values are rounded-up

to three decimal places.
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Appendix C

List of Symbols

This appendix summarises common symbols used throughout this thesis and their

definition.

Table C.1: List of symbols and their definition.

Symbol Definition

e Simulation index.

E Maximum number of simulations.

f A function.

f ′ The derivative of f .

F Original fitness function, or unmodified fitness function.

Fsh Sharing fitness function.

i Particle or individual index.

g Index of the current generation for the genetic algorithm.

m Number of equations in a system of equations.

M Modified fitness function.

n Number of dimensions in a search space.

N Number of objectives in a multi-objective optimisation problem.

p Local minimum of a function.

Continued on next page
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Symbol Definition

pm Mutation rate.

P Population size.

q Number of optima in a search space.

R Number of executions or runs in a sequential niching technique.

s A subswarm.

S The main swarm.

|S| Swarm size.

t Index of the current time.

vi Velocity of particle i.

ŷ Best particle’s position in a swarm, or best individual’s position in the population.

yi Personal best position of particle i.

ŷi Neighbourhood best particle’s position.

ŷj Global best particle’s personal best position.

ŷt,k Best particle’s position in subswarm k at time t.

ŷt or ŷ(t) Global best particle’s position at time t.

x Point in the search space.

xi Position of particle or individual i.

X Set of subswarms created for a single simulation of the derating NichePSO.

κ Index of a equation in a system of equations.

Γ Redundancy factor for iteration based niching techniques.
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