

Aspects of the molecular epidemiology of rabies in Zimbabwe and South Africa

by

Claude Taurai Sabeta

Submitted in partial fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY (MICROBIOLOGY)

IN THE

FACULTY OF NATURAL AND AGRICULTURAL SCIENCES UNIVERSITY OF PRETORIA PRETORIA

July 2002

© University of Pretoria

I certify that the thesis submitted to the University of Pretoria for the degree of PH. D. (Doctor of Philosophy) has not been previously submitted by me in respect of a degree at any other University.

SUMMARY

ASPECTS OF THE MOLECULAR EPIDEMIOLOGY OF RABIES IN ZIMBABWE AND SOUTH AFRICA.

By

CLAUDE TAURAI SABETA

Supervisor: Prof. L.H. Nel

Department of Microbiology and Plant Pathology

University of Pretoria

For the degree of Doctor of Philosophy

Rabies, one of the oldest recognised viral zoonotic diseases, is a fatal encephalomyelitis transmitted to man via contact with infected animals. Even today, rabies still is a disease of public health concern with many potentially preventable deaths occurring mainly in Asia, Africa and Latin America. Rabies and rabies-related viruses are members of the Lyssavirus genus, which comprises the rabies virus (genotype 1), Lagos bat virus (genotype 2), Mokola virus (genotype 3), Duvenhage virus (genotype 4), European bat lyssaviruses 1 and 2 (genotypes 5 and 6) and the Australian bat lyssavirus (genotype 7).

Antigenic and genetic studies have shown that rabies virus strains circulating in particular host species tend to undergo genetic adaptation and evolve into distinct biotypes that differ in antigenicity and pathogenicity. Two biotypes of rabies virus are recognised in southern Africa. The first, called the canid viruses, infect carnivores of the family *Canidae* (dogs, jackals and bat-eared foxes) and the second, the viverrid

viruses, infect carnivores of the family *Herpestidae* (the yellow mongoose *Cynictis penicillata* and the slender mongoose *Galerella sanguinea*).

In an endeavour to better understand the molecular epidemiology of lyssaviruses in Zimbabwe and South Africa, we analysed nucleotide sequences of the glycoprotein and the G-L intergenic region (rabies viruses) and the nucleoprotein gene (Mokola viruses). The main aim of the studies described in this thesis was to characterise lyssaviruses (genotypes 1 and 3) from Zimbabwe and compare them to those present in South Africa. In addition, we wanted to establish the role of the various rabies variants in rabies epizootics in the southern African subcontinent.

It could be shown from this study that all the southern African canid viruses were closely related, with no general distinction between viruses from any of the canid species. Despite the general overall similarity between the canid viruses, certain phylogenetic groupings were apparent and by association with host species, geography and year of isolation, certain groups could be identified as particular epidemiological cycles. A high genetic diversity was evident amongst viverrid rabies viruses, the opposite of our observation for canid viruses. The viverrid virus groups corresponded to geographical pockets that were independent of host species. Mokola viruses from Zimbabwe were shown to be different from those from South Africa and phylogenetic relationships of these viruses were related to their geographical location of origin.

This study has demonstrated the value of multinational surveillance and investigation in understanding the epidemiology of lyssaviruses in southern Africa and elsewhere in Africa. The results presented here will serve as basis for future studies on lyssaviruses in Africa and will contribute to the improved surveillance and control programs of rabies and Mokola viruses in the region.

v

Key words: molecular epidemiology / rabies / Zimbabwe / South Africa / Lyssavirus / Mokola / phylogeny / canid/ viverrid/biotype

ACKNOWLEDGEMENTS

My sincere gratitude to Professor Louis Nel, who introduced me to Molecular Virology and served as my promoter for my PHD studies. Professor Nel was a perfect example for scientific advancement and his enthusiasm, dedication and never failing support inspired me throughout my studies.

My sincere appreciation go to the Directorate of Central Veterinary Institute (CVL) Harare, Dr Ushewokunze-Obatolu, for granting me permission to work with virus isolates from their collection. To Dr Bingham, I say thank you for assistance with virus culture and the fruitful discussions regarding rabies epidemiology in Zimbabwe. His invaluable experience with rabies epidemiology in southern Africa and his contributions made this a more exciting area for study. I would also like to thank Dr Javangwe, from the CVL, for his assistance with typing viverrid virus isolates for these genetic studies. Thanks to my employer, the University of Zimbabwe, for granting me the study leave to conduct this research at the University of Pretoria.

The Agricultural Research Council, the Foundation for Research and Development for research funds and DAAD through the Ansti-Unesco Nairobi office, for their generous financial support. The University of Zimbabwe also contributed towards part of my research and travel costs through the SIDA-SAREC funds.

To my friends who supported me, your friendship is greatly appreciated. In particular, I would like to thank my colleagues from the molecular virology laboratory; Jonathan Keytel, Wanda Markotter and Jeanette Jacobs for encouragement when the odds were low. Thanks to Julian Jaftha, Marinda Oosthuisen and Dr Jacques Theron for their assistance. To Fourie Joubert, many thanks for your

assistance with computer analysis. Finally, I would like to give special thanks to my wife Florence who encouraged me when I needed it most, to my son and daughter, Panashe and Varaidzo, of whom I sacrificed a lot of time without attending to because of the commitments to this work.

•

CONTENTS

PAGE

ACKNOWLEDGEMENTS	vi
SUMMARY	iii
LIST OF ABBREVIATIONS	xi
LIST OF FIGURES	xiv
LIST OF TABLES	xvi

CHAPTER ONE INTRODUCTION AND LITERATURE REVIEW

1.1	General introduction	1
1.2	Rabies: a short history	2
1.3	The Rhabdoviridae family	4
1.4	Vesiculovirus genus	4
1.5	Lyssavirus genus	5
1.6	Rabies virus genome organisation and replication	5
1.6.1	Transcription, translation and replication mechanisms of rabies virus	6
1.6.2	Rabies viral proteins	7
1.6.2.1	The glycoprotein	7
1.6.2.2	The nucleoprotein	10
1.6.2.3	The matrix protein	11
1.6.2.4	The polymerase	11
1.6.2.5	The phosphoprotein	12
1.6.2.6	Intergenic sequences	13
1.7	RNA quasi-species	13
2	Rabies pathogenesis	14
3	Global rabies situation	15
3.1	Europe and Asia	15
3.2	The Americas	16
3.3.	Rabies in Africa	17
3.3.1	Rabies in southern Africa	17
4	Rabies control	22
5	Methods used in the study	26
5.1	Polymerase chain reaction	26
5.2	Nucleic acid sequencing	27
5.3	Phylogenetic methods	28
5.3.1	What is molecular phylogeny?	28
5.3.2	Multiple sequence alignment	29
5.3.3	Distance methods	30
5.3.4	Character based methods	31
5.3.5	Limitations of the tree building methods	33
5.4	Resampling methods: Bootstrapping	34
6	Aims of the study	35

. .____

CHAPTER TWO MOLECULAR EPIDEMIOLOGY OF CANINE RABIES IN ZIMBABWE AND SOUTH AFRICA.

38 41
41
41
46
46
47
. 48
. 48
50
. 52
. 52
52
. 52
64
•

CHAPTER THREE

MOLECULAR EPIDEMIOLOGY OF VIVERRID RABIES IN ZIMBABWE AND SOUTH AFRICA.

3.1	Summary	69
3.2	Introduction	70
3.3	Materials and methods	73
3.3.1	Rabies viruses and virus isolation	73
3.3.2	Primer selection	76
3.3.3	Total RNA extraction, cDNA synthesis and RT-PCR	76
3.3.4	Nucleic acid sequencing and phylogenetic analysis	76
3.3.5	Nucleotide sequence accession numbers	77
3.4	Results	77
3.4.1	Virus isolates, RNA preparation, cDNA synthesis and amplification	77
3.4.2	Nucleotide sequence determination	77
3.5	Phylogenetic analyses	78
3.6	Discussion	90

CHAPTER FOUR

GENOTYPIC ANALYSES OF MOKOLA VIRUSES FROM ZIMBABWE AND SOUTH AFRICA.

4.1	Summary	94
4.2	Introduction	95
4.3	Materials and methods	96
4.3.1	Viruses and virus isolation	96
4.3.2	Primer selection	98
4.3.3	Viral RNA extraction and cDNA synthesis	98
4.3.4	PCR amplification	99

4.3.5 4.3.6	Purification of PCR amplicons and nucleic acid sequencing Phylogenetic analysis	99 99
4.4	Results	100
4.4.1	Mokola virus isolates, virus propagation and monoclonal antibody typing Viral RNA extraction cDNA synthesis and PCR	100 100
4 A 3	Purification of PCR products nucleic acid sequencing and phylogenetic	100
т.т.у	Analysis	100
444	Accession numbers	101
4.5	Discussion	.105
СНАІ	PTER 5	
CON	CLUDING REMARKS	111
REFE	RENCES	115
APPE	NDIX 1 Multiple alignment of nucleotide sequences of southern African of	canid
viruse	S	141
Арреі	ndices: 2a-2e Genetic distances of canid viruses from southern Africa	166
Apper Africa	ndix 3: Multiple alignment of viverid rabies viruses from Zimbabwe and S	South 171
Apper South	ndixes 4a-4d: Genetic distances of viverrid rabies viruses from Zimbabwe Africa	e and 183
Apper Zimba	ndix 5 : Multiple alignment of nucleic acid sequences of Mokola viruses bwe and South Africa	from 186
Apper Zimba	ndix 6: Genetic distances of Mokola virus nucleic acid sequences bwe and South Africa	from 189
COM	MUNICATIONS	190

х

LIST OF ABBREVIATIONS

CVS	Challenge virus standard
ERA	Evelyn-Rokitnicki-Abelseth strain
PV	Pasteur virus
RNP	Ribonucleoprotein
DNA	Deoxyribonucleic acid
cDNA	complementary DNA
RNA	Ribonucleic acid
mRNA	messenger RNA
MW	Molecular weight
SAG-2	SAD-Avirulent-Gift rabies vaccine strain
SAD	Street Alabama Dufferin rabies vaccine strain
V-RG	Vaccinia rabies glycoprotein
VNA	Virus neutralising antibodies
PET	post-exposure treatment
DMI	DNA-mediated immunisation
μl	microlitre
μg	microgram
ng	nanogram
WHO	World Health Organisation
ml	millilitre
mM	millimolar
pmol	picomoles
sp.	species
U	Units of enzyme activity

Rnase	Ribonuclease
dNTP	deoxynucleotide
bp	base pair
kb	kilobases
RT	room temperature/reverse transcription
PCR	polymerase chain reaction
RT-PCR	reverse trancription polymerase chain reaction
CNS	central nervous system
AIDS	Acquired immunodeficiency syndrome
VSV	vesiculostomatitis virus
Mab	monoclonal antibodies
FAT	fluorescent antibody test
ORF	open reading frame
NS	nonstructural
GT	genotype
Phylip	Phylogenetic inference package
PAUP	Phylogenetic inference using parsimony
ML	Maximum likelihood
MP	Maximum parsimony
NJ	Neighbour joining
UPGMA	Unweighted pair group method with arithmetic means
M-MuLV RT	Moloney Murine Leukemia Reverse Transcriptase
EBL	European bat lyssavirus
DNAdist	DNAdistance
eg	for example

--- ---

°C	degrees (Celsius
----	-----------	---------

viz namely

Clustal Cluster analysis

KDa kilodalton

uv ultraviolet

CMI cell-mediated immunity

V-RN Vaccinia recombinant nucleoprotein

GCG Genetics computer group

GDE Genetic data environment

ME Minimum evolution

LIST OF FIGURES

		PAGE
Figure 1	Phylogenetic relationships of lyssaviruses	8
Figure 2	Structure of the rabies virion	9
Figure 3	Map of southern Africa showing the routes of spread of rab southern Africa	oies in 21
Figure 4	Map of southern Africa showing approximate enzootic regination rabies	ons for 39
Figure 5	The rabies virus G-L intergenic region and the flanking dor	nains 48
Figure 6	RT-PCR products of rabies brain-infected material	49
Figure 7	Neighbour joining tree for the canid viruses from Zimbabw and South Africa	e . 56
Figure 8	Kitsch tree of canid viruses from Zimbabwe and South Africa	58
Figure 9a	Map of Zimbabwe and South Africa showing the geographi of viruses in group A	cal location 60
Figure 9b	Map of Zimbabwe and South Africa showing the geographi of viruses in group B	cal location 61
Figure 9c	Map of Zimbabwe and South Africa showing the geographi of viruses in group C	cal location
Figure 9d	Map of southern Africa showing the geographical location of group D	of viruses in 63
Figure 10	A neighbour-joining tree of the viverrid rabies viruses from and South Africa	Zimbabwe 80
Figure 11	A radial tree of the viverrid rabies virus isolates from Zimba South Africa	bwe and 82
Figure 12	A Kitsch tree showing the relationships of the viverrid rabie from Zimbabwe and South Africa	s viruses 84
Figure 13a	Map of Zimbabwe showing the geographical location of viru group 1	uses in 85
Figure 13b	Map of South Africa showing viruses contained in group 2.	86

______ _

Figure 13c	Map of South Africa showing viruses in group 3	87
Figure 13d	Map of South Africa showing viruses in group 4	88
Figure 13e	Map of South Africa showing viruses in group 5	89
Figure 14	Nucleoprotein region of the Mokola virus analysed in the study	98
Figure 15	Neighbour joining tree of Mokola isolates from Zimbabwe and Africa	South 102
Figure 16	Kitsch tree showing phylogenetic relationships of Mokola virus from Zimbabwe and South Africa	ses 103
Figure 17	Map of Zimbabwe and South Africa showing the origin of Mok viruses used in this study.	ola 104

LIST OF TABLES

Page

Table 1	Individual genes of the Pasteur Virus 7
Table 2	List of canid viruses used in this study and accession numbers of their nucleotide sequences
Table 3	Designation, sequence and location of primers used for cDNA synthesis, PCR and sequencing of the G-L intergenic region.
Table 4	List of viverrid viruses used in this study and accession numbers of their corresponding nucleic acid sequences
Table 5	List of Mokola isolates used in this study and accession numbers of their nucleotide sequences