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Department Mathematics and Applied Mathematics

Degree Magister Scientiae

Summary
We consider the finite difference method applied to a class of financial problems.

Specifically, we investigate the properties of the Du Fort and Frankel finite difference

scheme and experiment with adaptations of the scheme to improve on its consistency

properties.
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Glossary

Boundary condition. The finite difference scheme estimates a solution for the differ-

ential equation over a discrete interval of the spatial variable. The solution of

the partial differential equation must be specified for the upper and lower values

of the interval. This specification is known as the (upper and lower) boundary

conditions.

Black and Scholes partial differential equation. A partial differential equation derived

by Black and Scholes [1973] that describes the arbitrage free price of a contin-

gent claim.

Consistency of a finite difference scheme. A finite difference scheme is considered

to be consistent with the partial differential equation if the truncation error tend

to 0 when the temporal and spatial step sized trend to zero.

Convection term. The first derivative of the option price with respect to the spatial

variable(s).

Crank and Nicolson’s finite difference scheme. An unconditionally stable implicit

finite difference scheme that is second order accurate in both the spatial and

temporal dimension. First published by Crank and Nicolson [1947].

Diffusion term. The diffusion term is the second derivative of the price of the contin-

gent claim with respect to the spatial variable(s).

Douglas scheme. An implicit finite difference scheme that utilizes explicit and im-

plicit difference equation in an optimized way in order to achieve fourth order

accuracy in the spatial direction and second order accuracy in the temporal di-

rection.
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xiv

Du Fort and Frankel’s finite difference scheme. An unconditionally stable explicit

finite difference scheme that is second order accurate in both the spatial and tem-

poral dimensions. First published by Du Fort and Frankel [1953]. The scheme is

only conditionally consistent with the partial differential equation.

Explicit finite difference scheme. An explicit finite difference scheme is a finite dif-

ference scheme that has an unknown vector v in the matrix relation

v = Mx,

where M is a known square matrix and x is a known vector.

Finite difference scheme. A finite difference scheme is a numerical method where by

differential equations (or partial differential) equations are solved by estimating

derivatives discretely by making use of first differences.

Finite difference mesh.

Heat equation. A partial differential equation that describes the flow of heat over time

in a linear conductor.

Implicit finite difference scheme. An implicit finite difference scheme is a finite dif-

ference scheme that has an unknown vector v in the matrix relation

Mv = x,

where M is a known square matrix and x is a known vector.

Local truncation error of a finite difference scheme. The local truncation error mea-

sures by how much the approximating difference equation does not satisfy the

original partial differential equation at specified mesh points.

Mesh. See finite difference mesh.

Mesh point. A pair of temporal and spatial variables such that the values for the vari-

ables are integer multiples of time-step sizes and spatial-step sizes plus the min-

imum discretised temporal value and minimum discretised spatial value.

Stability of a finite difference scheme. A finite difference scheme is considered sta-

ble if errors remain bounded.

xiv

 
 
 



Notation

bi Vector containing boundary conditions at time-step i.

ei Vector containing rounding errors at timestep i.

f ij An approximation of function F (τ, Sτ )

f i A vector of values for f at time-step i.

F ij Shorthand for f(qχ+ ik, sχ + jh).

h Length of a discretised spatial interval.

i A reference to the discrete time step.

j A reference to the discrete spatial step.

k Length of a discretised temporal interval.

q Discretised temporal variable.

qχ Initial discretised time.

qψ Terminal discretised time.

r Risk free interest rate.

s Discretised share price.

sχ The discretised share price at the lower spatial boundary.

sψ The discretised share price at the upper spatial boundary.

t A time in the interval [t0, T ].

vij Discrete approximation for V (ζ,Ξζ).

vij Shorthand for v(νχ + iκ, ξχ + jη).

vi Vector of values for v at time-step i.
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xvi

A,B,C,D Also variations such as A, Ȧ etc.

Coefficients for mesh points (i− 1, j + 1), (i− 1, j), (i− 1, j − 1)

and (i− 2, j) respectively. Variation depends on the scheme that is used.

Ft The price of a contingent claim on underlying share price St.

dFt The price process for a contingent claim.

M Number of time steps minus one.

M A square tri-diagonal matrix.

N Number of temporal steps minus one.

St Share price at time t.

dSt Share price process.
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T ij Local truncation error at mesh point (i, j).

V (ζ,Ξζ) The function resulting from transforming the Black and Scholes PDE

to the heat equation. Equivalent to the price of the contingent claim.

Wt A Gaussian distributed random number.

dWt A Wiener process.

α, β, γ General variables usually associated with the diffusion, convection
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βi Vector containing boundary conditions used with the heat equation.

η Spatial strep size for the discretised heat equation.

ζ The transformed temporal variable in the heat equation.
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Chapter 1

Introduction and objectives

1.1 Introductory summary

Finite difference schemes represent an important class of numerical procedures em-

ployed in finance. The method was well studied and its shortcomings were well known

before the advent of its large scale implementation in finance. Many of these schemes

were developed for applications not related to finance. The event that triggered their

appearance in finance was arguably the publications of Black and Scholes [1973] and

Merton [1973]. These works succeeded in describing a class of financial problems,

namely contingent claims as a partial differential equation. The number of analytical

solutions of this equation is small in comparison with the total universe of possible

solutions, and hence methods to solve it numerically were published shortly after the

pioneering works with the publication of papers by Brennan and Schwartz [1978] and

others.

The suite of classical schemes were soon amended by alternative schemes mainly with

the idea of improving the convergence rate. Most of these schemes are implicit and

mainly for the reason that implicit schemes have superior stability characteristics com-

pared to explicit schemes. The use of explicit schemes often manifest in trinomial

and binomial trees, which represent some of the most popular pricing mechanisms in

finance. However, in their classical form, explicit schemes became somewhat stigma-

tized and obscure. They are often brushed aside with arguments related to the fact that

explicit schemes require many more time steps than their implicit counterparts in order

1

 
 
 



1.1 Introductory summary 2

to converge and are therefore less efficient.

Explicit schemes, despite their somewhat temperamental nature, have a number of pos-

itive characteristics which make them deserving of a place amongst front–line pricing

techniques. We discuss a few in this document, but mainly focus on the issue of matrix

inversion (or related techniques) that are required by all implicit schemes. The addi-

tional computational effort associated with matrix inversion or similar techniques that

solve a matrix equation of the form

Mv = x,

is such that explicit schemes – even though they require generally more time steps –

still often outperform their implicit counterparts. We thus adopt computing effort rather

than number of grid points as a measure of efficiency.

The Du Fort and Frankel scheme is the main subject of our research. It is exotic in

the sense that it possess a shortcoming that is rare and often neglected in general dis-

cussion on the finite difference method. The shortcoming under discussion is the fact

that the Du Fort and Frankel scheme is only conditionally consistent with the partial

differential equation. Precious little recourse in relation to inconsistency is offered in

literature. We resort to experimentation in order to find techniques that offer relief.

This document is structured in two parts. Part I entails a theoretical background study

leading to the Du Fort and Frankel scheme. The chapter outline of Part I is discussed

in the introduction to Part I. The next part afford a closer study of features of finance

problems that are problematic to solve numerically. We customize the Du Fort and

Frankel scheme in order to successfully cope with these difficulties. A chapter outline

of Part II is discussed in the introduction to Part II.

Our method of research is twofold. We firstly study available literature. A list of the

works that are cited throughout the document is attached to this document as a bibliog-

raphy. Often these sources describe problems that are related but not entirely similar to

the ones we study. For this reason our second method of research is experimentation.

We mainly used Matlab to test our ideas, and as such a number of procedures’ source

codes are listed in the appendix to this document.

Many of our findings mimic that of other authors derived for nuanced problems. How-

ever, a number of findings are unique or have unique properties which we were unable

to find in literature. These include
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1.2 Objectives of the research 3

• the use of Richardson’s extrapolation in order to improve consistency properties

of the Du Fort and Frankel scheme,

• interpolation of two temporal vectors in order to accurately price contingent

claims on underlying securities with dividends by using a two time-step finite

difference scheme such as the Du Fort and Frankel scheme, and

• a grid refinement technique that interpolates grid points which are applicable to

two step finite difference methods.

This study is not exhaustive, but provides a general insight into the use of the Du Fort

and Frankel scheme and its applicability to problems pertaining to finance.

1.2 Objectives of the research

The general theme of this research is to establish whether the Du Fort and Frankel fi-

nite difference scheme offers functionality in addition to some of the more established

methods pertaining to the pricing of contingent claims. This functionality may manifest

in various areas such as computational efficiency, algorithmic simplicity or accuracy.

We provide a gradual and general introduction to the theory finite difference schemes,

applied to problems in finance. With this theoretical foundation we analyse the classical

finite difference schemes in order to define the properties of truncation error, consis-

tency and stability. These properties form a benchmark with which the Du Fort and

Frankel scheme is measured and scrutinized.

With the Du Fort and Frankel scheme defined and its general properties established, we

apply it to specific problems in finance. These problems are chosen on the basis that

they offer certain challenges to the classical numerical techniques. In each instance the

robustness of the Du Fort and Frankel scheme is tested. We conclude with a summary

of the strengths and weaknesses of the Du Fort and Frankel scheme.
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Introduction to Part I

Part I deals with theoretical aspects of the finite difference method. We derive the Black

and Scholes partial differential equation [Black and Scholes, 1973; Merton, 1973] and

present it in two forms, namely the initial value Black and Scholes equation and the

heat equation. Although we do some work on the heat equation, our effort focuses pri-

marily on the Black and Scholes equation. Theory on the heat equation is abundant and

most writers first do the transformation. Transforming the Black and Scholes equation

into the heat equation has several advantages. Although the two equations are analyti-

cally equivalent, numerically there are differences [Seydel, 2004], the most important

is that the heat equation lacks convection. By first transforming one therefore evades

problems associated with convection dominance. Furthermore, the heat equation pro-

vides a simplified means to study the characteristics of finite difference schemes.

Part I is structured in the following way:

• In Chapter 2 we derive the Black and Scholes partial differential equation.

• In Chapter 3 we define a framework for finite differences. The classical schemes

namely the fully explicit, the fully implicit and the Crank and Nicolson [Crank

and Nicolson, 1947] schemes are discussed.

• Chapter 4 derives and discusses some of the characteristics of finite difference

schemes that may serve as a framework to compare schemes. These character-

istics are truncation error, consistency with the partial differential equation and

stability.

• The main scheme under discussion for this document, the Du Fort and Frankel

[Du Fort and Frankel, 1953] scheme is introduced in Chapter 5. This is done

by highlighting two other schemes that share some of the central ideas of the

Du Fort and Frankel scheme, namely second order convergence on the temporal

axis and stability. The main consequence of the Du Fort and Frankel scheme,

namely inconsistency with the partial differential equation is briefly discussed

and compared the the modified alternating directional scheme. The Du Fort and

Frankel scheme is well documented for the heat equation but little analysis is

available on the Black and Scholes equation. We consequently focus our efforts
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on the Black and Scholes equation. The non symmetric nature of schemes with

convection terms makes analysis more cumbersome, and here also we can only

afford to provide an outline for proving stability.

• Chapter 6 is devoted to two topics which frequently recurs in literature which

may impact on the usability of the Du Fort and Frankel scheme. Our intention is

to solve the Black and Scholes partial differential equation as opposed to the heat

equation. The principle disadvantage of this preference is that convection dom-

inance problems may occur. Certain causes of convection dominance problems

are documented and we investigate two of the alleged causes namely averaging

in the discretisation of the temporal derivative and central convection differenc-

ing. The second part of the chapter deals with the inconsistency of the Du Fort

and Frankel scheme, and two techniques are considered to reduce the effect of

the inconsistent behavior. These are firstly increasing the number of temporal

steps and secondly canceling “inconsistent” error terms by Richardson’s extrap-

olation.

Finite difference theory extends far beyond the boundaries of our discussion. We wish

to point out that recent literature describe numerous enhancements on the conventional

schemes discussed in this document. Unfortunately the ideas central to these do not fit

the ideas of the main topic of this document namely achieving good and general ap-

proximations with an explicit scheme. The explicit property of the Du Fort and Frankel

scheme makes it desirable for a number of reasons, which will be motivated throughout

this document. Some of the alternative ideas or schemes are briefly discussed.

Chawla et al. [2003] makes use of the trapezoidal rule in order to discretise the tempo-

ral derivative. The resulting scheme, GTF(α), achieves third order temporal accuracy

for linear equations such as the Black and Scholes equation, thereby improving on the

Crank and Nicolson scheme. A further enhancement by Chawla and Evans [2005]

makes use of a Noumerov discretisation [Noumerov, 1924] in the spatial direction and

Simpson type time integration in the temporal direction. The scheme is fourth order

accurate in both time and space. The scheme requires transformation into the heat

equation (in order to conduct the Noumerov discretisation) and presents pentagonal

system of equations (as opposed to the trigonal system of the conventional systems)

which requires substantially more resources to compute. The more dimensional case is

uncertain. Further work on high order systems was conducted by Linde et al. [2006] in
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which 6th order space discretisation is obtained by making use of seven points in the

spatial direction. In this case a second dimension will require 49 points and so forth.

It is noted that estimations around the boundary are necessarily of lower order, which

may result in the general scheme being less than 6th order especially when non-linear

behavior occurs near the boundary. The crux of the high-order system however man-

ifests in the overlay of two grids in order to obtain super fine spatial steps around the

discontinuities surrounding for instance the strike price of an option. We will investi-

gate similar procedures in part II
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Chapter 2

The Black and Scholes partial

differential equation

2.1 Introduction

In this chapter we derive the Black and Scholes partial differential equation (“BS–

PDE”). The subsequent chapters solve two modified versions of the Black and Scholes

partial differential equation. The first modification is to convert the terminal value

problem of the BS–PDE to an initial value problem. The second modification entails

the transformation of the BS–PDE to a simpler diffusion partial differential equation.

2.2 The derivation of the Black and Scholes partial dif-

ferential equation

We assume an arbitrage free market that trades continuously and that is sufficiently

liquid [Björk, 2004].

Consider the dynamics of the value of a portfolio Π(t) over time. The portfolio con-

sists of a basket of liquid shares and a single contingent claim on those shares. The

number of shares is denoted by ∆(t) = (∆1(t),∆2(t), . . . ,∆N (t)) and their prices by

S(t) = (S1(t), S2(t), . . . , SN (t)). The contingent claim is denoted by F (t, S(t)). We

often parameterise the time dependence of the share prices, i.e. St ≡ S(t). The value
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2.2 The derivation of the Black and Scholes partial differential equation 9

of the portfolio will be considered over the ordered time interval t ∈ [t0, T ] where t0

denotes the valuation date of the contingent claim and T denotes the maturity date.

We assume the share prices follow geometric Brownian motion,

dSt = µStdt+ σStdW (t), (2.1)

where

µ = (µ1, µ2, . . . , µN ) = the drift coefficients of the share prices,

σ = (σ1, σ2, . . . , σN ) = the volatility coefficients of the share prices, and

dW (t) = (dW1(t), dW2(t), . . . , dWN (t)) = Wiener processes.

The share price returns may be correlated thus we qualify the various Wiener pro-

cesses by

dWidWj = ρdt, i = 1, 2, . . . , N, j = 1, 2, . . . , N , (2.2)

where ρ denotes the correlation coefficient between the i’th and j’th Wiener processes.

Since St is stochastic, we make use of Itô’s lemma in order to derive the process for

the contingent claim,

dF (t, St) =
(
∂F (t, St)

∂t
+

1
2
σ2S2

t

∂2F (t, St)
∂S2

t

)
dt+

∂F (t, St)
∂St

dSt.

The value of the portfolio at time t is given by

Π(t) = F (t, St) + ∆(t)St,

where ∆(t)St denotes the vector inner products, i.e.

∆(t)St =
N∑
i=1

∆i(t)Si(t).

The dynamics of the portfolio are given by [Björk, 2004]

dΠ(t) = dF (t, St) + ∆(t)dSt

=
(
∂F (t, St)

∂t
+

1
2
σ2S2

t

∂2F (t, St)
∂S2

t

)
dt+

(
∂F (t, St)
∂St

+ ∆(t)
)
dSt.

By choosing

∆(t) = ∆t = −∂F (t, St)
∂St

,

9

 
 
 



2.2 The derivation of the Black and Scholes partial differential equation 10

we obtain an instantaneously risk free portfolio

dΠ(t) =
(
∂F (t, St)

∂t
+

1
2
σ2S2

t

∂2F (t, St)
∂S2

t

)
dt,

which earns the risk free rate of interest since it is of the form dx = ydt [Björk, 2004].

We thus have

rΠ(t)dt =
(
∂F (t, St)

∂t
+

1
2
σ2S2

t

∂2F (t, St)
∂S2

t

)
dt

∴ rF (t, St)− rSt
∂F (t, St)
∂St

=
∂F (t, St)

∂t
+

1
2
σ2S2

t

∂2F (t, St)
∂S2

t

∴
∂F (t, St)

∂t
+

1
2
σ2S2

t

∂2F (t, St)
∂S2

t

+ rSt
∂F (t, St)
∂St

− rF (t, St) = 0. (2.3)

Equation (2.3) is subject to the terminal boundary condition

F (T, ST ) = Φ(ST ),

where Φ(ST ) is the payoff function of the continent claim.

Certain minor variations of the Black and Scholes partial differential equation exist.

Hull [2003] derives two variations namely an equation for a claim on a stock that pays a

known continuous dividend yield, and an equation for a contingent claim depending on

a futures price, or more generally any contingent claim that is continuously margined

[Wilmott, 2001]. Hence we adopt a more general version of the Black and Scholes

partial differential equation,

F ′t + α(t, St)F ′′S + β(t, St)F ′S + γ(t, St)Ft + δ(t, St) = 0

F (T, ST ) = Φ(ST ), (2.4)

where

F ′t =
∂F (t, St)

∂t
,

F ′′S =
∂2F (t, St)

∂St
,

F ′S =
∂F (t, St)
∂St

, and

Ft ≡ F (t, St),

and α(t, St), β(t, St), γ(t, St) and δ(t, St) are general functions.

10

 
 
 



2.3 Modifications of the Black and Scholes partial differential equation 11

2.3 Modifications of the Black and Scholes partial dif-

ferential equation

2.3.1 Transformation to an initial value problem

Our first modification of the Black–Scholes partial differential equation is to make the

transformation to an initial value problem. We do this by adopting the variable

τ = T − t.

Transforming the Black–Scholes partial differential equation to an initial value problem

changes equation (2.3) to

−F ′τ + α(τ, Sτ )F ′′S + β(τ, Sτ )F ′S + γ(τ, Sτ )Fτ + δ(τ, Sτ ) = 0, (2.5)

with initial boundary condition

F (T, ST ) = Φ(ST ),

where Φ(ST ) is the payoff function of the contingent claim.

2.3.2 Transformation to the heat equation

The convection and diffusion partial differential equation is transformed to a diffusion

only heat equation. The reason for the transform is twofold. Firstly the heat equation

presents a simpler equation to solve and analyse, and secondly, convection dominant

partial differential equations are known to be problematic under certain conditions [see

for instance Duffy, 2006b; Seydel, 2004].

We define a new function V (ζ,Ξζ) such that

F (t, St) = eaΞζ+bζV (ζ,Ξζ),

where

a = −1
2

(
2r
σ2
− 1
)

, b = −1
4

(
2r
σ2

+ 1
)2

, S = eΞζ , and t− T − 2ζ
σ2

,

then V (ζ,Ξζ) satisfies the basic heat equation [Wilmott, 2000a]

∂V (ζ,Ξζ)
∂ζ

=
∂2V (ζ,Ξζ)

∂Ξ2
ζ

V (T,ΞT ) = Ψ(T,ΞT ). (2.6)
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2.4 Conclusion 12

2.4 Conclusion

We derived the Black and Scholes partial differential equation by assuming a portfolio

that consists of a contingent claim and its underlying instruments. The resulting partial

differential equation is generalized and transformed into an initial value problem and

the heat equation.

12

 
 
 



Chapter 3

A finite differences framework

3.1 Introduction

In this chapter we set out the basic framework for our analysis. We firstly define the

discrete environment in which we will conduct testing. Subsequently we proceed to

derive difference equations in order to estimate the heat equation (equation 2.6) and

the initial value Black and Scholes equation (equation 2.5). In order to simplify our

approach we conduct our analysis in a single spatial dimension, i.e.

S(τ) ≡ S1(τ), and

Ξ(ζ) ≡ Ξ1(ζ).

3.2 The finite difference framework

3.2.1 The initial value Black–Scholes framework

The finite difference grid

We discretise the spatial variable Sτ . Let s ∈ [sχ, sψ] be the discretised share price.

The interval [sχ, sψ] is subdivided into N + 1 intervals. Each interval is of length

h =
sψ − sχ
N

Similarly we subdivide the temporal variable τ . Let q ∈ [qχ = T, qψ = t0] be the

discretised temporal variable. The interval q = [qχ = T, qψ = t0] is subdivided into

13

 
 
 



3.2 The finite difference framework 14

M + 1 intervals. Each interval is of length

k =
qψ − qχ
M

.

subdivisions. We approximate the function F (τ, Sτ ) with a function f(q, s). We adopt

the following notation:

f ij ≡ f(qχ + ik, sχ + jh); i = 0, 1, . . . , N − 1, N ; j = 0, 1, . . . ,M − 1,M .

We refer to i and j as mesh points, and may refer to the (i, j)’th mesh point, meaning

the above.

Boundary conditions

The finite difference method utilizes the known values at the boundaries in order to

estimate the unknown values. The known values that are provided are the initial condi-

tion and the upper and lower boundary conditions. The initial condition is known from

the payoff function from equation (2.5), i.e.

f(qχ, s) = Φ(s).

The upper and lower boundary conditions are found by investigating the properties

of the option. The upper and lower boundary conditions may assume any of three

categories, namely Dirichlet, Neumann an Robin boundary conditions [Duffy, 2006b].

For an upper boundary sψ and lower boundary sχ, these conditions are given by

Dirichlet: f(q, sψ) = ψ0, and

f(q, sχ) = χ0,

Neumann: ∂f(q,sψ)
∂s = ψ0, and

∂f(q,sχ)
∂s = χ0, and

Robin: x0f(q, sψ) + x1
∂f(q,sψ)

∂s = ψ0, and

y0f(q, sχ) + y1
∂f(q,sχ)

∂s = χ0,

|x0|+ |x1| 6= 0; |y0|+ |y1| 6= 0.

The Robin condition is the most general and both the Dirichlet and Neumann condi-

tions are special cases of the Robin condition.

The domain of S ∈ [0,∞) provide us with a convenient lower bound namely sχ = 0.

At this spot price we can determine the function f(q, s) with certainty. The upper

14

 
 
 



3.2 The finite difference framework 15

bound is somewhat more problematic. Wilmott [2000b] suggests a Dirichlet condition

of “...three or four times the value of the asset at which there is important behavior.”

Estimation of the partial derivatives.

The temporal derivative. We estimate the partial derivatives of equation (2.4) by a

series of difference equations. From the definition of a derivative we know that for a

general function Q on variables x and y,

∂Q(x, y)
∂x

≡ lim
∆x→0

Q(x+ ∆x, y)−Q(x, y)
∆x

.

We make use of this definition in order to approximate the partial derivative of f(q, s)

with respect to time q:
∂f ij
∂q

= lim
k→0

f i+kj − f ij
k

.

We approximate the partial derivative by assuming that k is sufficiently small, i.e.

∂f ij
∂q
≈
f i+kj − f ij

k
. (3.1)

The spatial derivative. We adopt a different approach than the one above to estimate

the spatial derivative by making use of a more accurate [Wilmott, 2000b] two sided

estimate, i.e.

∂Q(x, y)
∂x

= lim
∆x→0

1
2

[
Q(x+ ∆x, y)−Q(x, y)

∆x
+
Q(x, y)−Q(x−∆x, y)

∆x

]
= lim

∆x→0

Q(x+ ∆x, y)−Q(x−∆x, y)
2∆x

.

We use this definition to derive an approximation of the partial derivative of f(q, s)

with respect to s,
∂f ij
∂s
≈
f ij+h − f ij−h

2h
. (3.2)

The second spatial derivative. We make use of the definition of a second derivative,

∂2Q(x, y)
∂x2

= lim
∆x→0

Q(x+∆x,y)−Q(x,y)
∆x − Q(x,y)−Q(x−∆x,y)

∆x

∆x

= lim
∆x→0

Q(x+ ∆x, y)− 2Q(x, y) +Q(x−∆x, y)
(∆x)2

,

in order to estimate the second derivative of the function f(q, s) with respect to s,

∂2f ij
∂s2

≈
f ij+h − 2f ij + f ij−h

h2
. (3.3)
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3.2 The finite difference framework 16

3.2.2 The heat equation framework

The finite difference grid

We approximate the function V (ζ,Ξζ) with the function v(ν, ξ), which is a discrete

version of that function. The temporal variable ν ∈ [νχ, νψ] is subdivided into M + 1

divisions, each of length

κ =
νψ − νχ
M

.

The spatial variable ξ ∈ [ξχ, ξψ] is subdivided into N + 1 divisions, each of length

η =
ξψ − ξχ
N

.

We adopt the notation

vij ≡ v(νχ + iκ, ξχ + jη), i = 0, 1, . . . ,M − 1,M ; j = 0, 1, . . . , N − 1, N .

We refer to i and j as mesh points, and may refer to the (i, j)’th mesh point, meaning

the above.

Boundary conditions

The initial value is given by equation 2.6, i.e.

v(νχ, ξ) = Ψ(ξ).

The upper and lower boundary conditions may again take on any of three forms, i.e.

Dirichlet: v(ν, ξψ) = ψ0, and

v(ν, ξχ) = χ0,

Neumann: ∂v(ν,ξψ)
∂s = ψ0, and

∂v(ν,ξχ)
∂s = χ0, and

Robin: x0v(ν, ξψ) + x1
∂v(ν,ξψ)

∂ξ = ψ0, and

y0v(ν, ξχ) + y1
∂v(ν,ξχ)

∂ξ = χ0,

|x0|+ |x1| 6= 0; |y0|+ |y1| 6= 0.

Partial derivative approximations

Similar to the initial value Black–Scholes partial differential equation, we make use

of a one–sided difference equation to estimate the temporal derivative, and a central
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3.3 The explicit finite difference method 17

differenc equation in order to estimate the second spatial derivative,

∂vij
∂ν

≈
vi+κj − vij

κ
, and (3.4)

∂2vij
∂ξ2

≈
vij+η − 2vij + vij−η

η2
. (3.5)

3.3 The explicit finite difference method

3.3.1 The Black–Scholes partial differential equation

We assume the function F (τ, Sτ ) is the solution to the partial differential equation

−F ′τ + α(τ, Sτ )F ′′S + β(τ, Sτ )F ′S + γ(τ, Sτ )Fτ + δ(τ, Sτ ) = 0

F (T, ST ) = Φ(ST ).

We approximate the function F (τ, Sτ ) with the function f(q, s), which is a solution to

the partial differential equation

−f ′q + α(q, s)f ′′s + β(q, s)f ′s + γ(q, s)fq + δ(q, s) = 0

with f(qχ, s) = Φ(s),

x0f(q, sψ) + x1
∂f(q, sψ)

∂s
= ψ0, and

y0f(q, sχ) + y1
∂f(q, sχ)

∂s
= χ0, (3.6)

where

|x0|+ |x1| 6= 0, and

|y0|+ |y1| 6= 0.

Since we have no reasonable way to find the partial derivatives of equation (3.6) we

estimate this function by f̂(q, s) which is a solution to the equation

−f̂ ′q + α(q, s)f̂ ′′s + β(q, s)f̂ ′s + γ(q, s)f̂q + δ(q, s) = 0

with f̂(qχ, s) = Φ(s),

x0f̂(q, sψ) + x1
∂f̂(q, sψ)

∂s
= ψ0, and

y0f̂(q, sχ) + y1
∂f̂(q, sχ)

∂s
= χ0. (3.7)

The symbols

f̂ ′q , f̂ ′′s , and f̂ ′s
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3.3 The explicit finite difference method 18

denote estimates to the partial derivatives given in equation (3.6). By substituting these

for equations (3.1, 3.3, and 3.2) we obtain

−
f̂ i+1
j − f̂ ij
k

+α(q, s)
f̂ ij+1 − 2f̂ ij + f̂ ij−1

h2
+β(q, s)

f̂ ij+1 − f̂ ij−1

2h
+γ(q, s)f̂ ij+δ(q, s) = 0.

(3.8)

By rearranging terms, we can explicitly find the value for f̂ i+1
j with the difference

equation

f̂ i+1
j = Aij f̂

i
j+1 + (1 +Bij)f̂

i
j + Cij f̂

i
j−1 +Di

j , (3.9)

where

Aij =
α(qχ + ik, sχ + jh)k

h2
+
β(qχ + ik, sχ + jh)k

2h
,

Bij = γ(qχ + ik, sχ + jh)k − 2α(qχ + ik, sχ + jh)k
h2

,

Cij =
α(qχ + ik, sχ + jh)k

h2
− β(qχ + ik, sχ + jh)k

2h
, and

Di
j = δ(qχ + ik, sχ + jh)k. (3.10)

3.3.2 The heat equation

We treat the approximation of the function V (ζ,Ξζ) (equation (2.6))in a similar fashion

by approximating it with a function v(ν, ξ). Since the function v(ν, ξ) requires the

exact values of the partial derivatives v′ν(ν, ξ) and v′′ξ (ν, ξ), we estimate v(ν, ξ) by a

function ν̂(ν, ξ) which can be found from the equation

v̂′ν = v̂′′ξ ,

where v̂′ν and v̂′′ξ are given by equations (3.4) and (3.5) respectively. This yields the

equation
v̂i+1
j − v̂ij
κ

=
v̂ij+1 − 2v̂ij + v̂ij−1

η2
, (3.11)

which, after rearrangement provide a means to find explicitly the value of vi+1
j :

v̂i+1
j = λv̂ij+1 + (1− 2λ) v̂ij + λv̂ij−1, (3.12)

where

λ =
κ

η2
.
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3.4 The implicit finite difference method 19

3.4 The implicit finite difference method

Instead of taking a one–sided forward difference estimation for the temporal derivative,

we estimate the temporal derivative with a one–side backward equation, i.e.

∂Qij
∂q
≈
Qij −Q

i−k
j

k
.

We proceed by evaluating the derivatives at the temporal step qχ + (i + 1)k instead

of qχ + ik in the case of the Black–Scholes equation, and at νχ + (i + 1)κ instead of

νχ + iκ in the case of the heat equation. This results in a linear set of equations that

need to be solved.

3.4.1 The Black–Scholes partial differential equation

The function f̂(q, s) is solved from the equation

−
f̂ i+1
j − f̂ ij
k

+α(q, s)
f̂ i+1
j+1 − 2f̂ i+1

j + f̂ i+1
j−1

h2
+β(q, s)

f̂ i+1
j+1 − f̂

i+1
j−1

2h
+γ(q, s)f̂ i+1

j +δ(q, s) = 0.

(3.13)

By grouping terms we obtain

−Ai+1
j f̂ i+1

j+1 + (1−Bi+1
j )f̂ i+1

j − Ci+1
j f̂ i+1

j−1 −D
i+1
j = f̂ ij . (3.14)

3.4.2 The heat equation

The function v̂(ν, ξ) is solved from the function

v̂i+1
j − v̂ij
κ

=
v̂i+1
j+1 − 2v̂i+1

j + v̂i+1
j−1

η2
. (3.15)

Grouping terms result in

−λv̂i+1
j+1 + (1 + 2λ) v̂i+1

j − λi+1
j−1 = v̂ij . (3.16)

3.5 The Crank & Nicolson Scheme

3.5.1 The Black–Scholes partial differential equation

Crank and Nicolson [Crank and Nicolson, 1947] inserts a fictitious point on the tempo-

ral axis exactly half way between the points (i, j) and (i + 1, j). The point (i + 1
2 , j)

replaces point (i+1, j) in the explicit scheme and the point (i, j) in the implicit scheme.
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3.6 A generalized finite difference scheme 20

A cancelation of the point (i + 1
2 , j) results in the Crank and Nicolson scheme to be

an average of the explicit and implicit schemes. Seydel [2004] adds the explicit and

implicit schemes in order to derive the Crank & Nicolson scheme.

We assume α(q, s) = α, β(q, s) = β, γ(q, s) = γ and δ(q, s) = δ = 0 are constant.

Adding equation (3.8) and equation (3.13) we get

−
f̂ i+1
j − f̂ ij
k

+ α
f̂ i+1
j+1 − 2f̂ i+1

j + f̂ i+1
j−1

h2
+ β

f̂ i+1
j+1 − f̂

i+1
j−1

2h
+ γf̂ i+1

j + . . .

−
f̂ i+1
j − f̂ ij
k

+ α
f̂ ij+1 − 2f̂ ij + f̂ ij−1

h2
+ β

f̂ ij+1 − f̂ ij−1

2h
+ γf̂ ij =

Af̂ i+1
j+1 + (B − 2)f̂ i+1

j + Cf̂ i+1
j−1 +Af̂ ij+1 + (B + 2)f̂ ij + Cf̂ ij−1 = 0.

(3.17)

3.5.2 The heat equation

Adding equation (3.11) and (3.15), results in the Crank & Nicolson difference equation

2
κ

(v̂i+1
j − v̂ij)−

1
η2

(v̂ij+1 − 2v̂ij + v̂ij−1 + v̂i+1
j+1 − 2v̂i+1

j + v̂i+1
j−1) = 0. (3.18)

3.6 A generalized finite difference scheme

Equations (3.9) and (3.14) may be generalized with the equation

−θAi+1
j f̂ i+1

j+1 + (1− θBi+1
j )f̂ i+1

j − θCi+1
j f̂ i+1

j−1 − θD
i+1
j

= (1− θ)Aij f̂ ij+1 + (1 +Bij(1− θ))f̂ ij + (1− θ)Cij f̂ ij−1 + (1− θ)Di
j , (3.19)

and similarly equations (3.12) and (3.16) may be generalized with the equation [Shaw]

−θλv̂i+1
j+1 +(1+2λθ)v̂i+1

j −θλv̂i+1
j−1 = (1−θ)λv̂ij+1 +(1−2λ(1−θ))v̂ij+(1−θ)v̂ij−1.

(3.20)

The choice of θ determines whether the scheme is implicit or explicit. Other choices

also exist, in particular θ = 0.5 results in the Crank & Nicolson scheme [Crank and

Nicolson, 1947].

θ =


0 explicit scheme,
1
2 Crank & Nicolson sheme, and

1 implicit scheme.

More efficient choices exist for instance the Douglas scheme, which will be discussed

later on.
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3.7 Conclusion

We established a framework in which to study the Black and Scholes partial differential

equation. This was done by discretising the function on a grid with spatial and temporal

axes. Estimates for the partial derivatives were found and are listed in Table 3.1 These

were substituted into the discretised version of the partial differential equation such that

the discrete version of the partial differential equation can be represented by a series

of difference equations. Three finite difference schemes were derived namely the fully

explicit scheme, the fully implicit scheme and the Crank and Nicolson scheme. We

finally derived a generalization of the three schemes.

Derivative Black–Scholes PDE Heat equation

Temporal derivative
fi+kj −fij

k

vi+κj −vij
κ

Second order spatial derivative
fij+h−2fij+f

i
j−h

h2
vij+η−2vij+v

i
j−η

η2

Spatial derivative
fij+h−f

i
j−h

2h N/A

Table 3.1: A summary of estimations of derivatives.
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Chapter 4

Truncation error, consistency

and stability

4.1 Introduction

In this chapter we investigate the important properties of truncation error, consistency,

convergence and stability.

4.2 Local truncation error

The local truncation error measures by how much the approximating difference equa-

tion does not satisfy the original partial differential equation at the mesh points i and j.

Smith [1984] provides the following treatment:

Let Gij(f̂) = 0 represent the difference equation approximating the partial differential

equation at the (i, j)’th mesh point. If we replace f̂ by F , where F is the exact solution

of the partial differential equation, the value Gij(F ) is called the local truncation error,

T ij = Gij(F ). (4.1)

Using Taylor expansions, it is easy to express T ij in terms of powers of k and h.
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4.2 Local truncation error 23

4.2.1 Local truncation error for the initial value Black and Scholes

schemes.

We calculate the local truncation error for the partial differential equation

F ′t + α(t, St)F ′′S + β(t, St)F ′S + γ(t, St)Ft + δ(t, St) = 0

at the mesh point (i, j) for the three classical schemes namely the explicit, implicit and

Crank & Nicolson schemes.

The explicit scheme

Gij(f̂) = −
f̂ i+1
j − f̂ ij
k

+ α(q, s)
f̂ ij+1 − 2f̂ ij + f̂ ij−1

h2
. . .

. . .+ β(q, s)
f̂ ij+1 − f̂ ij−1

2h
+ γ(q, s)f̂ ij + δ(q, s) (4.2)

Substituting F for f̂ we obtain

T ij = Gij(F ) = −
F i+1
j − F ij

k
+ α(q, s)

F ij+1 − 2F ij + F ij−1

h2
+ . . .

. . . β(q, s)
F ij+1 − F ij−1

2h
+ γ(q, s)F ij + δ(q, s) (4.3)

By Taylor’s expansion we have the following:

T ij = −1
k

(F ij + k
∂F ij
∂q

+
1
2!
k2
∂2F ij
∂q2

+
1
3!
k3
∂3F ij
∂q3

+ . . .− F ij ) + . . .

α(q, s)
h2

(F ij + h
∂F ij
∂s

+
1
2!
h2
∂2F ij
∂s2

+
1
3!
h3
∂3F ij
∂s3

+
1
4!
h4
∂4F ij
∂s4

+ . . .

−2F ij + F ij − h
∂F ij
∂s

+
1
2!
h2
∂2F ij
∂s2

− 1
3!
h3
∂3F ij
∂s3

+
1
4!
h4
∂4F ij
∂s4

+ . . .)

+
β(q, s)

2h
(F ij + h

∂F ij
∂s

+
1
2!
h2
∂2F ij
∂s2

+
1
3!
h3
∂3F ij
∂s3

+
1
4!
h4
∂4F ij
∂s4

+ . . .

−F ij + h
∂F ij
∂s
− 1

2!
h2
∂2F ij
∂s2

+
1
3!
h3
∂3F ij
∂s3

− 1
4!
h4
∂4F ij
∂s4

+ . . .)

+γ(q, s)F ij + δ(q, s)

=

(
−
∂F ij
∂q

+ α(q, s)
∂2F ij
∂s2

+ β(q, s)
∂F ij
∂s

+ γ(q, s)F ij + δ(q, s)

)
+ . . .

−1
2
k
∂2F ij
∂q2

− 1
6
k2
∂3F ij
∂q3

+ . . .+
α(q, s)

12
h2
∂4F ij
∂s4

+
α(q, s)

360
h4
∂6F ij
∂s6

+ . . .

. . .+
β(q, s)

6
h2
∂3F ij
∂s3

+
β(q, s)

120
h4
∂5F ij
∂s5

+ . . .
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4.2 Local truncation error 24

Since F is the solution to the partial differential equation we have

−
∂F ij
∂q

+ α(q, s)
∂2F ij
∂s2

+ β(q, s)
∂F ij
∂s

+ γ(q, s)F ij + δ(q, s) = 0.

The principal part of the truncation error is thus

T ij = −1
2
k
∂2F ij
∂q2

+
1
12
h2

(
2
∂3F ij
∂s3

+
∂4F ij
∂s4

)
.

Hence

T ij = O(k) +O(h2).

The implicit scheme

Similar to the analysis above, the truncation error of the implicit scheme is given by

T ij =

(
∂F ij
∂q

+ α(q, s)
∂2F ij
∂s2

+ β(q, s)
∂F ij
∂s

+ γ(q, s)F ij + δ(q, s)

)
+ . . .

−1
2
k
∂2F ij
∂q2

− 1
6
k2
∂3F ij
∂q3

+ . . .+
α(q, s)

12
h2
∂4F ij
∂s4

+
α(q, s)

360
h4
∂6F ij
∂s6

+ . . .

. . .+
β(q, s)

6
h2
∂3F ij
∂s3

+
β(q, s)

120
h4
∂5F ij
∂s5

+ . . .

This has a principal error of

T ij = −1
2
k
∂2F ij
∂q2

+
1
12
h2

(
2
∂3F ij
∂s3

+
∂4F ij
∂s4

)
.

Hence

T ij = O(k) +O(h2).

Crank & Nicolson scheme

In order to ease readability, we omit some super– and subscripts.

Gij(f̂) = −1
k

(f̂ i+1
j − f̂ ij) +

α

h2
(f̂ i+1
j+1 − 2f̂ i+1

j + f̂ i+1
j−1) + +

β

2h
(f̂ i+1
j+1 − f̂

i+1
j−1) + γf̂ i+1

j + . . .

−1
k

(f̂ ij − f̂ ij) +
α

h2
(f̂ ij+1 − 2f̂ ij + f̂ ij−1) + +

β

2h
(f̂ ij+1 − f̂ ij−1) + γf̂ ij

Substituting F for f̂ we obtain

T ij = Gij(F ) = −1
k

(F i+1
j − F ij ) +

α

h2
(F i+1
j+1 − 2F i+1

j + F i+1
j−1) + +

β

2h
(F i+1
j+1 − F

i+1
j−1) + γF i+1

j + . . .

−1
k

(F ij − F ij ) +
α

h2
(F ij+1 − 2F ij + F ij−1) + +

β

2h
(F ij+1 − F ij−1) + γF ij

(4.4)
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4.2 Local truncation error 25

After some algebraic manipulation we arrive at

T ij = 2
(
−∂F
∂q

+ α
∂2

∂s2
+ β

∂F

∂S
+ γF

)
+ k

(
−∂

2F

∂q2
+ α

∂3F

∂q∂s2
+ β

∂2F

∂q∂s
+ γ

∂F

∂q

)
+k2

(
1
2
γ
∂2F

∂q2
− 1

3
∂3F

∂q3
+

1
2
γ
∂3F

∂q2∂s
+

1
2
α

∂4F

∂q2∂s2

)
+h2

(
1
3
β
∂3F

∂s3
+

1
6
α
∂4F

∂s4

)
+k3

(
1
6
γ
∂3F

∂q3
− 1

12
∂4F

∂q4
+

1
6
β
∂4F

∂q3∂s
+

1
6
α

∂5F

∂q3∂s2

)
+kh2

(
1
12
α
∂5F

∂q∂s4
+

1
6
β
∂4F

∂q∂s3

)
+ . . . .

We note

k

(
−∂

2F

∂q2
+ α

∂3F

∂q∂s2
+ β

∂2F

∂q∂s
+ γF

)
= k

∂

∂q

(
−∂F
∂q

+ α
∂2

∂s2
+ β

∂F

∂S
+ γF

)
,

and since F is the solution to the partial differential equation we have

2
(
−∂F
∂q

+ α
∂2

∂s2
+ β

∂F

∂S
+ γF

)
= 0, and

k

(
−∂

2F

∂q2
+ α

∂3F

∂q∂s2
+ β

∂2F

∂q∂s
+ γ

∂F

∂q

)
= 0.

The principal part of the truncation error can thus be summarised as

T ij = O(k2) +O(h2).

4.2.2 Local truncation error for the heat equation schemes.

We calculate the local truncation error for the partial differential equation

V ′ν − F ′′ξ = 0

at the mesh point (i, j) for the three classical schemes namely the explicit, implicit and

Crank & Nicolson schemes.
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4.2 Local truncation error 26

The explicit scheme

The local truncation error for the explicit scheme follows from

Gij(v̂) =
1
κ

(v̂i+1
j − v̂ij)−

1
η2

(v̂ij+1 − 2v̂ij + v̂ij−1)

T ij = Gij(V ) =
1
κ

(V i+1
j − V ij )− 1

η2
(V ij+1 − 2V ij + V ij−1)

=
1
κ

(
κ
∂V

∂ν
+

1
2
κ2 ∂

2V

∂ν2
+ . . .

)
. . .

+
1
η2

(η
∂V

∂ξ
+

1
2
η2 ∂

2V

∂ξ2
+

1
6
η3 ∂

3V

∂ξ3
+

1
24
η4 ∂

4V

∂ξ4
+ . . . . . .

−η ∂V
∂ξ

+
1
2
η2 ∂

2V

∂ξ2
− 1

6
η3 ∂

3V

∂ξ3
+

1
24
η4 ∂

4V

∂ξ4
+ . . .)

=
∂V

∂ν
− ∂2V

∂ξ2
+

1
2
κ
∂2V

∂ν2
+ . . .+

1
12
η4 ∂

4V

∂ξ4
+ . . . . (4.5)

Since V is the solution to ∂V
∂ν −

∂2V
∂ξ2 the principal truncation error is summarised as

T ij = O(κ) +O(η2).

The implicit scheme

The local truncation error for the implicit scheme is derived in similar fashion than for

the explicit scheme.

Gij(v̂) =
1
κ

(v̂ij − v̂i−1
j )− 1

η2
(v̂ij+1 − 2v̂ij + v̂ij−1)

T ij = Gij(V ) =
1
κ

(V ij − V i−1
j )− 1

η2
(V ij+1 − 2V ij + V ij−1)

=
1
κ

(
κ
∂V

∂ν
− 1

2
κ2 ∂

2V

∂ν2
+ . . .

)
. . .

+
1
η2

(η
∂V

∂ξ
+

1
2
η2 ∂

2V

∂ξ2
+

1
6
η3 ∂

3V

∂ξ3
+

1
24
η4 ∂

4V

∂ξ4
+ . . . . . .

−η ∂V
∂ξ

+
1
2
η2 ∂

2V

∂ξ2
− 1

6
η3 ∂

3V

∂ξ3
+

1
24
η4 ∂

4V

∂ξ4
+ . . .)

=
∂V

∂ν
− ∂2V

∂ξ2
− 1

2
κ
∂2V

∂ν2
+ . . .+

1
12
η4 ∂

4V

∂ξ4
+ . . . . (4.6)

Since V is the solution to ∂V
∂ν −

∂2V
∂ξ2 the principal truncation error is summarised as

T ij = O(κ) +O(η2).
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4.3 Douglas schemes 27

The Crank & Nicolson scheme

Gij(v̂) =
2
κ

(v̂i+1
j − v̂ij)−

1
η2

(v̂ij+1 − 2v̂ij + v̂ij−1 + v̂i+1
j+1 − 2v̂i+1

j + v̂i+1
j−1)

T ij = Gij(V ) =
2
κ

(V i+1
j − V ij )− 1

η2
(V ij+1 − 2V ij + V ij−1 + V i+1

j+1 − 2V i+1
j + V i+1

j−1 )

=
2
κ

(
κ
∂V

∂ν
+

1
2
κ2 ∂

2V

∂ν2
+

1
6
κ3 ∂

3V

∂ν3
+ . . .

)
. . .

− 1
η2

(2η2 ∂
2V

∂ξ2
+ κη2 ∂3V

∂v∂ξ2
+

1
2
κ2η2 ∂4V

∂ν2∂ξ2
+

1
6
η4 ∂

4V

∂ξ4
+ . . .)

= 2
(
∂V

∂ν
− ∂2V

∂ξ2

)
+ κ

(
∂2V

∂ν2
+

∂3V

∂ν∂ξ2

)
. . .

+κ2

(
1
3
∂3V

∂ν3
− 1

2
∂4V

∂ν∂ξ2

)
+ η2

(
1
6
∂4V

∂ξ4

)
+ . . . . (4.7)

Since V is the solution to ∂V
∂ν −

∂2V
∂ξ2 , the local truncation error is of the order

T ij = O(κ2) +O(η2).

4.3 Douglas schemes

In section 3.6 we compressed the explicit, implicit and Crank & Nicolson schemes into

a general scheme, where the parameter θ determines the applicable scheme. In this

section we derive a fourth scheme which minimizes the truncation error.

The heat equation

We rewrite equation (3.20) as

Gij(v̂) =
1
η2

(v̂ij+1−2v̂ij+v̂
i
j−1)− 1

η2
θ(v̂ij+1−2v̂ij+v̂

i
j−1)+

1
κ

(v̂ij−v̂i+1
j )+

1
η2
θ(v̂i+1

j+1+v̂i+1
j +v̂i+1

j−1).
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4.3 Douglas schemes 28

The local truncation error is then

T ij = Gij(V ) =
1
η2

(V ij+1 − 2V ij + V ij−1)− 1
η2
θ(V ij+1 − 2V ij + V ij−1) . . .

+
1
κ

(V ij − V i+1
j ) +

1
η2
θ(V i+1

j+1 + V i+1
j + V i+1

j−1 )

=
(
∂2V

∂ξ2
+

1
12
η2 ∂

4V

∂ξ4
+

1
360

η4 ∂
6V

∂ξ6
+ . . .

)
+
(
−∂V
∂ν
− 1

2
κ
∂V

∂ν2
− 1

6
κ2 ∂

3V

∂ν3
+ . . .

)
. . .

+θ
(
−∂

2V

∂ξ2
− 1

12
η2 ∂

4V

∂ξ4
− 1

360
η4 ∂

6V

∂ξ6
+ . . .

)
. . .

+θ
(
∂2V

∂ξ2
+ κ

∂3V

∂ν∂ξ2
+

1
12
η2 ∂

4V

∂ξ4
+

1
6
κ3 ∂5V

∂ν3∂ξ2
+

1
12
κη2 ∂5V

∂ν∂ξ4
+ . . .

)
T ij = −

(
∂V

∂ν
− ∂2V

∂ξ2

)
− κ

(
1
2
∂2V

∂ν2
− θ ∂3V

∂ν∂ξ2

)
+

1
12
η2 ∂

4V

∂ξ4
− 1

6
κ2 ∂

3V

∂ν3
. . .

+
(

1
2
κ2θ

∂4V

∂ν2∂ξ2
+

1
12
θκη2

∂5V

∂ν∂ξ4

)
+ κ3

(
− 1

24
∂4V

∂ν4
+

1
6
θ
∂5V

∂ν3∂ξ5

)
+ . . . (4.8)

A choice for θ of

θ =
1
2
− 1

12
η2

κ
,

results in a truncation error of

T ij = −
(
∂V

∂ν
− ∂2V

∂ξ2

)
− 1

2
κ
∂

∂ν

(
∂V

∂ν
− ∂2V

∂ξ2

)
− 1

12
η2 ∂

2

∂ξ2

(
∂V

∂ν
− ∂2V

∂ξ2

)
− 1

6
κ2 ∂

3V

∂ν3

− 1
24
κη2 ∂3

∂ν∂ξ2

(
∂V

∂ν
− ∂2V

∂ξ2

)
+ κ2

(
∂4V

∂ν2∂ξ2

)
− η4

(
1

144
∂5V

∂ν∂ξ4

)
+ . . . .

Since V is the solution to the equation ∂V
∂ν −

∂2V
∂ξ2 , the local truncation error is sum-

marised by

T ij = O(κ2) +O(η4).

The initial value Black and Scholes equation

The local truncation error for the generalized initial value Black and Scholes equation

is given as

T ij = k

(
αθ

∂3F

∂q∂s2
+ βθ

∂2F

∂q∂s
− 1

2
∂2F

∂q2
+ γθ

∂F

∂q

)
. . .

+k2

(
1
2
αθ

∂4F

∂q2∂s2
+

1
2
βθ

∂3F

∂q2∂s
− 1

6
∂3F

∂q3
+

1
2
γθ
∂2F

∂q2

)
. . .

+h2

(
1
12
α
∂4F

∂s4
+

1
6
β
∂3

∂s3

)
. . .

+kh2

(
1
12
αθ

∂4F

∂q∂s4
+

1
6
βθ

∂4

∂q∂s3

)
. . .

+h4

(
1

360
α
∂6F

∂s6
+

1
120

β
∂5

∂s5

)
+ . . . (4.9)
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We were not able to find a value for θ that improves on the O(k2) +O(h2) local trun-

cation error of the Crank & Nicolson scheme. The reason provided by Smith [1984] is

that only second-order derivatives allows for the elimination of the fourth order differ-

ences. First order derivatives’ accuracy can only be improved by involving additional

grid points, which complicates boundary conditions for implicit schemes.

4.4 Consistency

A scheme is considered to be consistent with the partial differential equation if the

truncation error tend to 0 when the time and spatial steps tend to zero [Smith, 1984].

4.4.1 The initial value Black and Scholes equation schemes

We introduce the variable z such that

k = zh.

The truncation error of the generalized scheme is

T ij = zh

(
αθ

∂3F

∂q∂s2
+ βθ

∂2F

∂q∂s
− 1

2
∂2F

∂q2
+ γθ

∂F

∂q

)
. . .+

+z2h2

(
1
2
αθ

∂4F

∂q2∂s2
+

1
2
βθ

∂3F

∂q2∂s
− 1

6
∂3F

∂q3
+

1
2
γθ
∂2F

∂q2

)
. . .+

+h2

(
1
12
α
∂4F

∂s4
+

1
6
β
∂3

∂s3

)
. . .+

+zh3

(
1
12
αθ

∂4F

∂q∂s4
+

1
6
βθ

∂4

∂q∂s3

)
. . .+

+h4

(
1

360
α
∂6F

∂s6
+

1
120

β
∂5

∂s5

)
+ . . .

Clearly

lim
h→0

T ij = 0,

irrespective of the choice of θ. The implicit, explicit, Crank and Nicolson and Douglas

schemes are all consistent with the partial differential equation.

4.4.2 The heat equation schemes

We introduce the variable ω such that

κ = ωη.
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The local truncation error for the generalized scheme for the heat equation is

T ij = −1
6
ω2η2 ∂

3V

∂ν3
+ ω2η2

(
∂4V

∂ν2∂ξ2

)
− η4

(
1

144
∂5V

∂ν∂ξ4

)
+ . . . .

Since

lim
η→0

T ij = 0,

we conclude that the generalized scheme is consistent with the heat equation for all

values of θ.

4.5 Stability

Tavella and Randall [2000] provides the following description for stability:

A numerical scheme is said to be stable if the difference between the nu-

merical solution and the exact solution remains bounded as the number to

time steps tend to infinity.

Stability is a computational problem. Computers have limited capacity to store num-

bers with no concept of real numbers, subsequently small rounding errors result when

difference equations are computed.

As long as these errors remain bounded from one temporal step to the next, the

scheme is stable. However, if the rounding errors perpetuate and grow with each tem-

poral step, the scheme may become unstable returning values with no practical use.

We consider two methods to determine whether a scheme is stable. The first fol-

lows matrix analysis discussed by Smith [1984], Seydel [2004] and Geske and Shastri

[1985], amongst others, and was originally derived by Richtmeyer and Lax [Smith,

1984]. The second analysis is based on Fourier analysis and is discussed amongst oth-

ers by Wilmott [2000b]; Smith [1984]. It also closely follows the argument of Du Fort

and Frankel [1953] presented in Chapter 5.

4.5.1 Matrix method to determine stability

We write the general equation (3.19) as

MLf i+1 + bi+1
L = MRf i + bi

R

∴ f i+1 =
(
MRf i + bi

R − bi+1
L

)
M−1

L

= Mf i + b̃i, (4.10)
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where

ML =



1− θB −θA

−θC 0
. . .

0 −θA

−θC 1− θB


,

MR =



1 + (1− θ)B (1− θ)A

(1− θ)C 0
. . .

0 (1− θ)A

(1− θ)C 1 + (1− θ)B


,

fx =



f̂x1

f̂x2
...

f̂xN−2

f̂xN−1


, bx

L =



−θCf̂x0
0
...

0

−θAf̂xN


, bx

R =



(1− θ)Cf̂x0
0
...

0

(1− θ)Af̂xN


,

and where M−1
L denotes the inverse of matrix ML, M ≡ M−1

L MR, and b̃i ≡

M−1
L (bi

R − bi+1
L ).

Similarly we write the generalized equation (3.20) as

ΣLvi+1 + βi+1
L = ΣRvi + βi

R.

Rearranging terms give

vi+1 =
(
ΣRvi + βi

R − βi+1
L

)
Σ−1

L

= Σvi + β̃i, (4.11)
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where

ΣL =



1 + 2θλ −θλ

−θλ 0
. . .

0 −θλ

−θλ 1 + 2θλ


,

ΣR =



1− 2(1− θ)λ (1− θ)λ

(1− θ)λ 0
. . .

0 (1− θ)λ

(1− θ)λ 1− 2(1− θ)λ


,

vx =



v̂x1

v̂x2
...

v̂xN−2

v̂xN−1


, βx

L =



−θλv̂x0
0
...

0

−θλv̂xN


, βx

R =



(1− θ)λv̂x0
0
...

0

(1− θ)λv̂xN


,

and where Σ−1
L denotes the inverse of matrix ΣL, Σ ≡ Σ−1

L ΣR, and β̃i ≡ Σ−1
L (βi

R−

βi+1
L ).

Recursively equation 4.10 may be written as

f i+1 = Mf i + b̃i

= M(Mf i−1 + ˜bi−1) + b̃i

= M2f i−1 + M ˜bi−1 + b̃i

= . . .

= Mi+1f0 + Mib̃0 + Mi−1b̃1 + . . .+ b̃i, (4.12)

where f0 is the vector of initial boundary values, and b̃y, y = 0, 1, . . . , i are the

vectors of known upper and lower boundary values. Let f̃ i be the vector of computed

values for f̂ i. There rounding error is then

ei = f i − f̃ i.

If we assume that a perturbation occurred in the vector of initial values, i.e. f̃0 =
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f0 + e0, then equation (4.12) may be written as

f̃ i+1 = Mi+1f̃0 + Mib̃0 + Mi−1b̃1 + . . .+ b̃i. (4.13)

Subtracting equation (4.13) from equation (4.12) results in

ei+1 = Mi+1(f0 − f̃0) = Mi+1e0.

Intuitively unbounded growth in ei+1 will occur if ||M|| > 1, where the operator || · ||

denotes the matrix norm1. The Lax-Richmeyr definition for stability states that

||M|| ≤ 1

is the necessary and sufficient condition for stability. A similar argument follows to

derive the necessary and sufficient condition for stability for difference equation (3.20)

which is

||Σ|| ≤ 1.

The Brennan and Schwartz condition for stability

Brennan and Schwartz [1978] pose that givenA+(1+B)+C = 1 thenA ≥ 0,B ≥ 0

and C ≥ 0 is the condition for stability in the formulation

wi+1
j = Awij+1 + (1 +B)wij + Cwij−1,

with the values A, B and C given by equation (3.10) and

α =
1
2
σ2,

β = r − 1
2
σ2, and

γ = 0.

This formulation is related to equation (3.9) but make some transpositions in order

to force constant coefficients. The Brennen and Schwartz partial differential equation

is otherwise perfectly suited for the general difference equation (3.19) with θ = 1.

The stability condition follows from the norm of the matrix M. It can be shown that

||M ||1 = |A| + |B| + |C| and ||M ||2 = |A| + |B| + |C| and since A + B + C = 1,

it follows that ||M ||1, ||M ||2 ≥ 1 if any of A, B or C is negative for any i or j. The

Brennen and Schwartz condition is thus in this case consistent with the more general

Lax and Richtmyer condition.
1For all compatible matrix norms it can be shown that ρ(M) ≤ ||M||. Matrix norm here means

min(L1, L2, L∞) where L1, L2 and L∞ are the 1–norm, 2–norm and infinity–norms respectively
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4.5.2 The Fourier analysis or von Neumann method to determine

stability

In this section we adopt the analysis of Smith [1984]. Following is an abridged version.

The Fourier analysis method expresses the initial values in terms of a finite Fourier

series. It then considers the growth of a function that reduces this finite Fourier series

for the initial time by a variables separable method. We formulate the Fourier series by

making use of the complex exponential form, i.e.

f̂0
j =

M∑
m=0

Ame
i%mjh, j = 0, 1, . . . ,M , (4.14)

where Am are unknown constants determined by the function f̂(q, s), i =
√
−1, and

%m = mπ/`. The variable ` is the spatial interval over which the function is defined

i.e. Mh = `.

TheM+1 unknowns,A0, A1, . . . , AM of equation (4.14) are solved withM+1 equa-

tions. Since the initial value equations are additive (we only consider linear difference

equations), we only consider the propagation of a single initial value such as ei%jh. The

coefficientsAm are constant and therefore omitted; we thus investigate the propagation

of the term ei%jh as τ increases.

We put

f̂ ij = ei%seϑτ = ei%jheϑik = ei%jhΥi, (4.15)

where Υ = eϑk and ϑ is a complex constant.

The necessary and sufficient condition for stability is that

|Υ| ≤



1 If the exact solution of the difference equations does

not increase exponentially with time, or

1 +O(k) If the exact solution of the difference equations

increases exponentially with time.

(4.16)

4.5.3 Stability of the explicit, implicit, Crank & Nicolson and Dou-

glas schemes

Schemes based on the initial value Black and Scholes equations

The fully explicit scheme: We evaluate the difference equation

f̂ i+1
j = Af̂ ij+1 + (1 +B)f̂ ij + Cf̂ ij−1
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by making use of the von Neumann analysis. Substituting the function f̂ ij for ei%jhΥi

(equation 4.15) we obtain

Υi+1ei%jh = Aei%(j+1)hΥi + (1 +B)ei%jhΥiCei%(j−1)hΥi

By rearranging terms we obtain

Υ = A(cos %h+ i sin %h) + 1 +B + C(cos %h− i sin %h)

=
[
1 + γk + 2α

k

h2
(cos(%h)− 1)

]
+ iβ

k

h
sin %h

= Y + iX .

For stability it is required that |Υ| ≤ 0 ⇒
√
Y 2 +X2 ≤ 0. We evaluate the stability

for values of %h:

%h = 0 :
√

(1 + γk)2 ≤ 0

resulting in the stability condition − 2
k ≤ γ ≤ 0.

%h = π
2 :

√
1 + 2γk − 4α k

h2 + γ2k2 − 4αγk k
h2 + 4α2 k2

h4 + β2 k2

h2 ≤ 0

Set k = zh then√
1 + 2γzh− 4α zh + γ2z2h2 − 4αγz2 + 4α2 z2

h2 + β2z2 ≤ 1

If we consider 1
h2 to be of O(1) then by approximation

k ≤ h2

2α .

%h = π :
√

(1 + γk − 4α k
h2 )2 ≤ 1

γk − 4α k
h2 ≤ 0

resulting in the condition h2 ≤ 4αγ .

The fully implicit scheme: We evaluate the difference equation

−Af̂ i+1
j+1 + (1−B)f̂ i+1

j − Cf̂ i+1
j−1 = f̂ ij .

Substituting the function f̂ ij for ei%jhΥi we obtain

−Aei%(j+1)hΥi+1 + (1−B)ei%jhΥi+1 − Cei%(j−1)hΥi+1 = ei%jhΥi

−Aei%hΥ + (1−B)Υ− Ce−i%hΥ = 1

Υ {1−B + (−A− C) cos %h+ i(−A+ C) sin %h} = 1
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Rearranging terms yield

Υ =
1

1− γk + 2α k
h2 (1− cos %h) + iβ kh sin %h

= Y + iX ,

where

Y =
1− γk + 2α k

h2 (1− cos %h)(
1− γk + 2α k

h2 (1− cos %h)
)2

+ β2 k2

h2 sin2 %h
, and

X =
−β kh sin %h(

1− γk + 2α k
h2 (1− cos %h)

)2
+ β2 k2

h2 sin2 %h
.

For stability it is required that |Υ| ≤ 1 ⇒
√
Y 2 +X2 ≤ 1. We consider three

cases, %h = 0, %h = π
2 , and %h = π, strictly for partial differential equations where

γ ≤ 0.

%h = 0 : 1
1−γk ≤ 1

resulting in the condition γ ≤ 0.

%h = π
2 :

√
(1−γk+2α k

h2 )2
+β2 k2

h2[
(1−γk+2α k

h2 )2
+β2 k2

h2

]2 ≤ 1

−2γk + 4α k
h2 + γ2k2 − 4αγ k

2

h2 − 4α k
2

h4 + β2 k2

h2 ≥ 0

If we take 1
h4 to be of O(1) and ignore higher orders, then by approximation

k
h2 ≥ 0.

%h = π :

√(
1

1−γk+4α k
h2

)2

≤ 1

which leads to the condition γ ≤ 4 α
h2 .

Since γ ≤ 0 and k > 0 and h > 0 and generally α = 1
2σ

2s2 > 0, we conclude that the

implicit scheme is always stable.

The Crank and Nicolson scheme: We evaluate the difference equation

Af̂ i+1
j+1 +Bf̂ i+1

j + Cf̂ i+1
j−1 +Af̂ ij+1 +Bf̂ ij + Cf̂ ij−1 − 2f̂ i+1

j + 2f̂ ij = 0.

By substituting f̂ ij for ei%jhΥi, we obtain after some algebra

Υ =
−γk − 2α k

h2 (cos %h− 1)− 2− iβ kh sin %h
γk + 2α k

h2 (cos %h− 1)− 2 + iβ kh sin %h

=
(−Y − 2)− iX
(Y − 2) + iX
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The absolute value of Υ is given by

|Υ| =

√
Y 2(Y 2 − 8) +X2(X2 + 8) + 2(X2Y 2 + 8)

4− 4Y + Y 2 +X2
,

where

Y = γk + 2α
k

h2
(cos %h− 1)

X = β
k

h
sin %h.

We evaluate three cases, namely

%h Y X

0 γk 0
π
2 γk − 2α k

h2 β kh

π γk − 4α k
h2 0

Entering the inequality Υ ≤ 1 with additional constraints γ ≤ 0, α ≥ 0, and β ≥ 0 in

Mathematica2, the following results were obtained:

Reduce[Reduce[Reduce[(√((
γk − 2α

(
k
h2

))2 ((
γk − 2α

(
k
h2

))2 − 8
)

+
(
β
(
k
h

))2 ((
β
(
k
h

))2
+ 8
)

+
(√((

γk − 2α
(
k
h2

))2 ((
γk − 2α

(
k
h2

))2 − 8
)

+
(
β
(
k
h

))2 ((
β
(
k
h

))2
+ 8
)

+
(√((

γk − 2α
(
k
h2

))2 ((
γk − 2α

(
k
h2

))2 − 8
)

+
(
β
(
k
h

))2 ((
β
(
k
h

))2
+ 8
)

+

2
((
β
(
k
h

))2 (
γk − 2α

(
k
h2

))2
+ 8
)))/

2
((
β
(
k
h

))2 (
γk − 2α

(
k
h2

))2
+ 8
)))/

2
((
β
(
k
h

))2 (
γk − 2α

(
k
h2

))2
+ 8
)))/

(
4− 4

(
γk − 2α

(
k
h2

))
+
(
γk − 2α

(
k
h2

))2
+
(
β
(
k
h

))2) ≤ 1&&γ ≤ 0&&
(

4− 4
(
γk − 2α

(
k
h2

))
+
(
γk − 2α

(
k
h2

))2
+
(
β
(
k
h

))2) ≤ 1&&γ ≤ 0&&
(

4− 4
(
γk − 2α

(
k
h2

))
+
(
γk − 2α

(
k
h2

))2
+
(
β
(
k
h

))2) ≤ 1&&γ ≤ 0&&

α ≥ 0&&β ≥ 0&&k > 0&&h > 0, {k, h}]α ≥ 0&&β ≥ 0&&k > 0&&h > 0, {k, h}]α ≥ 0&&β ≥ 0&&k > 0&&h > 0, {k, h}]

γ ≤ 0 ∧ β ≥ 0 ∧ α ≥ 0 ∧ k > 0 ∧ h > 0

Reduce

√(γk−4α( k
h2 ))2

(
(γk−4α( k

h2 ))2−8
)

+16

4−4(γk−4α( k
h2 ))+(γk−4α( k

h2 ))2 ≤ 1&&γ ≤ 0&&Reduce

√(γk−4α( k
h2 ))2

(
(γk−4α( k

h2 ))2−8
)

+16

4−4(γk−4α( k
h2 ))+(γk−4α( k

h2 ))2 ≤ 1&&γ ≤ 0&&Reduce

√(γk−4α( k
h2 ))2

(
(γk−4α( k

h2 ))2−8
)

+16

4−4(γk−4α( k
h2 ))+(γk−4α( k

h2 ))2 ≤ 1&&γ ≤ 0&&

α ≥ 0&&β ≥ 0&&k > 0&&h > 0, {k, h}]α ≥ 0&&β ≥ 0&&k > 0&&h > 0, {k, h}]α ≥ 0&&β ≥ 0&&k > 0&&h > 0, {k, h}]

γ ≤ 0 ∧ β ≥ 0 ∧ α ≥ 0 ∧ k > 0 ∧ h > 0

Reduce
[{√

(γk)2((γk)2−8)+16

4−4γk+(γk)2 ≤ 1&&γ ≤ 0&&α ≥ 0&&β ≥ 0&&k > 0&&h > 0
}
,Reduce

[{√
(γk)2((γk)2−8)+16

4−4γk+(γk)2 ≤ 1&&γ ≤ 0&&α ≥ 0&&β ≥ 0&&k > 0&&h > 0
}
,Reduce

[{√
(γk)2((γk)2−8)+16

4−4γk+(γk)2 ≤ 1&&γ ≤ 0&&α ≥ 0&&β ≥ 0&&k > 0&&h > 0
}
, γ]γ]γ]

β ≥ 0 ∧ α ≥ 0 ∧ k > 0 ∧ h > 0 ∧ γ ≤ 0

From these results it is evident that the Crank and Nicolson scheme is unconditionally

stable.
2Wolfram Mathematica version 6.
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Schemes based on the heat equation

The stability conditions for schemes based on the heat equation are well known (see

for instance Smith [1984]). Both the implicit scheme and Crank–Nicolson schemes are

unconditionally stable. The explicit scheme has a stability condition [Seydel, 2004] of

0 < λ ≤ 1
2

.

4.6 Conclusion

We conclude this chapter with a summary of the characteristics of the different schemes:

Property Black–Scholes equation Heat equation

Truncation error

Fully explicit O(k) +O(h2) O(κ) +O(η2)

Fully implicit O(k) +O(h2) O(κ) +O(η2)

Crank and Nicolson O(k2) +O(h2) O(κ2) +O(η2)

Douglas NA O(κ2) +O(η4)

Consistency

Fully explicit Consistent Consistent

Fully implicit Consistent Consistent

Crank and Nicolson Consistent Consistent

Douglas NA Consitent

Stability

Fully explicit − 2
k ≤ γ ≤ 0, k ≤ h2

2α , h2 ≤ 4αγ 0 < λ ≤ 1
2

Fully implicit k > 0, h > 0 λ > 0

Crank and Nicolson k > 0, h > 0 λ > 0

Douglas NA λ > 0

Table 4.1: Summary of the properties of the most common finite difference schemes.
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Chapter 5

Themes of the Du Fort and

Frankel finite difference scheme

5.1 Introduction

Two important themes sprouted from the analysis of the early explicit finite differ-

ence scheme. The first was to improve the accuracy of the scheme while the second

dealt with the conditional stability property of the fully explicit scheme. While im-

plicit schemes effectively eliminate stability issues of the fully explicit scheme, ex-

plicit schemes still have desirable properties applicable to a number of problems that

often occur in financial engineering problems. We investigate three such schemes. The

first is a scheme recently suggested by Duffy [2006a] referred to as the MADE (mod-

ified alternating directional explicit) scheme. The MADE scheme sacrifices accuracy

in order to obtain stability. The second scheme is known as the Richardson scheme.

The Richardson scheme (see [Smith, 1984]) obtains its temporal derivative by central

differences, thereby achieving a truncation error of

TRichardson = O(h2) +O(k2).

This scheme proves to be unconditionally unstable, but a number of important obser-

vations lead to the third scheme and main subject of this document.

The Du Fort and Frankel scheme [Du Fort and Frankel, 1953], first published in 1953

improves on the Richardson scheme [Smith, 1984]. Du Fort and Frankel makes adjust-
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ments to the diffusion term which results in a scheme that is both stable and explicit.

Although stability is easily obtained by making a scheme implicit, the explicit prop-

erty of the Du Fort and Frankel scheme is useful for many problems that occur in the

field of financial engineering. This chapter briefly explores the Du Fort and Frankel

scheme and derive a number of variations of occurring themes of this scheme that will

be applied to financial engineering problems.

5.2 The MADE scheme

The MADE scheme was recently suggested by Duffy [2006a]. The scheme approxi-

mates the diffusion term of equation (2.5) by

∂2f ij
∂s2

≈ 1
h2

(f ij+1 − 2f i+1
j + f ij−1).

The resulting difference equation is given by

0 = −1
k

(f i+1
j − f ij) +

α

h2
(f ij+1 − 2f i+1

j + f ij−1) +
β

2h
(f ij+1 − f ij−1) + γf if

Rearrangement of terms give

f i+1
j = Āf ij+1 + B̄f ij + C̄f ij−1, (5.1)

where

Ā =
2αk + βkh

2h2 + 4αk
,

B̄ =
h2 + γkh2

h2 + 2αk
, and

C̄ =
2αk − βkh
2h2 + 4αk

.

5.2.1 Truncation error of the MADE scheme

The local truncation error is given by

T ij = Gij(F ) = −1
k

(F i+1
j − F ij ) +

α

h2
(F ij+1 − 2F i+1

j + F ij−1) +
β

2h
(F ij+1 − F ij−1) + γF ij

= −
∂F ij
∂q

+ α
∂2F ij
∂s2

+ β
∂F ij
∂s

+ γF ij + . . .

+k

(
−1

2
∂2F ij
∂q2

)
+

k

h2

(
−2α

∂F ij
∂q

)
+ h2

(
1
12
α
∂4F ij
∂s4

+
1
6
β
∂3F ij
∂s3

)
+ . . .
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Since F is the solution of the partial differential equation, the local truncation error is

T ij ≈ k

(
−1

2
∂2F ij
∂q2

)
+

k

h2

(
−2α

∂F ij
∂q

)
+ h2

(
1
12
α
∂4F ij
∂s4

+
1
6
β
∂3F ij
∂s3

)

= O(k) +O(
k

h2
) +O(h2).

5.2.2 Consistency of the MADE scheme

The MADE scheme is only conditionally consistent with the initial value Black and

Scholes partial differential equation. Assume there exists a relation between k and h

such that

k = hx.

The local truncation error may then be written as

T ij = hx

(
−1

2
∂2F ij
∂q2

)
+ hx−2

(
−2α

∂F ij
∂q

)
+ h2

(
1
12
α
∂4F ij
∂s4

+
1
6
β
∂3F ij
∂s3

)
+ . . .

By letting h→ 0 we observe that the second term

lim
h→0

hx−2

(
−2α

∂F ij
∂q

)
→ 0, x > 2, (5.2)

doesn’t unconditionally tend to zero. The MADE scheme is only consistent with the

initial value Black and Scholes partial differential equation when x > 2.

Clearly the stated relationship between k and h doesn’t guarantee x > 2 uncondition-

ally. From the algebraic manipulation

x =
log k
log h

,

it is clear that k = 1, for instance never yields a value for x > 2. If k > 1 then one

would be tempted to choose values of h → 1+, while values of k < 1, as is mostly

the case, values of h → 1− appears tempting. This is depicted in figure (5.1). Before

choosing a value of h ≈ 1, it should be noted that the restriction of x > 2 was derived in

the limit where h→ 0. Choosing h ≈ 1 might thus not be the appropriate choice. The

exact relationship between k and h for any value of h is not trivially derivable as the

two quantities have different units. Perhaps a better way to determine this relationship

is to formulate the problem in terms of number of grid points, which is unit-less for

both the temporal and spatial axes. Let

M = Nx.
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Figure 5.1: Values of x for an arbitrarily chosen k < 1 (left) and k > 1 (right). It is apparent that values of

h→ 1− in the case where k < 1 or h→ 1+ when k > 1 result in large positive values for x.

Taking sχ = 0, the truncation error is given by

T ij = TN−x

(
−1

2
∂2F ij
∂q2

)
− 2αT

s2
ψ

N2−x ∂F
i
j

∂q
+
sψ
N2

(
1
12
α
∂4F ij
∂s4

+
1
6
β
∂3F ij
∂s3

)
+ . . .

By letting N → ∞ we find T ij → 0 when x > 2. Since M and N are both without

units and M,N > 1, we generalize that the scheme is consistent for M > N2, which

is severely restrictive.

5.2.3 Stability of the MADE scheme

We test stability of the MADE scheme by making use of the von Neumann technique.

Substituting f ij from equation (5.1) for ei%jhΥi (see equation 4.15) we obtain

ei%jhΥi+1 = Āei%j+1hΥi + B̄ei%jhΥi + C̄ei%j−1hΥi

Which, after rearranging terms gives

Υ = Āei%h + B̄ + C̄e−i%h

= (Ā+ C̄) cos %h+B + i(Ā− C̄) sin %h,

simplified as Υ = X + iY ,

where

X =
2αk cos %h+ h2 + γkh2

h2 + 2αk
, and Y =

βkh sin %h
h2 + 2αk

.
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In order to simplify our analysis we make the following assumptions:

• s ∈ [sχ, sψ], where sχ = 0 and sψ = Nh.

• We define terms “small s” and “large s” as h and Nh respectively.

• We restrict our analysis to the classical Black and Scholes partial differential

equation, namely α = 1
2σ

2s2, β = rs, and γ = −r.

• We assume 0 < rk < 1, and

• We assume that N is sufficiently large so that N − 1 ≈ N ≈ N + 1.

Employing these assumptions, we obtain after algebraic manipulation the following

simplifications for X and Y

X =


σ2k cos %h+(1−rk)

σ2k+1 if s is small, and
σ2N2k cos %h+(1−rk)

σ2N2k+1 if s is large.

and

Y =


rk sin %h
σ2k+1 if s is small, and

rNk sin %h
σ2N2k+1 if s is large.

. (5.3)

If s is small then both X < 1 and Y < 1. The most likely range for %h where |Υ| > 1

is where sin %h = cos %h =
√

2/2. Under these conditions, values for |Υ| are given as

|Υ| ≈


√

2
2

√
σ4k2+1

σ2k+1 < 1 if rk → 1,
√

2
2 σ2k+1

σ2k+1 < 1 if rk → 0.
.

The scheme seems stable when s is small

When s is large, i.e. s = Nh coupled with sin %h = cos %h =
√

2
2 and rk → 1, the

approximate value for |Υ| that transpires is

|Υ| ≈

√
2

2

√
(σ2N2k)2 +N2

σ2N2k + 1
.

Under the assumed conditions, the stability of the scheme depends on the magnitude

of σ2k (for simplicity assumed to range between 0 and 1),

|Υ| ≈


√

2
2N < 1 if σ2k → 1,
√

2N
2 > 1 if σ2k → 0.

.

The scheme may become unstable if both σ2k → 0 and rk → 1. For any given value

for k, instability becomes likely if σ2 becomes small in comparison to r. The likelihood
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of an unstable scheme scales with the number of spatial steps. Since k is generally very

small, interest rates need to be excessive coupled with very low volatility. Neither these

normally occur and for virtually all practical applications, the MADE scheme may be

regarded as stable.

An interesting observation is that stability for the MADE scheme is related to the rela-

tive magnitudes of r and σ2. This theme often comes to the fore in discussions relating

to spurious oscillations that occur in convection dominant partial differential equations

[see for instance Duffy, 2004a; Seydel, 2004]. If convection is absent, then the MADE

scheme becomes unconditionally stable.

Stability of the MADE scheme in the absence of convection

The MADE scheme for a heat equation is given by

vi+1
j − vij
κ

=
vij+1 − 2vi+1

j + vij−1

η2

Rearranging terms give

vi+1
j =

κ

η2 + 2κ
vij+1 +

η2

η2 + 2κ
vij +

κ

η2 + 2κ
vij−1.

By applying von Neumann analysis, we substitute vij for ei%jηΥi in order to obtain

ei%jηΥi+1 =
κ

η2 + 2κ
ei%(j+1)ηΥi +

η2

η2 + 2κ
ei%jηΥi +

κ

η2 + 2κ
ei%(j−1)ηΥi

with Υ =
κ

η2 + 2κ
ei%η +

η2

η2 + 2κ
+

κ

η2 + 2κ
e−i%η

= 2
κ

η2 + 2κ
cos %η +

η2

η2 + 2κ

=
η2 + 2κ cos %η

η2 + 2κ
which leads to |Υ| ≤ 1.

The possibility of instability in the MADE scheme is therefore only present for partial

differential equations with convection terms.

5.2.4 An effective range for the MADE scheme

Figure (5.2) depicts the impact of inconsistency and instability on option prices. A

European vanilla option was priced with s0 = 100, X = 100, T = 1, r = 0.1 and

σ = 0.25. The analytical value, using the generalized Black and Scholes closed form
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Figure 5.2: MADE: European option prices compared to analytical solution. Inputs were S0 = 100,

X = 100, T = 1, r = 0.1 and σ = 0.25. Stability and consistency (top) is enforced with N = 20 and

M = 440. Inconsistency (middle) is apparent with N = 220 and M = 40, while the scheme also

becomes unstable with σ = 0.05 and r = 0.75 (bottom).
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formula [Haug, 1998], is 14.98.

In each case a similar total number of grid points were used (8800 grid points), and the

analytical solution was subtracted from the finite difference solution. The top graphic

shows a stable and consistent scheme achieved by putting M > N2, namely N = 20

and M = 440. The error ranged between −0.4 < err < 0.2. The middle graphic

shows the impact of inconsistency with N = 220 and M = 40. The error ranged

between −12.5 < err < 0. The bottom graphic shows the impact of instability. This

was achieved by using a small σ2 compared to r, in this case σ = 0.05 and r = 0.75.

The spatial and temporal steps were kept at N = 220 and M = 40. It must be

noted that without the grid deliberately set to be inconsistent, the scheme appears to

be remarkably stable in the sense that errors are bounded (results may by unusable

though). With the “consistent grid” the scheme was still stable with r = 10 and σ =

0.01!

This fact is more a concern than an relief. In the case of the conventional schemes,

especially the explicit scheme, there almost is no middle ground. Either the scheme

is usable or it is not. The MADE scheme on the other hand may appear valid, but in

reality it returns very poor estimates unless extreme care is taken.

5.2.5 Concluding remarks for the MADE scheme

Even though the MADE scheme may be the most unpractical scheme discussed to far,

analysis of the scheme reveal some important themes that are also used by the Du Fort

and Frankel scheme, the main object of our attention. The MADE scheme is remark-

ably stable, even though only one minute change was made to the explicit scheme. By

changing the diffusion term one effectively reduce the values of the elements on the

diagonal of the matrix MR in the equation

MLf i+1 = MRf i + b̃.

By loosely referring to the absolute values of the elements on the diagonal as its mass,

we observe the the theme of shifting mass to the left hand side also occurs in implicit

schemes. The mass is either reduced to 0 in the case of the fully implicit scheme,

or roughly half its weight shifts to the left hand side of the equation in the case of

the Crank and Nicolson scheme. Whether this is a general rule of thumb remains a

topic for further research, but the notion certainly have merit and empirically evidence
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seems to support it. If this is the case then various techniques to force explicit schemes

to become stable may present themselves.

The drawback of manipulating the diffusion term is that the central point has to be

estimated over the temporal axis causing error terms of the form kx/hy . Such error

terms will necessarily lead to inconsistencies, which will also become apparent with

the Du Fort and Frankel scheme.

5.3 The Richardson scheme

We briefly provide background to the Richardson scheme. We do this for the initial

value Black and Scholes partial differential equation, relying on sources such as Smith

[1984] for findings relating to the heat equation. For our analysis we assume constant

parameters.

5.3.1 Difference equation for the Richardson scheme

The Richardson scheme is similar to the fully explicit scheme, but instead of using the

one–sided forward difference estimate of this scheme, the Richardson scheme makes

use of central differences in order to estimate the temporal derivative, i.e. in the Black–

Scholes framework
∂f ij
∂q
≈
f i+kj − f i−kj

2k
.

This adjustment leads to a difference equation

f̂ i+1
j = f̂ ij+1

(
2αk
h2

+
βk

h

)
+ f̂ ij

(
−4αk
h2

+ 2γk
)

+ f̂ ij−1

(
2αk
h2
− βk

h

)
+ f̂ i−1

j

= A∗f̂ ij+1 +B∗f̂ ij + C∗f̂ ij−1 + f̂ i−1
j . (5.4)

5.3.2 Local truncation error of the Richardson scheme

The local truncation error is given by

T ij = Gij(F ) = − 1
2k

(F i+1
j − F i−1

j ) +
α

h2
(F ij+1 − 2F ij + F ij−1) +

β

2h
(F ij+1 − F ij−1) + γF ij

= −
∂F ij
∂q

+ α
∂2F ij
∂s2

+ β)
∂F ij
∂s

+ γF ij . . .

−1
3
k2
∂3F ij
∂q3

+ . . .+
α

12
h2
∂4F ij
∂s4

+ . . .+
β

6
h2
∂3F ij
∂s3

+ . . .
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Since F is the solution to the partial differential equation we have the principal part of

the truncation error is thus

T ij = −1
3
k2
∂3F ij
∂q3

+
1
12
h2

(
2
∂3F ij
∂s3

+
∂4F ij
∂s4

)
.

Hence

T ij = O(k2) +O(h2).

5.3.3 Consistency of the Richardson scheme

If we set k = zh then it can be shown that

lim
h→0

T ij = lim
h→0
−1

3
k2
∂3F ij
∂q3

+
1
12
h2

(
2
∂3F ij
∂s3

+
∂4F ij
∂s4

)

= lim
h→0
−1

3
z2h2

∂3F ij
∂q3

+
1
12
h2

(
2
∂3F ij
∂s3

+
∂4F ij
∂s4

)
= 0.

The Richardson scheme is therefore consistent with the initial value Black–Scholes

partial differential equation.

5.3.4 Stability of the Richardson scheme

In order to derive the stability conditions of this three time level scheme, we make use

of a technique described by Smith [1984]. The difference equation (5.4) may be written

in matrix form as

f̂ i+1
1

f̂ i+1
2

...

f̂ i+1
N−2

f̂ i+1
N−1


=



B∗ A∗

C∗ 0
. . .

0 A∗

C∗ B∗





f̂ i1

f̂ i2
...

f̂ iN−2

f̂ iN−1


+



f̂ i−1
1

f̂ i−1
2

...

f̂ i−1
N−2

f̂ i−1
N−1


+



C∗f̂ i0

0
...

0

A∗f̂ iN


,

or alternatively

f i+1 = Mf i + f i−1 + b̃i, (5.5)

where the symbols have a similar meaning than in equation (4.10). If we put

vi =

 f i

f i−1

 ,
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then equation (5.5) may be written as a two time level equation

vi+1 = Pvi + ci,

where

P =

 M I

I 0

 ,

and

ci =

 b̃i

0

 ,

and I is the identity matrix of order N − 1.

The difference scheme is stable if each of the the eigenvalues of the matrix P has

an absolute value ≤ 1 [Smith, 1984]. By following a similar argument as described

by Smith [1984, example 3.2], it can be shown that the eigenvalues ω of P are the

eigenvalues of the matrix  ωg 1

1 0

 ,

where ωg is the gth eigenvalue of matrix M. In order to find the eigenvalues we evaluate

det

 ωg − ω 1

1 −ω

 = 0,

giving

ω2 − ωgω − 1 = 0.

The eigenvalues ωg are given by (see Smith [1984])

ωg = A∗ + 2
(√

B∗C∗
)

cos
gπ

N
, g = 1, 2, . . . , N − 1.

After substitution of A∗, B∗ and C∗ and some algebraic manipulation this becomes

ωg =
k

h2

(
2α+ βh+ 2 cos

gπ

N
(−8α2 + 4αβh+ 4αβh2 + 2βγh3)

1
2

)
. (5.6)

The eigenvalues of matrix P are

ω =
ωg ±

√
ω2
g + 4

2
, (5.7)

and the stability condition is

|ωg ±
√
ω2
g + 4| ≤ 2.
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In order to determine whether the Richardson scheme is stable, we assume a grid that

increasingly becomes finer, i.e. M,N →∞ and k, h→ 0. We also evaluate the angle
gπ
N where g is small implying that cos gπN → 1.

We consider 3 relations between k and h:

Case h >
√

k: ωg →∞ clearly results in |ω| > 1 implying an unstable scheme.

Case h =
√

k: ωg → 2α + i
√

32α. We write this as X + iY with X = 2α and

Y =
√

32α. The stability condition is

|X + iY ±
√

(X + iY )2 + 4| ≤ 2.

This may in turn be written as

|X + iY ± V + iW | ≤ 2

leading to (X + V )2 + (Y +W )2 ≤ 4,

where [Rabinowitz]

V =
1√
2

(√
(X2 + 4− Y 2)2 + 4X2Y 2 +X2 + 4− Y 2

) 1
2

, and

W =
sgn(X2 + 4− Y 2)√

2

(√
(X2 + 4− Y 2)2 + 4X2Y 2 −X2 − 4 + Y 2

) 1
2

.

The function sgn(·) is defined as

sgn(x) =


1 if x > 0,

0 if x = 0,

−1 if x < 0.

.

After some algebraic manipulation we obtain

V =
1√
2

(√
(28α2)2 + 277α2 + 16− 28α2 + 4

) 1
2

.

Since α > 0 we note that the lowest possible value for V is where α → 0. The

lower bound for V is therefore

V > 2.

Since X > 0 and (Y +W )2 > 0 we conclude that

(X + V )2 + (Y +W )2 > 4,

hence the scheme is unstable for h =
√
k.
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Case h <
√

k: In this case ωg → 0 which leads to |ω| → 2. Since |ω| = 2 only

occurs in the limit whenN,M →∞we conclude that for any finite grid |ω| > 2

indicating an unstable scheme in the Lax Richtmyer sense.

5.3.5 Concluding remarks for the Richardson scheme

The Richardson scheme proposes a method whereby the local truncation error of the

fully explicit scheme is improved so that the error of the approximating temporal

derivative is of order O(k2). Consistent with remarks by Smith [1984] (see 4.3) the

additional accuracy is only obtained by adding an additional grid point in calculating

the approximating difference equation. The Richardson scheme is unconditionally un-

stable. In line with the concluding remarks for the MADE scheme, certain observations

relating to the Richardson scheme is relevant. Where the MADE scheme removes mass

from the diagonal of the matrix MR in the equation

MLf i+1 = MRf i + b̃,

the Richardson scheme’s main activity, namely its temporal estimation, occurs on the

main diagonal, effectively adding weight the main diagonal.

5.4 The Du Fort and Frankel scheme

5.4.1 Introduction

The Du Fort and Frankel scheme, proposed in 1953 [Du Fort and Frankel, 1953], makes

use of various themes discussed in the two above schemes. It came into existence

in an effort to address the instability associated with the Richardson scheme [Smith,

1984]. The scheme is explicit, unconditionally stable and second order accurate in

both the spatial and temporal dimensions. As is the case with the MADE scheme,

the Du Fort and Frankel scheme is conditionally consistent with the partial differential

equation it solves. Furthermore, since the Du Fort and Frankel scheme is a two step

method, calculating the first temporal vector after the initial boundary requires some

other method.
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5.4.2 Difference equation for the Du Fort and Frankel scheme

The Du Fort and Frankel scheme makes use of a time derivative estimation similar to

the Richardson scheme,
∂f ij
∂q
≈ 1

2k
(f i+1
j − f i−1

j ).

The diffusion term is estimated by

∂2f ij
∂s2

≈ 1
h2

(f ij+1 − (f i+1
j + f i−1

j ) + f ij−1).

These estimates lead to a difference equation

0 = − 1
2k

(f i+1
j − f i−1

j ) +
α

h2
(f ij+1 − f i+1

j − f i−1
j + f ij−1) +

β

2h
(f ij+1 − f ij−1) + γf ij

After rearrangement of terms we obtain

f i+1
j = Äf ij+1 + B̈f ij + C̈f ij−1 + D̈f i−1

j ,

where

Ä =
2αk + βkh

h2 + 2αk
,

B̈ =
2γkh2

h2 + 2αk
,

C̈ =
2αk − βkh
h2 + 2αk

, and

D̈ =
h2 − 2αk
h2 + 2αk

.

5.4.3 Truncation error

The truncation error is given by

T ij = Gij(F )

= − 1
2k

(
F ij + k

∂F

∂q
+
k2

2
∂2F

∂q2
+
k3

3!
∂3F

∂q3
+ . . .− F ij + k

∂F

∂q
− k2

2
∂2F

∂q2
+
k3

3!
∂3F

∂q3
+ . . .

)
+
α

h2

(
F ij + h

∂F

∂s
+
h2

2
∂2F

∂s2
+
h3

3!
∂3F

∂s3
+ . . .+ F ij − h

∂F

∂s
+
h2

2
∂2F

∂s2
− h3

3!
∂3F

∂s3
+ . . .

)
+
α

h2

(
−F ij − k

∂F

∂q
− k2

2
∂2F

∂q2
− k3

3!
∂3F

∂q3
+ . . .− F ij + k

∂F

∂q
− k2

2
∂2F

∂q2
+
k3

3!
∂3F

∂q3
+ . . .

)
+
β

2h

(
F ij + h

∂F

∂s
+
h2

2
∂2F

∂s2
+
h3

3!
∂3F

∂s3
+ . . .− F ij − h

∂F

∂s
+
h2

2
∂2F

∂s2
− h3

3!
∂3F

∂s3
+ . . .

)
+γF ij
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After simplification this becomes

T ij = −∂F
∂q

+ α
∂2F

∂s2
+ β

∂F

∂s
+ γF . . .

+k2

(
−1

3
∂3F

∂q3

)
+ h2

(
1
12
α
∂4F

∂s4
+

1
6
β
∂3F

∂s3

)
+
k2

h2

(
−α∂

2F

∂q2

)
+ . . .

Since F is the solution to the partial differential equation, the principal error may be

summarised as

T ij = O(k2) +O(h2) +O
(
k2

h2

)
.

Although the scheme is second order accurate in both the temporal and spatial di-

mension, comments by Lindsay [2005] suggests that increased accuracy can only be

obtained by increasing the number of time and spatial steps in concert. This comment

will be investigated in more detail later in this document.

5.4.4 Consistency

Since the principal truncation error has a term O(k2/h2), consistency will be condi-

tional. Put

M = Nx.

Recalling that k = T/M and h = (sψ − sχ)/N , the principal truncation error may

then be written as

T ij ≈
T 2

N2x

(
−1

3
∂3F

∂q3

)
+

(sψ − sχ)2

N2

(
1
12
α

4F

s4
+

1
6
β
∂3F

∂s3

)
+
T 2N2−2x

(sψ − sχ)2

(
−α∂

2F

∂q2

)
..

By making the grid increasingly finer we find that the error does only tend to zero if

x > 1. Since N,M > 1, we generalize that the consistency condition holds when

M > N .

lim
N→∞

T ij =


∞ if x < 1,

T 2

(sψ−sχ)2

(
−α∂

2F
∂q2

)
if x = 1, and

0 if x > 1.

The scheme is consistent with the hyperbolic partial differential equation

∂F

∂q
+$Ω = α

∂2F

∂s2
+ β

∂F

∂s
+ γF ,

where

$ =
αT 2N2−2x

(sψ − sχ)2
, and

Ω =
∂2F

∂q2
.
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5.4.5 Impact of inconsistency on the accuracy of the Du Fort and

Frankel scheme

The “additional” term, $Ω, in the partial differential equation impacts on the accuracy

of the estimate. If we assume that sχ ≈ 0 and noticing that $ reaches a maximum

value when α = 1
2σ

2s2
ψ , the coefficient may be simplified to $ = 1

2σ
2T 2N2−2x. This

quantity clearly scales inversely with x.

The second relevant quantity of $Ω is the value of the partial derivative, which is

difficult to assess for a general case. Instead, we approximate it on a case by case basis

with the difference equation

∂2F ij
∂q2

≈ 1
k2

(
F i+1
j − 2F ij + F i−1

j

)
,

where F ij is the true solution at grid points i and j. Graphic (5.3) shows the estimation

of Ω for a European call option. Noticing the scale of the value axes, it is apparent that

Ω becomes a factor, firstly close to maturity when time decay is rapid, and secondly

along the present value of the strike of the option, where time decay is a maximum for

any given time to maturity.

It is worthwhile to note that, unless the strike price is very high, $ is comparatively

small when Ω is big, namely close to the strike. A simple analysis, assuming that the

strike is X = (sψ − sχ)/2, and recalling that N = (sψ − sχ)/h, reveals a vastly

reduced coefficient associated with high values for the second temporal derivative.

$ ≈ σ2T 2N1−2x

4h
.

An important factor to investigate is the impact of discontinuities on the value of Ω.

Since F is the solution of the partial differential equation, any discontinuity may result

in infinite partial derivatives. If such discontinuities occur near the maximum value

of the spatial derivative, then possibly both $ and Ω may become very large resulting

in significant inaccuracies. A good example of such behavior my occur with barrier

options where the barrier level (H) is set high such that H = sψ . The value of Ω for

such a barrier option is shown in figure (5.4). The value for Ω was numerically ob-

tained from the closed form solution for barrier options by Merton and also Rubinstein

[Haug, 1998]. The discontinuity at the barrier level results in high levels for Ω which

in turn will be multiplied with a relative high value for $. Unless M will be chosen to

be high in comparison to N , the Du Fort and Frankel scheme may prove inefficient for
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X
0

200 maturity
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104

 

← s →

 

F tt

Figure 5.3: The numerical estimate for ∂
2F
∂q2

for a European call option. Inputs were s = 0 : 10 : 200,

X = 100, T = 0 : 0.05 : 0.5, r = 0.1 and σ = 0.25.
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options where a high degree of discontinuity in the price occurs.

X H=200maturity

6 moths

0

0.05

1

20

403

8474

← s →

F tt

Figure 5.4: The numerical estimate for ∂
2F
∂q2

for an up-and-out barrier option. Inputs were

s = 0 : 10 : 200, X = 100, T = 0 : 0.05 : 0.5, r = 0.1 and σ = 0.25. The barrier is set to

H = sψ = 200.

5.4.6 Stability of the Du Fort and Frankel scheme

The Du Fort and Frankel scheme is unconditionally stable. This result is well docu-

mented and often shown for pure diffusion parabolic partial differential equations [see

for instance Smith, 1984]. However, the presence of convection in the Black Sholes

equation challenges any attempt to proof stability. Following is an outline showing

stability under extreme conditions.

The Du Fort and Frankel scheme may be presented in matrix form as

f i+1 = Mf i + D̈Fi−1 + b̃i,
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where fx, M and b̃x have similar meanings to equation (5.5) above, and D̈ is scalar.

Since the Du Fort and Frankel scheme involves more than one time step, our approach

will be similar to that of the Richardson scheme above. Put

vi =

 f i

f i−1

 , P =

 M D̈I

I 0

 , and ci =

 b̃i

0

 ,

where I is the identity matrix. The difference scheme may then be rewritten as

vi+1 = Pvi + ci.

We need to find the eigenvalues of the matrix ωg D̈

1 0

 ,

where ωg represents the g’th eigenvalue of the matrix M. Similar to the argument in

section (5.3.4) [see also Smith, 1984], the eigenvalues are given by

ω =
ωg ±

√
ω2
g + 4D

2
. (5.8)

The eigenvalues ωg may be found in closed form

ωg = Ä+ 2
√
B̈C̈ cos

gπ

N

=
1

h2 + 2αk

(
2αk + βkh+ 2kh

√
4αγ − 2βγh

)
cos

gπ

N
.

If we put k = zh, we may, after some basic algebraic manipulation, rewrite the above

as

ωg =
1

h+ 2αz

(
2αz + βzh+ 2zh

√
4αγ − 2βγh

)
cos

gπ

N
. (5.9)

We investigate stability under two extreme cases, firstly for a grid that becomes in-

creasingly fine, i.e. h → 0, and secondly for a grid with only a few grid points, such

that h→ sψ , k → T and s ≈ sψ .

Stability with a fine grid

If h→ 0 then ωg → cos gπN and D̈ → −1. We consider 3 cases:

cos qπN = 0

ω = i

with absolute value |ω| = 1
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cos qπN = 1

ω =
1±
√
−3

2

=
1
2
± i

√
3

2

with absolute value |ω| =

√
1
4

+
3
4

= 1

cos qπN = −1

ω =
1±
√
−3

2

=
1
2
± i

√
3

2

with absolute value |ω| =

√
1
4

+
3
4

= 1

The Du Fort and Frankel scheme appears to be stable with an extremely fine grid.

Stability with a coarse grid

We investigate the impact on stability when the grid becomes coarser, i.e. M,N → 1.

This results in k → T , h→ sψ and s = sψ. Substituting these into the coefficients Ä,

B̈, C̈ and D̈ gives simplified values

Ä =
σ2T + rT

σ2T + 1
,

B̈ = − 2rT
σ2T + 1

,

C̈ =
σ2T − rT
σ2T + 1

, and

D̈ =
1− σ2T

σ2T + 1
.

Put

E = Ä+ 2
√
B̈C̈.

We investigate cases where r ≥ σ2 and where r < σ2.

1. r ≥ σ2

We investigate two sub cases. The first is when σ2 → 0 and the second is when

σ2 → r.
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• σ2 → 0

E → rT (1 + 2
√

2).

The majority of finance problems occur in the range r < 1. If M > 1 +

2
√

2, which is certainly the minimum number of temporal steps (given that

at least 3 steps are required), then E < 1. If we assume an upper bound

E = 1 and | cos gπ| = 1 then

ω =
E ±

√
E2 − 4D
2

ω =
1
2
± i

√
3

2

with absolute value |ω| =

√
1
4

+
3
4

= 1.

• σ2 → r

The coefficients will tend to

Ä → 2rT
1 + rT

,

B̈ → − 2rT
1 + rT

,

C̈ → 0,

D̈ → 1− rT
1 + rT

.

Substituting these values into E gives E = Ä. If we assume that rT < 1,

which certainly is the case for the vast majority of financial problems, then

E ≤ 1. Assume the upper bound E = 1 and with a similar argument than

above it can be shown that

|ω| ≤ 1.

2. r ≤ σ2

Since r → σ2 ⇔ σ2 → r, we only investigate case where r → 0. Adjusting the

parameters for these assumptions leads to

Ä → σ2T

1 + σ2T
,

B̈ → 0,

C̈ → σ2T

1 + σ2T
, and

D̈ → 1− σ2T

1 + σ2T
.
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By following a similar argument than above, we find

E = Ä < 1,

which leads to

|ω| ≤ 1

for any choice of −1 ≤ cos gπ ≤ 1.

These arguments provide evidence that the Du Fort and Frankel scheme is stable for

realistic choices of r, σ and T .

5.5 Conclusion

We investigated three schemes that share two themes found in the Du Fort and Frankel

finite difference scheme. The first theme is the improvement of accuracy by approxi-

mating the temporal derivative by making use of a two-sided approach. This approach

is utilized by the Richardson scheme, and this adjustment leads to unconditional insta-

bility.

The second theme pertains to the conditional stability associated with the explicit

scheme. By adjusting the approximation for the diffusion term in the partial differ-

ential equation, one obtains a reduction of mass along the main diagonal of the right

hand side matrix in the matrix equation

MLf i+1 = MRf i + b̃.

This theme is employed in the MADE scheme leading to improved stability in the

MADE scheme and is also responsible for stability associated with the Du Fort and

Frankel scheme.

The principal compromise for stability is that the scheme is only conditionally con-

sistent with the partial differential equation. This is a result of having error terms

associated with the diffusion term of the partial differential equations of the form

TDiffusion Term = X + Y
kx

hy
.

These schemes’ consistency depends on the relative tempos at which k, h → 0, i.e.

the relative scales of x and y. The inconsistency of the MADE scheme seems more

severe due to (i) the order difference between x = 1 and y = 2, demanding a high
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number of temporal steps in relation to spatial steps, and (ii) the Y coefficient in the

case of the MADE scheme including terms of ∂f
∂q , which also occurs in the original

partial differential equation. Inconsistency of the Du Fort and Frankel scheme is far

more accommodating by having x and y of similar order and also due to the fact that

the Y coefficient is in terms of ∂
2f
∂q2 , which is generally a more manageable quantity.

The main qualification of the magnitude of inaccuracy associated with inconsistency

in the Du Fort and Frankel scheme pertains to areas where ∂2f
∂q2 becomes large. Ex-

perimentation lead us to believe that such inaccuracies will predominantly occur near

discontinuities in the function f . Discontinuous behavior is often a feature of financial

problems and consequently this topic will be taken further in later chapters.

A summary of the properties of the three schemes is presented in Table 5.1.

Property MADE Richardson Du Fort and Frankel

Truncation Error O
(
k + k

h2 + h2
)
O(k2 + h2) O

(
k2 + k2

h2 + h2
)

Consistency M > N2 Consistent M > N

Stability Practically Unstable Stable

Table 5.1: A summary of the properties of the MADE, Richardson and Du Fort and Frankel finite

difference schemes.
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Chapter 6

Miscellaneous topics: Convexity

dominance and consistency

improvement

6.1 Introduction

Spurious oscillations associated with convexity dominant partial differential equations

is a well known problem [see for instance Seydel, 2004; Duffy, 2004b]. According

to Duffy [2004b] these oscillations occur with schemes that makes use centered differ-

encing in space combined with averaging in time (such as the Crank–Nicolson scheme)

and when drift is high compared to diffusion. Seydel [2004] on the other hand describes

oscillatory problems in terms of the Péclet number, which is defined as

Pe =
2r
σ2

h

S
.

It is interesting to note the similarities of the Péclet number and the stability conditions

of the MADE scheme (Section 5.2.3). Spurious oscillations is associated with a high

Péclet number, which in turn makes instability in the MADE scheme more likely. Sim-

ilarly, in the case of the heat equation, where convection is absent, Pe = 0 and the

MADE scheme becomes unconditionally stable.

The Crank–Nicolson scheme is often criticized for its susceptibility to spurious oscil-

lations [Duffy, 2004b]. Using that scheme as a benchmark, we investigate the behavior
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6.2 Convection dominated spurious oscillations 63

of the Du Fort and Frankel scheme in the presence of a very high Péclet number in

order to determine if it is equally prone to such oscillations.

6.2 Convection dominated spurious oscillations

The numerical solution of convection dominated partial differential equations are known

to produce spurious oscillations in the first derivative of the spatial variable[Duffy,

2004b; Seydel, 2004]. These oscillations scale with the Péclet number, which is de-

fined as

Pe =
2r
σ2

h

S
.

Duffy [2004a] argues that oscillatory behavior occurs when A < 0 (see equation 3.17).

This places the restriction on h being

h ≤ |2α
β
|,

which is similar to the definition of the Péclet number. In the extreme case, when σ = 0

the difference scheme approximates the hyperbolic equation

−∂f
∂q

+ β
∂f

∂s
+ γf = 0.

Initial errors are not dissipated leading to oscillations.

According to Duffy [2004b] the time averaging associated with the Crank–Nicolson

scheme makes it especially prone to producing oscillations, while the fully implicit

scheme is free of such behavior. Our own investigations do not support this notion, as

is clearly visible in figure (6.1).

The delta of a European option is numerically calculated by making use of central

differences, i.e.
∂f

∂s
≈ f(s+ h)− f(s− h)

2h
.

The left hand side depicts the case where Pe = 1 while the right hand side depicts

Pe = 30. Clearly the delta on the right hand side displays oscillatory behavior, unre-

lated to the finite difference scheme employed.

6.2.1 One sided convection differencing

Spurious oscillations associated with convection dominant equations are ascribed to

the central differencing of the convection term [Duffy, 2004b]. We experiment with
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Figure 6.1: Oscillations associated with convection domination. The left hand side graphics show a

numerical approximation of the delta of an European option with S0 = 100, X = 100, T = 1, r = 0.15

and σ = 0.3, while the right hand graphic shows the delta with σ = 0.01.
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a different estimation, namely a one sided differencing approximation [Tavella and

Randall, 2000, for instance]. We find the approximations by subtracting the Taylor

expansion for f ij+2 from Taylor expansion of 4f ij+1 (and similarly by subtracting 4f ij−1

from f ij−2).

∂f

∂s
≈ 1

2h
(−f ij+2 + 4f ij+1 − 3f ij) +

1
3
h2 ∂

3f

∂s3
− 1

4
h4 ∂

4

∂s4
+ . . . , or

∂f

∂s
≈ 1

2h
(3f ij − 4f ij−1 + f ij−2) +

1
3
h2 ∂

3f

∂s3
− 1

4
h4 ∂

4

∂s4
+ . . . .

Substituting these approximation into the Black and Scholes partial differential equa-

tion leads to the Du Fort and Frankel difference equations

f i+1
j =



−βkh
h2+2αkf

i
j+2 + 2αk+4βkh

h2+2αk f ij+1 + 2γkh2−3βkh
h2+2αk f ij + . . .

2αk
h2+2αkf

i
j−1 + h2−2αk

h2+2αkf
i−1
j if j ≥ 3,

2αk
h2+2αkf

i
j+1 + 3βkh+2γkh2

h2+2αk f ij + 2αk−4βkh
h2+2αk f ij−1 + . . .

βkh
h2+2αkf

i
j−2 + h2−2αk

h2+2αkf
i−1
j if j ≤ N − 1.

Results obtained from experimentation lead to the conclusion that one sided differenc-

ing has little impact on the reduction of spurious oscillations. The algorithm (see A.2.4)

alternates between upwards and downwards differencing.

6.3 Consistency improvements of the Du Fort and Frankel

scheme

The inconsistency associated with the Du Fort and Frankel scheme originates from

error terms of the form
kx

hy
Z.

The relationship between x and y determines the severity of the inconsistency of the

scheme, for instance the MADE scheme has x = 1 and y = 2 while the Du Fort and

Frankel scheme has x = 2 and y = 2, which lead to more easily obtainable consistency.

Figure 6.3 shows errors made with the Du Fort and Frankel scheme (left) compared to

errors made with the Crank and Nicolson scheme (right). The figures at the bottom

shows a similar error for both schemes obtained with a grid withM = 50 andN = 20.

The figures at the top shows the Du Fort and Frankel scheme to be clearly inferior to

the Crank and Nicolson scheme with M = 20 and N = 50.
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Figure 6.2: Oscillations created by two methods of convection approximation. Similar input parameters

were used for both the Du Fort and Frankel scheme with central convection differencing and the Du Fort

and Frankel scheme with one-sided convection estimation. The figure shows a numerical approximation of

the delta of an European option with S0 = 100, X = 100, T = 1, r = 0.15 and σ = 0.01.

We experiment with a number of measures which could achieve satisfactory consis-

tency for the Du Fort and Frankel scheme. The first measure is to simply apply a

different mesh size such that errors for the Du Fort and Frankel scheme is comparable

to that of the Crank and Nicolson scheme. A second measure is to employ Richardson’s

extrapolation in order to cancel terms of the order k2/h2.

6.3.1 Changing the mesh size

Since the Du Fort and Frankel scheme is explicit, computation is less taxing than for a

similar implicit scheme such as the Crank and Nicolson scheme, which involves matrix

inversion or an equivalent technique. Table (6.1) shows the time taken (in seconds) to

compute different grid sizes by using the Crank–Nicolson scheme (see section (A.2.1)

for the algorithm used) and the Du Fort and Frankel scheme (A.2.3). Even for relative

small grid sizes, the Du Fort and Frankel scheme is far more efficient.

It is thus possible to increase the number of temporal steps such as to enforce a more

satisfactory consistency for the Du Fort and Frankel scheme, and at the same time still

achieve comparable or better results than the Crank–Nicolson scheme utilizing similar
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Figure 6.3: Errors associated with Du Fort and Frankel approximations (left) with M = 20 and N = 50

(top) and M = 50 and N = 20 (bottom) compared to errors associated with a Crank and Nicolson

approximation (right) with similar grid settings top and bottom for a European option with S0 = 100,

X = 100, T = 1, r = 0.15 and σ = 0.3.

Grid size Du Fort Frankel Crank–Nicolson Factor

1000× 1000 2.07 20.31 9.8

500× 500 0.27 2.08 7.8

250× 250 0.05 0.25 5.4

Table 6.1: Time to compute different grid sizes by using the Du Fort and Frankel scheme and the Crank

and Nicolson scheme
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resources1. Figure (6.4) depicts three scenarios. The top graphic is the error made

with a N = 250 and M = 250 grid calculated with the Crank–Nicolson scheme.

The middle graphic depicts a similar mesh calculated with the Du Fort and Frankel

scheme. For similar grid sizes, a lower accuracy was achieved by the Du Fort and

Frankel scheme, however the Du Fort and Frankel scheme only took 0.045 seconds to

compute compared to 0.25 seconds for the Crank–Nicolson scheme. By setting a finer

grid (M = 1500 and N = 250) the Du Fort and Frankel scheme achieved a similar

accuracy than the Crank and Nicolson scheme and the time taken to compute was also

similar, namely 0.23 seconds.

6.3.2 Consistency improvement by Richardson’s extrapolation

Richardson’s extrapolation [see for instance Feldman; Wilmott, 2000b] is a well known

technique to improve the accuracy of numerical approximations. We experiment with

the applicability of Richardson’s extrapolation in order to improve the consistency

characteristics of the Du Fort and Frankel scheme. From section (5.4.3) a solution

for the Black–Scholes partial differential equation may be interpreted as

F ij = f̂ ij(k, h) + T ij ,

where F ij is the exact solution of the partial differential equation and f̂ ij(k, h) is the

finite difference solution of F ij given a mesh with spatial step size h and temporal step

size k. The truncation error is of the form

T ij ≡ k2ε1 + h2ε2 +
k2

h2
ε3 +O(k4) +O(h3) +O(

k4

h2
).

By substituting T ij with its extended form, and discarding higher order terms, we write

F̂ ij as an improved approximation to F ij .

F̂ ij = f̂ ij(k, h) + k2ε1 + h2ε2 +
k2

h2
ε3.

We calculate 2 finite difference solutions, namely f̂ ij(k1, h) and f̂ ij(k2, h). By subtract-

ing k2
1
k2
2

of the second solution from the first, we obtain(
k2

2 − k2
1

k2
2

)
F̂ ij = f̂ ij(k1, h)− k2

1

k2
2

f̂ ij(k2, h) + h2ε2

(
k2

2 − k2
1

k2
2

)
,

1We measure resources here in terms of the time used to compute a result.
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Figure 6.4: Errors associated with Crank and Nicolson (top) for an M = 250 and N = 250 grid compared

to errors associated with Du Fort and Frankel approximations (middle and bottom). The middle figure is for

a grid size of M = 250 and N = 250 while the bottom figure is for a grid size of M = 1500 and

N = 250. The Du Fort and Frankel solution with the finer grid took similar computing resources than the

Crank and Nicolson solution (0.23 seconds and 0.25 seconds respectively). The option that was computed

was a European option with S0 = 100, X = 100, T = 1, r = 0.15 and σ = 0.3.
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which after rearranging terms give

F̂ ij =
k2

2 f̂
i
j(k1, h)− k2

1 f̂
i
j(k2, h)

k2
2 − k2

1

+ h2ε2. (6.1)

If we use F̂ ij as our solution instead of either f̂ ij(k1, h) or f̂ ij(k2, h), we obtain a con-

solidated scheme with truncation error

T ij = O(k4) +O(h2) +O(
k4

h2
).

These convergence properties are firstly superior to that of Crank and Nicolson, and

secondly, its consistency properties is vastly superior to the unaltered Du Fort and

Frankel scheme since the lowest order mixed error term is now O( k
4

h2 ) instead of

O( k
2

h2 ). Figure (6.5) depicts two mesh sizes (top and middle) and a Richardson’s ex-

trapolation combining the two (bottom). The Richardson’s extrapolation clearly pro-

duces superior results.

Even though a solution is required to be calculated twice, the total computational re-

sources utilized is far superior to that of similar implicit schemes such as the Crank and

Nicolson scheme. As a measure of comparison the above example took 0.004 seconds

for the first solution and 0.002 for the second. The combined time taken by the Richard-

son’s extrapolation was 0.0066 seconds. A similar error profile was obtained with the

Crank and Nicolson scheme by using N = 80 and M = 80, taking 0.0169 seconds,

2.55 times longer than the Du Fort and Frankel scheme with Richardson’s extrapola-

tion. This is depicted in Figure (6.6). The top part depicts a Du Fort and Frankel scheme

with M = 180. Although it utilizes similar computational resources than the Richard-

son’s extrapolation (middle) with M1 = 120 and M2 = 60, its performance is clearly

inferior compared to the Richardson’s extrapolated Du Fort and Frankel scheme. A

similar error surface was obtained with a Crank and Nicolson scheme (bottom) with

M = 80 and N = 80, but since matrix inversion is involved with this scheme, it still

took more than twice the time to compute than the Du Fort and Frankel scheme with

Richardson’s extrapolation. Comparing computing time with computing time, the Du

Fort and Frankel scheme with Richardson’s extrapolation vastly outperforms the Crank

and Nicolson scheme!
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Figure 6.5: Errors associated with the Du Fort and Frankel scheme for a European option with S0 = 100,

X = 100, T = 1, r = 0.15 and σ = 0.3. The number of spatial steps were N = 100 with M1 = 120

(top), M2 = 60 (middle), and a Richardson’s extrapolation with k1 = T/M1 and k2 = T/M2 (bottom).
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Figure 6.6: Errors for a European option with S0 = 100, X = 100, T = 1, r = 0.15 and σ = 0.3. The

number of spatial steps were N = 100 with a Du Fort And Frank scheme with M = 180 (top), a

Richardson’s extrapolated Du Fort and Frankel scheme with M1 = 120 and M2 = 60 (middle), and a

Crank and Nicolson scheme with M = 80 and N = 80 (bottom).
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6.3.3 Comparison of techniques to improve consistency character-

istics

Table 6.2 provides a qualitative comparison of the two measures to improve the con-

sistency characteristics of the Du Fort and Frankel scheme.

Benchmark Change mesh size Richardsons extrapolation

Elimination of the problem Gradual improvement Marked improvement

Ease of implementation Trivial Minor algorithmic adjustment

Spin offs None Better truncation error

Time to achieve results

comparable to Crank & Nicolson Similar Marked improvement

Table 6.2: A summary of the measures taken to improve consistency.

6.4 Conclusion

We investigated techniques to reduce oscillations associated with convexity dominance

as well as techniques to reduce the impact of the inconsistency of the Du Fort and

Frankel scheme with the Black and Scholes partial differential equation.

Some literature claim that oscillations associated with convexity dominance is a result

of firstly the way in which the temporal derivative is discretised by averaging, such

as is the case with the Crank and Nicolson scheme, and secondly as a result of the

central convection differencing. Neither these claims were consistent with our exper-

iments. Firstly, both the fully implicit scheme (that makes use of a one-sided time

discretisation) and the Du Fort and Frankel scheme (that makes use of a central time

discretisation) display oscillatory behavior in the presence of convexity dominance.

Secondly, by using one-sided convexity discretisation also did not improve the magni-

tude of oscillations. We concur with the conclusion of Seydel [2004] that oscillatory

behavior is an inherent characteristic of the model and not the scheme. Furthermore,

for most realistic problems in finance, these oscillations have minimal impact on the

solution. The impact of oscillations on the “Greeks” were not exhaustively tested.

Insofar the inconsistency of the Du Fort and Frankel scheme goes, we experimented

with two ideas. The first was to simply increase the number of temporal steps, on the
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premise that explicit schemes such as the Du Fort and Frankel scheme utilizes less

computational resources than implicit schemes. Implicit schemes require matrix inver-

sion which is relatively complex compared to the computations involved with explicit

schemes. The implication is that explicit schemes with an increased number of tempo-

ral steps are computationally comparable to implicit schemes with less temporal steps.

A second idea that was explored was to make use of Richardson’s extrapolation in or-

der to cancel inconsistent error terms. The advantage of this technique is that not only

does the scheme become more consistent, it also converges quicker. Our experimenta-

tion leads us to the conclusion that the Du Fort and Frankel scheme with Richardson’s

extrapolation vastly outperforms the Crank and Nicolson scheme.
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Chapter 7

Part I conclusion and summary

In Part I we established – via theoretical analysis – a context, which provide us the

means to compare different finite difference schemes to one another. The objective

measures were local truncation error, consistency and stability. Often in literature these

three measures provide sufficient evidence that one scheme ought to be chosen above

another. It thus comprises the full suite of arguments used in order to discriminate be-

tween schemes.

We augment this suite of discriminating factors with the more subtle property of com-

putational effort and ease of implementation. Explicit schemes are often accused of

utilizing more time steps in order to stabilize. This accusation rarely offers the qualifi-

cation that explicit schemes can often afford extra temporal steps since they are compu-

tationally less taxing than their implicit counterparts. Our prime discriminating factor

is one where we measure computational effort in order to achieve similar results. This

will also be the prime determining factor in the second part of this document.

Our system of analysis firstly defined the problem. We investigated numerical tech-

niques in order to compute the arbitrage free price of contingent claims. In Chapter

2 we delved into the works of Black and Scholes [1973] and Merton [1973], amongst

others, in order to describe the price of a contingent claim as a partial differential

equation, known as the Black and Scholes equation. The Black and Scholes equation

describes the problem, and the remainder of Part I was devoted to describe and anal-

yse the intended method to solve the problem, namely the finite difference method.

Chapter 3 provides the general theoretical description of finite difference techniques.
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The reader is introduced to the construction of a finite difference mesh, specification

of boundary conditions and estimation of derivatives. We evaluate the problem from

two perspectives namely an initial value partial differential Black and Scholes equa-

tion, and a simplified heat equation. Three finite difference techniques are introduced

namely the fully explicit scheme, the fully implicit scheme and the Crank and Nicol-

son scheme. These three schemes are then shown to be distinct cases of a more general

scheme, namely the Theta scheme. By changing the value of a single parameter, the

Theta scheme becomes any of the fore mentioned schemes. Douglas schemes employ

a more optimal choice for the Theta parameter, improving the local truncation error

in the case of the heat equation, but not for the Black and Scholes partial differential

equation.

The three main discriminating factors of finite difference schemes, local truncation er-

ror, consistency and stability are discussed in Chapter 4. It is shown that the fully

explicit scheme is only conditionally consistent with the partial differential equation.

Testing stability for the Black and Scholes partial differential equation is more com-

plex than conducting similar tests on the heat equation. Although our methodology is

similar to Wilmott [2000b], we obtain different stability conditions.

Chapter 4 concludes the general section of finite difference theory. The remainder of

the section expanded on themes in order to arrive at the Du Fort and Frankel scheme.

Chapter 5 considers the main themes that differentiates the Du Fort and Frankel scheme

from the classical Theta schemes namely second order local truncation error for ex-

plicit schemes and unconditional stability. Two other schemes that share aspects of

these themes were analysed. The MADE scheme shares unconditional stability. This

is achieved by sacrificing unconditional consistency. The Richardson scheme shares

the theme of a second order accurate truncation error, but suffers from unconditional

instability as a result of the required adjustment to achieve the better local truncation

error. The Du Fort and Frankel scheme makes use of techniques present in both these

schemes in order to obtain second order accuracy and simultaneously achieve uncon-

ditional stability. Like the MADE scheme (only less severe) it is only conditionally

consistent with the partial differential equation.

We finally investigate the Achilles heel of the Du Fort and Frankel scheme namely con-

ditional consistency. It was shown that at least two techniques effectively reduce the

problem to a manageable quantity. These techniques are to increase the number of time
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steps or to make use of Richardson’s extrapolation in order to obtain better consistency

characteristics.

In addition to the analysis of the consistency properties of the Du Fort and Frankel

scheme, we also analysed the impact of convexity dominance, which is a potential

characteristic of the Black and Scholes equation. It was shown that although spurious

oscillations are possible with the Du Fort and Frankel scheme, this was a result of the

presence of convection terms in the partial differential equation, rather than a property

of the scheme. We failed to replicate results of Duffy [2004b], implicating inherent

characteristics of schemes, namely central convection differencing combined with av-

eraging in the temporal direction, as being the culprits causing spurious oscillations.

The concluding observation from Part I is that the Du Fort and Frankel scheme ex-

hibits promising characteristics which may prove valuable in the pricing of derivative

securities. These are:

• It is explicit, and thus computationally more efficient than implicit schemes.

• It is unconditionally stable.

• It is second order accurate in both the temporal and spatial dimension.

• It is only conditionally consistent with the partial differential equation, but this

can effectively be managed. By making use of Richardsons extrapolation, we

not only managed to reduce the effect of inconsistency considerably, we also

succeeded to obtain additional accuracy.

The foundation was thus laid for the next phase of scrutiny, namely to expose the

Du Fort and Frankel scheme to a number of challenging pricing conundrums that fre-

quently occur in finance.
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Part II

Recurring numerical problems

in finance
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Introduction to Part II

In part II we investigate the ability of Du Fort and Frankel finite difference scheme

to overcome numerical difficulties that arise from financial problems. These problems

often challenge the assumptions underlying the derivation of the of the partial differen-

tial equation [Black and Scholes, 1973; Merton, 1973] and often requires adaptation of

the finite difference scheme in order to solve the newly formulated problem [Wilmott,

2000b]. The changes that one scheme undergo are not necessarily identical to those

required for other schemes with the most profound differences between implicit and

explicit schemes.

We argue a case for explicit schemes on the basis of reduced computational effort. This

approach was amongst others advocated by Hull and White [1990]. The counter argu-

ment is often based on the premise that explicit schemes are conditionally stable, or

alternatively, only conditionally consistent. The Du Fort and Frankel scheme suffers

from occasional inconsistency [Smith, 1984] which is debatably worse than instability

under certain conditions as its impact is subtle and may go unnoticed if we do not have

the benefit of comparing results to known solutions.

Part II is structured in the following way:

• In Chapter 8 we investigate the impact of jumps and especially dividends on the

formulation of the problem (the Black and Scholes partial differential equation)

and also the impact it has on the implementation of finite difference schemes.

We establish whether the Du Fort and Frankel scheme requires alternative adap-

tations to other schemes.

• Chapter 9 scrutinizes the numerical difficulty that results from singularities and

steep gradients that is often a feature of problems pertaining to finance. We

investigate solutions that are regularly used by other schemes and also derive

a unique solution for the Du Fort and Frankel scheme, namely a third order

interpolated mesh refinement.

• In Chapter 10 we investigate the problem of free boundary values and proceed to

compare the techniques to solve such problems. These problems are frequently

occurring in finance and may be one of the driving motivations in using finite

difference schemes. We investigate techniques to solve these for both implicit
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and explicit schemes and compare results obtained by both with other numerical

results.

• We extend the one dimensional case studied so far to a multidimensional case in

Chapter 11 and use a two-dimensional problem to derive the difference equation

for the Du Fort and Frankel scheme. The problem is chosen such that an analyti-

cal solution exists and results obtained from the Du Fort and Frankel scheme are

compared to the analytical solution. We experiment with a boundary free scheme

in order to reduce the total number of grid nodes that require computation.

These topics represent a small section of the universe of numerical difficulties that

arise from financial problems. We chose these due to their frequent appearance on the

financial landscape.
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Chapter 8

Jumps and dividends

8.1 Introduction

Modern theory concerning the arbitrage free pricing of contingent claims stems from

works published by Black and Scholes [1973] and Merton [1973]. Black and Scholes

explicitly assumes an underlying security that pays no dividends or other distributions.

Merton derives a partial differential equation for warrant prices in the presence of divi-

dends, but adds to his commentary that such partial differential equation has no simple

solution. The Merton case for continuous dividends is often incorporated as a special

case in a generalized Black-Scholes formula [Haug, 1998] which has become the ana-

lytical norm for continuous dividends.

Pricing contingent claims by assuming continuously paying dividends is not an ideal

compromise. Equities pay dividends sporadically at discrete time intervals [Haug et al.,

2003]. Such dividend payments impact on the stock price process; consequently on the

price of the underlying stock and ultimately on the value of the contingent claim.

In the Black-Scholes and Merton world, options are evaluated from an underlying se-

curity that has a continuous stochastic process (equation (2.1)). Evaluating an option

at maturity time T assumes a continuous price path for the share over the entire period

[t0, T ]. If a dividend was to be paid during this interval, a discontinuous jump would

have resulted [Björk, 2004], impacting on the terminal distribution share prices, and

consequently the value of a contingent claim depending on the terminal price of the

share.
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Dividend payments are unlike other price jumps because it is subject to an arbitrage

argument [Björk, 2004] that enables accurate prediction of the dividend impact on the

share price. This argument goes further and relates the jump to the value of any con-

tingent claim on the share.

Since dividend payments present jumps in the price of the underlying instrument at

discrete time intervals, claims based on dividend paying equities must be regarded as

path-dependent, and thus numerical techniques like the finite difference method present

a practical means to price such claims.

We model discrete dividends in two distinct ways that may affect the procedure em-

ployed. Dividend payments are often presented in the form D : R→ R. This function

usually takes one of two forms namely fixed discrete dividends and fractional discrete

dividends. These two methodologies can be presented as

δ(S(t)) = αβ(t),

where α is constant and

β(t) =

 1 if a dividend is paid at time t

0 if a dividend is not paid at time t

in the case of fixed dividends, and

δ(S(t)) = αβ(t)S(t),

in the case of fractional dividends.

The main distinction between fixed and fractional dividends is that the latter is a

stochastic function, depending on on the underlying price. This geometric configu-

ration simplifies matters somewhat, compared to deterministic characteristics of fixed

dividends. In literature the term “discrete” is often reserved for fixed dividends [Haug

et al., 2003, for instance] because the geometric nature of fractional dividends allow

for analytic solutions for contingent claims where the payoff function depends on the

terminal value of the underlying instrument. However, when the payoff also depends

on the path of the underlying instrument, exact analytical solutions do not exist, and

for this reason we also consider fractional dividends as “discrete”.
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8.1.1 A theoretical framework for dividends

Assume that over the life of the contingent claim [t0, T ] there are n dividends payable.

Let τ be a 1× n+ 2 vector of deterministic times at which dividends are paid.

τ = {0, Tn, Tn−1, . . . , T2, T1, T}, (8.1)

where 0 < Tn < Tn−1 < . . . < T2 < T1 < T . During the periods between dividends,

i.e. during the intervals [0, Tn), [Tn, Tn−1), . . ., [T2, T1) and [T1, T ], the underlying

share follows the process described by equation 2.1. Note that all the intervals except

the last one are half-open. Each period starts “just after” a dividend has been paid and

ends “just before” the next dividend. If a dividend is paid at precisely time t, then we

denote the time “just before” that event by t− ≡ t− dt.

Assume that discrete dividends are functions of the form

δ = δ(S(t−)).

The dividend amount is thus known “just before” the dividend is paid. As noted before

this function can take one of two forms, either δ is fixed in the case of a deterministic

Rand dividend or δ is a fractional dividend when it is a function of S(t−).

8.1.2 Dividends and jumps

The Black–Scholes partial differential equation was derived for an equity that follows

geometric Brownian motion with no jumps. Black-Scholes analysis assumes continu-

ous trading and the absence of dividends. Merton [1973] relaxes the dividend assump-

tion and in a later paper [Merton, 1976] also introduces jumps in the process in order

to do away with the continuous trading assumption. It was shown that the introduc-

tion of discontinuous jumps cause higher option prices and that options prices on such

shares cannot be obtained by means of arbitrage pricing. The argument is based on the

premise that these jumps cannot be anticipated and that they are random on both the

spatial and temporal axes. In this respect jumps due to dividend payments are different.

Dividends can at least in the short term be anticipated with reasonable certainty. Björk

[2004] describes an arbitrage argument that states that the jump during the infinitesi-

mal progression in time from cum-dividend to ex-dividend can only be the value of the
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dividend1. Between dividend payments, the stock price dynamics is left intact.

Over dividend payments, we have the following fundamental relationship:

F (Tk−, S(Tk−)) = F (Tk, S(Tk−)− δ(S(Tk−))), (8.2)

where k = 1, 2, . . . , n− 1, n and F is the price of a contingent claim.

Björk suggests an argument for dividend payments, which involves the solving of an

iterative processes. During the interval [T1, T ] there are no dividends. We may thus

proceed to calculate the value of a contingent claim at time T1. The value for F (T1) is

thus known. By equation (8.2), this is also the value for the contingent claim at time

T1−, and since the period [T2, T1) is per definition free of dividends, we may proceed

to calculate the value of the contingent claim at time T2, which by equation (8.2) also

equals the value for the claim at T2−. We may thus proceed from dividend payment to

dividend payment until we reach time period t = 0.

Using this argument to price options analytically involves nested integrals, which are

problematic to solve.

The finite difference method is an effective means to overcome nested integrals by in-

herently integrating over the spatial domain at each time step. The advantage of the

finite difference method is that it offers us a degree of freedom to manipulate the spa-

tial domain at ex-dividend or cum-dividend dates [Wilmott, 2000b]. We are confronted

with two classes of action that may be taken. The first is to make use of an escrowed

dividend model. These models were developed to alter analytical models in order to

approximate the presence of dividends. We are of the opinion that such methods are

ineffective (and not arbitrage free [Haug et al., 2003, amongst others]) and that they

do not utilize the versatility of the finite difference method to its full potential. We

therefore only briefly discuss these methods.

A second class of action to be considered is to physically model dividends in the fi-

nite difference framework by interpolating the solution on to the spatial domain that

coincides with cum-dividend prices.

1It is assumed that the dividend is paid on the ex-dividend event. In practise it is paid at a later time and

one thus has to provide for a time value component which will be ignored in this analysis.
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8.2 Fractional dividends.

Fractional dividends are less problematic to solve than fixed dividends. Merton [1973]

has shown that continuous dividends still result in an analytical solvable partial differ-

ential equation. Since discrete fractional dividends share the geometric nature of the

underlying process, we may attempt to replace a vector of discrete payments by a sin-

gle dividend yield. For each time in τ we iteratively calculate a stock price and then

by the arbitrage argument in equation (8.2) reduce the share price with the fractional

dividend as follows:

S(Tn) = S(0) exp
(

(r − 1
2
σ2)Tn + σWTn

)
(1− δ(S(Tn)))

S(Tn−1) = S(Tn) exp
(

(r − 1
2
σ2)(Tn−1 − Tn) + σ(WTn−1 −WTn)

)
= S(0) exp

(
(r − 1

2
σ2)Tn−1 + σWTn−1

)
((1− δ(Tn))(1− δ(Tn−1)))

...

S(T ) = S(0) exp
(

(r − 1
2
σ2)T + σWT

) n∏
i=1

1− δ(Ti). (8.3)

By setting equation 8.3 equal to the solution of equation 2.1, i.e.

S(T ) = S(0) exp
(

(r − y − 1
2
σ2)T + σWT )

)
,

where y is the continuous dividend yield, we may solve for a dividend yield that will

result in a terminal stock price distribution which is identical to the terminal stock price

process resulting from the iterative process in equation (8.3)

S(0) exp
(

(r − 1
2
σ2)T +WT

) n∏
i=1

1− δ(Ti) = S(0) exp
(

(r − y − 1
2
σ2)T +WT

)
.

Rearranging terms lead to

y = − 1
T

n∑
i=1

log (1− δ(Ti)) . (8.4)

Using the calculated value of y from equation 8.4 results in stochastic process which

has an identical terminal distribution to the real process with discrete dividends. Op-

tions which only depend on the terminal value of the spot price can therefore be priced

in this way, but any form of path dependency will result in inaccuracies.
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8.3 Escrowed dividends

Escrowed dividend models do not simulate the dynamics of the underlying security,

instead the idea is to manipulate some of the input parameters of an analytic model

in order manipulate option prices such that they appear correct for the dividend case.

Although reasons for their use in analytical models are perfectly valid, such as time

to compute, the fundamental reasoning remains incorrect. Often in literature escrowed

dividends are presented as the correct procedure to account for dividends even with

numeric techniques [Black, 1975; Hull, 2003, for instance]. This may be as a result of

some additional complexity associated with implementing proper dividend techniques,

but in general the finite difference method presents an excellent opportunity to correctly

model dividends. We include the section on escrowed dividends for review purposes

only.

8.3.1 Change in spot price only

One of the most frequently used methods to estimate options for shares that pays fixed

dividends is to lower the current share price by the sum of the present values of the

dividends that are expected until the maturity of the option. It is often contextualized

in literature as the way in which options on shares with dividends ought be treated,

amongst others by Black [1975], Hull [2003]; and often as a means to treat dividends

numerically, for instance Clewlow and Strickland [1998].

This method is based on the premise that once a dividend is known in advance, then

the share price dynamics consists of two parts [Chance et al., 2002], a stochastic part,

G(t) and a deterministic part consisting of the present value of known dividends,

D(t) ≡
∑

t≤ti≤T

die
−r(ti−t),

where di and ti are denoting the discrete dividends and dividend dates respectively.

The option price is then determined by using the stripped share price

G(t) = S(t)−D(t),

instead of S(t) in analytical models.

Even though this method has merit – specifically it may be debated that this is an

improvement on conventional Brownian motion in the sense that once dividends are
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known they are deterministic by definition, it remains fraud in the Black-Scholes-

Merton (BSM) world. The BSM model assumes that the entire stock price follows

geometric Brownian motion (irrespective of whether this is the best way to model share

prices. . . ) and from this model option prices are computed. By assuming that only part

of price has variance will result in too little variance for the entire process. Consider

two stock price processes,A(t) andB(t). The first follows geometric Brownian motion

between dividend payments, consistent with equation 8.2. Process B(t) is assumed to

consist of two parts Ba(t), which is the share price stripped of its dividends, which

follows geometric Brownian motion, and Bb(t) which is the present value of the divi-

dends during the period t = [t0, T ]. Without loss of generality we assume only a single

dividend,D(τ) paid at time τ . Frisling [2002] shows that although both processes have

identical expectations, the variance of their terminal distributions differ.

A(τ) = A(t0) exp[(r − 1
2
σ2)(τ − t0) + σ(W (τ)−W (t0))]−D(τ)

A(T ) = A(τ) exp[(r − 1
2
σ2)(T − τ) + σ(W (T )−W (τ))]

= A(t0) exp[(r − 1
2
σ2)(T − t0) + σ(W (T )−W (t0))]

−D(τ) exp[(r − 1
2
σ2)(T − τ) + σ(W (T )−W (τ))].

The process for B(t) is given by

B(T ) = Ba(t0) exp[(r − 1
2
σ2)(T − t0) + σ(W (T )−W (t0))]

−D exp[r(T − τ)].

The incorrect stock price distribution at maturity results in too low option prices. The

mispricing worsens for dividend payment that occur later in the life of the option [Haug

et al., 2003].

8.3.2 Spot and volatility adjustments: The Chriss model.

Chriss [1997] suggests an adjustment to both the spot price and volatility. The volatility

adjustment σ̃ satisfies the relation

σ̃S̃t = σSt.

The adjusted volatility is given as

σ̃ =
σSt

St −
∑
t≤ti≤T die

−r(ti−t)
. (8.5)
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The volatility adjustment corrects the total volatility error associated with the spot only

adjustment model above, but may overestimate volatility especially for dividends that

occur early in the life of the option [Haug et al., 2003].

8.3.3 The Haug & Haug and Beneder & Vorst approach.

Haug et al. [2003] discuss another approach independently discovered by Haug & Haug

and Beneder and Vorst [2001]. This approach adjusts volatility in such a way as to

make provision for the timing of dividends. Effectively it attempts to make volatility

a function of time, but since closed form formulas for options do not accept multiple

volatilities, it makes a timing-weighted average volatility. The time-weighted adjusted

volatility is given by

σ̌2 =
(

σS

S −
∑n
i=1 S − dierti

)2

(t1 − t0) +(
σS

S −
∑n
i=2 S − dierti

)2

(t2 − t1) + . . .+ σ2(T − tn)

=
n∑
j=1

(
σS

S −
∑n
i=1 S − dierti

)2

+ σ2(T − tn). (8.6)

Haug et al. [2003] remark that this adjustment, although it appears to produce better

results than the ones mentioned earlier, is still without a sound theoretical base and

may therefore be risky to trust.

8.3.4 Spot and strike price adjustments: The Bos & Vandermark

approach.

Bos and Vandermark [2002] deviates from the school of thought where volatilities are

adjusted to correct the spot price process for escrowed dividend models. Instead of

making adjustments to the volatility of the stock price process they adjust the strike

price of the option. Their reasoning is that if a dividend occurs very early in the life

of the option, then using an adjusted spot price like in the escrowed dividend model

produces very reliable option prices. However, when a dividend is paid late in the life

of an option, just before expiration, then a better strategy to adopt is to raise the strike

price.
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Each dividend is divided into two parts, a near part (Xn(T )) and a far part (Xf (T )).

Xn(T ) =
n∑
i=1

T − ti
T

die
−rti ,

Xf (T ) =
n∑
i=1

ti
T
die
−rti . (8.7)

The near part is subtracted from the initial spot price while the far part is added to the

strike price. The ultimate effect is that the later a dividend occurs, the more it raises

the strike and the less it lowers the initial spot price. The earlier a dividend occurs, the

more it lowers the initial spot price and the less it raises the strike price.

8.3.5 Comparisons between escrowed dividend models

Table 8.1 summarizes observations relating to escrowed dividend models.

Model Accuracy with

early dividend

Accuracy with

late dividend

Comment

Change in spot

price only

Fair. Model is

prone to underes-

timation.

Low accuracy Not arbitrage free

Spot and volatility

change

Low accuracy Fair. Model is

prone to overesti-

mation.

Not arbitrage free

Beneder & Vorst,

and Haug & Haug

Good Good No sound theoret-

ical base

Bos & Vander-

mark

Good Good No sound theoret-

ical base

Table 8.1: A comparison between escrowed dividend models.

8.4 Direct modeling of dividends in the finite difference

framework

Wilmott [2000b], Oosterlee et al. [2004] and Leentvaar and Oosterlee [2006] suggests

a procedure where option prices are interpolated on the spatial grid in order to accom-
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modate discrete dividends. This technique is similar to one suggested by Schroeder

[1988] to ensure node reconnection at the cum-dividend date when using binomial

trees. Wilmott [2000b] argues that the interpolation technique must be at least of the

same order of accuracy as the finite difference scheme, in this case O(h2). A linear

interpolation technique is suggested as its accuracy matches that of the scheme. Oost-

erlee et al. [2004] makes use of a 4th order Lagrange interpolation as they employ a

4th order scheme. We make use of a natural cubic spline interpolation, which is of

O(h3) accuracy. The Du Fort and Frankel scheme has a spatial local truncation error

of O(h2), which is lower than the natural cubic spline interpolation, consequently the

interpolation technique does not impact on the accuracy of the overall scheme.

Two aspects of this procedure receives in our opinion too little attention in the afore

mentioned literature. The first is that boundary conditions are required to be adjusted,

and the second, applicable to schemes that involve multiple time steps such as the Du

Fort and Frankel scheme, is that both cum dividend and ex dividend prices require

interpolation. A typical algorithm to calculate an option with the Du Fort and Frankel

scheme is shown:

• Given a dividend payable at time τ ≡ T − νk., compute vector f i for i =

1, 2, . . . , ν − 1, ν.

• At time τ , the vector fν = (f̂ν1 , f̂
ν
2 , . . . , f̂

ν
N , f̂

ν
N+1) maps to the spatial vector

s = (sχ, sχ + h, . . . , sψ − h, sψ). In order to proceed through time, we must

transform the ex-dividend contingent claim prices to cum-dividend prices, by

adhering to the equality given by equation (8.2). The solution vector fν is thus

required map to spatial vector

s∗ =

 s + δ(τ) for fixed dividends, and

s(1 + δ(τ)) for fractional dividens.

• Since vector s∗ does not coincide with real grid points, we need to interpolate

the solution vector fν , which coincides with s∗ to coincide with with vector s,

which are points on the grid. By interpolation, the spatial vector s becomes a

vector of cum-dividend underlying prices.

• This procedure is simple in a package such as Matlab. Listing (8.1) illustrates

the interpolation procedure in Matlab.
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tempvec = interp1( s , V(:, i ), s , ’ spline ’ );

V(2:N,i) = tempvec(2:N);

Listing 8.1: Matlab code showing option price interpolation to new underlying price vector

• The boundary conditions for times t = [τ, t0] must be re-specified. We found the

most accurate way in which to conduct this step is to find sψ from the boundary

conditions, i.e for a European call option

f̂νN+1 = sψ +X exp(−r(T − τ)).

Once the new sψ is known, the boundary values for times t = [τ + k, t0] may be

calculated.

• The interpolation enables the solution vector fν at time τ to map to spatial vector

s. At time τ + k, form the equation

fν+1 = Mfν + D̈fν−1 + b̃i,

the Du Fort and Frankel scheme requires solutions vectors fν and fν−1 in order

to compute vector fν+1. It must observed that the spatial vector s at time τ +

k comprises of cum-dividend prices, therefore the solution vector fν−1 maps

to cum-dividend prices. In order to avoid incorrect and oscillatory behavior,

solution vector fν−1 must also be interpolated in order to map to ex-dividend

prices. This step differentiate the procedure for a multi time step scheme from

the classical two step schemes such as the Crank and Nicolson scheme.

• This process repeats for each dividend.

Listing (8.2) shows the main iterations involved when the procedure of interpolating

option prices to account for dividends is followed. The variable Divs contains a list

of dividends in the form Divs = [Type, T ime,Amount]; where Type can be ei-

ther ’Fixed’ or ’Fractional’, Time is the ex-dividend time measure from inception and

Amount is the dividend amount. A further variable numDivs is declared to keep

track of which dividends have been taken into account as we progress though time.
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D Vec = V (:,1); %Two timestep vector

for i = 3:M+1

V(2:N,i)= MatrixM∗V(2:N,i−1) + ...

MatrixBoundary(1:N−1,i−1) + ...

D(2:N)’.∗D Vec(2:N);

D Vec = V(:, i−1); %f(i−1) vector for the next time step

if numDivs >= 1 %There are dividends

if T−(i−1)∗k >= Divs{numDivs,2} && T−i∗k < Divs{numDivs,2}

%Ex dividend date

if strcmp(Divs{numDivs,1},’Fixed’)

s = s + Divs{numDivs,3};

tempvec = interp1( s , V(:, i ), s , ’ spline ’ );

newSmax = tempvec(N+1)+X∗exp(r∗(q(i)−T));

V(N+1,i:M+1) = newSmax − X∗exp(r∗(q(i:M+1)−T));

elseif strcmp(Divs{numDivs,1},’Fractional ’ )

s = s ∗(1+ Divs{numDivs,3});

tempvec = interp1( s , V(:, i ), s , ’ spline ’ );

newSmax = tempvec(N+1)+X∗exp(r∗(q(i)−T));

V(N+1,i:M+1) = newSmax − X∗exp(r∗(q(i:M+1)−T));

%boundary condition

end

V(:, i ) = tempvec;

D Vec = interp1( s ,V(:, i−1),s , ’ spline ’ )’;

numDivs = numDivs − 1;

MatrixBoundary(N−1,i:M+1) = A(N)∗V(N+1,i:M+1);

end

end

end

Listing 8.2: Matlab code fragment for interpolated option prices to account for dividends.

Figure 8.1 shows the surface of a European option with S0 = 100, X = 100,

T = 1, r = 0.15 and σ = 0.3 with two dividends. The first dividend is a fractional

dividend at time t = 0.25 or 20 while the second is a 20% fractional dividend at time
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t = 0.75. Option prices are interpolated in order to map to the spatial domain vector s.
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Figure 8.1: Du Fort and Frankel with interpolated option prices to account for dividends. Two dividends

were used at time τ = 0.25 (fractional dividend of 0.2) and time τ = 0.75 (fixed dividend of 20) for an

European option with S0 = 100, X = 100, T = 1, r = 0.15 and σ = 0.3.

8.5 Conclusion

The Black–Scholes–Merton stock price modeling environment does not provide for

stock prices exhibiting dividend payments other than a continuous dividend yield. Ef-

forts to analytically model options on stocks with discrete dividends prove futile, and

despite a number of approximation techniques, generally numerical methods such as
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the finite difference method are required to model the impact of dividend payments. In

some cases analytical approximations are good, but since these models are without a

sound theoretical foundation, care must be taken when using these. Analytical models

are especially vulnerable when any form of path dependency in the option is present

since these models generally model the timing of dividends poorly. Despite the obvi-

ous shortcomings of analytical dividend models, they are still widely used and are even

incorporated in numeric techniques.

When options are not path dependant, fractional discrete dividends may be modeled

analytically. For fixed discrete dividends and generally all discrete dividends when the

contingent claim is path dependent, dividends should be modeled by assuming an ar-

bitrage argument that states that the price of a contingent claim remains constant over

the dividend period. It was shown that the basic pricing algorithm requires few adjust-

ments to incorporate the arbitrage argument.

The Du Fort and Frankel scheme requires a slightly more complex treatment for div-

idends as this method requires two time steps to compute, thus computing prices one

time step before an ex dividend date includes both ex– and cum–dividend prices. Ad-

justments must be made in order incorporate the correct underlying price vectors in the

calculation. A further point often neglected in literature is the fact that the boundary

conditions must also be adapted to cum-dividend prices when moving backwards in

time from the ex dividend date to the cum dividend date.
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Chapter 9

Discontinuous behavior

9.1 Introduction

A key characteristic common to a wide class of financial instruments is the presence of

discontinuous behavior. An example is the payoff function of a European option given

as

Φ(ST , T ) = max(ST −X, 0),

where ST is the underlying price at maturity and X is the strike price. The function is

not differentiable with respect to S at the strike price at maturity. This discontinuous

behavior not only puts a severe restriction on the attainable accuracy of a scheme [see

for instance Linde et al., 2006], but also impacts on the estimation of other derivatives,

notably
∂2f̂ ij
∂q2

,

which is of special relevance to the Du Fort and Frankel scheme as it is a factor deter-

mining the severity of inconsistencies associated with the scheme. When
∂2f̂ij
∂q2 becomes

very large, as is the case around discontinuous regions, the scheme’s consistency with

the Black and Scholes partial differential equation is impacted leading to potentially

invalid results.

The most common procedure to address areas of steep gradient is to refine the mesh

around such points [Linde et al., 2006]. Sabau and Raad [1998] found that both high

order compact schemes and low order classical schemes exhibit similar rates of con-

vergence with uniform grid spacing and that refined grids are required in order to ob-
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serve better convergence associated with the high order compact schemes in the regions

where severe gradients are anticipated. Fornberg [1988] derives an algorithm which

potentially utilizes the entire spatial vector in order to approximate derivatives of any

order to a high degree of accuracy for any arbitrary grid points. The principal criticism

of this technique is that the derivation of derivative in the more-dimensional case is

uncertain. Linde et al. [2006] makes use of mesh overlapping in order to estimate high

order derivatives around discontinuous areas, while Persson and Von Sydow [2007]

adopt a two step mesh refinement algorithm whereby a quick solution is firstly found

with a coarse grid. The solution then provide insight into areas where severe gradients

occur, which is then solved with a refined grid around these areas.

We investigate the effectiveness of mesh refinements with vanilla European options,

or in some cases barrier options. The Du Fort and Frankel finite difference scheme’s

results are compared to analytical results form Haug [1998].

9.2 Grid adjustment by analytic variable transforma-

tion

By transforming the Black and Scholes equation into the heat equation, one automat-

ically assumes non constant spatial stepping in relation to the original spatial domain.

Since the transform into the heat equation involves the transform S = eΞζ , we are con-

fronted with a transformed domain which has exponential spatial steps in the original

spatial variable. The implication is that when contingent claims on the spatial domain

are numerically estimated, relative more spatial steps are afforded to the lower part of

the original domain than for the upper part. Such spacing matches the log-normal dis-

tribution of the underlying share price and it is well known that the stability properties

of for instance the fully explicit method benefits markedly from log transforms [Tavella

and Randall, 2000; Brennan and Schwartz, 1978].

A number of authors argue that a uniformly spaced (or log transformed) grids may

not be the ideal configuration to achieve maximum accuracy. Since option prices of-

ten have steep gradients in their payoff functions (i.e. their initial boundary values),

it appears logical to experiment with a spatial configuration that is more concentrated

around the points were such gradients occur, for instance around the strike price of a

European option.
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Oosterlee et al. [2004], Clarke and Parrot [1999] and Leentvaar and Oosterlee [2006]

employs a spatial transformation that concentrates grid points around the strike price

of the option. Tavella and Randall [2000] warns that such transforms may impact on

the convergence properties and other characteristics of the scheme. We thus exercise

caution with the implementation of this transform on the Du Fort and Frankel scheme

as it may impact on the seemingly vulnerable consistency properties of the scheme.

We base our approach on that of Oosterlee et al. [2004].

Instead of solving the function f̂(s, q) : R2 → R, we solve a function on a transformed

spatial grid, f̃(s̃, q) : R2 → R, assuming f̂(s, q) = f̃(s̃, q). The spatial domains stand

in the functional relationship

s̃ = ψ(s), and s = ϕ(s̃) = ψ−1(s̃),

where the function ψ(x) is arbitrarily given by

ψ(x) = sinh−1(µ(x− Λ)) + sinh−1(µΛ), (9.1)

but could take on many other forms. The coefficient µ is known as a stretching coef-

ficient, the higher its value the more points around Λ there will be relatively to other

regions. Λ is typically the strike price but could be set to any point where a concentra-

tion of grid points are required.

We construct a new grid with s̃ ∈ [s̃χ, s̃ψ], uniformly spaced,

h̃ = s̃j+1 − s̃j =
s̃ψ − s̃χ
N

; j = 2, 3, . . . , N,N + 1.

By using the chain rule the Black and Scholes partial differential equation (equation

2.3) is transformed into

−∂f̂
∂q

+
α(ϕ(s̃))
ϕ′(s̃)

∂

∂s̃

(
1

ϕ′(s̃)
∂f̃

∂s̃

)
+
β(ϕ(s̃))
ϕ′(s̃)

∂f̃

∂s̃
+ γϕ(s̃)f̂ = 0. (9.2)

Tavella and Randall [2000] discretises equation (9.2) directly. After algebraic manipu-

lation the discrete Du Fort and Frankel scheme is written as

f̃ i+1
j = ξ(Ãf̃ ij+1 + B̃f̃ ij + C̃f̃ ij−1 + D̃f̃ i−1

j ),
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where

Ã = 2α(ϕ(s̃))kϕ′(s̃− 1
2 h̃) + β(ϕ(s̃))khϕ′(s̃+ 1

2 h̃)ϕ′(s̃− 1
2 h̃),

B̃ = 2γ(ϕ(s̃))ϕ′(s̃− 1
2 h̃)ϕ′(s̃+ 1

2 h̃)ϕ′(s̃)kh̃2,

C̃ = 2α(ϕ(s̃))kϕ′(s̃+ 1
2 h̃)− β(ϕ(s̃))khϕ′(s̃+ 1

2 h̃)ϕ′(s̃− 1
2 h̃),

D̃ = ϕ′(s̃− 1
2 h̃)ϕ′(s̃+ 1

2 h̃)ϕ′(s̃)h̃2 − α(ϕ(s̃))k(ϕ′(s̃− 1
2 h̃) + ϕ′(s̃+ 1

2 h̃)),

ξ = (ϕ′(s̃− 1
2 h̃)ϕ′(s̃+ 1

2 h̃)ϕ′(s̃)h̃2 + α(ϕ(s̃))k(ϕ′(s̃− 1
2 h̃) + ϕ′(s̃+ 1

2 h̃)))−1,

h̃ = N−1(ψ(sψ)− ψ(sχ)).

Perhaps a more elegant procedure involves the transformation the functions α(s),

β(s) and γ(s) [see for instance Oosterlee et al., 2004]. From equation (9.2)

−∂f̂
∂q

+
α(ϕ(s̃))
(ϕ′(s̃))2

∂2f̃

∂s̃2
. . .

−α(ϕ(s̃))ϕ′′(s̃)
(ϕ(s̃))3

∂f̃

∂s̃
+
β(ϕ(s̃))
ϕ′(s̃)

∂f̃

∂s̃
+ γ(ϕ(s̃))f̃ = 0

∴ −∂f̃
∂q

+ α̂(s̃)
∂2f̃

∂s̃2
+ β̂(s̃)

∂f̃

∂s̃
+ γ̂(s̃)f̃ = 0, (9.3)

where
α̂(s̃) = α(ϕ(s̃))

(ϕ′(s̃))2 ,

β̂(s̃) = β(ϕ(s̃))
ϕ′(s̃) − α(ϕ(s̃)) ϕ′′(s̃)

(ϕ′(s̃))3 ,

γ̂(s̃) = γ(ϕ(s̃)).

The original function is replaced by the transformed function. This procedure is ele-

gant in the sense that employing different stretch functions becomes relatively simple

in a computer coding sense. One simply replaces the function ψ(x) with a different

function. Listing segment (9.1) shows a Matlab implementation of the analytical grid

refinement.

psi = @(x) (asinh(mu∗(x−X ))+asinh(mu∗X )); %To transform s into y

phi = @(x) (1/mu ∗ (sinh(x−asinh(mu∗X )))+X ); %To transform y into s

phi = @(x) 1/mu ∗ (cosh(x−asinh(mu∗X ))); %First derivative of phi

phi = @(x) 1/mu ∗ (sinh(x−asinh(mu∗X ))); %Second derivative of phi

h = ( psi (smax)−psi(smin))/N;

y = psi (smin):h: psi (smax); %Transformed spatial variable
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V = zeros(N+1,M+1); %Solution matrix initialization

%Assume U is known...

V (:,1:2) =U (:,1:2);

V (1,:) =0;

V(N+1,:) = (phi(y(N+1))−X∗exp(r∗(q−T)));

%FD Variables

a = @(x) 0.5.∗o.∗o.∗(x.∗x);

b = @(x) r.∗x;

c = @(x) −r;

alpha = @(y) a(phi(y ))./( phi (y ).ˆ2);

beta = @(y) b(phi(y ))./ phi (y) − a(phi(y )).∗ phi (y )./( phi (y ).ˆ3);

gamma = @(y) c(phi(y));

Listing 9.1: Matlab code segment for and analytic grid refinement.

9.2.1 Performance of grid adjustment for European options

The Du Fort and Frankel scheme performs poorly with the spatial transforms from

equation (9.3). Figure (9.2) depicts the deviation of the Du Fort and Frankel finite dif-

ference solution from the analytic solution for a European option.

Although further research is required on the exact reasons for the poor performance,

experimentation leads to us to believe that the equidistant spacing of the function ψ(s)

transformed back to the original spatial vector via the function ϕ(s̃) leads to relative

fine spacing around the strike price. While this was the objective of the analytical grid

stretching, schemes where the relationship between the spatial and temporal spacing

impacts on the validity of the solution, such as the fully explicit scheme and the Du

Fort and Frankel scheme, are potentially negatively impacted. Sottoriva and Rexhepi

[2007] reports an inability to successfully implement a similar spatial transform with

the explicit scheme. Although the nature of their difficulty is not revealed, our own ex-

perimentation with the explicit scheme indicates that implementation of the proposed
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Figure 9.1: Error of the Du Fort and Frankel scheme with a stretched spatial variable (µ = 1) for an

European option with S0 = 100, X = 100, T = 1, r = 0.15 and σ = 0.3. The error compares the finite

difference solution with an analytic solution.
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spatial transform leads to severely impacted stability. This is probably due the the fact

that the spatial spacing close to the strike price is roughly 25 times less than with the

original spacing resulting in a far higher probability of instability.
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Figure 9.2: The solution of equation (9.3) using Du Fort and Frankel discretisation and a stretched spatial

variable (µ = 1) for a European option with S0 = 100, X = 100, T = 1, r = 0.15 and σ = 0.3.

The Du Fort and Frankel scheme does not suffer from instability. Instead restric-

tions on the ratio of the spacing on the spatial axes in relation to the spacing on the tem-

poral axes are required in order to be consistent with the partial differential equation.

The finite difference scheme enforces the equality of equation (9.3). By substituting

the derivatives of equation (9.3) with the relevant discrete approximations (see section

(5.4.2)), and substituting the coefficients for their appropriate values, we found that the

equality of equation (9.3) indeed holds. However, when we repeat the experiment with

the analytic solution f(ϕ(s̃), q), the equality does not hold, indicating the the finite

difference scheme is not solving the function f(ϕ(s̃), q). Figure (9.2) depicts the in-

consistency by measuring by the amount that the partial differential equation deviates

from zero.
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9.2.2 Performance of grid adjustment for barrier options

Gatheral et al. [1999] reports improvement in accuracy by implementing a similar

transform in order to solve barrier options using the Crank and Nicolson scheme. They

use a function similar to equation (9.1) in order to achieve concentration of grid points

around the level of the barrier. We use equation (9.1) as it is, setting Λ = H , the barrier

level.

We test an up-and-out call option with S0 = 100, X = 100, T = 1, r = 0.1,

σ = 0.3 and H = 200, and a down-and-out call option with similar input parame-

ters and H = 50.

The up-and-out option performed poorly compared to the analytical solution published

by Haug [1998]. The inconsistent term in the partial differential equation,

k2

h2

(
−α̂(s̃)

∂2f̃

∂s̃2

)
,

scales with values for α̂(s̃) which in turn scales with the underlying share price (see

section (5.4.5)). Since h is very small around the barrier, we find a conspiracy of factors

contributing to the invalidation of the result.

Figure (9.3) depicts the values of a numeric approximation of |∂
2F
∂q2 |

1, k2/h2, where

h := ϕ(s̃(i+ 1))−ϕ(s̃(i)), i = 1, 2, . . . , N − 1, N , and α(s̃) for different values of

the underlying instrument (top) and the deviation of the finite difference solution from

the analytical solution (bottom). It is apparent from the graphic that the three elements

contributing to inconsistency are rising in concert for underlying prices approaching

the barrier level. The result is a solution that must be regarded as invalid.

In the case of the down and out barrier option, the results obtained were reasonable,

although no real improvement was noted when comparing the solution of the adjusted

spatial dimension with a solution with an unaltered spatial dimension.

Generally barrier options remain difficult to price with the Du Fort and Frankel scheme,

and the utilization of analytic grid stretching proves unsuccessful.

1The value is approximated by

∂2F

∂q2
≈

1

k2
(F (ϕ(s̃), T − 2k)− 2F (ϕ(s̃), T − k) + F (ϕ(s̃), T )) ,

where F is the analytic solution of the barrier option.
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Figure 9.3: Du Fort and Frankel inconsistency with up-and-out barrier option with S0 = 100, X = 100,

T = 1, r = 0.1, σ = 0.3 and H = 200. Values of the numeric approximation of | ∂
2F
∂q2
|, α(s̃) and k2/h2

are depicted (top) with the deviation from the analytical solution (bottom).
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9.3 Temporal grid adjustment

We experiment with an algorithm that refines the grid in the temporal direction. The

algorithm results in a refined grid close to maturity that becomes coarser. Since the

Du Fort and Frankel scheme requires two time steps in order to calculate the second

order spatial derivative and temporal derivative, the algorithm is required to have spatial

stepping such that for any time there must be two equidistant time steps that can be

used in order to calculate these derivatives. This is achieved by defining a time step

size k = (k(1), k(2), . . . , k(M̃)), M̃ ≤ M, and M̃ is even. Every second time step

in the vector k is double that of two time steps preceding it, i.e:

k(m) = 2k(m− 2), m = 3, 4, . . . , M̃ .

Figure (9.4) schematically depicts the points utilized by the Du Fort and Frankel scheme

for each time step.

The smallest step size, k̃ = k(1) = k(2) is given by

k̃ =
T

2(2
1
2 M̃ − 1) + 2

1
2 M̃−1(M − M̃)

.

For i = 3, 4, . . . , M̃ , the step size k(i) is given by

k(i) =

 k(i− 1) if i is even, and

2k(i− 1) if i is odd.
i = 3, 4, . . . , M̃ .

The remaining step sizes k(i), i = M̃ + 1, M̃ + 2, . . . ,M remain constant, i.e.

k(i) = k(M̃). The listing (9.2) shows a Matlab algorithm that computes the price of a

European option with temporal adjustment.

clear ;

clc ;

S0 = 100; % Initial spot price

X = 100; %Strike price

T = 1.0; %Time to maturity

r = 0.1; %Risk free interest rate

o = 0.3; % Volatility
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Figure 9.4: Du Fort and Frankel molecules for a refined grid in the temporal direction. Every second time

step is twice that of two time steps before that. Boundary points are depicted by solid bullets
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N = 20; %Spatial steps

M = 20; %Temporal steps

M =12; %Refined Temporal steps

smin = 0;

smax = S0∗exp((r−0.5∗o∗o)∗T+4∗o∗sqrt(T));

NN = round(((X−smin)/(smax−smin))∗N);

h = (X−smin)/NN; %Spatial step size

s = smin+[0:N]∗h; %Spot prices

smax = s(N+1);

%Adjusted Temporal step sizeq = zeros (M+1,1);

k = T /(2∗(2ˆ(0.5∗M )−1)+(M−M )∗2ˆ(0.5∗M −1));

q = zeros(M+1,1);

q(M+1) = 0;

k = k ;

Odd = 1;

for i = M:−1:(M−M +1)

q( i ,1) = q( i+1,1)+k;

if Odd == −1

k = k ∗2;

end

Odd = −Odd;

end

k = k /2;

for i = (M−M ):−1:1

q( i ,1) = q( i+1,1)+k;

end

k = flipdim (q(1:M)−q(2:M+1),1);

V = zeros(N+1,M+1); %Solution matrix initialization
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%European Option Dirichlet Boundary conditions

U = flipdim (bsmatrix( ’C’, s ,X,q,r , r ,o ),1)’;

q = flipdim (q ,1);

V (:,1:2) = U (:,1:2);

V (1,:) = 0;

V(N+1,:) = smax − X∗ exp(−r∗ (q));

alpha = @(x) 0.5∗oˆ2∗x .ˆ2;

beta = @(x) r∗x;

gamma = −r;

Odd = 1;

for i = 3:M+1

A = (2∗alpha(s)∗k( i−1) + beta(s)∗k( i−1)∗h);

B = (2∗gamma∗k(i−1)∗hˆ2);

C = (2∗alpha(s)∗k( i−1) − beta(s)∗k( i−1)∗h);

D = (hˆ2 − 2∗k(i−1)∗alpha(s ));

if Odd == 1 || i > M

l = 2;

else

l = 3;

end

V(2:N,i) = ...

(1./( hˆ2+2∗alpha(s (2:N))∗k(i −1)))’.∗( A(2:N)’.∗V(3:N+1,i−1)+...

B∗V(2:N,i−1)+C(2:N)’.∗V(1:N−1,i−1)+D(2:N)’.∗V(2:N,i−l));

Odd = −Odd;

end

Listing 9.2: Matlab code for temporal refinement near the maturity date.

The algorithm listed in (9.2) does not impact materially on the accuracy of the scheme.
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Figure (9.5) depicts three Du Fort and Frankel solutions for a European option with

X = 100, T = 1, r = 0.1, σ = 0.3, N = 20, and M = 20. The depiction at the

top (a) shows an unaltered grid, while the middle (b) and bottom graphics (c) depicts

respectively 4 and 12 refined steps (M̃ = 4, M̃ = 12). No marked improvement is

noted.

9.4 Adaptive mesh methods

Adaptive grids aim to control the error in the solution [Persson, 2006]. Errors are es-

timated and grid points along areas with high errors are increased such that the error

is reduced to acceptable levels. By refining the grid one can expect the accuracy of a

finite difference solution to improve, but at the cost of additional time to compute. The

premise of adaptive mesh techniques is to only refine the mesh at the areas where accu-

racy is most severely impacted, typically where steep gradients occur. Numerous such

techniques are described in literature. The estimation of the local error is subjective.

Persson [2006] cites a local error of the form

e =
||∂F̄∂q −

Fn−Fn+1

k ||2
||Fn||2

,

where ∂F̄
∂q is a fourth order estimate of the time derivative and F x is the estimate solu-

tion.

Fornberg [1988] describes an algorithm whereby space discretisations may be approx-

imated for any arbitrarily spaced algorithm. Linde et al. [2006] note that it is unclear as

to how such algorithm may be extended to the multidimensional case. Another disad-

vantage of the Fornberg [1988] algorithm is that space discretisation is required to take

place in a single temporal vector. The Du Fort and Frankel finite difference scheme

utilizes three time steps to calculate the diffusion process of the contingent claim. Uti-

lizing more than one temporal vector with an arbitrarily spaced spatial vector is not

clear from the algorithm.

Linde et al. [2006] presents a highly accurate scheme based on the overlay of multiple

grids. They make use of two grids which are overlaid. A coarse grid is used to calcu-

late the entire domain of the solution, while a finer grid is overlaid on specific regions

where more mesh points are required. The coarse grid values are then replaced by the

fine grid’s values where they coincide before regressing through time. The method ap-
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Figure 9.5: Du Fort and Frankel error for a European option with S0 = 100, X = 100, T = 1, r = 0.1

and σ = 0.3. The refined temporal steps are M̃ = 0 at the top (a), M̃ = 4 at the middle (b), and M̃ = 12

at the bottom (c).
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plies readily to the multi-dimensional case. A possible disadvantage of the Linde et al.

[2006] algorithm is that it too is utilized on a single temporal vector at a time.

Figlewski and Gao [1999] classify errors associated with numerical schemes in two

categories. The first is distribution error, which is the error of approximating the log-

normal distribution on a discretised mesh. The second source of error is related to the

non–linearity characteristics of the problem. The contingent claim is non–linear in the

state variable in a way that cannot be captured by the discrete grid. The intention with

the utilization of the adaptive mesh method is to minimize the non–linearity error of

the scheme. Figlewski and Gao [1999] notes that although the adaptive mesh method is

applied for a trinomial tree, such method can also be implemented for (explicit) finite

difference methods since the methods are fundamentally similar. An attractive feature

of the Figlewski and Gao [1999] method is that it is isomorphic at successive levels

of refinement, i.e. that the same procedure can be implemented recursively to produce

finer and finer grids around areas of problematic gradient.

The Figlewski and Gao [1999] method requires manual adjustment of the grid. Three

different applications are discussed namely an American, a barrier and a general appli-

cation to accurately compute the values of the trading greeks. In a subsequent paper

Ahn et al. [1999] also discuss a procedure to build adaptive meshes for discrete barrier

options. It was found that barrier options where the barrier level is discretely monitored

potentially have values differing significantly from continuously monitored barriers.

Persson and Von Sydow [2007] makes use of a two step process. The first step calcu-

lates a solution by using a coarse grid. This solution provides insight as to place grid

point in a more efficient way.

9.4.1 Limitations of the Du Fort and Frankel scheme

The Du Fort and Frankel scheme is severely limited in terms of grid adaptation as a

result of its two time step structure. The refinement for the classical explicit scheme,

similar to that described by Figlewski and Gao [1999] is depicted in figure (9.6).

Since the explicit scheme does not require upper and lower boundary conditions, the

refinement is analogous to a trinomial tree. The grid points at time step T − ik are as-

sumed to be known. Typically these are boundary conditions. While this scheme works

well for the classical explicit scheme (or trinomial trees), complications arise when two

initialization steps in the temporal direction is required. This phenomenon is depicted

110

 
 
 



9.4 Adaptive mesh methods 111

• f ij+1

◦

��������

@@@@@@@ •

◦

�������

<<<<<<<< ◦

�������

<<<<<<<< •

f i+1
j •

��������

<<<<<<<< ◦

��������

<<<<<<<< ◦

��������

<<<<<<<< • f ij

◦

��������

@@@@@@@ ◦

��������

@@@@@@@ •

◦

�������

<<<<<<<< •

• f ij−1

Figure 9.6: Grid refinement for an explicit scheme. Existing grid points are shown by solid bullets while

the refined mesh is shown with hollow bullets.

in figure (9.7). Points between the time steps T − ki and T − k(i − 1) are required.

These are not readily derivable from the boundary conditions. We experimented with

a technique that interpolates these intermediary points from other known points.

Interpolation of unknown intermediary boundary points

We experiment with an adaptive mesh technique that finds unknown points by inter-

polation. The technique makes use of an error estimate, E ∈ 0, 1, 2, 3, 4 . . .. We

make use of a coarse grid, and refine this around points where the expected error is

highest by adopting a temporary spatial and temporal step size of h(E) = 2−Eh and

k(E) = 2−Ek respectively. We arbitrarily choose an error estimate related to the sec-

ond spatial derivative. From experimentation the error of the scheme appears to be

related to the value of the second spatial derivative.

Figure (9.8) depicts the apparent relationship between the error of the Du Fort and

Frankel scheme (N = 50,M = 50) for a European option with S0 = 100, X = 100,

T = 1, r = 0.1 and σ = 0.3, and the gamma of the option (bottom). We arbitrarily
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Figure 9.7: Grid refinement complications for the Du Fort and Frankel scheme. Existing grid points are

shown by solid bullets while the refined mesh is shown with hollow bullets. Since two temporal steps are

required in order to calculate each grid point, additional initialization steps are required between temporal

steps T − ki and T − k(i− 1).
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Figure 9.8: Du Fort and Frankel error for a European option with S0 = 100, X = 100, T = 1, r = 0.1

and σ = 0.3 (top) compared with the gamma of the same option (bottom).
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chose the error estimate to be

E(j) = Round
(

Σ
H

max(min(Ẽ(j), H + L)− L)
)

,

where

Ẽ(j) =
(Γ(j))

1
2σ

2

√
T − t

,

with Γ(j) being a numerical estimate of ∂
2f
∂s2 , i.e. Γ = h−2(f ij+1 − 2f ij + f ij−1). The

parameter Σ is the maximum value for E, while the parameters H ,L are subjectively

chosen high and low values of Γ that correspond to E = 0 and E = Σ.

We assume all the temporal vectors fζ , ζ = 1, 2, . . . , i are known at the spatial
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Figure 9.9: The error approximation for a European option with S0 = 100, X = 100, T = 1, r = 0.1

and σ = 0.3. The value of E ranges between E ∈ [0, 7] with H = 5 and L = 0.5.

points 1, 2, . . . , j−1, j, j+1, . . . , N,N+1, with f i1 and f iN+1 trivially derivable from

boundary conditions. The algorithm steps through the last known temporal vector, f i,

estimating E(j) for j = 2, 3, . . . , N . For each g = E(j), . . . , 2, 1, we estimate the
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following grid points:

f(g) ∈

{f(ik, jh+ h(E(j))), f(ik, jh), f(ik, jh− h(E(j))), . . .

f(ik − k(E(j)), jh+ h(E(j))), f(ik − k(E(j)), jh), . . .

f(ik − k(E(j)), jh− h(E(j)))}.

We make use of linear interpolation which is second order accurate. From f(E(j)),

the points

f̂(g) ∈

{f(ik + k(E(j)), jh+ h(E(j))), f(ik + k(E(j)), jh), . . .

f(ik + k(E(j)), jh− h(E(j)))}

may be calculated. These points in turn are used to calculate the coarser values of f̂(g)

corresponding to lower values of g. The Matlab code listed in listing 9.3 illustrates the

algorithm.

clc ; clear ;

%Adaptive mesh with interpolated intermediate grid points

%Abie Bouwer 2007

%Input paramters

S0 = 100;

X = 100;

T = 1;

r = 0.1;

o = 0.3;

%Coarse Grid size

M = 19;

N = 19;
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Segments = 7;

epsilon = 3;

Smin = X∗exp((r−0.5∗o)∗T−epsilon∗o∗sqrt(T));

Smax = X∗exp((r−0.5∗o)∗T+epsilon∗o∗sqrt(T));

h = (Smax−Smin)/N;

s = Smin:h:Smax;

k = T/M;

t = T:−k:0;

High = 5; %High Adjusted Gamma Value

Low = 0.5; %Low Adjusted Gamma Value

ErrorMeasure = @(Gamma, Sigma, TimeToMaturity) ...

Gamma.ˆ(0.5∗Sigmaˆ2)./sqrt(TimeToMaturity’);

nfunc = @(ErrorMeasure)

round((max(min(ErrorMeasure,High+Low),Low)−Low)∗Segments/High);

a = @(x) 0.5∗oˆ2∗x .ˆ2;

b = @(x) r∗x;

c = −r;

%Solution Matrix

U = bsmatrix( ’C’,s ,X,(T−t),r , r ,o );

V = zeros(M+1,N+1);

V (1:2,:) = U (1:2,:);

V (:,1) = 0;

V(:,N+1) = Smax−X∗exp(−r∗(T−t));

%Temporary Localized Solution

A = zeros (3,3,8);

for i = 3:M+1
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for j = 2:N

%Populate A1

A (1:2,1:3,1) = V(i−[2:−1:1],j +[−1:1]);

E = nfunc(ErrorMeasure (...

abs(hˆ−2∗(V(i−1,j+1)−2∗V(i−1,j)+V(i−1,j−1))),o,k∗(i−1)));

if E>0 %A(:,:,1) is already populated for E=0

for l = 1:E

%Alternative third order estimates inserted here ...

A(2,2, l+1) = A(2,2, l );

A(2,3, l+1) = 0.5∗(A(2,3, l)+A(2,2, l ));

A(2,1, l+1) = 0.5∗(A(2,1, l)+A(2,2, l ));

A(1,2, l+1) = 0.5∗(A(2,2, l)+A(1,2, l ));

A(1,3, l+1) = 0.25∗(A(2,3, l)+A(1,3, l)+A(2,2, l)+A(1,2, l ));

A(1,1, l+1) = 0.25∗(A(2,1, l)+A(1,1, l)+A(2,2, l)+A(1,2, l ));

%... to here ...

end

for l = E:−1:1

h = h∗2ˆ(−l );

k = k∗2ˆ(−l );

if l==E

A(3,3, l+1) = ...

A(2,3, l )∗((2∗a(s( j)+h )∗k +b(s( j)+h )∗k ∗h )/( h ˆ2+2∗a(s( j)+h )∗k )) + ...

A(2,3, l+1)∗((2∗c∗k ∗h ˆ2)/( h ˆ2+2∗a(s( j)+h )∗k )) + ...

A(2,2, l )∗(((2∗ a(s( j)+h )∗k −b(s(j)+h )∗k ∗h ))/( h ˆ2+2∗a(s( j)+h )∗k )) + ...

A(1,3, l +1)∗((h ˆ2−2∗a(s(j)+h )∗k )/( h ˆ2+2∗a(s( j)+h )∗k ));

A(3,2, l+1) = ...

A(2,3, l+1)∗((2∗a(s( j ))∗k +b(s( j ))∗k ∗h )/( h ˆ2+2∗a(s( j ))∗k )) + ...

A(2,2, l )∗((2∗c∗k ∗h ˆ2)/( h ˆ2+2∗a(s( j ))∗k )) + ...

A(2,1, l +1)∗(((2∗a(s( j ))∗k −b(s(j ))∗k ∗h ))/( h ˆ2+2∗a(s( j ))∗k )) + ...

A(1,2, l +1)∗((h ˆ2−2∗a(s(j ))∗k )/( h ˆ2+2∗a(s( j ))∗k ));
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A(3,1, l+1) = ...

A(2,2, l )∗((2∗a(s( j)−h )∗k +b(s( j)−h )∗k ∗h )/( h ˆ2+2∗a(s( j)−h )∗k )) + ...

A(2,1, l+1)∗((2∗c∗k ∗h ˆ2)/( h ˆ2+2∗a(s( j)−h )∗k )) + ...

A(2,1, l )∗(((2∗ a(s( j)−h )∗k −b(s(j)−h )∗k ∗h ))/( h ˆ2+2∗a(s( j)−h )∗k )) + ...

A(1,1, l +1)∗((h ˆ2−2∗a(s(j)−h )∗k )/( h ˆ2+2∗a(s( j)−h )∗k ));

else

A(3,3, l+1) = ...

A(2,3, l )∗((2∗a(s( j)+h )∗k +b(s( j)+h )∗k ∗h )/( h ˆ2+2∗a(s( j)+h )∗k )) + ...

A(2,3, l+1)∗((2∗c∗k ∗h ˆ2)/( h ˆ2+2∗a(s( j)+h )∗k )) + ...

A(2,2, l )∗(((2∗ a(s( j)+h )∗k −b(s(j)+h )∗k ∗h ))/( h ˆ2+2∗a(s( j)+h )∗k )) + ...

A(1,3, l +1)∗((h ˆ2−2∗a(s(j)+h )∗k )/( h ˆ2+2∗a(s( j)+h )∗k ));

A(3,2, l+1) = ...

A(3,3, l+2)∗((2∗a(s( j ))∗( k /2)+b(s( j ))∗( k /2)∗...

(h /2))/(( h /2)ˆ2+2∗a(s( j ))∗( k /2))) + ...

A(3,2, l+2)∗((2∗c∗(k /2)∗( h /2)ˆ2)/(( h /2)ˆ2+...

2∗a(s( j ))∗( k /2))) + ...

A(3,1, l +2)∗(((2∗a(s( j ))∗( k /2)−b(s( j ))∗( k /2)∗...

(h /2)))/(( h /2)ˆ2+2∗a(s( j ))∗( k /2))) + ...

A(2,2, l +2)∗((( h /2)ˆ2−2∗a(s( j ))∗( k /2))/...

(( h /2)ˆ2+2∗a(s( j ))∗( k /2)));

A(3,1, l+1) = ...

A(2,2, l )∗((2∗a(s( j)−h )∗k +b(s( j)−h )∗k ∗h )/...

(h ˆ2+2∗a(s( j)−h )∗k )) + ...

A(2,1, l+1)∗((2∗c∗k ∗h ˆ2)/...

(h ˆ2+2∗a(s( j)−h )∗k )) + ...

A(2,1, l )∗(((2∗ a(s( j)−h )∗k −b(s(j)−h )∗k ∗h ))/...

(h ˆ2+2∗a(s( j)−h )∗k )) + ...

A(1,1, l +1)∗((h ˆ2−2∗a(s(j)−h )∗k )/...

(h ˆ2+2∗a(s( j)−h )∗k ));

end
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end

h = h /2;

k = k /2;

V(i , j ) = ...

A (3,3,2)∗((2∗ a(s( j ))∗k +b(s( j ))∗k ∗h )/( h ˆ2+2∗a(s( j ))∗k )) + ...

A (3,2,2)∗((2∗ c∗k ∗h ˆ2)/( h ˆ2+2∗a(s( j ))∗k )) + ...

A (3,1,2)∗(((2∗ a(s( j ))∗k −b(s(j ))∗k ∗h ))/( h ˆ2+2∗a(s( j ))∗k )) + ...

A (2,2,2)∗(( h ˆ2−2∗a(s(j ))∗k )/( h ˆ2+2∗a(s( j ))∗k ));

else

V(i , j ) = ...

V(i−1,j+1)∗((2∗a(s( j ))∗k+b(s( j ))∗k∗h )/( hˆ2+2∗a(s( j ))∗k)) + ...

V(i−1,j)∗((2∗c∗k∗h ˆ2)/( hˆ2+2∗a(s( j ))∗k)) + ...

V(i−1,j−1)∗(((2∗a(s( j ))∗k−b(s(j ))∗k∗h ))/( hˆ2+2∗a(s( j ))∗k)) + ...

V(i−2,j )∗(( hˆ2−2∗a(s(j ))∗k )/( hˆ2+2∗a(s( j ))∗k ));

end

end

end

Listing 9.3: Matlab code for interpolation technique combined with a adaptive mesh.

The performance of the second order interpolation is disappointing. Figure (9.10) de-

picts the error made with the linear grid refinement technique.

We improve the algorithm by improving the interpolation accuracy to third order.

Figure (9.11) depicts the fictitious points inserted on the grid. We interpolate values for

the additional points (indicated with stars (?)) by making use of third order accurate

estimations for the partial derivatives
∂2fxy
∂s2 ,

∂fxy
∂s and

∂fxy
∂q , where x and y are general

coordinates on the grid.

The spatial derivatives are found from manipulating Taylor expansions, while the

temporal derivative is derived from the Black–Scholes partial differential equation

(equation 2.3). The following Tailor expansions are used in the determination of the

spatial derivatives, where h̄ and k̄ are general spatial step sizes, and fs, fss etc. are
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Figure 9.10: The difference between the Du Fort and Frankel scheme and the analytic solution for a

European option with S0 = 100, X = 100, T = 1, r = 0.1 and σ = 0.3. A linear interpolated grid

refinement technique was used.
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shorthand for the first, second, etc. spatial derivatives in the point (h̄y, k̄x):

(a) fxy+1 = fxy + h̄fs +
1
2
h̄2fss +

1
6
h̄3fsss +

1
24
h̄4fssss + . . .

(b) fxy−1 = fxy − h̄fs +
1
2
h̄2fss −

1
6
h̄3fsss +

1
24
h̄4fssss + . . .

(c) fxy+2 = fxy + 2h̄fs +
4
2
h̄2fss +

8
6
h̄3fsss +

16
24
h̄4fssss + . . .

(d) fxy−2 = fxy − 2h̄fs +
4
2
h̄2fss −

8
6
h̄3fsss +

16
24
h̄4fssss + . . .

Simple algebraic manipulation reveals values for fs and fss for the point (jh(0), (i −

1)k(0)):

Γi−1
j ≡ fss =

1
12h̄2

(−f i−1
j+2 + 16f i−1

j+1 − 30f i−1
j + 16f i−1

j−1 − f
i−1
j−2) +O(h̄3)

∆i−1
j ≡ fs =

1
6h̄

(−f i−1
j+2 + 6f i−1

j+1 − 3f i−1
j − 2f i−1

j−1) +O(h̄3)

The remaining derivatives are found in similar way for the remaining points ((jh(0)±

h(1), (i− 1)k(0)± k(1)).

The temporal derivative in point (jh(0), (i − 1)k(0)) is found by substituting the

estimates for ∂f∂s and ∂2f
∂s2 into the Black–Scholes partial differential equation (equation

2.3):

Θi−1
j ≡ ft =

1
2
σ2(s(j))2Γi−1

j + r(s(j))∆i−1
j − rf i−1

j +O(h3).

The temporal derivatives for the remaining points are found in similar fashion.

With the temporal derivative known, we interpolate point (jh(0), (i − 2
3 )k(0)) from

known points (jh(0), (i− 1)k(0)) and (jh(0), (i− 2)k(0)) by making use of the fol-

lowing Taylor expansions:

(a) f i−2
j = f

i− 3
2

j − k(1)ft +
1
2

(k(1))2ftt −
1
6

(k(1))3fttt +O((k(1))4)

(b) f
i− 7

4
j = f

i− 3
2

j − 1
2
k(1)ft +

1
8

(k(1))2ftt −
1
48

(k(1))3fttt +O((k(1))4)

(c) f i−1
j = f

i− 3
2

j + k(1)ft +
1
2

(k(1))2ftt +
1
6

(k(1))3fttt +O((k(1))4)

(d) f
i− 5

4
j = f

i− 3
2

j − 1
2
k(1)ft +

1
8

(k(1))2ftt −
1
48

(k(1))3fttt +O((k(1))4),

we obtain

f i−2
j − 4f i−

7
4

j − 4f i−1
j + f

i− 5
4

j = −6f i−
3
2

j +O((k(1))3)

∴ f
i− 3

2
j = −1

6
(f i−2
j + f i−1

j ) +
2
3

(f i−
7
4

j + f
i− 5

4
j ) +O((k(1))3). (9.4)
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Additional Taylor expansion yields

f
i− 5

4
j = f i−2

j +
3
2
k(1)ut +

9
8

(k(1))2utt+O((k(1))3)

f
i− 7

4
j = f i−2

j +
1
2
k(1)ut +

1
8

(k(1))2utt+O((k(1))3)

∴ f
i− 7

4
j − 9f i−

5
4

j = −8f i−2
j − 3k(0)ut +O((k(1))3), (9.5)

and similarly

f
i− 5

4
j = f i−1

j − 1
2
k(1)ut +

1
8

(k(1))2utt+O((k(1))3)

f
i− 7

4
j = f i−1

j − 3
2
k(1)ut +

9
8

(k(1))2utt+O((k(1))3)

∴ f
i− 5

4
j − 9f i−

7
4

j = −8f i−1
j + 3k(0)ut +O((k(1))3). (9.6)

Adding equation (9.5) to equation (9.6) gives

f
i− 5

4
j + f

i− 7
4

j = f i−2
j + f i−1

j +
3
8

(Θi−2
j −Θi−1

j ) +O((k(1))3). (9.7)

Substituting equation (9.7) into equation (9.4) provides an estimate for the point (jh(0), (i−
3
2 )k(0)):

f
i− 3

2
j =

1
2

(f i−2
j + f i−1

j ) +
k(1)

4
(Θi−2

j −Θi−1
j ) +O((k(1))3). (9.8)

The points ((j± 1
2 )h(0), (i−2)k(0)) are interpolated by adding multiples of equations

from the following Taylor expansions:

(a) f i−2
j+1 = f i−2

j+ 1
2

+ h(1)
∂f i−2

j+ 1
2

∂s
+

1
2

(h(1))2
∂2f i−2

jj+ 1
2

∂s2
+

1
6

(h(1))3
∂3f i−2

j+ 1
2

∂s3
+O((h(1))4)

(b) f i−2
j = f i−2

j+ 1
2
− h(1)

∂f i−2
j+ 1

2

∂s
+

1
2

(h(1))2
∂2f i−2

j+ 1
2

∂s2
− 1

6
(h(1))3

∂3f i−2
j+ 1

2

∂s3
+O((h(1))4)

(c) f i−2
j−2 = f i−2

j+ 1
2
− 3h(1)

∂f i−2
j+ 1

2

∂s
+

9
2

(h(1))2
∂2f i−2

j+ 1
2

∂s2
− 27

6
(h(1))3

∂3f i−2
j+ 1

2

∂s3
+O((h(1))4)

The addition of 3× (a) + 6× (b)− (c) yields

f i−2
j+ 1

2
=

1
8

(3f i−2
j+1 + 6f i−2

j − f i−2
j−2).

The function f in the point (j − 1
2h(0), (i− 2)k(0)) is found in similar fashion. These

two approximations are then used in order to estimate the function f in the points

((j ± 1
2 )h(1), (i− 2)k(0)), by employing a similar technique than in equation (9.8).
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The algorithm in listing (9.3) is easily adapted to incorporate the more accurate inter-

polations. By replacing the indicated lines in listing (9.3) by the code fragment listed

in listing (9.4), we obtain third order accurate interpolations.

h = h∗2ˆ(−l+1);

k = k∗2ˆ(−l+1);

A(2,2, l+1) = A(2,2, l );

A(2,3, l+1) = 0.125∗(3∗A(2,3, l)+6∗A(2,2, l)−A(2,1,l )); %O(h3)

A(2,1, l+1) = 0.125∗(3∗A(2,1, l)+6∗A(2,2, l)−A(2,3,l )); %O(h3)

p1 = 0.125∗(3∗A(1,3, l)+6∗A(1,2, l)−A(1,1,l )); %O(h3)

p2 = 0.125∗(3∗A(1,1, l)+6∗A(1,2, l)−A(1,3,l )); %O(h3)

g1 = 1/(12∗h ˆ2)∗(11∗A(2,3, l)+6∗A(2,2, l )+...

4∗A(2,1, l+1)−A(2,1,l)−20∗A(2,3,l+1));

g2 = 1/(12∗h ˆ2)∗(11∗A(2,1, l)+6∗A(2,2, l )+...

4∗A(2,3, l+1)−A(2,3,l)−20∗A(2,1,l+1));

g3 = 1/(12∗h ˆ2)∗(11∗A(1,3, l)+6∗A(1,2, l )+...

4∗p2 −A(1,1,l)−20∗p1);

g4 = 1/(12∗h ˆ2)∗(11∗A(1,1, l)+6∗A(1,2, l )+...

4∗p1−A(2,3,l)−20∗p2);

g5 = 1/(12∗h ˆ2)∗(−A(2,1, l)+16∗A(2,1,l +1)−...

30∗A(2,2,l)+16∗A(2,3,l+1)−A(2,3,l ));

g6 = 1/(12∗h ˆ2)∗(−A(1,1, l)+16∗p2−...

30∗A(1,2,l)+16∗p1−A(1,3,l));

d1 = 1/(6∗h )∗(−2∗A(2,3,l)+6∗A(2,2, l )−...

A(2,1, l+1)−3∗A(2,3,l+1));

d2 = 1/(6∗h )∗(−2∗A(2,1,l)+6∗A(2,2, l )−...

A(2,3, l+1)−3∗A(2,1,l+1));

d3 = 1/(6∗h )∗(−2∗A(1,3,l)+6∗A(1,2, l)−p2−3∗p1);

d4 = 1/(6∗h )∗(−2∗A(1,1,l)+6∗A(1,2, l)−p1−3∗p2);

d5 = 1/(6∗h )∗(−A(2,3,l)+6∗A(2,3, l +1)−...

3∗A(2,2, l)−2∗A(2,1,l+1));

d6 = 1/(6∗h )∗(−A(1,3,l)+6∗p1−3∗A(1,2,l)−2∗p2);

t1 = a(s( j)+h )∗g1+b(s( j)+h )∗d1 + c∗A(2,3, l +1);
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t2 = a(s( j)−h )∗g2+b(s(j)−h )∗d2 + c∗A(2,1, l +1);

t3 = a(s( j)+h )∗g3+b(s( j)+h )∗d3 + c∗p1;

t4 = a(s( j)−h )∗g4+b(s(j)−h )∗d4 + c∗p2;

t5 = a(s( j ))∗g5+b(s( j ))∗d5 + c∗A(2,2, l +1);

t6 = a(s( j ))∗g6+b(s( j ))∗d6 + c∗A(1,2, l );

A(1,3, l+1) = 0.5∗(A(2,3, l+1)+p1)+0.25∗k ∗(t3−t1);

A(1,2, l+1) = 0.5∗(A(2,2, l)+A(1,2, l ))+0.25∗k ∗( t6−t5);

A(1,1, l+1) = 0.5∗(A(2,1, l+1)+p2)+0.25∗k ∗(t4−t2);

Listing 9.4: Matlab code segment to improve interpolation to third order.

Results for numerical experimentation with the third order interpolated grid refinement

algorithm are encouraging, but not entirely unproblematic. With a low number of grid

points (N = 19,M = 19) the interpolated grid refinement algorithm produces vastly

superior results to a similar unaltered grid. The result is depicted in figure (9.12). How-

ever, the interpolated grid seem to be unstable, and for a higher number of grid points,

the number of time steps in relation to spatial steps need to increase. Further research

in relation to the required ratios between time steps and spatial steps is required.

9.5 Summary of measures to improve numerical per-

formance

Table 9.1 summarizes the measures we investigated to improve numerical performance

at areas where steep gradients occur.

9.6 Conclusion

In this chapter we considered various techniques that alleviate the problems associated

with discontinuous behavior in the price of a contingent claim. The Du Fort and Frankel

scheme pose a special challenges in this regard for two reasons: The first is that care

must be exercised with relation to the ratio of step sizes in the spatial and temporal

directions. The Du Fort and Frankel scheme is known to be inconsistent with the

Black and Scholes partial differential equation if the spatial step size becomes small in

relation to the temporal step size. The second reason is that the Du Fort and Frankel
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Figure 9.12: The difference between the Du Fort and Frankel scheme and the analytic solution for a

European option with S0 = 100, X = 100, T = 1, r = 0.1 and σ = 0.3. A third order interpolated grid

refinement technique (b) is compared to an unaltered grid (a) with M = 19 and N = 19.
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Method Effectiveness Ease of imple-

mentation

Comment

Analytical grid

adjustment

Ineffective Elegant and rela-

tively easy to im-

plement.

Appears to

aggravate incon-

sistencies.

Temporal adjust-

ment

Ineffective Requires some

additional code.

Generally uncom-

plicated.

Appears to

smooth errors

rather than reduc-

ing them.

Classical adaptive

mesh methods

Ineffective Not possible Three-time step

structure prohibits

implementation.

Linearly inter-

polated adaptive

mesh

Ineffective Difficult – re-

quires many lines

of additional code

Linear interpola-

tion not sufficient.

Third order inter-

polated adaptive

mesh

Promising Difficult – re-

quires many lines

of additional

code. Somewhat

arbitrary.

Becomes spurious

with finer meshes.

Table 9.1: A comparison between measures to improve performance at areas of steep gradients.
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scheme utilizes two known time vectors in order to compute the unknown time vector.

This detail complicates matters to a great extent.

We considered three classes of possible measures that may lead to improved results.

The first class is an analytical grid adjustment in the spatial direction. The adjustment

is such that a concentration of grid points fall in the vicinity where numerical difficulty

is expected. The solution on the transformed grid was transformed back to the original

coordinates. Despite numerous reports in literature of improved results, our own efforts

failed, possibly due to inconsistencies that arise as a result of an altered spatial-to-

temporal step size on the adjusted grid.

A second measure considered was to concentrate the temporal steps near the maturity

of the contingent claim where the greatest gradients in the solution are expected. The

algorithm has to ensure that for any time step there are two equidistant time steps

prior to it. The algorithm that was used achieved this, but the results did not improve

significantly.

A third measure that was considered was to refine the grid in both the spatial and

temporal direction around points where the expected error is the greatest. The expected

error is assumed to have a functional relationship with the second spatial derivative.

Difficulty arises due to the fact that the Du Fort and Frankel scheme uses two time steps

to compute. This was overcome by using interpolations to fill in the grid points required

for the calculation. Both second order linear and third order interpolations were used.

The linear interpolations performs poorly as essential information is not captured by

the interpolation technique. The third order interpolation technique performed well

under certain conditions compared with an unaltered grid. It was found, however that

the solution becomes spurious and possibly unstable if the spatial-to-temporal steps

sizes are small. Generally the results are encouraging and further research into this

matter may yield useful results.
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Chapter 10

Free boundary value problems

10.1 Introduction

The purpose of this chapter is to establish the relative merits of the Du Fort and Frankel

finite difference scheme, compared to the Crank and Nicolson scheme (as a representa-

tive of the class of implicit schemes) when free boundary value problems are encoun-

tered.

Free boundary problems are common in finance. A class of contingent claims that

frequent the trading arena is the American option, where the holder has the right to

exercise the option before maturity.

Free boundary value problems augment the upper and lower boundary conditions

with the inequalities

F (s, q) ≥

 max(s−X, 0) for call options, and

max(X − s, 0) for put options,
(10.1)

In the case of the American put option, we observe a critical “touching” point at spot

price sf . We observe

F (s, q) > max(X − s, 0) for s > sf ,

F (s, q) = X − s for s ≤ sf .

Therefore, for all underlying prices s ≤ sf , the rational holder of the option exercises

the option, and we are therefore not required to calculate its price [Seydel, 2004]. The
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location of sf is not known a priori hence the term free boundary.

At the point sf , two boundary conditions must hold for the American put option [Sey-

del, 2004], namely

F (sf , q) = X − sf ,
∂F (sf , q)

∂s
= −1. (10.2)

These boundary conditions give rise to a partial differential inequality as opposed to

the partial differential equation from equation (2.3) that we have solved so far. The

inequality is given by

∂F

∂q
+

1
2
σ2s2 ∂

2F

∂s2
+ rs

∂F

∂s
− rF ≤ 0. (10.3)

The American option problem may be written as a linear complementarity problem: If

F (s, t) > Φ(s, T ) – the intrinsic value of the option – the function F is a solution of the

Black and Scholes partial differential equation (equation (2.3)). If F (s, t) = Φ(s, T )

then F is the solution of a strict partial differential inequality, similar to inequality

(10.3).

In this document we are mainly concerned about the numerical estimation of the free

boundary. Finite difference schemes have desirable properties relating to the calcula-

tion of contingent claims with free boundaries. This is due to the fact that we pro-

ceed from maturity, hence a value for the function F (s, q) is generally known or is

in the process of being calculated for each successive time step as we regress towards

the inception date. The techniques utilized by implicit and explicit schemes differ

with explicit schemes being simpler [Wilmott, 2000b] and computationally more effi-

cient. This simplicity is a major driving factor in motivating a case in favor of explicit

schemes, and in particular for the Du Fort and Frankel scheme. The remainder of this

chapter focusses on the various techniques to numerically solve free boundary prolems,

after which we compare results obtained from the Crank–Nicolson scheme and the Du

Fort and Frankel scheme. Since no exact analytical solution exists, we assume the

Crank and Nicolson scheme with N = 1000 and M = 1000 to be the benchmark for

correctness.
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10.2 American options and implicit finite difference meth-

ods

We solve an American put option using the Crank and Nicolson finite difference method.

The the Crank–Nicolson difference equation is given by

Af̂ i+1
j+1 + (B − 2)f̂ i+1

j + Cf̂ i+1
j−1 +Af̂ ij+1 + (B + 2)f̂ ij + Cf̂ ij−1 = 0.

In matrix from the Crank and Nicolson equation is given by equation (4.10), restated

for convenience

MLf i+1 = MRf i + b̄i, b̄i = bi
R − bi+1

L .

One technique of finding the free boundary is to compute f i+1 and test every element of

the vector in order to determine whether equation (10.1) holds, and to manually adjust

the values F (s, t) < X − s to F (s, t) = X − s. Since the entire vector f i+1 is derived

from the same system of equations, the implication is that every value of vector f i+1

is interlinked with every other value. By manually adjusting values after the vector

was computed violates the matrix equality resulting in a local truncation error of O(k)

rather thanO(k2) [Wilmott, 2000b]. The requirement is to replace the violating values

at the same time as the values are found. A broad discussion of these methods falls

outside the scope of this document, and are discussed in works related to this topic [for

instance Wilmott, 2000b; Isaacson and Keller, 1966; Smith, 1984]. We briefly discuss

the method we will be using, namely the successive over-relaxation (SOR) method,

adopting arguments from Wilmott [2000b] and Smith [1984].

10.2.1 A brief discussion of the successive over-relaxation method

We rewrite matrix equation

MLf i+1 = MRf i + b̄i

in the simpler form

Mv = q.
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Assuming matrix M is square with N rows and columns and elements M i
j , i, j =

1, 2, . . . , N , then the set of equations

M1
1 v1 +M1

2 v2 + . . .+M1
NvN = q1

M2
1 v1 +M2

2 v2 + . . .+M2
NvN = q2

...

MN
1 v1 +MN

2 v2 + . . .+MN
N vN = qN ,

are implied. These may be rewritten as

v1 =
1
M1

1

(
q1 − (M1

2 v2 +M1
3 v3 + . . .+M1

NvN )
)

v2 =
1
M2

2

(
q2 − (M2

1 v1 +M2
3 v3 + . . .+M2

NvN )
)

...

vN =
1

MN
N

(
qN − (MN

1 v1 +MN
2 v2 + . . .+MN

N−1vN−1)
)

.

We iteratively approximate vector v. We denote v1
1 as the first approximation of ele-

ment v1, v2
1 as the second approximation of v1, vn1 as the nth approximation and so on.

The SOR method builds on the Jacobi method and the Gauss-Seidel method.

The Jacobi method approximates the entire vector v for the first iteration, and then uses

this approximation in the second iteration, and so on. In general the Jacobi method may

be written as

vn+1
i =

1
M i
i

qi −
i−1∑
j=1

M i
jv
n
j −

N∑
j=i+1

M i
jv
n
j

 , i = 1, 2, . . . ,M . (10.4)

The Gauss-Seidel method makes use of approximations as soon as they become avail-

able in order to speed up convergence, i.e.

vn+1
i =

1
M i
i

qi −
i−1∑
j=1

M i
jv
n+1
j −

N∑
j=i+1

M i
jv
n
j

 , i = 1, 2, . . . ,M . (10.5)

Adding and subtracting vni , i = 1, 2, . . . , N to the right hand side of equation (10.5)

we obtain

vn+1
i = vni +

ω

M i
i

qi −
i−1∑
j=1

M i
jv
n+1
j −

N∑
j=i

M i
jv
n
j

 , i = 1, 2, . . . ,M , (10.6)

where for the moment ω = 1. The right hand side terms in curly brackets are referred

to as displacements as these terms are added to the previous iteration in order to obtain
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a better approximation. Matrix M is such that successive corrections vn+1
i − vni are all

one-signed as n increases [Wilmott, 2000b]. The implication is that convergence may

be speed up by choosing ω > 1 and thereby assign a greater weight to the displace-

ments. The optimal value of 1 < ω < 2 is when the spectral radius of the SOR matrix

is a minimum. The SOR matrix given by [Wilmott, 2000b]

(I + ωD−1L)−1((1− ω)I− ωD−1U),

where I, U, D and L are the identity matrix, an upper triangular matrix, the diagonal

matrix and a lower triangular matrix respectively such that M = U + D + L. We

will not attempt to find the optimal value of ω, instead we make use of an algorithm

described by Wilmott [2000b] that iteratively find a suitable value for ω. The idea of

the algorithm is to start with ω = 1 (Gauss-Seidel method) and to increase its value

marginally after each iteration until the number of iterations fail to decrease.

function Q = SOR(M,q,v,tol, Payoff , omega)

MU = [diag(M,1);0];

ML = [0;diag(M,−1)];

MD = diag(M,0);

N = size (M,1);

NumberIterations = 0;

Error = tol +1;

temp = zeros(N,1);

while Error > tol

Error = 0;

for i = 1:N

temp(i) = v( i+1)+omega∗(q(i)−MU(i)∗v(i+2)...

−MD(i)∗v(i+1)...

−ML(i)∗v(i))/MD(i);

temp(i) = max(temp(i),Payoff( i +1));

v( i+2) = max(v(i+2),Payoff( i +2));
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v( i ) = max(v(i), Payoff( i ));

Error = Error + (temp(i) − v(i+1)) ∗ (temp(i)−v(i +1));

v( i+1) = temp(i );

end

NumberIterations = NumberIterations + 1;

end

Q = {v,NumberIterations};

end

Listing 10.1: Matlab SOR function.

Listing (10.1) shows a Matlab implementation of a SOR algorithm, adapted from

Wilmott [2000b].

10.3 The Du Fort and Frankel scheme for American

options

Explicit schemes calculate the elements of the unknown temporal vector independent

of each other. This property simplifies the computation of free boundary problems for

explicit schemes and specifically the Du Fort and Frankel scheme. Wilmott [2000b]

reports that by manually adjusting the calculated prices of claims in order to comply

with arbitrage principles (recall that the price of an American option must equal at least

its intrinsic value), preserves the conditions of equation (10.2). This leads to a simple

implementation which only slightly differs from European options. The Du Fort and

Frankel difference equation for an American option is given by1

f i+1
j = max{Äf ij+1 + B̈f ij + C̈f ij−1 + D̈f i−1

j , X − s(j)}.

10.4 Numerical results

The Du Fort and Frankel scheme and the Crank and Nicolson scheme performs virtu-

ally identically in pricing American put options. Figure (10.1) depicts the error between

1Compare with section (5.4.2)
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a highly accurate Crank and Nicolson scheme with a Crank and Nicolson scheme with

N = 50 and M = 80 (top) and a Du Fort and Frankel approximation with Richard-

sons extrapolation with N = 50 , M1 = 80 and N2 = 40. Both schemes priced an

American put option with X = 100, T = 1, r = 0.1 and σ = 0.3. From figure (10.1)

it is apparent that the Du Fort and Frankel scheme performed virtually identical to

the Crank and Nicolson scheme. The Du Fort and Frankel scheme with Richardson’s

extrapolation was roughly 35% quicker than the Crank and Nicolson scheme with a

coarse grid. With 50 simulations the mean time it took the Du Fort and Frankel scheme

with Richardson’s extrapolation was 0.0107 seconds compared to 0.0144 seconds for

the Crank and Nicolson algorithm.

For finer meshes, the Du Fort and Frankel scheme outperforms the Crank and Nicolson

scheme. Figure (10.2) depicts the times to compute various mesh sizes. It is apparent

that the Du Fort and Frankel scheme outperforms the Crank and Nicolson scheme for

finer meshes.

10.5 Conclusion

The Du Fort and Frankel scheme and the Crank and Nicolson scheme produce sim-

ilar American option prices. The Crank and Nicolson scheme makes use of a SOR

algorithm that is computationally more expensive than the manual adjustment of grid

points, employed by the Du Fort and Frankel scheme. We used Richardson’s extrapola-

tion with the Du Fort and Frankel algorithm, and for coarse meshes both the Crank and

Nicolson and Du Fort and Frankel algorithms performed on par in terms of the time to

compute. However, for finer grids, the Du Fort and Frankel scheme outperforms the

Crank and Nicolson scheme.
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Figure 10.1: The error in pricing an American put option with S0 = 100, X = 100, T = 1, r = 0.1 and

σ = 0.3 using Crank and Nicolson scheme (top) with an M = 80 and N = 50 grid, and a Richardson

extrapolated Du Fort and Frankel scheme (bottom) with M1 = 80, M2 = 40 and N = 50. The

benchmark for correctness is a Crank and Nicolson approximation with N = 1000 and M = 1000.
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Figure 10.2: The time to compute an American put option with different grid sizes. For each value of N ,

the number of times steps are M = 1.2N = M1 with M2 = 1
2
M1 used for Richardson’s extrapolation.
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Chapter 11

Multi dimensional problems

11.1 Introduction

The purpose of this chapter is to establish whether the Du Fort and Frankel scheme

is an efficient tool to price more dimensional contingent claims. Classically the finite

difference method is not the method of choice for higher dimensions - such problems

are more efficiently priced by making use of Monte Carlo methods. The reason for this

is that the number of gird points that require computation grows exponentially, to the

order of MNd where d is the number of spatial dimensions. The number of Monte

Carlo methods simulations grow linearly with the number of dimensions, and even if

Monte Carlo methods are slow to converge in one dimension, it quickly overtakes finite

difference schemes when dimensionality grows [Wilmott, 2000b].

A further complication with higher dimensionality relates to the inversion of matrices

required by implicit schemes. This topic falls outside the scope of this document as the

Du Fort and Frankel scheme, being explicit, escapes these complications.

Dimensionality not only grows with the addition of additional spatial variables, but

generally with the addition of any stochastic variable, implying that the likes of Asian

options (both the underlying share price and the average price are stochastic variables)

and options with stochastic volatility all require additional dimensions. It is mainly for

these low dimensional problems that finite difference methods are useful.

We will focus our attention on an option with a payoff function that is the maximum of
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two assets minus a strike price,

Φ(S1(T ), S2(T ), T ) = max(max(S1(T ), S2(T ))−X, 0),

also known as a variation of the class of rainbow options. We choose this option for

two reasons: Firstly it has an analytic solution [Haug, 1998] which we can use as a

benchmark, and secondly, this option falls within the Black and Scholes framework

which we derived earlier.

11.2 Derivative discretisation

Our original derivation of the Black and Scholes partial differential equation (equa-

tion (2.3)) involved a spatial vector S(t) = (S1(t), S2(t), . . .) which up to now only

consisted of a single element. We extend the vector by adding a second element. The

partial differential equation may be rewritten as

∂F

∂q
+

1
2
σ2

1S
2
1

∂2F

∂S2
1

+
1
2
σ2

2S
2
2

∂2F

∂S2
2

+ρσ1σ2S1S2
∂2F

∂S1S2
+rS1

∂F

∂S1
+rS2

∂F

∂S2
−rF = 0,

(11.1)

where ρ has the meaning described earlier (see equation 2.2). The other variables have

their usual meaning.

Discretising the derivatives are identical to that described in section (5.4.2) but with an

additional second derivative ∂2F
∂S1S2

. We adopt the notation f ij,g ≡ f(S1χ + jh1, S2χ +

gh2, ik). Assuming there is a functional relationship between h1 and h2, i.e. h2 = xh1,
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we consider the following Taylor expansions:

(a) f ij+1,g+1 = f ijg + h1
∂f

∂s1
+ h2

∂f
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+

1
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1
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(d) f ij−1,g−1 = f ijg − h1
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From (a) - (b) - (c) + (d) we obtain

f ij+1,g+1 − f ij−1,g+1 − f ij+1,g−1 + f ij−1,g−1 = 4xh2
1

∂2f

∂s1s2
+O(h4

1)

∴
∂2f

∂s1s2
=

1
4h1h2

(f ij+1,g+1 − f ij−1,g+1 − f ij+1,g−1 + f ij−1,g−1) +O(h2
1). (11.2)

The two dimensional Du Fort and Frankel scheme therefore exhibits a local truncation

error of

T ij,g = O(h2
1, h

2
2, k

2,
k2

h2
1

,
k2

h2
2

).

The Du Fort and Frankel discretisation of equation (11.1) is found by substituting the

relevant derivatives for their discretised versions

− 1
2k

(f i+1
j,g − f

i−1
j,g ) . . .

+
σ2

1s
2
1

2h2
1

(f ij+1,g − f i+1
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i−1
j,g + f ij−1,g) +

σ2
2s

2
2

2h2
2

(f ij,g+1 − f i+1
j,g − f

i−1
j,g + f ij,g−1) . . .

+
ρσ1σ2s1s2

4h1h2
(f ij+1,g+1 − f ij+1,g−1 − f ij−1,g+1 + f ij−1,g−1) . . .

+
rs1

2h1
(f ij+1,g − f ij−1,g) +

rs2

2h2
(f ij,g+1 − f ij,g−1)− rf = 0.
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After rearranging terms we obtain

f i+1
j,g = A(f ij+1,g+1 − f ij+1,g−1 − f ij−1,g+1 + f ij−1,g−1) . . .

+Bf ij+1,g + Cf ij,g+1 +Df ij,g + Ef ij−1,g . . .

+Ff ij,g−1 +Gf i−1
j,g , (11.3)

where

A =
1
2
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2), and

H = (h2
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2
2 + h2

2kσ
2
1s

2
1 + h2

1kσ
2
2s

2
2)−1.

11.3 Specification of boundaries

Boundary specification is not trivial in multiple dimensions. The terminal boundary is

given by the payoff function, in the case of the option under consideration

f1
j,g = max{max(s1(j), s2(g))−X, 0}, j = 1, 2, . . . , N1+1, g = 1, 2, . . . , N2+1.

Remaining are 4 boundaries, each consisting of a surface, rather than a line [Wilmott,

2000b], as is the case for one dimensional problems. These are

f i1,g = χ1
0,

f iN1+1,g = ψ1
0 ,

f ij,1 = χ2
0,

f ij,N2+1 = ψ2
0 .

For simplicity we assume these are known.
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11.4 Performance of the Du Fort and Frankel scheme

The error of the Du Fort and Frankel compared to an analytical solution is depicted in

figure (11.1). The speed performance of the algorithm is acceptable, but as expected

43
129

215

59

126

193
0

50

100

150

200

s1

(a) Payoof function
Φ(s1,s2,T) = max(max(s 1,s2)−X,0)

s2

V
al

ue

43
129

215

59

127

193
−0.4

−0.2

0

0.2

0.4

s1

(b) Error: i=17

s2

E
rr

or

43
129

215

59

126

193
−0.2

−0.1

0

0.1

0.2

s1

(c) Error: i=33

s2

E
rr

or

43
129

215

59

126

193
−0.2

−0.1

0

0.1

0.2

s1

(d) Error: i49

s2

E
rr

or

43
129

215

59

126

193
−0.1

−0.05

0

0.05

0.1

s1

(e) Error: i=65

s2

E
rr

or

43
129

215

59

127

194
−0.1

−0.05

0

0.05

0.1

s1

(f) Error:i=81=M+1

s2

E
rr

or

Figure 11.1: The payoff function (a) and the error in pricing a best-of-call Rainbow option with X = 100,

T = 1, r = 0.1, σ1 = 0.3, σ1 = 0.2, and ρ = 0.5 using the Du Fort and Frankel scheme (M = 80,

N1 = 50, and N2 = 50) compared to an analytical solution.
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Grid size Time (s)

100× 100× 120 0.3965

200× 200× 240 2.422

300× 300× 360 7.5088

400× 400× 480 20.39

Table 11.1: Time to compute different grid sizes by using the two dimensional Du Fort and Frankel scheme

grows quickly when the number of dimensions are increased. Table (11.1) shows the

time it took for different mesh sizes to compute the price of a two-dimensional rainbow

option. It is clear that additional accuracy comes at a high computational price.

11.5 Boundary free schemes

Hull and White [1990] observes that explicit schemes do not require upper and lower

boundary conditions in order to achieve convergence. This property makes explicit

schemes desirable from a computational point of view. The scheme becomes a quasi-

trinomial tree. We experiment with the idea, hopeful that the stability characteristics

of the Du Fort and Frankel scheme may alleviate some of the spatial-to-temporal steps

size restrictions that are otherwise in place for explicit schemes. Since the number

of spatial nodes grow by two with the addition of each time step the danger arises

that the spatial variable may become negative if a sufficient spatial step size is used to

ensure reasonable consistency properties. For this reason we log-transform the spatial

dimensions, and consequently the partial differential equation. The resulting partial

differential equation is [Tavella and Randall, 2000]

−∂F
∂q

+ ν1
∂F

∂S1
+ ν2

∂F

∂S2
+

1
2
σ2

1

∂2F

∂S2
1

+
1
2
σ2

2

∂2F

∂S2
2

+ σ1σ2ρ
∂2F

∂S1S2
− rF = 0,

where νx ≡ (r − 1
2σ

2
x). From the partial differential equation, the coefficients from

equation (11.3) changes appropriately.

The algorithm fixes N1 = N2 = 2M at the boundary. Each time step back in time

calculates a matrix of solutions Vi of size j× k, j, k = 2(M − i) + 3. The effective

number of nodes are halved, since the number of nodes grow with respect to dimension
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with

W = M
d∏
i=1

Nd,

whereW is the total number of grid points and d is the number of dimensions. Since we

effectively half the number of grid points by leaving out the upper and lower boundary

conditions, the total number of grid points are reduced to

W̃ = M
d∏
i=1

1
2
Nd

=
W

2d
.

A boundary free Du Fort and Frankel two dimensional algorithm is listed in Appendix

(A.2.6).

11.5.1 Success with boundary free schemes

The algorithm listed in Appendix (A.2.6) markedly reduces the computational effort.

An additional advantage of boundary free multi-dimensional schemes is that the upper

and lower boundary conditions, which are often tedious to specify correctly, need not

to be specified. An important observation by Hull and White [1990] is that errors

originating from the boundaries are not present, thus higher accuracy may be obtained.

Despite the promising properties of boundary free multidimensional schemes, we were

unable to acceptable results with our algorithm.

11.6 Conclusion

Finite difference schemes are important tools in pricing problems with low dimen-

sionality. The computational effort associated with additional dimensionality quickly

becomes problematic and thus multi dimensional finite difference problems are often

synonymous with efficiency problems.

We illustrated a two dimensional problem namely a 2 colour rainbow call option, and

found that the Du Fort and Frankel algorithm performed well. It was observed that the

time to compute grows exponentially with the addition of additional grid points. We

experimented with a technique whereby the upper and lower boundaries are left out in

order to speed up computation.
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Chapter 12

Part II conclusion and summary

In Part II we exposed the Du Fort and Frankel to a number of numerical challenges that

frequently occur in finance. In Part I the scheme was found to have desirable properties

on the basis of theoretical analysis.

We exposed the Du Fort and Frankel scheme to four classes of financial problems.

Although many more potential problems exist, we believe that the general suitability

of the Du Fort and Frankel scheme pertaining to finance will suitably be tested. The

four problems were:

• Chapter 8 dealt with the presence of dividends causing discontinuous jumps,

• Chapter 9 provide a treatise on the presence of steeps gradients and singularities,

• Chapter 10 discussed free boundary problems, and

• Chapter 11 dealt with more dimensional problems.

12.1 Dividends

We found that the Du Fort and Frankel scheme copes well with discrete dividends, but

not better than alternative schemes. The adjustment to pricing algorithms in order to

incorporate dividends are in fact more problematic for three time-step schemes such as

the Du Fort and Frankel schemes than for conventional schemes.
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12.2 Discontinuous behavior

A number of measures were investigated in order to improve the accuracy of the Du

Fort and Frankel scheme at areas where discontinuities or steep gradients in the solution

occur. Most of our attempts were unsuccessful despite numerous reports in literature

of success obtained for other schemes. Two characteristics of the Du Fort and Frankel

scheme may collaborate in this absence of success. These are the fragile consistency

properties of the scheme and the fact that it is a three time-step method which compli-

cates grid refinements.

We believe that the Du Fort and Frankel scheme is not the most suitable scheme where

contingent claims with a high degree of discontinuity – such as barrier options – are to

to be priced.

12.3 Free boundary options

The Du Fort and Frankel scheme with Richardson’s extrapolation was found to be an

effective tool to price options with free boundaries, compared to implicit schemes, in

particular the Crank and Nicolson scheme. The Du Fort and Frankel scheme is explicit,

thus it is not required to iteratively find solutions to matrix equations as is the case

with implicit schemes. This vastly improves the efficiency of the scheme and it was

found that the benefit of using the Du Fort and Frankel scheme increases with required

accuracy.

12.4 Multi-dimensional problems

For low dimensional problems, the Du Fort and Frankel scheme may prove useful. It’s

utility may even be more profound if boundary free schemes can be implemented with

success. Our experimentation with boundary free schemes did not provide acceptable

results. The use of the finite difference method for multi-dimensional problems remains

limited.
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12.5 Summary

Table 12.1 provides a summary of the suitability of the Du Fort and Frankel scheme

for various problems in finance.

Problem Suitability Ease of implementa-

tion

Comment

Dividends Useful Relatively simple, but

more complex com-

pared to two time-step

methods.

Discontinuous be-

havior

Not suitable Difficult. Consistency prob-

lems and problems

with multiple

time-steps ren-

ders the scheme

unpractical.

Free boundary

problems

Effective Simple Tests were con-

ducted with

Richardson’s

extrapolation.

Multidimensional

problems

Limited used Relatively simple

Table 12.1: Summary of the suitability of the Du Fort and Frankel scheme when encountering various

problems in finance.
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Chapter 13

Further research

13.1 Introduction

Throughout the research of topics pertaining to this document we identified areas where

further research is required. This requirement stems from three sources. Firstly, there

were a number of instances where we were unable to replicate results obtained by

other authors. A second source prompting new research originates from a general lack

specific research on the Du Fort and Frankel scheme, and especially for linear second

order parabolic partial differential equations. The third source of required research

stems from our own experimentation.

13.2 Replication of results

13.2.1 Stability testing for Black and Scholes equation

In Chapter 4 we derived stability conditions for the fully explicit scheme for the ini-

tial value Black and Scholes partial differential equation. The only other source to our

knowledge that conducts this derivation was done by Wilmott [2000b]. We were un-

able to precisely replicate the results obtained by Wilmott [2000b].

In Chapter 5 we attempted to prove stability for the Du Fort and Frankel scheme for

the Black and Scholes equation. The Du Fort and Frankel scheme is known to be un-

conditionally stable for the heat equation Smith [1984]. We were unable to source any

analysis on partial differential equations with convection terms, and our own analysis

149

 
 
 



13.2 Replication of results 150

is not exhaustive. Gottlieb and Gustafsson [1976] makes an observation that stability

of the Du Fort and Frankel scheme is not clear when coefficients are not constant. This

is of special interest to the pricing of contingent claims as coefficients are often not

constant.

13.2.2 Douglas schemes for PDE’s containing convection terms

A statement by Wilmott [2000b] implies that Douglas schemes can be derived for the

Black and Scholes partial differential equation. This is in conflict with our own finding,

which is also supported by Smith [1984], namely that only second derivatives allow for

the elimination of fourth order differences. We were unable to find any further research

on this topic.

13.2.3 Spurious behavior due to central differencing and time av-

eraging

In Chapter 6 we were unable to replicate results by Duffy [2004b] stating that time

averaging and central differencing are responsible for spurious behavior in the Crank

and Nicolson scheme.

13.2.4 Analytical grid refinement

In Chapter 9 we were unable to replicate the accuracy improvements from analytical

grid adjustments reported by Oosterlee et al. [2004], Leentvaar and Oosterlee [2006]

and Clarke and Parrot [1999] amongst others. A similar inability to replicate accuracy

improvements was reported by Sottoriva and Rexhepi [2007] but no analysis of the

problem was conducted. We speculated on one possibility namely that the concentra-

tion of mesh points in the spatial direction is causing a too low spatial–to–temporal

step size ratio and consequently inconsistencies occur. Our initial analysis supports

this notion to the extent that it was shown that inconsistencies do occur, but we were

unable to determine any firm causality. Tavella and Randall [2000] cautions briefly

against the use of analytical mesh refinement, but no analysis is shown. Research may

not only isolate the cause of poor performance of the Du Fort and Frankel scheme in

this regard, but in addition may also offer a remedy.
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13.3 General research required

13.3.1 The impact of inconsistency

In Chapter 6 we obtained promising results making use of Richardson’s extrapolation

in order to reduce the impact of inconsistency on results obtained by the Du Fort and

Frankel scheme. Further research may be required in order to make similar derivations

for different partial differential equations.

13.3.2 Discrete dividends

The works of Beneder and Vorst [2001] and Bos and Vandermark [2002] were dis-

cussed in Chapter 8. These techniques provide analytical estimations for options where

discrete dividends are present. From experimentation, both methods performed excep-

tional, however Haug et al. [2003] warns that no theoretical base for these models exist,

and that using it may be risky. Proper testing of these techniques may prove fruitful,

and a numerical treatise for discrete dividends may only be required in the presence of

path dependent contingent claims.

13.3.3 Adaptive mesh techniques

In Chapter 9 the topic of adaptive mesh methods were investigated. The three time-

step nature of the Du Fort and Frankel scheme hinders simple implementation, and

we resorted to interpolation methods to find absent mesh point values. We utilized

both linear interpolation as well as a third order interpolation technique. The third

order interpolation technique returned encouraging results when a coarse grid was used.

However, when finer grids were used, the method became spurious for no apparent

reason. Research is required in order to isolate the reason for spurious behavior.

In general, more research is required in relation to the performance of the Du Fort

and Frankel scheme where steep gradients in the solution occurs. We were unable to

generate any acceptable results by adapting the conventional techniques for the Du Fort

and Frankel scheme.

151

 
 
 



13.3 General research required 152

13.3.4 Boundary free schemes

In Chapter 11 we experimented with boundary free schemes. In a paper by Hull and

White [1990] it was reported that explicit schemes do not require upper and lower

boundary conditions and as a result such schemes have the potential to become more

accurate as errors stemming from the boundaries do not form part of the solution.

Boundary free schemes offer a compelling case in favor of explicit schemes, yet very

little research after Hull and White [1990] was found.

We were unable to achieve acceptable results in terms of our own experimentation with

a boundary free Du Fort and Frankel scheme. Successful implementation of a boundary

free scheme may yield spectacular results in two respects. Firstly, boundary specifica-

tion for multidimensional problems are often problematic, and boundary free schemes

trivially takes care of this. Secondly, by halving the number of mesh points that require

calculation, higher dimensional problems may become viable, or alternatively higher

accuracy can be obtained.
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Conclusion

Conclusion

The Du Fort and Frankel finite difference scheme was applied to a class of financial

problems. The document was structured in such a way as to systematically derive the

Du Fort and Frankel scheme from the underlying financial problem, and then apply the

scheme to obstacles in finance that frequently occur.

The first part of the document derived the Black and Scholes partial differential equa-

tion and adapted it to an initial value equation. It was also adapted to the heat equation

as this simpler version is often used in literature to conduct analysis.

In the subsequent chapter we derived the three classical finite difference schemes,

namely the implicit, explict and Crank and Nicolson schemes. These were evaluated

and compared on the basis of truncation error, consistency and stability.

The analysis conducted up to Chapter 4 served as a foundation on which to conduct

analysis on the main subject of this document namely the Du Fort and Frankel scheme.

As a prelude to this scheme we analysed schemes that share important properties of

the Du Fort and Frankel scheme, namely a second order spatial truncation error and

an explicit scheme that is also stable. We chose the Richardson scheme to illustrate

the second order temporal truncation error, and the MADE scheme, which share some

stability characteristics with the Du Fort and Frankel scheme.

A consequence of the stability of the Du Fort and Frankel scheme is inconsistency

with the partial differential equation, which was studied in the next chapter, together
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with spurious oscillations ascribed to dominance of convection terms in partial differ-

ential equations. We found that consistency problems with the Du Fort and Frankel

scheme can effectively be reduced by firstly increasing the number of temporal steps,

and secondly by eliminating high order inconsistent error terms with Richardson’s ex-

trapolation. The second measure was found to be especially effective.

The second part of the document applied the Du Fort and Frankel scheme to financial

problems. We focussed on four phenomena that frequents the financial arena. These

were the presence of jumps due to dividend payments, singularities and discontinuous

behavior, free boundary value problems and multi dimensionality.

We found that finite difference schemes present an effective means to price contingent

claims of financial instruments with dividend payments. The conventional treatment

required by two time-step schemes was amended in order to work for three time-step

methods such as the Du Fort and Frankel scheme.

We studied various techniques in order to effectively price contingent claims where

steeps gradients are present. We tested various ideas including analytical mesh refine-

ment on the spatial dimension, temporal grid refinement and local grid refinement by

the insertion of additional grid points at problematic areas. We experienced difficulty

with all the techniques due to a number of reasons. These include the poor consistency

tendency, and the requirement of multiple time steps in order to compute a solution

of the Du Fort and Frankel scheme. We derived a method where grid refinement is

achieved with third order interpolations. The new method had promising features, but

displayed some undesirable characteristics which requires further research.

The Du Fort and Frankel scheme was found to be an efficient tool to compute Ameri-

can options. It was compared to the Crank and Nicolson scheme and it was found that

for fine meshes the Du Fort and Frankel scheme computes results more efficiently.

We applied the Du Fort and Frankel scheme to a more dimensional problem and it was

found that it performed well both in terms of accuracy and in terms of computing time.

In order to speed up convergence further, we experimented with an idea to remove

the upper and lower boundary conditions, thereby halving the number of grid points

for each dimension. We were unable to achieve acceptable results with boundary free

methods.

The condensed conclusion of this document is that the main theoretical shortcomings

of the Du Fort and Frankel scheme can be effectively minimized and with proper pre-
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caution scheme may prove to be a valuable addition to the suite of numerical techniques

used for the pricing of contingent claims. The practical application of the scheme is

limited where a high degree of discontinuity occurs, such as barrier options. Promising

results were obtained for free boundary problems. The scheme also proves suitable for

instances where discrete dividends occur and with general problems with low dimen-

sionality.
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Appendix A

Source code for miscellaneous

functions

A.1 Analytical functions

A.1.1 Function to calculate the cumulative normal density func-

tion

function Q = CND(x)

%Standardized Cumulative Normal Distribution function

y = x/sqrt (2);

Q = double(( erf (y )+1)/2);

A.1.2 Function to calculate the value of the genralized Black and

Scholes formula

function Q = bsmatrix(PorC, S,X,T,r ,b,v)

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% GENRALIZED BLACK AND SCHOLES MATRIX ANALYTICAL MODEL

%

% Abie Bouwer
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A.1 Analytical functions 158

% November 2007

%

% Algorithm adapted from Haug, E. ”The complete guide to option pricing

% formulas”, McGraw−Hill, 1997

%

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%Returns a matrix over S and T. Default test values are:

%PorC = ’P’; %Call or Put

%S = 50:10:200; %Spot price range

%X = 100; %Strike price

%T = 0:0.1:10; %Time range

%r = 0.07; %Risk free interest rate

%b = 0.07; %Carry cost

%v = 0.25; % Volatility

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

TT = max(T,eps);

SS= max(S,eps);

[s , t ] = meshgrid(SS,TT);

d1 = ( log(s /X)+(b+0.5∗(v∗v))∗t )./( v∗sqrt( t ));

d2 = d1 − v∗sqrt(t );

if PorC == ’C’

Q = (s .∗ exp((b−r).∗ t )).∗CND(d1)−(X ∗ exp(−r ∗ t)).∗ CND(d2);

else

Q = X ∗ exp(−r.∗t ).∗ CND(−d2) − s.∗ exp((b−r)∗t).∗ CND(−d1);

end

A.1.3 Function to calculate the analytical value of a barrier option

function Q = barriermatrix (PorC, S,X,T,r ,b,v,K,H,InOut, UpDown)

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% BARRIER MATRIX ANALYTICAL MODEL

158

 
 
 



A.1 Analytical functions 159

%

% Abie Bouwer

% November 2007

%

% Algorithm adapted from Haug, E. ”The complete guide to option pricing

% formulas”, McGraw−Hill, 1997

%

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%Returns a matrix over S and T. Default test values are:

% PorC = ’C’; % Call or put

% K=0; % Rebate

% H = 200; % Barrier

% S = 50:10:200;% Spot range

% X = 100; % Strike price

% T = 0:0.1:1; % Time to maturity range

% r = 0.1; % Risk free rate

% b = 0.1; % Cost of carry

% v = 0.25; % Volatility

% InOut = ’O’; % ’In’ barrier or ’Out’ barrier

% UpDown = ’U’; % ’Up’ barrier or ’Down’ barrier

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

TypeFlag = {[PorC, UpDown, InOut]};

TT = max(T,eps);

SS= max(S,eps);

[s , t ] = meshgrid(SS,TT);

mu = (b − v ˆ 2 / 2) / v ˆ 2;

lambda = sqrt(mu ˆ 2 + 2 ∗ r / v ˆ 2);

X1 = log(s / X) ./ (v ∗ sqrt( t )) + (1 + mu) ∗ v ∗ sqrt( t );

X2 = log(s / H) ./ (v ∗ sqrt( t )) + (1 + mu) ∗ v ∗ sqrt( t );

y1 = log(H ˆ 2 ./ (s ∗ X)) ./ (v ∗ sqrt( t )) + (1 + mu) ∗ v ∗ sqrt( t );
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y2 = log(H ./ s) ./ (v ∗ sqrt( t )) + (1 + mu) ∗ v ∗ sqrt( t );

Z = log(H ./ s) ./ (v ∗ sqrt( t )) + lambda ∗ v ∗ sqrt( t );

if strcmp(TypeFlag,’CDI’) || strcmp(TypeFlag, ’CDO’)

eta = 1;

phi = 1;

elseif strcmp(TypeFlag, ’CUI’) || strcmp(TypeFlag,’CUO’)

eta = −1;

phi = 1;

elseif strcmp(TypeFlag,’PDI’) || strcmp(TypeFlag,’PDO’)

eta = 1;

phi = −1;

elseif strcmp(TypeFlag,’PUI’) || strcmp(TypeFlag,’PUO’)

eta = −1;

phi = −1;

end

f1 = phi∗s.∗exp((b−r).∗ t ).∗CND(phi∗X1) − ...

phi∗X∗exp(−r∗t).∗CND(phi∗X1−phi∗v∗sqrt(t));

f2 = phi∗s.∗exp((b−r).∗ t ).∗CND(phi∗X2) − ...

phi∗X∗exp(−r∗t).∗CND(phi∗X2−phi∗v∗sqrt(t));

f3 = phi∗s.∗exp((b−r).∗ t ).∗( H./s ).ˆ(2∗( mu+1)).∗CND(eta∗y1) − ...

phi∗X.∗exp(−r∗t).∗(H./s ).ˆ(2∗mu).∗CND(eta∗y1−eta∗v∗sqrt(t));

f4 = phi∗s.∗exp((b−r).∗ t ).∗( H./s ).ˆ(2∗( mu+1)).∗CND(eta∗y2) − ...

phi∗X.∗exp(−r∗t).∗(H./s ).ˆ(2∗mu).∗CND(eta∗y2−eta∗v∗ sqrt(t));

f5 = K∗exp(−r∗t).∗(CND(eta∗X2−eta∗v∗sqrt(t)) − ...

(H./s ).ˆ(2∗mu).∗CND(eta∗y2−eta∗v∗sqrt(t)));

f6 = K∗((H./s ).ˆ( mu+lambda).∗CND(eta∗Z) + ...

(H./s ).ˆ( mu−lambda).∗CND(eta∗Z−2∗eta∗lambda∗v∗sqrt(t)));

TypeFlag = [PorC, UpDown, InOut];

if X > H

switch TypeFlag
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case ( ’CDI’)

Q = f3 + f5 ;

case ( ’CUI’)

Q = f1 + f5 ;

case ( ’PDI’)

Q = f2 − f3 + f4 + f5 ;

case ( ’PUI’)

Q = f1 − f2 + f4 + f5 ;

case ( ’CDO’)

Q = f1 − f3 + f6 ;

case ( ’CUO’)

Q = f6 ;

case ( ’PDO’)

Q = f1 − f2 + f3 − f4 + f6 ;

case ( ’PUO’)

Q = f2 − f4 + f6 ;

end

elseif X < H

switch TypeFlag

case ( ’CDI’)

Q = f1 − f2 + f4 + f5 ;

case ( ’CUI’)

Q = f2 − f3 + f4 + f5 ;

case ( ’PDI’)

Q = f1 + f5 ;

case ( ’PUI’)

Q = f3 + f5 ;

case ( ’CDO’)

Q = f2 + f6 − f4;

case ( ’CUO’)

Q = f1 − f2 + f3 − f4 + f6 ;

case ( ’PDO’)

Q = f6 ;
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case ( ’PUO’)

Q = f1 − f3 + f6 ;

end

end

A.2 Finite difference algorithms

A.2.1 The classical suite: Explicit, Crank and Nicolson and Ex-

plicit schemes

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% GENERALIZED FINITE DIFFERENCE ALGORITHM

%

% Abie Bouwer

%

% November 2007

%

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%

%The algorithm calculates the value of an option using a generalized finite

%difference scheme. Adjusting the paramater ’O’ sets the convention :

% O = 0.0 ( Explicit scheme)

% O = 0.5 (Crank−−Nicolson scheme)

% O = 1.0 ( Implicit scheme)

%

%The payoff is specified in the section ”BOUNDARY CONDITIONS”

%

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

clear ;

clc ;

%INPUT PARAMETERS
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%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

T = 1; %Years to maturity

s0 = 100; % Initial Spot

r = 0.15; %Riskfree Interest Rate

o = 0.01; % Volatility

M = 200; %Number of time steps

N = 50; %Number of spatial steps

O = 0.5; %O = 0 for explicit , 0.5 for CN and 1 for implicit

X = 100; %Strike price

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%GRID INITIALIZATION

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

smin = 0;

smax = s0∗exp((r−0.5∗o∗o)∗T+3∗o∗sqrt(T));

k = T/M; %Time step spacing

h = (smax−smin)/N; %Spatial step spacing

s = smin:h:smax; %Spot prices

q = T:−k:0; %Times

V =zeros(N+1,M+1); %Option price initialization

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%BOUNDARY CONDITIONS

%

%The boundary conditions should reflect the payoff of the option

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%European Option Dirichlet Boundary conditions

V(1:N+1,1:M+1) = zeros(N+1,M+1);
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V (:,1) = max(s−X,0);

V (1,:) = 0;

V(N+1,:) = smax−X∗exp(r∗(q−T));

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%FD variables

alpha = 0.5∗o.ˆ2∗s .ˆ2;

beta = r .∗s ;

gamma = −r;

A = (alpha∗k)/hˆ2 + (beta∗k)/(2∗h);

B = gamma∗k − (2∗alpha∗k)/(hˆ2);

C = (alpha∗k)/hˆ2 − (beta∗k)/(2∗h);

%Lefthand Matrix ...

ML = diag((1−O∗B(2:N)),0) + ...

diag((−O∗A(2:(N−1))),1) + ...

diag((−O∗C(3:N)),−1);

%Righthand Matrix ...

MR = diag((1+(1−O)∗B(2:N)),0) + ...

diag(((1−O)∗A(2:(N−1))),1) + ...

diag(((1−O)∗C(3:N)),−1);

%Left boundary conditions ...

bL = zeros(N−1,M+1);

bL (1,:) = −O∗C(2)∗V(1,:);

bL((N−1),:) = −O∗A(N)∗V((N+1),:);

%Right boundary conditions ...

bR = zeros(N−1,M+1);

bR (1,:) = (1−O)∗C(2)∗V(1,:);

bR((N−1),:) = (1−O)∗A(N)∗V((N+1),:);
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%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%MAIN CALCULATION

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

for i = 2:(M+1)

V(2:N,i) = ML\((MR∗V(2:N,i−1))+bR(:,(i−1))−bL(:,i));

end

Value = interp1(s ,V(:,M+1),s0,’ spline ’ );

A.2.2 The MADE scheme

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% MADE FINITE DIFFERENCE ALGORITHM

%

% Abie Bouwer

%

% November 2007

%

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%

%The algorithm calculates the value of an option using the MADE finite

%difference scheme.

%

%The payoff is specified in the section ”BOUNDARY CONDITIONS”

%

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

clear ;

clc ;

%INPUT PARAMETERS
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%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

S0 = 100; % Initial spot price

X = 100; %Strike price

sig = 0.25; % Volatility

T = 1; %Time to maturity

r = 0.1; %Risk free interest rate

N = 20;

M = 440;

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%GRID INITIALIZATION

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Smax = S0∗exp((r−0.5∗sig∗sig)∗T+3∗sig∗sqrt(T));

Smin = 0;

h = (Smax−Smin)/N; %Spatial step size

k = T/M; %Tempooral step size

s = Smin:h:Smax; %Spatial vector

t = T:−k:0; %temporal vector

U = zeros(N+1,M+1); %solution matrix initialization

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%BOUNDARY CONDITIONS

%

%The boundary conditions should reflect the payoff of the option

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%European Option Dirichlet Boundary conditions

U (:,1) = max(s−X,0);

U(N+1,:) = Smax − X∗exp(−r∗(T−t));
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U (1,:) = 0;

% FD variables

alpha = 0.5∗sig .ˆ2∗ s .ˆ2;

beta = r .∗s ;

gamma =−r;

A = (2∗alpha∗k+beta∗k∗h)./(2∗hˆ2+4∗alpha∗k);

B = (hˆ2+gamma∗k∗hˆ2)./(hˆ2+2∗alpha∗k);

C = (2∗alpha∗k−beta∗k∗h)./(2∗hˆ2+4∗alpha∗k);

%We put the solution as f ( i+1) = M∗f(i)+ b ...

MR = diag(B(2:N),0)+diag(A(2:(N−1)),1)+diag(C(3:N),−1);

b = zeros(N−1,M+1);

b (1,:) = C(2)∗U (1,:);

b((N−1),:) = A(N)∗U((N+1),:);

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%MAIN CALCULATION

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

for i = 2:(M+1)

U(2:N,i) = (MR ∗ U(2:N,i−1))+b(:,( i−1));

end

A.2.3 The standard Du Fort and Frankel Scheme

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% DU FORT AND FRANKEL FINITE DIFFERENCE ALGORITHM

%

% Abie Bouwer
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%

% November 2007

%

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%

%The algorithm calculates the value of an option using the Du Fort and

%Frankel finite difference scheme.

%

%The payoff is specified in the section ”BOUNDARY CONDITIONS”

%

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

clear ;

clc ;

%INPUT PARAMETERS

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

S0 = 100; % Initial spot price

X = 100; %Strike price

T = 1.0; %Time to maturity

r = 0.15; %Risk free interest rate

o = 0.3; % Volatility

N = 50; %Spatial steps

M = 200; %Temporal steps

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%GRID INITIALIZATION

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

k = T/M; %Temporal step size

smax = S0∗exp((r−0.5∗o∗o)∗T+3∗o∗sqrt(T));

smin = 0;

h = (smax−smin)/N; %Spatial step size
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s = smin:h:smax; %Spot prices

q = T:−k:0; %Times

V = zeros(N+1,M+1); %Solution matrix initialization

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%BOUNDARY CONDITIONS

%

%The boundary conditions should reflect the payoff of the option

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%European Option Dirichlet Boundary conditions

V (:,1) = max(s−X,0);

V (1,:) = 0;

V(N+1,:) = smax − X∗ exp(r∗ (q−T));

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%FD Variables

alpha = 0.5∗oˆ2∗s .ˆ2;

beta = r∗s;

gamma = −r;

%FIRST STEP WITH ANALYTIC FORMULA

V (:,2) = flipdim (bsmatrix( ’C’, s ,100,k, r , r ,o ),1)’;

%Remaining Time steps with Du Fort and Frankel

A = (2∗alpha∗k + beta∗k∗h )./( hˆ2 + 2∗alpha∗k);

B = (2∗gamma∗k∗hˆ2)./(hˆ2 + 2∗alpha∗k);

C = (2∗alpha∗k − beta∗k∗h)./(hˆ2 + 2∗alpha∗k);

D = (hˆ2 − 2∗k∗alpha )./( hˆ2 + 2∗alpha∗k);

MatrixM = diag(B(2:N),0) + ...
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diag(A(2:N−1),1) + ...

diag(C(3:N),−1);

MatrixBoundary = zeros(N−1,M+1);

MatrixBoundary(1,:) = C(2)∗V(1,1:M+1);

MatrixBoundary(N−1,:) = A(N)∗V(N+1,1:M+1);

for i = 3:M+1

V(2:N,i)= MatrixM∗V(2:N,i−1) + MatrixBoundary(1:N−1,i−1) + D(2:N)’.∗V(2:N,i−2);

end

Premium = interp1(s (1:N+1),V(1:N+1,M+1),S0,’linear’ );

A.2.4 The Du Fort and Frankel scheme with one-sided convection

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% ONE SIDED CONVECTION DU FORT AND FRANKEL FINITE DIFFERENCE ALGORITHM

%

% Abie Bouwer

%

% November 2007

%

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%

%The algorithm calculates the value of an option using the Du Fort and

%Frankel finite difference scheme where the convection term makes use of

%one−sided differences instead of central differencing .

%

%The payoff is specified in the section ”BOUNDARY CONDITIONS”

%

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

clear ;

clc ;
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%INPUT PARAMETERS

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

S0 = 100; % Initial spot price

X = 100; %Strike price

T = 1.0; %Time to maturity

r = 0.15; %Risk free interest rate

o = 0.01; % Volatility

N = 50; %Spatial steps

M = 200; %Temporal steps

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%GRID INITIALIZATION

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

k = T/M; %Temporal step size

smax = S0∗exp((r−0.5∗o∗o)∗T+3∗o∗sqrt(T));

smin = 0;

h = (smax−smin)/N; %Spatial step size

s = smin:h:smax; %Spot prices

q = T:−k:0; %Times

V = zeros(N+1,M+1); %Solution matrix initialization

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%BOUNDARY CONDITIONS

%

%The boundary conditions should reflect the payoff of the option

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%European Option Dirichlet Boundary conditions

V (:,1) = max(s−X,0);
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V (1,:) = 0;

V(N+1,:) = smax − X∗ exp(r∗ (q−T));

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%FD Variables

alpha = 0.5∗oˆ2∗s .ˆ2;

beta = r∗s;

gamma = −r;

%FIRST STEP WITH ANALYTIC FORMULA

V (:,2) = flipdim (bsmatrix( ’C’, s ,100,k, r , r ,o ),1)’;

%Remaining Time steps with Du Fort and Frankel

A = (−beta∗k∗h)./(hˆ2 + 2∗alpha∗k);

B = (2∗alpha∗k+4∗beta∗k∗h)./(hˆ2 + 2∗alpha∗k);

C = (2∗gamma∗k∗hˆ2−3∗beta∗k∗h)./(hˆ2 + 2∗alpha∗k);

D = (2∗alpha∗k )./( hˆ2 + 2∗alpha∗k);

E = (hˆ2−2∗alpha∗k)./(hˆ2 + 2∗alpha∗k);

A = (2∗alpha∗k )./( hˆ2 + 2∗alpha∗k);

B = (3∗beta∗k∗h + 2∗gamma∗k∗hˆ2)./(hˆ2 + 2∗alpha∗k);

C = (2∗alpha∗k − 4∗beta∗k∗h)./(hˆ2 + 2∗alpha∗k);

D = (beta∗k∗h )./( hˆ2 + 2∗alpha∗k);

E = (hˆ2−2∗alpha∗k)./(hˆ2 + 2∗alpha∗k);

Direction = 1;

for i = 3:(M+1) %Time stepping

for j = 2:N %Spatial stepping

if ( Direction == 1 && j˜=N)||( Direction == −1 && j==2)

V(j , i ) = ...

A(j)∗V(j+2, i−1) + ...
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B(j)∗V(j+1, i−1) + ...

C(j)∗V(j , i−1) + ...

D(j)∗V(j−1,i−1) + ...

E(j)∗V(j , i−2);

elseif ( Direction == −1 && j˜=2 )||( Direction == 1 && j==N)

V(j , i ) = ...

A (j)∗V(j+1, i−1) + ...

B (j )∗V(j , i−1) + ...

C (j )∗V(j−1,i−1) + ...

D (j)∗V(j−2,i−1) + ...

E ( j )∗V(j , i−2);

end

Direction = Direction∗−1;

end

end

Premium = interp1(s (1:N+1),V(1:N+1,M+1),S0,’linear’ );

A.2.5 The 2-dimensional Du Fort and Frankel scheme

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% TWO DIMENSIONAL DU FORT AND FRANKEL FINITE DIFFERENCE ALGORITHM

%

% Abie Bouwer

%

% November 2007

%

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%clear;
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clc ;

tic

%INPUT PARAMETERS

S1 0 = 100;

S2 0 = 100;

X = 100;

T = 1.0; %Time to maturity

r = 0.1; %Risk free interest rate

o1 = 0.3; % Volatility of 1st asset

o2 = 0.2; % Volatility of 2nd asset

p =0.5; %Correlation

N1 = 50; %Spatial steps 1st asset

N2 = 50; %Spatial steps 2nd asset

M = 80; %Temporal steps

%GRID INITIALIZATION

epsilon = 3;

s1min = X∗exp((r−0.5∗o1ˆ2)∗T−epsilon∗o1∗sqrt(T));

s1max = X∗exp((r−0.5∗o1ˆ2)∗T+epsilon∗o1∗sqrt(T));

s2min = X∗exp((r−0.5∗o2ˆ2)∗T−epsilon∗o2∗sqrt(T));

s2max = X∗exp((r−0.5∗o2ˆ2)∗T+epsilon∗o2∗sqrt(T));

k = T/M;

h1 = (s1max−s1min)/N1;

h2 = (s2max−s2min)/N2;

s1 = s1min:h1:s1max;

s2 = s2min:h2:s2max;

q = T:−k:0;

[ss1 , ss2]=meshgrid(s1,s2);
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V = zeros(N1+1,N2+1,M+1); %Solution matrix initialization

%BOUNDARY CONDITIONS

V (:,:,1) = max(max(ss1,ss2)’−X,0);

V (1,:,:) = U (1,:,:);

V (:,1,:) = U (:,1,:);

V(:,N2+1,2:(M+1)) = U(:,N2+1,2:(M+1));

V(N1+1,:,2:(M+1)) =U(N1+1,:,2:(M+1));

%ADDITIONAL BOUNDARY CONDITION WITH EXPLICIT SCHEME

V (:,:,2) = U (:,:,2);

%MAIN SOLUTION

H = (1./( h1ˆ2∗h2ˆ2+h2ˆ2∗k∗o1ˆ2∗ss1.ˆ2+h1ˆ2∗k∗o2ˆ2∗ss2 .ˆ2))’;

A = 0.5∗H.∗(h1∗h2∗k∗p∗o1∗o2∗ss1.∗ss2)’;

B = H.∗(h2ˆ2∗k∗(o1ˆ2∗ss1.ˆ2+r∗h1∗ss1 ))’;

C = H.∗(h1ˆ2∗k∗(o2ˆ2∗ss2.ˆ2+r∗h2∗ss2 ))’;

D = H.∗(−2∗r∗h1ˆ2∗h2ˆ2∗k);

E = H.∗(h2ˆ2∗k∗(o1ˆ2∗ss1.ˆ2−r∗h1∗ss1 ))’;

F = H.∗(h1ˆ2∗k∗(o2ˆ2∗ss2.ˆ2−r∗h2∗ss2 ))’;

G = H.∗(h1ˆ2∗h2ˆ2−h2ˆ2∗k∗o1ˆ2∗ss1.ˆ2−h1ˆ2∗k∗o2ˆ2∗ss2.ˆ2)’;

for i = 3:M+1

V(2:N1,2:N2,i) = ...

A(2:N1,2:N2).∗(V(3:(N1+1),3:(N2+1),i−1)−V(3:(N1+1),1:(N2−1),i−1)−...

V(1:(N1−1),3:(N2+1),i−1)+V(1:(N1−1),1:(N2−1),i−1))+...

B(2:N1,2:N2).∗V(3:(N1+1),2:N2,i−1)+C(2:N1,2:N2).∗V(2:N1,3:(N2+1),i−1)+...

D(2:N1,2:N2).∗V(2:N1,2:N2,i−1)+E(2:N1,2:N2).∗V(1:(N1−1),2:N2,i−1)+...

F(2:N1,2:N2).∗V(2:N1,1:(N2−1),i−1)+G(2:N1,2:N2).∗V(2:N1,2:N2,i−2);

end

toc
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A.2.6 The 2-dimensional Du Fort and Frankel scheme without up-

per and lower boundaries

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%

% BOUNDARY FREE 2 DIMENSIONAL DU FORT AND FRANKEL ALGORITHM

%

% Abie Bouwer

%

% November 2007

%

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

clc ;

tic

%INPUT PARAMETERS

s1 = 100;

s2 = 100;

X = 100;

T = 1.0; %Time to maturity

r = 0.1; %Risk free interest rate

o1 = 0.3; % Volatility of 1st asset

o2 = 0.2; % Volatility of 2nd asset

p =0.5; %Correlation

M = 100; %Temporal steps

N1 = 2∗M; %Spatial steps 1st asset

N2 = N1; %Spatial steps 2nd asset

%GRID INITIALIZATION

epsilon = 8;

s1min = log(X∗exp((r−0.5∗o1ˆ2)∗T−epsilon∗o1∗sqrt(T)));

s2min = log(X∗exp((r−0.5∗o2ˆ2)∗T−epsilon∗o2∗sqrt(T)));
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s1 = log(s1 );

s2 = log(s2 );

h1 = (s1−s1min)/M;

h2 = (s2−s2min)/M;

s1max = s1min+h1∗N1;

s2max = s2min+h2∗N2;

X = log(X);

k = T/M;

s1 = s1min:h1:s1max;

s2 = s2min:h2:s2max;

q = T:−k:0;

[ss1 , ss2]=meshgrid(s1,s2);

V = nan∗ones(N1+1,N2+1,M+1); %Solution matrix initialization

%BOUNDARY CONDITIONS

V (:,:,1) = max(max(exp(ss1),exp(ss2))−exp(X),0);

%ADDITIONAL BOUNDARY CODITION WITH EXPLICIT SCHEME

V(2:N1,2:N2,2) = U(2:N1,2:N2,2);

%MAIN SOLUTION

v1 = ( r−0.5∗o1ˆ2);

v2 = ( r−0.5∗o2ˆ2);

H = (1./( h1ˆ2∗h2ˆ2+h2ˆ2∗k∗o1ˆ2+h1ˆ2∗k∗o2ˆ2))’;

A = 0.5∗H.∗(h1∗h2∗k∗p∗o1∗o2)’;

B = H.∗(h2ˆ2∗k∗(o1ˆ2+v1∗h1))’;

C = H.∗(h1ˆ2∗k∗(o2ˆ2+v2∗h2))’;

D = H.∗(−2∗r∗h1ˆ2∗h2ˆ2∗k);

E = H.∗(h2ˆ2∗k∗(o1ˆ2−v1∗h1))’;

F = H.∗(h1ˆ2∗k∗(o2ˆ2−v2∗h2))’;
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G = H.∗(h1ˆ2∗h2ˆ2−h2ˆ2∗k∗o1ˆ2−h1ˆ2∗k∗o2ˆ2)’;

j=2;

for i = 3:M+1

V((j +1):(N1−j+1),(j+1):(N2−j+1),i) = ...

A∗(V((j+2):(N1−j+2),(j+2):(N2−j+2),i−1)−V((j+2):(N1−j+2),j:(N2−j),i−1)−...

V(j :( N1−j),(j +2):(N2−j+2),i−1)+V(j:(N1−j),j:(N2−j),i−1))+...

B∗V((j+2):(N1−j+2),(j+1):(N2−j+1),i−1)+C∗V((j+1):(N1−j+1),(j+2):(N2−j+2),i−1)+...

D∗V((j+1):(N1−j+1),(j+1):(N2−j+1),i−1)+E∗V((j):(N1−j),(j+1):(N2−j+1),i−1)+...

F∗V((j+1):(N1−j+1),(j ):( N2−j),i−1)+G∗V((j+1):(N1−j+1),(j+1):(N2−j+1),i−2);

j=j+1;

end
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