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Abstract

The feedforward neural network (NN) is a mathematical model capable of representing
any non-linear relationship between input and output data. It has been succesfully ap-
plied to a wide variety of classification and function approximation problems. Various
neural network training algorithms were developed, including the particle swarm opti-
miser (PSO), which was shown to outperform the standard back propagation training
algorithm on a selection of problems. However, it was usually assumed that the environ-
ment in which a NN operates is static. Such an assumption is often not valid for real life
problems, and the training algorithms have to be adapted accordingly. Various dynamic
versions of the PSO have already been developed. This work investigates the applicabil-
ity of dynamic PSO algorithms to NN training in dynamic environments, and compares
the performance of dynamic PSO algorithms to the performance of back propagation.
Three popular dynamic PSO variants are considered. The extent of adaptive properties
of back propagation and dynamic PSO under different kinds of dynamic environments
is determined. Dynamic PSO is shown to be a viable alternative to back propagation,
especially under the environments exhibiting infrequent gradual changes.
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...Ergo, God exists.

Argumentum Ornithologicum, by Jorge Luis Borges (1952)
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Chapter 1

Introduction

FEven though our senses fool our consciousness into believing that we exist
in a 3-dimensional world, it is the fourth dimension - time - that governs
the Universe and makes it curve. The state of the world we live in changes
every instant, and every instant we adapt to it - consciously or unconsciously,
depending on the nature and extent of the change. We put on an extra layer
of clothes when it is chilly outside, and take a train when our flight has been

cancelled due to a recent volcano eruption.

Due to the nature of the Universe, it is never correct to assume that our environ-
ment is static. Even though such crude approximation may work for a short while, it
will always fail in the long term. Both measurable and hidden parameters of a problem
tend to change over time, causing the once found solutions to loose precision and de-
teriorate. Examples of dynamic environments are the stock exchange, road congestion
due to traffic, different price markets, such as electricity or food markets, etc. From a
mathematical perspective, a dynamic environment can be visualised as a function with
floating optima. An optimum may change its position and value, existing optima may
disappear and new optima may emerge. Alternatively, for classification problems it is

decision boundaries separating different classes that change over time. In both cases, the
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task of the optimisation algorithm becomes more difficult, since the algorithm should
not only find the optimal solution, but also detect environmental changes and promptly
adapt to them, which might entail dismissing the old solution entirely. This is why
current developments in computational intelligence (CI), or nature-inspired mechanisms
that simulate intelligent behavior [32], try to encompass the temporal aspects of the
problems they attempt to solve.

A successful example of a new approach to CI is particle swarm optimisation (PSO),
a population-based optimisation technique that models social behaviour of a bird flock
in order to traverse the search space and find an optimal solution [65, 32]. Due to the
success of the PSO in static environments [65], numerous variants of PSO that cater for
dynamic changes have been developed to date, including the simple restarting PSO [31],
the charged PSO based on electrostatic principles [7], and the quantum PSO based on
the model of an atom [9], amongst others.

However, one of the oldest fields of CI research, namely neural networks (NNs)
[4, 28, 47, 91, 101, 142] — powerful mathematical models inspired by the human brain
and capable of representing any non-linear relationship between input and output data
— have remained conservative towards the emerging field of optimisation in dynamic en-
vironments. It has been assumed that the standard NN training algorithms based on
gradient descent are implicitly dynamic [59], and if the NN fails to adapt to the changes,
then restarting the training process would be the most efficient solution. In order to
avoid re-training, redundancy in the form of ensemble classifiers has also been proposed
[19, 111, 114, 115, 116]. The chances of obtaining at least one acceptable solution using
ensemble classifiers are increased by training a number of separate NNs on the same
problem over different time periods. However, the ensemble approach does not offer any
training algorithm improvements to make each classifier aware of dynamic changes.

NNs are widely used in real life [25, 124, 141], and it is necessary to ensure that NNs

can be effectively trained in dynamic environments. PSO has been successfully applied
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to NN training before [67, 34, 44, 83, 118], and in this work the applicability of dynamic
versions of PSO to NN training in dynamic environments is studied. The main focus of
this work is on classification problems with dynamic decision boundaries, further referred
to as dynamic classification problems. The behaviour of both the standard gradient
descent back propagation and various dynamic PSOs on different dynamic problems is
analysed.

The rest of the chapter is outlined as follows. Section 1.1 lists the main objectives of
this thesis. Section 1.2 summarises the original contributions of this work. Section 1.3

outlines the structure of the rest of this thesis.

1.1 Objectives

The primary objectives of this thesis are summarised as follows:

e To provide an overview of the CI techniques used in this work, namely neural

networks and particle swarm optimisation.

e To provide an overview of dynamic environments and dynamic classification prob-

lems.
e To provide an overview of the relevant PSO approaches to dynamic optimisation.

e To apply dynamic PSO algorithms to NN training on dynamic classification prob-

lems.

e To analyse the behaviours and performance that back propagation and the dynamic
PSO algorithms exhibit when applied to NN training on dynamic classification

problems.

e To identify dynamic environment types for which every algorithm considered is

best suited.



&
&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

1.2. CONTRIBUTIONS 4

1.2 Contributions

The novel contributions of this thesis include the following:

e The first analysis of the applicability of dynamic PSO algorithms to NN training

on dynamic classification problems.
e An empirical analysis of the adaptive properties of back propagation.

e An empirical comparison of back propagation and dynamic PSO algorithms applied

to NN training on dynamic classification problems.

e The discovery that dynamic PSO training algorithms are more efficient under infre-
quent gradual changes, and that back propagation is more efficient under frequent

abrupt changes.

e The conclusion that dynamic PSO training algorithms are preferrable over back
propagation on dynamic classification problems with rugged error lanscape, and

where multiple new decision boundaries may appear and disappear.

e The conclusion that dynamic PSO training algorithms are more sensitive than back
propagation to specific properties of a dynamic environment, such as frequency
and severity of change. However, if properly optimised for a specific dynamic
environment, the dynamic PSO training algorithms are likely to perform better

than back propagation.

1.3 Thesis Outline

The remainder of the thesis is organised as follows:

e Chapter 2 discusses PSO in detail.
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e Chapter 3 discusses supervised feedforward NNs. The back propagation training

algorithm is described, and major performance issues are outlined.

e Chapter 4 discusses dynamic environments. A few real-life examples of dynamic
problems are described, and different attributes of dynamic classification prob-
lems are discussed. Existing PSO approaches to dynamic optimisation are also

discussed.

e Chapter 5 is dedicated to existing approaches to train NNs in dynamic environ-
ments. The drawbacks of back propagation are discussed, and alternative training
algorithms are suggested. The problems of architecture selection, parameter opti-

misation, and overfitting in the context of dynamic environments are also discussed.

e Chapter 6 presents an empirical study conducted for this thesis. The experimental
procedure is discussed in detail, experimental results are presented and analysed,

and conclusions are given.

e Chapter 7 provides a summary of the thesis, and gives a list of possible future

research directions.

The following appendices are included, containing a number of lists with relevant

information for quick referencing purposes:

e Appendix A provides a list of the acronyms used and defined in this work, as

well as their associated definitions.

e Appendix B lists and defines the mathematical symbols used in this work, cate-

gorised according to the relevant chapter in which they appear.

e Appendix C lists the publications derived from this work.
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Chapter 2

Particle Swarm Optimisation

The intelligence of the creature known as a crowd is the square root of the

number of people in it.

Terry Pratchett

PSO is a relatively new optimisation technique. Kennedy and Eberhart formally
introduced PSO in 1995 [65], much later than population-based evolutionary algorithms
such as the genetic algorithm (GA) (first proposed by A. S. Fraser [36] in 1957). PSO is
a population-based iterative search algorithm that manipulates a pool of potential solu-
tions (particles) in order to find an optimum. The search is conducted by imitating the
social behaviour of a bird flock.

Observations of bird flocks, schools of fish, bee swarms, and animal herds have shown
that the collective effort of a group is usually more rewarding than individual effort [51].
Suppose a certain task has to be achieved. Each individual within a group has a certain
capability of reaching the goal. While working in a group, the behaviour of an individual
is guided not only by the individuals’ perception of how to achieve the goal, but also

by the social dynamics. All individuals within a group share the experience of pursuing

6
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a common goal, and each individual learns not only from its own experience, but also
from the experience of its neighbours. This speeds up the search process significantly.
This kind of social behaviour inspired the creation of the PSO algorithm, which is
discussed in this chapter. The rest of the chapter is structured as follows: Section 2.1
provides a formal definition of the PSO, and Section 2.2 describes various swarm infor-
mation sharing strategies. PSO parameters and their impact on algorithm efficiency are

discussed in Section 2.3. Section 2.4 concludes the chapter.

2.1 Basic PSO algorithm

PSO operates on a group (referred to as a swarm) of individuals. Each individual, referred
to as a particle, represents a candidate solution to the optimisation problem. For an n-
dimensional optimisation problem, a particle is represented by an n-dimensional vector,
Z, also referred to as particle position. Every particle has a fitness value, which indicates
the quality of the candidate solution represented by the particle. The n-dimensional
search space of the problem is the environment in which the swarm operates. In addition
to a position within the search space, each particle possesses a velocity vector ¢/, which
determines the step size and direction of the particle’s movement. Social interaction is
imitated by forming neighbourhoods within a swarm. Each particle stores its own best
position found so far, and can also query neighbouring particles for the best position
as discovered by the neighbourhood thus far. Various PSO neighbourhood topologies
have been proposed in the literature and applied in practice (refer to Section 2.2 for
further details). The structure and size of the neighbourhood determines the way in
which information is shared between the particles.

PSO searches for an optimum by moving the particles through the search space. At

each time step, t, the position Z,(t) of particle y is modified by adding the particle
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velocity v,(t) to the previous position vector:
Ty (t) = Zy(t — 1) + 0, (%) (2.1)

The velocity vector determines the step size and direction of the particle. The velocity
update equation is given by

—

Uy(t) = Wty (t = 1) + 171 (Tpbesty (1) = Ty (1)) + 22 (Tnvesty (1) — Ty (1)) (2:2)
where w is the inertia weight [109], controlling the influence of previous velocity values
on the new velocity; ¢; and ¢y are acceleration coefficients used to scale the influence
of the cognitive (second term of Equation (2.2)) and social (third term of Equation
(2.2)) components; 77 and 73 are vectors with each component sampled from a uniform
distribution U(0,1); Zppest,y(t) is the personal best of particle y, or, in other words, the
best position encountered by this particle so far; similarly, Zpest,(t) is the neighbourhood
best of particle y, or the best position found by any of the particles in the neighbourhood
of particle y. Thus, each particle is attracted to both the best position encountered
by itself so far, as well as the overall best position found by the neighbourhood so far.
A maximum velocity Vs [108] is sometimes used to limit (or clamp) particle velocity
in every dimension. Velocity clamping is done to prevent particles from traversing the
search space too fast, since unreasonably big steps prevent particles from exploiting good

regions. Vinaw is enforced by restricting @), (t) per dimension:
(

vmax,l if Uyl (t) > vmax,l

Uyl(t) - _Vmax,l if Uyl(t) < _Vmax,l (23>

| Vu (1) otherwise
For more information on various PSO parameters, refer to Section 2.3.

The PSO algorithm is usually stopped when the quality of the found solution is
satisfactory, or when the maximum number of iterations or fitness function evaluations
has been reached [32].

The PSO algorithm is outlined in Algorithm 2.1.
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1. Set iteration count t =0
2. Initialise the swarm P(t) of Sp particles, such that Z,(t) ~ U(X™), where X™ is the search space
of the problem.
3. Set Zppest,y(t) and Tppest,y(t) of each particle to its current position, &y (t).
4. Set, @, (t) of each particle to 0
repeat:
for each particle y =1,...,Sp do:
Evaluate fitness f (&) of particle y
Set the personal best position:
if f(Zy(t)) > f(Zpbest,y(t)) then
Tppest,y(t) = Ty(t)
end if
Set the neighbourhood best position:
S (@pbesty (1) > F(Fnpest.y (1)) then
Faesty (V) = Fppest,y (1)
end if
end for
for each particle y =1,...,Sp do:
Update particle velocity vy (¢) using equation (2.2)
If applicable, clamp vy (¢) to Vinae using equation (2.3)
Update particle position &, (t) using equation (2.1)
end for

t=t+1

until stopping criteria are met.

Algorithm 2.1: Outline of the PSO algorithm with synchronous update
2.2 Neighborhood Topologies

As mentioned in the previous section, each particle in the swarm moves towards both
the best position encountered by itself so far, as well as the overall best position found
by its neighbourhood. A particle’s neighbourhood is determined topologically rather
than spatially, meaning that the distance between particles is determined by particles’
indices and not the actual position in the search space [64]. The preference is given
to topological structure, since, when a particle swarm converges, the spatial distances

between particles tend to zero, thus disrupting spatial neighbourhoods.
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(a) Star topology (b) Ring topology (¢) Von Neumann topology

Figure 2.1: PSO Neighbourhood Topologies

This section discusses three conventional PSO neighbourhood topologies (sometimes
also referred to as information sharing strategies), namely the star topology, the ring
topology, and the Von Neumann topology. These topologies are also graphically depicted
in Figure 2.1.

2.2.1 Star Topology

The star topology was first introduced by Kennedy and Eberhart [65]. For the star
topology, all particles share information about the search space with every other particle
in the swarm. The star topology is visualised as a fully interconnected network of nodes,
as illustrated in Figure 2.1(a). The neighbourhood of each particle is the entire swarm.
Consequently, Zpesty(t) used in equation (2.2) is the same for all particles (i.e. global
best), since only one neighbourhood exists. Thus, all particles, apart from their personal
best positions, imitate the same neighbourhood best particle, which limits exploration

and facilitates fast convergence of the swarm.

2.2.2 Ring Topology

The ring topology was first introduced by Kennedy and Eberhart [65]. For the ring

neighbourhood topology, the neighbourhood of a particle y consists of m particles in the
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immediate topological proximity of particle y. For example, if m = 2, then the neigh-
bourhood of particle y consists of two other particles, y — 1 and y + 1. An example of
a ring topology is shown in Figure 2.1(b). Fewer connections between particles result in
a number of overlapping neighbourhoods. Every neighbourhood has its own neighbour-
hood best, thus particles from different neighbourhoods are attracted to different fruitful
areas of the search space, which facilitates exploration. Since the neighbourhoods are
overlapping, the swarm is still likely to converge, but at a slower speed: Better explo-

ration has a negative effect on the speed of convergence [64, 66].

2.2.3 Von Neumann Topology

The Von Neumann topology was first introduced by Kennedy and Mendes [68]. This
neighbourhood topology connects the particles in a grid-like structure such that every
particle connects to its four immediate neighbours. The Von Neumann topology can be
visualised as a square lattice, the extremities of which are connected. An example of the
Von Neumann topology for a 12 particle swarm is depicted in Figure 2.1(c).

Peer et al. [93] showed that the Von Neumann neighbourhood topology maintains
swarm diversity better due to the fact that the influence of a single particle propagates
through the structure slowly, thus making it harder for a single particle to dominate the
swarm. It was empirically shown in [79] that PSO utilising the Von Neumann topology
(sometimes also referred to as the fine-grained PSO) performs well in dynamic envi-
ronments. The fine-grained PSO managed to outperform PSO with other information

sharing strategies on a selection of high-dimensional dynamic problems [79].

2.3 Impact of Parameters

Different properties of the swarm dynamics have to be reinforced for different optimi-

sation problems. For example, it is necessary to reinforce exploration when a function
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with a rough surface is being minimised in order to avoid premature convergence on a
local minimum, and a stronger exploitation ability will promote faster convergence on
an optimal solution when a unimodal function with a non-flat surface is considered, or
when a promising region that may contain an optimum has been found. The dynamics of
the swarm, such as the ability to explore and to exploit, depend not only on the swarm
topology, but also on the values chosen for the PSO parameters. In order to achieve
optimal performance of the algorithm, these parameters have to be fine-tuned for each
specific optimisation problem. This section discusses the standard PSO parameters and

their impact on swarm dynamics.

2.3.1 Acceleration parameters

Coefficients ¢; and ¢, in equation (2.2) are referred to as acceleration coefficients. The
search trajectory of each particle is influenced by these coefficients, in addition to the
inertia weight (see Section 2.3.2). The first one, ¢;, controls the impact of the cognitive
component on the particle trajectory, and the second one, ¢y, controls the impact of the
social component.

If co << ¢1, each is more strongly attracted to its personal best than to the neigh-
bourhood best. The bias towards personal best facilitates individual search by each
particle, and reduces the social behaviour of the swarm (i.e. striving towards the same
global best position). As a result, exploration is promoted, but the swarm converges
slowly, or not at all.

On the other hand, if ¢; << c¢o, particles are attracted more to the best position in
the neighbourhood than to their personal best positions. This may result in premature
convergence due to lack of exploration.

Since the main principle of PSO rests on a combination of both personal and social
knowledge of the search space, the acceleration coefficients are usually chosen such that

c1 =~ cy. If the values of ¢; and ¢, are too large, then particle velocities accelerate too fast,
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which may result in swarm divergence. If, on the other hand, the values of ¢; and ¢y are
too small, then particles move too slowly, and the swarm may take too long to converge.
An empirical study conducted by Kennedy [63] has shown that the values for ¢; and ¢y
should be chosen such that ¢; + co < 4, otherwise particle velocities and positions may
explode towards infinity. The behaviour of particle velocities is also largely dependent

on the inertia weight, which is discussed below.

2.3.2 Inertia Weight

Another important parameter of the PSO is the inertia weight, denoted as w. The
inertia weight controls the influence of the previous velocity values on the new velocity,
as follows from equation (2.2).

If w > 1, particle velocities will grow over time. This facilitates exploration by
increasing swarm diversity and the area of the search space covered by the swarm. How-
ever, if the velocity becomes too large, the particle’s direction will be dominated by its
previous velocity, preventing the particle from backtracking to previously found good
regions, and possibly causing the particle to leave the boundaries of the search space.
This will yield divergent behaviour, which is undesirable.

Studies have shown that w < 1 does not guarantee swarm convergence, either, since
c1 and ¢y also play a significant role in determining swarm dynamics [21]. In fact, neither
the inertia weight nor the acceleration coefficients can be optimised in isolation. Van den
Bergh [117] has empirically shown that the swarm exhibits convergent behaviour when

1, co, and w adhere to the following relation:

w><cl%02)—1 and w < 1.
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2.3.3 Velocity Clamping

The aim of the swarm is to converge on an optimal solution. However, certain combi-
nations of PSO parameters result in growing particle velocities, which yield divergent
behaviour [21, 63, 117]. It was suggested by Kennedy and Eberhart [67] to keep the
velocity within sensible bounds by putting a limit on the maximum velocity that the
particles are allowed to attain. Velocity clamping is carried out by limiting particle ve-
locities in every dimension according to equation (2.3). Vmaz is a problem-dependent
parameter, chosen empirically [108]. Although Vinaz does not have to be set for the stan-
dard PSO to work, Vmax is still a useful parameter which essentially limits the step size
of particles to a certain maximum. Limiting particle step sizes is a convenient way to
control the speed at which the swarm traverses the search space. A small Vinas prevents
the particles from traversing the search space fast, thus exploitation is facilitated. A

large Vmax, on the other hand, allows the particles to develop large velocities and thus

rapidly explore.

2.4 Summary

This chapter provided an overview of the PSO algorithm, a population based optimi-
sation technique inspired by the swarming behaviour of bird flocks. The basic PSO
algorithm was outlined and discussed, including all of its major characteristics, such
as neighbourhood topologies and algorithm parameters. The provided overview of the
PSO algorithm was restricted to the concepts used in this thesis. For a more extensive
coverage of the PSO, refer to [20, 88, 90, 94].

The next chapter discusses artificial neural networks, and shows how the PSO can

be used to train neural networks.
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Chapter 3

Artificial Neural Networks

I not only use all the brains that I have, but all that I can borrow.

Woodrow Wilson (1856 - 1924)

NNs are very abstract and simplified mathematical models of the human brain, able
to carry out tasks such as pattern recognition, classification, and function approximation
[28, 47, 91, 101].

The human brain, as, in fact, any animal brain, is structured as a set of intercon-
nected nerve cells, called neurons. The neurons communicate by sending electrochemical
signals through the network of connections, or synapses. A neuron will send the signal
through only if a certain internal chemical threshold is exceeded. The connections be-
tween actively communicating neurons strengthen, and the unused connections weaken.
As a result of this process, the neural network learns the mapping between the inputs
as sensed from the environment and sent to the brain for processing, and the desired
responses to the environment, or outputs.

NNs were designed to mimic the learning mechanism described above. NNs have the

ability to learn any non-linear mapping between given inputs and outputs, which can

15
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also be seen as discovering patterns in data. This CI technique has been successfully
applied to problems such as face recognition [24], handwritten character recognition [77],
and spam filtering [25], amongst many others.

The rest of this chapter provides an overview of the basic concepts related to NNs
and the variations of NNs used in the experiments conducted for this study. Section 3.1
describes the functionality of a single neuron. The feedforward NN structure is discussed
in Section 3.2. Section 3.3 outlines various algorithms used to train NNs. Performance
issues related to NN training are discussed in Section 3.4. Section 3.5 concludes the

chapter with some final remarks.

3.1 Artificial Neuron

The basic building blocks of NNs are artificial neurons. An artificial neuron represents
a mathematical function that simplistically models a biological neuron. The neuron re-
ceives a set of inputs either from the environment or from other neurons, and responds
by either firing (sending out a strong signal) or not firing, based on a certain threshold.
The output signal is modulated by an activation function internal to the neuron, which
allows the neuron to represent a non-linear mapping from R’ to [0, 1] or [—1, 1], depend-
ing on the particular activation function used. Thus, an artificial neuron can represent
any linearly separable function by representing the boundary hyperplane that divides the
search space into two mutually exclusive subspaces. Figure 3.1 illustrates this model.
A neuron receives n inputs, where each input z; has an accompanying weight w; to
strengthen or weaken the signal. The neuron calculates the weighted sum of the inputs,

and uses an activation function f to produce the output signal w:

net = Zziwi
u = f(net)—0

The output signal u is also influenced by a threshold value 6, referred to as the bias. The
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Figure 3.1: An Artificial Neuron

purpose of the bias is to offset the hyperplane or function that the neuron represents
from the origin.

Different activation functions that can be used in a neuron are discussed below.

Activation Functions

It is the activation function which determines whether or not a neuron will fire given
a specific set of input values, and how strong the output signal is going to be. Three
example activation functions are depicted in Figure 3.2.

The simplest activation function is the linear function with a positive slope, where
the produced output signal is directly proportional to the received net input signal. A
linear activation function, however, does not introduce any non-linearity, thus limiting
the function representation capabilities of a neuron.

A simple alternative to the linear function is the step function, which discretises the
output. That is, a neuron outputs only one of the two possible values: e.g. zero if the
weighted sum of inputs is below the threshold, and one otherwise. The step function is
not differentiable, which is an important disadvantage, since gradient-based NN training
algorithms such as back propagation make use of the activation function derivatives (see

Section 3.3.2).
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Figure 3.2: Activation Functions

The most commonly used activation function is the sigmoid function, given by

1

f(net o 9) - 1+ e—A(net—0)

(3.1)

where A is a scalar that controls the steepness of the function, usually set to A = 1.
The sigmoid function is both bounded and continuous, with a range of (0,1). For all
the experiments conducted for this research, the sigmoid function was used. For more

information on different activation functions, refer to [1, 48].

3.2 Feedforward Neural Network Structure

A NN is essentially a collection of interconnected neurons aligned in layers. As mentioned
in Section 3.1, a single neuron is capable of representing a linearly separable function. In
a NN, where many neurons are combined, the information capacity drastically increases.
A NN with a large enough number of neurons can represent any non-linear function
[52, 62, 76], or, in case of classification, any number of decision boundaries of varying
complexity. A number of approaches to structure a collection of neurons were developed
[32, 101], but perhaps the most well-known and widely used NN structure in existence
is the feedforward neural network (FFNN). An example of a feedforward structure is
shown in Figure 3.3. A FFNN is made up of at least three layers: an input layer, a

hidden layer, and an output layer.
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Figure 3.3: FFNN with a single hidden layer

The input layer is the entry point to the NN. As the name suggests, it is the neurons
in the input layer that receive raw data to be processed by the NN. The function of the
input layer is simple: the input layer receives data and sends it through to the hidden
layer. Thus, the number of neurons in the input layer is usually equal to the number
of attributes in the data being processed. A linear activation function is normally used
across the input layer, so that all input values reach the hidden layer without distortion.
Feedforward NNs are usually fully connected, meaning that each neuron in a layer is
connected to every neuron in the consecutive layer. The connections between neurons
are weighted, and the weight of a connection influences the strength of the transmitted
signal.

The hidden layer recieves signals from the input layer. A non-linear activation func-
tion such as the sigmoid function is usually used across all the units in the hidden layer.
A number of consecutive hidden layers can be employed in a FFNN, however, it has been
mathematically proved that a FFNN with a single hidden layer is capable of represent-
ing any non-linear relationship between inputs and targets, provided there are enough
neurons in the hidden layer [52, 62, 76]. The purpose of hidden units is to introduce
non-linearity into the approximated relationship between inputs and targets, and the

number of hidden units determines the level of non-linearity that the NN is capable of
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representing. Hence, if too few hidden units are used, it will be impossible to map the
data precisely, because the information capacity of the NN will not correspond to the
amount of information represented by the training data. On the other hand, if too many
hidden units are used, the information capacity of the NN will exceed the necessary
minimum, and the redundant hidden units will learn unnecessary information such as
the order of patterns or data noise, reducing the ability of the NN to correctly predict
the outputs of previously unseen patterns [4]. The ability of the NN to correctly predict
the outputs of previously unseen patterns is also referred to as the ability to generalise.
The deterioration of the generalisation ability of the NN due to learning unnecessary
information is known as overfitting. Other causes of overfitting are training the NN for
too long, and using a training set that is either not representative of the mapping to be
learned, or contains noise [32]. For a more extensive discussion of overfitting, refer to
[4, 10].

Thus, it is important to have a correct number of hidden units in the NN. A number
of techniques to optimise the number of hidden units have been developed to date. These
techniques are generally referred to as architecture selection. More details on architecture
selection are given in Section 3.4.1.

In addition to the inputs from the preceding layer, hidden and output units also
receive an input signal from a bias unit. Bias units represent the threshold values of
units in the next layer. A bias is a neuron with no inputs, which outputs a constant
value (usually —1, although it can be any other non-zero value) used by the hidden and
output units as an additional input. During NN training, the weights connecting bias
units with other units are adjusted together with all the other weights. The NN weights
define the position of the hypersurface that the NN represents, and without the bias
units this hypersurface would be constrained to pass through the origin, which would be
a significant limitation to the approximation ability of the NN [81].

The number of dependent variables, or outputs, determines the number of neurons
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in the output layer of a NN. The output range of the output neurons depends on the
activation function used. For example, if the sigmoid function is used, the output of
each neuron will be in (0,1). This implies that the target values must be scaled to
the activation function range before training, and scaled back afterwards. For more
information on data pre-processing, refer to Section 3.4.2.

The NN output is calculated by a single forward pass of an input pattern p through
the FFNN. The output of each neuron in the output layer, ox, k = 1, ..., K, with I input

neurons, J hidden neurons and K output neurons, is given by

J+1 J+1 I+1
Okp = fok (Z U)ijj> = fok (Z U)kjfuj (Z vjizi>> (32)

foralli=1,...,1,7=1,...,J, vj; is a weight connecting the jth hidden neuron and the
ith input neuron, wy; is a weight connecting the ith output neuron and the jth hidden
neuron, the (I + 1)‘Ch input neuron and the (J+ 1)th hidden neuron are the bias neurons,
u; and z; are outputs of the hidden layer and the input layer, respectively, f,, and f,,
are the activation functions in the output and the hidden layer, respectively.

Other variations of NNs include functional link NNs [40, 56], product unit NNs
[29, 61], recurrent NNs [92, 81, 132], and time-delay NNs [72, 120], amongst others.
The discussion of these and other NN variations falls outside the scope of this thesis.

For more information, refer to [4, 32, 101, 112, 142].

Standard FFNNs were used in the experiments conducted for this study.

3.3 Training Algorithms

The NN itself is simply a structure capable of representing a mapping between the input
space and the output space, requiring execution of a training algorithm in order to learn
that mapping. Training can be supervised, when the goal of the training algorithm is

to minimise the difference between the target outputs and the actual outputs. Train-
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ing can also be unsupervised, when no target outputs are defined, and the goal of the
training algorithm is to structure the unlabeled data patterns (e.g. cluster patterns and
maximise the difference between the obtained clusters). Another NN training paradigm
is reinforced training, when the NN acts as an agent that takes actions (updates NN
weights) in an environment. The training is accomplished through the NN being either
rewarded or punished by the environment based on the actions the NN agent takes [47].
This study deals with supervised NNs only.

This section provides a discussion of the supervised training algorithms used in this
study. Section 3.3.1 outlines the stages of the learning process, Section 3.3.2 describes the
back propagation training algorithm, and Section 3.3.3 discusses how the PSO algorithms
can be applied as NN training algorithms.

3.3.1 The Learning Process

NN training involves finding a set of weights that will accurately approximate the map-
ping fyn : Rf — R, where I is the number of inputs and K is the number of outputs.
The data patterns of the data set D are randomly divided into a training set D7 and a
generalisation set D¢, such that Dy N Dg = 0. Dy is used to train the NN, and Dg is
used to evaluate the generalisation ability of the NN. During training, the weight vector
W, which consists of all the NN weights, is iteratively adjusted in order to minimise the

empirical error produced by the NN, given by
1 — —
Er(Dr; W) = ==Y (fin (5, W) —1,)° (3.3)

where Pr is the total number of training patterns, fyy is the function that the NN
currently represents, z, and t; are input and target vectors, respectively. Decreasing
empirical error yields decreasing generalisation error, unless overfitting occurs. In the
context of NN training, the empirical error in equation (3.3) is referred to as the objective

function to be optimised by the training algorithm.
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Two types of supervised learning algorithms can be distinguished based on when
weights are updated: stochastic, or on-line learning, when the weight vector is adjusted
every time a data pattern is presented, and batch, or off-line learning, when the changes
are accumulated and applied to the weight vector only after the complete training set
has been presented to the NN [32, 104].

Many different supervised training algorithms exist, including gradient descent [127],
scaled conjugate gradient [18, 84], leapfrog [3, 50|, simulated annealing [95, 107], evolu-
tionary algorithms [11, 35, 57], and particle swarm optimisation [67, 83], amongst others.
Training algorithms used in the experiments conducted for this study are described be-

low.

3.3.2 Back Propagation with Gradient Descent

The most commonly used and popular algorithm to train a FFNN is back propagation,
developed by Werbos [127], which uses gradient descent to adjust weight values such

that Er is minimised. Each iteration of this algorithm consists of two phases:

1. A feedforward pass, which propagates (“feeds”) a pattern through the NN and

calculates the output.

2. Back propagation, which compares the output obtained in the feedforward phase
to the desired output, calculates the error, and propagates the error back from the
output layer through the hidden layers to the input layer. The weights are adjusted

during back propagation as a function of the error value.

Pseudocode of stochastic back propagation with gradient descent for a NN with 3
layers is given in Algorithm 3.1. The algorithm starts by randomising the weights such
that the mean of the weights is approximately zero (for more information on weight
initialisation, refer to Section 3.4.3) and setting the iteration counter to 0. A single

iteration of back propagation is referred to as an epoch. The feedforward pass consists
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of calculating the NN output oy, for each pattern p and each output unit using equation
(3.2). In case of stochastic learning, a pattern p is randomly selected from the training
set at each iteration. Choosing patterns randomly prevents the NN from learning the
order in which the patterns are presented [32]. Weight adjustments, Awy; and Avj;,
depend on the activation functions used in the output and the hidden layer and the
objective function, since the weight adjustment formulae are derived from the gradients
of these functions. Assume that the sigmoid function, given by equation (3.1), is used
as the activation function in the hidden and output layers, and the sum squared error
(SSE) is the objective function. Then, for each pattern, p, the error function E, is given

by

1528 (tep — Okp)?
Ep — 52/6:1( k}y? Ok,P) (34)

where K is the number of output units, ¢, are the desired outputs of p, and o, are
the actual outputs produced by the NN for pattern p. The overall error produced by
the NN is minimised by calculating the gradient of E, in the weight space, and moving
the weight vector along the negative gradient. The formula to adjust the weights wy;
between hidden unit j and output unit £ is then given by

OE,
0wkj

Awy; = n(— ) = Nty — 0kp) (1 — Ok p) Ok plsp (3.5)

where u;, is the output of hidden unit j, and 7 is the learning rate, discussed in more
detail in Section 3.3.2. The error signal on the output layer is then propagated back to

change the weights v;; between each hidden unit j and each input unit i:

OE,

K
B ) = zip(1 — ujp) Z Wi Awy; (3.6)
i

k=1

Avji = (-

where z;, is the i input value. The momentum term « is a constant value used to
control the influence of past weight values on the current weight values. Momentum is

discussed in more detail in Section 3.3.2.
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1. Set the current training iteration ¢ = 0
2. Initialise vj;, wy; ~ U(—m,m),m € R
repeat:
for each pattern do:
Calculate NN outputs using equation (3.2).
Calculate error E, using equation (3.4).
Calculate Awy; using equation (3.5).
Adjust the weights wy; using:
Wyj = Wiy + Awyj(t) + alAwy;(t — 1)
Calculate Avj; using equation (3.6).
Adjust the weights v;; using:
vji = vji + Avji(t) + alAwj;(t — 1)
end for
t=t+1

until stopping criteria are met

Algorithm 3.1: Gradient Descent Back Propagation

The stopping criteria is usually defined by a maximum number of epochs, by classi-
fication error, or by setting a threshold on the mean squared error (MSE) produced by
the generalisation set, given by

P K
_ szl D ket (trp = 0kp)?
PoK

Er (3.7)

where Py is the total number of patterns in the generalisation set.
The performance of stochastic back propagation is strongly dependent on the values

chosen for o and 7. The impact of these two parameters is discused below.
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Learning Rate

The learning rate, denoted by 7, controls the step sizes of the weight adjustments. A
small 7 makes weight adjustments correspondingly small, which means that the algorithm
takes small steps towards the optimum. It slows down convergence, but ensures that
the optimisation process follows the gradient path smoothly. An obvious pitfall of this
approach is susceptibility to being trapped in a local optimum.

Large n promotes exploration by making large weight updates, resulting in large
jumps across the search space. Although a large n can help to avoid local minima, it
may also prevent the algorithm from finding a good optimum by jumping over potentially
good solutions.

Thus, it is important to consider the exploration-exploitation trade-off in the context
of a problem to be solved, and choose n accordingly. Apart from the option of finding an
optimal n value empirically, a number of adaptive strategies have been suggested that
adjust the value of n during training [60, 80, 139]. However, most of these algorithmic
adaptations have been developed with static environments in mind, with the main objec-
tive of speeding up convergence. This study, however, deals with NN training in dynamic
environments, where fast convergence is not necessarily desirable, and increased explo-
ration capacity is needed (for a discussion of dynamic environments, refer to Chapter
4). Transferring adaptive learning rate techniques from static environments to dynamic
environments is out of the scope of this study, and optimal static n values were chosen

empirically.

Momentum

Momentum, denoted by «, controls the influence of previous weight values on the current
weights. Momentum was introduced as a countermeasure to fluctuating changes caused
by the stochastic approach to NN training. When the NN weights are updated after

each pattern presentation, the error gradient may change from one pattern to the other,
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causing the cumulative weight update to be small due to consequent weight updates
cancelling out one another [32]. By taking older weights into account, the momentum
term averages out the weight changes and ensures that the search path leads in an
average downhill direction. The optimal « is problem dependent, and a static value
is often used, derived empirically via trial and error. However, adaptive versions have
also been suggested [89, 138]. Adaptive momentum strategies were originally developed
for static environments, and it cannot be assumed that the suggested strategies would
work in dynamic environments without further changes. Since adaptive momentum falls
outside the scope of this thesis, a static value was empirically chosen.

Back propagation is based on error gradients, meaning that it is essentially a hill-
climbing algorithm. As with any hill-climbing approach, its major disadvantage is sus-
ceptibility to premature convergence on local minima. Another disadvantage of hill-
climbing approaches is the dependence on the starting point of the search, which would
be the initial weights in case on NNs. Alternative training algorithms addressing these
issues were suggested, such as evolutionary algorithms [11, 35, 57] and particle swarm

optimisation [67, 83].

3.3.3 Population Based Algorithms: Particle Swarm
Optimisation

Evolutionary algorithms (EA) were the first population-based algorithms that were ap-
plied to NN training by evolving a population of NNs until one NN is found that min-
imises the MSE to a small enough value [35]. Fogel et al [35] were the first to suggest
evolving NNs, initiating a number of studies on the applicability of EAs to NN training
[11, 95, 136, 137].

PSO is another population-based algorithm (refer to Chapter 2) that has been suc-
cessfully applied to train NNs [44, 67, 83, 118]. In order to train a NN using PSO, the

following needs to be done:
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e A fitness function has to be defined, which is usually simply the MSE, calculated

using equation (3.7).

e An appropriate representation of candidate solutions has to be determined. Each
particle is used to represent a candidate solution, which is a vector of all of the
weights and biases of a NN. Every element of a particle represents a single weight
or bias, using floating-point numbers. Therefore, each particle has a dimension

equal to the total number of weights in the NN [83].

The PSO is then used, as discussed in Chapter 2, to adjust the weight and bias values
(using the particle velocity and position updates) such that the given fitness function is
minimised.

Recent research has shown PSO to be a very effective NN training algorithm [34, 44,
83, 118]. PSO outperformed standard back propagation on a selection of classification,
function approximation, and prediction problems. Additionally, PSO has also been ap-
plied to train product unit NNs [34, 59], recurrent NNs [106], RBFNNs [97], and SOMs
[96, 133].

The advantages that PSO offers in comparison with back propagation are:

e weaker dependence on the initial weight values, since multiple starting points (i.e.,

particles) are used in the search process,

e derivative information of the activation functions and the error function is not used,

thus the activation functions and the error function do not have to be differentiable,
e computationally more efficient, and

e more robust on rugged surfaces, since population-based search is less prone to

premature convergence on local minima than back propagation [83].

The major disadvantages of PSO, as compared to back propagation, are slower speed

of convergence and more algorithm parameters (w, ¢, ¢2, Vinaa, if applicable, and swarm
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size) to optimise before optimal performance can be expected. For a discussion of PSO
algorithm parameters, refer to Section 2.

Apart from performance issues associated with each specific training algorithm, there
are other factors that influence the performance of a NN. These factors are discussed in

the next section.

3.4 Performance Issues

Training a NN, regardless of the training method chosen, is not an easy task, since the
performance of a NN is dependent on factors such as the NN architecture and data
format. This section addresses aspects that have an influence on the performance of
a NN. Section 3.4.1 discusses architecture selection, Section 3.4.2 discusses the data

pre-processing that is required, and Section 3.4.3 discusses weight initialisation.

3.4.1 Architecture Selection

As discussed in Section 3.2, using the correct number of hidden units is crucial to obtain
good NN performance, since too few hidden units results in poor information capacity
and underfitting, and too many hidden units results in overfitting and poor generali-
sation ability [32]. A simple approach to architecture selection would be to create a
number of NNs with different architectures, compare their training and generalisation
performance on a given problem, and select the architecture that produces the lowest
generalisation error. More complex architecture selection techniques include network
construction (growing) [37, 49, 71|, pruning [32, 110], and regularization [41, 131]. For
a more detailed overview of architecture selection techniques, refer to [32].

This study deals with NN training in dynamic environments, which further compli-
cates the problem of finding an optimal architecture. For a discussion of architecture

selection in the context of dynamic environments, refer to Chapter 5.
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3.4.2 Data Preparation

In order for NN training to be effective, the data must be converted to the format
acceptable for NN training. The output of a NN for a data pattern p is calculated math-
ematically. This restricts the input data to floating-point values. Nominal attributes
have to be transformed to floating-point values. This is either done by binary encoding,
or by mapping various nominal attributes to different numerical values [32].

The numerical data patterns should also be scaled to the active range and domain
of the activation functions employed. NN training requires comparison of target values
to calculated outputs in order to minimise the difference between them. The calculated
outputs of the NN are produced by the activation functions, and thus always fall within
the activation function range. The target values must be scaled to the range of the
activation function in order to be comparable to the calculated outputs. Targets that
do not fall within the activation function range will be unreachable to the NN, and thus
the produced NN error will remain high and unrepresentative. The active range of the
sigmoid function is (0, 1). However, this function is asymptotic, and therefore the actual
outputs are always bigger than 0 and smaller than 1. For this reason, the targets are
usually scaled to [0.1,0.9] in case of continuous-valued targets, and the set {0.1,0.9} for
binary-valued targets (used for classification).

Scaling inputs is optional. However, performance can be improved by scaling the
inputs to the active domain of the activation function, which can be defined as the
interval on which f/(z) changes significantly for different values of x. For example, the
active domain of the sigmoid function is given as [—v/3, /3] [46]. Scaling to the active
domain is done in order to avoid the asymptotic ends of the activation function, since
the closer inputs come to the asymptotic ends, the less significant will be the difference
between the outputs they produce, thus making it difficult for the NN to differentiate
between different patterns. In case of back propagation, unscaled input values also have

a negative effect on the training algorithm performance, since the derivatives of the
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activation function are very small near the asymptotic ends, and small derivative values
yield small weight updates, resulting in slow convergence. The PSO does not use the
activation function derivatives, and therefore is less sensitive to the scaling of inputs.
However, scaled inputs in case of PSO training still allow the calculated outputs to

better reflect the difference between patterns.

3.4.3 Weight Initialisation

The initial weights can have a strong effect on NN performance. In case of gradient-based
training algorithms, such as back propagation, a single set of initial weights needs to be
generated. This set of weights, further referred to as the weight vector, becomes the
starting point of the hill-climbing search for an optimum, and if the starting point hap-
pens to be far from the optimum, slow convergence is usually observed [55]. The weight
vector is usually generated randomly in a small region around zero, which helps keeping
neuron inputs in the active domain of the activation function. If the activation function
goes through the origin, then small random weights centered around zero prevent bias
toward any solution regardless of the input values [32]. Wessels and Barnard [128] de-
rived a rule for weight initialisation interval calculation from the number of connections

leading to a neuron:
-1 1

Vfanin’ v/ fanin

where fanin is the number of connections leading to a unit. Due to the strong depen-

dence of back propagation performance on the initial weights, the interval from which
the weights were sampled was chosen empirically for each problem in the experiments
conducted for this study.

In case of population-based methods such as PSO, the number of generated weight
vectors is equal to the number of particles. This implies that the search for an optimum
has multiple starting points, and thus the success of the search is less influenced by the

initial weight values. This is a natural advantage of population-based methods over back
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propagation. The initial population needs to be sampled from a uniform distribution to

induce no bias and cover as much of the search space as possible.

3.5 Summary

This chapter provided an overview of feedforward neural networks and training algo-
rithms used in this study, namely, back propagation and PSO. Different factors influ-
encing NN performance, such as data format and weight initialisation, have also been
discussed. The next chapter provides an overview of dynamic environments, or environ-

ments with temporal characteristics.
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Chapter 4

Dynamic Environments

Nothing will die;
All things will change
Thro’ eternity...

Alfred Tennyson (1830)

Most optimisation algorithms from the CI field assume that the search landscape is
static. However, this assumption is not valid for many real-world problems. Dynamic
environments can often be observed in real life, for example, the stock exchange, or traffic
conditions on roads. Given a problem in such an environment (e.g. constructing an opti-
mal traffic lights schedule), it is clear that a solution once found may become suboptimal
because certain properties of the environment will change over time (e.g. increased road
congestion during the rush hour will yield a traffic light schedule optimised for midday
road congestion suboptimal). Temporal properties introduce extra complexity into any
problem, since a solution once found will have to be adapted every time a temporal

property changes.

33
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To adapt existing CI methods to dynamic environments, the nature of dynamic en-
vironments has to be studied. Different characteristics of dynamic environments and
optimisation problems with temporal properties, or dynamic optimisation problems, are
discussed in this chapter, as well as some of the existing CI algorithms applied to dy-
namic optimisation problems. Section 4.1 presents a few real-life examples of dynamic
optimisation problems, Section 4.2 discusses characteristics of dynamic environments and
introduces the notion of concept drift, Section 4.3 discusses CI algorithms developed for
dynamic optimisation problems that have been applied in this study, and Section 4.4

concludes the chapter.

4.1 Real-Life Examples of Dynamic Optimisation
Problems

Real-life examples of dynamic problems are provided in this section in order to illustrate
the fact that dynamic problems to which NNs are applicable are common place, and that
research in the development of NN training algorithms for dynamic environments is in

fact necessary.

Spam filtering

Anyone who ever dealt with electronic mail knows what spam is and how annoying it
can be. Getting rid of spam is not only time-consuming, but quite frustrating as well;
e-mails with similar subjects and content arrive repetitively. In case of large companies,
the issue is even more serious: spam causes financial losses due to wasted bandwidth
[25].

The modern approach to avoid spam is to use spam filtering algorithms. The basic
idea behind spam filtering is the ability of a filter to classify an e-mail as being spam or

not. In order to do this, specific features that identify spam have to be found. Filters
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normally look for certain keywords and text patterns typical for spam, and based on
the information obtained after analysing message content, decide whether the e-mail is
legitimate or not [25].

Spam filtering is a classification problem, and CI techniques can be used to solve it.
For example, a supervised neural network (NN) can be trained to differentiate between
spam and legitimate e-mails. However, it is not clear for how long a trained NN will
classify e-mails correctly. In our ever-changing world, nothing is static. Neither is spam,
especially taking into account the fact that it is written by spammers — human beings who
realise that they have to by-pass complex filters. The content of spam messages changes
over time, partly because spammers try to fool filters by introducing hidden context that
would not alter the text as viewed by the user, but will cause filters to incorrectly classify
spam as legitimate mail. Also, every now and again new forms of spam emerge, and if
these forms do not follow the existing spam patterns, filters such as NNs fail, since the
features (i.e. NN inputs) used to characterise spam become unrepresentative and have
to be updated.

Thus, a once trained spam filtering NN will gradually lose precision. NNs have
already been successfully applied to spam filtering under the assumption that the problem
remains static, or that the existing NN training algorithms can be applied to dynamic
problems without further modifications [58, 103, 135]. However, it has been observed
that NNs trained using back propagation struggle to learn from new e-mail examples if
these e-mails represent temporally different characteristics [135]. Therefore, new training
algorithms have to be developed that will allow NNs to adapt to temporal characteristics

of the learning problem.

Antibiotic Resistance

Antibiotics, or the antimicrobial drugs used to fight against bacteria-caused infections,

were discovered in the 20th century and became widespread in the 1940’s [115]. The
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discovery of antibiotics caused a revolution in the medical science, significantly decreasing
the death rate from various diseases, and many illnesses that used to be incurable can
now be effectively combated with the use of antibiotics.

Bacteria, however, is gradually adapting to antibiotics via evolution. Some antibi-
otics have lost most of their medical value due to the fact that harmful bacteria has
evolved, and is no longer affected by the drugs. The evolution of infectious micro-
organisms is faster than the process of creating new antibiotics [115]. The phenomenon
of micro-organisms’ adaptation to antibiotics is known as antibiotic resistance. Mutation
in antibiotic-interacting micro-organisms’ proteins is one of the primary causes for an-
tibiotic resistance. Prediction of resistance mutations in these proteins is valuable for the
molecular dissection of antibiotic resistance mechanisms, as well as for predicting features
used for the development of new drugs to counter resistant strains [14]. NNs have been
successfully applied to the prediction of resistance mutations before [14, 73, 115, 122].
While the results obtained with the existing NN training algorithms were very promising,
the authors agreed that further performance improvement is desirable [14, 73]. Alter-
native training algorithms designed specifically for dynamic environments have a high

potential of improving NN’s performance on the antibiotic resistance problem.

4.2 Dynamic Optimisation Problems

This section discusses various types of dynamic environments and dynamic optimisa-
tion problems. Section 4.2.1 discusses the notion of dynamic optimisation problems in
the context of NN training. Section 4.2.2 discusses the terminology used in this study.
Section 4.2.3 discusses attributes used to describe dynamic environments and dynamic
optimisation problems. Section 4.2.4 focuses on terminology specific to dynamic classi-

fication problems, and introduces the notion of concept drift.
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4.2.1 Primary Concepts

Optimisation problems constitute a broad application area of CI techniques. In computer
science, the term “optimisation problem” refers to the problem of finding an acceptable
solution from the set of all feasible solutions (feasible space of the search space). Math-
ematically, an optimisation problem is the problem of either minimising or maximising
an objective function within the search space, where the search space is the set of all
feasible solutions (feasible space). Classification problems can be seen as a special case
of function optimisation problems, where the objective is to minimise classification error.
Training a NN is also an optimisation problem, where the error function of the NN is
the objective function, and the goal of a training algorithm is to find a set of NN weights
such that the error produced by the NN is minimised.

Dynamic optimisation problems are optimisation problems where one or more of the

following may change over time:

1. the objective function,
2. function parameters,

3. constraints and boundary constraints.

This study deals with unconstrained dynamic optimisation problems only. Considering
the objective function landscape as a hypersurface, it can be argued that environment
changes are basically perturbations of this hypersurface. The changes in the environment
result in floating optima of the objective function: An optimum may change its position
and /or magnitude, existing optima may disappear while new optima may appear some-
where else on the hypersurface. For a static optimisation problem, the objective of an
optimisation algorithm is to find an optimum of the objective function. For a dynamic
optimisation problem, the objective changes from simply locating the optima to tracking
the optima as the optima changes, as well as locating new emerging optima and detect-

ing the disappearing optima. Assuming minimisation, a dynamic optimisation problem
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is formally defined as [33]:

minimise f (7, @(t))

subject to z; € dom(x;)

where @(t) is a vector of time-dependent control parameters of the objective func-
tion, and dom(z;) is the domain of & for dimension [. The aim is to find Z*(¢) =

ming f(Z,@(t)), where #*(¢) is the optimum found at time step t.

4.2.2 Terminology

Before the discussion of optimisation in dynamic environments can continue, terminology
used in this study should be clarified. As formally defined in Section 4.2.1, a dynamic
optimisation problem is an optimisation problem with time-dependent control param-
eters. For the remainder of this text, dynamic optimisation problems are referred to
simply as dynamic problems.

The term “dynamic environments” is often used interchangeably with “dynamic prob-
lems” [12, 31, 54, 79, 113], since the optimisation problem constitutes the environment in
which the optimisation algorithm operates. However, such interchangeable terminology
can be a source of confusion, since the optimisation problem itself exists in a certain envi-
ronment, or context. Changes in the context may cause changes in the objective function
of the optimisation problem. For example, in the case of supervised NN training, a map-
ping between inputs and targets is found such that the error function is minimised. Any
changes in this mapping, e.g. changes in the underlying distribution of inputs, changes
in the number of inputs and targets, or changes in decision boundaries, cause changes
in the search landscape as defined by the error function. Hence, the mapping between
inputs and targets is the dynamic environment of the error function. A change in the
environment may yield an increase in NN error, since the current weight vector may no

longer accurately represent the mapping between inputs and targets. In this study, the
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term dynamic environment is used to refer to the changeable context of a dynamic prob-
lem, such that any changes in the context yield changes in the landscape of the objective
function. Any optimisation problem that has such a dynamic environment becomes a
dynamic problem.

The next section describes characteristics used in this study to discern between dif-
ferent types of dynamic environments and dynamic problems. Due to the strong bond
between dynamic problems and corresponding dynamic environments, the characteris-
tics listed in the following section apply to both dynamic environments and dynamic

problems.

4.2.3 Characteristics of Dynamic Environments

Depending on the dynamic environment, the objective function landscape of the dynamic
problem can change continuously, at regular time intervals, or unpredictably. This prop-
erty of dynamic problems is referred to as temporal severity or frequency of change in
the literature [33].

The severity of change may vary from small changes, when optima move from their
current positions in small steps with every environment change (gradual change), to a
complete change of the objective function landscape (abrupt change). The severity of
change in optima locations and magnitude is referred to as spatial severity [33].

Different combinations of temporal severity and spatial severity result in different
types of dynamic environments, ranging from dynamic environments exhibiting infre-
quent gradual changes, to dynamic environments exhibiting frequent abrupt changes.
Frequent abrupt changes are the hardest to track and adapt to, since optimisation algo-
rithms are required to make significant adjustments in a short period of time.

Temporal severity and spatial severity are general characteristics that apply to any
dynamic optimisation problem, including NN training in a dynamic environment. Since

this study focuses on dynamic classification problems, the next section describes how the
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general characteristics of dynamic problems apply to dynamic classification problems.

4.2.4 Concept Drift

This thesis focuses on classification problems, which make up a large subset of the op-
timisation problems that NNs can be applied to. The goal of a NN used to solve a
classification problem is to learn the classification concepts from the given data. Assum-
ing supervised learning, the term concept refers to a pattern that can be discovered in
the training data. The mapping between inputs and targets, i.e. the predictive model
that is represented by the NN, can be accurately described by a collection of such con-
cepts. In case of classification, concept learning implies learning to distinguish between
different classes by approximating decision boundaries between the classes.

Real-world problems are often dynamic, and classification problems are no exception.
The underlying data distribution may change over time, causing changes in the decision
boundaries. Changes in the decision boundaries will yield changes in the target concepts.
This phenomena is referred to as concept drift [105]. The term “concept drift” belongs
to the field of data mining, and is usually used to refer to drifting concepts as observed
in large data sets and continuous data sets over time. In case of classification, drifting
concepts imply changes in the decision boundaries that separate classes. The boundaries
between classes may shift, new boundaries may appear, and old boundaries may become
obsolete.

Concept drift complicates the process of concept learning by the NN, because the
learned concepts become obsolete as the actual concepts drift, requiring the learned
model to be revised. If decision boundaries change over time, the NN will have to detect

and track such changes in order to update the learnt model accordingly.



&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

W’ YUNIBESITHI YA PRETORIA

4.2. DYNAMIC OPTIMISATION PROBLEMS 41

Types of Concept Drift

Literature distinguishes two types of concept drift: actual, or real concept drift, and vir-
tual concept drift [129]. Actual concept drift is observed when the target concepts change
due to changes in the underlying hidden context, i.e., attributes of the environment not
represented explicitly by the attributes of the optimisation problem [105]. Changes in
the hidden context, however, may also cause changes in the underlying data distribution,
which may require the learnt model to be revised, since the model’s error may no longer
be acceptable with the new data distribution [116]. This kind of concept drift is referred
to as virtual concept drift [129]. Tsymbal [114] argues that, from the practical point of
view, it is not important what kind of concept drift occurs, since, irrespective of the type
of concept drift, the learnt model will have to be revised.

Classification problems with concept drift, also referred to further in this text as
dynamic classification problems, make up a subset of dynamic optimisation problems,
where the objective is to minimise classification error, and track the decision boundaries
as they shift, as well as detect disappearing decision boundaries and locate new decision
boundaries. Therefore, characteristics of dynamic problems described in the previous
section, such as spatial and temporal severity, are applicable to problems with concept
drift. Assuming classification problems, the frequency of concept changes impacts on the
frequency with which the decision boundaries change, and the severity of concept changes
impacts on the extent by which the decision boundaries shift, appear or disappear.
The most severe change would be a complete disappearance of a decision boundary or
appearance of a new decision boundary. Figure 4.1 illustrates spatial severity of changes
as applied to concept drift.

It is interesting to note that the body of research on concept drift has never been
merged with the body of research on continuous dynamic optimisation problems, and
the methods for continuous dynamic optimisation were never applied to concept drift

problems. In this thesis, continuous dynamic optimisation algorithms are applied to NN
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Figure 4.1: Spatial severity applied to concept drift

training in the presence of concept drift.

4.3 Existing Dynamic Optimisation Methods

This section discusses some of the existing CI methods developed for dynamic optimisa-
tion problems and classification problems with concept drift, with the focus on methods
used in this study. Section 4.3.1 introduces the dynamic optimisation research field,
Section 4.3.2 discusses several ways in which particle swarm optimisation (PSO) may
be adapted to dynamic environments, and Section 4.3.3 outlines existing approaches to

solve classification problems in the presence of concept drift.

4.3.1 Optimisation in Dynamic Environments

The field of CI research in dynamic environments is still very young, and many possible

approaches to dynamic problems have not been exhaustively experimented with yet.
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However, the literature survey conducted for the purpose of this study showed that
various population-based algorithms, such as PSO or genetic algorithms, were applied
to dynamic environments with a high degree of success [8, 9, 7, 13, 22, 42, 79]. Both
evolutionary algorithms and swarm algorithms are adaptable by nature, and thus require
relatively minor changes to their standard algorithm structures to work in dynamic
environments. Evolutionary algorithms, however, are out of scope of this study, and
therefore only dynamic approaches to PSO used in this work are discussed. For a more
comprehensive review of evolutionary optimisation in dynamic environments, refer to
[12, 86, 134]. For a more comprehensive review of PSO in dynamic environments, refer

to [6, 9].

4.3.2 Dynamic Particle Swarm Optimisation
Generally speaking, all dynamic optimisation algorithms have to go through two phases:

1. Change detection: Some kind of an environment change sensor has to be imple-

mented to make the algorithm aware of the changes that occur.

2. Response to the change: The existing solution has to be adjusted, if necessary,

whenever the context changes.

Both phases are discussed below in the context of particle swarm optimisation.

Change Detection

In order to respond to a change in the environment, the change has to be detected by the
PSO. Change detection is usually accomplished by making use of one or more sentries. A
sentry is either a dedicated particle or a fixed point in the search space [15, 17]. The only
difference between a normal particle and a sentry particle is that sentry particles keep a
record of their previous fitness values: at the start of each iteration, sentry particles are

re-evaluated, and if the difference between the previous fitness and the new fitness exceeds
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a certain threshold, it can be assumed that a change has occurred. It was suggested by
Hu and Eberhart [53] to use the global best particle as a sentry. Using the global
best particle ensures that changes in the current optimum are always detected, which
is beneficial in gradually changing environments, where the optimum can be tracked as
it changes. However, this approach prevents the swarm from detecting environmental
changes that occur away from the current optimum, which implies that new emerging
optima have a high chance of being overlooked by the algorithm. Carlisle et al [16]
suggested that one or more randomly chosen particles be used. Random sentries cover
a wider area than global best sentries; however, only until the swarm converges. Static
point sentries, on the other hand, are independent of the swarm diversity. Hence, static
points uniformly distributed throughout the search space can be more effective sentries
than the swarm particles [15]. The number of sentries to use in order to efficiently detect
changes is problem dependent. Using more sentries increases the probability of detecting

the change, but also increases overall computational complexity.

Response to the Change

Standard PSO faces the following problems when optimisation in dynamic environments

is required:

1. Outdated memory: Once the environment changes, previous values stored in
PSO memory (personal best and global best positions) are no longer representa-
tive of the new environment [33], and thus provide the swarm with misleading

information instead of leading the search towards an optimum.

2. Loss of swarm diversity: It was formally proved [21, 117] that with a standard
PSO, the swarm will gradually loose diversity from iteration to iteration, until
all particles converge on a weighted average of the personal best and global best

positions. Once converged, PSO will not explore any longer, because particle
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velocities, according to equation (2.2), will tend to zero as the distance between the
current and the global best position, as well as the distance between the current
and the personal best position decrease. A converged PSO has no exploration

capabilities and will not be able to adapt to an environment change [33].

A number of PSO variations have been developed, differing in the way that the above
issues are addressed. A review of popular dynamic PSO algorithms used in this study is

given below.

Reinitialising PSO

The reinitialising PSO approaches the aforementioned problems in a simple, naive man-
ner. The outdated memory issue is addressed by re-evaluating particle positions, as well
as the stored global and personal best positions. Diversity of the swarm is boosted by
means of reinitialising the positions, velocities and personal best positions of a percentage
of particles. The particles to be reinitialised are randomly selected. The disadvantage
of this approach is partial loss of knowledge about the search space due to particle
reinitialisation [54].

The ratio of particles to be reinitialised is problem dependent and should be chosen
empirically. For example, extensive abrupt changes may require most of the swarm to be
reinitialised, and minor gradual changes may be addressed by reinitialising only a small

percentage of the swarm.

Charged PSO

The charged PSO [7] is based on electrostatic principles. All particles in a charged PSO
store a charge, represented by a positive scalar value. A charge magnitude equal to zero
means that a particle is neutral (i.e. does not bear a charge), and a value greater than
zero indicates a charged particle. Charge magnitude can not be negative, and does not

change during algorithm execution.
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Charged particles repel from one another if the distance between them is small
enough. This prevents charged particles from converging to a single point, thus fa-
cilitating exploration and addressing the diversity loss problem. Repulsive forces are

introduced by adding an acceleration term, @,, to the standard velocity equation:

—

3,() = Wi, (¢ — 1) + a1y (Fppest — Ty (1)) + Cofo(Fgpent — Ty (1)) + @, (1)

Repulsion between two particles y and ¢ at time step t is defined as [7]

Q@ \ (7 T <
3,(t) = (726m) (og(0) i Re < |ld (1) < B,
yg

0 otherwise

where ci;,g(t) = T, (t)—T,(t), Q, is the charge magnitude of particle y, R, is the core radius
and R, is the perception limit of a particle. These two limits define the distance range
[R., R,] at which charged particles will repel one another. Neutral particles are assigned
@)y = 0, and thus do not contribute to the calculation of acceleration. Charged particles
are assigned ), > 0. The value of (), assigned to charged particles controls the extent
of acceleration and should be chosen empirically, since optimal acceleration is problem
dependent [7]. R. and R, are the radii of repulsion, and can not be assigned negative
values. The lower radius R, of the interval [R., R,] is a safeguard against singularity of
the inverse square law [7], and the upper radius R, is a tunable parameter that controls
the domain of influence of the repulsion. If R, ~ R,, almost no repulsion will be observed.
Therefore, R, is usually chosen such that R. < R,. As can be concluded from equation
(4.1), acceleration is inversely proportional to the distance between the charged particles,
and the further two charged particles are from each other, the weaker they will repel.
Thus, repelling forces maintain swarm diversity without yielding divergent behaviour.
For the problems considered in [7], the most efficient charged PSO architecture had
50% of the swarm charged, and the rest of the particles were neutral. Neutral particles

are normal PSO particles that obey standard PSO position and velocity update rules.
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Thus, one half of the population acted as a standard PSO swarm and refined found
solutions, thereby facilitating exploitation. Hence, the charged PSO achieved a balance
between exploration and exploitation.

The problem of outdated swarm memory is addressed by re-evaluating the fitness of
each particle in the swarm, the personal best of each particle, and the global best of each

neighbourhood, whenever a change occurs.

Quantum PSO

The quantum PSO [9] is vaguely based on the model of an atom. The orbiting electrons
of an atom are replaced by a quantum cloud, where the position of each electron is
determined not by its previous position and trajectory dynamics, but by a probability
distribution instead. A percentage of particles in the swarm are treated as the “quantum
cloud”, and at each iteration the cloud is