
Using Particle Swarm Optimisation to

Train Feedforward Neural Networks

in Dynamic Environments

by

Anna Rakitianskaia

Submitted in partial fulfillment of the requirements for the degree

Master of Science (Computer Science)

in the Faculty of Engineering, Built Environment and Information Technology

University of Pretoria, Pretoria

December 2011

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

A research publication of

C I R G

Computational Intelligence Research Group

Visit the research group online at

cirg.cs.up.ac.za

An electronic, hyperlinked PDF version of this work is available online at:

http://cirg.cs.up.ac.za/thesis/

A complete, BibTEX format, reference for this work is available online at:

http://cirg.cs.up.ac.za/

cirg.cs.up.ac.za
http://cirg.cs.up.ac.za/thesis/
http://cirg.cs.up.ac.za/

Using Particle Swarm Optimisation to Train Feedforward

Neural Networks in Dynamic Environments

by

Anna Rakitianskaia

E-mail: myearwen@gmail.com

Abstract

The feedforward neural network (NN) is a mathematical model capable of representing

any non-linear relationship between input and output data. It has been succesfully ap-

plied to a wide variety of classification and function approximation problems. Various

neural network training algorithms were developed, including the particle swarm opti-

miser (PSO), which was shown to outperform the standard back propagation training

algorithm on a selection of problems. However, it was usually assumed that the environ-

ment in which a NN operates is static. Such an assumption is often not valid for real life

problems, and the training algorithms have to be adapted accordingly. Various dynamic

versions of the PSO have already been developed. This work investigates the applicabil-

ity of dynamic PSO algorithms to NN training in dynamic environments, and compares

the performance of dynamic PSO algorithms to the performance of back propagation.

Three popular dynamic PSO variants are considered. The extent of adaptive properties

of back propagation and dynamic PSO under different kinds of dynamic environments

is determined. Dynamic PSO is shown to be a viable alternative to back propagation,

especially under the environments exhibiting infrequent gradual changes.

Supervisor : Prof. A. P. Engelbrecht

Department : Department of Computer Science

Degree : Master of Science

mailto:myearwen@gmail.com

...Ergo, God exists.

Argumentum Ornithologicum, by Jorge Luis Borges (1952)

Acknowledgements

I would like to express my gratitude to the following people for their assistance during

the production of this thesis:

• Professor A. P. Engelbrecht, my supervisor, for his insight, guidance and support.

• My father, a scientist, for all the research-related advice and constant motivation.

• My mother, for her patience, understanding, love and cooking.

• My sister Anastassia, for the music.

• Julien Duhain and Olosegun Olorunda, for their friendship.

• My colleagues, for their useful criticism and all the involved academic discussions.

• My friends, both real and virtual ones, for providing me with a life outside of

research and smiling at me.

This thesis was produced exclusively with the use of the following open source and

freeware software tools. Special thanks to the authors of these superb software packages:

Typesetting using LATEX 2ε; Bibliographic references maintained using BibTEX; Graph

production using gnuplot.

Contents

List of Figures v

List of Algorithms xi

List of Tables xii

1 Introduction 1

1.1 Objectives . 3

1.2 Contributions . 4

1.3 Thesis Outline . 4

2 Particle Swarm Optimisation 6

2.1 Basic PSO algorithm . 7

2.2 Neighborhood Topologies . 9

2.2.1 Star Topology . 10

2.2.2 Ring Topology . 10

2.2.3 Von Neumann Topology . 11

2.3 Impact of Parameters . 11

2.3.1 Acceleration parameters . 12

2.3.2 Inertia Weight . 13

2.3.3 Velocity Clamping . 14

i

2.4 Summary . 14

3 Artificial Neural Networks 15

3.1 Artificial Neuron . 16

3.2 Feedforward Neural Network Structure 18

3.3 Training Algorithms . 21

3.3.1 The Learning Process . 22

3.3.2 Back Propagation with Gradient Descent 23

3.3.3 Population Based Algorithms: Particle Swarm

Optimisation . 27

3.4 Performance Issues . 29

3.4.1 Architecture Selection . 29

3.4.2 Data Preparation . 30

3.4.3 Weight Initialisation . 31

3.5 Summary . 32

4 Dynamic Environments 33

4.1 Real-Life Examples of Dynamic Optimisation

Problems . 34

4.2 Dynamic Optimisation Problems . 36

4.2.1 Primary Concepts . 37

4.2.2 Terminology . 38

4.2.3 Characteristics of Dynamic Environments 39

4.2.4 Concept Drift . 40

4.3 Existing Dynamic Optimisation Methods 42

4.3.1 Optimisation in Dynamic Environments 42

4.3.2 Dynamic Particle Swarm Optimisation 43

4.3.3 Optimisation in the Presence of Concept Drift 48

ii

4.4 Summary . 50

5 Neural Networks in Dynamic Environments 51

5.1 Dynamism of Back Propagation . 52

5.2 Population-Based Dynamic Training . 55

5.3 Architecture Selection and Parameter

Optimisation in Dynamic Environments 57

5.4 Overfitting in Dynamic Environments . 58

5.5 Summary . 59

6 Empirical Analysis 61

6.1 Experimental Procedure . 62

6.1.1 Measuring NN Performance in Dynamic Environments 62

6.1.2 Simulating Concept Drift . 65

6.1.3 Parameter Optimisation . 68

6.1.4 Naming Conventions . 74

6.2 Classification problems . 75

6.2.1 SEA Concepts . 75

6.2.2 Moving Hyperplane . 111

6.2.3 Dynamic Sphere . 145

6.2.4 Sliding Thresholds . 174

6.2.5 Electricity Pricing . 205

6.3 Summary . 236

7 Conclusions 240

7.1 Summary of Conclusions . 240

7.2 Future Work . 243

Bibliography 247

iii

A Acronyms 264

B Symbols 266

B.1 Chapter 2: Particle Swarm Optimisation 266

B.2 Chapter 3: Artificial Neural Networks . 267

B.3 Chapter 4: Dynamic Environments . 268

B.4 Chapter 6: Experimental Results . 269

C Derived Publications 271

iv

List of Figures

2.1 PSO Neighbourhood Topologies . 10

3.1 An Artificial Neuron . 17

3.2 Activation Functions . 18

3.3 FFNN with a single hidden layer . 19

4.1 Spatial severity applied to concept drift 42

5.1 Back Propagation in dynamic environments 53

6.1 Introducing new decision boundaries by window shifts 67

6.2 Conflicting boundaries . 68

6.3 SEA Concepts . 76

6.4 Training and Generalisation Error results for SEA concepts, scenarios A1

to A3 . 79

6.5 Training and Generalisation Error results for SEA concepts, scenarios A4

to A5 . 80

6.6 Swarm diversity results for SEA concepts, scenarios A1 to A5 82

6.7 Average Error results for SEA concepts, scenarios A1 to A5 85

6.8 Training and Generalisation Error results for SEA concepts, scenarios B1

to B3 . 90

v

6.9 Training and Generalisation Error results for SEA concepts, scenarios B4

to B5 . 91

6.10 Swarm diversity results for SEA concepts, scenarios B1 to B5 92

6.11 Average Error results for SEA concepts, scenarios B1 to B5 95

6.12 Training and Generalisation Error results for SEA concepts, scenarios C1

to C3 . 97

6.13 Training and Generalisation Error results for SEA concepts, scenarios C4

to C5 . 98

6.14 Swarm diversity results for SEA concepts, scenarios C1 to C5 101

6.15 Average Error results for SEA concepts, scenarios C1 to C5 102

6.16 Training and Generalisation Error results for SEA concepts, scenarios D1

to D3 . 105

6.17 Training and Generalisation Error results for SEA concepts, scenarios D4

to D5 . 106

6.18 Swarm diversity results for SEA concepts, scenarios D1 to D5 107

6.19 Average Training Error Results for SEA Concepts 109

6.20 Average Generalisation Error Results for SEA Concepts 110

6.21 Training and Generalisation Error results for Moving Hyperplane, scenar-

ios A1 to A2 . 114

6.22 Training and Generalisation Error results for Moving Hyperplane, scenar-

ios A3 to A4 . 116

6.23 Average Diversity results for Moving Hyperplane, scenarios A1 to A4 . . 117

6.24 Average Error results for Moving Hyperplane, scenarios A1 to A4 118

6.25 Training and Generalisation Error results for Moving Hyperplane, scenar-

ios B1 to B2 . 123

6.26 Training and Generalisation Error results for Moving Hyperplane, scenar-

ios B3 to B4 . 124

vi

6.27 Average Diversity results for Moving Hyperplane, scenarios B1 to B4 . . 125

6.28 Average Error results for Moving Hyperplane, scenarios B1 to B4 127

6.29 Training and Generalisation Error results for Moving Hyperplane, scenar-

ios C1 to C2 . 130

6.30 Training and Generalisation Error results for Moving Hyperplane, scenar-

ios C3 to C4 . 131

6.31 Average Diversity results for Moving Hyperplane, scenarios C1 to C4 . . 134

6.32 Average Error results for Moving Hyperplane, scenarios C1 to C4 135

6.33 Training and Generalisation Error results for Moving Hyperplane, scenar-

ios D1 to D2 . 136

6.34 Training and Generalisation Error results for Moving Hyperplane, scenar-

ios D3 to D4 . 137

6.35 Average Diversity results for Moving Hyperplane, scenarios D1 to D2 . . 138

6.36 Average Error results for Moving Hyperplane, scenarios D1 to D4 140

6.37 Average Training Error Results for Moving Hyperplane 141

6.38 Average Generalisation Error Results for Moving Hyperplane 142

6.39 Average Rank results for Moving Hyperplane 144

6.40 Training and Generalisation Error results for Dynamic Sphere, scenarios

A1 to A2 . 147

6.41 Training and Generalisation Error results for Dynamic Sphere, scenarios

A3 to A4 . 148

6.42 Average Diversity results for Dynamic Sphere, scenarios A1 to A4 149

6.43 Average Error results for Dynamic Sphere, scenarios A1 to A4 154

6.44 Training and Generalisation Error results for Dynamic Sphere, scenarios

B1 to B2 . 155

6.45 Training and Generalisation Error results for Dynamic Sphere, scenarios

B3 to B4 . 156

vii

6.46 Average Diversity results for Dynamic Sphere, scenarios B1 to B4 157

6.47 Average Error results for Dynamic Sphere, scenarios B1 to B4 158

6.48 Training and Generalisation Error results for Dynamic Sphere, scenarios

C1 to C2 . 161

6.49 Training and Generalisation Error results for Dynamic Sphere, scenarios

C3 to C4 . 162

6.50 Average Diversity results for Dynamic Sphere, scenarios C1 to C4 163

6.51 Average Error results for Dynamic Sphere, scenarios C1 to C4 165

6.52 Training and Generalisation Error results for Dynamic Sphere, scenarios

D1 to D2 . 167

6.53 Training and Generalisation Error results for Dynamic Sphere, scenarios

D3 to D4 . 169

6.54 Average Diversity results for Dynamic Sphere, scenarios D1 to D4 170

6.55 Average Error results for Dynamic Sphere, scenarios D1 to D4 171

6.56 Average Training Error Results for Dynamic Sphere 172

6.57 Average Generalisation Error Results for Dynamic Sphere 173

6.58 Training and Generalisation Error results for Sliding Thresholds, scenarios

A1 to A2 . 178

6.59 Training and Generalisation Error results for Sliding Thresholds, scenarios

A3 to A4 . 179

6.60 Average Diversity results for Sliding Thresholds, scenarios A1 to A4 . . . 183

6.61 Average Error results for Sliding Thresholds, scenarios A1 to A4 184

6.62 Training and Generalisation Error results for Sliding Thresholds, scenarios

B1 to B2 . 186

6.63 Training and Generalisation Error results for Sliding Thresholds, scenarios

B3 to B4 . 187

6.64 Average Diversity results for Sliding Thresholds, scenarios B1 to B4 . . . 188

viii

6.65 Average Error results for Sliding Thresholds, scenarios B1 to B4 191

6.66 Training and Generalisation Error results for Sliding Thresholds, scenarios

C1 to C2 . 192

6.67 Training and Generalisation Error results for Sliding Thresholds, scenarios

C3 to C4 . 193

6.68 Average Diversity results for Sliding Thresholds, scenarios C1 to C4 . . . 195

6.69 Average Error results for Sliding Thresholds, scenarios C1 to C4 196

6.70 Training and Generalisation Error results for Sliding Thresholds, scenarios

D1 to D2 . 197

6.71 Training and Generalisation Error results for Sliding Thresholds, scenarios

D3 to D4 . 198

6.72 Average Diversity results for Sliding Thresholds, scenarios D1 to D4 . . . 199

6.73 Average Training Error Results for Sliding Thresholds 202

6.74 Average Generalisation Error Results for Sliding Thresholds 203

6.75 Average Rank results for Sliding Thresholds 204

6.76 Training and generalisation error results for Electricity Pricing, scenarios

A1 to A2 . 208

6.77 Training and generalisation error results for Electricity Pricing, scenarios

A3 to A4 . 209

6.78 Average Diversity results for Electricity Pricing, scenarios A1 to A4 . . . 210

6.79 Average Error results for Electricity Pricing, scenarios A1 to A4 212

6.80 Training and Generalisation Error results for Electricity Pricing, scenarios

B1 to B2 . 216

6.81 Training and Generalisation Error results for Electricity Pricing, scenarios

B3 to B4 . 217

6.82 Average Diversity results for Electricity Pricing, scenarios B1 to B4 . . . 218

6.83 Average Error results for Electricity Pricing, scenarios B1 to B4 220

ix

6.84 Training and generalisation error results for Electricity Pricing, scenarios

C1 to C2 . 222

6.85 Training and generalisation error results for Electricity Pricing, scenarios

C3 to C4 . 223

6.86 Average Diversity results for Electricity Pricing, scenarios C1 to C4 . . . 224

6.87 Average Error results for Electricity Pricing, scenarios C1 to C4 225

6.88 Training and generalisation error results for Electricity Pricing, scenarios

D1 to D2 . 228

6.89 Training and generalisation error results for Electricity Pricing, scenarios

D3 to D4 . 229

6.90 Average Diversity results for Electricity Pricing, scenarios D1 to D4 . . . 231

6.91 Average Error results for Electricity Pricing, scenarios D1 to D4 232

6.92 Average Training Error Results for Electricity Pricing 233

6.93 Average Generalisation Error Results for Electricity Pricing 234

6.94 Average Rank results for Electricity Pricing 235

x

List of Algorithms

2.1 Synchronous PSO algorithm . 9

3.1 Back Propagation . 25

xi

List of Tables

6.1 Parameter Ranges for Back Propagation 71

6.2 Number of Hidden Units . 72

6.3 Parameter Ranges: PSO . 73

6.4 Dynamic Scenarios for the SEA Concepts Problem 77

6.5 Optimal Parameters for the SEA Concepts Problem 78

6.6 SEA Concepts Results for Scenarios A1 to A5 84

6.7 Mann-Whitney U p-values obtained for the average training error compar-

isons on the SEA concepts problem with reference to the null hypothesis

that the means of the compared samples are equal at the significance level

of 95% . 86

6.8 Mann-Whitney U p-values obtained for the average generalisation error

comparisons on the Moving Hyperplane problem with reference to the

null hypothesis that the means of the compared samples are equal at the

significance level of 95% . 87

6.9 SEA Concepts Algorithm Ranking for Scenarios A1 to A5 88

6.10 SEA Concepts Results for Scenarios B1 to B5 94

6.11 SEA Concepts Algorithm Ranking for Scenarios B1 to B5 95

6.12 SEA Concepts Results for Scenarios C1 to C5 100

6.13 SEA Concepts Algorithm Ranking for Scenarios C1 to C5 102

6.14 SEA Concepts Results for Scenarios D1 to D5 104

xii

6.15 SEA Concepts Algorithm Ranking for Scenarios D1 to D5 106

6.16 SEA Concepts Algorithm Ranking for Scenarios A to D 110

6.17 Dynamic Scenarios considered for the Moving Hyperplane 112

6.18 Optimal Parameters for the Moving Hyperplane problem 113

6.19 Moving Hyperplane Results for Scenarios A1 to A4 119

6.20 Mann-Whitney U p-values obtained for the average training error com-

parisons on the Moving Hyperplane problem with reference to the null

hypothesis that the means of the compared samples are equal at the sig-

nificance level of 95% . 120

6.21 Mann-Whitney U p-values obtained for the average generalisation error

comparisons on the Moving Hyperplane problem with reference to the

null hypothesis that the means of the compared samples are equal at the

significance level of 95% . 121

6.22 Moving Hyperplane Algorithm Ranking for Scenarios A1 to A4 122

6.23 Moving Hyperplane Results for Scenarios B1 to B4 126

6.24 Moving Hyperplane Algorithm Ranking for Scenarios B1 to B4 129

6.25 Moving Hyperplane Results for Scenarios C1 to C4 133

6.26 Moving Hyperplane Algorithm Ranking for Scenarios C1 to C4 136

6.27 Moving Hyperplane Results for Scenarios D1 to D4 139

6.28 Moving Hyperplane Algorithm Ranking for Scenarios D1 to D4 140

6.29 Moving Hyperplane Average Algorithm Ranking for Scenarios A to D . . 143

6.30 Optimal Parameters for the Dynamic Sphere problem 146

6.31 Dynamic Sphere Results for Scenarios A1 to A4 151

6.32 Mann-Whitney U p-values obtained for the average training error compar-

isons on the Dynamic Sphere problem with reference to the null hypothesis

that the means of the compared samples are equal at the significance level

of 95% . 152

xiii

6.33 Mann-Whitney U p-values obtained for the average generalisation error

comparisons on the Dynamic Sphere problem with reference to the null

hypothesis that the means of the compared samples are equal at the sig-

nificance level of 95% . 153

6.34 Dynamic Sphere Algorithm Ranking for Scenarios A1 to A4 154

6.35 Dynamic Sphere Results for Scenarios B1 to B4 159

6.36 Dynamic Sphere Algorithm Ranking for Scenarios B1 to B4 160

6.37 Dynamic Sphere Results for Scenarios C1 to C4 164

6.38 Dynamic Sphere Algorithm Ranking for Scenarios C1 to C4 165

6.39 Dynamic Sphere Results for Scenarios D1 to D4 168

6.40 Dynamic Sphere Algorithm Ranking for Scenarios D1 to D4 171

6.41 Dynamic Sphere Average Algorithm Ranking for Scenarios A to D 174

6.42 Optimal Parameters for the Sliding Thresholds problem 176

6.43 Sliding Thresholds Results for Scenarios A1 to A4 180

6.44 Mann-Whitney U p-values obtained for the average training error com-

parisons on the Sliding Thresholds problem with reference to the null

hypothesis that the means of the compared samples are equal at the sig-

nificance level of 95% . 181

6.45 Mann-Whitney U p-values obtained for the average generalisation error

comparisons on the Sliding Thresholds problem with reference to the null

hypothesis that the means of the compared samples are equal at the sig-

nificance level of 95% . 182

6.46 Sliding Thresholds Algorithm Ranking for Scenarios A1 to A4 183

6.47 Sliding Thresholds Results for Scenarios B1 to B4 189

6.48 Sliding Thresholds Algorithm Ranking for Scenarios B1 to B4 191

6.49 Sliding Thresholds Results for Scenarios C1 to C4 194

6.50 Sliding Thresholds Algorithm Ranking for Scenarios C1 to C4 196

xiv

6.51 Sliding Thresholds Results for Scenarios D1 to D4 200

6.52 Sliding Thresholds Algorithm Ranking for Scenarios D1 to D4 201

6.53 Sliding Thresholds Average Algorithm Ranking for Scenarios A to D . . . 204

6.54 Optimal Parameters for the Electricity Pricing problem 207

6.55 Electricity Pricing Results for Scenarios A1 to A4 211

6.56 Mann-Whitney U p-values obtained for the average training error compar-

isons on the Electricity Pricing problem with reference to the null hypoth-

esis that the means of the compared samples are equal at the significance

level of 95% . 213

6.57 Mann-Whitney U p-values obtained for the average generalisation error

comparisons on the Electricity Pricing problem with reference to the null

hypothesis that the means of the compared samples are equal at the sig-

nificance level of 95% . 214

6.58 Electricity Pricing Algorithm Ranking for Scenarios A1 to A4 215

6.59 Electricity Pricing Results for Scenarios B1 to B4 219

6.60 Electricity Pricing Algorithm Ranking for Scenarios B1 to B4 220

6.61 Electricity Pricing Results for Scenarios C1 to C4 226

6.62 Electricity Pricing Algorithm Ranking for Scenarios C1 to C4 227

6.63 Electricity Pricing Results for Scenarios D1 to D4 230

6.64 Electricity Pricing Algorithm Ranking for Scenarios D1 to D4 232

6.65 Electricity Pricing Average Algorithm Ranking for Scenarios A to D . . . 235

6.66 Average Algorithm Ranking . 237

6.67 Best performing algorithms under varying spatial severity for the five con-

sidered dynamic classification problems 237

6.68 Best performing algorithms under varying temporal severity for the five

considered dynamic classification problems 238

xv

Chapter 1

Introduction

Even though our senses fool our consciousness into believing that we exist

in a 3-dimensional world, it is the fourth dimension - time - that governs

the Universe and makes it curve. The state of the world we live in changes

every instant, and every instant we adapt to it - consciously or unconsciously,

depending on the nature and extent of the change. We put on an extra layer

of clothes when it is chilly outside, and take a train when our flight has been

cancelled due to a recent volcano eruption.

Due to the nature of the Universe, it is never correct to assume that our environ-

ment is static. Even though such crude approximation may work for a short while, it

will always fail in the long term. Both measurable and hidden parameters of a problem

tend to change over time, causing the once found solutions to loose precision and de-

teriorate. Examples of dynamic environments are the stock exchange, road congestion

due to traffic, different price markets, such as electricity or food markets, etc. From a

mathematical perspective, a dynamic environment can be visualised as a function with

floating optima. An optimum may change its position and value, existing optima may

disappear and new optima may emerge. Alternatively, for classification problems it is

decision boundaries separating different classes that change over time. In both cases, the

1

2

task of the optimisation algorithm becomes more difficult, since the algorithm should

not only find the optimal solution, but also detect environmental changes and promptly

adapt to them, which might entail dismissing the old solution entirely. This is why

current developments in computational intelligence (CI), or nature-inspired mechanisms

that simulate intelligent behavior [32], try to encompass the temporal aspects of the

problems they attempt to solve.

A successful example of a new approach to CI is particle swarm optimisation (PSO),

a population-based optimisation technique that models social behaviour of a bird flock

in order to traverse the search space and find an optimal solution [65, 32]. Due to the

success of the PSO in static environments [65], numerous variants of PSO that cater for

dynamic changes have been developed to date, including the simple restarting PSO [31],

the charged PSO based on electrostatic principles [7], and the quantum PSO based on

the model of an atom [9], amongst others.

However, one of the oldest fields of CI research, namely neural networks (NNs)

[4, 28, 47, 91, 101, 142] – powerful mathematical models inspired by the human brain

and capable of representing any non-linear relationship between input and output data

– have remained conservative towards the emerging field of optimisation in dynamic en-

vironments. It has been assumed that the standard NN training algorithms based on

gradient descent are implicitly dynamic [59], and if the NN fails to adapt to the changes,

then restarting the training process would be the most efficient solution. In order to

avoid re-training, redundancy in the form of ensemble classifiers has also been proposed

[19, 111, 114, 115, 116]. The chances of obtaining at least one acceptable solution using

ensemble classifiers are increased by training a number of separate NNs on the same

problem over different time periods. However, the ensemble approach does not offer any

training algorithm improvements to make each classifier aware of dynamic changes.

NNs are widely used in real life [25, 124, 141], and it is necessary to ensure that NNs

can be effectively trained in dynamic environments. PSO has been successfully applied

1.1. OBJECTIVES 3

to NN training before [67, 34, 44, 83, 118], and in this work the applicability of dynamic

versions of PSO to NN training in dynamic environments is studied. The main focus of

this work is on classification problems with dynamic decision boundaries, further referred

to as dynamic classification problems. The behaviour of both the standard gradient

descent back propagation and various dynamic PSOs on different dynamic problems is

analysed.

The rest of the chapter is outlined as follows. Section 1.1 lists the main objectives of

this thesis. Section 1.2 summarises the original contributions of this work. Section 1.3

outlines the structure of the rest of this thesis.

1.1 Objectives

The primary objectives of this thesis are summarised as follows:

• To provide an overview of the CI techniques used in this work, namely neural

networks and particle swarm optimisation.

• To provide an overview of dynamic environments and dynamic classification prob-

lems.

• To provide an overview of the relevant PSO approaches to dynamic optimisation.

• To apply dynamic PSO algorithms to NN training on dynamic classification prob-

lems.

• To analyse the behaviours and performance that back propagation and the dynamic

PSO algorithms exhibit when applied to NN training on dynamic classification

problems.

• To identify dynamic environment types for which every algorithm considered is

best suited.

1.2. CONTRIBUTIONS 4

1.2 Contributions

The novel contributions of this thesis include the following:

• The first analysis of the applicability of dynamic PSO algorithms to NN training

on dynamic classification problems.

• An empirical analysis of the adaptive properties of back propagation.

• An empirical comparison of back propagation and dynamic PSO algorithms applied

to NN training on dynamic classification problems.

• The discovery that dynamic PSO training algorithms are more efficient under infre-

quent gradual changes, and that back propagation is more efficient under frequent

abrupt changes.

• The conclusion that dynamic PSO training algorithms are preferrable over back

propagation on dynamic classification problems with rugged error lanscape, and

where multiple new decision boundaries may appear and disappear.

• The conclusion that dynamic PSO training algorithms are more sensitive than back

propagation to specific properties of a dynamic environment, such as frequency

and severity of change. However, if properly optimised for a specific dynamic

environment, the dynamic PSO training algorithms are likely to perform better

than back propagation.

1.3 Thesis Outline

The remainder of the thesis is organised as follows:

• Chapter 2 discusses PSO in detail.

1.3. THESIS OUTLINE 5

• Chapter 3 discusses supervised feedforward NNs. The back propagation training

algorithm is described, and major performance issues are outlined.

• Chapter 4 discusses dynamic environments. A few real-life examples of dynamic

problems are described, and different attributes of dynamic classification prob-

lems are discussed. Existing PSO approaches to dynamic optimisation are also

discussed.

• Chapter 5 is dedicated to existing approaches to train NNs in dynamic environ-

ments. The drawbacks of back propagation are discussed, and alternative training

algorithms are suggested. The problems of architecture selection, parameter opti-

misation, and overfitting in the context of dynamic environments are also discussed.

• Chapter 6 presents an empirical study conducted for this thesis. The experimental

procedure is discussed in detail, experimental results are presented and analysed,

and conclusions are given.

• Chapter 7 provides a summary of the thesis, and gives a list of possible future

research directions.

The following appendices are included, containing a number of lists with relevant

information for quick referencing purposes:

• Appendix A provides a list of the acronyms used and defined in this work, as

well as their associated definitions.

• Appendix B lists and defines the mathematical symbols used in this work, cate-

gorised according to the relevant chapter in which they appear.

• Appendix C lists the publications derived from this work.

Chapter 2

Particle Swarm Optimisation

The intelligence of the creature known as a crowd is the square root of the

number of people in it.

Terry Pratchett

PSO is a relatively new optimisation technique. Kennedy and Eberhart formally

introduced PSO in 1995 [65], much later than population-based evolutionary algorithms

such as the genetic algorithm (GA) (first proposed by A. S. Fraser [36] in 1957). PSO is

a population-based iterative search algorithm that manipulates a pool of potential solu-

tions (particles) in order to find an optimum. The search is conducted by imitating the

social behaviour of a bird flock.

Observations of bird flocks, schools of fish, bee swarms, and animal herds have shown

that the collective effort of a group is usually more rewarding than individual effort [51].

Suppose a certain task has to be achieved. Each individual within a group has a certain

capability of reaching the goal. While working in a group, the behaviour of an individual

is guided not only by the individuals’ perception of how to achieve the goal, but also

by the social dynamics. All individuals within a group share the experience of pursuing

6

2.1. BASIC PSO ALGORITHM 7

a common goal, and each individual learns not only from its own experience, but also

from the experience of its neighbours. This speeds up the search process significantly.

This kind of social behaviour inspired the creation of the PSO algorithm, which is

discussed in this chapter. The rest of the chapter is structured as follows: Section 2.1

provides a formal definition of the PSO, and Section 2.2 describes various swarm infor-

mation sharing strategies. PSO parameters and their impact on algorithm efficiency are

discussed in Section 2.3. Section 2.4 concludes the chapter.

2.1 Basic PSO algorithm

PSO operates on a group (referred to as a swarm) of individuals. Each individual, referred

to as a particle, represents a candidate solution to the optimisation problem. For an n-

dimensional optimisation problem, a particle is represented by an n-dimensional vector,

~x, also referred to as particle position. Every particle has a fitness value, which indicates

the quality of the candidate solution represented by the particle. The n-dimensional

search space of the problem is the environment in which the swarm operates. In addition

to a position within the search space, each particle possesses a velocity vector ~v, which

determines the step size and direction of the particle’s movement. Social interaction is

imitated by forming neighbourhoods within a swarm. Each particle stores its own best

position found so far, and can also query neighbouring particles for the best position

as discovered by the neighbourhood thus far. Various PSO neighbourhood topologies

have been proposed in the literature and applied in practice (refer to Section 2.2 for

further details). The structure and size of the neighbourhood determines the way in

which information is shared between the particles.

PSO searches for an optimum by moving the particles through the search space. At

each time step, t, the position ~xy(t) of particle y is modified by adding the particle

2.1. BASIC PSO ALGORITHM 8

velocity ~vy(t) to the previous position vector:

~xy(t) = ~xy(t− 1) + ~vy(t) (2.1)

The velocity vector determines the step size and direction of the particle. The velocity

update equation is given by

~vy(t) = ω~vy(t− 1) + c1~r1(~xpbest,y(t)− ~xy(t)) + c2~r2(~xnbest,y(t)− ~xy(t)) (2.2)

where ω is the inertia weight [109], controlling the influence of previous velocity values

on the new velocity; c1 and c2 are acceleration coefficients used to scale the influence

of the cognitive (second term of Equation (2.2)) and social (third term of Equation

(2.2)) components; ~r1 and ~r2 are vectors with each component sampled from a uniform

distribution U(0, 1); ~xpbest,y(t) is the personal best of particle y, or, in other words, the

best position encountered by this particle so far; similarly, ~xnbest,y(t) is the neighbourhood

best of particle y, or the best position found by any of the particles in the neighbourhood

of particle y. Thus, each particle is attracted to both the best position encountered

by itself so far, as well as the overall best position found by the neighbourhood so far.

A maximum velocity ~Vmax [108] is sometimes used to limit (or clamp) particle velocity

in every dimension. Velocity clamping is done to prevent particles from traversing the

search space too fast, since unreasonably big steps prevent particles from exploiting good

regions. ~Vmax is enforced by restricting ~vy(t) per dimension:

vyl(t) =


Vmax,l if vyl(t) > Vmax,l

−Vmax,l if vyl(t) < −Vmax,l

vyl(t) otherwise

(2.3)

For more information on various PSO parameters, refer to Section 2.3.

The PSO algorithm is usually stopped when the quality of the found solution is

satisfactory, or when the maximum number of iterations or fitness function evaluations

has been reached [32].

The PSO algorithm is outlined in Algorithm 2.1.

2.2. NEIGHBORHOOD TOPOLOGIES 9

1. Set iteration count t = 0

2. Initialise the swarm P (t) of SP particles, such that ~xy(t) ∼ U(Xn), where Xn is the search space

of the problem.

3. Set ~xpbest,y(t) and ~xnbest,y(t) of each particle to its current position, ~xy(t).

4. Set ~vy(t) of each particle to ~0

repeat:

for each particle y = 1, . . . , SP do:

Evaluate fitness f(~xy) of particle y

Set the personal best position:

if f(~xy(t)) > f(~xpbest,y(t)) then

~xpbest,y(t) = ~xy(t)

end if

Set the neighbourhood best position:

iff(~xpbest,y(t)) > f(~xnbest,y(t))then

~xnbest,y(t) = ~xpbest,y(t)

end if

end for

for each particle y = 1, . . . , SP do:

Update particle velocity ~vy(t) using equation (2.2)

If applicable, clamp ~vy(t) to ~Vmax using equation (2.3)

Update particle position ~xy(t) using equation (2.1)

end for

t = t+ 1

until stopping criteria are met.

Algorithm 2.1: Outline of the PSO algorithm with synchronous update

2.2 Neighborhood Topologies

As mentioned in the previous section, each particle in the swarm moves towards both

the best position encountered by itself so far, as well as the overall best position found

by its neighbourhood. A particle’s neighbourhood is determined topologically rather

than spatially, meaning that the distance between particles is determined by particles’

indices and not the actual position in the search space [64]. The preference is given

to topological structure, since, when a particle swarm converges, the spatial distances

between particles tend to zero, thus disrupting spatial neighbourhoods.

2.2. NEIGHBORHOOD TOPOLOGIES 10

(a) Star topology (b) Ring topology (c) Von Neumann topology

Figure 2.1: PSO Neighbourhood Topologies

This section discusses three conventional PSO neighbourhood topologies (sometimes

also referred to as information sharing strategies), namely the star topology, the ring

topology, and the Von Neumann topology. These topologies are also graphically depicted

in Figure 2.1.

2.2.1 Star Topology

The star topology was first introduced by Kennedy and Eberhart [65]. For the star

topology, all particles share information about the search space with every other particle

in the swarm. The star topology is visualised as a fully interconnected network of nodes,

as illustrated in Figure 2.1(a). The neighbourhood of each particle is the entire swarm.

Consequently, ~xnbest,y(t) used in equation (2.2) is the same for all particles (i.e. global

best), since only one neighbourhood exists. Thus, all particles, apart from their personal

best positions, imitate the same neighbourhood best particle, which limits exploration

and facilitates fast convergence of the swarm.

2.2.2 Ring Topology

The ring topology was first introduced by Kennedy and Eberhart [65]. For the ring

neighbourhood topology, the neighbourhood of a particle y consists of m particles in the

2.3. IMPACT OF PARAMETERS 11

immediate topological proximity of particle y. For example, if m = 2, then the neigh-

bourhood of particle y consists of two other particles, y − 1 and y + 1. An example of

a ring topology is shown in Figure 2.1(b). Fewer connections between particles result in

a number of overlapping neighbourhoods. Every neighbourhood has its own neighbour-

hood best, thus particles from different neighbourhoods are attracted to different fruitful

areas of the search space, which facilitates exploration. Since the neighbourhoods are

overlapping, the swarm is still likely to converge, but at a slower speed: Better explo-

ration has a negative effect on the speed of convergence [64, 66].

2.2.3 Von Neumann Topology

The Von Neumann topology was first introduced by Kennedy and Mendes [68]. This

neighbourhood topology connects the particles in a grid-like structure such that every

particle connects to its four immediate neighbours. The Von Neumann topology can be

visualised as a square lattice, the extremities of which are connected. An example of the

Von Neumann topology for a 12 particle swarm is depicted in Figure 2.1(c).

Peer et al. [93] showed that the Von Neumann neighbourhood topology maintains

swarm diversity better due to the fact that the influence of a single particle propagates

through the structure slowly, thus making it harder for a single particle to dominate the

swarm. It was empirically shown in [79] that PSO utilising the Von Neumann topology

(sometimes also referred to as the fine-grained PSO) performs well in dynamic envi-

ronments. The fine-grained PSO managed to outperform PSO with other information

sharing strategies on a selection of high-dimensional dynamic problems [79].

2.3 Impact of Parameters

Different properties of the swarm dynamics have to be reinforced for different optimi-

sation problems. For example, it is necessary to reinforce exploration when a function

2.3. IMPACT OF PARAMETERS 12

with a rough surface is being minimised in order to avoid premature convergence on a

local minimum, and a stronger exploitation ability will promote faster convergence on

an optimal solution when a unimodal function with a non-flat surface is considered, or

when a promising region that may contain an optimum has been found. The dynamics of

the swarm, such as the ability to explore and to exploit, depend not only on the swarm

topology, but also on the values chosen for the PSO parameters. In order to achieve

optimal performance of the algorithm, these parameters have to be fine-tuned for each

specific optimisation problem. This section discusses the standard PSO parameters and

their impact on swarm dynamics.

2.3.1 Acceleration parameters

Coefficients c1 and c2 in equation (2.2) are referred to as acceleration coefficients. The

search trajectory of each particle is influenced by these coefficients, in addition to the

inertia weight (see Section 2.3.2). The first one, c1, controls the impact of the cognitive

component on the particle trajectory, and the second one, c2, controls the impact of the

social component.

If c2 << c1, each is more strongly attracted to its personal best than to the neigh-

bourhood best. The bias towards personal best facilitates individual search by each

particle, and reduces the social behaviour of the swarm (i.e. striving towards the same

global best position). As a result, exploration is promoted, but the swarm converges

slowly, or not at all.

On the other hand, if c1 << c2, particles are attracted more to the best position in

the neighbourhood than to their personal best positions. This may result in premature

convergence due to lack of exploration.

Since the main principle of PSO rests on a combination of both personal and social

knowledge of the search space, the acceleration coefficients are usually chosen such that

c1 ≈ c2. If the values of c1 and c2 are too large, then particle velocities accelerate too fast,

2.3. IMPACT OF PARAMETERS 13

which may result in swarm divergence. If, on the other hand, the values of c1 and c2 are

too small, then particles move too slowly, and the swarm may take too long to converge.

An empirical study conducted by Kennedy [63] has shown that the values for c1 and c2

should be chosen such that c1 + c2 ≤ 4, otherwise particle velocities and positions may

explode towards infinity. The behaviour of particle velocities is also largely dependent

on the inertia weight, which is discussed below.

2.3.2 Inertia Weight

Another important parameter of the PSO is the inertia weight, denoted as ω. The

inertia weight controls the influence of the previous velocity values on the new velocity,

as follows from equation (2.2).

If ω ≥ 1, particle velocities will grow over time. This facilitates exploration by

increasing swarm diversity and the area of the search space covered by the swarm. How-

ever, if the velocity becomes too large, the particle’s direction will be dominated by its

previous velocity, preventing the particle from backtracking to previously found good

regions, and possibly causing the particle to leave the boundaries of the search space.

This will yield divergent behaviour, which is undesirable.

Studies have shown that ω < 1 does not guarantee swarm convergence, either, since

c1 and c2 also play a significant role in determining swarm dynamics [21]. In fact, neither

the inertia weight nor the acceleration coefficients can be optimised in isolation. Van den

Bergh [117] has empirically shown that the swarm exhibits convergent behaviour when

c1, c2, and ω adhere to the following relation:

ω >
(c1 + c2)

2
− 1 and ω ≤ 1.

2.4. SUMMARY 14

2.3.3 Velocity Clamping

The aim of the swarm is to converge on an optimal solution. However, certain combi-

nations of PSO parameters result in growing particle velocities, which yield divergent

behaviour [21, 63, 117]. It was suggested by Kennedy and Eberhart [67] to keep the

velocity within sensible bounds by putting a limit on the maximum velocity that the

particles are allowed to attain. Velocity clamping is carried out by limiting particle ve-

locities in every dimension according to equation (2.3). ~Vmax is a problem-dependent

parameter, chosen empirically [108]. Although ~Vmax does not have to be set for the stan-

dard PSO to work, ~Vmax is still a useful parameter which essentially limits the step size

of particles to a certain maximum. Limiting particle step sizes is a convenient way to

control the speed at which the swarm traverses the search space. A small ~Vmax prevents

the particles from traversing the search space fast, thus exploitation is facilitated. A

large ~Vmax, on the other hand, allows the particles to develop large velocities and thus

rapidly explore.

2.4 Summary

This chapter provided an overview of the PSO algorithm, a population based optimi-

sation technique inspired by the swarming behaviour of bird flocks. The basic PSO

algorithm was outlined and discussed, including all of its major characteristics, such

as neighbourhood topologies and algorithm parameters. The provided overview of the

PSO algorithm was restricted to the concepts used in this thesis. For a more extensive

coverage of the PSO, refer to [20, 88, 90, 94].

The next chapter discusses artificial neural networks, and shows how the PSO can

be used to train neural networks.

Chapter 3

Artificial Neural Networks

I not only use all the brains that I have, but all that I can borrow.

Woodrow Wilson (1856 - 1924)

NNs are very abstract and simplified mathematical models of the human brain, able

to carry out tasks such as pattern recognition, classification, and function approximation

[28, 47, 91, 101].

The human brain, as, in fact, any animal brain, is structured as a set of intercon-

nected nerve cells, called neurons. The neurons communicate by sending electrochemical

signals through the network of connections, or synapses. A neuron will send the signal

through only if a certain internal chemical threshold is exceeded. The connections be-

tween actively communicating neurons strengthen, and the unused connections weaken.

As a result of this process, the neural network learns the mapping between the inputs

as sensed from the environment and sent to the brain for processing, and the desired

responses to the environment, or outputs.

NNs were designed to mimic the learning mechanism described above. NNs have the

ability to learn any non-linear mapping between given inputs and outputs, which can

15

3.1. ARTIFICIAL NEURON 16

also be seen as discovering patterns in data. This CI technique has been successfully

applied to problems such as face recognition [24], handwritten character recognition [77],

and spam filtering [25], amongst many others.

The rest of this chapter provides an overview of the basic concepts related to NNs

and the variations of NNs used in the experiments conducted for this study. Section 3.1

describes the functionality of a single neuron. The feedforward NN structure is discussed

in Section 3.2. Section 3.3 outlines various algorithms used to train NNs. Performance

issues related to NN training are discussed in Section 3.4. Section 3.5 concludes the

chapter with some final remarks.

3.1 Artificial Neuron

The basic building blocks of NNs are artificial neurons. An artificial neuron represents

a mathematical function that simplistically models a biological neuron. The neuron re-

ceives a set of inputs either from the environment or from other neurons, and responds

by either firing (sending out a strong signal) or not firing, based on a certain threshold.

The output signal is modulated by an activation function internal to the neuron, which

allows the neuron to represent a non-linear mapping from R
I to [0, 1] or [−1, 1], depend-

ing on the particular activation function used. Thus, an artificial neuron can represent

any linearly separable function by representing the boundary hyperplane that divides the

search space into two mutually exclusive subspaces. Figure 3.1 illustrates this model.

A neuron receives n inputs, where each input zi has an accompanying weight wi to

strengthen or weaken the signal. The neuron calculates the weighted sum of the inputs,

and uses an activation function f to produce the output signal u:

net =
n∑
i

ziwi

u = f(net)− θ

The output signal u is also influenced by a threshold value θ, referred to as the bias. The

3.1. ARTIFICIAL NEURON 17

zm

...

z2

z1

wm

w2

w1

f(net)− θ u

Figure 3.1: An Artificial Neuron

purpose of the bias is to offset the hyperplane or function that the neuron represents

from the origin.

Different activation functions that can be used in a neuron are discussed below.

Activation Functions

It is the activation function which determines whether or not a neuron will fire given

a specific set of input values, and how strong the output signal is going to be. Three

example activation functions are depicted in Figure 3.2.

The simplest activation function is the linear function with a positive slope, where

the produced output signal is directly proportional to the received net input signal. A

linear activation function, however, does not introduce any non-linearity, thus limiting

the function representation capabilities of a neuron.

A simple alternative to the linear function is the step function, which discretises the

output. That is, a neuron outputs only one of the two possible values: e.g. zero if the

weighted sum of inputs is below the threshold, and one otherwise. The step function is

not differentiable, which is an important disadvantage, since gradient-based NN training

algorithms such as back propagation make use of the activation function derivatives (see

Section 3.3.2).

3.2. FEEDFORWARD NEURAL NETWORK STRUCTURE 18

Figure 3.2: Activation Functions

The most commonly used activation function is the sigmoid function, given by

f(net− θ) =
1

1 + e−λ(net−θ) (3.1)

where λ is a scalar that controls the steepness of the function, usually set to λ = 1.

The sigmoid function is both bounded and continuous, with a range of (0, 1). For all

the experiments conducted for this research, the sigmoid function was used. For more

information on different activation functions, refer to [1, 48].

3.2 Feedforward Neural Network Structure

A NN is essentially a collection of interconnected neurons aligned in layers. As mentioned

in Section 3.1, a single neuron is capable of representing a linearly separable function. In

a NN, where many neurons are combined, the information capacity drastically increases.

A NN with a large enough number of neurons can represent any non-linear function

[52, 62, 76], or, in case of classification, any number of decision boundaries of varying

complexity. A number of approaches to structure a collection of neurons were developed

[32, 101], but perhaps the most well-known and widely used NN structure in existence

is the feedforward neural network (FFNN). An example of a feedforward structure is

shown in Figure 3.3. A FFNN is made up of at least three layers: an input layer, a

hidden layer, and an output layer.

3.2. FEEDFORWARD NEURAL NETWORK STRUCTURE 19

v11
input hidden

zI

...

z2

z1
w11

output

uJ

...

u2

u1

oK

...

o2

o1

−1 −1

Figure 3.3: FFNN with a single hidden layer

The input layer is the entry point to the NN. As the name suggests, it is the neurons

in the input layer that receive raw data to be processed by the NN. The function of the

input layer is simple: the input layer receives data and sends it through to the hidden

layer. Thus, the number of neurons in the input layer is usually equal to the number

of attributes in the data being processed. A linear activation function is normally used

across the input layer, so that all input values reach the hidden layer without distortion.

Feedforward NNs are usually fully connected, meaning that each neuron in a layer is

connected to every neuron in the consecutive layer. The connections between neurons

are weighted, and the weight of a connection influences the strength of the transmitted

signal.

The hidden layer recieves signals from the input layer. A non-linear activation func-

tion such as the sigmoid function is usually used across all the units in the hidden layer.

A number of consecutive hidden layers can be employed in a FFNN, however, it has been

mathematically proved that a FFNN with a single hidden layer is capable of represent-

ing any non-linear relationship between inputs and targets, provided there are enough

neurons in the hidden layer [52, 62, 76]. The purpose of hidden units is to introduce

non-linearity into the approximated relationship between inputs and targets, and the

number of hidden units determines the level of non-linearity that the NN is capable of

3.2. FEEDFORWARD NEURAL NETWORK STRUCTURE 20

representing. Hence, if too few hidden units are used, it will be impossible to map the

data precisely, because the information capacity of the NN will not correspond to the

amount of information represented by the training data. On the other hand, if too many

hidden units are used, the information capacity of the NN will exceed the necessary

minimum, and the redundant hidden units will learn unnecessary information such as

the order of patterns or data noise, reducing the ability of the NN to correctly predict

the outputs of previously unseen patterns [4]. The ability of the NN to correctly predict

the outputs of previously unseen patterns is also referred to as the ability to generalise.

The deterioration of the generalisation ability of the NN due to learning unnecessary

information is known as overfitting. Other causes of overfitting are training the NN for

too long, and using a training set that is either not representative of the mapping to be

learned, or contains noise [32]. For a more extensive discussion of overfitting, refer to

[4, 10].

Thus, it is important to have a correct number of hidden units in the NN. A number

of techniques to optimise the number of hidden units have been developed to date. These

techniques are generally referred to as architecture selection. More details on architecture

selection are given in Section 3.4.1.

In addition to the inputs from the preceding layer, hidden and output units also

receive an input signal from a bias unit. Bias units represent the threshold values of

units in the next layer. A bias is a neuron with no inputs, which outputs a constant

value (usually −1, although it can be any other non-zero value) used by the hidden and

output units as an additional input. During NN training, the weights connecting bias

units with other units are adjusted together with all the other weights. The NN weights

define the position of the hypersurface that the NN represents, and without the bias

units this hypersurface would be constrained to pass through the origin, which would be

a significant limitation to the approximation ability of the NN [81].

The number of dependent variables, or outputs, determines the number of neurons

3.3. TRAINING ALGORITHMS 21

in the output layer of a NN. The output range of the output neurons depends on the

activation function used. For example, if the sigmoid function is used, the output of

each neuron will be in (0, 1). This implies that the target values must be scaled to

the activation function range before training, and scaled back afterwards. For more

information on data pre-processing, refer to Section 3.4.2.

The NN output is calculated by a single forward pass of an input pattern p through

the FFNN. The output of each neuron in the output layer, ok, k = 1, . . . , K, with I input

neurons, J hidden neurons and K output neurons, is given by

ok,p = fok

(
J+1∑
j=1

wkjuj

)
= fok

(
J+1∑
j=1

wkjfuj

(
I+1∑
i=1

vjizi

))
(3.2)

for all i = 1, . . . , I, j = 1, . . . , J , vji is a weight connecting the jth hidden neuron and the

ith input neuron, wkj is a weight connecting the kth output neuron and the jth hidden

neuron, the (I+1)th input neuron and the (J+1)th hidden neuron are the bias neurons,

uj and zi are outputs of the hidden layer and the input layer, respectively, fok
and fuj

are the activation functions in the output and the hidden layer, respectively.

Other variations of NNs include functional link NNs [40, 56], product unit NNs

[29, 61], recurrent NNs [92, 81, 132], and time-delay NNs [72, 120], amongst others.

The discussion of these and other NN variations falls outside the scope of this thesis.

For more information, refer to [4, 32, 101, 112, 142].

Standard FFNNs were used in the experiments conducted for this study.

3.3 Training Algorithms

The NN itself is simply a structure capable of representing a mapping between the input

space and the output space, requiring execution of a training algorithm in order to learn

that mapping. Training can be supervised, when the goal of the training algorithm is

to minimise the difference between the target outputs and the actual outputs. Train-

3.3. TRAINING ALGORITHMS 22

ing can also be unsupervised, when no target outputs are defined, and the goal of the

training algorithm is to structure the unlabeled data patterns (e.g. cluster patterns and

maximise the difference between the obtained clusters). Another NN training paradigm

is reinforced training, when the NN acts as an agent that takes actions (updates NN

weights) in an environment. The training is accomplished through the NN being either

rewarded or punished by the environment based on the actions the NN agent takes [47].

This study deals with supervised NNs only.

This section provides a discussion of the supervised training algorithms used in this

study. Section 3.3.1 outlines the stages of the learning process, Section 3.3.2 describes the

back propagation training algorithm, and Section 3.3.3 discusses how the PSO algorithms

can be applied as NN training algorithms.

3.3.1 The Learning Process

NN training involves finding a set of weights that will accurately approximate the map-

ping fNN : RI → RK , where I is the number of inputs and K is the number of outputs.

The data patterns of the data set D are randomly divided into a training set DT and a

generalisation set DG, such that DT ∩DG = ∅. DT is used to train the NN, and DG is

used to evaluate the generalisation ability of the NN. During training, the weight vector

W , which consists of all the NN weights, is iteratively adjusted in order to minimise the

empirical error produced by the NN, given by

ET (DT ;W) =
1

PT

PT∑
p=1

(fNN(~zp,W)− ~tp)2 (3.3)

where PT is the total number of training patterns, fNN is the function that the NN

currently represents, ~zp and ~tp are input and target vectors, respectively. Decreasing

empirical error yields decreasing generalisation error, unless overfitting occurs. In the

context of NN training, the empirical error in equation (3.3) is referred to as the objective

function to be optimised by the training algorithm.

3.3. TRAINING ALGORITHMS 23

Two types of supervised learning algorithms can be distinguished based on when

weights are updated: stochastic, or on-line learning, when the weight vector is adjusted

every time a data pattern is presented, and batch, or off-line learning, when the changes

are accumulated and applied to the weight vector only after the complete training set

has been presented to the NN [32, 104].

Many different supervised training algorithms exist, including gradient descent [127],

scaled conjugate gradient [18, 84], leapfrog [3, 50], simulated annealing [95, 107], evolu-

tionary algorithms [11, 35, 57], and particle swarm optimisation [67, 83], amongst others.

Training algorithms used in the experiments conducted for this study are described be-

low.

3.3.2 Back Propagation with Gradient Descent

The most commonly used and popular algorithm to train a FFNN is back propagation,

developed by Werbos [127], which uses gradient descent to adjust weight values such

that ET is minimised. Each iteration of this algorithm consists of two phases:

1. A feedforward pass, which propagates (“feeds”) a pattern through the NN and

calculates the output.

2. Back propagation, which compares the output obtained in the feedforward phase

to the desired output, calculates the error, and propagates the error back from the

output layer through the hidden layers to the input layer. The weights are adjusted

during back propagation as a function of the error value.

Pseudocode of stochastic back propagation with gradient descent for a NN with 3

layers is given in Algorithm 3.1. The algorithm starts by randomising the weights such

that the mean of the weights is approximately zero (for more information on weight

initialisation, refer to Section 3.4.3) and setting the iteration counter to 0. A single

iteration of back propagation is referred to as an epoch. The feedforward pass consists

3.3. TRAINING ALGORITHMS 24

of calculating the NN output ok,p for each pattern p and each output unit using equation

(3.2). In case of stochastic learning, a pattern p is randomly selected from the training

set at each iteration. Choosing patterns randomly prevents the NN from learning the

order in which the patterns are presented [32]. Weight adjustments, ∆wkj and ∆vji,

depend on the activation functions used in the output and the hidden layer and the

objective function, since the weight adjustment formulae are derived from the gradients

of these functions. Assume that the sigmoid function, given by equation (3.1), is used

as the activation function in the hidden and output layers, and the sum squared error

(SSE) is the objective function. Then, for each pattern, p, the error function Ep is given

by

Ep =
1

2

∑K
k=1(tk,p − ok,p)2

K
(3.4)

where K is the number of output units, tk,p are the desired outputs of p, and ok,p are

the actual outputs produced by the NN for pattern p. The overall error produced by

the NN is minimised by calculating the gradient of Ep in the weight space, and moving

the weight vector along the negative gradient. The formula to adjust the weights wkj

between hidden unit j and output unit k is then given by

∆wkj = η(− ∂Ep
∂wkj

) = η(tk,p − ok,p)(1− ok,p)ok,puj,p (3.5)

where uj,p is the output of hidden unit j, and η is the learning rate, discussed in more

detail in Section 3.3.2. The error signal on the output layer is then propagated back to

change the weights vji between each hidden unit j and each input unit i:

∆vji = η(−∂Ep
∂vji

) = zi,p(1− uj,p)
K∑
k=1

wkj∆wkj (3.6)

where zi,p is the ith input value. The momentum term α is a constant value used to

control the influence of past weight values on the current weight values. Momentum is

discussed in more detail in Section 3.3.2.

3.3. TRAINING ALGORITHMS 25

1. Set the current training iteration t = 0

2. Initialise vji, wkj ∼ U(−m,m),m ∈ R

repeat:

for each pattern do:

Calculate NN outputs using equation (3.2).

Calculate error Ep using equation (3.4).

Calculate ∆wkj using equation (3.5).

Adjust the weights wkj using:

wkj = wkj + ∆wkj(t) + α∆wkj(t− 1)

Calculate ∆vji using equation (3.6).

Adjust the weights vji using:

vji = vji + ∆vji(t) + α∆wji(t− 1)

end for

t = t+ 1

until stopping criteria are met

Algorithm 3.1: Gradient Descent Back Propagation

The stopping criteria is usually defined by a maximum number of epochs, by classi-

fication error, or by setting a threshold on the mean squared error (MSE) produced by

the generalisation set, given by

ET =

∑P
p=1

∑K
k=1(tk,p − ok,p)2

PGK
(3.7)

where PG is the total number of patterns in the generalisation set.

The performance of stochastic back propagation is strongly dependent on the values

chosen for α and η. The impact of these two parameters is discused below.

3.3. TRAINING ALGORITHMS 26

Learning Rate

The learning rate, denoted by η, controls the step sizes of the weight adjustments. A

small η makes weight adjustments correspondingly small, which means that the algorithm

takes small steps towards the optimum. It slows down convergence, but ensures that

the optimisation process follows the gradient path smoothly. An obvious pitfall of this

approach is susceptibility to being trapped in a local optimum.

Large η promotes exploration by making large weight updates, resulting in large

jumps across the search space. Although a large η can help to avoid local minima, it

may also prevent the algorithm from finding a good optimum by jumping over potentially

good solutions.

Thus, it is important to consider the exploration-exploitation trade-off in the context

of a problem to be solved, and choose η accordingly. Apart from the option of finding an

optimal η value empirically, a number of adaptive strategies have been suggested that

adjust the value of η during training [60, 80, 139]. However, most of these algorithmic

adaptations have been developed with static environments in mind, with the main objec-

tive of speeding up convergence. This study, however, deals with NN training in dynamic

environments, where fast convergence is not necessarily desirable, and increased explo-

ration capacity is needed (for a discussion of dynamic environments, refer to Chapter

4). Transferring adaptive learning rate techniques from static environments to dynamic

environments is out of the scope of this study, and optimal static η values were chosen

empirically.

Momentum

Momentum, denoted by α, controls the influence of previous weight values on the current

weights. Momentum was introduced as a countermeasure to fluctuating changes caused

by the stochastic approach to NN training. When the NN weights are updated after

each pattern presentation, the error gradient may change from one pattern to the other,

3.3. TRAINING ALGORITHMS 27

causing the cumulative weight update to be small due to consequent weight updates

cancelling out one another [32]. By taking older weights into account, the momentum

term averages out the weight changes and ensures that the search path leads in an

average downhill direction. The optimal α is problem dependent, and a static value

is often used, derived empirically via trial and error. However, adaptive versions have

also been suggested [89, 138]. Adaptive momentum strategies were originally developed

for static environments, and it cannot be assumed that the suggested strategies would

work in dynamic environments without further changes. Since adaptive momentum falls

outside the scope of this thesis, a static value was empirically chosen.

Back propagation is based on error gradients, meaning that it is essentially a hill-

climbing algorithm. As with any hill-climbing approach, its major disadvantage is sus-

ceptibility to premature convergence on local minima. Another disadvantage of hill-

climbing approaches is the dependence on the starting point of the search, which would

be the initial weights in case on NNs. Alternative training algorithms addressing these

issues were suggested, such as evolutionary algorithms [11, 35, 57] and particle swarm

optimisation [67, 83].

3.3.3 Population Based Algorithms: Particle Swarm

Optimisation

Evolutionary algorithms (EA) were the first population-based algorithms that were ap-

plied to NN training by evolving a population of NNs until one NN is found that min-

imises the MSE to a small enough value [35]. Fogel et al [35] were the first to suggest

evolving NNs, initiating a number of studies on the applicability of EAs to NN training

[11, 95, 136, 137].

PSO is another population-based algorithm (refer to Chapter 2) that has been suc-

cessfully applied to train NNs [44, 67, 83, 118]. In order to train a NN using PSO, the

following needs to be done:

3.3. TRAINING ALGORITHMS 28

• A fitness function has to be defined, which is usually simply the MSE, calculated

using equation (3.7).

• An appropriate representation of candidate solutions has to be determined. Each

particle is used to represent a candidate solution, which is a vector of all of the

weights and biases of a NN. Every element of a particle represents a single weight

or bias, using floating-point numbers. Therefore, each particle has a dimension

equal to the total number of weights in the NN [83].

The PSO is then used, as discussed in Chapter 2, to adjust the weight and bias values

(using the particle velocity and position updates) such that the given fitness function is

minimised.

Recent research has shown PSO to be a very effective NN training algorithm [34, 44,

83, 118]. PSO outperformed standard back propagation on a selection of classification,

function approximation, and prediction problems. Additionally, PSO has also been ap-

plied to train product unit NNs [34, 59], recurrent NNs [106], RBFNNs [97], and SOMs

[96, 133].

The advantages that PSO offers in comparison with back propagation are:

• weaker dependence on the initial weight values, since multiple starting points (i.e.,

particles) are used in the search process,

• derivative information of the activation functions and the error function is not used,

thus the activation functions and the error function do not have to be differentiable,

• computationally more efficient, and

• more robust on rugged surfaces, since population-based search is less prone to

premature convergence on local minima than back propagation [83].

The major disadvantages of PSO, as compared to back propagation, are slower speed

of convergence and more algorithm parameters (ω, c1, c2, ~Vmax, if applicable, and swarm

3.4. PERFORMANCE ISSUES 29

size) to optimise before optimal performance can be expected. For a discussion of PSO

algorithm parameters, refer to Section 2.

Apart from performance issues associated with each specific training algorithm, there

are other factors that influence the performance of a NN. These factors are discussed in

the next section.

3.4 Performance Issues

Training a NN, regardless of the training method chosen, is not an easy task, since the

performance of a NN is dependent on factors such as the NN architecture and data

format. This section addresses aspects that have an influence on the performance of

a NN. Section 3.4.1 discusses architecture selection, Section 3.4.2 discusses the data

pre-processing that is required, and Section 3.4.3 discusses weight initialisation.

3.4.1 Architecture Selection

As discussed in Section 3.2, using the correct number of hidden units is crucial to obtain

good NN performance, since too few hidden units results in poor information capacity

and underfitting, and too many hidden units results in overfitting and poor generali-

sation ability [32]. A simple approach to architecture selection would be to create a

number of NNs with different architectures, compare their training and generalisation

performance on a given problem, and select the architecture that produces the lowest

generalisation error. More complex architecture selection techniques include network

construction (growing) [37, 49, 71], pruning [32, 110], and regularization [41, 131]. For

a more detailed overview of architecture selection techniques, refer to [32].

This study deals with NN training in dynamic environments, which further compli-

cates the problem of finding an optimal architecture. For a discussion of architecture

selection in the context of dynamic environments, refer to Chapter 5.

3.4. PERFORMANCE ISSUES 30

3.4.2 Data Preparation

In order for NN training to be effective, the data must be converted to the format

acceptable for NN training. The output of a NN for a data pattern p is calculated math-

ematically. This restricts the input data to floating-point values. Nominal attributes

have to be transformed to floating-point values. This is either done by binary encoding,

or by mapping various nominal attributes to different numerical values [32].

The numerical data patterns should also be scaled to the active range and domain

of the activation functions employed. NN training requires comparison of target values

to calculated outputs in order to minimise the difference between them. The calculated

outputs of the NN are produced by the activation functions, and thus always fall within

the activation function range. The target values must be scaled to the range of the

activation function in order to be comparable to the calculated outputs. Targets that

do not fall within the activation function range will be unreachable to the NN, and thus

the produced NN error will remain high and unrepresentative. The active range of the

sigmoid function is (0, 1). However, this function is asymptotic, and therefore the actual

outputs are always bigger than 0 and smaller than 1. For this reason, the targets are

usually scaled to [0.1, 0.9] in case of continuous-valued targets, and the set {0.1, 0.9} for

binary-valued targets (used for classification).

Scaling inputs is optional. However, performance can be improved by scaling the

inputs to the active domain of the activation function, which can be defined as the

interval on which f ′(x) changes significantly for different values of x. For example, the

active domain of the sigmoid function is given as [−
√

3,
√

3] [46]. Scaling to the active

domain is done in order to avoid the asymptotic ends of the activation function, since

the closer inputs come to the asymptotic ends, the less significant will be the difference

between the outputs they produce, thus making it difficult for the NN to differentiate

between different patterns. In case of back propagation, unscaled input values also have

a negative effect on the training algorithm performance, since the derivatives of the

3.4. PERFORMANCE ISSUES 31

activation function are very small near the asymptotic ends, and small derivative values

yield small weight updates, resulting in slow convergence. The PSO does not use the

activation function derivatives, and therefore is less sensitive to the scaling of inputs.

However, scaled inputs in case of PSO training still allow the calculated outputs to

better reflect the difference between patterns.

3.4.3 Weight Initialisation

The initial weights can have a strong effect on NN performance. In case of gradient-based

training algorithms, such as back propagation, a single set of initial weights needs to be

generated. This set of weights, further referred to as the weight vector, becomes the

starting point of the hill-climbing search for an optimum, and if the starting point hap-

pens to be far from the optimum, slow convergence is usually observed [55]. The weight

vector is usually generated randomly in a small region around zero, which helps keeping

neuron inputs in the active domain of the activation function. If the activation function

goes through the origin, then small random weights centered around zero prevent bias

toward any solution regardless of the input values [32]. Wessels and Barnard [128] de-

rived a rule for weight initialisation interval calculation from the number of connections

leading to a neuron: [
−1√
fanin

,
1√

fanin

]
where fanin is the number of connections leading to a unit. Due to the strong depen-

dence of back propagation performance on the initial weights, the interval from which

the weights were sampled was chosen empirically for each problem in the experiments

conducted for this study.

In case of population-based methods such as PSO, the number of generated weight

vectors is equal to the number of particles. This implies that the search for an optimum

has multiple starting points, and thus the success of the search is less influenced by the

initial weight values. This is a natural advantage of population-based methods over back

3.5. SUMMARY 32

propagation. The initial population needs to be sampled from a uniform distribution to

induce no bias and cover as much of the search space as possible.

3.5 Summary

This chapter provided an overview of feedforward neural networks and training algo-

rithms used in this study, namely, back propagation and PSO. Different factors influ-

encing NN performance, such as data format and weight initialisation, have also been

discussed. The next chapter provides an overview of dynamic environments, or environ-

ments with temporal characteristics.

Chapter 4

Dynamic Environments

Nothing will die;

All things will change

Thro’ eternity...

Alfred Tennyson (1830)

Most optimisation algorithms from the CI field assume that the search landscape is

static. However, this assumption is not valid for many real-world problems. Dynamic

environments can often be observed in real life, for example, the stock exchange, or traffic

conditions on roads. Given a problem in such an environment (e.g. constructing an opti-

mal traffic lights schedule), it is clear that a solution once found may become suboptimal

because certain properties of the environment will change over time (e.g. increased road

congestion during the rush hour will yield a traffic light schedule optimised for midday

road congestion suboptimal). Temporal properties introduce extra complexity into any

problem, since a solution once found will have to be adapted every time a temporal

property changes.

33

4.1. REAL-LIFE EXAMPLES OF DYNAMIC OPTIMISATION PROBLEMS 34

To adapt existing CI methods to dynamic environments, the nature of dynamic en-

vironments has to be studied. Different characteristics of dynamic environments and

optimisation problems with temporal properties, or dynamic optimisation problems, are

discussed in this chapter, as well as some of the existing CI algorithms applied to dy-

namic optimisation problems. Section 4.1 presents a few real-life examples of dynamic

optimisation problems, Section 4.2 discusses characteristics of dynamic environments and

introduces the notion of concept drift, Section 4.3 discusses CI algorithms developed for

dynamic optimisation problems that have been applied in this study, and Section 4.4

concludes the chapter.

4.1 Real-Life Examples of Dynamic Optimisation

Problems

Real-life examples of dynamic problems are provided in this section in order to illustrate

the fact that dynamic problems to which NNs are applicable are common place, and that

research in the development of NN training algorithms for dynamic environments is in

fact necessary.

Spam filtering

Anyone who ever dealt with electronic mail knows what spam is and how annoying it

can be. Getting rid of spam is not only time-consuming, but quite frustrating as well;

e-mails with similar subjects and content arrive repetitively. In case of large companies,

the issue is even more serious: spam causes financial losses due to wasted bandwidth

[25].

The modern approach to avoid spam is to use spam filtering algorithms. The basic

idea behind spam filtering is the ability of a filter to classify an e-mail as being spam or

not. In order to do this, specific features that identify spam have to be found. Filters

4.1. REAL-LIFE EXAMPLES OF DYNAMIC OPTIMISATION PROBLEMS 35

normally look for certain keywords and text patterns typical for spam, and based on

the information obtained after analysing message content, decide whether the e-mail is

legitimate or not [25].

Spam filtering is a classification problem, and CI techniques can be used to solve it.

For example, a supervised neural network (NN) can be trained to differentiate between

spam and legitimate e-mails. However, it is not clear for how long a trained NN will

classify e-mails correctly. In our ever-changing world, nothing is static. Neither is spam,

especially taking into account the fact that it is written by spammers – human beings who

realise that they have to by-pass complex filters. The content of spam messages changes

over time, partly because spammers try to fool filters by introducing hidden context that

would not alter the text as viewed by the user, but will cause filters to incorrectly classify

spam as legitimate mail. Also, every now and again new forms of spam emerge, and if

these forms do not follow the existing spam patterns, filters such as NNs fail, since the

features (i.e. NN inputs) used to characterise spam become unrepresentative and have

to be updated.

Thus, a once trained spam filtering NN will gradually lose precision. NNs have

already been successfully applied to spam filtering under the assumption that the problem

remains static, or that the existing NN training algorithms can be applied to dynamic

problems without further modifications [58, 103, 135]. However, it has been observed

that NNs trained using back propagation struggle to learn from new e-mail examples if

these e-mails represent temporally different characteristics [135]. Therefore, new training

algorithms have to be developed that will allow NNs to adapt to temporal characteristics

of the learning problem.

Antibiotic Resistance

Antibiotics, or the antimicrobial drugs used to fight against bacteria-caused infections,

were discovered in the 20th century and became widespread in the 1940’s [115]. The

4.2. DYNAMIC OPTIMISATION PROBLEMS 36

discovery of antibiotics caused a revolution in the medical science, significantly decreasing

the death rate from various diseases, and many illnesses that used to be incurable can

now be effectively combated with the use of antibiotics.

Bacteria, however, is gradually adapting to antibiotics via evolution. Some antibi-

otics have lost most of their medical value due to the fact that harmful bacteria has

evolved, and is no longer affected by the drugs. The evolution of infectious micro-

organisms is faster than the process of creating new antibiotics [115]. The phenomenon

of micro-organisms’ adaptation to antibiotics is known as antibiotic resistance. Mutation

in antibiotic-interacting micro-organisms’ proteins is one of the primary causes for an-

tibiotic resistance. Prediction of resistance mutations in these proteins is valuable for the

molecular dissection of antibiotic resistance mechanisms, as well as for predicting features

used for the development of new drugs to counter resistant strains [14]. NNs have been

successfully applied to the prediction of resistance mutations before [14, 73, 115, 122].

While the results obtained with the existing NN training algorithms were very promising,

the authors agreed that further performance improvement is desirable [14, 73]. Alter-

native training algorithms designed specifically for dynamic environments have a high

potential of improving NN’s performance on the antibiotic resistance problem.

4.2 Dynamic Optimisation Problems

This section discusses various types of dynamic environments and dynamic optimisa-

tion problems. Section 4.2.1 discusses the notion of dynamic optimisation problems in

the context of NN training. Section 4.2.2 discusses the terminology used in this study.

Section 4.2.3 discusses attributes used to describe dynamic environments and dynamic

optimisation problems. Section 4.2.4 focuses on terminology specific to dynamic classi-

fication problems, and introduces the notion of concept drift.

4.2. DYNAMIC OPTIMISATION PROBLEMS 37

4.2.1 Primary Concepts

Optimisation problems constitute a broad application area of CI techniques. In computer

science, the term “optimisation problem” refers to the problem of finding an acceptable

solution from the set of all feasible solutions (feasible space of the search space). Math-

ematically, an optimisation problem is the problem of either minimising or maximising

an objective function within the search space, where the search space is the set of all

feasible solutions (feasible space). Classification problems can be seen as a special case

of function optimisation problems, where the objective is to minimise classification error.

Training a NN is also an optimisation problem, where the error function of the NN is

the objective function, and the goal of a training algorithm is to find a set of NN weights

such that the error produced by the NN is minimised.

Dynamic optimisation problems are optimisation problems where one or more of the

following may change over time:

1. the objective function,

2. function parameters,

3. constraints and boundary constraints.

This study deals with unconstrained dynamic optimisation problems only. Considering

the objective function landscape as a hypersurface, it can be argued that environment

changes are basically perturbations of this hypersurface. The changes in the environment

result in floating optima of the objective function: An optimum may change its position

and/or magnitude, existing optima may disappear while new optima may appear some-

where else on the hypersurface. For a static optimisation problem, the objective of an

optimisation algorithm is to find an optimum of the objective function. For a dynamic

optimisation problem, the objective changes from simply locating the optima to tracking

the optima as the optima changes, as well as locating new emerging optima and detect-

ing the disappearing optima. Assuming minimisation, a dynamic optimisation problem

4.2. DYNAMIC OPTIMISATION PROBLEMS 38

is formally defined as [33]:

minimise f(~x, ~$(t))

subject to xl ∈ dom(xl)

where ~$(t) is a vector of time-dependent control parameters of the objective func-

tion, and dom(xl) is the domain of ~x for dimension l. The aim is to find ~x∗(t) =

min~x f(~x, ~$(t)), where ~x∗(t) is the optimum found at time step t.

4.2.2 Terminology

Before the discussion of optimisation in dynamic environments can continue, terminology

used in this study should be clarified. As formally defined in Section 4.2.1, a dynamic

optimisation problem is an optimisation problem with time-dependent control param-

eters. For the remainder of this text, dynamic optimisation problems are referred to

simply as dynamic problems.

The term “dynamic environments” is often used interchangeably with “dynamic prob-

lems” [12, 31, 54, 79, 113], since the optimisation problem constitutes the environment in

which the optimisation algorithm operates. However, such interchangeable terminology

can be a source of confusion, since the optimisation problem itself exists in a certain envi-

ronment, or context. Changes in the context may cause changes in the objective function

of the optimisation problem. For example, in the case of supervised NN training, a map-

ping between inputs and targets is found such that the error function is minimised. Any

changes in this mapping, e.g. changes in the underlying distribution of inputs, changes

in the number of inputs and targets, or changes in decision boundaries, cause changes

in the search landscape as defined by the error function. Hence, the mapping between

inputs and targets is the dynamic environment of the error function. A change in the

environment may yield an increase in NN error, since the current weight vector may no

longer accurately represent the mapping between inputs and targets. In this study, the

4.2. DYNAMIC OPTIMISATION PROBLEMS 39

term dynamic environment is used to refer to the changeable context of a dynamic prob-

lem, such that any changes in the context yield changes in the landscape of the objective

function. Any optimisation problem that has such a dynamic environment becomes a

dynamic problem.

The next section describes characteristics used in this study to discern between dif-

ferent types of dynamic environments and dynamic problems. Due to the strong bond

between dynamic problems and corresponding dynamic environments, the characteris-

tics listed in the following section apply to both dynamic environments and dynamic

problems.

4.2.3 Characteristics of Dynamic Environments

Depending on the dynamic environment, the objective function landscape of the dynamic

problem can change continuously, at regular time intervals, or unpredictably. This prop-

erty of dynamic problems is referred to as temporal severity or frequency of change in

the literature [33].

The severity of change may vary from small changes, when optima move from their

current positions in small steps with every environment change (gradual change), to a

complete change of the objective function landscape (abrupt change). The severity of

change in optima locations and magnitude is referred to as spatial severity [33].

Different combinations of temporal severity and spatial severity result in different

types of dynamic environments, ranging from dynamic environments exhibiting infre-

quent gradual changes, to dynamic environments exhibiting frequent abrupt changes.

Frequent abrupt changes are the hardest to track and adapt to, since optimisation algo-

rithms are required to make significant adjustments in a short period of time.

Temporal severity and spatial severity are general characteristics that apply to any

dynamic optimisation problem, including NN training in a dynamic environment. Since

this study focuses on dynamic classification problems, the next section describes how the

4.2. DYNAMIC OPTIMISATION PROBLEMS 40

general characteristics of dynamic problems apply to dynamic classification problems.

4.2.4 Concept Drift

This thesis focuses on classification problems, which make up a large subset of the op-

timisation problems that NNs can be applied to. The goal of a NN used to solve a

classification problem is to learn the classification concepts from the given data. Assum-

ing supervised learning, the term concept refers to a pattern that can be discovered in

the training data. The mapping between inputs and targets, i.e. the predictive model

that is represented by the NN, can be accurately described by a collection of such con-

cepts. In case of classification, concept learning implies learning to distinguish between

different classes by approximating decision boundaries between the classes.

Real-world problems are often dynamic, and classification problems are no exception.

The underlying data distribution may change over time, causing changes in the decision

boundaries. Changes in the decision boundaries will yield changes in the target concepts.

This phenomena is referred to as concept drift [105]. The term “concept drift” belongs

to the field of data mining, and is usually used to refer to drifting concepts as observed

in large data sets and continuous data sets over time. In case of classification, drifting

concepts imply changes in the decision boundaries that separate classes. The boundaries

between classes may shift, new boundaries may appear, and old boundaries may become

obsolete.

Concept drift complicates the process of concept learning by the NN, because the

learned concepts become obsolete as the actual concepts drift, requiring the learned

model to be revised. If decision boundaries change over time, the NN will have to detect

and track such changes in order to update the learnt model accordingly.

4.2. DYNAMIC OPTIMISATION PROBLEMS 41

Types of Concept Drift

Literature distinguishes two types of concept drift: actual, or real concept drift, and vir-

tual concept drift [129]. Actual concept drift is observed when the target concepts change

due to changes in the underlying hidden context, i.e., attributes of the environment not

represented explicitly by the attributes of the optimisation problem [105]. Changes in

the hidden context, however, may also cause changes in the underlying data distribution,

which may require the learnt model to be revised, since the model’s error may no longer

be acceptable with the new data distribution [116]. This kind of concept drift is referred

to as virtual concept drift [129]. Tsymbal [114] argues that, from the practical point of

view, it is not important what kind of concept drift occurs, since, irrespective of the type

of concept drift, the learnt model will have to be revised.

Classification problems with concept drift, also referred to further in this text as

dynamic classification problems, make up a subset of dynamic optimisation problems,

where the objective is to minimise classification error, and track the decision boundaries

as they shift, as well as detect disappearing decision boundaries and locate new decision

boundaries. Therefore, characteristics of dynamic problems described in the previous

section, such as spatial and temporal severity, are applicable to problems with concept

drift. Assuming classification problems, the frequency of concept changes impacts on the

frequency with which the decision boundaries change, and the severity of concept changes

impacts on the extent by which the decision boundaries shift, appear or disappear.

The most severe change would be a complete disappearance of a decision boundary or

appearance of a new decision boundary. Figure 4.1 illustrates spatial severity of changes

as applied to concept drift.

It is interesting to note that the body of research on concept drift has never been

merged with the body of research on continuous dynamic optimisation problems, and

the methods for continuous dynamic optimisation were never applied to concept drift

problems. In this thesis, continuous dynamic optimisation algorithms are applied to NN

4.3. EXISTING DYNAMIC OPTIMISATION METHODS 42

e
e

ee e
e

e

e
u u uu

uu
u

gradual

change
−→ e

e
ee u

e
e

e
e u uu

uu
u

(a) Gradual decision boundary change

e
e

ee e
e

e

e
u u uu

uu
u

abrupt

change
−→ e

e
uu u

u
u

e
e e ue

uu
u

(b) Abrupt decision boundary change

Figure 4.1: Spatial severity applied to concept drift

training in the presence of concept drift.

4.3 Existing Dynamic Optimisation Methods

This section discusses some of the existing CI methods developed for dynamic optimisa-

tion problems and classification problems with concept drift, with the focus on methods

used in this study. Section 4.3.1 introduces the dynamic optimisation research field,

Section 4.3.2 discusses several ways in which particle swarm optimisation (PSO) may

be adapted to dynamic environments, and Section 4.3.3 outlines existing approaches to

solve classification problems in the presence of concept drift.

4.3.1 Optimisation in Dynamic Environments

The field of CI research in dynamic environments is still very young, and many possible

approaches to dynamic problems have not been exhaustively experimented with yet.

4.3. EXISTING DYNAMIC OPTIMISATION METHODS 43

However, the literature survey conducted for the purpose of this study showed that

various population-based algorithms, such as PSO or genetic algorithms, were applied

to dynamic environments with a high degree of success [8, 9, 7, 13, 22, 42, 79]. Both

evolutionary algorithms and swarm algorithms are adaptable by nature, and thus require

relatively minor changes to their standard algorithm structures to work in dynamic

environments. Evolutionary algorithms, however, are out of scope of this study, and

therefore only dynamic approaches to PSO used in this work are discussed. For a more

comprehensive review of evolutionary optimisation in dynamic environments, refer to

[12, 86, 134]. For a more comprehensive review of PSO in dynamic environments, refer

to [6, 9].

4.3.2 Dynamic Particle Swarm Optimisation

Generally speaking, all dynamic optimisation algorithms have to go through two phases:

1. Change detection: Some kind of an environment change sensor has to be imple-

mented to make the algorithm aware of the changes that occur.

2. Response to the change: The existing solution has to be adjusted, if necessary,

whenever the context changes.

Both phases are discussed below in the context of particle swarm optimisation.

Change Detection

In order to respond to a change in the environment, the change has to be detected by the

PSO. Change detection is usually accomplished by making use of one or more sentries. A

sentry is either a dedicated particle or a fixed point in the search space [15, 17]. The only

difference between a normal particle and a sentry particle is that sentry particles keep a

record of their previous fitness values: at the start of each iteration, sentry particles are

re-evaluated, and if the difference between the previous fitness and the new fitness exceeds

4.3. EXISTING DYNAMIC OPTIMISATION METHODS 44

a certain threshold, it can be assumed that a change has occurred. It was suggested by

Hu and Eberhart [53] to use the global best particle as a sentry. Using the global

best particle ensures that changes in the current optimum are always detected, which

is beneficial in gradually changing environments, where the optimum can be tracked as

it changes. However, this approach prevents the swarm from detecting environmental

changes that occur away from the current optimum, which implies that new emerging

optima have a high chance of being overlooked by the algorithm. Carlisle et al [16]

suggested that one or more randomly chosen particles be used. Random sentries cover

a wider area than global best sentries; however, only until the swarm converges. Static

point sentries, on the other hand, are independent of the swarm diversity. Hence, static

points uniformly distributed throughout the search space can be more effective sentries

than the swarm particles [15]. The number of sentries to use in order to efficiently detect

changes is problem dependent. Using more sentries increases the probability of detecting

the change, but also increases overall computational complexity.

Response to the Change

Standard PSO faces the following problems when optimisation in dynamic environments

is required:

1. Outdated memory: Once the environment changes, previous values stored in

PSO memory (personal best and global best positions) are no longer representa-

tive of the new environment [33], and thus provide the swarm with misleading

information instead of leading the search towards an optimum.

2. Loss of swarm diversity: It was formally proved [21, 117] that with a standard

PSO, the swarm will gradually loose diversity from iteration to iteration, until

all particles converge on a weighted average of the personal best and global best

positions. Once converged, PSO will not explore any longer, because particle

4.3. EXISTING DYNAMIC OPTIMISATION METHODS 45

velocities, according to equation (2.2), will tend to zero as the distance between the

current and the global best position, as well as the distance between the current

and the personal best position decrease. A converged PSO has no exploration

capabilities and will not be able to adapt to an environment change [33].

A number of PSO variations have been developed, differing in the way that the above

issues are addressed. A review of popular dynamic PSO algorithms used in this study is

given below.

Reinitialising PSO

The reinitialising PSO approaches the aforementioned problems in a simple, naive man-

ner. The outdated memory issue is addressed by re-evaluating particle positions, as well

as the stored global and personal best positions. Diversity of the swarm is boosted by

means of reinitialising the positions, velocities and personal best positions of a percentage

of particles. The particles to be reinitialised are randomly selected. The disadvantage

of this approach is partial loss of knowledge about the search space due to particle

reinitialisation [54].

The ratio of particles to be reinitialised is problem dependent and should be chosen

empirically. For example, extensive abrupt changes may require most of the swarm to be

reinitialised, and minor gradual changes may be addressed by reinitialising only a small

percentage of the swarm.

Charged PSO

The charged PSO [7] is based on electrostatic principles. All particles in a charged PSO

store a charge, represented by a positive scalar value. A charge magnitude equal to zero

means that a particle is neutral (i.e. does not bear a charge), and a value greater than

zero indicates a charged particle. Charge magnitude can not be negative, and does not

change during algorithm execution.

4.3. EXISTING DYNAMIC OPTIMISATION METHODS 46

Charged particles repel from one another if the distance between them is small

enough. This prevents charged particles from converging to a single point, thus fa-

cilitating exploration and addressing the diversity loss problem. Repulsive forces are

introduced by adding an acceleration term, ~ay, to the standard velocity equation:

~vy(t) = ω~vy(t− 1) + c1~r1(~xpbest − ~xy(t)) + c2~r2(~xgbest − ~xy(t)) + ~ay(t)

Repulsion between two particles y and g at time step t is defined as [7]

~ayg(t) =


(

QyQg

||~dyg(t)||3

)
(~dyg(t)) if Rc ≤ ||~dyg(t)|| ≤ Rp

0 otherwise

where ~dyg(t) = ~xy(t)−~xg(t), Qy is the charge magnitude of particle y, Rc is the core radius

and Rp is the perception limit of a particle. These two limits define the distance range

[Rc, Rp] at which charged particles will repel one another. Neutral particles are assigned

Qy = 0, and thus do not contribute to the calculation of acceleration. Charged particles

are assigned Qy > 0. The value of Qy assigned to charged particles controls the extent

of acceleration and should be chosen empirically, since optimal acceleration is problem

dependent [7]. Rc and Rp are the radii of repulsion, and can not be assigned negative

values. The lower radius Rc of the interval [Rc, Rp] is a safeguard against singularity of

the inverse square law [7], and the upper radius Rp is a tunable parameter that controls

the domain of influence of the repulsion. If Rc ≈ Rp, almost no repulsion will be observed.

Therefore, Rp is usually chosen such that Rc � Rp. As can be concluded from equation

(4.1), acceleration is inversely proportional to the distance between the charged particles,

and the further two charged particles are from each other, the weaker they will repel.

Thus, repelling forces maintain swarm diversity without yielding divergent behaviour.

For the problems considered in [7], the most efficient charged PSO architecture had

50% of the swarm charged, and the rest of the particles were neutral. Neutral particles

are normal PSO particles that obey standard PSO position and velocity update rules.

4.3. EXISTING DYNAMIC OPTIMISATION METHODS 47

Thus, one half of the population acted as a standard PSO swarm and refined found

solutions, thereby facilitating exploitation. Hence, the charged PSO achieved a balance

between exploration and exploitation.

The problem of outdated swarm memory is addressed by re-evaluating the fitness of

each particle in the swarm, the personal best of each particle, and the global best of each

neighbourhood, whenever a change occurs.

Quantum PSO

The quantum PSO [9] is vaguely based on the model of an atom. The orbiting electrons

of an atom are replaced by a quantum cloud, where the position of each electron is

determined not by its previous position and trajectory dynamics, but by a probability

distribution instead. A percentage of particles in the swarm are treated as the “quantum

cloud”, and at each iteration the cloud is randomised in the spherical area with radius

rcloud centred around the global best particle of the swarm. The particles that do not

constitute the cloud behave according to the standard PSO velocity and position update

equations. Since the quantum cloud is completely randomised at each iteration, the

swarm does not completely converge on a small area; hence swarm diversity is preserved.

The non-quantum particles refine the current solution while the quantum cloud searches

for new and better solutions. In this manner, a good balance between exploration and

exploitation is achieved.

The problem of outdated memory is again addressed by complete re-evaluation of

the swarm memory.

Fine-Grained PSO

The term fine-grained PSO was introduced by Li and Dam in [79]. It is in fact nothing

more than a reinitialising PSO that makes use of the Von Neumann topology. Such

choice is based on the fact that the grid-like Von Neumann structure does not promote

4.3. EXISTING DYNAMIC OPTIMISATION METHODS 48

information through the swarm as fast as other topologies do, which improves diversity

maintenance [79], addressing the diversity loss problem. The fine-grained PSO does not

offer any specific way of dealing with the outdated memory problem, and re-evaluation

of each particle’s current position, local best position, and global best position is usu-

ally used. Since the Von Neumann topology was shown to be beneficial in dynamic

optimisation [79], it was used in all PSO experiments conducted for this study.

4.3.3 Optimisation in the Presence of Concept Drift

The term “concept drift” belongs to the data mining field, and refers to the phenomena of

drifting concepts as observed in data sets over time. Most existing approaches to handle

concept drift do not deal with the process of concept learning, but rather with the

way in which data is presented to the learner [69, 74, 123, 130]. Three major branches

of concept drift handling techniques can be distinguished, namely instance selection,

instance weighting, and ensemble learning [116].

In a dynamic environment, the learner can never assume the current predictive model

to be final. This implies that the learner must always try to learn new, up-to-date

information from the environment. In case of data mining in presence of concept drift,

the up-to-date information can only be learned from up-to-date data, and up-to-date

data is obtained by instance selection [74, 130]. The goal of the learner comes down

to discovering concepts in data, and if data accurately represents the existing concepts,

the learner’s success will depend entirely on the learner’s ability to train and generalise.

The simplest form of instance selection is windowing, implemented by fixing the number

of instances in the training set and dismissing the oldest instances as new instances

arrive [130]. More complex forms of instance selection that delete noisy, irrelevant and

redundant instances have also been developed [26, 74]. The windowing approach to

instance selection was applied in this study, described in more detail in Chapter 6.

Instance weighting is sometimes used instead of instance selection with the learning

4.3. EXISTING DYNAMIC OPTIMISATION METHODS 49

algorithms that have the ability to process weighted instances [69]. An example of such

algorithms are support vector machines (SVMs) [23]. Instances are weighted according

to their age and relevance, and most recent and most relevant instances contribute the

most to the learning process. This study, however, deals with NN training, to which

instance weighting is not applicable.

A more advanced approach that deals with the classifiers rather than the training

data is ensemble learning [102, 114]. With ensemble learning, a selection of classifiers

is combined. Each classifier maintains a separate concept description. The quality of

concept descriptions provided by each classifier is measured, and the best-performing

classifier has the most influence on the final classification [114]. Worst performing clas-

sifiers can be dynamically replaced by new classifiers, which start learning the concept

from scratch. The chances of obtaining at least one acceptable concept description are

increased by training a number of separate classifiers on the same problem over different

time periods. Much research on handling concept drift using classifier ensembles was

done [19, 102, 111, 114, 115, 116]. However, the ensemble approach treats individual

classifiers as black boxes, and does not look into the learning process of a classifier.

Ensemble classifiers offer no training algorithm improvements to make each classifier

more adaptive and flexible in dynamic environments, assuming redundancy to be the

only effective solution. Redundancy can indeed be effective, however, the performance

of ensemble classifiers can be further improved by improving the performance of each

single classifier (a NN, in case of this study) by adapting the learning process, or, in

other words, the training algorithm, to the drifting concepts.

As opposed to the aforementioned concept drift handling techniques, this study deals

with the learning process of a single classifier, and the chosen classifier is a NN. Dynamic

NN training algorithms are suggested, and the dynamic properties of back propagation

are studied.

4.4. SUMMARY 50

4.4 Summary

This chapter provided an overview of various characteristics of dynamic environments.

Both dynamic optimisation problems and concept drift have been defined and discussed.

An overview of dynamic PSO algorithms applied in this study was given, and the main

existing approaches to handle concept drift have also been described.

Population based algorithms such as PSO can be adapted to work well in dynamic

environments. However, these algorithms have never been applied to concept drift prob-

lems before. The next chapter discusses how dynamic PSO can be applied to training

NNs in the presence of concept drift, and why such application can be beneficial.

Chapter 5

Neural Networks in Dynamic

Environments

When its wings stop moving and the butterfly is at rest, it changes for the

last time... into dust.

Anonymous

Neural networks (NNs) are widely applied to classification and function approximation

problems due to their excellent pattern recognition ability. NNs were applied to problems

with drifting concepts before, either as stand-alone classifiers, or in classifier ensembles

[123, 126]. However, to the author’s knowledge, no training methods specific to dynamic

environments were developed. Chapter 4 discussed existing approaches to NN training

in the precence of concept drift, and in all of these approaches NNs were treated as black

boxes. It was implicitly assumed that the existing training algorithms should be able

to adapt to dynamic environments, and in case that fails, completely re-initialising a

NN would be the best thing to do [19, 102, 111, 114, 115, 116]. This assumption is not

necessarily true. Existing NN training algorithms can be adjusted, enabling a NN to

51

5.1. DYNAMISM OF BACK PROPAGATION 52

dynamically adapt to the changing environment.

The aim of this chapter is to provide a discussion on NN training algorithms in

dynamic environments. The rest of the chapter is structured as follows: Section 5.1 dis-

cusses the behaviour of back propagation in dynamic environments, Section 5.2 suggests

an alternative approach to NN training in dynamic environments by means of PSO,

Section 5.3 highlights the problems that arise when architecture selection and parameter

optimisation are considered in the context of dynamic environments, and Section 5.4

describes the problem of overfitting in dynamic environments. Section 5.5 concludes the

chapter.

5.1 Dynamism of Back Propagation

Back propagation (discussed in Chapter 3) is a gradient descent method, which implies

a hill-climbing approach to training. The algorithm minimises the objective function by

following its steepest slope. In order to visualise the behaviour of back propagation in

a dynamic environment, it is important to remember that the objective function being

optimised is the error function of the NN, and not the mapping between inputs and

targets as represented by the data set. This mapping is thus the context in which the

error function exists, and changes in the mapping, or, in other words, in the environment,

yield changes in the error function. A change in the environment may yield an increase

in NN error, since the current weight vector would no longer accurately represent the

environment. An increase in NN error implies that the current position is not necessarily

an optimum anymore, thus the gradient descent may start climbing downhill again.

This automatic response to environment changes makes back propagation an implicitly

dynamic training algorithm [59].

However, the success of such implicit dynamism is largely dependent on the landscape

of the error function. The error function landscape may have flat regions where gradient

5.1. DYNAMISM OF BACK PROPAGATION 53

u
x NN weight

N
N

er
ro

r

(a) Error function before environment change, x

is the current position

u
x NN weight

N
N

er
ro

r

u

(b) Current position becomes a position on the

slope after environment change

u
x NN weight

N
N

er
ro

r

u

(c) Current position becomes a local minimum

after environment change

u
x NN weight

N
N

er
ro

r

u

(d) Current position becomes a position on a

plateau after environment change

Figure 5.1: Back Propagation in dynamic environments

descent is inefficient, and may have local minima which may trap gradient descent [35,

44, 95]. Dedicated studies of NN error surfaces [38, 55] have shown that the main

geometrical features of the error surfaces are large plateaus, sometimes asymptotically

tending towards infinity, as well as step-like transitions, narrow valleys, and steep ridges.

When the error surface changes due to a change in the environment, the current position

of the weight vector may happen to map to a region of the changed error surface that

is hard to optimise, yielding poor adaptation to the change. A few examples of possible

scenarios are given below.

Figure 5.1(a) illustrates the error function before a change in the environment. For

5.1. DYNAMISM OF BACK PROPAGATION 54

the sake of clarity, 2-dimensional space is used, where x refers to the current position

of the NN in the weight space. Figure 5.1(b) illustrates a scenario where a change in

the environment causes the current position to be on the slope of the error function.

Under such scenario, back propagation exhibits implicit dynamism and will find the new

optimum by following the error function slope in the downhill direction.

Figure 5.1(c) illustrates a scenario where the changed error function causes the current

position to become a local minimum. As a hill-climber, back propagation will not be

able to escape the local minimum, and will therefore fail to locate the global minimum.

Figure 5.1(d) illustrates a scenario where the current position becomes a position on

a flat region after the environment change, once again preventing gradient descent from

discovering the new global optimum.

Thus, even though implicit dynamism of back propagation can not be altogether

denied, back propagation should not be relied upon as an ultimate dynamic training

algorithm, since a number of dynamic scenarios exist under which back propagation will

fail to either detect or track the changes.

The success of back propagation is also highly dependent on the initial set of weights

[35, 44, 95], and choosing a good starting point is crucial for algorithm convergence. In

the context of dynamic environments, the surface of the error function changes, and the

success of adaptation after each change also depends on the current weight vector. Thus,

the algorithm’s success becomes dependent not only on the initial weights, but also on

the current weights.

This study evaluates the implicit dynamism of back propagation. Two variants of

back propagation were applied on a selection of dynamic classification problems: stan-

dard back propagation (BP), as described in Chapter 3, and reinitialising back propa-

gation (RBP). Reinitialising back propagation applied the standard back propagation

algorithm between environment changes, and completely reinitialised NN weights and

biases whenever an environment change occured. Reinitialising back propagation was

5.2. POPULATION-BASED DYNAMIC TRAINING 55

used to test the supposition, made in [19, 102, 111, 114], that restarting back propaga-

tion after environment changes is an efficient approach to NN training in the presence

of concept drift.

Due to the pitfalls described above, back propagation can not be relied upon as the

best possible NN training algorithm for dynamic classification problems. Therefore, the

authors of this thesis suggested applying PSO to train NNs in the presence of concept

drift.

5.2 Population-Based Dynamic Training

As discussed in Chapter 3, population-based algorithms such as PSO have shown to be

efficient alternatives to training NNs in static environments [44, 67, 83, 118]. A detailed

discussion of PSO was given in Chapter 2, and the application of PSO to NN training

was discussed in Chapter 3. Dynamic versions of PSO have also been developed (refer to

Chapter 4), and were successfully applied on a selection of dynamic function optimisation

problems [9, 7, 98].

Due to the success of these dynamic PSO algorithms and the efficiency of PSO as

a NN training algorithm, this study hypothesises that dynamic PSO algorithms can be

applied to efficiently train NNs in the presence of concept drift. To test this hypothesis, a

number of dynamic PSO algorithms were applied to train NNs on a selection of dynamic

classification problems. To the author’s knowledge, this is the first study that analyses

dynamic PSO training algorithms.

PSO is a population-based algorithm, thus it uses multiple particles, or weight vec-

tors, to conduct the search for the optimal set of NN weights. If the weight vectors are

sufficiently scattered across the weight space, the PSO will have a high probability of

escaping search stagnation, such as illustrated in Figures 5.1(c) and 5.1(d), since the

particles that end up in local minima, saddle points, or flat regions of the error function,

5.2. POPULATION-BASED DYNAMIC TRAINING 56

will communicate with the rest of the swarm, and may be guided towards more fruitful

regions of the search space by the particles that are located on the error function slope.

Dynamic PSO algorithms increase the probability of escaping stagnation by preserving

swarm diversity, thus increasing the probability of having particles located on the slope

of the error function after a change in the environment.

The search space of the PSO is unbounded, and, although the NN weight space is not

bounded either, the studies of NN error surfaces suggest that error surfaces tend to have

large flat regions asymptotically approaching infinity [38, 55]. Unbounded exploration

exhibited by the swarm is thus likely to lead to unfruitful search space regions. In order

to get any guidelines to the possible bounds of the active search space, a more substantial

investigation of NN error surfaces is needed. Such investigation is out of the scope of

this thesis, and is proposed as a topic for future research.

Dynamic PSO algorithms used in this study were discussed in detail in Chapter 4.

The following dynamic PSO algorithms were applied to NN training in this work:

• Reinitialising PSO (RPSO) (refer to Section 4.3.2)

• Charged PSO (CPSO) (refer to Section 4.3.2)

• Quantum PSO (QPSO) (refer to Section 4.3.2)

The research field of dynamic PSO is still relatively young, and no standard or optimal

approach to optimisation in dynamic environments with PSO has been identified yet.

The three algorithms listed above were chosen based on their relative popularity. The

reinitialising PSO was chosen as the most natural, naive way of adapting the standard

PSO to dynamic environments. The charged PSO and the quantum PSO were chosen

due to the relatively solid theoretical and empirical research behind them that showed

these algorithms to be effective on a selection of dynamic optimisation problems (refer

to [9, 7, 5, 78, 98, 99]). All three dynamic PSO algorithms are based on the principle of

preserving swarm diversity, and each of the three algorithms provides a unique approach

5.3. ARCHITECTURE SELECTION AND PARAMETEROPTIMISATION IN DYNAMIC ENVIRONMENTS57

to the task of preserving swarm diversity while retaining the exploitation ability of the

swarm.

5.3 Architecture Selection and Parameter

Optimisation in Dynamic Environments

Section 3.4 in Chapter 3 discussed the influence of various factors on the performance

of NN training algorithms. It was argued that choosing an appropriate NN architecture

is crucial to avoid such phenomena as underfitting and overfitting, caused by using too

few or too many hidden units. Training a NN in a dynamic environment introduces an

extra complication to architecture selection: for a dynamic classification problem, new

decision boundaries may appear as the time progresses, and previously learned bound-

aries may disappear. Since the optimal number of hidden units depends on the number

of decision boundaries, as well as the shape of these boundaries, it is important that the

NN architecture also be adapted with environment changes to prevent underfitting or

overfitting. However, this topic is outside the scope of this work, and is only mentioned

here as an important direction for future research. Most of the problems used in the em-

pirical study conducted for this thesis were artificially generated, and the total number of

decision boundaries fluctuated in preset ranges. The complexity of decision boundaries

(i.e. boundary shape, such as linear, curved, etc.) was also known beforehand, and did

not significantly change throughout the algorithm run. The number of hidden units was

chosen empirically for each problem (refer to Chapter 6) and remained static throughout

the algorithm run.

Data pre-processing and weight initialisation, discussed in Chapter 3, are carried out

only once, at the beginning of the search process, therefore the presence or absence of

concept drift in the training data has no influence on how these two steps are handled.

Tunable parameters of a training algorithm also have an influence on the NN perfor-

5.4. OVERFITTING IN DYNAMIC ENVIRONMENTS 58

mance. The algorithm parameters of back propagation were discussed in Chapter 3, the

algorithm parameters shared by all variations of the PSO algorithms used in this study

were discussed in Chapter 2, and the algorithm parameters specific to each dynamic PSO

algorithm were discussed in Chapter 4. In static environments, the algorithm parameters

are usually either set to static values chosen empirically, or adapted throughout the algo-

rithm run [60, 80, 89, 138, 139]. It is not clear what approach to parameter optimisation

would be the most appropriate in the context of dynamic environments. Static optimal

values may become suboptimal as the time progresses, and the strategies for adaptive pa-

rameters were developed with static environments in mind, generally aiming at speeding

up convergence [60, 80, 89, 138, 139], which is not necessarily desirable when dynamic

environments are concerned. For the purpose of this study, static values for training al-

gorithm parameters were chosen such that the average error over all algorithm iterations

is minimised. Developing adaptive algorithm parameters for dynamic environments is

out of the scope of this study and should be considered as possible future work.

5.4 Overfitting in Dynamic Environments

As discussed in Chapter 3, overfitting is another name for the inability of a NN to

generalise, or, in other words, to correctly classify previously unseen patterns. A NN

that can not generalise has little practical use, since the whole purpose of NN training

is to create a predictive model that can approximate the output of a previously unseen

pattern without human assistance.

Overfitting occurs when the NN architecture is too large, when the NN is trained for

too long, and when there is noise in the training data [32]. The problem of architecture

selection in the context of dynamic environments was discussed in Section 5.3. The

problem of training for too long becomes more severe in the presence of dynamic changes,

since NN training is never stopped when a dynamic problem is optimised. Continuous

5.5. SUMMARY 59

training is carried out so that the training algorithm could detect the changes and adapt

the NN weights when a change occurs. The drawback of continuous training is the

increased probability of overfitting due to memorisation of patterns by the NN. The

risk may not be as severe in environments where changes occur frequently, i.e. where

the training algorithm is not given enough time to overfit. However, in most real-life

problems, concept drift is rather scarce [114], thus continuous training may prove an

ineffective approach to real-life dynamic classification problems. A possible alternative

to continuous training would be to have a separate change-detecting agent that would

trigger the training algorithm when a change occurs and suspend training when signs of

overfitting are observed. Developing such agents is outside the scope of this thesis, and

is proposed as a topic for future research.

As discussed in Section 4.3.3, instance selection is an important aspect of training in

the presence of concept drift, since outdated training data may confuse the learner and

slow down the process of adapting to changes in the environment. Outdated data may

also be a cause of overfitting, since training data that no longer represents the mapping

between inputs and targets can be considered as data noise. In this study, a windowing

approach to instance selection was applied, described in detail in Chapter 6.

A study of overfitting in the context of dynamic environments is outside the scope of

this thesis, however, it is a very important topic for future research.

5.5 Summary

This chapter discussed the ability of back propagation to train NNs in dynamic environ-

ments. Problems with back propagation in dynamic environments were discussed and

illustrated. A motivation was given for the application of dynamic PSO algorithms to

train NNs in dynamic environments. It was formally hypothesised that dynamic PSO

algorithms can be applied to efficiently train NNs in the presence of concept drift. Ar-

5.5. SUMMARY 60

chitecture selection, parameter optimisation, and the problem of overfitting in dynamic

environments were also discussed. The next chapter will present the experimental study

conducted for the thesis.

Chapter 6

Empirical Analysis

Absence of evidence is not evidence of absence.

Martin Rees

This chapter provides a detailed description of the experimental procedure followed and

experimental results obtained for this study. Five classification problems were considered

under a number of different dynamic scenarios. The main goal of the experimental work

was to test the efficiency of dynamic PSO algorithms applied to NN training in the

presence of concept drift. The performance of dynamic PSO algorithms is compared

to the performance of back propagation and back propagation with reinitialisation, and

the behaviour of these algorithms in the presence of concept drift of varying spatial and

temporal severity is investigated.

The rest of the chapter is structured as follows: Section 6.1 describes the experimen-

tal procedure followed. Experimental results are presented in Section 6.2. Section 6.3

summarises the experimental conclusions arrived at, and ends the chapter with some

final remarks.

61

6.1. EXPERIMENTAL PROCEDURE 62

6.1 Experimental Procedure

This section describes the experimental procedure followed. Section 6.1.1 describes the

performance measures used in the experiments. Section 6.1.2 describes how problems

with concept drift were simulated. Section 6.1.3 provides a description of the parameter

optimisation process.

6.1.1 Measuring NN Performance in Dynamic Environments

The goal of the standard algorithm performance measures developed for static environ-

ments is to indicate the quality of the algorithm, i.e. reliability, efficiency, and robust-

ness, as well as the quality of the found solution (accuracy) at the current algorithm state

[33]. Usually, the performance measurements obtained at the last algorithm iteration

are used to evaluate the algorithm performance. In dynamic environments, however, the

algorithms must not only find an optimum, but also detect changes in the optimum,

track the optimum, and locate new better optima as they appear. Clearly, standard

performance measures that reflect the current algorithm state only do not provide any

information regarding the change detection and response to the change exhibited by the

algorithm, and thus cannot be used in dynamic environments.

A number of performance measures for dynamic environments have been proposed

in the literature, such as the difference between the global optimum and the current

solution just before a change [113], the Euclidean distance from the current solution to

the global optimum at each algorithm iteration [125], and the average best solution at

each iteration over many runs of the same algorithm on a dynamic problem [2, 39, 43],

amongst others. However, most of these measures assume either knowledge of the global

optimum position, or knowledge of when exactly the change is going to occur. Where

NN training is concerned, knowledge of the position of the global optimum beforehand

is impossible due to the “black box” nature of NNs; thus, the measures which assume

6.1. EXPERIMENTAL PROCEDURE 63

such knowledge are inapplicable to NN training. Timely prediction of the occurrence of

dynamic changes is also infeasible when a real-life scenario is considered. Above all, the

listed measures require consideration of the progression of the measurement through the

algorithm run instead of providing a single measurement value. Even though a study

of the measurement progression gives an idea of overall algorithm performance, it is not

clear how two different algorithms can be statistically compared when such a performance

measure is used. This is why Morrison [85] suggested that a representative performance

measure in a dynamic environment should reflect algorithm performance “across the

entire range of landscape dynamics”. Morrison [85] proposed that the collective mean

fitness, or the average over all previous fitness values, be used as given by:

Fmean(T) =

∑T
t=1 F (t)

T
(6.1)

where T is the total number of iterations, and F (t) is algorithm fitness after iteration t.

The term “fitness” is borrowed from the evolutionary computation (EC) field, and refers

to an applicable measure that reflects the quality of the current solution. In case of NN

training, the mean squared error (MSE) is usually used as a fitness measure.

Collective mean fitness represents the entire algorithm performance history, hence

it gives an indication of the adaptive properties of the algorithm. This measure allows

for convenient statistical comparison between algorithms, and does not depend on any

additional knowledge about the search space such as the location of the global optimum.

The collective mean fitness was used as a performance measure in all the experiments

conducted in this study.

When referring to fitness in the context of NNs, it should be clarified what exactly is

meant by this term. In the current work, the MSE calculated over the data set during

each epoch was used to measure algorithm fitness at each iteration. This measure reflects

the quality of a NN, i.e. the NN’s ability to recognise the training patterns for the

training MSE (ET), and the NN’s ability to generalise for the generalisation MSE (EG).

It was theoretically shown by Wan [121] that minimisation of the MSE consequently

6.1. EXPERIMENTAL PROCEDURE 64

minimises the probability of misclassification. Thus, MSE does not loose its meaning

when classification problems are concerned.

Since a study of overfitting is outside the scope of this work, no measures were taken

to prevent overfitting of training data. Counter-overfitting techniques developed to date

were designed for static problems [75, 131, 140], and, to the author’s knowledge, no

studies of overfitting in the context of dynamic environments were published to date.

Existing techniques may require modifications in order to become applicable to dynamic

problems. For a discussion of overfitting in the context of dynamic environments, refer

to Chapter 5. The generalisation error was nonetheless recorded throughout the experi-

ments and reported in the analysis that follows. The generalisation factor, ρF , developed

by Röbel [100], was used as a measure of overfitting. The generalisation factor is calcu-

lated by taking the ratio between the generalisation error, EG, and the training error,

ET :

ρF =
EG
ET

The generalisation factor is not an absolute measure of overfitting, and both ET and EG

should still be considered as more precise measures of training algorithm performance.

However, ρF gives an indication of the overfitting behaviour of an algorithm. A ρF < 1

is desirable, because EG < ET is an indication of good generalisation performance of the

NN. A ρF > 1 implies that EG > ET , which is an indication of overfitting. Since this

study considers dynamic problems only, ρF , like the other performance measures used,

was calculated according to equation (6.1). Thus, the reported values of ρF reflected the

generalisation factor across the entire algorithm run.

For the dynamic PSO training algorithms considered, swarm diversity was also mea-

sured. The diversity measurement used is the average distance around the swarm center

[70], given by:

d =
1

SP

SP∑
y=1

√√√√ n∑
l=1

(xyl − x̄l)2

6.1. EXPERIMENTAL PROCEDURE 65

where SP is the swarm size, n is the dimensionality of the problem space, xy and x̄ are

particle position y and the swarm center, respectively. The choice of diversity measure

is based on [87], where this measure was shown to be a valid diversity measure. As with

the other measures used in this study, average swarm diversity was reported, calculated

using equation (6.1).

Whenever experimental results were compared, the two-tailed non-parametric Mann-

Whitney U test [82] was used to determine whether the difference in algorithm perfor-

mance was statistically significant. The choice of the significance test is based on [27],

where the authors showed that the Mann-Whitney U test is safer than the parametric

tests such as the t-test, since the Mann-Whitney U test assumes neither normal distribu-

tions of data, nor homogeneity of variance. The null hypothesis H0 : µ1 = µ2, where µ1

and µ2 are the means of the two samples being compared, was evaluated at a significance

level of 95%. The alternative hypothesis was defined as H1 : µ1 6= µ2. Thus, any p-value

less than 0.05 corresponded to rejection of the null hypothesis that there is no statisti-

cally significant difference between the sample means. For the sake of convenience, all

p-values were bounded below by 0.0001.

All reported results are averages over 30 independent simulations. The next section

describes how concept drift of varying spatial and temporal severity was simulated.

6.1.2 Simulating Concept Drift

In this study, one real-life data set was used, and another four data sets were artificially

generated to simulate dynamic classification problems of varying dimensionality and

decision boundary shape. The process of generating a data set with concept drift applied

in this study is described below.

M points were randomly chosen from the specified domain. M data patterns were

then obtained by assigning a target classification to every input vector according to cur-

rent problem-specific decision boundaries. The boundaries were updated N times, thus

6.1. EXPERIMENTAL PROCEDURE 66

simulating N environment changes. After every such change, the target classification

of every pattern, p = 1, . . . , pM , was updated accordingly, and the updated M patterns

were appended to the previous M patterns. Thus, the total number of data patterns in

a complete data set is calculated as follows:

P = M +M ∗N

Classification problems with concept drift were simulated by sliding a window over

such a data set. Windowing is a simple pattern selection technique widely applied in

data mining of continuous data streams [130]. For more information on windowing and

pattern selection, refer to Chapter 4. In this study, the size of the window was set to

M , thus at every iteration the NN was presented with data patterns which represented

a complete set of M points. The data patterns inside the window were split into two

subsets for training and generalisation purposes: 80% of the patterns were used as a

training set, DT , and the other 20% were used as a generalisation set, DG. Since the

aim was to simulate decision boundaries that change over time, the original data set was

not shuffled to preserve the pattern order. The patterns were only shuffled inside the

window before being split into DT and DG to prevent NNs from learning the pattern

order instead of the classification boundaries.

Shifting the window by S patterns implies discarding the first S patterns from the

window, and appending the next S patterns from the data set to the window. The

window step size, S, controls the spatial severity of changes: changes become more

drastic for larger values of S, since a lot of new information is added while a lot of

previously valid information is discarded. If the decision boundaries change every M

patterns in the data set and the window size is equal toM , a shift by S < M patterns may

introduce new decision boundaries into the window while still keeping the data patterns

classified according to the previous decision boundaries inside the window. An example to

illustrate this process is shown in Figure 6.1. Here, M = 6 and S = 4. When the window

shifts, four patterns, {p1, p2, p3, p4}, are discarded, and new patterns {p′1, p′2, p′3, p′4} are

6.1. EXPERIMENTAL PROCEDURE 67

Figure 6.1: Introducing new decision boundaries by window shifts

added, while p5 and p6 remain in the window. Thus the shifted window contains patterns

representing the environment both before and after the dynamic change, or, in other

words, the window contains patterns representing both the old decision boundaries and

the updated decision boundaries. As the window slides along the data set, more patterns

classified according to the previous decision boundaries are replaced by the patterns

classified according to the current decision boundaries, until the previous boundaries

are completely discarded. This implies that the training algorithm will often have to

deal with more than one decision boundary within the data set, with a possibility of

conflicting boundaries that contradict each other, as shown in Figure 6.2. Conflicting

boundaries make dynamic adaptation more challenging for the training algorithms.

Two major characteristics of a dynamic problem are: (a) spatial severity of changes,

and (b) temporal severity of changes. The exact meaning of these terms applied to

problems with concept drift is given in Chapter 4. In order to provide a representative

coverage of the existing types of concept drift, different combinations of spatial sever-

ity and temporal severity were simulated, resulting in a number of different dynamic

scenarios. Every dynamic scenario is characterised by two variables:

6.1. EXPERIMENTAL PROCEDURE 68

Figure 6.2: Conflicting boundaries

• The step size, S, which refers to the number of patterns by which the window

shifts in order to simulate an environment change. This attribute determines the

abruptness of the environment change, or, in other words, the level of spatial

severity.

• The number of algorithm iterations, F , that the current training algorithm is

allowed to run before the window shifts. This attribute controls the frequency of

changes, or, in other words, the level of temporal severity.

Evaluation of the considered training algorithms under all possible combinations of values

of the above two variables will provide a perfect coverage of possible types of concept drift.

However, since such an exhaustive evaluation is practically infeasible, discrete ranges of

values were considered for both variables on every problem. All possible combinations

of values in these discrete ranges were considered. The discrete ranges were problem-

specific, and are reported later in this chapter.

The next section outlines the parameter optimisation method applied in this work.

6.1.3 Parameter Optimisation

Since the aim of this research was to test whether dynamic PSO algorithms can be ap-

plied to efficiently train NNs in the presence of concept drift, measures had to be taken

6.1. EXPERIMENTAL PROCEDURE 69

to ensure that the dynamic PSO algorithms considered exhibited efficient performance.

Performance of the dynamic PSO algorithms is strongly dependent on the algorithm

parameters, and the relevant parameters were optimised according to the procedure de-

scribed below. In order to ensure a fair comparison between the performance of back

propagation and the performance of the dynamic PSO algorithms, the algorithm param-

eters of back propagation and back propagation with reinitialisation were also optimised.

An iterative approach to parameter optimisation was used. Parameters were opti-

mised one at a time. For each parameter, the algorithm was tested under a selected

range of possible values for this parameter, while the other parameters remained fixed.

In order to keep the optimisation process statistically sound, 30 runs were conducted for

every value in the chosen discrete range. The parameter value yielding the lowest average

training and generalisation errors was subsequently chosen as optimal, and optimisation

proceeded to the next parameter. For optimisation of the remaining parameters, all the

parameters already optimised were fixed to their best values.

It is important to note at this point that parameter optimisation, alike to simulating

different types of concept drift described in Section 6.1.2, should be treated as limited and

thus approximate. As already discussed in Chapter 5, static parameter values may yield

suboptimal performance after an environment change, and, although static values were

chosen such that the average error over all iterations was minimised, parameters that

adapt themselves to environment changes could yield better algorithm performance than

static parameters. Unfortunately, no adaptive parameter strategies specific to dynamic

environments have been developed yet, and the development of such adaptive parameter

strategies is proposed as possible future work.

Another limitation of the parameter optimisation process was computational time

constraints. Just as it is impossible to exhaustively test the chosen training algorithms

under all possible dynamic scenarios, it is computationally infeasible to optimise all pos-

sible parameters under every scenario considered. Discrete ranges for parameter values

6.1. EXPERIMENTAL PROCEDURE 70

were chosen to limit the total number of simulations required, and the parameters of

each algorithm were optimised once for every problem, instead of once for every sce-

nario. Thus, problem-specific error surfaces were taken into account by the optimisation

process, but not the specific environment changes simulated in each scenario. The re-

sulting comparison of algorithms should thus be treated as relative instead of absolute.

The authors believe that the selected instances of algorithms, problems, and dynamic

environments provide a good general idea of the entire range of existing configurations

of both the algorithms and the dynamic scenarios.

Specific parameters optimised for each training algorithm are discussed below.

Back Propagation

The parameters that influence the performance of back propagation are:

1. The interval in which the initial NN weights are randomised. Since back prop-

agation is known to be sensitive to the initial weight values [55], extra care has to

be taken in choosing them. The intervals considered are listed in Table 6.1. Since

the sigmoid function was used as an activation function in all the experiments

conducted, any interval larger than [−5, 5] would have caused derivative values to

be approximately equal to 0, thus diminishing weight adjustments and preventing

efficient learning.

2. Learning rate: This parameter determines the step size taken by the algorithm

in the direction of the negative gradient of the error surface. The values tested are

listed in Table 6.1.

3. Momentum: This parameter controls the extent to which the memory of pre-

vious weight changes influences weight changes in the current epoch. The values

considered are listed in Table 6.1.

6.1. EXPERIMENTAL PROCEDURE 71

Table 6.1: Parameter Ranges for Back Propagation

Parameter Range

NN weight initialisation range {[−1, 1], [−2, 2], [−3, 3], [−4, 4], [−5, 5]}

Learning Rate {0.1, 0.3, 0.5, 0.7, 0.9}

Momentum {0.1, 0.3, 0.5, 0.7, 0.9}

All NNs used a single hidden layer. The number of hidden units was fixed for each

problem throughout the experiments. Dynamic problems and the corresponding number

of hidden units are listed in Table 6.2. These numbers were determined iteratively,

using the approach described in Section 6.1.3. More sophisticated architecture selection

techniques such as network growing [37, 49, 71], pruning [32, 110], and regularization

[41, 131] were developed for static environments, thus they were not applied in the

experiments.

Particle Swarm Optimisation

The following PSO parameters were optimised:

1. Maximum velocity (~Vmax): This parameter limits the step size of a particle and

thus prevents particles from moving too fast. Enforcing a speed limit promotes

exploitation. Parameter values considered are listed in Table 6.3. The same value

was used across all dimensions of ~Vmax, hence it is referred to as Vmax further in

the text. Positive infinity is used to refer to unconstrained particle velocity.

2. Swarm size: Larger swarms take longer to converge, but explore more if the

particles are initialised uniformly. The swarm sizes tested are listed in Table 6.3.

The NN weight initialisation range was also optimised iteratively. In the case of

PSO training, the initial NN weights correspond to the initial particle positions. Since

6.1. EXPERIMENTAL PROCEDURE 72

Table 6.2: Number of Hidden Units

Problem # Hidden Units

Moving Hyperplane 6

Dynamic Sphere 4

Sliding Thresholds 3

Electricity Pricing 6

SEA Concepts 4

the sigmoid function was used as the activation function, large initial weights may have

led the swarm into unfruitful regions of the error surface (such as plateaus) due to the

asymptotic nature of the sigmoid function. The weight initialisation ranges considered

are listed in Table 6.3.

As already discussed in Chapter 4, the von Neumann neighbourhood topology was

shown to facilitate swarm diversity, and thus facilitate exploration. The von Neumann

topology was shown to perform better than other neighbourhood topologies in dynamic

environments [79], and therefore this topology was used in all PSO experiments con-

ducted for this study.

For all the experiments, the inertia weight was set to 0.729844, while the values of

the acceleration coefficients were set to 1.496180. This choice is based on [30], where

it was shown that such parameter settings facilitate convergent behaviour. Although

preservation of diversity is vital in the context of dynamic environments, convergent

behaviour is still necessary, since a solution must be found in between environment

changes.

Initial particle velocities were set to 0.

Each dynamic PSO algorithm required extra parameters to be optimised. Parame-

ter optimisation specific to each dynamic PSO algorithm is described below. Due to the

6.1. EXPERIMENTAL PROCEDURE 73

Table 6.3: Parameter Ranges: PSO

Parameter Range

Vmax {0.1, 0.5, 1, 2, 5, 10, 20,+∞}

Swarm Size {15, 20, 30, 50}

NN weight initialisation range {[−1, 1], [−2, 2], [−3, 3], [−4, 4], [−5, 5]}

Reinitialising PSO: Reinitalisation Ratio {0.25, 0.5, 0.75, 1.0}

Charged PSO: Charge Magnitude {0.1, 0.3, 1, 5, 10, 20}

Quantum PSO: Radius {1, 1.5, 2, 3, 5, 10}

infeasibility of empirically testing all possible combinations of parameters, some parame-

ters were assigned values based on theoretical analysis and previously published research

instead of empirical evidence.

For the reinitialising PSO, the reinitialisation ratio had to be fine-tuned. The value

range for this parameter is [0, 1], where 0 results in no reinitialisation, thus turning off the

dynamic properties of the algorithm, and 1 results in reinitialisation of the entire swarm.

Values considered are listed in Table 6.3, and were chosen to represent progression from

reinitialising a quarter of the swarm to a complete reinitialisation of the swarm.

For the charged PSO, the charge magnitude of charged particles was optimised. The

range of values tested is given in Table 6.3. Radii of repulsion Rc and Rp were set to 1

and 30, respectively. Such a wide range was chosen in order to constrain acceleration the

least and thus promote exploration. Following from equation (4.1) given in Chapter 4,

the repelling force is inversely proportional to the distance between the charged particles.

Thus, the further any two charged particles are from each other, the less they repel. The

repelling force is also directly proportional to the charge magnitude. Therefore, the

strength of repulsion can be controlled by choosing an appropriate value for the charge

magnitude. For the experiments conducted in this study, 50% of each swarm was charged

6.1. EXPERIMENTAL PROCEDURE 74

with another 50% kept neutral. Such choice is based on studies published in [7], where it

was shown that a good balance between exploration and exploitation is then obtained.

For the quantum PSO, the radius of the quantum cloud was optimised. The values

considered for this parameter are listed in Table 6.3. For the experiments conducted

in this study, 50% of the swarm constituted the cloud. This choice is based on the

empirical studies presented in [9], where it was shown that this parameter setting gen-

erally promotes a good balance between exploration and exploitation. As described in

Chapter 4, the quantum cloud is randomised at every iteration. Thus, a swarm made of

quantum particles only will be incapable of exploitation. Since neutral particles are the

only exploitation force of the quantum PSO, it is necessary to keep at least 50% of the

particles neutral.

6.1.4 Naming Conventions

The following abbreviations are used in this chapter where appropriate for the sake of

convenience:

• BP: back propagation;

• RBP: reinitialising back propagation;

• RPSO: reinitialising PSO;

• CPSO: charged PSO;

• QPSO: quantum PSO;

The rest of the chapter is dedicated to the analysis of experimental results.

6.2. CLASSIFICATION PROBLEMS 75

6.2 Classification problems

Four synthetically generated classification problems and one real-life classification prob-

lem were used in the experiments. The considered problems are discussed in this section,

and the empirical analysis of obtained results is presented.

6.2.1 SEA Concepts

This artificially generated problem divided a three-dimensional feature space into two

classes.

Problem Definition

This problem was adopted from [111, 116]. The data set consisted of 10 000 patterns,

obtained by randomly generating 10 000 3-dimensional points, {~x1, ~x2, . . . , ~x10000}, ~xl ∈

[0; 10)3, l = 1, . . . , 10 000. The generated points were divided into four equal concept

blocks, 2500 points each, as illustrated in Figure 6.3. In each block, the class label of

each data point ~x was determined as follows:

Classification(~x) =

 Class A if x1 + x2 ≤ θ

Class B otherwise,
(6.2)

where x1 and x2 are the values of the first two dimensions, and θ is the threshold value.

Thus, only the first two dimensions determined the class label of a point. Threshold

values of 8, 9, 7, and 9.5 were used in the four blocks, and 10% class noise was inserted

into each block by changing the class label of randomly chosen data patterns in that

block. The patterns were then recorded into a single data set in sequential order, block

by block, resulting in a data set of 10 000 patterns. Just as with the previous problems,

a window was slided over the data set to simulate a dynamic environment. The window

size was fixed to 2500 patterns, equal to the size of a concept block.

6.2. CLASSIFICATION PROBLEMS 76

y

x0

10

10

θ = 9 θ = 9.5

θ = 7 θ = 8

Figure 6.3: SEA Concepts

It should be noted at this point that, in case of NN training, the dimensionality of the

optimisation problem is determined by the total number of weights and biases, and not

by the dimensionality of the input patterns. As stated in Chapter 3, a NN comprises of

three layers - an input layer, a hidden layer, and an output layer. In all the experiments

conducted for this study, fully connected NNs were used, thus the total number of NN

weights for each problem, taking bias units into account, is calculated as follows:

nw = (I + 1)J + (J + 1)K (6.3)

where nw is the total number of NN weights, I is the number of inputs, J is the number of

hidden units, and K is the number of outputs. A NN with 3 input units, 4 hidden units

and 1 output unit was trained on the SEA concepts problem. According to equation

(6.3), the total number of weights and biases, corresponding to the dimensionality of the

problem, was equal to 21.

Twenty different dynamic scenarios outlined in Table 6.4 were applied to the SEA

concepts problem. The chosen scenarios simulated different combinations of spatial and

temporal severity, providing representative coverage of different dynamic environment

types. The technique of simulating dynamic scenarios applied in this study was described

6.2. CLASSIFICATION PROBLEMS 77

Table 6.4: Dynamic Scenarios for the SEA Concepts Problem

F

S
50 100 500 1000 2500

10 A1 A2 A3 A4 A5

50 B1 B2 B3 B4 B5

100 C1 C2 C3 C4 C5

250 D1 D2 D3 D4 D5

in Section 6.1.2. As shown in Table 6.4, the values for both the frequency of change and

the step size increase non-linearly, because the influence of parameter values was expected

to be stronger for small values. Change frequencies of 10, 50, 100, and 250 iterations

was considered. Different levels of spatial severity were simulated by shifting the sliding

window by 50, 100, 500, 1000, and 2500 patterns per step.

Parameter Optimisation

All algorithm parameters were optimised according to the procedure described in Sec-

tion 6.1.3. Corresponding optimal parameters discovered are shown in Table 6.5.

Analysis of Empirical Data

For every scenario considered, every training algorithm traversed the entire data set of

10 000 patterns. Since both the step size and the frequency of changes varied from

scenario to scenario, every scenario required a different total number of iterations to

traverse the entire data set. The number of iterations is calculated as

T = F ∗ P − Pw
S

+ F (6.4)

where F is the number of iterations on a window between the window shifts (i.e. change

frequency), P is the total number of patterns in the data set, Pw is the window size, and

6.2. CLASSIFICATION PROBLEMS 78

Table 6.5: Optimal Parameters for the SEA Concepts Problem

Algorithm Parameters

Back Propagation Weight Interval Learning Rate Momentum

[−5; 5] 0.1 0.7

Reinitialising Weight Interval Learning Rate Momentum

Back Propagation [−5; 5] 0.1 0.7

Reinitialising PSO Weight Interval Vmax Swarm Size Reinit. Ratio

[−3; 3] 0.5 50 0.25

Charged PSO Weight Interval Vmax Swarm Size Charge Magnitude

[−3; 3] 0.5 30 0.3

Quantum PSO Weight Interval Vmax Swarm Size Cloud Radius

[−1; 1] 0.5 50 1.5

S is the step size. The average error results and the corresponding standard deviation

values reported in this work were obtained after the number of iterations as given by

equation (6.4). The window size was fixed to 2500 patterns, and both the step size and

the frequency of changes were determined by the scenario in use. The rest of this section

provides an analysis of the empirical results obtained for the SEA concepts problem.

Scenarios A1 to A5: Figures 6.4 and 6.5 illustrate the progression of ET and EG

over time as observed under scenarios A1 to A5. Error profiles in figures 6.4 and 6.5

show that BP and the three dynamic PSOs perfromed similarly to one another under

scenarios A1 to A4, while RBP fluctuated a lot. Scenarios A1 to A5 shared the same

frequency of change, equal to 10 iterations. Thus, RBP reinitialised the NN weights

every 10 iterations, and had only 10 iterations to converge on a solution, which proved

to be insufficient.

6.2. CLASSIFICATION PROBLEMS 79

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0 200 400 600 800 1000 1200 1400

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for A1

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0 200 400 600 800 1000 1200 1400

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for A1

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0 100 200 300 400 500 600 700

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for A2

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0 100 200 300 400 500 600 700

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for A2

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0 20 40 60 80 100 120 140 160

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(e) ET for A3

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 20 40 60 80 100 120 140 160

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(f) EG for A3

Figure 6.4: Training and Generalisation Error results for SEA concepts, scenarios A1 to A3

6.2. CLASSIFICATION PROBLEMS 80

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 10 20 30 40 50 60 70

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for A4

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 10 20 30 40 50 60 70

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for A4

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 5 10 15 20 25 30 35

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for A5

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 5 10 15 20 25 30 35

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for A5

Figure 6.5: Training and Generalisation Error results for SEA concepts, scenarios A4 to A5

Figures 6.4 and 6.5 illustrate that the increasing spatial severity of changes from A1

to A5 made adaptation more difficult for the training algorithms: generalisation error

peaks became higher after every environment change as the spatial severity increased

from A1 to A5. Abrupt scenarios discarded a lot of old data and added a lot of new data

to the training and generalisation sets at every environment change, and the training

algorithms were required to make more significant changes to the current solution under

abrupt scenarios.

However, as illustrated in figure 6.5, the generalisation error peaks produced by

BP decreased under the most abrupt scenario A5. Under scenario A5, all contents of

6.2. CLASSIFICATION PROBLEMS 81

the sliding window were replaced by new data patterns. Thus, only one concept, and

consequently only one decision boundary, was represented in the sliding window at any

one time. This made scenario A5 easier to adapt to than scenarios A1 to A4, where the

training set often contained patterns from neighbouring concept blocks.

Figure 6.4 illustrates that the dynamic PSOs exploited better than BP under grad-

ual changes: as illustrated in figures 6.4(a) and 6.4(c), the dynamic PSOs reached a

lower minimum ET between environment changes. Such behaviour can be due to the

susceptibility of BP to get trapped in local minima.

Figures 6.4 and 6.5 also illustrate that the dynamic PSOs took longer to converge than

both BP and RBP in the beginning of the algorithm run. The difference in convergence

speed is especially visible in figures 6.5(c) and 6.5(d): the three dynamic PSOs took 25

iterations to reach the minimum attained by BP and RBP in 10 iterations. However,

further examination of figures 6.4 and 6.5 shows that, once the dynamic PSOs reached

a minimum, the training algorithms maintained the obtained minimum better than BP

or RBP: under scenarios A1 to A4, both BP and RBP produced higher ET and EG than

the dynamic PSOs after every environment change. The only difference is in scenario

A5 which simulated the most abrupt changes: as illustrated in figures 6.5(c) and 6.5(d),

the dynamic PSOs did not have enough time to converge on a good minimum. Swarm

behaviour of the dynamic PSOs can be further analysed by studying the progression of

swarm diversity over time, as illustrated in figure 6.6. Under gradual scenarios, the QPSO

and the CPSO took between 100 and 200 iterations to converge around a solution, and

maintained the obtained swarm diversity throughout the algorithm run. Under abrupt

scenarios, especially under the most abrupt scenario A5 (see figure 6.6(e)), the dynamic

PSOs were not allowed enough iterations to converge around a solution.

It is interesting to compare the swarm behaviour of the three dynamic PSOs consid-

ered to better understand the advantages and disadvantages of each. Figure 6.6 shows

that the diversity of the RPSO fluctuated a lot more than the diversity of both the CPSO

6.2. CLASSIFICATION PROBLEMS 82

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000 1200 1400

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(a) Swarm diversity results for A1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 100 200 300 400 500 600 700

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(b) Swarm diversity results for A2

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 20 40 60 80 100 120 140 160

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(c) Swarm diversity results for A3

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 10 20 30 40 50 60 70

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(d) Swarm diversity results for A4

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 5 10 15 20 25 30 35

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(e) Swarm diversity results for A5

Figure 6.6: Swarm diversity results for SEA concepts, scenarios A1 to A5

6.2. CLASSIFICATION PROBLEMS 83

and the QPSO under scenarios A1 to A5. As discussed in Chapter 4, the RPSO simply

reinitialises a percentage of randomly selected particles in response to an environment

change. While this approach maintains diversity of the swarm, it does not prevent the

loss of important information, as opposed to the CPSO and the QPSO, where the global

best particle is re-evaluated, but never reinitialised. Weaker dependence upon the swarm

memory exhibited by the RPSO promotes exploration. However, the dominance of ex-

ploration over exploitation may lead to divergent behaviour. Figures 6.6(a) and 6.6(b)

show that the diversity of the RPSO not only fluctuated violently, but also increased

over time, which may be interpreted as a sign of divergent behaviour. It was also shown

in [119] that bounded activation functions may lead to explosion in velocity values [21].

Although particle velocity was in this case bounded by a rather small value of Vmax,

the sigmoid activation function used in all hidden and output neurons could have been a

contributing factor to the divergent behaviour observed. This will be further investigated

by van Wyk and Engelbrecht, who have already published results on the significance of

the activation function in NN training with PSO [119].

Figure 6.6 illustrates that the QPSO started from a lower initial diversity than the

CPSO, but then took longer to converge on a stable diversity value. The swarm diver-

sity behaviour of the CPSO and the QPSO was determined by the optimal algorithm

parameters used for each algorithm, as reported in Table 6.5. The QPSO and the CPSO

exhibited similar behaviour, taking between 100 and 200 iterations to converge around a

minimum solution, and maintaining stable swarm diversity once a minimum was found.

In order to carry out a statistically sound comparison between the different train-

ing algorithms, collective mean fitness results were calculated. Table 6.6 summarises

the collective mean fitness results, generalisation factor values, and average swarm di-

versity (where applicable) obtained for scenarios A1 to A5. P-values corresponding to

training error comparisons between the algorithms are reported in Table 6.7. P-values

corresponding to generalisation error comparisons between the algorithms are reported

6.2. CLASSIFICATION PROBLEMS 84

Table 6.6: SEA Concepts Results for Scenarios A1 to A5

Algorithm

Scenario
A1 (frequency: 10, step size: 50)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.074272± 0.00206 0.076167± 0.004317 1.05294± 0.105819 n/a

Reinit. Back Propagation 0.11765± 0.004987 0.117498± 0.007621 0.974601± 0.037155 n/a

Reinitialising PSO 0.073435± 0.000793 0.074669± 0.004909 0.998969± 0.084563 3.09238± 0.891353

Charged PSO 0.074025± 0.000728 0.074008± 0.004829 0.996476± 0.085886 0.932965± 0.193641

Quantum PSO 0.073285± 0.000881 0.074031± 0.004996 1.00672± 0.080596 1.51885± 0.633338

A2 (frequency: 10, step size: 100)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.075578± 0.002115 0.074614± 0.004726 0.992619± 0.102015 n/a

Reinit. Back Propagation 0.117573± 0.006597 0.118017± 0.006797 0.98338± 0.047332 n/a

Reinitialising PSO 0.074902± 0.000935 0.074139± 0.006028 0.995458± 0.095782 3.74929± 0.783939

Charged PSO 0.075401± 0.000924 0.076178± 0.005241 1.01196± 0.088621 1.11805± 0.184048

Quantum PSO 0.074578± 0.000829 0.075184± 0.00473 1.00492± 0.068956 1.46429± 0.395646

A3 (frequency: 10, step size: 500)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.080557± 0.012953 0.082473± 0.012549 1.04732± 0.110472 n/a

Reinit. Back Propagation 0.118469± 0.016798 0.116704± 0.017312 0.952783± 0.040457 n/a

Reinitialising PSO 0.081363± 0.001426 0.083129± 0.00422 1.0132± 0.052644 3.78941± 1.15251

Charged PSO 0.081821± 0.002034 0.08162± 0.003807 1.00177± 0.041716 1.69461± 0.377857

Quantum PSO 0.081712± 0.001563 0.080766± 0.003235 0.989244± 0.03871 2.41796± 1.41779

A4 (frequency: 10, step size: 1000)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.081234± 0.012918 0.082579± 0.011709 1.04571± 0.084766 n/a

Reinit. Back Propagation 0.117146± 0.023963 0.115934± 0.023393 0.957676± 0.049642 n/a

Reinitialising PSO 0.089078± 0.003179 0.090288± 0.00601 1.01818± 0.063056 4.12736± 1.0331

Charged PSO 0.090294± 0.003153 0.090222± 0.004523 1.00199± 0.036437 2.66233± 1.1681

Quantum PSO 0.089353± 0.002067 0.091455± 0.005 1.00933± 0.039309 2.79456± 1.41328

A5 (frequency: 10, step size: 2500)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.085228± 0.036716 0.086351± 0.034788 1.02317± 0.069827 n/a

Reinit. Back Propagation 0.117479± 0.023246 0.109948± 0.019195 0.928082± 0.049888 n/a

Reinitialising PSO 0.097821± 0.005196 0.098403± 0.006403 1.00362± 0.033017 4.46154± 0.783499

Charged PSO 0.101398± 0.005385 0.101769± 0.006693 0.997178± 0.029466 3.11829± 0.699315

Quantum PSO 0.099188± 0.005198 0.099901± 0.00484 1.00341± 0.029998 3.17143± 0.954826

6.2. CLASSIFICATION PROBLEMS 85

 0.07

 0.075

 0.08

 0.085

 0.09

 0.095

 0.1

 0.105

 0.11

 0.115

 0.12

 50 100 500 1000 2500

A
v
e

ra
g

e
 E

rr
o

r

log(Step Size)

Back Propagation
Back Propagation with Reinitialisation

Reinitialising PSO
Charged PSO
Quantum PSO

(a) Average Training Error Results

 0.07

 0.075

 0.08

 0.085

 0.09

 0.095

 0.1

 0.105

 0.11

 0.115

 0.12

 50 100 500 1000 2500

A
v
e

ra
g

e
 E

rr
o

r

log(Step Size)

Back Propagation
Back Propagation with Reinitialisation

Reinitialising PSO
Charged PSO
Quantum PSO

(b) Average Generalisation Error Results

Figure 6.7: Average Error results for SEA concepts, scenarios A1 to A5

in Table 6.8.

Table 6.6 shows that RBP performed consistently and significantly worse that the

other four algorithms under scenarios A1 to A5. As it has already been explained,

a complete restart of the training algorithm did not prove efficient in such frequently

changing environments as simulated by scenarios A1 to A5. Table 6.6 shows that BP per-

formed significantly worse than the dynamic PSOs under the most gradual scenario (A1),

showed similar (insignificantly different) performance to dynamic PSOs under slightly

more abrupt scenario A2, and significantly outperformed the dynamic PSOs under sce-

narios of increasing abruptness (A3 to A5) (refer to Tables 6.7 and 6.8 for supporting

p-values). As was already determined, the advantage of BP under scenarios of high

temporal severity is due to the slower convergence speed of the dynamic PSOs.

Table 6.6 also shows that the three dynamic PSOs produced similar training and

generalisation results, bearing no statistically significant difference between one another

under most scenarios (refer to Tables 6.7 and 6.8 for supporting p-values).

Mean ET and EG values obtained under scenarios A1 to A5 were also visualised in

figure 6.7. Figure 6.7 illustrates that the performance of all algorithms except RBP

deteriorated as the spatial severity increased. The dynamic PSOs performed visibly

6.2. CLASSIFICATION PROBLEMS 86

Table 6.7: Mann-Whitney U p-values obtained for the average training error comparisons on

the SEA concepts problem with reference to the null hypothesis that the means of the compared

samples are equal at the significance level of 95%
BP vs RBP BP vs RPSO

1 2 3 4 5 1 2 3 4 5

A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.27936 0.0001 0.00120 0.0001

B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.01618 0.00069 0.0001

C 0.0001 0.0001 0.0001 0.292726 0.0001 0.0001 0.0001 0.0001 0.66527 0.0001

D 0.476152 0.230029 0.260089 0.423131 0.0001 0.0001 0.0001 0.0001 0.065414 0.01097

BP vs CPSO BP vs QPSO

1 2 3 4 5 1 2 3 4 5

A 0.00247 0.959278 0.0001 0.00051 0.0001 0.0001 0.06113 0.0001 0.00122 0.0001

B 0.0001 0.0001 0.057077 0.0001 0.0001 0.0001 0.0001 0.02073 0.00033 0.0001

C 0.0001 0.0001 0.0001 0.935996 0.0001 0.0001 0.0001 0.0001 0.513407 0.0001

D 0.0001 0.0001 0.0001 0.752762 0.0001 0.0001 0.0001 0.0001 0.04622 0.00764

RBP vs RPSO RBP vs CPSO

1 2 3 4 5 1 2 3 4 5

A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.00212

B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

C 0.0001 0.0001 0.0001 0.10909 0.0001 0.0001 0.0001 0.0001 0.260089 0.02247

D 0.0001 0.0001 0.0001 0.843422 0.0001 0.0001 0.0001 0.00274 0.112435 0.0001

RBP vs QPSO RPSO vs CPSO

1 2 3 4 5 1 2 3 4 5

A 0.0001 0.0001 0.0001 0.0001 0.00019 0.00801 0.03318 0.272832 0.146226 0.01833

B 0.0001 0.0001 0.0001 0.0001 0.0001 0.01424 0.02738 0.423131 0.087794 0.177408

C 0.0001 0.0001 0.0001 0.099517 0.0001 0.253866 0.085041 0.072293 0.644024 0.077194

D 0.0001 0.0001 0.0001 0.81482 0.0001 0.02633 0.146226 0.00019 0.01618 0.197283

RPSO vs QPSO CPSO vs QPSO

1 2 3 4 5 1 2 3 4 5

A 0.440413 0.272832 0.197283 0.513407 0.335329 0.00045 0.00016 0.786452 0.299565 0.069938

B 0.970925 0.982572 0.866438 0.532582 0.571977 0.03318 0.069938 0.809129 0.213209 0.067645

C 0.935995 0.06878 0.854916 0.628269 0.197283 0.335329 0.970925 0.0479 0.449202 0.00838

D 0.01871 0.02339 0.03713 0.994216 0.730546 0.741625 0.503955 0.02633 0.01833 0.126618

6.2. CLASSIFICATION PROBLEMS 87

Table 6.8: Mann-Whitney U p-values obtained for the average generalisation error compar-

isons on the Moving Hyperplane problem with reference to the null hypothesis that the means

of the compared samples are equal at the significance level of 95%
BP vs RBP BP vs RPSO

1 2 3 4 5 1 2 3 4 5

A 0.0001 0.0001 0.0001 0.0001 0.0001 0.12295 0.051413 0.00033 0.00222 0.0001

B 0.0001 0.0001 0.0001 0.0001 0.0001 0.03713 0.449202 0.602392 0.112435 0.0001

C 0.0001 0.0001 0.0001 0.0001 0.172677 0.093511 0.633505 0.172677 1.00578 0.414639

D 0.0001 0.0001 0.0001 0.090617 0.01365 0.03075 0.03998 0.571977 0.069938 0.119364

BP vs CPSO BP vs QPSO

1 2 3 4 5 1 2 3 4 5

A 0.067645 0.602392 0.00319 0.00061 0.0001 0.051413 0.213209 0.01198 0.00015 0.0001

B 0.00336 0.513407 0.299565 0.15468 0.00015 0.02247 0.644024 0.342795 0.675994 0.0001

C 0.197283 0.982572 0.241747 0.763945 0.119364 0.866438 0.602392 0.247758 0.485326 0.994216

D 0.00838 0.102632 0.335329 0.093511 0.01551 0.10909 0.03195 0.02247 0.235837 0.00801

RBP vs RPSO RBP vs CPSO

1 2 3 4 5 1 2 3 4 5

A 0.0001 0.0001 0.0001 0.0001 0.0096 0.0001 0.0001 0.0001 0.0001 0.102632

B 0.0001 0.0001 0.0001 0.0001 0.00013 0.0001 0.0001 0.0001 0.0001 0.0001

C 0.0001 0.0001 0.0001 0.0001 0.582035 0.0001 0.0001 0.0001 0.0001 0.571977

D 0.0001 0.0001 0.0001 0.00023 0.373698 0.0001 0.0001 0.0001 0.00029 0.831957

RBP vs QPSO RPSO vs CPSO

1 2 3 4 5 1 2 3 4 5

A 0.0001 0.0001 0.0001 0.0001 0.02247 0.66527 0.207802 0.187153 0.644024 0.06113

B 0.0001 0.0001 0.0001 0.0001 0.0001 0.313557 0.935996 0.172677 0.877985 0.947634

C 0.0001 0.0001 0.0001 0.00014 0.358039 0.866438 0.741628 0.752762 0.708548 0.342795

D 0.0001 0.0001 0.0001 0.00634 0.809129 0.866438 0.719519 0.119364 0.924366 0.562001

RPSO vs QPSO CPSO vs QPSO

1 2 3 4 5 1 2 3 4 5

A 0.602392 0.406247 0.0479 0.582035 0.389768 0.959278 0.414639 0.503955 0.230029 0.140112

B 0.843422 0.797771 0.592174 0.27936 0.831957 0.358039 0.820526 0.085041 0.52295 0.654613

C 0.15468 0.959278 0.854916 0.406247 0.612688 0.168039 0.730546 0.901142 0.592174 0.15468

D 0.654613 0.877985 0.00201 0.542302 0.602392 0.449202 0.654613 0.197283 0.562001 1.00578

6.2. CLASSIFICATION PROBLEMS 88

Table 6.9: SEA Concepts Algorithm Ranking for Scenarios A1 to A5

Algorithm A1 A2 A3 A4 A5 Average Rank

R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG)

BP 4 2.5 3.5 2.5 1 3 1 1 1 1 2.1 2

RBP 5 5 5 5 5 5 5 5 5 3.5 5 4.7

RPSO 1.5 2.5 1.5 2.5 3 4 3 3 3 3.5 2.4 3.1

CPSO 3 2.5 3.5 2.5 3 1.5 3 3 3 3.5 3.1 2.6

QPSO 1.5 2.5 1.5 2.5 3 1.5 3 3 3 3.5 2.4 2.6

worse than BP under more abrupt scenarios A4 and A5, due to the slower convergence

speed of the dynamic PSOs.

As ρF reported in Table 6.6 indicates, RBP was least susceptible to overfitting under

the considered scenarios (ρF < 1). RBP was the only algorithm which made no use

of previously learned information when a change occurred, and started the search for

decision boundaries anew every time the environment changed. Hence, RBP had only

10 iterations under scenarios A1 to A5 to converge on a solution before being completely

reinitialised, and 10 iterations was bearly enough to fit the data, thus diminishing the

danger of overfitting.

BP obtained the highest ρF under most scenarios, as Table 6.6 shows. As opposed to

the dynamic PSOs, BP uses a single algorithm starting point (a single set of weights),

which makes BP more sensitive to the initial weights after every environment change.

The dependence upon initial weights made BP more susceptible to overfitting than the

dynamic PSOs, because every time the environment changed, the old weights mapped

the previous environment state too closely, and BP had to spend time “unlearning” the

old, outdated weight values. The dynamic PSOs, on the other hand, re-evaluated all

particles in the swarm after an environment change, promptly discovering a new global

best particle which reflected the current environment state more closely.

An examination of the standard deviation values reported in Table 6.6 shows that the

value of ρF produced by BP fluctuated more than that obtained by the dynamic PSOs

6.2. CLASSIFICATION PROBLEMS 89

and RBP. This once again indicates that BP was more sensitive to initial weights than

the other algorithms, and showed a less robust performance than the other algorithms

considered.

Taking p-values into account, the training algorithms considered were ranked in terms

of both average ET and average EG. Table 6.9 lists the obtained ranks, together with the

average ranks. Average ranks reported in Table 6.9 show that BP produced the lowest

average rank in terms of both ET and EG, and RBP produced the highest average rank

in terms of both ET and EG over scenarios A1 to A5. Thus, the overall winner under

temporally severe scenarios A1 to A5 is BP.

Scenarios B1 to B5: Figures 6.8 and 6.9 illustrate the progression of ET and EG

over time as obtained by the training algorithms considered under scenarios B1 to B5.

Scenarios B1 to B5 simulated less frequent environment changes than scenarios A1 to

A5: the sliding window shifted every 50 iterations instead of 10. Figure 6.9 illustrates

that the decrease in change frequency had a positive effect on the dynamic PSOs: even

under abrupt scenarios B4 and B5, the dynamic PSOs managed to track and adjust

the found solution as the environment changed. The performance improvement of the

dynamic PSOs is due to the fact that lower frequency allowed the dynamic PSOs to

converge around a solution even under abrupt changes.

It becomes evident from figures 6.8 and 6.9 that RBP failed to exploit fruitful areas

of the search space as effectively as the other training algorithms. In case of the SEA

concepts problem, the windowing approach did not introduce conflicting boundaries,

since the concept blocks were mutually exclusive. Thus, previously learned information

remained useful even after an environment change, and the algorithms which made use

of previously learned information had an advantage over RBP.

Figure 6.8 also shows that the dynamic PSOs once again exploited better than BP

under gradual and semi-gradual scenarios (A1 to A3): The ET and EG values produced

6.2. CLASSIFICATION PROBLEMS 90

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0 1000 2000 3000 4000 5000 6000 7000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for B1

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0 1000 2000 3000 4000 5000 6000 7000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for B1

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0 500 1000 1500 2000 2500 3000 3500

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for B2

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0 500 1000 1500 2000 2500 3000 3500

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for B2

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0 100 200 300 400 500 600 700 800

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(e) ET for B3

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0 100 200 300 400 500 600 700 800

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(f) EG for B3

Figure 6.8: Training and Generalisation Error results for SEA concepts, scenarios B1 to B3

6.2. CLASSIFICATION PROBLEMS 91

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0 50 100 150 200 250 300 350 400

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for B4

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0 50 100 150 200 250 300 350 400

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for B4

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 20 40 60 80 100 120 140 160 180

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for B5

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 20 40 60 80 100 120 140 160 180

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for B5

Figure 6.9: Training and Generalisation Error results for SEA concepts, scenarios B4 to B5

by the dynamic PSOs reached lower minimum values than the same errors produced by

BP. This indicates that the dynamic PSOs are more apt to track gradually changing

decision boundaries than BP. Population-based dynamic PSOs explore a wider area

around the current solution than the hill-climbing approach of BP, which helps the

dynamic PSOs follow the changing boundaries more closely.

The progression of swarm diversity over time under scenarios B1 to B5 is depicted

in figure 6.10. Figure 6.10 illustrates that the CPSO and the QPSO converged to a

certain diversity level and maintained that diversity level throughout the algorithm run

under scenarios B1 to B4. Under the most abrupt scenario B5 (complete replacement

6.2. CLASSIFICATION PROBLEMS 92

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 1000 2000 3000 4000 5000 6000 7000

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(a) Swarm diversity results for B1

 0

 2

 4

 6

 8

 10

 12

 14

 0 500 1000 1500 2000 2500 3000 3500

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(b) Swarm diversity results for B2

 0

 1

 2

 3

 4

 5

 6

 7

 100 200 300 400 500 600 700

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(c) Swarm diversity results for B3

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 50 100 150 200 250 300 350

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(d) Swarm diversity results for B4

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 20 40 60 80 100 120 140 160 180

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(e) Swarm diversity results for B5

Figure 6.10: Swarm diversity results for SEA concepts, scenarios B1 to B5

6.2. CLASSIFICATION PROBLEMS 93

of concept) all three dynamic PSOs failed to converge to a stable diversity level due to

the slow convergence speed of these algorithms. The diversity of the RPSO was rather

unstable under gradual scenarios B1 and B2, thus showing that a reinitialisation of 25%

of particles under gradual scenarios discarded too much of useful previously learned

information.

Table 6.10 summarises the mean ET and EG, ρF , and average swarm diversity values

obtained by the algorithms for scenarios B1 to B5. Generalisation factor values reported

in Table 6.10 show that all algorithms exhibited minor to no overfitting under scenarios

B1 to B5, except for RBP, which produced the highest ρF under gradual to semi-gradual

scenarios B1 to B3. As it was already discussed, the lack of memory in RBP made

this algorithm inferior to the memory-preserving algorithms. Poor generalisation perfor-

mance of RBP under gradual scenarios can be due to bias towards one of the two decision

boundaries represented inside the sliding window, since, due to gradual insertion of a

new concept into the window, one decision boundary was often represented by a larger

number of training patterns than the other boundary.

Average swarm diversity values listed in Table 6.10 show that the average diversity of

the CPSO and the QPSO increased with an increase of spatial severity, because abrupt

changes required the dynamic PSOs to explore wider. The CPSO consistently obtained

the smallest average diversity: the CPSO was the only dynamic PSO algorithm out of the

three dynamic PSOs considered which did not reinitialise a percentage of particles, thus

the CPSO preserved most memory and converged to a smaller area around a solution.

The RPSO maintained the largest average diversity throughout scenarios B1 to B5 due

to its weak memory of previously found solutions.

Figure 6.11 shows average training and generalisation error results obtained by the

five algorithms under scenarios B1 to B5. Figure 6.11 shows that algorithm fitness

decreased as the abruptness of change increased from B1 to B4, indicating that abrupt

changes were harder to adapt to than gradual changes, since more drastic changes had to

6.2. CLASSIFICATION PROBLEMS 94

Table 6.10: SEA Concepts Results for Scenarios B1 to B5

Algorithm

Scenario
B1 (frequency: 50, step size: 50)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.074078± 0.001688 0.074755± 0.005007 1.02208± 0.081964 n/a

Reinit. Back Propagation 0.087951± 0.00329 0.096313± 0.00589 1.05347± 0.071199 n/a

Reinitialising PSO 0.071208± 0.000677 0.072236± 0.005498 1.02964± 0.101128 3.27537± 1.87885

Charged PSO 0.071717± 0.000875 0.071091± 0.004605 0.999089± 0.078706 0.770277± 0.258123

Quantum PSO 0.071246± 0.000872 0.071703± 0.004318 1.00751± 0.09248 1.16778± 0.523124

B2 (frequency: 50, step size: 100)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.073412± 0.001436 0.074548± 0.005521 1.0423± 0.105881 n/a

Reinit. Back Propagation 0.087863± 0.003877 0.095976± 0.005494 1.06418± 0.064687 n/a

Reinitialising PSO 0.071659± 0.00059 0.073009± 0.005974 1.02815± 0.099551 3.53494± 1.55104

Charged PSO 0.07204± 0.000625 0.073066± 0.00437 1.00374± 0.086135 0.844318± 0.218703

Quantum PSO 0.071649± 0.000882 0.073669± 0.005507 1.03363± 0.104276 1.18129± 0.398826

B3 (frequency: 50, step size: 500)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.07414± 0.00119 0.074036± 0.003998 0.996259± 0.062547 n/a

Reinit. Back Propagation 0.086878± 0.007596 0.092688± 0.0074 1.03577± 0.072633 n/a

Reinitialising PSO 0.07347± 0.000578 0.073569± 0.003802 1.0193± 0.072363 2.77745± 1.22533

Charged PSO 0.073609± 0.000684 0.074822± 0.003874 1.01493± 0.070342 1.11491± 0.262838

Quantum PSO 0.073475± 0.000735 0.073081± 0.00474 0.986286± 0.057898 1.70271± 0.684032

B4 (frequency: 50, step size: 1000)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.074784± 0.001933 0.074867± 0.005506 0.997821± 0.102796 n/a

Reinit. Back Propagation 0.09203± 0.015599 0.097183± 0.015191 1.02118± 0.063948 n/a

Reinitialising PSO 0.075825± 0.000901 0.077073± 0.005139 1.02841± 0.08129 2.23834± 0.637953

Charged PSO 0.076371± 0.001175 0.077229± 0.005933 1.00032± 0.096202 1.35719± 0.296521

Quantum PSO 0.075958± 0.000959 0.075926± 0.005911 0.999026± 0.079358 1.99361± 0.780317

B5 (frequency: 50, step size: 2500)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.072648± 0.016249 0.072121± 0.017849 0.974087± 0.058723 n/a

Reinit. Back Propagation 0.083178± 0.008553 0.083807± 0.009732 0.991642± 0.073368 n/a

Reinitialising PSO 0.073692± 0.001728 0.075357± 0.005735 1.00928± 0.073479 3.05492± 1.24666

Charged PSO 0.074436± 0.001995 0.074777± 0.005022 1.0121± 0.084311 2.11189± 1.26007

Quantum PSO 0.073581± 0.001283 0.074403± 0.004463 1.01723± 0.064235 2.56099± 1.27871

6.2. CLASSIFICATION PROBLEMS 95

 0.07

 0.075

 0.08

 0.085

 0.09

 0.095

 50 100 500 1000 2500

A
v
e

ra
g

e
 E

rr
o

r

log(Step Size)

Back Propagation
Back Propagation with Reinitialisation

Reinitialising PSO
Charged PSO
Quantum PSO

(a) Average Training Error Results

 0.07

 0.075

 0.08

 0.085

 0.09

 0.095

 0.1

 50 100 500 1000 2500

A
v
e

ra
g

e
 E

rr
o

r

log(Step Size)

Back Propagation
Back Propagation with Reinitialisation

Reinitialising PSO
Charged PSO
Quantum PSO

(b) Average Generalisation Error Results

Figure 6.11: Average Error results for SEA concepts, scenarios B1 to B5

Table 6.11: SEA Concepts Algorithm Ranking for Scenarios B1 to B5

Algorithm B1 B2 B3 B4 B5 Average Rank

R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG)

BP 4 4 4 2.5 2.5 2.5 1 2.5 1 1 2.5 2.5

RBP 5 5 5 5 5 5 5 5 5 5 5 5

RPSO 1.5 2 1.5 2.5 2.5 2.5 3 2.5 3 3 2.3 2.5

CPSO 3 2 3 2.5 2.5 2.5 3 2.5 3 3 2.9 2.5

QPSO 1.5 2 1.5 2.5 2.5 2.5 3 2.5 3 3 2.3 2.5

be made to the current solution. However, the performance of all algorithms considered

improved under the most abrupt scenario B5. Performance improvement under scenario

B5 was due to the fact that, under this scenario, an environment change resulted in a

complete replacement of concept inside the sliding window. Thus, the training algorithms

were always presented with a single decision boundary only, as opposed to gradual and

semi-gradual scenarios, where the sliding window most of the time contained patterns

from two bordering concept blocks.

The algorithms were ranked in terms of average ET and EG, taking the p-values

reported in tables 6.7 and 6.8 into account. Algorithm ranks together with average

ranks are listed in Table 6.11.

6.2. CLASSIFICATION PROBLEMS 96

As becomes evident from Table 6.11, RBP showed the worst performance under sce-

narios B1 to B5. Such poor performance is due to the fact that RBP keeps no memory

of the previously learned information when the environment changes, and previously

learned information was useful for the SEA concepts problem. BP was significantly

outperformed by the dynamic PSOs under the gradual scenarios B1 and B2, and BP

significantly outperformed all the other algorithms under the abrupt scenarios B4 and

B5. No statistically significant difference between BP and the dynamic PSOs was ob-

served under scenario B3. The superior performance of the dynamic PSOs under gradual

changes, and the superior performance of BP under abrupt changes indicate that the

dynamic PSOs were more apt at tracking gradual changes than BP on the SEA con-

cepts problem, due to better exploration ability of the population-based approach. BP,

on the other hand, adjusted to abrupt changes faster due to faster convergence of the

hill-climbing approach. No statistically significant difference was observed between the

three dynamic PSOs under scenarios B1 to B5, except that the CPSO was outperformed

by the RPSO and the QPSO in terms of ET under gradual scenarios B1 and B2. The

CPSO, as confirmed by the average diversity values in Table 6.10, explored less than the

other two dynamic PSOs; thus, the CPSO obtained higher training errors. The average

ranks in Table 6.11 confirm the inferiority of RBP under scenarios B1 to B5, and show

that no overall winner among the other algorithms can be pointed out, since the average

rank in terms of EG is equal for BP, RPSO, CPSO, and QPSO. Considering ET only,

the QPSO and the RPSO performed superior to the other algorithms considered.

Scenarios C1 to C5: Figures 6.12 and 6.13 illustrate the progression of ET and

EG over time as obtained by the various algorithms considered. Similar traits as were

observed under scenarios B1 to B5 are observed under scenarios C1 to C5: the dynamic

PSOs take longer than BP and RBP to converge around a solution in the beginning of

the algorithm run, and track gradual changes better than both BP and RBP.

6.2. CLASSIFICATION PROBLEMS 97

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0 2000 4000 6000 8000 10000 12000 14000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for C1

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0 2000 4000 6000 8000 10000 12000 14000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for C1

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0 1000 2000 3000 4000 5000 6000 7000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for C2

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0 1000 2000 3000 4000 5000 6000 7000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for C2

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0 200 400 600 800 1000 1200 1400 1600

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(e) ET for C3

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0 200 400 600 800 1000 1200 1400 1600

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(f) EG for C3

Figure 6.12: Training and Generalisation Error results for SEA concepts, scenarios C1 to C3

6.2. CLASSIFICATION PROBLEMS 98

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0 100 200 300 400 500 600 700 800

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for C4

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0 100 200 300 400 500 600 700 800

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for C4

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0 50 100 150 200 250 300 350 400

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for C5

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0 50 100 150 200 250 300 350 400

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for C5

Figure 6.13: Training and Generalisation Error results for SEA concepts, scenarios C4 to C5

Figures 6.12 and 6.13 illustrate that RBP did not generalise well under scenarios

C1 to C4. However, the generalisation performance of RBP improved under the most

abrupt scenario C5. Scenario C5 was the only scenario that completely replaced the

concept inside the sliding window whenever the environment changed. Scenarios C1 to

C4, on the other hand, gradually added a new concept to the old concept, thus most of

the time the sliding window contained two neighbouring concepts, or, in other words,

two decision boundaries instead of one. Poor generalisation performance of RBP under

scenarios C1 to C4 is due to RBP approximating one decision boundary better than the

second one, since, due to the gradual insertion of a new concept into the window, one

6.2. CLASSIFICATION PROBLEMS 99

decision boundary was often represented by a larger number of patterns than the other

boundary.

Figure 6.14 illustrates the progression of swarm diversity over time. While the CPSO

and the QPSO converged to a certain diversity level and maintained it throughout the

algorithm run, the RPSO once again exhibited divergent behaviour under gradual sce-

narios C1 and C2. As it was already discussed, weak reliance on previously learned

information makes the RPSO susceptible to divergent behaviour under scenarios where

little new information is added at every environment change.

Table 6.12 presents average ET and EG values, as well as average ρF obtained by the

training algorithms under scenarios C1 to C5. Average swarm diversity is also reported

where applicable. Generalisation factor values reported in Table 6.12 confirm that RBP

was most prone to overfitting under scenarios C1 to C3. The other algorithms considered

showed minor to no overfitting. Table 6.12 also shows that out the three dynamic PSOs,

the CPSO produced the lowest average diversity. The CPSO depends on swarm memory

stronger than both the RPSO and the QPSO, since the CPSO never reinitialises particles.

Lack of reinitialisation allows the CPSO to converge to a smaller area around a solution.

Figure 6.15 illustrates average ET and EG values obtained by the algorithms under

scenarios C1 to C5. Figure 6.15 shows that the fitness of BP and the dynamic PSOs

decreased as the abruptness of change increased from C1 to C4, since abrupt changes were

harder to adapt to than gradual changes. The performance of all considered algorithms

improved under the most abrupt scenarios C5, because, as already explained earlier in

this section, C5 was the only scenario that presented the algorithms with a single decision

boundary at any one time. The performance of RBP started to improve under abrupt

scenario C4, since complete reinitialisation of weights is most effective under abrupt

scenarios where the preservation of previously learned information is less important.

The algorithms were ranked based on the average ET and EG values as reported in

Table 6.12, taking p-values listed in Tables 6.7 and 6.8 into account. Algorithm ranks,

6.2. CLASSIFICATION PROBLEMS 100

Table 6.12: SEA Concepts Results for Scenarios C1 to C5

Algorithm

Scenario
C1 (frequency: 100, step size: 50)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.073506± 0.001122 0.072902± 0.003983 0.982364± 0.07719 n/a

Reinit. Back Propagation 0.077631± 0.002366 0.086025± 0.005988 1.04864± 0.090041 n/a

Reinitialising PSO 0.070671± 0.000646 0.071146± 0.004587 1.02146± 0.096665 3.81076± 2.44116

Charged PSO 0.07088± 0.000762 0.071306± 0.004753 0.987295± 0.100106 0.815575± 0.412588

Quantum PSO 0.070579± 0.00085 0.072789± 0.005814 1.04779± 0.101841 0.947459± 0.363938

C2 (frequency: 100, step size: 100)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.073749± 0.001783 0.072401± 0.005544 0.984114± 0.107786 n/a

Reinit. Back Propagation 0.077723± 0.002391 0.086938± 0.005286 1.09037± 0.10604 n/a

Reinitialising PSO 0.070901± 0.000572 0.071495± 0.005306 1.02443± 0.107218 3.64572± 1.52371

Charged PSO 0.071195± 0.000732 0.072334± 0.004217 1.02423± 0.083891 0.677161± 0.188148

Quantum PSO 0.071195± 0.000575 0.071782± 0.004171 1.00872± 0.069144 1.1062± 0.566274

C3 (frequency: 100, step size: 500)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.074033± 0.001444 0.074472± 0.004278 1.0306± 0.082937 n/a

Reinit. Back Propagation 0.079415± 0.006442 0.088763± 0.010017 1.0812± 0.096053 n/a

Reinitialising PSO 0.072101± 0.000826 0.072631± 0.005729 1.00469± 0.112067 2.43703± 0.720238

Charged PSO 0.072522± 0.00072 0.072996± 0.004072 1.02267± 0.074461 1.064± 0.255574

Quantum PSO 0.072109± 0.000685 0.072983± 0.004936 1.02516± 0.06781 1.54548± 0.691352

C4 (frequency: 100, step size: 1000)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.076934± 0.014302 0.0765± 0.01565 1.02344± 0.08496 n/a

Reinit. Back Propagation 0.07673± 0.005086 0.081602± 0.007463 1.01743± 0.092138 n/a

Reinitialising PSO 0.074013± 0.000879 0.074156± 0.00472 0.99061± 0.08843 2.54484± 1.73896

Charged PSO 0.074196± 0.001033 0.074275± 0.004435 0.993286± 0.078749 1.21395± 0.287803

Quantum PSO 0.073903± 0.000713 0.07515± 0.004517 1.00616± 0.080637 1.98942± 1.02498

C5 (frequency: 100, step size: 2500)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.067721± 0.004688 0.069545± 0.004448 1.03044± 0.089939 n/a

Reinit. Back Propagation 0.071498± 0.001767 0.071627± 0.005087 1.01818± 0.097463 n/a

Reinitialising PSO 0.069651± 0.001247 0.070552± 0.004322 0.998287± 0.070525 2.74491± 1.10069

Charged PSO 0.070355± 0.001678 0.071822± 0.00472 1.02021± 0.083689 1.60652± 0.949506

Quantum PSO 0.069229± 0.001408 0.06982± 0.004534 1.00949± 0.07159 2.5932± 1.89665

6.2. CLASSIFICATION PROBLEMS 101

 0

 5

 10

 15

 20

 25

 30

 0 2000 4000 6000 8000 10000 12000 14000

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(a) Swarm diversity results for C1

 0

 5

 10

 15

 20

 25

 0 1000 2000 3000 4000 5000 6000 7000

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(b) Swarm diversity results for C2

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000 1200 1400 1600

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(c) Swarm diversity results for C3

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 100 200 300 400 500 600 700

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(d) Swarm diversity results for C4

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 50 100 150 200 250 300 350

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(e) Swarm diversity results for C5

Figure 6.14: Swarm diversity results for SEA concepts, scenarios C1 to C5

6.2. CLASSIFICATION PROBLEMS 102

 0.066

 0.068

 0.07

 0.072

 0.074

 0.076

 0.078

 0.08

 50 100 500 1000 2500

A
v
e

ra
g

e
 E

rr
o

r

log(Step Size)

Back Propagation
Back Propagation with Reinitialisation

Reinitialising PSO
Charged PSO
Quantum PSO

(a) Average Training Error Results

 0.068

 0.07

 0.072

 0.074

 0.076

 0.078

 0.08

 0.082

 0.084

 0.086

 0.088

 0.09

 50 100 500 1000 2500

A
v
e

ra
g

e
 E

rr
o

r

log(Step Size)

Back Propagation
Back Propagation with Reinitialisation

Reinitialising PSO
Charged PSO
Quantum PSO

(b) Average Generalisation Error Results

Figure 6.15: Average Error results for SEA concepts, scenarios C1 to C5

Table 6.13: SEA Concepts Algorithm Ranking for Scenarios C1 to C5

Algorithm C1 C2 C3 C4 C5 Average Rank

R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG)

BP 4 2.5 4 2.5 4 2.5 3 2.5 1 3 3.2 2.6

RBP 5 5 5 5 5 5 3 5 5 3 4.6 4.6

RPSO 2 2.5 2 2.5 1.5 2.5 3 2.5 3 3 2.3 2.6

CPSO 2 2.5 2 2.5 3 2.5 3 2.5 3 3 2.6 2.6

QPSO 2 2.5 2 2.5 1.5 2.5 3 2.5 3 3 2.3 2.6

including average rank, are reported in Table 6.13. Table 6.13 shows that the dynamic

PSO algorithms performed insignificantly different from one another in terms of ET under

all scenarios except C3, where the CPSO was significantly outperformed by the QPSO

and the RPSO. As already pointed out, the CPSO, due to its dependence on swarm

memory, explores less than the QPSO and the CPSO, which proved inefficient under

semi-abrupt scenario C3. However, no statistically significant difference was observed

between the different dynamic PSOs in terms of EG. Thus, the CPSO compensated

inferior training performance by good generalisation performance. RBP was significantly

outperformed by all other algorithms under scenarios C1 to C3, proving that weight

reinitialisation is not an effective approach under gradual scenarios. However, RBP

6.2. CLASSIFICATION PROBLEMS 103

slightly recovered under more abrupt scenarios C4 and C5, competing with the dynamic

PSOs and BP in terms of either ET or EG. BP was significantly outperformed by the

dynamic PSOs in terms of ET under scenarios C1 to C3, and significantly outperformed

the dynamic PSOs under the abrupt scenario C5. However, no statistically significant

difference in terms of EG was observed between BP and the dynamic PSOs throughout

C1 to C5. Thus, no top performer can be pointed out.

Scenarios D1 to D5: Figures 6.16 and 6.17 show the progression of ET and EG

produced by the different algorithms over time under scenarios D1 to D5. Scenarios D1

to D5 simulated environments of low temporal severity: an environment change happened

every 250 iterations. Thus, the dynamic PSOs and RBP were given enough time to find

a solution before an environment change even in abruptly changing environments, and

any fault to do so can be attributed to the training algorithms instead of the temporal

severity property of the dynamic scenarios considered. The progression of diversity over

time, as illustrated in figure 6.18, shows that the three dynamic PSOs have indeed

converged to a stable diversity level under scenarios D1 to D5, with the exception of

the RPSO, which once again showed divergent behaviour under the gradual scenarios

D1 and D2. Figures 6.16 and 6.17 show that the algorithms exhibited similar trends as

observed under scenarios C1 to C5.

Table 6.14 reports average error values used for statistical comparison of the algo-

rithms, and the corresponding generalisation factor values. The obtained values of ρF

show that RBP was most prone to overfitting compared to the other algorithms consid-

ered under gradual to semi-gradual scenarios (D1 to D3). As already explained, such

behaviour of RBP is due to RBP producing solutions biased towards the decision bound-

ary represented by a larger number of training patterns inside the sliding window.

The small average diversity values reported in Table 6.14 confirm that the dynamic

PSOs had enough time to exploit the found solutions.

6.2. CLASSIFICATION PROBLEMS 104

Table 6.14: SEA Concepts Results for Scenarios D1 to D5

Algorithm

Scenario
D1 (frequency: 250, step size: 50)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.073396± 0.001278 0.072911± 0.00406 1.00329± 0.08632 n/a

Reinit. Back Propagation 0.073543± 0.001375 0.083022± 0.004974 1.07181± 0.072254 n/a

Reinitialising PSO 0.070056± 0.000934 0.070433± 0.004267 0.994687± 0.082058 5.23668± 3.47069

Charged PSO 0.070774± 0.001174 0.070202± 0.003386 1.00667± 0.090573 0.572216± 0.298635

Quantum PSO 0.070851± 0.001382 0.07095± 0.005426 1.00108± 0.099945 0.946202± 0.549186

D2 (frequency: 250, step size: 100)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.07305± 0.001589 0.073786± 0.004696 1.01535± 0.082793 n/a

Reinit. Back Propagation 0.073585± 0.00157 0.082509± 0.006086 1.08168± 0.115276 n/a

Reinitialising PSO 0.070082± 0.000753 0.071375± 0.004665 1.00878± 0.085361 3.97962± 2.72183

Charged PSO 0.070429± 0.000892 0.07152± 0.004626 1.01599± 0.110171 0.579066± 0.26082

Quantum PSO 0.07056± 0.000799 0.07096± 0.00482 1.00341± 0.086559 1.02523± 0.532655

D3 (frequency: 250, step size: 500)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.073626± 0.001459 0.073364± 0.005627 0.993279± 0.072443 n/a

Reinit. Back Propagation 0.074375± 0.005637 0.08254± 0.007563 1.07956± 0.085989 n/a

Reinitialising PSO 0.070449± 0.000807 0.073815± 0.005382 1.04313± 0.092578 2.49692± 1.03507

Charged PSO 0.071185± 0.000702 0.071683± 0.004437 1.01557± 0.078838 0.91497± 0.531918

Quantum PSO 0.070834± 0.000589 0.070073± 0.003652 0.972879± 0.083707 1.33522± 0.584105

D4 (frequency: 250, step size: 1000)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.072973± 0.001673 0.075229± 0.005077 1.05637± 0.101737 n/a

Reinit. Back Propagation 0.073241± 0.002844 0.077941± 0.005381 1.03606± 0.069982 n/a

Reinitialising PSO 0.072299± 0.000698 0.072563± 0.004719 1.01203± 0.095537 2.25533± 0.933986

Charged PSO 0.072747± 0.000734 0.07269± 0.004979 1.00733± 0.104694 0.95723± 0.409318

Quantum PSO 0.072287± 0.000805 0.073863± 0.005888 1.01618± 0.094414 1.60519± 0.900659

D5 (frequency: 250, step size: 2500)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.065106± 0.004135 0.064206± 0.005316 0.988269± 0.08392 n/a

Reinit. Back Propagation 0.071554± 0.010663 0.06982± 0.013026 0.955725± 0.097808 n/a

Reinitialising PSO 0.065198± 0.001192 0.066019± 0.006596 1.01572± 0.129133 3.38417± 2.38783

Charged PSO 0.065742± 0.001147 0.067239± 0.005103 1.02713± 0.095238 1.43895± 0.758732

Quantum PSO 0.065092± 0.000992 0.066777± 0.004757 1.02698± 0.106289 2.76199± 2.56782

6.2. CLASSIFICATION PROBLEMS 105

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0 5000 10000 15000 20000 25000 30000 35000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for D1

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0 5000 10000 15000 20000 25000 30000 35000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for D1

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for D2

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for D2

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0 500 1000 1500 2000 2500 3000 3500 4000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(e) ET for D3

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0 500 1000 1500 2000 2500 3000 3500 4000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(f) EG for D3

Figure 6.16: Training and Generalisation Error results for SEA concepts, scenarios D1 to D3

6.2. CLASSIFICATION PROBLEMS 106

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0 500 1000 1500 2000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for D4

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0 500 1000 1500 2000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for D4

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0 200 400 600 800 1000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for D5

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0 200 400 600 800 1000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for D5

Figure 6.17: Training and Generalisation Error results for SEA concepts, scenarios D4 to D5

Table 6.15: SEA Concepts Algorithm Ranking for Scenarios D1 to D5

Algorithm D1 D2 D3 D4 D5 Average Rank

R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG)

BP 4.5 4 4.5 4 4.5 2.5 4 3 2 3 3.9 3.3

RBP 4.5 5 4.5 5 4.5 5 4 3 5 3 4.5 4.2

RPSO 1 2 2 2 1 2.5 1.5 3 3.5 3 1.8 2.5

CPSO 2.5 2 2 2 3 2.5 4 3 3.5 3 3 2.5

QPSO 2.5 2 2 2 2 2.5 1.5 3 1 3 1.8 2.5

The algorithms were ranked in terms of ET and EG, taking the p-values reported in

Tables 6.7 and 6.8 into account. The obtained ranks, together with average ranks, are

6.2. CLASSIFICATION PROBLEMS 107

 0

 10

 20

 30

 40

 50

 60

 0 5000 10000 15000 20000 25000 30000 35000

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(a) Swarm diversity results for D1

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(b) Swarm diversity results for D2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 500 1000 1500 2000 2500 3000 3500 4000

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(c) Swarm diversity results for D3

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(d) Swarm diversity results for D4

 0

 2

 4

 6

 8

 10

 12

 100 200 300 400 500 600 700 800 900

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(e) Swarm diversity results for D5

Figure 6.18: Swarm diversity results for SEA concepts, scenarios D1 to D5

6.2. CLASSIFICATION PROBLEMS 108

listed in Table 6.15. Table 6.15 shows that all three dynamic PSOs, given enough time to

converge, managed to significantly outperform both BP and RBP under gradual scenarios

D1 and D2. The dynamic PSOs also outperformed both BP and RBP in terms of ET

under scenarios D3 and D4. However, no statistical difference was observed between

the corresponding values of EG. Thus, BP caught up with the dynamic PSOs under

semi-abrupt scenarios in terms of generalisation. Table 6.15 also shows that the CPSO

was outperformed by the other two dynamic PSOs in terms of training, but generalised

equally well.

The average ranks reported in Table 6.7 show that the three dynamic PSOs outper-

formed both BP and RBP under scenarios D1 to D5. Taking ET into account, the QPSO

and the RPSO can be considered as the top performers.

All scenarios: The average training errors produced by the five algorithms under the

20 different dynamic scenarios are illustrated in Figure 6.19, and the average generalisa-

tion errors are illustrated in Figure 6.20.

Figure 6.19 illustrates that RBP performed inferior to all other algorithms in terms

of ET under most scenarios considered. The least temporally severe scenarios D1 to

D4 were the only exception: the training performance of RBP did not differ from the

training performance of BP under D1 to D4, since RBP had enough time to converge

on a similarly good solution as BP. However, Figure 6.20 shows that the low ET values

obtained by RBP under D1 to D4 were not supported by correspondingly low EG values,

thus RBP was prone to overfitting. Figures 6.19 and 6.20 illustrate that the dynamic

PSOs outperformed BP and RBP under gradual scenarios of low temporal severity in

terms of both ET and EG, and were outperformed by BP under abrupt scenarios of

high temporal severity. The dynamic PSOs tracked gradual changes better than BP

due to the population-based principle which facilitates exploration. However, the same

population-based principle made the dynamic PSOs converge slower than BP, which

6.2. CLASSIFICATION PROBLEMS 109

 10

 50

 100

 250 50

 100

 500

 1000

 2500

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

A
v
e

ra
g

e
 E

rr
o

r

Back Propagation
Back Propagation with Reinitialisation

Reinitialising PSO
Charged PSO
Quantum PSO

log(Frequency of Change) log(Step Size)

A
v
e

ra
g

e
 E

rr
o

r

Figure 6.19: Average Training Error Results for SEA Concepts

made BP more effective than the dynamic PSOs under abrupt changes and changes of

high temporal severity. The influence of temporal severity on algorithm performance

increased as the spatial severity increased. This can be explained by the fact that, under

gradual changes, all algorithms successfully adapted to the changes in a small number

of iterations. Abrupt changes, on the other hand, required more updates to be made

to the current model, which required more algorithm iterations. Thus, all considered

algorithms struggled under scenarios of frequent to moderately frequent abrupt changes.

Table 6.16 summarises the average ranks obtained under scenarios A1 to A5, B1 to

B5, C1 to C5, and D1 to D5, and provides the final average ranks. Table 6.16 shows

that the overall top performers in terms of ET are the RPSO and the QPSO, and the

overall top performers in terms of EG are the CPSO and the QPSO. Thus, the QPSO

6.2. CLASSIFICATION PROBLEMS 110

 10

 50

 100

 250 50

 100

 500

 1000

 2500

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

A
v
e

ra
g

e
 E

rr
o

r

Back Propagation
Back Propagation with Reinitialisation

Reinitialising PSO
Charged PSO
Quantum PSO

log(Frequency of Change) log(Step Size)

A
v
e

ra
g

e
 E

rr
o

r

Figure 6.20: Average Generalisation Error Results for SEA Concepts

Table 6.16: SEA Concepts Algorithm Ranking for Scenarios A to D
Algorithm Average R(A) Average R(B) Average R(C) Average R(D) Average Rank

R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG)

BP 2.1 2 2.5 2.5 3.2 2.6 3.9 3.3 2.925 2.6

RBP 5 4.7 5 5 4.6 4.6 4.5 4.2 4.775 4.625

RPSO 2.4 3.1 2.3 2.5 2.3 2.6 1.8 2.5 2.2 2.675

CPSO 3.1 2.6 2.9 2.5 2.6 2.6 3 2.5 2.9 2.55

QPSO 2.4 2.6 2.3 2.5 2.3 2.6 1.8 2.5 2.2 2.55

outperformed both the RPSO and the CPSO in terms of either ET or EG. Therefore,

the QPSO can be considered as the overall top performer for the SEA concepts problem.

The QPSO combines the memory capacity (exploitation) of the CPSO with the partial

reinitialisation (exploration) of the RPSO, which makes the QPSO the most versatile

6.2. CLASSIFICATION PROBLEMS 111

of the three dynamic PSOs considered in this study. Table 6.16 shows that the worst

performance was exhibited by RBP, indicating that a complete restart of the algorithm

is not an efficient approach on a simple dynamic problem such as the SEA concepts,

and algorithms that adapt to environment changes without a complete restart should be

preferred.

6.2.2 Moving Hyperplane

This artificially generated classification problem used a 10-dimensional hyperplane to

separate two classes.

Problem Definition

The hyperplane is given by
n∑
l=1

alxl + c = a0,

where n is the number of dimensions over which the hyperplane is defined, al for l =

1, 2, . . . , n are linear coefficients, and c is a constant. All points satisfying
∑n

l=1 alxl+c >

a0 are labelled as class A, and all points satisfying
∑n

l=1 alxl + c ≤ a0 as class B. For

the purpose of this study, n was set to 10, yielding a 10-dimensional hyperplane. The

linear coefficients and c are real numbers chosen from the interval [0, 1]. A data set was

generated according to the procedure described in Section 6.1.2, where the number of

data points, M , was set to 1000, and the number of environment changes, N , was set to

10. A set of M 10-dimensional points, {~x1, ~x2, . . . , ~x1000}, was randomly generated such

that ~xl ∈ [0, 1]10, l = 1, . . . , 1000. The hyperplane was generated N times by uniformly

randomising its coefficients, {a1, a2, . . . , aN} ∈ [0, 1], the constant c ∈ [0, 1] and the

threshold value, a0 ∈ [0, 1]. Target classification of M patterns was updated N times,

and every time the updated patterns were appended to the data set, yielding a data set

of 11 000 patterns. The size of the sliding window was set to 1000, equal to M .

6.2. CLASSIFICATION PROBLEMS 112

Table 6.17: Dynamic Scenarios considered for the Moving Hyperplane

F

S
50 100 500 1000

10 A1 A2 A3 A4

50 B1 B2 B3 B4

100 C1 C2 C3 C4

250 D1 D2 D3 D4

A NN with 10 input units, 6 hidden units (as listed in Table 6.2), and a single output

unit was used for the moving hyperplane problem. According to equation (6.3), the total

number of weights for this problem was equal to 73. Thus, the dimensionality of the

moving hyperplane problem was 73.

The moving hyperplane problem was considered under sixteen different dynamic sce-

narios. The chosen scenarios simulated different combinations of spatial and temporal

severity, providing representative coverage of different dynamic environment types. The

technique of simulating dynamic scenarios applied in this study was described in Section

6.1.2. Parameter settings corresponding to each dynamic scenario are listed in Table 6.17.

The four different values for the frequency of change F were {10, 50, 100, 250}, where a

value of 10 results in a scenario of high temporal severity (i.e. frequent changes), and a

value of 250 results in a scenario of low temporal severity (i.e. infrequent changes). The

four different values for the step size S were {50, 100, 500, 1000}, where a step size of 50

results in a scenario of low spatial severity (i.e. gradual changes), and a value of 1000

results in a scenario of high spatial severity (i.e. abrupt changes).

6.2. CLASSIFICATION PROBLEMS 113

Table 6.18: Optimal Parameters for the Moving Hyperplane problem

Algorithm Parameters

Back Propagation Weight Interval Learning Rate Momentum

[−2, 2] 0.1 0.7

Reinitialising Weight Interval Learning Rate Momentum

Back Propagation [−2, 2] 0.1 0.7

Reinitialising PSO Weight Interval Vmax Swarm Size Reinitialisation Ratio

[−1, 1] 0.5 30 0.5

Charged PSO Weight Interval Vmax Swarm Size Charge Magnitude

[−2, 2] 0.5 50 20

Quantum PSO Weight Interval Vmax Swarm Size Cloud Radius

[−1, 1] 0.1 30 1

Parameter Optimisation

All algorithm parameters were optimised according to the procedure described in Sec-

tion 6.1.3. Corresponding optimal parameters discovered are listed in Table 6.18.

Analysis of Empirical Data

The number of iterations required to traverse the entire data set under every dynamic

scenario considered was calculated using equation (6.4). As stated in Section 6.1.1, the

two-tailed Mann-Whitney U test was used to determine whether the difference between

algorithm performance was of any statistical significance. P-values corresponding to

training error comparisons between the algorithms are reported in Table 6.20. P-values

corresponding to generalisation error comparisons between the algorithms are reported

6.2. CLASSIFICATION PROBLEMS 114

in Table 6.21. The rest of this section is dedicated to the analysis of results obtained for

the moving hyperplane problem.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 200 400 600 800 1000 1200 1400 1600 1800

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for A1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 200 400 600 800 1000 1200 1400 1600 1800

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for A1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 100 200 300 400 500 600 700 800 900

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for A2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100 200 300 400 500 600 700 800 900

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for A2

Figure 6.21: Training and Generalisation Error results for Moving Hyperplane, scenarios A1

to A2

Scenarios A1 to A4: Scenarios A1 to A4 simulated dynamic environments of high

temporal severity, F = 10. Figures 6.21 and 6.22 illustrate the progression of ET and

EG over time as obtained by the five algorithms considered. Figure 6.21 illustrates

that under gradual scenarios A1 and A2, the EG error profile of BP peaked after every

environment change, as opposed to the three dynamic PSOs, which produced smooth

6.2. CLASSIFICATION PROBLEMS 115

EG error profiles. Changes simulated under A1 and A2 were gradual, implying that little

new data was added to the sliding window after every change, and the new optimum

was expected to be in the near proximity of the old optimum. The population-based

principle allowed the dynamic PSOs to promptly evaluate the area covered by the swarm,

and immediately find a more up-to-date solution amongst the particles. Hill-climbing

BP, on the other hand, required some iterations to move down the slope of the objective

function and thus update the solution.

Figure 6.21 also illustrates that complete reinitialisation of weights carried out by

RBP did not prove effective under gradual scenarios: ET produced by RBP fluctuated

severely, and RBP’s EG was often much worse than the corresponding ET . As shown

in [38, 55], the main geometrical features of the NN error surfaces are large plateaus,

sometimes asymptotically tending towards infinity, as well as step-like transitions, narrow

valleys, and steep ridges. Complete reinitialisation of weights might have placed the

algorithm onto one of the unfruitful regions of the search space, thus causing RBP

to perform poorly. In addition to the danger of being placed in an unfruitful search

space region after reinitialisation, RBP had to deal with the possibility of encountering

conflicting boundaries in the sliding window. The lack of memory of previously learned

information made RBP less apt at discerning between new and stale data than the other

algorithms considered.

The supposition that RBP exhibited sensitivity to stale data is confirmed by the

fact that RBP’s performance suddenly improved under the most abrupt scenario A4, as

figures 6.22(c) and 6.22(d) illustrate. Scenario A4 replaced the entire contents of the

sliding window after every environment change, thus no stale data was present in either

the training or the generalisation set used by the algorithms.

Figure 6.22 illustrates that both BP and RBP showed better performance under

abrupt scenarios. Under the most abrupt scenario A4, both BP and RBP adapted to

drastic changes better than the dynamic PSOs. Dynamic PSOs struggled to adapt to

6.2. CLASSIFICATION PROBLEMS 116

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 20 40 60 80 100 120 140 160 180

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for A3

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 20 40 60 80 100 120 140 160 180

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for A3

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 10 20 30 40 50 60 70 80 90

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for A4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70 80 90

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for A4

Figure 6.22: Training and Generalisation Error results for Moving Hyperplane, scenarios A3

to A4

abrupt changes under high temporal frequency due to the slow convergence speed of

these algorithms. Swarm diversity profiles depicted in Figure 6.23 illustrate that swarm

diversity of the three dynamic PSOs considered increased from A1 to A4, indicating

that the swarms did not have enough time between environment changes to converge to

a stable diversity level.

Table 6.19 summarises the collective mean fitness results, generalisation factor values,

and average swarm diversity (where applicable) obtained for scenarios A1 to A4. The

values of ρF in Table 6.19 indicate that BP showed no signs of overfitting across A1 to

6.2. CLASSIFICATION PROBLEMS 117

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 200 400 600 800 1000 1200 1400 1600 1800

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(a) Average Diversity Results for Scenario A1

 3

 4

 5

 6

 7

 8

 9

 10

 0 100 200 300 400 500 600 700 800 900

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(b) Average Diversity Results for Scenario A2

 4

 5

 6

 7

 8

 9

 10

 11

 0 20 40 60 80 100 120 140 160 180

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(c) Average Diversity Results for Scenario A3

 6

 7

 8

 9

 10

 11

 12

 13

 10 20 30 40 50 60 70 80 90

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(d) Average Diversity Results for Scenario A4

Figure 6.23: Average Diversity results for Moving Hyperplane, scenarios A1 to A4

A4 (ρF < 1), and RBP overfitted under all scenarios except A4. Since A4 is the only

scenario which introduced no conflicting boundaries, it can be concluded that RBP failed

to generalise well for scenarios with conflicting boundaries. As ρF in Table 6.19 shows,

the dynamic PSOs exhibited overfitting under all scenarios considered (ρF > 1). It was

shown in a recent study by van Wyk and Engelbrecht [119] that the use of bounded

activation functions such as the sigmoid function within the neurons of a NN can be a

cause of divergent swarm behaviour due to uncontrollable increase of particle velocity,

and, subsequently, overfitting. Although Vmax was used to clamp particle velocities

in case of the moving hyperplane problem, it was illustrated in Figure 6.23 that the

6.2. CLASSIFICATION PROBLEMS 118

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 50 100 500 1000

A
v
e

ra
g

e
 E

rr
o

r

log(Step Size)

BP
RBP

RPSO
CPSO
QPSO

(a) Average Training Error Results

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 50 100 500 1000

A
v
e

ra
g

e
 E

rr
o

r

log(Step Size)

BP
RBP

RPSO
CPSO
QPSO

(b) Average Generalisation Error Results

Figure 6.24: Average Error results for Moving Hyperplane, scenarios A1 to A4

swarms did not converge to a stable diversity level under scenarios A1 to A4, thus non-

convergent behaviour can not be excluded from the possible reasons for the overfitting

observed. Average diversity values reported in Table 6.19 confirm that swarm diversity

increased with the increase of abruptness.

Figure 6.24 summarises the collective mean fitness results obtained by the algorithms

over scenarios A1 to A4. Figure 6.24(a) illustrates that the dynamic PSOs significantly

outperformed BP in terms of ET under scenarios A1 to A3 (refer to Table 6.20 for

supporting p-values). However, as Figure 6.24(b) illustrates, BP was outperformed by

the dynamic PSOs in terms of EG only under gradual scenarios A1 and A2 (refer to Table

6.21 for supporting p-values). RBP obtained good ET results, significantly outperforming

BP on all scenarios except A4, and significantly outperforming the dynamic PSOs under

abrupt scenarios A3 and A4 (see Table 6.20). However, RBP failed to support good

ET results by equally good EG results on all scenarios except A4, as Figure 6.24(b)

illustrates.

Figure 6.24 illustrates that the performance of dynamic PSOs deteriorated from A1

to A3, and improved under scenario A4. Deteriorating performance of the dynamic

PSOs from A1 to A3 is attributed to high temporal severity of scenarios A1 to A4,

6.2. CLASSIFICATION PROBLEMS 119

Table 6.19: Moving Hyperplane Results for Scenarios A1 to A4

Algorithm

Scenario
A1 (frequency: 10, step size: 50)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.155488± 0.002328 0.132911± 0.004695 0.916668± 0.042586 n/a

Reinit. Back Propagation 0.114547± 0.001191 0.237748± 0.004665 2.06725± 0.068096 n/a

Reinitialising PSO 0.112531± 0.000872 0.117451± 0.003418 1.03508± 0.048711 6.40206± 0.265697

Charged PSO 0.107024± 0.001584 0.110943± 0.004261 1.02696± 0.043137 5.8464± 0.360262

Quantum PSO 0.108173± 0.00201 0.112485± 0.003668 1.03851± 0.036693 4.73568± 0.268908

A2 (frequency: 10, step size: 100)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.156778± 0.002442 0.138453± 0.005059 0.945204± 0.045852 n/a

Reinit. Back Propagation 0.113846± 0.001363 0.238293± 0.006099 2.05242± 0.05134 n/a

Reinitialising PSO 0.11839± 0.001208 0.123117± 0.004598 1.03222± 0.051763 6.38455± 0.256964

Charged PSO 0.111091± 0.001421 0.117111± 0.004598 1.04786± 0.04324 6.37904± 0.354355

Quantum PSO 0.113791± 0.001672 0.117842± 0.004111 1.02632± 0.049379 5.29956± 0.295893

A3 (frequency: 10, step size: 500)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.13741± 0.001797 0.113383± 0.002645 0.888158± 0.05447 n/a

Reinit. Back Propagation 0.103456± 0.002951 0.175411± 0.006053 1.53968± 0.063557 n/a

Reinitialising PSO 0.134078± 0.003818 0.146382± 0.009233 1.07155± 0.067244 7.2297± 0.237584

Charged PSO 0.12389± 0.0039 0.132682± 0.005736 1.05531± 0.063246 8.32977± 0.602811

Quantum PSO 0.129902± 0.005268 0.138235± 0.007295 1.05146± 0.047754 7.07132± 0.507922

A4 (frequency: 10, step size: 1000)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.033327± 0.003651 0.029691± 0.004585 0.934991± 0.132065 n/a

Reinit. Back Propagation 0.08689± 0.005457 0.083383± 0.00689 0.936677± 0.076462 n/a

Reinitialising PSO 0.101326± 0.005489 0.188668± 0.053221 1.59503± 0.31717 7.83715± 0.477431

Charged PSO 0.106926± 0.008617 0.121909± 0.010094 1.09468± 0.107971 10.2516± 0.647508

Quantum PSO 0.121284± 0.01013 0.137007± 0.012799 1.10247± 0.118956 8.42618± 0.666673

6.2. CLASSIFICATION PROBLEMS 120

Table 6.20: Mann-Whitney U p-values obtained for the average training error comparisons

on the Moving Hyperplane problem with reference to the null hypothesis that the means of the

compared samples are equal at the significance level of 95%
BP vs RBP BP vs RPSO

1 2 3 4 1 2 3 4

A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

BP vs CPSO BP vs QPSO

1 2 3 4 1 2 3 4

A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RBP vs RPSO RBP vs CPSO

1 2 3 4 1 2 3 4

A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

B 0.0001 0.0001 0.0001 0.000199 0.0001 0.0001 0.0001 0.0001

C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

D 0.0001 0.0001 0.0001 0.000774 0.0001 0.0001 0.0001 0.0001

RBP vs QPSO RPSO vs CPSO

1 2 3 4 1 2 3 4

A 0.0001 0.970925 0.0001 0.0001 0.0001 0.0001 0.0001 0.003358

B 0.0001 0.0001 0.0001 0.0001 0.0001 0.552109 0.0001 0.0001

C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.002107 0.0001

RPSO vs QPSO CPSO vs QPSO

1 2 3 4 1 2 3 4

A 0.0001 0.0001 0.00082 0.0001 0.027919 0.0001 0.0001 0.0001

B 0.0001 0.082354 0.0001 0.0001 0.299565 0.063239 0.0001 0.000213

C 0.0001 0.0001 0.0001 0.0001 0.003034 0.001794 0.0001 0.342795

D 0.0001 0.0001 0.52295 0.0001 0.004311 0.393843 0.063242 0.038533

6.2. CLASSIFICATION PROBLEMS 121

Table 6.21: Mann-Whitney U p-values obtained for the average generalisation error compar-

isons on the Moving Hyperplane problem with reference to the null hypothesis that the means

of the compared samples are equal at the significance level of 95%
BP vs RBP BP vs RPSO

1 2 3 4 1 2 3 4

A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.708548 0.0001

C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

BP vs CPSO BP vs QPSO

1 2 3 4 1 2 3 4

A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

C 0.0001 0.0001 0.0001 0.0001 0.006047 0.0001 0.0001 0.0001

D 0.090617 0.644024 0.0001 0.0001 0.003358 0.889553 0.0001 0.0001

RBP vs RPSO RBP vs CPSO

1 2 3 4 1 2 3 4

A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

B 0.0001 0.0001 0.0001 0.959278 0.0001 0.0001 0.0001 0.0001

C 0.0001 0.0001 0.0001 0.820526 0.0001 0.0001 0.0001 0.0001

D 0.0001 0.0001 0.0001 0.146226 0.0001 0.0001 0.0001 0.0001

RBP vs QPSO RPSO vs CPSO

1 2 3 4 1 2 3 4

A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

B 0.0001 0.0001 0.0001 0.0001 0.0001 0.775176 0.0001 0.0001

C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.218715 0.0001

RPSO vs QPSO CPSO vs QPSO

1 2 3 4 1 2 3 4

A 0.0001 0.0001 0.000332 0.0001 0.168039 0.503955 0.002468 0.0001

B 0.0001 0.889553 0.0001 0.000175 0.633505 0.62306 0.044588 0.001092

C 0.0001 0.0001 0.007297 0.0001 0.044588 0.002599 0.001222 0.675994

D 0.0001 0.0001 0.797771 0.0001 0.197283 0.633505 0.053247 0.12295

6.2. CLASSIFICATION PROBLEMS 122

Table 6.22: Moving Hyperplane Algorithm Ranking for Scenarios A1 to A4
Algorithm A1 A2 A3 A4 Average Rank

R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG)

BP 5 4 5 4 5 1 1 1 4 2.5

RBP 4 5 2.5 5 1 5 2 2 2.375 4.25

RPSO 3 3 4 3 4 4 3 5 3.5 3.75

CPSO 1 1.5 1 1.5 2 2 4 3 2 2

QPSO 2 1.5 2.5 1.5 3 3 5 4 3.125 2.5

which did not allow the dynamic PSOs enough iterations to exploit found solutions.

The performances of BP and RBP improved from A1 to A4, and improvement from A3

to A4 was visibly drastic. This performance improvement observed for all algorithms

considered under scenario A4 can be explained by the fact that the step size of 1000 was

equal to the window size, thus every time the environment changed, all patterns inside

the window were replaced. A complete replacement of patterns in the sliding window

does not allow for conflicting decision boundaries, and the algorithms are presented with

up-to-date data only. Hence, the learning task is simplified.

The algorithms were ranked based on the ET and EG values reported in Table 6.19,

taking the p-values in Tables 6.20 and 6.21 into account. The obtained ranks, together

with average ranks, are reported in Table 6.22. Table 6.22 shows that, out of the three dy-

namic PSOs, the CPSO consistently obtained the highest rank. The CPSO also obtained

the highest average rank over scenarios A1 to A4, compared to the other algorithms con-

sidered. The CPSO, as opposed to the RPSO and the QPSO, never reinitialises particles,

thus the swarm memory is preserved after environment changes. Larger memory capac-

ity made the CPSO superior to the other dynamic PSOs under frequent environment

changes exhibited by scenarios A1 to A4.

Scenarios B1 to B4: Figures 6.25 and 6.26 illustrate the progression of ET and EG

over time as obtained by the algorithms under scenarios B1 to B4. Similar trends as were

6.2. CLASSIFICATION PROBLEMS 123

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for B1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for B1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for B2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for B2

Figure 6.25: Training and Generalisation Error results for Moving Hyperplane, scenarios B1

to B2

observed for A1 to A4 can be observed here: RBP once again severely fluctuated in terms

of ET under gradual scenarios B1 and B2, and did not generalise well under B1 to B3. In

fact, a closer examination of Figure 6.26(b) reveals that between environment changes,

RBP’s EG often increased while the EG produced by the other algorithms decreased.

A visual comparison of RBP’s ET profile to the RBP’s EG profile illustrated in figures

6.26(a) and 6.26(b), respectively, reveals that RBP’s EG sometimes increased while the

RBP’s ET decreased. An increase in EG with the simultaneous decrease in ET is a

typical sign of overfitting [32]. Scenarios B1 to B3 did not replace the entire contents of

6.2. CLASSIFICATION PROBLEMS 124

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 100 200 300 400 500 600 700 800 900

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for B3

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 100 200 300 400 500 600 700 800 900

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for B3

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 50 100 150 200 250 300 350 400 450

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for B4

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 50 100 150 200 250 300 350 400 450

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for B4

Figure 6.26: Training and Generalisation Error results for Moving Hyperplane, scenarios B3

to B4

the sliding window, since the step sizes of these scenarios were not equal to the sliding

window size. Therefore, the sliding window contained both up-to-date and obsolete data

most of the time, and the obsolete data confused RBP and caused overfitting.

The dynamic PSOs performed better under B1 to B4 than under A1 to A4, as figures

6.25 and 6.26 illustrate. Given more time to converge around a solution (F = 50), the

dynamic PSOs managed to exploit better than BP and generalise better than both BP

and RBP under scenarios B1 to B3. The swarm diversity graphs in Figure 6.27 confirm

that the dynamic PSOs converged to smaller areas between changes under scenarios B1

6.2. CLASSIFICATION PROBLEMS 125

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(a) Average Diversity Results for Scenario B1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(b) Average Diversity Results for Scenario B2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 100 200 300 400 500 600 700 800 900

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(c) Average Diversity Results for Scenario B3

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 50 100 150 200 250 300 350 400 450

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(d) Average Diversity Results for Scenario B4

Figure 6.27: Average Diversity results for Moving Hyperplane, scenarios B1 to B4

to B4 than under A1 to A4.

The ability of the dynamic PSOs to perform well for environments where conflicting

boundaries may be present indicates that the dynamic PSOs are more tolerant to obsolete

data than both BP and RBP. Hence, the dynamic PSOs may show better performance

than BP and RBP on more complex NN error surfaces.

For the sake of a sound statistical comparison, collective mean ET and EG values for

scenarios B1 to B4 were calculated, and are reported in Table 6.23, together with average

ρF and average swarm diversity (where applicable). The ρF values confirm that RBP

exhibited overfitting under scenarios B1 to B4. BP was not susceptible to overfitting

6.2. CLASSIFICATION PROBLEMS 126

Table 6.23: Moving Hyperplane Results for Scenarios B1 to B4

Algorithm

Scenario
B1 (frequency: 50, step size: 50)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.1504± 0.00209 0.136252± 0.00552 0.971071± 0.06629 n/a

Reinit. Back Propagation 0.067478± 0.000596 0.221859± 0.005365 3.38495± 0.162336 n/a

Reinitialising PSO 0.101187± 0.00147 0.10774± 0.003387 1.07572± 0.059796 4.61891± 0.548936

Charged PSO 0.107609± 0.004842 0.116852± 0.006497 1.11021± 0.062296 5.09738± 0.397126

Quantum PSO 0.108914± 0.004429 0.11807± 0.006523 1.0803± 0.049455 4.13723± 0.27412

B2 (frequency: 50, step size: 100)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.150329± 0.001864 0.132623± 0.005332 0.929454± 0.054669 n/a

Reinit. Back Propagation 0.067098± 0.000852 0.220962± 0.006585 3.33462± 0.16363 n/a

Reinitialising PSO 0.103442± 0.001701 0.108933± 0.003523 1.0372± 0.0554 4.60983± 0.30018

Charged PSO 0.103015± 0.002516 0.109161± 0.004026 1.06099± 0.046747 5.45385± 0.35963

Quantum PSO 0.104123± 0.002512 0.108856± 0.003687 1.04081± 0.058347 4.35616± 0.350523

B3 (frequency: 50, step size: 500)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.131567± 0.001894 0.100828± 0.003609 0.814363± 0.038969 n/a

Reinit. Back Propagation 0.056117± 0.001308 0.14698± 0.005182 2.31657± 0.111655 n/a

Reinitialising PSO 0.095947± 0.001563 0.101191± 0.0039 1.04492± 0.056886 5.28544± 0.17348

Charged PSO 0.091132± 0.001667 0.094755± 0.003897 1.04192± 0.054619 7.23212± 0.701655

Quantum PSO 0.093299± 0.001708 0.09686± 0.003581 1.02721± 0.058822 5.77949± 0.302558

B4 (frequency: 50, step size: 1000)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.011053± 0.000871 0.013329± 0.001963 1.17842± 0.16693 n/a

Reinit. Back Propagation 0.04116± 0.001592 0.042341± 0.003982 1.0141± 0.084281 n/a

Reinitialising PSO 0.038352± 0.003989 0.049599± 0.022523 1.18155± 0.337356 5.5384± 0.456901

Charged PSO 0.029461± 0.003598 0.031942± 0.004398 1.04907± 0.112993 7.44741± 0.943585

Quantum PSO 0.032953± 0.004226 0.03649± 0.005777 1.08903± 0.154251 5.85468± 0.384186

6.2. CLASSIFICATION PROBLEMS 127

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 50 100 500 1000

A
v
e

ra
g

e
 E

rr
o

r

log(Step Size)

BP
RBP

RPSO
CPSO
QPSO

(a) Average Training Error Results

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 50 100 500 1000

A
v
e

ra
g

e
 E

rr
o

r

log(Step Size)

BP
RBP

RPSO
CPSO
QPSO

(b) Average Generalisation Error Results

Figure 6.28: Average Error results for Moving Hyperplane, scenarios B1 to B4

under B1 to B3 (ρF < 1), but produced ρF > 1 under B4. Since B4 was the easiest

dynamic scenario for BP to optimise, BP required less than 50 iterations to find a good

solution. Training for 50 iterations caused BP to train for too long and thus overfit the

data. All dynamic PSOs exhibited minor overfitting under B1 to B4.

Average swarm diversity values in Table 6.23 show that swarm diversity increased as

the spatial severity increased from B1 to B4, but not as severely as under A1 to A4. As

Figure 6.27 illustrates, the dynamic PSOs managed to converge to smaller areas around

a solution under scenarios B1 to B4, thus the swarm diversity fluctuated less severely

between environment changes.

Figure 6.28 illustrates the collective mean ET and EG obtained by the algorithms

under B1 to B4. Figure 6.28 illustrates that, under a change frequency of 50 iterations,

performance of all algorithms improved in terms of both ET and EG as the spatial severity

increased. This can be explained by the fact that with the increasing abruptness of

changes, the problem of conflicting boundaries became less severe, since the data inside

the sliding window was refreshed faster (i.e. larger blocks of obsolete data were removed

whenever a change occurred).

Figure 6.28 once again illustrates that under scenarios where conflicting boundaries

6.2. CLASSIFICATION PROBLEMS 128

may have been present, RBP significantly outperformed all algorithms in terms of ET

and was significantly outperformed by all algorithms in terms of EG (see Tables 6.20 and

6.21 for supporting p-values), proving a complete reinitialisation of NN weights to be an

inefficient approach for the moving hyperplane problem.

As Figure 6.28 illustrates, BP was significantly outperformed by the dynamic PSOs in

terms of ET and EG under scenarios B1 to B3 (see Tables 6.20 and 6.21 for supporting p-

values). Under scenario B3, the gap between EG produced by BP and the dynamic PSOs

became narrower, and, although BP was still significantly outperformed by the CPSO

and the QPSO, no statistically significant difference in terms of EG was observed between

BP and the RPSO. Under the most abrupt scenario B4, BP significantly outperformed all

the other algorithms in terms of both ET and EG. Thus, the dynamic PSOs showed better

performance under gradual scenarios and scenarios where conflicting decision boundaries

may have been present, and BP was the top performer under abrupt changes with no

conflicting boundaries.

Figure 6.28 also illustrates that the RPSO significantly outperformed the other two

dynamic PSOs under scenario B1, and was significantly outperformed by the CPSO and

the QPSO under abrupt scenarios B3 and B4 (see Tables 6.20 and 6.21 for supporting

p-values). As Figure 6.27 illustrated, the RPSO explored better than both the CPSO

and the QPSO under B1, and, as the abruptness of the changes increased from B1 to

B4 and the problem of conflicting boundaries became less severe, the RPSO converged

to smaller areas around a solution, eventually exploring less than the other two dynamic

PSOs under abrupt scenarios B3 and B4. Decreases in swarm diversity and consequently

deteriorating exploration ability caused the RPSO to perform significantly worse than

the CPSO and the QPSO under B3 and B4. The CPSO, on the other hand, as Figure

6.27 illustrates, maintained the highest diversity level out of the three dynamic PSOs

considered over scenarios B2 to B4. Therefore, the CPSO managed to outperform both

the RPSO and the QPSO under abrupt scenarios B3 and B4, where exploration was

6.2. CLASSIFICATION PROBLEMS 129

Table 6.24: Moving Hyperplane Algorithm Ranking for Scenarios B1 to B4
Algorithm B1 B2 B3 B4 Average Rank

R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG)

BP 5 4 5 4 5 3.5 1 1 4 3.125

RBP 1 5 1 5 1 5 5 4.5 2 4.875

RPSO 2 1 3 2 4 3.5 4 4.5 3.25 2.75

CPSO 3.5 2.5 3 2 2 1 2 2 2.625 1.875

QPSO 3.5 2.5 3 2 3 2 3 3 3.125 2.375

most crucial.

The algorithms were ranked in terms of ET and EG (taking the p-values in Tables

6.20 and 6.21 into account), and the obtained ranks together with the average ranks

are reported in Table 6.24. The average rank confirms that RBP came first in terms

of training, but obtained the lowest EG rank at the same time. The CPSO obtained

the second-highest average rank after RBP, and the highest average rank in terms of

EG. Thus, the CPSO can be considered as the top performer among the algorithms

considered for scenarios B1 to B4.

Scenarios C1 to C4: Figures 6.29 and 6.30 illustrate the ET and EG profiles over time

as obtained by the five training algorithms considered under scenarios C1 to C4. Scenar-

ios C1 to C4 simulated changes of a moderately low temporal severity (F = 100), thus

the algorithms were given more time to refine a solution between environment changes.

Figure 6.29 illustrates that the performance of the CPSO and the QPSO deteriorated

under gradual scenarios C1 and C2 compared to B1 and B2 (illustrated in Figure 6.25):

both ET and EG under C1 and C2 peaked higher after environment changes than under

B1 and B2. Performance deterioration of the CPSO and the QPSO under gradual sce-

narios with a decrease in temporal severity can be attributed to overfitting behaviour:

since the gradual changes were easy to adjust to for these dynamic PSOs, the extra

iterations between environment changes were used to refine an already good solution,

6.2. CLASSIFICATION PROBLEMS 130

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for C1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for C1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for C2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for C2

Figure 6.29: Training and Generalisation Error results for Moving Hyperplane, scenarios C1

to C2

thus causing the dynamic PSOs to train for too long and overfit the training data. The

ρF values in Table 6.25 confirm that the dynamic PSOs exhibited overfitting under C1

and C2. Figure 6.29 illustrates that the RPSO was an exception to this rule and did

not significantly deteriorate under gradual scenarios C1 and C2: the RPSO is the least

memory-dependent of the three dynamic PSOs considered, because RPSO reinitialises

a percentage of randomly selected particles, not sparing the neighbourhood best parti-

cles if these particles happened to be chosen for reinitialisation. Weaker dependence on

memory helped the RPSO to promptly “unlearn” the obsolete information after every

6.2. CLASSIFICATION PROBLEMS 131

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 200 400 600 800 1000 1200 1400 1600 1800

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for C3

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 200 400 600 800 1000 1200 1400 1600 1800

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for C3

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 100 200 300 400 500 600 700 800 900

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for C4

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 100 200 300 400 500 600 700 800 900

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for C4

Figure 6.30: Training and Generalisation Error results for Moving Hyperplane, scenarios C3

to C4

environment change.

However, under abrupt scenarios C3 and C4, as Figure 6.30 illustrates, the dynamic

PSOs performed better than under B3 and B4 (refer to Figure 6.26): a lower minimum

ET and EG were reached by the dynamic PSOs. The abrupt scenarios required the

dynamic PSOs to move further away from the previous solution than in case of gradual

scenarios, thus the extra iterations between environment changes offered by F = 100

allowed the dynamic PSOs to move closer to the new optimum than for F = 50.

Table 6.25 reports the collective mean ET and EG values obtained by the algorithms

6.2. CLASSIFICATION PROBLEMS 132

for C1 to C4. ET and EG values produced by BP and RBP indicate that the performance

of these algorithms has slightly improved compared to results obtained for B1 to B4

(reported in Table 6.23). Table 6.25 also lists the average ρF obtained by the algorithms

for C1 to C4, as well as the average swarm diversity (where applicable). The ρF values

obtained by the dynamic PSOs for C1 to C4 increased compared to ρF values for B1

to B4. This again indicates that the dynamic PSOs were susceptible to overfitting, and

the susceptibility to overfitting increased together with the decrease in change frequency.

Hence, training the NN with dynamic PSO for too long is a likely cause of dynamic PSO

overfitting. A unique characteristic of the dynamic PSOs compared to a standard PSO

is that the dynamic PSOs maintain diversity. Therefore, the dynamic PSOs never cease

to search for better and more up-to-date solutions than the current solution. However,

when the changes occur infrequently, the constant search for a better solution causes

the dynamic PSOs to fit the training data too closely, having a negative effect on the

generalisation ability of the trained NN.

The ρF values in Table 6.25 show that RBP overfitted severely under all scenarios

where conflicting decision boundaries may have been present, indicating that RBP can

not efficiently handle conflicting decision boundaries. Overfitting of RBP under C4

was minor. BP, on the other hand, was not susceptible to overfitting under C1 to C3

(ρF < 1), but overfitted under C4. No conflicting decision boundaries were introduced

under scenario C4, and the sliding window contained only one decision boundary (the

hyperplane) inside the sliding window at any one time. Thus, the learning task was rather

simple, and overfitting exhibited by BP can be attributed to low temporal severity and

training for too long.

The average swarm diversity values in Table 6.25 show that the swarm diversity of the

three dynamic PSOs increased with an increase of change abruptness, but not as much

as under B1 to B4. Swarm diversity profiles over time, as obtained by the dynamic

PSOs under C1 to C4, are illustrated in Figure 6.31. Figure 6.31 illustrates that the

6.2. CLASSIFICATION PROBLEMS 133

Table 6.25: Moving Hyperplane Results for Scenarios C1 to C4

Algorithm

Scenario
C1 (frequency: 100, step size: 50)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.149038± 0.002822 0.138761± 0.007095 0.99098± 0.064281 n/a

Reinit. Back Propagation 0.05963± 0.000607 0.221091± 0.006619 3.80307± 0.204968 n/a

Reinitialising PSO 0.098834± 0.001292 0.11088± 0.004162 1.12948± 0.067907 4.61096± 0.658315

Charged PSO 0.115017± 0.005976 0.129655± 0.008136 1.1404± 0.043485 4.79946± 0.376872

Quantum PSO 0.119668± 0.006391 0.133049± 0.007534 1.14016± 0.058306 3.93866± 0.382199

C2 (frequency: 100, step size: 100)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.149106± 0.001946 0.132797± 0.005508 0.951655± 0.058313 n/a

Reinit. Back Propagation 0.059685± 0.001031 0.221858± 0.005652 3.70518± 0.175813 n/a

Reinitialising PSO 0.100531± 0.001239 0.107885± 0.003989 1.08224± 0.061265 4.36784± 0.468695

Charged PSO 0.105563± 0.004117 0.114033± 0.004939 1.09295± 0.057737 5.19947± 0.389818

Quantum PSO 0.109364± 0.005167 0.118749± 0.00727 1.09151± 0.071543 4.1837± 0.292221

C3 (frequency: 100, step size: 500)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.128096± 0.001797 0.10101± 0.003321 0.833071± 0.051034 n/a

Reinit. Back Propagation 0.046808± 0.001316 0.141273± 0.004968 2.68398± 0.130417 n/a

Reinitialising PSO 0.088614± 0.001428 0.093955± 0.004054 1.06138± 0.067674 4.81002± 0.268938

Charged PSO 0.084396± 0.001449 0.08831± 0.00282 1.05682± 0.060507 6.75772± 0.487067

Quantum PSO 0.086369± 0.001536 0.091123± 0.003255 1.06002± 0.049214 5.26014± 0.361809

C4 (frequency: 100, step size: 1000)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.007695± 0.000638 0.009819± 0.001473 1.16462± 0.144197 n/a

Reinit. Back Propagation 0.0294± 0.001623 0.030122± 0.00328 1.01307± 0.133192 n/a

Reinitialising PSO 0.026101± 0.003031 0.038808± 0.028168 1.24758± 0.458551 4.78532± 0.321161

Charged PSO 0.019177± 0.003232 0.022115± 0.002804 1.12815± 0.139965 6.40992± 0.320218

Quantum PSO 0.019719± 0.002443 0.021954± 0.003473 1.07126± 0.155068 5.23114± 0.358585

6.2. CLASSIFICATION PROBLEMS 134

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(a) Average Diversity Results for Scenario C1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(b) Average Diversity Results for Scenario C2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 200 400 600 800 1000 1200 1400 1600 1800

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(c) Average Diversity Results for Scenario C3

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 0 100 200 300 400 500 600 700 800 900

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(d) Average Diversity Results for Scenario C4

Figure 6.31: Average Diversity results for Moving Hyperplane, scenarios C1 to C4

swarms reached a lower minimum swarm diversity given more time to converge between

environment changes.

Figure 6.32 illustrates the progression of collective mean ET and EG values over

scenarios C1 to C4 as obtained by the five algorithms considered. RBP once again

significantly outperformed all other algorithms in terms of ET for C1 to C3, but at the

same time performed significantly worse than all other algorithms in terms of EG under

the same scenarios (refer to Tables 6.20 and 6.21 for supporting p-values). The dynamic

PSOs exhibited similar trends as were observed under scenarios B1 to B4: the RPSO

performed significantly better than the other two dynamic PSOs under gradual scenarios

6.2. CLASSIFICATION PROBLEMS 135

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 50 100 500 1000

A
v
e

ra
g

e
 E

rr
o

r

log(Step Size)

BP
RBP

RPSO
CPSO
QPSO

(a) Average Training Error Results

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 50 100 500 1000

A
v
e

ra
g

e
 E

rr
o

r

log(Step Size)

BP
RBP

RPSO
CPSO
QPSO

(b) Average Generalisation Error Results

Figure 6.32: Average Error results for Moving Hyperplane, scenarios C1 to C4

C1 and C2, but significantly worse under abrupt scenarios C3 and C4 (refer to Tables

6.20 and 6.21 for supporting p-values). The dynamic PSOs, despite some deterioration

in performance under gradual scenarios due to training for too long, still managed to

significantly outperform BP under scenarios C1 to C3. BP produced the lowest ET and

EG values under scenario C4. However, as the ρF value in Table 6.25 indicates, BP was

susceptible to overfitting under this scenario.

Algorithm ranks are reported in Table 6.26. As shown by the average ranks, RBP

again came first in terms of ET and last in terms of EG, and the CPSO came second in

terms of ET and first in terms of EG. Thus, once again the CPSO is considered as the

top performer.

Scenarios D1 to D4: Figures 6.33 and 6.34 illustrate the progression of ET and

EG over time as obtained by the algorithms under scenarios D1 to D4. Figure 6.33

illustrates that the CPSO and the QPSO deteriorated in performance under gradual

scenarios with a decrease in change frequency from F = 100 to F = 250: maximum ET

and EG values produced by the CPSO and the QPSO under D1 and D2 were higher

than the corresponding maximum values under C1 and C2. Thus, the CPSO and the

6.2. CLASSIFICATION PROBLEMS 136

Table 6.26: Moving Hyperplane Algorithm Ranking for Scenarios C1 to C4
Algorithm C1 C2 C3 C4 Average Rank

R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG)

BP 5 4 5 4 5 4 1 1 4 3.25

RBP 1 5 1 5 1 5 5 4.5 2 4.875

RPSO 2 1 2 1 4 3 4 4.5 3 2.375

CPSO 3 2 3 2 2 1 2.5 2.5 2.625 1.875

QPSO 4 3 4 3 3 2 2.5 2.5 3.375 2.625

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for D1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for D1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 5000 10000 15000 20000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for D2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5000 10000 15000 20000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for D2

Figure 6.33: Training and Generalisation Error results for Moving Hyperplane, scenarios D1

to D2

6.2. CLASSIFICATION PROBLEMS 137

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for D3

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for D3

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 500 1000 1500 2000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for D4

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 500 1000 1500 2000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for D4

Figure 6.34: Training and Generalisation Error results for Moving Hyperplane, scenarios D3

to D4

QPSO have again exploited too much between environment changes. The RPSO did not

deteriorate under D1 and D2 due to weaker dependence on the swarm memory: Figure

6.35 illustrates that the RPSO’s diversity significantly increased after every environment

change, and the RPSO had enough time to converge to a small area before the next

environment change.

Figures 6.33 and 6.34 illustrate that BP and RBP did not visibly deteriorate in

performance under D1 to D4, compared to C1 to C4. Figures 6.34(a) and 6.34(b) once

again illustrate the inability of RBP to effectively train and generalise under scenarios

6.2. CLASSIFICATION PROBLEMS 138

 0

 5

 10

 15

 20

 25

 30

 35

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(a) Average Diversity Results for Scenario D1

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5000 10000 15000 20000

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(b) Average Diversity Results for Scenario D2

Figure 6.35: Average Diversity results for Moving Hyperplane, scenarios D1 to D2

with conflicting decision boundaries: RBP’s ET and EG increased when the sliding

window shifted by 500 patterns and replaced 50% of the sliding window contents. The

RBP’s error kept increasing until the window shifted again, replacing the other 50% of

the window and thus discarding the remains of the stale data. Once the stale data was

completely discarded, RBP’s ET and EG began to decrease again.

Table 6.27 summarises the collective mean fitness results obtained for scenarios D1 to

D4, as well as the average ρF for all algorithms considered, and average swarm diversity

for the dynamic PSOs. Table 6.27 shows that under the most gradual scenario D1, all

algorithms obtained ρF > 1. Thus, all algorithms exhibited overfitting. The exhibited

overfitting behaviour is attributed to the low frequency of change of 250 iterations: since

the gradual changes were easy to adjust to, the 250 iterations spent on NN training

caused the algorithms to overfit the training data. The same applies to the abrupt

scenario D4, under which all training algorithms again obtained ρF > 1: although

changes were abrupt in case of D4, no conflicting boundaries were present, and only one

decision boundary had to be approximated. Thus, the learning task was too simple for

the given frequency of change.

The algorithms were ranked based on the collective mean ET and EG values, taking

6.2. CLASSIFICATION PROBLEMS 139

Table 6.27: Moving Hyperplane Results for Scenarios D1 to D4

Algorithm

Scenario
D1 (frequency: 250, step size: 50)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.148513± 0.00199 0.144373± 0.007129 1.0558± 0.089037 n/a

Reinit. Back Propagation 0.056655± 0.00071 0.219934± 0.005605 3.90567± 0.184368 n/a

Reinitialising PSO 0.098873± 0.001553 0.118008± 0.004376 1.21006± 0.073892 4.43303± 0.799926

Charged PSO 0.127313± 0.002895 0.14769± 0.007511 1.18746± 0.08604 4.61526± 0.443067

Quantum PSO 0.130179± 0.003944 0.150337± 0.007289 1.18853± 0.069774 3.52732± 0.501969

D2 (frequency: 250, step size: 100)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.14725± 0.002158 0.136828± 0.006315 0.997445± 0.055028 n/a

Reinit. Back Propagation 0.056406± 0.00071 0.216878± 0.006479 3.83339± 0.212319 n/a

Reinitialising PSO 0.098709± 0.001347 0.110697± 0.004437 1.13458± 0.05672 4.15562± 0.481489

Charged PSO 0.121175± 0.004601 0.135658± 0.006594 1.13211± 0.059404 5.17929± 0.293442

Quantum PSO 0.122189± 0.004256 0.136576± 0.007123 1.14017± 0.055511 3.91117± 0.354609

D3 (frequency: 250, step size: 500)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.126362± 0.002513 0.098811± 0.003342 0.816696± 0.053073 n/a

Reinit. Back Propagation 0.041062± 0.000895 0.138068± 0.004618 3.0329± 0.164791 n/a

Reinitialising PSO 0.083174± 0.001437 0.091993± 0.009105 1.0946± 0.088386 4.18299± 0.329163

Charged PSO 0.082042± 0.004411 0.088738± 0.00514 1.07671± 0.053413 6.3934± 0.839511

Quantum PSO 0.082775± 0.002679 0.090142± 0.004242 1.07708± 0.076085 4.59905± 0.300309

D4 (frequency: 250, step size: 1000)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.004087± 0.000332 0.007678± 0.001513 1.46905± 0.291061 n/a

Reinit. Back Propagation 0.017219± 0.001044 0.019877± 0.003026 1.18268± 0.154054 n/a

Reinitialising PSO 0.015818± 0.002082 0.034009± 0.028019 1.62148± 0.8127 4.04389± 0.354539

Charged PSO 0.00995± 0.001949 0.013311± 0.002892 1.23384± 0.202482 5.98838± 0.531167

Quantum PSO 0.011061± 0.001863 0.014333± 0.002704 1.20976± 0.184695 4.44401± 0.488091

6.2. CLASSIFICATION PROBLEMS 140

Table 6.28: Moving Hyperplane Algorithm Ranking for Scenarios D1 to D4
Algorithm D1 D2 D3 D4 Average Rank

R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG)

BP 5 3 5 3 5 4 1 1 4 2.75

RBP 1 5 1 5 1 5 5 4.5 2 4.875

RPSO 2 1 3 1 3 2 4 4.5 3 2.125

CPSO 3 3 3 3 3 2 2 2.5 2.75 2.625

QPSO 4 3 3 3 3 2 3 2.5 3.25 2.625

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 50 100 500 1000

A
v
e

ra
g

e
 E

rr
o

r

log(Step Size)

BP
RBP

RPSO
CPSO
QPSO

(a) Average Training Error Results

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 50 100 500 1000

A
v
e

ra
g

e
 E

rr
o

r

log(Step Size)

BP
RBP

RPSO
CPSO
QPSO

(b) Average Generalisation Error Results

Figure 6.36: Average Error results for Moving Hyperplane, scenarios D1 to D4

the p-values in Tables 6.20 and 6.21 into account. The obtained ranks are reported in

Table 6.28. Collective mean ET and EG values obtained by the algorithms under D1

to D4 are illustrated in Figure 6.36. The same trends as observed for C1 to C4 are

seen here: RBP performed significantly better than all other algorithms in terms of

ET under D1 to D3, and significantly worse than all other algorithms in terms of EG

under the same scenarios (refer to Tables 6.20 and 6.21 for supporting p-values). BP

performed significantly worse than all other algorithms in terms of ET under D1 to D3.

No statistically significant difference was observed between EG values produced by the

CPSO, the QPSO, and BP under D1 and D2, but all three dynamic PSOs produced

significantly lower EG under D3. The RPSO, with its weak dependence on memory,

6.2. CLASSIFICATION PROBLEMS 141

 10

 50

 100

 250

 50

 100

 500

 1000

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

A
v
e

ra
g

e
 E

rr
o

r

BP
RBP

RPSO
CPSO
QPSO

log(Frequency of Change)log(Step Size)

A
v
e

ra
g

e
 E

rr
o

r

Figure 6.37: Average Training Error Results for Moving Hyperplane

significantly outperformed the other dynamic PSOs and BP under gradual scenarios D1

and D2 in terms of both ET and EG. No statistically significant difference was observed

between the CPSO and the QPSO under most scenarios. Under the abrupt scenario D4,

BP outperformed all other algorithms in terms of both training and generalisation. The

average ranks in Table 6.28 indicate that the RPSO obtained the highest average EG

rank. Thus, the RPSO can be considered as the best performer for scenarios D1 to D4.

All scenarios: The average ET and EG values produced by the five algorithms under

the 16 different dynamic scenarios are illustrated in Figures 6.37 and 6.38, respectively.

Figure 6.37 illustrates that BP produced the highest ET under all scenarios of low (S =

50) to moderately high (S = 500) spatial severity. Under scenarios of high spatial

6.2. CLASSIFICATION PROBLEMS 142

 10

 50
 100

 250

 50

 100

 500

 1000

 0

 0.05

 0.1

 0.15

 0.2

 0.25

A
v
e

ra
g

e
 E

rr
o

r

BP
RBP

RPSO
CPSO
QPSO

log(Frequency of Change)log(Step Size)

A
v
e

ra
g

e
 E

rr
o

r

Figure 6.38: Average Generalisation Error Results for Moving Hyperplane

severity, BP consistently produced the lowest ET . Since scenarios of high spatial severity

(S = 1000) were the only scenarios where no conflicting boundaries were present, it can

be concluded that BP exhibited sensitivity to the presence of conflicting boundaries

within the training data. Figures 6.37 and 6.38 illustrate that changes in temporal

severity (i.e. frequency of changes) had little effect on BP: BP is a fast-converging hill-

climber, thus BP converged on a solution in a small number of epochs, and only slightly

refined that solution as the frequency of changes decreased.

RBP, on the other hand, was restarted after every environment change, thus RBP

required more epochs to converge on an optimal solution than BP. Figure 6.37 illustrates

that RBP’s average ET decreased with the decrease of temporal severity. However, Fig-

ure 6.38 illustrates that the low ET obtained by RBP was to no avail for most scenarios,

6.2. CLASSIFICATION PROBLEMS 143

Table 6.29: Moving Hyperplane Average Algorithm Ranking for Scenarios A to D
Algorithm Average R(A) Average R(B) Average R(C) Average R(D) Average Rank

R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG)

BP 4 2.5 4 3.125 4 3.25 4 2.75 4 2.90625

RBP 2.375 4.25 2 4.875 2 4.875 2 4.875 2.09375 4.71875

RPSO 3.5 3.75 3.25 2.75 3 2.375 3 2.125 3.1875 2.75

CPSO 2 2 2.625 1.875 2.625 1.875 2.75 2.625 2.5 2.09375

QPSO 3.125 2.5 3.125 2.375 3.375 2.625 3.25 2.625 3.21875 2.53125

since the corresponding EG was significantly higher than the EG produced by all other

algorithms under scenarios of low to moderately high spatial severity. RBP recovered

only under abrupt scenarios with no conflicting boundaries, where RBP managed to

outperform some of the dynamic PSOs in terms of EG, especially under the most tempo-

rally severe scenario, A4 (F = 10). Thus, RBP also proved unsuccessful under scenarios

where conflicting boundaries may have been present.

The dynamic PSOs showed the strongest resistance to conflicting boundaries, outper-

forming BP in terms of ET under scenarios of low to moderately high spatial severity, and

outperforming both BP and RBP in terms of EG under the same scenarios. However, as

Figures 6.37 and 6.38 illustrate, the dynamic PSOs were sensitive to temporal severity:

the dynamic PSOs with their slow convergence speed failed to adjust to abrupt changes

under high temporal severity (scenario A4). The CPSO and the QPSO also deteriorated

in performance under gradual scenarios of low temporal severity, since training for too

long under gradual changes caused these algorithms to over-exploit. The RPSO, how-

ever, proved more resistant to over-exploitation than the other two dynamic PSOs due to

RPSO’s weak dependence on swarm memory: the RPSO outperformed both the CPSO

and the QPSO under gradual to moderately gradual scenarios of low to moderately low

temporal severity.

Table 6.29 lists average algorithm ranks calculated over scenarios A to D, and Figure

6.39 illustrates how the average ranks changed over different frequencies of changes.

6.2. CLASSIFICATION PROBLEMS 144

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 10 50 100 250

A
v
e

ra
g

e
 R

a
n

k

Change Frequency (F)

BP
RBP

RPSO
CPSO
QPSO

(a) Average Rank in terms of ET

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 10 50 100 250

A
v
e

ra
g

e
 R

a
n

k

Change Frequency (F)

BP
RBP

RPSO
CPSO
QPSO

(b) Average Rank in terms of EG

Figure 6.39: Average Rank results for Moving Hyperplane

Figure 6.39 confirms the already made observation that BP was little affected by changes

in temporal severity and came last in terms of training. Figure 6.39 also illustrates

that RBP’s training rank improved as the temporal severity decreased, but at the same

time RBP obtained the lowest EG rank over all frequencies considered. Figure 6.39

illustrates that RPSO’s average ET and EG rank increased as the temporal severity

decreased from 10 to 250, while the CPSO’s and the QPSO’s average rank decreased

as the change frequency became lower. Table 6.29 shows that on average, the CPSO

obtained the second-best ET rank after RBP, and the highest EG rank. Thus, the CPSO

can be considered as the most successful algorithm on the moving hyperplane problem.

However, as Figure 6.39 illustrates, the choice of the best training algorithm remains

specific to the characteristics of the given dynamic environment, such as the frequency

and abruptness of changes, as well as the possibility of encountering conflicting decision

boundaries (i.e. obsolete patterns) in the training data.

The next section presents an empirical analysis of the five algorithms applied to the

dynamic sphere problem.

6.2. CLASSIFICATION PROBLEMS 145

6.2.3 Dynamic Sphere

This dynamic classification problem was obtained by generating a hypersphere in R3

and using it to divide the space into two mutually exclusive classes.

Problem Definition

The hypersphere is given by
n∑
l=1

(xl + bl) = R2, (6.5)

where R is the radius of the sphere, and ~b is the centre of the sphere. For the purpose

of this study, n was set to 3. A 3-dimensional point outside the hypesphere is labelled

as class A, and a 3-dimensional point inside the hypersphere is labelled as class B. A

data set was generated according to the procedure described in Section 6.1.2, where the

number of data points, M , was set to 1000, and the number of environment changes,

N , was set to 10. A set of M 3-dimensional points, {~x1, ~x2, . . . , ~x1000} was randomly

generated such that ~xl ∈ [0, 1]3, l = 1, . . . , 1000. The sphere was generated N times by

randomising its centre point, ~b ∈ [0, 1]3, and radius, R ∈ [0, 1]. Target classification of

M patterns was updated N times, and every time the updated patterns were appended

to the data set, yielding a data set of 11 000 patterns in total. The size of the sliding

window was set to 1000.

A NN with 3 input units, 4 hidden units and 1 output unit was trained on the

Dynamic Sphere problem. The total number of weights and biases, corresponding to the

dimensionality of the problem, was equal to 21, according to Equation (6.3).

Sixteen different dynamic scenarios as described in Section 6.2.2 were applied to

the dynamic sphere problem. The chosen scenarios simulated different combinations

of spatial and temporal severity, providing representative coverage of different dynamic

environment types. The technique of simulating dynamic scenarios applied in this study

is described in Section 6.1.2. Parameter settings corresponding to each dynamic scenario

6.2. CLASSIFICATION PROBLEMS 146

Table 6.30: Optimal Parameters for the Dynamic Sphere problem

Algorithm Parameters

Back Propagation Weight Interval Learning Rate Momentum

[−3, 3] 0.1 0.3

Reinitialising Weight Interval Learning Rate Momentum

Back Propagation [−3, 3] 0.1 0.3

Reinitialising PSO Weight Interval Vmax Swarm Size Reinitialisation Ratio

[−1, 1] 1 50 0.5

Charged PSO Weight Interval Vmax Swarm Size Charge Magnitude

[−5, 5] 0.1 50 5

Quantum PSO Weight Interval Vmax Swarm Size Cloud Radius

[−1, 1] 0.1 20 1.5

are listed in Table 6.17.

Parameter Optimisation

All algorithm parameters were optimised according to the procedure described in Sec-

tion 6.1.3. Corresponding optimal parameters discovered are summarised in Table 6.30.

Analysis of Empirical Data

The number of iterations required to traverse the entire data set under every dynamic

scenario considered was calculated using equation (6.4).

The two-tailed Mann-Whitney U statistical test was used to determine whether the

difference between algorithm performance was of any statistical significance. P-values

corresponding to training error comparisons between the algorithms are reported in Table

6.2. CLASSIFICATION PROBLEMS 147

6.32. P-values corresponding to generalisation error comparisons between the algorithms

are reported in Table 6.33.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 200 400 600 800 1000 1200 1400 1600 1800

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for A1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 200 400 600 800 1000 1200 1400 1600 1800

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for A1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 100 200 300 400 500 600 700 800 900

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for A2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 100 200 300 400 500 600 700 800 900

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for A2

Figure 6.40: Training and Generalisation Error results for Dynamic Sphere, scenarios A1 to

A2

Scenarios A1 to A4: Figures 6.40 and 6.41 illustrate the progression of ET and EG

over time as obtained by the algorithms under scenarios A1 to A4. Figure 6.40 indicates

that the dynamic PSOs took longer than BP and RBP to find a solution in the beginning

of the algorithm run under gradual scenarios A1 and A2, but tracked the changes better

and exploited more. Figures 6.40 and 6.41 illustrate that RBP did not always manage

6.2. CLASSIFICATION PROBLEMS 148

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 20 40 60 80 100 120 140 160 180

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for A3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 20 40 60 80 100 120 140 160 180

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for A3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50 60 70 80 90

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for A4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for A4

Figure 6.41: Training and Generalisation Error results for Dynamic Sphere, scenarios A3 to

A4

to reach the same minimum ET as the dynamic PSOs did, but reached lower minimum

ET than BP under scenarios A1 to A3. Scenarios A1 to A4 simulated frequent changes

(every 10 iterations), and the fact that an algorithm which was completely reinitialised

after every change still managed to obtain a low training error indicates that the dynamic

sphere was a rather trivial classification problem. Figures 6.40 and 6.41 also show that

RBP failed to support a low ET by an equally low EG under scenarios A1 to A3, but

generalised well under A4. A4 was the only scenario where no conflicting boundaries

were present. Hence, RBP was sensitive to the presence of conflicting boundaries, and

6.2. CLASSIFICATION PROBLEMS 149

 0

 2

 4

 6

 8

 10

 12

 14

 0 200 400 600 800 1000 1200 1400 1600 1800

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(a) Average Diversity Results for Scenario A1

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500 600 700 800 900

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(b) Average Diversity Results for Scenario A2

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120 140 160 180

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(c) Average Diversity Results for Scenario A3

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70 80 90

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(d) Average Diversity Results for Scenario A4

Figure 6.42: Average Diversity results for Dynamic Sphere, scenarios A1 to A4

failed to discern between stale and new data when both were present inside the sliding

window.

Figure 6.41 illustrates that the CPSO and the QPSO did not manage to obtain a

good minimum ET and EG under the abrupt scenarios A3 and A4: as shown in Table

6.30, both these algorithms were applied with a rather small Vmax value, which prevented

the particles from developing large velocities and moving through the search space fast.

Limited velocity prevented the CPSO and the QPSO from locating a good solution in as

little as 10 iterations. Such a small Vmax value was chosen because it proved beneficial

under most scenarios, as discussed later in this section.

6.2. CLASSIFICATION PROBLEMS 150

Even under scenario A4, the benefits of smaller velocity can already be observed:

figures 6.41(c) and 6.41(d) illustrate that, after iteration 70, the RPSO’s EG peaked much

higher than the corresponding CPSO’s and the QPSO’s EG. The RPSO used a larger

Vmax, thus the RPSO explored more than the other dynamic PSOs, and obtained an ET

and EG close to 0 before iteration 70 under scenario A4. However, rapid exploration

on an easy dynamic classification problem led the RPSO to an area on the NN error

landscape where the RPSO became stuck after an environment change, and failed to

recover despite the fact that the RPSO maintained a higher diversity than both the

CPSO and the QPSO under scenarios A1 to A4, as Figure 6.42 illustrates.

Figure 6.42 also illustrates that the CPSO and the QPSO maintained a rather low

swarm diversity under gradual scenarios. The success of these algorithms under A1 and

A2 confirms that the dynamic sphere was not hard to optimise despite the small swarm

diversity.

Table 6.31 lists the collective mean ET and EG values obtained by the algorithms

under A1 to A4, along with collective mean swarm diversity where applicable, and col-

lective mean ρF values. The ρF values in Table 6.31 indicate that the dynamic PSOs

were susceptible to minor overfitting under all scenarios considered. RBP was also sub-

ject to overfitting and obtained the largest ρF under scenarios A1 to A3, but did not

overfit under A4, thus confirming that RBP is sensitive to the presence of stale data.

BP produced a ρF < 1 under scenarios A1 to A4.

The algorithms were ranked in terms of collective mean ET and EG values obtained

under A1 to A4, taking the p-values reported in Tables 6.32 and 6.33 into account. The

resulting ranks, along with the average ranks, are listed in Table 6.34. Collective mean

ET and EG values obtained by the five algorithms under A1 to A4 are also illustrated in

Figure 6.43.

Table 6.34 shows that the RPSO was the top performer in terms of both ET and

EG under the gradual scenarios A1 and A2: all dynamic PSOs exploited better than

6.2. CLASSIFICATION PROBLEMS 151

Table 6.31: Dynamic Sphere Results for Scenarios A1 to A4

Algorithm

Scenario
A1 (frequency: 10, step size: 50)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.171713± 0.00311 0.135771± 0.004825 0.8671± 0.04248 n/a

Reinit. Back Propagation 0.131876± 0.002916 0.199343± 0.005105 1.30891± 0.051824 n/a

Reinitialising PSO 0.113942± 0.001718 0.115899± 0.003382 1.02229± 0.048443 5.31603± 0.214277

Charged PSO 0.119896± 0.002418 0.121289± 0.00364 1.00997± 0.041236 1.53772± 0.447136

Quantum PSO 0.120057± 0.00155 0.120964± 0.003453 1.00464± 0.041862 0.489555± 0.040246

A2 (frequency: 10, step size: 100)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.172275± 0.002906 0.140283± 0.004329 0.890718± 0.048617 n/a

Reinit. Back Propagation 0.130808± 0.003701 0.198831± 0.005248 1.29163± 0.053045 n/a

Reinitialising PSO 0.11798± 0.001374 0.120919± 0.003699 1.02911± 0.058348 5.46459± 0.322592

Charged PSO 0.133813± 0.005329 0.13525± 0.004943 1.01271± 0.041638 2.27272± 0.344643

Quantum PSO 0.136196± 0.004216 0.137025± 0.006435 1.00044± 0.034118 0.570012± 0.062034

A3 (frequency: 10, step size: 500)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.159435± 0.004758 0.132337± 0.007327 0.887263± 0.049432 n/a

Reinit. Back Propagation 0.122616± 0.008421 0.161899± 0.00782 1.13254± 0.042452 n/a

Reinitialising PSO 0.13249± 0.004636 0.172753± 0.0356 1.09221± 0.05367 6.45868± 0.391706

Charged PSO 0.176709± 0.004776 0.179689± 0.004688 1.01718± 0.048702 4.77798± 0.384953

Quantum PSO 0.20885± 0.006293 0.208684± 0.008191 1.00468± 0.017026 0.767477± 0.071615

A4 (frequency: 10, step size: 1000)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.076418± 0.009425 0.076587± 0.010715 0.980779± 0.106462 n/a

Reinit. Back Propagation 0.093061± 0.010648 0.08518± 0.01001 0.904017± 0.051538 n/a

Reinitialising PSO 0.115917± 0.006892 0.270092± 0.041104 1.31458± 0.109629 6.49894± 0.385715

Charged PSO 0.137869± 0.009361 0.142018± 0.010995 1.02441± 0.049801 7.04183± 0.216855

Quantum PSO 0.21962± 0.004297 0.220084± 0.005145 1.00202± 0.010966 0.868152± 0.093542

6.2. CLASSIFICATION PROBLEMS 152

Table 6.32: Mann-Whitney U p-values obtained for the average training error comparisons

on the Dynamic Sphere problem with reference to the null hypothesis that the means of the

compared samples are equal at the significance level of 95%
BP vs RBP BP vs RPSO

1 2 3 4 1 2 3 4

A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

B 0.0001 0.0001 0.0001 0.001092 0.0001 0.0001 0.0001 0.0001

C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.000511

D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.901142

BP vs CPSO BP vs QPSO

1 2 3 4 1 2 3 4

A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.130369 0.0001

C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RBP vs RPSO RBP vs CPSO

1 2 3 4 1 2 3 4

A 0.0001 0.0001 0.0001 0.0001 0.0001 0.013354 0.0001 0.0001

B 0.099517 0.000258 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RBP vs QPSO RPSO vs CPSO

1 2 3 4 1 2 3 4

A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RPSO vs QPSO CPSO vs QPSO

1 2 3 4 1 2 3 4

A 0.0001 0.0001 0.0001 0.0001 0.786452 0.04622 0.0001 0.0001

B 0.0001 0.0001 0.0001 0.0001 0.07719 0.809129 0.0001 0.0001

C 0.0001 0.0001 0.0001 0.0001 0.901142 0.809129 0.0001 0.028468

D 0.0001 0.0001 0.0001 0.0001 0.912745 0.612688 0.014243 0.090617

6.2. CLASSIFICATION PROBLEMS 153

Table 6.33: Mann-Whitney U p-values obtained for the average generalisation error compar-

isons on the Dynamic Sphere problem with reference to the null hypothesis that the means of

the compared samples are equal at the significance level of 95%
BP vs RBP BP vs RPSO

1 2 3 4 1 2 3 4

A 0.0001 0.0001 0.0001 0.001032 0.0001 0.0001 0.0001 0.0001

B 0.0001 0.0001 0.0001 0.000774 0.0001 0.0001 0.0001 0.0001

C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

BP vs CPSO BP vs QPSO

1 2 3 4 1 2 3 4

A 0.0001 0.0001 0.0001 0.0001 0.0001 0.012515 0.0001 0.0001

B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RBP vs RPSO RBP vs CPSO

1 2 3 4 1 2 3 4

A 0.0001 0.0001 0.571977 0.0001 0.0001 0.0001 0.0001 0.0001

B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.292726 0.0001

C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RBP vs QPSO RPSO vs CPSO

1 2 3 4 1 2 3 4

A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.000153 0.0001

B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

C 0.0001 0.0001 0.030748 0.0001 0.001998 0.0001 0.0001 0.0001

D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RPSO vs QPSO CPSO vs QPSO

1 2 3 4 1 2 3 4

A 0.0001 0.0001 0.0001 0.0001 0.513407 0.423131 0.0001 0.0001

B 0.0001 0.0001 0.0001 0.0001 0.177408 0.035773 0.0001 0.0001

C 0.119364 0.0001 0.0001 0.000134 0.096477 0.831957 0.000543 0.018329

D 0.0001 0.0001 0.0001 0.000774 0.542302 0.970925 0.099517 0.467073

6.2. CLASSIFICATION PROBLEMS 154

Table 6.34: Dynamic Sphere Algorithm Ranking for Scenarios A1 to A4
Algorithm A1 A2 A3 A4 Average Rank

R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG)

BP 5 4 5 4 3 1 1 1 3.5 2.5

RBP 4 5 2 5 1 2.5 2 2 2.25 3.625

RPSO 1 1 1 1 2 2.5 3 5 1.75 2.375

CPSO 2.5 2.5 3 2.5 4 4 4 3 3.375 3

QPSO 2.5 2.5 4 2.5 5 5 5 4 4.125 3.5

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 50 100 500 1000

A
v
e

ra
g

e
 E

rr
o

r

log(Step Size)

BP
RBP

RPSO
CPSO
QPSO

(a) Average Training Error Results

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 50 100 500 1000

A
v
e

ra
g

e
 E

rr
o

r

log(Step Size)

BP
RBP

RPSO
CPSO
QPSO

(b) Average Generalisation Error Results

Figure 6.43: Average Error results for Dynamic Sphere, scenarios A1 to A4

hill-climbing BP and RBP under A1 and A2, and the RPSO used a larger Vmax, which

enabled the RPSO to find a good solution faster than the other two dynamic PSOs. The

CPSO and the QPSO showed second-best performance in terms of EG under A1 and

A2, bearing no statistically significant difference between one another. However, both

these algorithms deteriorated with an increase in spatial severity, and were significantly

outperformed by BP and RBP under A3 and A4. The RPSO competed with the hill-

climbers under A3, coming second in terms of both ET and EG rank, but significantly

deteriorated under A4, obtaining the lowest EG rank. As both Table 6.34 and Figure

6.43 illustrate, RBP exhibited similar trends as for the moving hyperplane problem: RBP

trained better than BP, but generalised worse, due to strong sensitivity to stale data.

6.2. CLASSIFICATION PROBLEMS 155

Thus, the dynamic PSOs significantly outperformed the hill climbers under gradual

scenarios, but were outperformed under abrupt scenarios. The average ranks in Ta-

ble 6.34 show that the RPSO obtained the highest average rank, resulting as the best

performer under scenarios A1 to A4.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for B1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for B1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for B2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for B2

Figure 6.44: Training and Generalisation Error results for Dynamic Sphere, scenarios B1 to

B2

Scenarios B1 to B4: Figures 6.44 and 6.45 illustrate the ET and EG profiles obtained

by the algorithms under scenarios B1 to B4. Figure 6.44 illustrates that the algorithms

exhibited similar trends under B1 to B4 as under A1 to A4: the dynamic PSOs exploited

6.2. CLASSIFICATION PROBLEMS 156

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 100 200 300 400 500 600 700 800 900

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for B3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100 200 300 400 500 600 700 800 900

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for B3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400 450

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for B4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for B4

Figure 6.45: Training and Generalisation Error results for Dynamic Sphere, scenarios B3 to

B4

better than both BP and RBP, and RBP trained well and generalised poorly. Figure

6.44 illustrates that RBP managed to reach the same or lower minimum ET as that

of the dynamic PSOs after most environment changes. Hence, 50 iterations (change

frequency simulated under B1 to B4) was enough for RBP to converge on a minimum

for the dynamic sphere problem.

Figure 6.45 illustrates that the dynamic PSOs have improved in performance with a

decrease in temporal severity: both ET and EG obtained by the dynamic PSOs decreased

between environment changes. However, given more time to converge, all dynamic PSOs

6.2. CLASSIFICATION PROBLEMS 157

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(a) Average Diversity Results for Scenario B1

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(b) Average Diversity Results for Scenario B2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 100 200 300 400 500 600 700 800 900

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(c) Average Diversity Results for Scenario B3

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250 300 350 400 450

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(d) Average Diversity Results for Scenario B4

Figure 6.46: Average Diversity results for Dynamic Sphere, scenarios B1 to B4

managed to obtain an ET ≈ 0 after a certain environment change (twelfth in case

of B3, sixth in case of B4), producing a very high error after the next environment

change. Figures 6.45(b) and 6.45(d) illustrate that the CPSO and the QPSO managed

to recover in terms of EG after around 50 iterations, but the RPSO stagnated and failed

to generalise for the rest of the algorithm run. Swarm diversity profiles in Figure 6.46

illustrate that the RPSO indeed failed to converge to a small area after the high error

peak at iteration 650 under B3 and iteration 350 under B4. RPSO’s diversity peaked

under gradual changes as well, but the RPSO managed to converge back to its stable

diversity level under B1 and B2. Hence, over-exploitation (resulting in ET ≈ 0) exhibited

6.2. CLASSIFICATION PROBLEMS 158

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 50 100 500 1000

A
v
e

ra
g

e
 E

rr
o

r

log(Step Size)

BP
RBP

RPSO
CPSO
QPSO

(a) Average Training Error Results

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 50 100 500 1000

A
v
e

ra
g

e
 E

rr
o

r

log(Step Size)

BP
RBP

RPSO
CPSO
QPSO

(b) Average Generalisation Error Results

Figure 6.47: Average Error results for Dynamic Sphere, scenarios B1 to B4

by the dynamic PSOs under B3 and B4 may have led the swarms to an unfruitful search

space region, such as a plateau or a local minimum, from which the swarms struggled to

escape after the change in the error landscape.

Table 6.35 summarises the collective mean ET , EG, ρF , and swarm diversity values

obtained by the algorithms under B1 to B4. The ρF values in Table 6.35 indicate that

the dynamic PSOs have again exhibited overfitting under all scenarios considered. BP

obtained a ρF < 1 under B1 to B3, but overfitted under B4, thus indicating that training

BP for 50 epochs on the dynamic sphere problem was already training for too long. RBP

again overfitted under B1 to B3, and produced a ρF < 1 under B4. The algorithms were

ranked based on their collective mean ET and EG. RBP’s rank in Table 6.36 indicates

that RBP was indeed the top performer under the most abrupt scenario B4. Such success

of a complete reinitialisation of NN weights points out the triviality of the problem, and

indicates that trivial approaches (i.e. RBP) can indeed be more efficient than more

sophisticated approaches (i.e. dynamic PSOs) when the problem to be optimised is

simple enough. Application of sophisticated algorithms to trivial problems can indeed

result in a waste of computational effort.

Table 6.36 lists algorithm ranks in terms of collective mean ET and EG values ob-

6.2. CLASSIFICATION PROBLEMS 159

Table 6.35: Dynamic Sphere Results for Scenarios B1 to B4

Algorithm

Scenario
B1 (frequency: 50, step size: 50)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.168007± 0.002584 0.132217± 0.004245 0.876624± 0.052278 n/a

Reinit. Back Propagation 0.105521± 0.000871 0.182805± 0.00569 1.45788± 0.076276 n/a

Reinitialising PSO 0.105274± 0.001257 0.109222± 0.003762 1.0461± 0.062404 3.04782± 0.164552

Charged PSO 0.109405± 0.001918 0.115289± 0.00367 1.06513± 0.049522 0.728078± 0.133793

Quantum PSO 0.110216± 0.001549 0.114269± 0.003857 1.05057± 0.060397 0.352193± 0.015383

B2 (frequency: 50, step size: 100)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.166557± 0.002542 0.131353± 0.004144 0.869911± 0.054067 n/a

Reinit. Back Propagation 0.105463± 0.001317 0.181257± 0.005014 1.43268± 0.057606 n/a

Reinitialising PSO 0.106646± 0.001065 0.109564± 0.003063 1.02957± 0.053056 3.56361± 0.252406

Charged PSO 0.11202± 0.001841 0.114478± 0.004462 1.01971± 0.052804 1.06084± 0.234102

Quantum PSO 0.112497± 0.003126 0.116895± 0.004536 1.043± 0.054262 0.413402± 0.014286

B3 (frequency: 50, step size: 500)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.145928± 0.003437 0.11083± 0.005273 0.839866± 0.058265 n/a

Reinit. Back Propagation 0.090385± 0.002677 0.142071± 0.004415 1.27469± 0.069465 n/a

Reinitialising PSO 0.111102± 0.005848 0.226889± 0.04717 1.23073± 0.077915 7.32857± 1.11706

Charged PSO 0.140143± 0.00421 0.140779± 0.005707 1.01619± 0.042077 2.71457± 0.752959

Quantum PSO 0.147884± 0.006497 0.150163± 0.008159 1.02077± 0.035745 0.610085± 0.051794

B4 (frequency: 50, step size: 1000)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.060173± 0.01075 0.061217± 0.012189 1.06281± 0.133312 n/a

Reinit. Back Propagation 0.056284± 0.004055 0.054775± 0.004384 0.967692± 0.077902 n/a

Reinitialising PSO 0.07264± 0.005138 0.233869± 0.009101 1.43268± 0.112701 7.69642± 0.961675

Charged PSO 0.196929± 0.013914 0.197626± 0.014396 1.0075± 0.039589 3.2151± 0.387966

Quantum PSO 0.216473± 0.013488 0.218016± 0.016347 1.01148± 0.036667 0.677642± 0.125423

6.2. CLASSIFICATION PROBLEMS 160

Table 6.36: Dynamic Sphere Algorithm Ranking for Scenarios B1 to B4
Algorithm B1 B2 B3 B4 Average Rank

R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG)

BP 5 4 5 4 4.5 1 2 2 4.125 2.75

RBP 1.5 5 1 5 1 2.5 1 1 1.125 3.375

RPSO 1.5 1 2 1 2 5 3 5 2.125 3

CPSO 3.5 2.5 3.5 2 3 2.5 4 3 3.5 2.5

QPSO 3.5 2.5 3.5 3 4.5 4 5 4 4.125 3.375

tained under B1 to B4. Collective mean ET and EG values for B1 to B4 are also visualised

in Figure 6.47. As follows from Table 6.36 and Figure 6.47, the RPSO again showed top

performance under gradual scenarios, and deteriorated in terms of EG under the abrupt

changes. The three dynamic PSOs outperformed BP and RBP under the gradual sce-

narios B1 and B2, and deteriorated under abrupt scenarios. Table 6.36 shows that the

CPSO significantly outperformed the QPSO under abrupt changes: average diversity

values in Table 6.35 show that the QPSO converged to a smaller area and thus explored

less that the CPSO, resulting in poorer performance under abrupt changes, where explo-

ration was important. BP outperformed all other algorithms under the abrupt scenario

B3, and was outperformed by either the dynamic PSOs (B1 and B2) or RBP (B4) else-

where. Average ranks in Table 6.36 indicate that RBP obtained the lowest average ET

rank, and the CPSO was the top performer in terms of EG under B1 to B4.

Scenarios C1 to C4: Figures 6.48 and 6.49 illustrate the progression of ET and EG

over time as obtained by the algorithms under scenarios C1 to C4. Figure 6.48 illustrates

that the decrease of change frequency from 50 iterations to 100 iterations did not have a

drastic effect on the algorithm performance under gradual scenarios, and the algorithms

exhibited the same trends under C1 to C2 as under B1 to B2. RBP obtained a lower

minimum ET than the other algorithms, indicating the triviality of the problem, and did

not always generalise well, indicating that RBP is sensitive to stale data.

6.2. CLASSIFICATION PROBLEMS 161

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for C1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for C1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for C2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for C2

Figure 6.48: Training and Generalisation Error results for Dynamic Sphere, scenarios C1 to

C2

Figure 6.49 illustrates that the algorithms also exhibited similar trends under abrupt

scenarios C3 and C4 as under B3 and B4: errors produced by the dynamic PSOs peaked

when an environment change occurred after the dynamic PSOs obtained ET ≈ 0 and

EG ≈ 0. Once again, the CPSO and the QPSO managed to recover after the sudden

error increase, and the RPSO stagnated: the swarm diversity profiles in Figure 6.50

illustrate that the RPSO failed to converge to a small area after the error peaked under

abrupt scenarios C3 and C4. Figures 6.49(c) and 6.49(c) illustrate that BP’s errors also

peaked closer to the end of the algorithm run, and the CPSO along with the QPSO

6.2. CLASSIFICATION PROBLEMS 162

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 200 400 600 800 1000 1200 1400 1600 1800

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for C3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for C3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for C4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for C4

Figure 6.49: Training and Generalisation Error results for Dynamic Sphere, scenarios C3 to

C4

visibly outperformed BP after the last environment change. RBP produced no error

peaks under C4 due to complete independence from previously learned information.

Table 6.37 lists the collective mean ET , EG, ρF , and swarm diversity values obtained

under scenarios C1 to C4. The ρF values in Table 6.37 indicate that BP obtained

a ρF < 1 under C1 to C3, but exhibited overfitting under C4. All other algorithms

exhibited overfitting under C1 to C4, and even RBP overfitted under C4. Hence, training

a completely reinitialised algorithm on the dynamic sphere problem for 100 iterations

was already training for too long. If a completely reinitialised algorithm was subject to

6.2. CLASSIFICATION PROBLEMS 163

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(a) Average Diversity Results for Scenario C1

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(b) Average Diversity Results for Scenario C2

 0

 5

 10

 15

 20

 25

 30

 35

 0 200 400 600 800 1000 1200 1400 1600 1800

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(c) Average Diversity Results for Scenario C3

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600 700 800 900

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(d) Average Diversity Results for Scenario C4

Figure 6.50: Average Diversity results for Dynamic Sphere, scenarios C1 to C4

overfitting after 100 iterations, it is quite natural that the dynamic PSOs with memory

of previous solutions also over-exploit when allowed to train for 100 iterations between

environment changes.

Average diversity values in Table 6.37 show that RPSO’s average diversity increased

under C1 to C4 compared to B1 to B4. Increases in swarm diversity as temporal severity

decreases indicate divergent behaviour. The CPSO and the QPSO, on the other hand,

obtained lower average diversity over C1 to C4 than under B1 to B4. Therefore, these

algorithms did not diverge.

The algorithms were ranked based on their collective mean ET and EG values obtained

6.2. CLASSIFICATION PROBLEMS 164

Table 6.37: Dynamic Sphere Results for Scenarios C1 to C4

Algorithm

Scenario
C1 (frequency: 100, step size: 50)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.16711± 0.002519 0.132319± 0.004788 0.880798± 0.064164 n/a

Reinit. Back Propagation 0.099321± 0.000977 0.177713± 0.005864 1.48973± 0.075565 n/a

Reinitialising PSO 0.103326± 0.000945 0.109139± 0.003655 1.06411± 0.061053 3.50103± 0.376245

Charged PSO 0.11267± 0.026986 0.116969± 0.024469 1.05182± 0.054033 0.585116± 0.071748

Quantum PSO 0.107417± 0.00243 0.111008± 0.003637 1.04213± 0.058903 0.303734± 0.014627

C2 (frequency: 100, step size: 100)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.166076± 0.002259 0.132456± 0.004116 0.881805± 0.061776 n/a

Reinit. Back Propagation 0.098423± 0.000873 0.177158± 0.005948 1.49041± 0.080731 n/a

Reinitialising PSO 0.104653± 0.001422 0.108582± 0.003781 1.04456± 0.067094 7.34585± 0.883122

Charged PSO 0.110679± 0.003285 0.11461± 0.003748 1.03425± 0.048836 0.830069± 0.208063

Quantum PSO 0.110652± 0.003651 0.11474± 0.005502 1.04344± 0.058526 0.365559± 0.012645

C3 (frequency: 100, step size: 500)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.143071± 0.002946 0.106784± 0.005094 0.82033± 0.044328 n/a

Reinit. Back Propagation 0.082777± 0.002989 0.136712± 0.005531 1.35806± 0.0667 n/a

Reinitialising PSO 0.109036± 0.002281 0.240324± 0.013597 1.26354± 0.080892 8.38114± 1.05271

Charged PSO 0.1242± 0.003351 0.125316± 0.005589 1.00647± 0.047697 1.91204± 0.518048

Quantum PSO 0.130536± 0.005925 0.132597± 0.008417 1.01678± 0.052753 0.546288± 0.058308

C4 (frequency: 100, step size: 1000)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.058047± 0.007239 0.058775± 0.00914 1.00516± 0.103986 n/a

Reinit. Back Propagation 0.045874± 0.002774 0.046078± 0.004682 1.01759± 0.117406 n/a

Reinitialising PSO 0.063607± 0.004789 0.228473± 0.013786 1.53888± 0.169998 8.45948± 2.03968

Charged PSO 0.200857± 0.015219 0.200924± 0.014838 1.00995± 0.043487 2.49748± 0.395299

Quantum PSO 0.209843± 0.014711 0.210977± 0.017679 1.01151± 0.043056 0.645333± 0.119236

6.2. CLASSIFICATION PROBLEMS 165

Table 6.38: Dynamic Sphere Algorithm Ranking for Scenarios C1 to C4
Algorithm C1 C2 C3 C4 Average Rank

R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG)

BP 5 4 5 4 5 1 2 2 4.25 2.75

RBP 1 5 1 5 1 4 1 1 1 3.75

RPSO 2 2 2 1 2 5 3 5 2.25 3.25

CPSO 3.5 2 3.5 2.5 3 2 4 3 3.5 2.375

QPSO 3.5 2 3.5 2.5 4 3 5 4 4 2.875

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 50 100 500 1000

A
v
e

ra
g

e
 E

rr
o

r

log(Step Size)

BP
RBP

RPSO
CPSO
QPSO

(a) Average Training Error Results

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 50 100 500 1000

A
v
e

ra
g

e
 E

rr
o

r

log(Step Size)

BP
RBP

RPSO
CPSO
QPSO

(b) Average Generalisation Error Results

Figure 6.51: Average Error results for Dynamic Sphere, scenarios C1 to C4

under C1 to C4, taking the p-values reported in Tables 6.32 and 6.33 into account. The

obtained ranks, as well as the average ranks, are listed in Table 6.38. The collective mean

ET and EG values as obtained for C1 to C4 are illustrated in Figure 6.51. Figure 6.51

illustrates that RBP obtained the lowest ET values under C1 to C4. However, RBP’s low

ET was supported by a correspondingly low EG only under C4, where RBP showed to

be the best performer (refer to Table 6.38). BP was again outperformed by the dynamic

PSOs under gradual scenarios C1 to C2, and by RBP under C4. Only under C3 did

BP manage to obtain the highest EG rank. Out of the three dynamic PSOs, the RPSO

consistently obtained the lowest ET values under C1 to C4, but managed to support low

ET by a correspondingly low EG only under gradual scenarios. The RPSO obtained the

6.2. CLASSIFICATION PROBLEMS 166

lowest EG rank under C3 and C4, and, as the ρF values in Table 6.37 confirm, exhibited

severe overfitting under C3 and C4. As was already mentioned, the RPSO stagnated

after a sudden abrupt environment change under C3 and C4. Table 6.38 indicates that

no statistically significant difference was observed between the CPSO and the QPSO

under gradual scenarios, and the CPSO obtained a higher rank than the QPSO under

the abrupt scenarios C3 and C4: average swarm diversity values in Table 6.37 indicate

that the CPSO converged to a larger area than the QPSO. Hence, the CPSO explored

more.

The average ranks in Table 6.38 indicate that RBP performed best in terms of ET ,

and the CPSO obtained the highest EG rank. Hence, despite poor performance of the

dynamic PSOs under abrupt scenarios, at least a single dynamic PSO obtained a higher

average rank than either BP or RBP on the dynamic sphere problem.

Scenarios D1 to D4: Figures 6.52 and 6.53 illustrate the progression of ET and

EG obtained by the algorithms under scenarios D1 to D4. Figure 6.52 illustrates that

the behaviour of BP, RBP, and RPSO under the gradual scenarios D1 and D2 closely

resembled the behaviour of these algorithms under scenarios C1 and C2. The CPSO and

the QPSO, however, produced very high error peaks closer to the end of the algorithm

run. Since the only difference between C1 to C4 and D1 to D4 was the frequency of

change, which decreased to 250 iterations in case of D1 to D4, it can be concluded

that training for 250 iterations between environment changes caused the CPSO and the

QPSO to over-exploit severely, and converge to a too small region around a solution.

The swarm diversity profiles illustrated in Figure 6.54 confirm that the CPSO’s and the

QPSO’s diversity remained close to zero under D1 to D4. One reason for the small

diversity obtained is the small value of Vmax, which prevented the particles from moving

fast, and in case of D1 and D2 prevented the swarm from leaving a bad region in which the

swarm happened to converge due to low temporal severity. The RPSO used a larger Vmax

6.2. CLASSIFICATION PROBLEMS 167

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for D1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for D1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for D2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for D2

Figure 6.52: Training and Generalisation Error results for Dynamic Sphere, scenarios D1 to

D2

value, and was less dependent on swarm memory, hence the RPSO did not deteriorate

under gradual scenarios due to low temporal severity.

Figure 6.53 illustrates that BP, RBP, and RPSO exhibited similar behaviour under

D3 and D4 as under C3 and C4. The CPSO and the QPSO, however, deteriorated in

performance compared to C3 and C4: the CPSO and the QPSO no longer managed to

recover from the error peak from which these algorithms did recover under all previous

abrupt scenarios considered. Hence, the CPSO and the QPSO over-exploited due to

low temporal severity under both gradual and abrupt scenarios. The fact that both

6.2. CLASSIFICATION PROBLEMS 168

Table 6.39: Dynamic Sphere Results for Scenarios D1 to D4

Algorithm

Scenario
D1 (frequency: 250, step size: 50)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.165768± 0.002174 0.132933± 0.003737 0.895851± 0.055219 n/a

Reinit. Back Propagation 0.091211± 0.000851 0.173511± 0.006563 1.59901± 0.085862 n/a

Reinitialising PSO 0.101189± 0.001321 0.10672± 0.004144 1.07123± 0.075417 4.7298± 0.914033

Charged PSO 0.244169± 0.029981 0.248832± 0.031562 1.06706± 0.065279 0.586799± 0.11553

Quantum PSO 0.246038± 0.020945 0.251531± 0.02237 1.06288± 0.062687 0.317741± 0.049831

D2 (frequency: 250, step size: 100)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.164773± 0.002493 0.13038± 0.005265 0.888469± 0.072247 n/a

Reinit. Back Propagation 0.090866± 0.001116 0.172943± 0.005622 1.59321± 0.081327 n/a

Reinitialising PSO 0.101856± 0.001426 0.107513± 0.004631 1.06235± 0.080856 11.6333± 1.3867

Charged PSO 0.242995± 0.036794 0.246834± 0.037879 1.04924± 0.061249 0.640546± 0.069317

Quantum PSO 0.247662± 0.026591 0.251565± 0.027257 1.04484± 0.049591 0.344882± 0.036625

D3 (frequency: 250, step size: 500)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.140808± 0.002707 0.105287± 0.004103 0.82433± 0.056355 n/a

Reinit. Back Propagation 0.073325± 0.001552 0.129212± 0.004556 1.43011± 0.085763 n/a

Reinitialising PSO 0.102763± 0.001444 0.240959± 0.008675 1.30686± 0.0761 10.142± 1.15623

Charged PSO 0.236357± 0.041818 0.238866± 0.04002 1.02684± 0.061654 1.51047± 0.495413

Quantum PSO 0.25326± 0.001802 0.254952± 0.006693 1.03908± 0.050078 0.454367± 0.032219

D4 (frequency: 250, step size: 1000)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.054159± 0.007395 0.056111± 0.008284 1.07694± 0.137488 n/a

Reinit. Back Propagation 0.034517± 0.00331 0.035871± 0.004875 1.05263± 0.128093 n/a

Reinitialising PSO 0.056596± 0.008 0.226403± 0.023402 1.72321± 0.182445 8.34344± 0.897918

Charged PSO 0.240363± 0.006358 0.241697± 0.007598 0.999884± 0.068479 2.0639± 0.560476

Quantum PSO 0.238631± 0.019632 0.240392± 0.019668 1.02124± 0.06226 0.530062± 0.068598

6.2. CLASSIFICATION PROBLEMS 169

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for D3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for D3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for D4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for D4

Figure 6.53: Training and Generalisation Error results for Dynamic Sphere, scenarios D3 to

D4

BP and RBP were not visibly affected by the extent of temporal severity indicates that

the dynamic PSOs are more sensitive to the temporal severity property of a dynamic

problem, and more susceptible to over-exploitation when allowed to train for too long.

Figure 6.54 illustrates the swarm diversity profile over time obtained by the dynamic

PSOs under D1 to D4. Figure 6.54 shows that the QPSO and the CPSO maintained

very low diversity, and the RPSO diverged after encountering an abrupt change under

scenarios D3 and D4.

Table 6.39 lists collective mean errors, ρF values, as well as average swarm diversity

6.2. CLASSIFICATION PROBLEMS 170

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(a) Average Diversity Results for Scenario D1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5000 10000 15000 20000

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(b) Average Diversity Results for Scenario D2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(c) Average Diversity Results for Scenario D3

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(d) Average Diversity Results for Scenario D4

Figure 6.54: Average Diversity results for Dynamic Sphere, scenarios D1 to D4

(where applicable) obtained by the algorithms under scenarios D1 to D4. The ρF values

show that the algorithms exhibited the same overfitting trends as under C1 to C4.

Average diversity values show that the RPSO’s average diversity increased compared to

C1 to C4, and the CPSO’s and the QPSO’s average diversity decreased.

The collective mean ET and EG values reported in Table 6.39 are illustrated in Figure

6.55. For the sake of a convenient statistical comparison, the algorithms are ranked based

on their collective mean ET and EG values from Table 6.39, and the p-values reported

in Tables 6.32 and 6.33. The resulting ranks, along with the average ranks, are listed in

Table 6.40. Figure 6.55 and Table 6.40 show that no statistically significant difference

6.2. CLASSIFICATION PROBLEMS 171

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 50 100 500 1000

A
v
e

ra
g

e
 E

rr
o

r

log(Step Size)

BP
RBP

RPSO
CPSO
QPSO

(a) Average Training Error Results

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 50 100 500 1000

A
v
e

ra
g

e
 E

rr
o

r

log(Step Size)

BP
RBP

RPSO
CPSO
QPSO

(b) Average Generalisation Error Results

Figure 6.55: Average Error results for Dynamic Sphere, scenarios D1 to D4

Table 6.40: Dynamic Sphere Algorithm Ranking for Scenarios D1 to D4
Algorithm D1 D2 D3 D4 Average Rank

R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG)

BP 3 2 3 2 3 1 2.5 2 2.875 1.75

RBP 1 3 1 3 1 2 1 1 1 2.25

RPSO 2 1 2 1 2 4 2.5 3 2.125 2.25

CPSO 4.5 4.5 4.5 4.5 4 3 4.5 4.5 4.375 4.125

QPSO 4.5 4.5 4.5 4.5 5 5 4.5 4.5 4.625 4.625

was observed between the CPSO and the QPSO under most scenarios, and these two

algorithms produced the worst average ranks under scenarios D1 to D4. The RPSO

performed more competitively, significantly outperforming all other algorithms in terms

of EG under the gradual scenarios D1 and D2, but also deteriorating in performance

under D3 and D4. BP and RBP exhibited similar behaviour as was observed under C1

to C4, and RBP once again outperformed all other algorithms under the most abrupt

scenario D4. The average ranks in Table 6.40 show that BP obtained the lowest average

EG rank under D1 to D4, thus BP can be considered the best performer under the least

temporally severe scenarios.

6.2. CLASSIFICATION PROBLEMS 172

 10

 50

 100

 250

 50

 100

 500

 1000

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

A
v
e

ra
g

e
 E

rr
o

r

BP
RBP

RPSO
CPSO
QPSO

log(Frequency of Change)

log(Step Size)

A
v
e

ra
g

e
 E

rr
o

r

Figure 6.56: Average Training Error Results for Dynamic Sphere

All scenarios: In order to aid drawing more general patterns from the empirical data,

the collective mean ET values produced by the five algorithms under the 16 different

dynamic scenarios are visualised in Figure 6.56, and the collective mean EG values are

visualised in Figure 6.57.

Figure 6.56 illustrates that the CPSO and the QPSO have performed their best under

gradual scenarios of high temporal severity, and deteriorated as either abruptness of

changes increased, or the frequency of changes decreased. The RPSO did not deteriorate

in terms of ET under either infrequent or abrupt changes. However, Figure 6.57 illustrates

that the RPSO deteriorated even faster than the CPSO and the QPSO in terms of EG

as the spatial severity increased. Hence, all algorithms deteriorated in performance with

an increase in spatial severity. The RPSO, as Figure 6.57 illustrates, was less affected

6.2. CLASSIFICATION PROBLEMS 173

 10

 50

 100

 250

 50

 100

 500

 1000

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

A
v
e

ra
g

e
 E

rr
o

r

BP
RBP

RPSO
CPSO
QPSO

log(Frequency of Change)

log(Step Size)

A
v
e

ra
g

e
 E

rr
o

r

Figure 6.57: Average Generalisation Error Results for Dynamic Sphere

by changes in temporal severity than the CPSO and the QPSO: the RPSO was less

memory-dependent, hence the RPSO was less prone to over-exploit when left training

for too long. The larger Vmax value used for the RPSO also promoted exploration.

The success of slowly-converging dynamic PSOs under scenarios of high temporal

severity is an indication that the dynamic sphere was a trivial problem to optimise. This

supposition is further confirmed by the fact that RBP outperformed all other algorithms

under the most abrupt scenarios in terms of both ET and EG, as Figures 6.56 and 6.57

illustrate.

BP was outperformed by the dynamic PSOs under gradual scenarios, and by RBP

under the most abrupt scenarios. However, BP showed superior performance under

scenarios A3 to D3 (step size of 500 patterns), when the changes were too abrupt for

6.2. CLASSIFICATION PROBLEMS 174

Table 6.41: Dynamic Sphere Average Algorithm Ranking for Scenarios A to D
Algorithm Average R(A) Average R(B) Average R(C) Average R(D) Average Rank

R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG)

BP 3.5 2.5 4.125 2.75 4.25 2.75 2.875 1.75 3.6875 2.4375

RBP 2.25 3.625 1.125 3.375 1 3.75 1 2.25 1.34375 3.25

RPSO 1.75 2.375 2.125 3 2.25 3.25 2.125 2.25 2.0625 2.71875

CPSO 3.375 3 3.5 2.5 3.5 2.375 4.375 4.125 3.6875 3

QPSO 4.125 3.5 4.125 3.375 4 2.875 4.625 4.625 4.21875 3.59375

the dynamic PSOs, and RBP failed due to the presence of stale data inside the sliding

window.

Average ranks calculated for scenarios A1 to D4, along with the overall average ranks,

are summarised in Table 6.41. Overall average ranks in Table 6.41 indicate that RBP

obtained the highest average rank in terms of training, and BP obtained the highest

average rank in terms of generalisation. Since the ability to generalise is crucial for a

trained NN to be of any use, the generalisation rank is considered more important than

the training rank. Hence, BP can be labelled as the overall top performer on the dynamic

sphere problem. Although the dynamic PSOs exhibited significantly better performance

than both BP and RBP under gradual scenarios, the dynamic sphere problem was too

trivial to justify the use of the population-based algorithms such as the dynamic PSOs.

6.2.4 Sliding Thresholds

For this problem, the Cartesian space was subdivided into three classes by means of two

parallel linear thresholds.

6.2. CLASSIFICATION PROBLEMS 175

Problem Definition

The two parallel linear thresholds, f1(~x) and f2(~x), are given by

f1(~x) = t1

f2(~x) = t2

t1 < t2,

where t1 and t2 are constant values, therefore f1(~x) and f2(~x) are parallel vertical lines.

Thus, a 2D point can be classified based on its x-axis component only (x1). Classification

was done as follows:

Classification(~x) =


Class A if x1 ≤ t1

Class B if x1 ≥ t2

Class C otherwise

(6.6)

A data set was generated according to the procedure described in Section 6.1.2, where

the number of points, M , was set to 1000, and the total number of environment changes,

N , was set to 10. A set of M 2-dimensional points, {~x1, ~x2, . . . , ~x1000} was randomly

generated such that ~xl ∈ [0, 1]2, l = 1, . . . , 1000, and each point ~xl was assigned a class

value according to equation (6.6). Thresholds were generated N times by setting t1 and

t2 to random numbers from the interval [0, 1] such that t1 < t2. Target classification of

M patterns was updated N times, and every time the updated patterns were appended

to the data set, yielding a data set of 11 000 patterns in total. The size of the sliding

window was set to 1000.

A NN with 2 input units, 3 hidden units, and 3 output units was trained on the

Sliding Thresholds problem. According to equation (6.3), the total number of weights

and biases, corresponding to the dimensionality of the problem, was equal to 24.

Sixteen different dynamic scenarios as described in Section 6.2.2 were considered for

the sliding thresholds problem. The chosen scenarios simulated different combinations

6.2. CLASSIFICATION PROBLEMS 176

Table 6.42: Optimal Parameters for the Sliding Thresholds problem

Algorithm Parameters

Back Propagation Weight Interval Learning Rate Momentum

[−1, 1] 0.1 0.1

Reinitialising Weight Interval Learning Rate Momentum

Back Propagation [−1, 1] 0.1 0.2

Reinitialising PSO Weight Interval Vmax Swarm Size Reinitialisation Ratio

[−1, 1] 1 50 0.75

Charged PSO Weight Interval Vmax Swarm Size Charge Magnitude

[−1, 1] 2 50 20

Quantum PSO Weight Interval Vmax Swarm Size Cloud Radius

[−1, 1] 2 50 2

of spatial and temporal severity, providing representative coverage of different dynamic

environment types. The technique of simulating dynamic scenarios applied in this study

is described in Section 6.1.2. Parameter settings corresponding to each dynamic scenario

are listed in Table 6.17.

Parameter Optimisation

All algorithm parameters were optimised according to the procedure described in Sec-

tion 6.1.3. Corresponding optimal parameters discovered are listed in Table 6.42.

Analysis of Empirical Data

The number of iterations required to traverse the entire data set under every dynamic

scenario considered was calculated using equation (6.4).

6.2. CLASSIFICATION PROBLEMS 177

Sliding thresholds is a 2D problem that has only linear decision boundaries. Although

linear decision boundaries are trivial to learn, this problem was rather difficult to optimise

due to the sliding window approach used to simulate dynamic environments. As discussed

in Section 6.1.2, a dynamic environment is simulated by sliding a window over a large

data set. If the data set is traversed in order, the classification of the data patterns

will change every M = 1000 patterns. The previous problems discussed dealt with one

decision boundary per 1000 patterns. Thus, for the previous problems considered, a

sliding window of N patterns, N ≤M , contained at least one decision boundary and at

most two. For the sliding thresholds problem, there were two decision boundaries per

every 1000 data patterns. After every 1000 patterns traversed, two new boundaries were

introduced. Therefore, for the sliding thresholds problem, the sliding window contained

at least two decision boundaries and at most four. Although linear boundaries are

trivial, it can be problematic for the training algorithm to simultaneously detect two

new boundaries. Furthermore, old boundaries and new boundaries may be mutually

exclusive, i.e. classify the same pattern into different classes, since new boundaries were

generated randomly.

The rest of this section is dedicated to the analysis of the empirical results obtained

for the sliding thresholds problem.

Scenarios A1 to A4: Figures 6.58 and 6.59 illustrate the ET and EG profiles obtained

by the five algorithms considered under scenarios A1 to A4. Figure 6.58 illustrates that

under gradual changes, both BP and RBP exploited the found solutions much worse than

the dynamic PSOs. As already explained, the total number of decision boundaries for

the sliding thresholds problem was more than for the other problems considered. Hence,

the error function landscape became more difficult to traverse for the hill-climbers such

as BP and RBP, and the population-based dynamic PSOs explored and exploited the

weight space better.

6.2. CLASSIFICATION PROBLEMS 178

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 200 400 600 800 1000 1200 1400 1600 1800

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for A1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 200 400 600 800 1000 1200 1400 1600 1800

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for A1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 100 200 300 400 500 600 700 800 900

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for A2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 100 200 300 400 500 600 700 800 900

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for A2

Figure 6.58: Training and Generalisation Error results for Sliding Thresholds, scenarios A1

to A2

Figure 6.59 shows that under A3, when conflicting boundaries still may have been

present, BP and RBP were outperformed by the dynamic PSOs. However, both the

training and generalisation performance of BP and RBP significantly improved under

abrupt scenario A4 where no conflicting boundaries were present. Figures 6.59(a) and

6.59(b) illustrate that RBP’s ET and EG were decreasing between environment changes,

as opposed to BP, whose ET and EG appeared rather stable between changes, thus

indicating stagnation. Scenarios A1 to A4 simulated changes of high temporal severity,

and RBP did not have enough time to converge on a good solution between environment

6.2. CLASSIFICATION PROBLEMS 179

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 20 40 60 80 100 120 140 160 180

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for A3

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 20 40 60 80 100 120 140 160 180

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for A3

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 10 20 30 40 50 60 70 80 90

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for A4

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 10 20 30 40 50 60 70 80 90

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for A4

Figure 6.59: Training and Generalisation Error results for Sliding Thresholds, scenarios A3

to A4

changes. Figure 6.59 illustrates that the dynamic PSOs suffered from the same thing

under abrupt changes: although the produced ET and EG decreased between changes, the

frequency of 10 iterations did not allow the slow-converging dynamic PSOs to properly

exploit the fruitful regions found. Therefore, both RBP and the dynamic PSOs are

expected to outperform BP under abrupt environment changes of lower temporal severity.

Table 6.43 summarises the mean fitness results obtained for scenarios A1 to A4.

Average ρF and average swarm diversity (where applicable) are also reported. The values

of ρF in Table 6.43 show that all algorithms except BP were susceptible to overfitting

6.2. CLASSIFICATION PROBLEMS 180

Table 6.43: Sliding Thresholds Results for Scenarios A1 to A4

Algorithm

Scenario
A1 (frequency: 10, step size: 50)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.153493± 0.015032 0.136737± 0.014298 0.909784± 0.059484 n/a

Reinit. Back Propagation 0.103516± 0.000502 0.147665± 0.003263 1.46147± 0.068171 n/a

Reinitialising PSO 0.070907± 0.000673 0.071907± 0.002433 0.998407± 0.072136 6.82679± 0.196598

Charged PSO 0.072955± 0.004674 0.073412± 0.005112 1.01682± 0.0509 7.11741± 0.593174

Quantum PSO 0.071743± 0.003221 0.073101± 0.00487 1.02934± 0.083099 7.10982± 0.600528

A2 (frequency: 10, step size: 100)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.142729± 0.009063 0.125513± 0.011567 0.906443± 0.067477 n/a

Reinit. Back Propagation 0.102635± 0.00077 0.147616± 0.004737 1.48826± 0.095198 n/a

Reinitialising PSO 0.074074± 0.000665 0.074277± 0.003028 1.00798± 0.077885 7.00757± 0.217315

Charged PSO 0.074585± 0.003901 0.075893± 0.004829 1.00052± 0.050479 7.91395± 0.50089

Quantum PSO 0.074158± 0.003075 0.074692± 0.00366 1.0082± 0.054341 7.78085± 0.72978

A3 (frequency: 10, step size: 500)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.114955± 0.009776 0.098212± 0.012554 0.886697± 0.082879 n/a

Reinit. Back Propagation 0.09379± 0.001615 0.12228± 0.004462 1.31493± 0.132004 n/a

Reinitialising PSO 0.082315± 0.002789 0.084629± 0.005339 1.01245± 0.091781 7.59205± 0.356288

Charged PSO 0.072066± 0.002915 0.075276± 0.00405 1.0284± 0.085202 8.93874± 0.640144

Quantum PSO 0.071948± 0.00227 0.075056± 0.003118 1.04383± 0.072746 8.94221± 0.945251

A4 (frequency: 10, step size: 1000)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.049715± 0.004035 0.045486± 0.005378 0.945583± 0.109429 n/a

Reinit. Back Propagation 0.080386± 0.002757 0.080073± 0.005149 1.02705± 0.163965 n/a

Reinitialising PSO 0.066253± 0.004782 0.096665± 0.024581 1.45872± 0.361835 7.84682± 0.271817

Charged PSO 0.058537± 0.005081 0.063731± 0.007158 1.04655± 0.094568 9.90675± 1.07051

Quantum PSO 0.057151± 0.005216 0.063549± 0.007882 1.0868± 0.091541 9.74897± 0.763392

6.2. CLASSIFICATION PROBLEMS 181

Table 6.44: Mann-Whitney U p-values obtained for the average training error comparisons

on the Sliding Thresholds problem with reference to the null hypothesis that the means of the

compared samples are equal at the significance level of 95%
BP vs RBP BP vs RPSO

1 2 3 4 1 2 3 4

A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

B 0.0001 0.0001 0.0001 0.000164 0.0001 0.0001 0.0001 0.0001

C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

BP vs CPSO BP vs QPSO

1 2 3 4 1 2 3 4

A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RBP vs RPSO RBP vs CPSO

1 2 3 4 1 2 3 4

A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

D 0.0001 0.0001 0.0001 0.0001 0.093511 0.0001 0.0001 0.0001

RBP vs QPSO RPSO vs CPSO

1 2 3 4 1 2 3 4

A 0.0001 0.0001 0.0001 0.0001 0.074711 0.697635 0.0001 0.0001

B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.686783 0.002599

C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.000175 0.023386

D 0.010973 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.002599

RPSO vs QPSO CPSO vs QPSO

1 2 3 4 1 2 3 4

A 0.494594 0.854916 0.0001 0.0001 0.266409 0.708548 0.775176 0.202493

B 0.0001 0.0001 0.719519 0.02959 0.072293 0.241747 0.592174 0.423131

C 0.0001 0.0001 0.007643 0.241747 0.552109 0.423131 0.820526 0.458089

D 0.0001 0.0001 0.0001 0.130369 0.365817 0.159042 0.373698 0.27936

6.2. CLASSIFICATION PROBLEMS 182

Table 6.45: Mann-Whitney U p-values obtained for the average generalisation error compar-

isons on the Sliding Thresholds problem with reference to the null hypothesis that the means

of the compared samples are equal at the significance level of 95%
BP vs RBP BP vs RPSO

1 2 3 4 1 2 3 4

A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

B 0.0001 0.0001 0.030748 0.000102 0.0001 0.0001 0.0001 0.0001

C 0.003192 0.000117 0.020724 0.0001 0.0001 0.0001 0.0001 0.0001

D 0.002599 0.001794 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

BP vs CPSO BP vs QPSO

1 2 3 4 1 2 3 4

A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RBP vs RPSO RBP vs CPSO

1 2 3 4 1 2 3 4

A 0.0001 0.0001 0.0001 0.004311 0.0001 0.0001 0.0001 0.0001

B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RBP vs QPSO RPSO vs CPSO

1 2 3 4 1 2 3 4

A 0.0001 0.0001 0.0001 0.0001 0.168039 0.159042 0.0001 0.0001

B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.763945 0.002107

C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.014864 0.096477

D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.001155

RPSO vs QPSO CPSO vs QPSO

1 2 3 4 1 2 3 4

A 0.172671 0.786452 0.0001 0.0001 0.809127 0.260089 0.947634 0.866438

B 0.0001 0.001998 0.077194 0.087794 0.197283 0.207802 0.406247 0.592174

C 0.0001 0.0001 0.009599 0.292726 0.458089 0.654613 0.602392 0.414639

D 0.0001 0.0001 0.0001 0.177408 0.059075 0.172677 0.272832 0.159042

6.2. CLASSIFICATION PROBLEMS 183

 2

 4

 6

 8

 10

 12

 14

 0 200 400 600 800 1000 1200 1400 1600 1800

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(a) Average Diversity Results for Scenario A1

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500 600 700 800 900

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(b) Average Diversity Results for Scenario A2

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120 140 160 180

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(c) Average Diversity Results for Scenario A3

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70 80 90

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(d) Average Diversity Results for Scenario A4

Figure 6.60: Average Diversity results for Sliding Thresholds, scenarios A1 to A4

Table 6.46: Sliding Thresholds Algorithm Ranking for Scenarios A1 to A4
Algorithm A1 A2 A3 A4 Average Rank

R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG)

BP 5 4 5 4 5 4 1 1 4 3.25

RBP 4 5 4 5 4 5 5 4 4.25 4.75

RPSO 2 2 2 2 3 3 4 5 2.75 3

CPSO 2 2 2 2 1.5 1.5 2.5 2.5 2 2

QPSO 2 2 2 2 1.5 1.5 2.5 2.5 2 2

6.2. CLASSIFICATION PROBLEMS 184

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 50 100 500 1000

A
v
e

ra
g

e
 E

rr
o

r

log(Step Size)

BP
RBP

RPSO
CPSO
QPSO

(a) Average Training Error Results

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 50 100 500 1000

A
v
e

ra
g

e
 E

rr
o

r

log(Step Size)

BP
RBP

RPSO
CPSO
QPSO

(b) Average Generalisation Error Results

Figure 6.61: Average Error results for Sliding Thresholds, scenarios A1 to A4

under A1 to A4. Out of the three dynamic PSOs, the RPSO obtained the lowest ρF

value under gradual scenario A1, and the highest ρF value under abrupt scenario A4. An

examination of the swarm diversity profiles provides an explanation for the overfitting

behaviour of the RPSO: Figure 6.60 illustrates that the RPSO converged to a smaller

diversity under all scenarios, since the RPSO, as opposed to the CPSO and the QPSO,

did not implement any diversity-preserving mechanism between environment changes.

Thus, the RPSO had a higher chance of over-exploiting due to the decreased exploration

ability.

The algorithms were ranked based on their collective mean ET and EG values, taking

the p-values reported in Tables 6.44 and 6.45 into account. The obtained ranks are

listed in Table 6.46. Collective mean ET and EG values obtained for A1 to A4 are

illustrated in Figure 6.61. As Figure 6.61 illustrates, both BP and RBP improved in

performance as the abruptness of changes increased. Increasing abruptness reduced the

total number of environment changes encountered during the algorithm run. Spatially

severe changes also sped up the process of discarding obsolete data, since a larger amount

of old data patterns was replaced by new data at every change. The dynamic PSOs, as

Figure 6.61 illustrates, were less sensitive to the number of environment changes and the

6.2. CLASSIFICATION PROBLEMS 185

spatial severity of changes. Table 6.46 confirms that both BP and RBP were significantly

outperformed by the dynamic PSOs under scenarios A1 to A3. However, BP was the

top performer under A4 (see Table 6.46), confirming the observations made earlier based

on the algorithms’ error profiles.

The RBP, similar to the problems considered previously, trained significantly better

than BP and generalised significantly worse for the scenarios where conflicting boundaries

were present. Hence, a complete reinitialisation of weights did not prove efficient under

temporally severe changes, where RBP was not given enough time to refine the found

solution. The same applies to the RPSO, which deteriorated as the abruptness of changes

increased.

Table 6.46 shows that no statistically significant difference was observed between

the CPSO and the QPSO. Average ranks in Table 6.46 also show that both these algo-

rithms obtained the highest average rank, therefore they can both be considered as top

performers for scenarios A1 to A4.

Scenarios B1 to B4: Figures 6.62 and 6.63 illustrate the progression of ET and

EG over time as obtained by the five algorithms for scenarios B1 to B4. Figure 6.62

illustrates that, for the gradual scenarios B1 and B2, the algorithms exhibited similar

trends as observed for A1 and A2: the dynamic PSOs exploited better than both BP

and RBP, and RBP exploited better than BP.

Figure 6.63 illustrates that RBP, given enough time to converge between changes

(50 iterations instead of 10), managed to outperform BP under B3: RBP managed to

obtain lower minimum ET error values than BP between most changes. However, Figure

6.63(b) illustrates that RBP did not always support low ET values by equally low EG

values. The tendency of RBP to overfit can be due to the sensitivity of this training

algorithm to the presence of conflicting boundaries in the training data. This hypothesis

is proved accurate by Figure 6.63(d), which illustrates that RBP generalised well under

6.2. CLASSIFICATION PROBLEMS 186

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for B1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for B1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for B2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for B2

Figure 6.62: Training and Generalisation Error results for Sliding Thresholds, scenarios B1

to B2

the abrupt scenario B4 where no conflicting boundaries were present.

Figure 6.63 also illustrates that the dynamic PSOs benefited from decreased temporal

severity by better exploiting the fruitful regions found, and reaching lower ET and EG

values between environment changes. The same can not be said about BP: Figures

6.63(c) and 6.63(d) illustrate that BP failed to optimise the sliding thresholds decision

boundaries under the B4 scenario. No conflicting decision boundaries where present

under B4, thus stale data can not be blaimed for BP’s failure. As discussed in Chapter

5, BP will fail to adapt to an environment change if the change of the error function

6.2. CLASSIFICATION PROBLEMS 187

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 100 200 300 400 500 600 700 800 900

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for B3

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 100 200 300 400 500 600 700 800 900

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for B3

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 50 100 150 200 250 300 350 400 450

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for B4

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 50 100 150 200 250 300 350 400 450

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for B4

Figure 6.63: Training and Generalisation Error results for Sliding Thresholds, scenarios B3

to B4

landscape causes the current position of the NN weight vector to be in an unfruitful

region such as a plateau of a local minima. The failure of BP to adapt to some changes

under B4 indicates that these changes trapped BP in a region from which BP could not

escape. The success of BP on the same problem under more temporally severe scenario

A4 indicates that the decrease in temporal severity allowed BP to better exploit, thus

leading BP deeper into areas where BP became stuck after environment changes.

RBP was reinitialised after every change, thus RBP did not get trapped in unfruitful

regions, such as plateaus or local minima, as easily as BP. However, RBP performed

6.2. CLASSIFICATION PROBLEMS 188

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(a) Average Diversity Results for Scenario B1

 2

 4

 6

 8

 10

 12

 14

 16

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(b) Average Diversity Results for Scenario B2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 0 100 200 300 400 500 600 700 800 900

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(c) Average Diversity Results for Scenario B3

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250 300 350 400 450

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(d) Average Diversity Results for Scenario B4

Figure 6.64: Average Diversity results for Sliding Thresholds, scenarios B1 to B4

significantly worse than the dynamic PSOs under B4: Figures 6.63(c) and 6.63(d) il-

lustrate that RBP stagnated after some environment changes. Stagnation of RBP is

attributed to the strong dependency of any hill-climbing algorithm on the starting point

of the search: the RBP failed to find the optimum when the weight vector was put in

an unfruitful region of the search space by reinitialisation.

Figure 6.64 illustrates the progression of swarm diversity over time for scenarios B1

to B4. Figures 6.64(c) and 6.64(d) illustrate that the dynamic PSOs did not converge

to a stable diversity level between changes. Hence, the dynamic PSOs are expected to

exploit more with further decreases in temporal severity.

6.2. CLASSIFICATION PROBLEMS 189

Table 6.47: Sliding Thresholds Results for Scenarios B1 to B4

Algorithm

Scenario
B1 (frequency: 50, step size: 50)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.151092± 0.020754 0.13528± 0.017375 0.91583± 0.038688 n/a

Reinit. Back Propagation 0.094176± 0.00101 0.139925± 0.003195 1.55321± 0.078108 n/a

Reinitialising PSO 0.061455± 0.001925 0.062192± 0.002846 1.01317± 0.05285 5.98567± 0.570052

Charged PSO 0.072534± 0.005605 0.073516± 0.006696 1.00714± 0.062739 6.3813± 0.585326

Quantum PSO 0.070514± 0.004996 0.071295± 0.005128 1.00987± 0.071053 6.39708± 0.736462

B2 (frequency: 50, step size: 100)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.149287± 0.017802 0.132267± 0.014432 0.913431± 0.063787 n/a

Reinit. Back Propagation 0.093804± 0.001313 0.139525± 0.004149 1.55554± 0.104874 n/a

Reinitialising PSO 0.06368± 0.001258 0.065144± 0.002031 1.0333± 0.079781 5.30513± 0.623714

Charged PSO 0.071221± 0.008886 0.072218± 0.00837 1.01254± 0.045516 6.54465± 0.58564

Quantum PSO 0.068427± 0.004953 0.069381± 0.00564 0.991213± 0.061567 6.59418± 0.739838

B3 (frequency: 50, step size: 500)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.132411± 0.011119 0.115916± 0.010667 0.905601± 0.068225 n/a

Reinit. Back Propagation 0.083283± 0.003031 0.11243± 0.004419 1.3706± 0.119529 n/a

Reinitialising PSO 0.058312± 0.00091 0.058575± 0.002254 1.01552± 0.076406 5.3119± 0.550175

Charged PSO 0.059298± 0.003277 0.059405± 0.00457 1.0041± 0.067167 8.84716± 0.816739

Quantum PSO 0.058643± 0.00301 0.060084± 0.003505 1.01826± 0.079305 8.69489± 0.791932

B4 (frequency: 50, step size: 1000)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.085928± 0.029466 0.08665± 0.031776 1.01553± 0.074648 n/a

Reinit. Back Propagation 0.066596± 0.005977 0.064456± 0.007366 0.949584± 0.121842 n/a

Reinitialising PSO 0.024424± 0.001652 0.024827± 0.003369 1.00775± 0.133446 6.26526± 1.06991

Charged PSO 0.024341± 0.020914 0.025131± 0.020715 1.03728± 0.131702 9.74551± 0.925972

Quantum PSO 0.022029± 0.004917 0.022903± 0.005061 1.04336± 0.137933 9.37184± 0.971857

6.2. CLASSIFICATION PROBLEMS 190

Table 6.47 summarises the mean fitness results obtained under scenarios B1 to B4,

as well as the average ρF values, and average swarm diversity, where applicable. As the

ρF values in Table 6.47 indicate, all dynamic PSOs exhibited minor overfitting under B1

to B4. BP did not overfit under scenarios B1 to B3. However, the standard deviation

values of ET and EG obtained by BP indicate that BP showed less robust performance

than RBP and the dynamic PSOs.

The algorithms were ranked in terms of collective mean ET and EG values obtained

for B1 to B4, taking the p-values in Tables 6.44 and 6.45 into account. The obtained

ranks are listed in Table 6.48. Collective mean ET and EG values are illustrated in

Figure 6.65. Figure 6.65 illustrates that BP was significantly outperformed by all other

algorithms in terms of ET . BP was also significantly outperformed by all algorithms

except RBP under B1 and B2 in terms of EG, and by all algorithms under B3 and B4.

Table 6.48 confirms that the three dynamic PSOs significantly outperformed both BP and

RBP under B1 to B4. The RPSO managed to significantly outperform both the CPSO

and the QPSO: Figure 6.62 illustrates that the RPSO’s ET and EG peaks were lower

than the corresponding CPSO’s and QPSO’s error peaks. Since the sliding thresholds

problem contained more decision boundaries than the other problems considered, and

the conflicting boundaries problem was more severe, the ability of the RPSO to quickly

“unlearn” stale data proved useful under gradual scenarios. No statistically significant

difference was observed between the dynamic PSOs under abrupt scenarios B3 and B4.

Average ranks reported in Table 6.48 indicate that the RPSO was the best performer

under B1 to B4. The algorithm’s ability to “unlearn” stale information proved crucial

for the problem where multiple conflicting boundaries were present.

Scenarios C1 to C4: Figures 6.66 and 6.67 illustrate the ET and EG profiles over time

obtained by the five algorithms for C1 to C4. Figure 6.66 illustrates that CPSO’s and

QPSO’s ET and EG peaked higher under gradual scenarios C1 and C2 than under B1 and

6.2. CLASSIFICATION PROBLEMS 191

Table 6.48: Sliding Thresholds Algorithm Ranking for Scenarios B1 to B4
Algorithm B1 B2 B3 B4 Average Rank

R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG)

BP 5 4 5 4 5 5 5 5 5 4.5

RBP 4 5 4 5 4 4 4 4 4 4.5

RPSO 1 1 1 1 2 2 3 1.5 1.75 1.375

CPSO 2.5 2.5 2.5 2.5 2 2 1.5 3 2.125 2.5

QPSO 2.5 2.5 2.5 2.5 2 2 1.5 1.5 2.125 2.125

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 50 100 500 1000

A
v
e

ra
g

e
 E

rr
o

r

log(Step Size)

BP
RBP

RPSO
CPSO
QPSO

(a) Average Training Error Results

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 50 100 500 1000

A
v
e

ra
g

e
 E

rr
o

r

log(Step Size)

BP
RBP

RPSO
CPSO
QPSO

(b) Average Generalisation Error Results

Figure 6.65: Average Error results for Sliding Thresholds, scenarios B1 to B4

B2 (see Figure 6.62). Scenarios C1 to C2 simulated changes of lower spatial severity than

B1 to B4. Thus, the algorithms were given more time to converge between environment

changes, and refine the found solutions. However, every environment change yielded some

of the previously learned information obsolete, and the algorithms had to promptly adjust

the learned model accordingly. Figure 6.68 illustrates that, although both the CPSO

and the QPSO preserved diversity throughout the algorithm run under all scenarios, the

RPSO reached higher diversity levels under gradual scenarios C1 and C2. The CPSO’s

diversity was maintained by the repelling forces of the charged particles only, and the

QPSO’s quantum cloud was randomised in a small radius around the global best, and the

gradual changes were easier to adjust to than the abrupt changes. Thus, the CPSO and

6.2. CLASSIFICATION PROBLEMS 192

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for C1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for C1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for C2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for C2

Figure 6.66: Training and Generalisation Error results for Sliding Thresholds, scenarios C1

to C2

the QPSO converged on a small area around global best, and had to spend more time

regaining diversity after a change. The RPSO converged to an even smaller area between

environment changes due to the lack of a diversity-preserving mechanism. However, the

RPSO regained diversity instantly after every environment change by randomising a

percentage of particles in the given weight initialisation interval. In case of the sliding

thresholds problem, 75% of the swarm was reinitialised by the RPSO, thus only 25% of

the swarm memory was preserved, and the other 75% were scattered around the search

space, allowing the RPSO to efficiently explore. Figure 6.68 illustrates that the CPSO

6.2. CLASSIFICATION PROBLEMS 193

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 200 400 600 800 1000 1200 1400 1600 1800

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for C3

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 200 400 600 800 1000 1200 1400 1600 1800

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for C3

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 100 200 300 400 500 600 700 800 900

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for C4

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 100 200 300 400 500 600 700 800 900

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for C4

Figure 6.67: Training and Generalisation Error results for Sliding Thresholds, scenarios C3

to C4

and the QPSO maintained diversity better under abrupt scenarios C3 and C4, where

these algorithms struggled to converge to a small stable diversity due to the abruptness

of changes.

Figure 6.67 illustrates that neither BP nor RBP has benefited from the decreased

temporal severity: both these algorithms stagnated early between most environment

changes. The NN error landscape of the sliding thresholds proved hard to optimise for

the hill-climbing NN training algorithms.

Collective mean ET , EG, and ρF values, as well as the average swarm diversity was

6.2. CLASSIFICATION PROBLEMS 194

Table 6.49: Sliding Thresholds Results for Scenarios C1 to C4

Algorithm

Scenario
C1 (frequency: 100, step size: 50)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.200552± 0.11802 0.182108± 0.112807 0.918696± 0.046722 n/a

Reinit. Back Propagation 0.092587± 0.00123 0.136819± 0.003454 1.54156± 0.089565 n/a

Reinitialising PSO 0.059751± 0.00178 0.059944± 0.002863 1.03563± 0.063937 7.59927± 1.05103

Charged PSO 0.076702± 0.004779 0.078222± 0.005915 1.0251± 0.063742 6.59631± 0.522951

Quantum PSO 0.077463± 0.005842 0.079614± 0.006852 1.03078± 0.057624 6.39715± 0.698927

C2 (frequency: 100, step size: 100)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.158981± 0.038679 0.171066± 0.107484 1.06294± 0.513781 n/a

Reinit. Back Propagation 0.091914± 0.001601 0.137699± 0.003701 1.55542± 0.079222 n/a

Reinitialising PSO 0.061345± 0.002197 0.061962± 0.003968 1.02074± 0.065403 6.07764± 0.667674

Charged PSO 0.071107± 0.006099 0.072751± 0.00658 1.03272± 0.068002 6.64967± 0.938283

Quantum PSO 0.072182± 0.006226 0.073344± 0.00678 1.00832± 0.05989 6.71768± 0.770835

C3 (frequency: 100, step size: 500)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.138621± 0.017921 0.120052± 0.016573 0.875654± 0.058455 n/a

Reinit. Back Propagation 0.082158± 0.004326 0.111868± 0.005933 1.33506± 0.09479 n/a

Reinitialising PSO 0.054092± 0.000935 0.055278± 0.002278 1.03434± 0.093407 5.04578± 0.735815

Charged PSO 0.056934± 0.003381 0.057185± 0.003319 1.0064± 0.091524 8.21256± 0.799795

Quantum PSO 0.056913± 0.004078 0.058309± 0.004474 1.02097± 0.071611 8.36473± 0.84815

C4 (frequency: 100, step size: 1000)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.08482± 0.026541 0.085047± 0.026804 0.993225± 0.090387 n/a

Reinit. Back Propagation 0.061294± 0.00619 0.061548± 0.008117 1.02942± 0.150179 n/a

Reinitialising PSO 0.018883± 0.002162 0.019303± 0.003366 1.0102± 0.132476 6.06824± 1.00838

Charged PSO 0.018289± 0.006454 0.018742± 0.007034 1.00383± 0.128576 8.86321± 1.00175

Quantum PSO 0.018509± 0.004962 0.018866± 0.005452 1.01503± 0.149493 8.81854± 1.07132

6.2. CLASSIFICATION PROBLEMS 195

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(a) Average Diversity Results for Scenario C1

 0

 5

 10

 15

 20

 25

 30

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(b) Average Diversity Results for Scenario C2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 0 200 400 600 800 1000 1200 1400 1600 1800

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(c) Average Diversity Results for Scenario C3

 2

 4

 6

 8

 10

 12

 14

 16

 0 100 200 300 400 500 600 700 800 900

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(d) Average Diversity Results for Scenario C4

Figure 6.68: Average Diversity results for Sliding Thresholds, scenarios C1 to C4

reported in Table 6.49. The ρF values in Table 6.49 indicate that all algorithms except

BP were prone to overfitting under C1 to C4, especially RBP, which produced the largest

ρF values under C1 to C4. The susceptibility of RBP to overfit under scenarios with

conflicting boundaries was further facilitated by low temporal severity, which allowed all

algorithms to train for too long under C1 to C4. BP produced a ρF > 1 only under

gradual scenario C2. However, the standard deviations of ET and EG obtained by BP

indicate that BP performed less robustly than the other algorithms considered.

Low average diversity values obtained by the dynamic PSOs under abrupt scenarios

C3 and C4 confirm that the dynamic PSO algorithms used the extra iterations between

6.2. CLASSIFICATION PROBLEMS 196

Table 6.50: Sliding Thresholds Algorithm Ranking for Scenarios C1 to C4
Algorithm C1 C2 C3 C4 Average Rank

R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG)

BP 5 5 5 5 5 5 5 5 5 5

RBP 4 4 4 4 4 4 4 4 4 4

RPSO 1 1 1 1 1 1 2 2 1.25 1.25

CPSO 2.5 2.5 2.5 2.5 2.5 2.5 2 2 2.375 2.375

QPSO 2.5 2.5 2.5 2.5 2.5 2.5 2 2 2.375 2.375

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 50 100 500 1000

A
v
e

ra
g

e
 E

rr
o

r

log(Step Size)

BP
RBP

RPSO
CPSO
QPSO

(a) Average Training Error Results

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 50 100 500 1000

A
v
e

ra
g

e
 E

rr
o

r

log(Step Size)

BP
RBP

RPSO
CPSO
QPSO

(b) Average Generalisation Error Results

Figure 6.69: Average Error results for Sliding Thresholds, scenarios C1 to C4

changes to converge to a smaller area around a solution.

The algorithms were ranked based on the collective mean ET and EG values, taking

the p-values in Tables 6.44 and 6.45 into account. The obtained ranks, as well as the

average ranks, are reported in Table 6.50. Collective mean ET and EG values are also

illustrated in Figure 6.69. Figure 6.69 and Table 6.50 show that BP was significantly

outperformed by all other algorithms under C1 to C4. RBP outperformed BP, but was

significantly outperformed by the three dynamic PSOs under C1 to C4. The RPSO

significantly outperformed the CPSO and the QPSO under scenarios C1 to C3, and no

statistically significant difference was observed between the three dynamic PSOs under

C4: as already observed, weak dependence on the swarm memory of the RPSO helped

6.2. CLASSIFICATION PROBLEMS 197

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for D1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for D1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 5000 10000 15000 20000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for D2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5000 10000 15000 20000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for D2

Figure 6.70: Training and Generalisation Error results for Sliding Thresholds, scenarios D1

to D2

this algorithm to promptly “forget” stale data, which proved useful on a problem where

multiple conflicting boundaries were present. The average ranks in Table 6.50 indicate

that the RPSO was the best performer under C1 to C4, and BP showed the worst

performance.

Scenarios D1 to D4: Figures 6.70 and 6.71 illustrate the progression of ET and

EG over time as obtained by the different algorithms under D1 to D4. Figures 6.70

illustrates that the CPSO’s and the QPSO’s error profiles peaked even higher under

6.2. CLASSIFICATION PROBLEMS 198

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for D3

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for D3

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 500 1000 1500 2000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for D4

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 500 1000 1500 2000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for D4

Figure 6.71: Training and Generalisation Error results for Sliding Thresholds, scenarios D3

to D4

gradual scenarios D1 and D2 than under C1 to C2. Scenarios D1 to D2 simulated the

least temporally severe environment changes, with the frequency of changes equal to 250

iterations: memory-preserving CPSO and QPSO exhibited overfitting due to training for

too long between environment changes. The RPSO remained overfitting-resistant under

D1 to D4.

Under abrupt changes, as Figure 6.71 illustrates, the CPSO and the QPSO also

suffered from overfitting: higher error peaks were produced after environment changes

under D3 and D4 than under C3 and C4. However, when no conflicting boundaries were

6.2. CLASSIFICATION PROBLEMS 199

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(a) Average Diversity Results for Scenario D1

 0

 10

 20

 30

 40

 50

 60

 0 5000 10000 15000 20000

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(b) Average Diversity Results for Scenario D2

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(c) Average Diversity Results for Scenario D3

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 500 1000 1500 2000

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(d) Average Diversity Results for Scenario D4

Figure 6.72: Average Diversity results for Sliding Thresholds, scenarios D1 to D4

present (scenario D4), both the CPSO and the QPSO managed to promptly find and

exploit the new solution (refer to Figures 6.71(c) and 6.71(d)).

Figures 6.70 and 6.71 illustrate that BP and RBP exhibited similar behaviour under

D1 to D4 as under C1 to C4.

The progression of swarm diversity over time, illustrated in Figure 6.72, shows that

all three dynamic PSOs reached a stable diversity level between environment changes.

Figure 6.72 illustrates that the dynamic PSOs preserved diversity without exhibiting

divergent behaviour.

Table 6.51 summarises the collective mean ET and EG, ρF , and swarm diversity val-

6.2. CLASSIFICATION PROBLEMS 200

Table 6.51: Sliding Thresholds Results for Scenarios D1 to D4

Algorithm

Scenario
D1 (frequency: 250, step size: 50)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.190979± 0.116883 0.174311± 0.114016 0.912823± 0.049653 n/a

Reinit. Back Propagation 0.089317± 0.001316 0.134207± 0.003126 1.57525± 0.086802 n/a

Reinitialising PSO 0.056782± 0.001141 0.057856± 0.002018 1.02831± 0.064099 11.6523± 2.22066

Charged PSO 0.089642± 0.009767 0.093216± 0.011032 1.04981± 0.069186 6.81867± 0.627124

Quantum PSO 0.086245± 0.005966 0.087575± 0.006176 1.03874± 0.065755 6.79253± 0.852297

D2 (frequency: 250, step size: 100)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.16679± 0.082548 0.150545± 0.081005 0.901706± 0.060186 n/a

Reinit. Back Propagation 0.088831± 0.001458 0.133354± 0.004312 1.57991± 0.118443 n/a

Reinitialising PSO 0.058099± 0.00136 0.058946± 0.002143 1.02881± 0.063062 7.3771± 1.28765

Charged PSO 0.076492± 0.005072 0.078749± 0.005938 1.01142± 0.057068 6.80669± 0.747515

Quantum PSO 0.078824± 0.00572 0.08096± 0.005934 1.02818± 0.068527 7.10211± 0.917528

D3 (frequency: 250, step size: 500)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.161774± 0.044374 0.144836± 0.043317 0.920468± 0.076284 n/a

Reinit. Back Propagation 0.078363± 0.004173 0.107945± 0.005508 1.35879± 0.079319 n/a

Reinitialising PSO 0.049395± 0.000909 0.04987± 0.001521 1.03178± 0.086033 5.14095± 0.855502

Charged PSO 0.059674± 0.007093 0.061183± 0.007908 1.023± 0.078771 8.09304± 0.92506

Quantum PSO 0.058129± 0.006498 0.059113± 0.007565 1.03152± 0.089961 8.44183± 0.869567

D4 (frequency: 250, step size: 1000)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.118543± 0.070682 0.120698± 0.071051 1.08199± 0.090834 n/a

Reinit. Back Propagation 0.055971± 0.006565 0.055365± 0.008704 1.00602± 0.118194 n/a

Reinitialising PSO 0.012676± 0.000938 0.013223± 0.001815 1.0223± 0.174777 5.50318± 0.954823

Charged PSO 0.017977± 0.009832 0.018939± 0.009866 1.07967± 0.183565 8.58003± 1.12658

Quantum PSO 0.016372± 0.00934 0.016812± 0.009346 1.0556± 0.172341 8.32965± 0.875176

6.2. CLASSIFICATION PROBLEMS 201

Table 6.52: Sliding Thresholds Algorithm Ranking for Scenarios D1 to D4
Algorithm D1 D2 D3 D4 Average Rank

R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG)

BP 5 5 5 5 5 5 5 5 5 5

RBP 3.5 4 4 4 4 4 4 4 3.875 4

RPSO 1 1 1 1 1 1 2 2 1.25 1.25

CPSO 3.5 2.5 2.5 2.5 2.5 2.5 2 2 2.625 2.375

QPSO 2 2.5 2.5 2.5 2.5 2.5 2 2 2.25 2.375

ues obtained by the algorithms under D1 to D4. Table 6.51 shows that once again all

algorithms except BP were susceptible to minor overfitting under D1 to D3. However,

BP produced the highest ρF value under abrupt scenario D4. Thus, BP was most sus-

ceptible to overfitting given enough iterations between changes, even when no conflicting

boundaries were present.

Table 6.52 lists the algorithm ranks based on collective mean ET and EG values,

taking the p-values reported in Tables 6.44 and 6.45 into account. Table 6.52 shows

that the algorithms exhibited similar trends under D1 to D4 as under C1 to C4, and the

average ranks indicate that the RPSO was again the best, while BP came last.

All scenarios: The average training errors produced by the four algorithms under the

16 different dynamic scenarios are illustrated in Figure 6.73, and the average generalisa-

tion errors are illustrated in Figure 6.74.

Figure 6.73 illustrates that BP produced inferior ET values compared to all other

algorithms under all scenarios except the most abrupt and the least temporally severe

scenario A4. Environment changes exhibited under A4 were abrupt and frequent enough

to prevent BP from getting trapped in an unfruitful area of the search space. Both

training and generalisation performance of BP, as figures 6.73 and 6.74 illustrate, de-

teriorated as the changes became less temporally or spatially severe. Any exploitable

changes led BP to such regions of the error landscape from which BP could not escape

6.2. CLASSIFICATION PROBLEMS 202

 10

 50
 100

 250

 50

 100

 500

 1000

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16
 0.18

 0.2
 0.22

A
v
e

ra
g

e
 E

rr
o

r

BP
RBP

RPSO
CPSO
QPSO

log(Frequency of Change)

log(Step Size)

A
v
e

ra
g

e
 E

rr
o

r

Figure 6.73: Average Training Error Results for Sliding Thresholds

due to its hill-climbing approach to NN training. RBP performed significantly better

than BP, especially under changes of lower temporal severity: complete reinitialisation

of weights required more iterations for the algorithm to converge on a solution.

Figures 6.73 and 6.74 illustrate that the dynamic PSOs significantly outperformed

both BP and RBP in terms of both ET and EG under all scenarios except the most

abrupt and temporally severe scenario A4, where BP was the top performer. Population-

based algorithms converge slower than hill-climbing algorithms, thus the dynamic PSOs

required more algorithm iterations to converge around a solution than BP. Under scenario

A4, the exhibited changes were too drastic for the dynamic PSOs to be able to adapt to

in 10 iterations.

Figures 6.73 and 6.74 illustrate that the RPSO was outperformed by the CPSO and

6.2. CLASSIFICATION PROBLEMS 203

 10

 50
 100

 250

 50

 100

 500

 1000

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16
 0.18

 0.2

A
v
e

ra
g

e
 E

rr
o

r

BP
RBP

RPSO
CPSO
QPSO

log(Frequency of Change)

log(Step Size)

A
v
e

ra
g

e
 E

rr
o

r

Figure 6.74: Average Generalisation Error Results for Sliding Thresholds

the QPSO under frequent abrupt changes, and outperformed both the CPSO and the

QPSO under gradual infrequent changes. The diversity of the RPSO fluctuated more

severely than the diversity of the CPSO and the QPSO, which prevented the RPSO from

efficiently exploiting under A4, and at the same time made the RPSO more resistant to

overfitting than both the CPSO and the QPSO under infrequent gradual changes.

The average ranks of the algorithms obtained for scenarios A1 to A4, B1 to B4, C1 to

C4, and D1 to D4, as well as the overall average algorithm ranks, are reported in Table

6.53. The progression of algorithm ranks over different change frequencies is illustrated

in Figure 6.75.

Figure 6.75 illustrates that BP, the CPSO, and the QPSO deteriorated in ranking as

the temporal severity decreased. The RPSO and RBP, on the other hand, improved their

6.2. CLASSIFICATION PROBLEMS 204

Table 6.53: Sliding Thresholds Average Algorithm Ranking for Scenarios A to D
Algorithm Average R(A) Average R(B) Average R(C) Average R(D) Average Rank

R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG)

BP 4 3.25 5 4.5 5 5 5 5 4.75 4.4375

RBP 4.25 4.75 4 4.5 4 4 3.875 4 4.03125 4.3125

RPSO 2.75 3 1.75 1.375 1.25 1.25 1.25 1.25 1.75 1.71875

CPSO 2 2 2.125 2.5 2.375 2.375 2.625 2.375 2.28125 2.3125

QPSO 2 2 2.125 2.125 2.375 2.375 2.25 2.375 2.1875 2.21875

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 10 50 100 250

A
v
e

ra
g

e
 R

a
n

k

Change Frequency (F)

BP
RBP

RPSO
CPSO
QPSO

(a) Average Rank in terms of ET

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 10 50 100 250

A
v
e

ra
g

e
 R

a
n

k

Change Frequency (F)

BP
RBP

RPSO
CPSO
QPSO

(b) Average Rank in terms of EG

Figure 6.75: Average Rank results for Sliding Thresholds

ranks with an increase in temporal severity. Both RBP and RPSO completely or partially

restarted the search for an optimal solution after every environment change, thus these

algorithms required a larger number of iterations to exploit any fruitful regions found

than the algorithms that retained more memory about the previous solution. BP, the

CPSO, and the QPSO relied on previously discovered information, and thus performed

their best under frequent changes. However, infrequent changes allowed these algorithms

to over-exploit, thus yielding overfitting behaviour.

The overall average ranks in Table 6.53 indicate that BP showed the worst per-

formance on the sliding thresholds problem, and the RPSO showed the best perfor-

mance compared to the other algorithms considered. The QPSO came second best, and

6.2. CLASSIFICATION PROBLEMS 205

the CPSO came third in terms of the average ET and EG rank. The CPSO was the

only dynamic PSO considered which did not reinitialise particles, relying instead on the

diversity-preserving forces of the charged particles. However, the sliding thresholds prob-

lem required the training algorithms to deal with a larger number of decision boundaries

than the other problems considered, thus the ability to promptly “unlearn” the stale

information was crucial. The CPSO was the most memory-dependent, and the RPSO

was least memory-dependent; thus the CPSO was the least successful, and the RPSO

was the most successful dynamic PSO approach to the sliding thresholds problem.

6.2.5 Electricity Pricing

This problem used a real-life data set based on the electricity market in the Australian

state of New South Wales. The data set was adopted from [45].

Domain Description

Prices in the electricity market are determined by matching the present demand for

electricity with the least expensive combination of electricity from all available power

stations. Both market prices and electricity price schedules published by each power

station are frequently recalculated and updated.

Market prices depend on both demand and supply of electrical power. Significant

factors affecting the demand are season, weather, time of day and central business district

population density. The supply is affected mainly by the number of active electricity

generators. Thus, this environment is subject to both regular long-term changes, such

as seasonal changes, and irregular short-term changes, such as weather fluctuations [45].

Problem Definition

A dynamic classification problem was constructed based on the changing electricity mar-

ket price. Six parameters on which the price is dependent were identified. These include

6.2. CLASSIFICATION PROBLEMS 206

day of week, time of day, and electricity demand estimates. Parameter values were

recorded every half an hour, from 7 May 1996 to 5 December 1998. In this manner, a

data set of 27 552 samples was recorded.

Each pattern was labelled as either class A or class B. The class label identified

whether the current price is higher (class A) or lower (class B) than a moving average

price over the last 24 hours. The task of the NN was thus to predict whether the price

will go up or down based on the given input values.

Dynamic environments were simulated by sliding a window over the data set. The

original temporal order of the data was preserved, and the patterns were shuffled only

inside the window. The size of the window was set to 1000 patterns. A NN with 6 input

units, 6 hidden units and 1 output unit was trained on the electricity pricing problem.

According to equation (6.3), the total number of weights and biases, corresponding to

the dimensionality of the problem, was equal to 56.

Sixteen different dynamic scenarios as described in Section 6.2.2 and outlined in Table

6.17 were applied to the electricity pricing problem.

Parameter Optimisation

All algorithm parameters were optimised according to the procedure described in Sec-

tion 6.1.3. Corresponding optimal parameters discovered are shown in Table 6.54.

Analysis of Empirical Data

The number of iterations required to traverse the entire data set under every dynamic

scenario considered was calculated using equation (6.4). The number of patterns was

equal to 27 552, the window size was fixed to 1000 patterns, and both the step size and

the frequency of changes were determined by the scenario in use.

6.2. CLASSIFICATION PROBLEMS 207

Table 6.54: Optimal Parameters for the Electricity Pricing problem

Algorithm Parameters

Back Propagation Weight Interval Learning Rate Momentum

[−1, 1] 0.1 0.7

Reinitialising Weight Interval Learning Rate Momentum

Back Propagation [−1, 1] 0.1 0.7

Reinitialising PSO Weight Interval Vmax Swarm Size Reinitialisation Ratio

[−1, 1] 2 30 0.25

Charged PSO Weight Interval Vmax Swarm Size Charge Magnitude

[−1, 1] 5 30 0.1

Quantum PSO Weight Interval Vmax Swarm Size Cloud Radius

[−3, 3] 5 50 1.5

Scenarios A1 to A4: Figures 6.76 and 6.77 illustrate the progression of the training

and generalisation error over time as obtained by the algorithms under scenarios A1

to A4. Figures 6.76(a) and 6.76(b) illustrate that the CPSO and the QPSO exploited

better than the other algorithms considered under gradual scenario A1. Scenarios A1

to A4 simulated frequent changes (every 10 iterations). Hence, the ability to efficiently

track the found optima was more important than the ability to find new optima under

the most gradual scenario A1. The dynamic PSOs showed their ability to exploit better

than BP and RBP on other problems considered, and both the CPSO and the QPSO

retain memory better than RPSO; thus, the CPSO and the QPSO have a stronger ability

to track the moving optima.

Figure 6.76 illustrates that BP’s and RBP’s EG errors peaked higher after gradual

environment changes than the corresponding dynamic PSO errors. Both BP and RBP

6.2. CLASSIFICATION PROBLEMS 208

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

 0 1000 2000 3000 4000 5000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for A1

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 1000 2000 3000 4000 5000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for A1

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

 0 500 1000 1500 2000 2500

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for A2

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0 500 1000 1500 2000 2500

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for A2

Figure 6.76: Training and generalisation error results for Electricity Pricing, scenarios A1 to

A2

moved down the steepest slope of the error function gradient from a single point in

the weight space. The dynamic PSOs, on the other hand, used a swarm of potential

solutions, i.e. weight vectors represented by particles. Therefore, a number of different

weight vectors were considered at every iteration, and the dynamic PSOs had a higher

chance of instantly locating a better, more up-to-date solution just by re-evaluating every

particle’s fitness after an environment change and choosing a new global best particle

from the swarm.

Figures 6.76 and 6.77 illustrate that RBP fluctuated a lot in terms of both ET and

6.2. CLASSIFICATION PROBLEMS 209

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

 0 100 200 300 400 500

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for A3

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

 0 100 200 300 400 500

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for A3

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

 0 50 100 150 200 250

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for A4

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

 0 50 100 150 200 250

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for A4

Figure 6.77: Training and generalisation error results for Electricity Pricing, scenarios A3 to

A4

EG, and never had a chance to converge on a good solution due to the high frequency

of changes: a complete reinitialisation of NN weights was not an effective approach for

the electricity pricing problem under scenarios of high temporal severity.

Figure 6.77 illustrates that the dynamic PSOs also struggled to converge on a solution

under the change frequency of 10 iterations proved: the ET and EG values obtained by

the dynamic PSOs showed no sign of stagnation (i.e., the ET and EG decreased between

the changes), but the dynamic PSOs did not have enough time to converge to similar

or better error values than that obtained by BP. The swarm diversity profiles of the

6.2. CLASSIFICATION PROBLEMS 210

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 1000 2000 3000 4000 5000

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(a) Average Diversity Results for Scenario A1

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 500 1000 1500 2000 2500

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(b) Average Diversity Results for Scenario A2

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(c) Average Diversity Results for Scenario A3

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(d) Average Diversity Results for Scenario A4

Figure 6.78: Average Diversity results for Electricity Pricing, scenarios A1 to A4

dynamic PSOs, illustrated in Figure 6.78, confirm that the dynamic PSO’s diversity did

not reach a stable level, and increased under scenarios A1 to A4 for the three dynamic

PSOs considered. The RPSO was the only dynamic PSO which did not apply a diversity-

preserving technique, hence the RPSO’s diversity level was lower than that of the CPSO

and the QPSO under abrupt scenarios A3 and A4.

Collective mean ET and EG values, ρF values, and average swarm diversity values,

where applicable, are reported in Table 6.55. The ρF values in Table 6.55 show that all

algorithms exhibited some overfitting under scenarios A1 to A4, except for BP and RBP,

which overfitted under A1 to A3, but produced ρF < 1 under the most abrupt scenario

6.2. CLASSIFICATION PROBLEMS 211

Table 6.55: Electricity Pricing Results for Scenarios A1 to A4

Algorithm

Scenario
A1 (frequency: 10, step size: 50)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.107272± 0.001239 0.107447± 0.001796 1.00983± 0.026576 n/a

Reinit. Back Propagation 0.130724± 0.000274 0.148172± 0.001327 1.16051± 0.016344 n/a

Reinitialising PSO 0.1123± 0.000892 0.112489± 0.002648 1.0107± 0.033401 8.2108± 0.845223

Charged PSO 0.103669± 0.005592 0.103975± 0.005727 1.00974± 0.031274 10.95± 1.83442

Quantum PSO 0.101964± 0.00475 0.102248± 0.005023 1.00493± 0.030365 14.5312± 1.84741

A2 (frequency: 10, step size: 100)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.110246± 0.001341 0.109761± 0.002554 1.00528± 0.028872 n/a

Reinit. Back Propagation 0.132773± 0.000297 0.144535± 0.00125 1.11496± 0.019787 n/a

Reinitialising PSO 0.11512± 0.001249 0.114578± 0.001907 1.00387± 0.03096 8.41834± 0.602839

Charged PSO 0.112274± 0.002701 0.112519± 0.003538 1.00778± 0.022714 13.1445± 1.60485

Quantum PSO 0.111304± 0.00308 0.111775± 0.003462 1.00433± 0.035532 16.8054± 1.71678

A3 (frequency: 10, step size: 500)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.115424± 0.001046 0.115071± 0.001993 1.00078± 0.027635 n/a

Reinit. Back Propagation 0.135959± 0.000425 0.136993± 0.001513 1.00626± 0.016401 n/a

Reinitialising PSO 0.121239± 0.001295 0.121328± 0.002863 1.00782± 0.025264 9.27923± 0.604357

Charged PSO 0.120312± 0.001869 0.122126± 0.00201 1.01519± 0.023311 16.3026± 1.63845

Quantum PSO 0.11953± 0.001611 0.120109± 0.002337 1.00651± 0.025085 22.6831± 3.15953

A4 (frequency: 10, step size: 1000)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.11685± 0.001113 0.116022± 0.003052 0.988718± 0.027543 n/a

Reinit. Back Propagation 0.137511± 0.000552 0.136005± 0.001683 0.98745± 0.018722 n/a

Reinitialising PSO 0.123221± 0.001571 0.12502± 0.002156 1.0163± 0.024761 9.87126± 0.540778

Charged PSO 0.123785± 0.001418 0.126081± 0.002805 1.01991± 0.025703 18.5897± 2.42353

Quantum PSO 0.122252± 0.001398 0.124756± 0.002274 1.01767± 0.025868 24.6344± 2.51626

6.2. CLASSIFICATION PROBLEMS 212

 0.1

 0.105

 0.11

 0.115

 0.12

 0.125

 0.13

 0.135

 0.14

 50 100 500 1000

A
v
e

ra
g

e
 E

rr
o

r

log(Step Size)

BP
RBP

RPSO
CPSO
QPSO

(a) Average Training Error Results

 0.1

 0.105

 0.11

 0.115

 0.12

 0.125

 0.13

 0.135

 0.14

 0.145

 0.15

 50 100 500 1000

A
v
e

ra
g

e
 E

rr
o

r

log(Step Size)

BP
RBP

RPSO
CPSO
QPSO

(b) Average Generalisation Error Results

Figure 6.79: Average Error results for Electricity Pricing, scenarios A1 to A4

A4. In addition to the typical causes of overfitting, such as training for too long or noise

in the training data, dynamic classification problems introduce an extra possible cause

of overfitting; namely, the presence of stale data in the sliding window. The fact that the

ρF value of both BP and RBP decreased as the step sizes of the sliding window increased

from 50 to 1000, indicates that smaller step size retained a larger amount of stale data

inside the sliding window, and both BP and RBP fitted the stale data.

Increasing average swarm diversity in Table 6.55 indicates that the dynamic PSOs

had to explore more as the changes became more abrupt, and that a stable diversity

level was not reached by the swarms under frequently severe scenarios A1 to A4.

The algorithms were ranked based on their average ET and EG values, taking the

p-values in Tables 6.56 and 6.57 into account. The obtained ranks, as well as the average

ranks, are reported in Table 6.58. Average ET and EG values obtained by the algorithms

under A1 to A4 are illustrated in Figure 6.79. Figure 6.79 illustrates that ET of all

algorithms deteriorated with an increase in change abruptness, indicating that abrupt

changes were harder to adapt to under the temporal severity simulated by A1 to A4.

However, Figure 6.79 illustrates that RBP’s EG decreased as the step size (i.e. spatial

severity) increased, even though the training error of all algorithms deteriorated with

6.2. CLASSIFICATION PROBLEMS 213

Table 6.56: Mann-Whitney U p-values obtained for the average training error comparisons

on the Electricity Pricing problem with reference to the null hypothesis that the means of the

compared samples are equal at the significance level of 95%
BP vs RBP BP vs RPSO

1 2 3 4 1 2 3 4

A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

BP vs CPSO BP vs QPSO

1 2 3 4 1 2 3 4

A 0.018329 0.0001 0.0001 0.0001 0.0001 0.003532 0.0001 0.0001

B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

C 0.0001 0.0001 0.072293 0.0001 0.0001 0.0001 0.982572 0.0001

D 0.0001 0.0001 0.0001 0.831957 0.0001 0.0001 0.0001 0.52295

RBP vs RPSO RBP vs CPSO

1 2 3 4 1 2 3 4

A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RBP vs QPSO RPSO vs CPSO

1 2 3 4 1 2 3 4

A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.012515 0.074711

B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.866438 0.021582

C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.003358 0.313557

D 0.0001 0.0001 0.0001 0.0001 0.082354 0.001155 0.0001 0.004103

RPSO vs QPSO CPSO vs QPSO

1 2 3 4 1 2 3 4

A 0.0001 0.0001 0.0001 0.024336 0.17034 0.19217 0.069934 0.0001

B 0.0001 0.0001 0.0001 0.001443 0.006965 0.485326 0.001092 0.0001

C 0.0001 0.0001 0.0001 0.0001 0.292719 0.62306 0.177408 0.0001

D 0.010038 0.0001 0.0001 0.0001 0.532582 0.063242 0.082358 0.912747

6.2. CLASSIFICATION PROBLEMS 214

Table 6.57: Mann-Whitney U p-values obtained for the average generalisation error compar-

isons on the Electricity Pricing problem with reference to the null hypothesis that the means

of the compared samples are equal at the significance level of 95%
BP vs RBP BP vs RPSO

1 2 3 4 1 2 3 4

A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.003034

BP vs CPSO BP vs QPSO

1 2 3 4 1 2 3 4

A 0.010973 0.000688 0.0001 0.0001 0.0001 0.0017 0.0001 0.0001

B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

C 0.0001 0.0001 0.099517 0.0001 0.0001 0.0001 0.335329 0.0001

D 0.0001 0.0001 0.0001 0.953455 0.0001 0.0001 0.0001 0.582035

RBP vs RPSO RBP vs CPSO

1 2 3 4 1 2 3 4

A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

C 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

D 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

RBP vs QPSO RPSO vs CPSO

1 2 3 4 1 2 3 4

A 0.0001 0.0001 0.0001 0.0001 0.0001 0.008379 0.260082 0.112435

B 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.602392 0.000312

C 0.0001 0.0001 0.0001 0.0001 0.004103 0.0001 0.016175 0.224322

D 0.0001 0.0001 0.0001 0.0001 0.571977 0.241747 0.0001 0.0479

RPSO vs QPSO CPSO vs QPSO

1 2 3 4 1 2 3 4

A 0.0001 0.0001 0.049631 0.924365 0.230029 0.397957 0.000426 0.055132

B 0.0001 0.0001 0.552109 0.159042 0.854916 0.494588 0.414639 0.016867

C 0.11586 0.000164 0.000227 0.093511 0.142132 0.074711 0.163495 0.009599

D 0.096477 0.365817 0.0001 0.043005 0.552109 1.00578 0.213209 0.592174

6.2. CLASSIFICATION PROBLEMS 215

Table 6.58: Electricity Pricing Algorithm Ranking for Scenarios A1 to A4
Algorithm A1 A2 A3 A4 Average Rank

R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG)

BP 3 3 1 1 1 1 1 1 1.5 1.5

RBP 5 5 5 5 5 5 5 5 5 5

RPSO 4 4 4 4 4 3.5 3.5 3 3.875 3.625

CPSO 1.5 1.5 2.5 2.5 2.5 3.5 3.5 3 2.5 2.625

QPSO 1.5 1.5 2.5 2.5 2.5 2 2 3 2.125 2.25

increased abruptness. Decrease in RBP’s EG confirms that larger step sizes minimised

the amount of stale data inside the sliding window. RBP re-started itself at every

iteration, completely erasing all memory of previously found solutions. Hence, RBP

failed to discern between up-to-date and stale data.

Figure 6.79 illustrates that RBP was outperformed by all other algorithms under

scenarios A1 to A4. BP, due to its quicker convergence, outperformed the dynamic

PSOs under scenarios A2 to A4. Under the most gradual scenario A1, BP outperformed

the RPSO, but was outperformed by the CPSO and the QPSO. Table 6.58 shows that

no statistically significant difference was observed between the CPSO and the QPSO

under most scenarios, and the RPSO was outperformed by these two algorithms under

scenarios A1 to A3. The RPSO performed inferior to the other dynamic PSOs because

the RPSO discarded too much of the previously learned information every time the

environment changed, which proved inefficient on the electricity pricing problem, where

new electricity prices were derived from previous electricity prices.

Average ranks in Table 6.58 indicate that BP was the best performer under A1 to A4,

and RBP showed the worst performance. Faster convergence of BP made this algorithm

the most efficient approach under the temporally severe scenarios A1 to A4.

Scenarios B1 to B4: Figures 6.80 and 6.81 illustrate the progression of ET and EG

over time as obtained by the five algorithms considered under scenarios B1 to B4. Figure

6.2. CLASSIFICATION PROBLEMS 216

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 5000 10000 15000 20000 25000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for B1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 5000 10000 15000 20000 25000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for B1

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0 2000 4000 6000 8000 10000 12000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for B2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 2000 4000 6000 8000 10000 12000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for B2

Figure 6.80: Training and Generalisation Error results for Electricity Pricing, scenarios B1

to B2

6.80 illustrates that, given enough time between environment changes (50 instead of 10),

the dynamic PSOs managed to outperform both BP and RBP under both B1 and B2.

All three dynamic PSOs showed a better ability to exploit under gradual environment

changes than BP and RBP. It also becomes visible from Figure 6.80 that RBP fluctuated

less as the temporal severity decreased, since RBP had more time to converge between

the changes.

Figure 6.81 illustrates that both RBP and the dynamic PSOs also benefited from

the decrease of temporal severity under abrupt scenarios: given more time between the

6.2. CLASSIFICATION PROBLEMS 217

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0 500 1000 1500 2000 2500

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for B3

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0 500 1000 1500 2000 2500

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for B3

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0 200 400 600 800 1000 1200

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for B4

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0 200 400 600 800 1000 1200

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for B4

Figure 6.81: Training and Generalisation Error results for Electricity Pricing, scenarios B3

to B4

changes, these algorithms managed to exploit better and reach lower minimum errors

than under A3 and A4. Neither RBP nor the dynamic PSOs showed any signs of stagna-

tion, thus further performance improvement is expected with further temporal severity

decrease.

Swarm diversity profiles, illustrated in Figure 6.82, show that both the CPSO and

the QPSO reached a stable diversity level under gradual scenarios B1 and B2, and

maintained that diversity level throughout the algorithm run. The RPSO’s diversity,

however, fluctuated violently under B1 and B2. The RPSO has a weak dependence

6.2. CLASSIFICATION PROBLEMS 218

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5000 10000 15000 20000 25000

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(a) Average Diversity Results for Scenario B1

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 2000 4000 6000 8000 10000 12000

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(b) Average Diversity Results for Scenario B2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 500 1000 1500 2000 2500

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(c) Average Diversity Results for Scenario B3

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 200 400 600 800 1000 1200

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(d) Average Diversity Results for Scenario B4

Figure 6.82: Average Diversity results for Electricity Pricing, scenarios B1 to B4

on memory due to particle reinitialisation, which is good for exploration, but bad for

exploitation, and too little exploitation may result in swarm divergence. Indeed, Figure

6.82 illustrates that the diversity of the RPSO not only fluctuated violently, but also

reached higher maximum diversity values than under A1 to A2, which may be interpreted

as a sign of divergent behaviour. Another possible cause of divergence is the use of the

sigmoid activation function in the neurons. This topic, however, is out of the scope of

the present study, and is further investigated by van Wyk and Engelbrecht [119].

Collective mean ET and EG, ρF , and swarm diversity values are reported in Table

6.59. The ρF values in Table 6.59 indicate that all algorithms exhibited minor overfitting

6.2. CLASSIFICATION PROBLEMS 219

Table 6.59: Electricity Pricing Results for Scenarios B1 to B4

Algorithm

Scenario
B1 (frequency: 50, step size: 50)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.102724± 0.00105 0.104494± 0.002749 1.01968± 0.035915 n/a

Reinit. Back Propagation 0.111686± 0.000244 0.13992± 0.001823 1.27998± 0.031875 n/a

Reinitialising PSO 0.090001± 0.001818 0.091167± 0.00302 1.01782± 0.037745 29.7219± 7.42257

Charged PSO 0.086432± 0.001352 0.087266± 0.003113 1.02825± 0.042534 8.83245± 1.11529

Quantum PSO 0.085533± 0.001075 0.08741± 0.002577 1.04178± 0.036461 11.7599± 1.82975

B2 (frequency: 50, step size: 100)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.104079± 0.001168 0.105228± 0.002769 1.01372± 0.035939 n/a

Reinit. Back Propagation 0.114145± 0.000307 0.133539± 0.002286 1.20129± 0.032211 n/a

Reinitialising PSO 0.097767± 0.003733 0.098844± 0.003975 1.02117± 0.032905 14.8794± 6.11539

Charged PSO 0.090506± 0.001881 0.091683± 0.003021 1.02043± 0.036611 9.19276± 0.934826

Quantum PSO 0.090119± 0.001454 0.09106± 0.001837 1.02248± 0.032973 13.4702± 1.876

B3 (frequency: 50, step size: 500)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.106364± 0.001252 0.10602± 0.001793 0.998114± 0.03768 n/a

Reinit. Back Propagation 0.118998± 0.000255 0.121973± 0.002099 1.03134± 0.028644 n/a

Reinitialising PSO 0.110811± 0.001183 0.110738± 0.002312 1.00479± 0.02451 6.51035± 0.437222

Charged PSO 0.110661± 0.002022 0.110967± 0.002817 1.00327± 0.030723 13.8621± 1.40065

Quantum PSO 0.1091± 0.002018 0.110334± 0.003032 1.00959± 0.025336 17.8924± 1.93196

B4 (frequency: 50, step size: 1000)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.104404± 0.001763 0.105596± 0.003542 1.00955± 0.035832 n/a

Reinit. Back Propagation 0.119889± 0.000466 0.120727± 0.002529 1.00662± 0.033486 n/a

Reinitialising PSO 0.111163± 0.001441 0.112698± 0.002586 1.01501± 0.027651 7.90617± 0.495408

Charged PSO 0.112023± 0.001367 0.114921± 0.002237 1.02394± 0.027742 16.3018± 1.80682

Quantum PSO 0.1101± 0.000844 0.113525± 0.002294 1.02403± 0.030674 21.5517± 1.80445

6.2. CLASSIFICATION PROBLEMS 220

Table 6.60: Electricity Pricing Algorithm Ranking for Scenarios B1 to B4
Algorithm B1 B2 B3 B4 Average Rank

R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG)

BP 4 4 4 4 1 1 1 1 2.5 2.5

RBP 5 5 5 5 5 5 5 5 5 5

RPSO 3 3 3 3 3.5 3 3 2.5 3.125 2.875

CPSO 2 1.5 1.5 1.5 3.5 3 4 4 2.75 2.5

QPSO 1 1.5 1.5 1.5 2 3 2 2.5 1.625 2.125

 0.085

 0.09

 0.095

 0.1

 0.105

 0.11

 0.115

 0.12

 50 100 500 1000

A
v
e

ra
g

e
 E

rr
o

r

log(Step Size)

BP
RBP

RPSO
CPSO
QPSO

(a) Average Training Error Results

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 50 100 500 1000

A
v
e

ra
g

e
 E

rr
o

r

log(Step Size)

BP
RBP

RPSO
CPSO
QPSO

(b) Average Generalisation Error Results

Figure 6.83: Average Error results for Electricity Pricing, scenarios B1 to B4

under scenarios B1 to B4, and RBP was again most susceptible to overfitting under

gradual scenarios B1 and B2. Average diversity values in Table 6.59 confirm that the

RPSO’s average diversity under B1 and B2 increased compared to A1 and A2. RPSO’s

average diversity under B3 and B4, on the other hand, decreased compared to A3 and A4.

Thus, the RPSO exhibited divergent behaviour under gradual scenarios, and convergent

behaviour under abrupt scenarios: due to its weak dependence on memory, the RPSO

failed under scenarios where memory preservance was more important, and succeeeded

under scenarios where prompt “unlearning” was crucial. The CPSO’s and the QPSO’s

average diversity under B1 to B4 decreased compared to A1 to A4. Thus, the CPSO

and the QPSO exhibited convergent behaviour under all scenarios considered.

6.2. CLASSIFICATION PROBLEMS 221

The algorithms were ranked based on their collective mean ET and EG values, taking

the p-values in Tables 6.56 and 6.57 into account. The resulting ranks, as well as the

average ranks, are listed in Table 6.60. Collective mean ET and EG values are also illus-

trated in Figure 6.83. Figure 6.83 illustrates that RBP was significantly outperformed by

all other algorithms under scenarios B1 to B4. BP was significantly outperformed by the

dynamic PSOs under gradual scenarios B1 and B2, and BP significantly outperformed

the dynamic PSOs under abrupt scenarios B3 and B4. In fact, concept drift exhibited

by real life problems is more often scarce and gradual than frequent and abrupt [114],

thus the efficient performance of the dynamic PSOs on gradually changing environments

can indeed be useful in real life applications.

Average ranks in Table 6.60 show that out of the three dynamic PSOs, the QPSO

obtained the highest average rank, the CPSO came second, and the RPSO came last.

The QPSO reinitialised the quantum cloud at every algorithm iteration, i.e., the QPSO

refreshed the swarm memory faster than the CPSO, and also explored wider. The di-

versity graphs illustrated in Figure 6.82 confirm that the QPSO converged to a larger

area than the CPSO. Thus, the QPSO explored better, which proved beneficial on the

electricity pricing problem. Table 6.60 shows that the RPSO exhibited the worst perfor-

mance. The RPSO did not preserve previously learned information as well as the other

algorithms did. Also, the RPSO did not implement any diversity-preserving techniques

between environment changes, which allowed the RPSO to converge too much between

the environment changes.

The average ranks in Table 6.60 indicate that RBP showed the worst performance

under scenarios B1 to B4, and the QPSO performed best.

Scenarios C1 to C4: The progression of ET and EG over time as obtained by the

training algorithms under scenarios C1 to C4 is illustrated in Figures 6.84 and 6.85.

Figure 6.84 illustrates that the three dynamic PSOs have again performed better than

6.2. CLASSIFICATION PROBLEMS 222

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0 10000 20000 30000 40000 50000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for C1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 10000 20000 30000 40000 50000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for C1

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0 5000 10000 15000 20000 25000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for C2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 5000 10000 15000 20000 25000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for C2

Figure 6.84: Training and generalisation error results for Electricity Pricing, scenarios C1 to

C2

both RBP and BP under gradual scenarios by reaching lower minimum error values

throughout the algorithm run. RBP once again struggled to compete with the other

algorithms considered: the electricity pricing problem used a real-life data set with de-

cision boundaries of more complex and irregular shapes than the ones generated for the

moving hyperplane problem or the sliding thresholds problem. Completely reinitialis-

ing the NN weights and re-discovering the decision boundaries after every environment

change proved impractical in a real-life context.

Figure 6.85 illustrates that the dynamic PSOs have improved in performance, given

6.2. CLASSIFICATION PROBLEMS 223

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0 1000 2000 3000 4000 5000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for C3

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0 1000 2000 3000 4000 5000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for C3

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0 500 1000 1500 2000 2500

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for C4

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0 500 1000 1500 2000 2500

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for C4

Figure 6.85: Training and generalisation error results for Electricity Pricing, scenarios C3 to

C4

more time to converge between environment changes (change frequency equal to 100

iterations). Figures 6.85(a) and 6.85(b) illustrate that the dynamic PSOs performed

worse than BP at the beginning of the algorithm run, caught up with BP around iteration

3500, and then outperformed BP at the end of the algorithm run under the abrupt

scenario C3. Figure 6.86 illustrates the progression of swarm diversity over time as

obtained for scenarios C1 to C4. Figure 6.86(c) illustrates that none of the dynamic

PSOs considered managed to reach a stable diversity level under scenario C3. Thus, the

inferior performance of the dynamic PSOs compared to BP can be attributed to slow

6.2. CLASSIFICATION PROBLEMS 224

 0

 20

 40

 60

 80

 100

 120

 140

 0 10000 20000 30000 40000 50000

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(a) Average Diversity Results for Scenario C1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5000 10000 15000 20000 25000

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(b) Average Diversity Results for Scenario C2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 1000 2000 3000 4000 5000

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(c) Average Diversity Results for Scenario C3

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 500 1000 1500 2000 2500

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(d) Average Diversity Results for Scenario C4

Figure 6.86: Average Diversity results for Electricity Pricing, scenarios C1 to C4

convergence speed of the dynamic PSOs. Real-life problems, however, often require the

algorithms to deal with continuous data sets, thus the success of a dynamic algorithm

in the long run is more important than some overhead at the beginning of the algorithm

run.

Figure 6.86 illustrates that the CPSO and the QPSO reached a stable diversity level

under gradual scenarios C1 and C2, but not under the abrupt scenarios C3 and C4. Thus,

100 iterations between environment changes was not enough for the CPSO and the QPSO

to exploit the good regions of the search space when the changes were abrupt. The RPSO

again showed signs of divergent behaviour by reaching even a higher maximum diversity

6.2. CLASSIFICATION PROBLEMS 225

 0.08

 0.085

 0.09

 0.095

 0.1

 0.105

 0.11

 0.115

 50 100 500 1000

A
v
e

ra
g

e
 E

rr
o

r

log(Step Size)

BP
RBP

RPSO
CPSO
QPSO

(a) Average Training Error Results

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 50 100 500 1000

A
v
e

ra
g

e
 E

rr
o

r

log(Step Size)

BP
RBP

RPSO
CPSO
QPSO

(b) Average Generalisation Error Results

Figure 6.87: Average Error results for Electricity Pricing, scenarios C1 to C4

level under scenarios C1 to C4 than under B1 to B4.

Table 6.61 lists the collective mean ET , EG, ρF , and swarm diversity values obtained

by the five algorithms under scenarios C1 to C4. The ρF values in Table 6.61 indicate

that all algorithms exhibited some overfitting under scenarios C1 to C4. RBP was most

prone to overfitting under gradual scenarios, due to slow replacement of stale data inside

the sliding window under these scenarios. BP was more prone to overfitting than the

dynamic PSOs under abrupt scenarios, due to the faster convergence speed of BP.

The algorithms were ranked based on their collective mean ET and EG values, taking

the p-values in Tables 6.56 and 6.57 into account. The obtained ranks, along with the

average ranks, are reported in Table 6.62. Collective mean ET and EG values obtained

for C1 to C4 are illustrated in Figure 6.87. Figure 6.87 illustrates that RBP once

again came last in terms of both ET and EG under all scenarios considered. BP was

significantly outperformed by the dynamic PSOs under gradual scenarios C1 and C2, but

performed significantly better than the dynamic PSOs under the most abrupt scenario

C4, as Figure 6.87 illustrates. Table 6.62 shows that no statistically significant difference

was observed between BP, the CPSO, and the QPSO under abrupt scenario C3. While

BP was little affected by the extent of temporal severity, the dynamic PSOs showed

6.2. CLASSIFICATION PROBLEMS 226

Table 6.61: Electricity Pricing Results for Scenarios C1 to C4

Algorithm

Scenario
C1 (frequency: 100, step size: 50)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.100309± 0.002084 0.102539± 0.00303 1.02636± 0.040185 n/a

Reinit. Back Propagation 0.107059± 0.00025 0.136312± 0.002022 1.29926± 0.026974 n/a

Reinitialising PSO 0.085203± 0.001031 0.086372± 0.002087 1.03924± 0.043862 27.0377± 5.5646

Charged PSO 0.083106± 0.001323 0.084711± 0.002284 1.04486± 0.036309 7.92476± 1.35528

Quantum PSO 0.082736± 0.001698 0.085369± 0.002352 1.04755± 0.041873 12.4046± 2.04719

C2 (frequency: 100, step size: 100)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.101966± 0.001622 0.104083± 0.003152 1.02786± 0.038175 n/a

Reinit. Back Propagation 0.109329± 0.00024 0.13032± 0.002253 1.21879± 0.028532 n/a

Reinitialising PSO 0.088946± 0.001818 0.090749± 0.002938 1.02782± 0.038223 23.5604± 4.87848

Charged PSO 0.086329± 0.001865 0.087324± 0.002207 1.01874± 0.031964 9.36062± 1.26703

Quantum PSO 0.08598± 0.001284 0.0881± 0.002133 1.03668± 0.032632 13.1008± 1.46531

C3 (frequency: 100, step size: 500)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.103866± 0.001315 0.104704± 0.002472 1.01035± 0.030989 n/a

Reinit. Back Propagation 0.113369± 0.000367 0.118371± 0.002558 1.04224± 0.03249 n/a

Reinitialising PSO 0.107534± 0.001977 0.108407± 0.003185 1.00866± 0.036487 6.14009± 0.558376

Charged PSO 0.10435± 0.004578 0.105365± 0.005218 1.00946± 0.030144 12.475± 1.13447

Quantum PSO 0.102471± 0.004847 0.103366± 0.005688 1.00685± 0.027117 17.0299± 1.52774

C4 (frequency: 100, step size: 1000)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.100393± 0.001628 0.104217± 0.002812 1.03391± 0.038747 n/a

Reinit. Back Propagation 0.114362± 0.000416 0.116367± 0.002244 1.01491± 0.030828 n/a

Reinitialising PSO 0.107722± 0.001031 0.110712± 0.002297 1.02851± 0.031989 7.26793± 0.529495

Charged PSO 0.108165± 0.001332 0.111114± 0.002527 1.02435± 0.027656 15.6542± 1.39795

Quantum PSO 0.1067± 0.001677 0.109474± 0.002684 1.01869± 0.026249 20.0419± 1.69383

6.2. CLASSIFICATION PROBLEMS 227

Table 6.62: Electricity Pricing Algorithm Ranking for Scenarios C1 to C4
Algorithm C1 C2 C3 C4 Average Rank

R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG)

BP 4 4 4 4 2 2 1 1 2.75 2.75

RBP 5 5 5 5 5 5 5 5 5 5

RPSO 3 2 3 3 4 4 3.5 3 3.375 3

CPSO 1.5 2 1.5 1.5 2 2 3.5 3 2.125 2.125

QPSO 1.5 2 1.5 1.5 2 2 2 3 1.75 2.125

stable improvement in performance as the change frequency decreased from scenarios

A1 to A4, to C1 to C4.

Average rank values in Table 6.62 show that the CPSO and the QPSO obtained the

same rank in terms of EG, and both these algorithms obtained a higher rank than BP.

The CPSO and the QPSO were the best performers under scenarios C1 to C4, and RBP

showed the worst performance.

Scenarios D1 to D4: Figures 6.88 and 6.89 illustrate the ET and EG profiles over

time obtained by the algorithms for scenarios D1 to D4. Figure 6.88 illustrates similar

trends as were observed under scenarios C1 and C2: the dynamic PSOs performed visibly

better than both BP and RBP. It becomes visible in Figures 6.88(a) and 6.88(c) that

RBP often reached a lower minimum ET than BP, and sometimes the RBP’s ET was

even lower than the minimum ET of the dynamic PSOs. The RBP reinitialised all

NN weights after every change, thus RBP had a chance of escaping the unfruitful search

space areas where the other algorithms resided due to their memory of previous solutions.

However, RBP failed to support good ET values by similarly good EG values, as Figures

6.88(b) and 6.88(d) illustrate: RBP, having no memory of previous solutions, failed to

discern between the stale and up-to-date data in the sliding window, which resulted in

the observed overfitting behaviour.

Figure 6.89 illustrates that the dynamic PSOs, given enough time to converge, man-

6.2. CLASSIFICATION PROBLEMS 228

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0 20000 40000 60000 80000 100000 120000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for D1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 20000 40000 60000 80000 100000 120000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for D1

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0 10000 20000 30000 40000 50000 60000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for D2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 10000 20000 30000 40000 50000 60000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for D2

Figure 6.88: Training and generalisation error results for Electricity Pricing, scenarios D1 to

D2

aged to perform as well as BP, and even to outperform BP under abrupt scenarios. The

superiority of the dynamic PSOs compared to BP is quite apparent in Figures 6.89(a)

and 6.89(b). Under the most abrupt scenario D4, as Figures 6.89(c) and 6.89(d) illus-

trate, the dynamic PSOs were inferior to BP in the beginning of the algorithm run, and

then outperformed BP in the second half of the algorithm run. Both ET and EG were

stably decreasing between environment changes simulated by scenario D4. Thus, the

dynamic PSOs exhibited no signs of stagnation. Hence, the dynamic PSOs are likely

to outperform BP in the long run on a problem similar to electricity pricing, no matter

6.2. CLASSIFICATION PROBLEMS 229

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 2000 4000 6000 8000 10000 12000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(a) ET for D3

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 2000 4000 6000 8000 10000 12000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(b) EG for D3

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0 1000 2000 3000 4000 5000 6000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(c) ET for D4

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0 1000 2000 3000 4000 5000 6000

A
v
e

ra
g

e
 E

rr
o

r

Iteration Count

BP
RBP

RPSO
CPSO
QPSO

(d) EG for D4

Figure 6.89: Training and generalisation error results for Electricity Pricing, scenarios D3 to

D4

whether changes are abrupt or gradual. The dynamic PSOs indeed converge slower than

BP, but exploit and track the optima better when given enough iterations to do so.

Scenarios D1 to D4 allowed 250 algorithm iterations between environment changes,

which proved enough for the dynamic PSOs: Figure 6.90 illustrates the swarm diversity

progression over time for scenarios D1 to D4, and shows that the CPSO and the QPSO

reached a stable diversity level under scenarios D1 to D4. The RPSO again exhibited

signs of divergence under scenarios D1 to D3.

Table 6.63 summarises the collective mean ET , EG, ρF , and swarm diversity values

6.2. CLASSIFICATION PROBLEMS 230

Table 6.63: Electricity Pricing Results for Scenarios D1 to D4

Algorithm

Scenario
D1 (frequency: 250, step size: 50)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.094779± 0.003527 0.097618± 0.00474 1.03968± 0.041908 n/a

Reinit. Back Propagation 0.100251± 0.000249 0.127633± 0.001818 1.29801± 0.035975 n/a

Reinitialising PSO 0.081339± 0.001314 0.084291± 0.002058 1.05428± 0.035383 26.7539± 9.63906

Charged PSO 0.080573± 0.002001 0.083854± 0.002978 1.05752± 0.051231 8.61006± 1.08301

Quantum PSO 0.08026± 0.001216 0.083442± 0.002134 1.06523± 0.032704 13.4439± 1.72592

D2 (frequency: 250, step size: 100)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.099172± 0.002479 0.100719± 0.002892 1.02128± 0.033658 n/a

Reinit. Back Propagation 0.102321± 0.000283 0.122955± 0.002114 1.23313± 0.04248 n/a

Reinitialising PSO 0.083684± 0.001233 0.085278± 0.00214 1.03236± 0.044444 20.7362± 8.35509

Charged PSO 0.082523± 0.001528 0.084428± 0.002947 1.03085± 0.042739 9.00562± 1.57632

Quantum PSO 0.081744± 0.001526 0.084446± 0.002468 1.04553± 0.048728 13.4092± 1.50571

D3 (frequency: 250, step size: 500)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.10169± 0.001228 0.102847± 0.002181 1.00467± 0.029516 n/a

Reinit. Back Propagation 0.105676± 0.000334 0.111569± 0.002374 1.06206± 0.034034 n/a

Reinitialising PSO 0.095168± 0.004108 0.095952± 0.005246 1.00637± 0.029907 8.17592± 2.19789

Charged PSO 0.090168± 0.003092 0.09121± 0.003668 1.01716± 0.02538 11.2166± 1.4259

Quantum PSO 0.088658± 0.001317 0.089816± 0.003046 1.01049± 0.039784 18.9432± 2.28585

D4 (frequency: 250, step size: 1000)

Training Error Generalisation Error ρF Swarm Diversity

Back Propagation 0.099187± 0.001916 0.102562± 0.003234 1.02886± 0.045493 n/a

Reinit. Back Propagation 0.106452± 0.000427 0.109373± 0.002192 1.03166± 0.032414 n/a

Reinitialising PSO 0.102084± 0.001793 0.105275± 0.003199 1.0353± 0.034309 6.60816± 0.527193

Charged PSO 0.098671± 0.004797 0.101999± 0.006492 1.02987± 0.037575 14.7018± 1.07111

Quantum PSO 0.098989± 0.003366 0.102871± 0.004776 1.04205± 0.038577 21.2345± 1.76094

6.2. CLASSIFICATION PROBLEMS 231

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20000 40000 60000 80000 100000 120000

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(a) Average Diversity Results for Scenario D1

 0

 20

 40

 60

 80

 100

 120

 140

 0 10000 20000 30000 40000 50000 60000

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(b) Average Diversity Results for Scenario D2

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 2000 4000 6000 8000 10000 12000

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(c) Average Diversity Results for Scenario D3

 0

 5

 10

 15

 20

 25

 30

 0 1000 2000 3000 4000 5000 6000

A
v
e

ra
g

e
 D

iv
e

rs
it
y

Iteration Count

RPSO
CPSO
QPSO

(d) Average Diversity Results for Scenario D4

Figure 6.90: Average Diversity results for Electricity Pricing, scenarios D1 to D4

obtained by the algorithms under scenarios D1 to D4. The ρF values in Table 6.63

indicate that all algorithms were again subject to overfitting under scenarios D1 to

D4. Collective mean ET and EG values are illustrated in Figure 6.91, and algorithm

ranks, along with average ranks, are listed in Table 6.64. Figure 6.91 illustrates that

all algorithms deteriorated in performance as the spatial severity of changes increased.

Changes of high spatial severity replaced more patterns inside the sliding window, adding

more new information, thus bigger changes had to be made to the learned model. It

becomes evident from Figure 6.91 that BP was less sensitive to the level of spatial

severity than the dynamic PSOs, since the collective mean ET and EG values obtained

6.2. CLASSIFICATION PROBLEMS 232

Table 6.64: Electricity Pricing Algorithm Ranking for Scenarios D1 to D4
Algorithm D1 D2 D3 D4 Average Rank

R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG)

BP 4 4 4 4 4 4 2 2 3.5 3.5

RBP 5 5 5 5 5 5 5 5 5 5

RPSO 2 2 3 2 3 3 4 4 3 2.75

CPSO 2 2 1.5 2 1.5 1.5 2 2 1.75 1.875

QPSO 2 2 1.5 2 1.5 1.5 2 2 1.75 1.875

 0.08

 0.085

 0.09

 0.095

 0.1

 0.105

 0.11

 50 100 500 1000

A
v
e

ra
g

e
 E

rr
o

r

log(Step Size)

BP
RBP

RPSO
CPSO
QPSO

(a) Average Training Error Results

 0.08

 0.085

 0.09

 0.095

 0.1

 0.105

 0.11

 0.115

 0.12

 0.125

 0.13

 50 100 500 1000

A
v
e

ra
g

e
 E

rr
o

r

log(Step Size)

BP
RBP

RPSO
CPSO
QPSO

(b) Average Generalisation Error Results

Figure 6.91: Average Error results for Electricity Pricing, scenarios D1 to D4

by BP under D1 to D4 covered a smaller numerical interval than the corresponding errors

produced by the dynamic PSOs. BP is a hill climber, thus the degree of BP’s success

depended entirely on the landscape of the error function and the position of the weight

vector on that landscape after an environment change. The dynamic PSOs with their

population-based approach to NN training also depended on the specific characteristics

of the swarm such as the current swarm diversity and current particle velocities, in

addition to the positions of the particles in the weight space. The population-based

approach of the dynamic PSOs was often superior to BP. However, the dynamic PSOs

proved more sensitive to specific characteristics of dynamic environments, such as spatial

and temporal severity.

6.2. CLASSIFICATION PROBLEMS 233

 10

 50
 100

 250

 50

 100

 500

 1000

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

A
v
e

ra
g

e
 E

rr
o

r

BP
RBP

RPSO
CPSO
QPSOlog(Frequency of Change)

log(Step Size)

A
v
e

ra
g

e
 E

rr
o

r

Figure 6.92: Average Training Error Results for Electricity Pricing

Table 6.64 shows that all three dynamic PSOs significantly outperformed BP under

scenarios D1 to D3, and no statistically significant difference was observed between the

CPSO, the QPSO, and BP under the most abrupt scenario D4. The CPSO and the

QPSO obtained the highest average ET and EG ranks, and RBP once again performed

worst.

All scenarios: The average training errors produced by the five algorithms under the

16 different dynamic scenarios are illustrated in Figure 6.92, and the average generalisa-

tion errors are illustrated in Figure 6.93.

Figures 6.92 and 6.93 illustrate that BP was less sensitive to dynamic scenario char-

acteristics than the other algorithms considered: training and generalisation errors pro-

6.2. CLASSIFICATION PROBLEMS 234

 10

 50

 100

 250 50

 100

 500

 1000

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

A
v
e

ra
g

e
 E

rr
o

r

BP
RBP

RPSO
CPSO
QPSO

log(Frequency of Change) log(Step Size)

A
v
e

ra
g

e
 E

rr
o

r

Figure 6.93: Average Generalisation Error Results for Electricity Pricing

duced by BP were little affected by the changes in spatial and temporal severity.

Figures 6.92 and 6.93 illustrate that the performance of RBP improved as the tem-

poral severity decreased: RBP was restarted after every environment change, thus RBP

required more time to converge than all other algorithms considered. Even though RBP

improved under low temporal severity, this algorithm still showed the worst performance

under all scenarios considered: completely discarding previously learned information was

not an efficient approach to the electricity pricing problem, since new electricity prices

were always derived from old electricity prices.

The dynamic PSOs outperformed both BP and RBP under gradual changes, as well

as under changes of low temporal severity. Figures 6.92 and 6.93 illustrate that the

performance of all dynamic PSOs deteriorated as either spatial severity increased or

6.2. CLASSIFICATION PROBLEMS 235

Table 6.65: Electricity Pricing Average Algorithm Ranking for Scenarios A to D
Algorithm Average R(A) Average R(B) Average R(C) Average R(D) Average Rank

R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG)

BP 1.5 1.5 2.5 2.5 2.75 2.75 3.5 3.5 2.5625 2.5625

RBP 5 5 5 5 5 5 5 5 5 5

RPSO 3.875 3.625 3.125 2.875 3.375 3 3 2.75 3.34375 3.0625

CPSO 2.5 2.625 2.75 2.5 2.125 2.125 1.75 1.875 2.28125 2.28125

QPSO 2.125 2.25 1.625 2.125 1.75 2.125 1.75 1.875 1.8125 2.09375

 1

 2

 3

 4

 5

 10 50 100 250

A
v
e

ra
g

e
 R

a
n

k

Change Frequency (F)

BP
RBP

RPSO
CPSO
QPSO

(a) Average Rank in terms of ET

 1

 2

 3

 4

 5

 10 50 100 250

A
v
e

ra
g

e
 R

a
n

k

Change Frequency (F)

BP
RBP

RPSO
CPSO
QPSO

(b) Average Rank in terms of EG

Figure 6.94: Average Rank results for Electricity Pricing

temporal severity increased. The electricity pricing problem proved to be nontrivial: the

dynamic PSOs required more time to converge on a good solution between changes, and

struggled when the frequency of changes was not proportional to the spatial severity

of changes. The dynamic PSOs consistently outperformed the hill-climbing approaches

when given enough time to converge between changes.

Average ranks obtained by the algorithms under scenarios A1 to A4, B1 to B4, C1

to C4, and D1 to D4 are reported in Table 6.65 along with the overall average ranks.

The average ranks in terms of ET and EG are also visualised in Figure 6.94. Figure

6.94 illustrates that, out of the three dynamic PSOs, the QPSO obtained the highest

rank under most frequencies considered, the CPSO came second, and the RPSO showed

6.3. SUMMARY 236

the worst performance. The RPSO was least dependent on the memory of previous

solutions, which, as already explained, was not a good approach to the electricity pricing

problem, because new prices always depended on the old prices. Figure 6.94 illustrates

that the QPSO was superior to the CPSO under changes of high temporal severity, and

the two algorithms were ranked as equals under the least temporally severe changes.

Hence, the QPSO performed with a higher degree of success when prompt exploitation

was necessary. The QPSO’s quantum cloud uniformly covers the area in the immediate

proximity of the global best particle, which helps the swarm to exploit the area around

the global best. The CPSO, on the other hand, preserves swarm diversity with its

electrostatic principles, but does not specifically promote exploitation of fruitful search

space regions.

The overall average ranks in Table 6.65 indicate that the QPSO obtained the highest

average rank, the CPSO came second, BP came third, followed by the RPSO, and RBP

obtained the lowest rank. Thus, the least memory-preserving algorithms came last, and

BP was outperformed by two dynamic PSOs on the electricity pricing problem.

6.3 Summary

The empirical study conducted for this dissertation was presented in this chapter. After

discussing the performance measurements used in this study, a discussion on simulating

dynamic classification problems was provided, and the parameter optimisation process

was described in detail. The rest of the chapter was dedicated to the dynamic classifi-

cation problems considered in this study, and the experimental results obtained.

Table 6.66 summarises the overall average ranks obtained by the algorithms for the

five different dynamic classification problems considered. The highest rank for each

problem is given in bold. Overall average algorithm ranks for the five problems are also

listed in Table 6.66. Table 6.66 shows that the dynamic PSOs proved to be a viable

6.3. SUMMARY 237

Table 6.66: Average Algorithm Ranking
SEA Moving Dynamic Sliding Electricity Average

Algorithm Concepts Hyperplane Sphere Thresholds Pricing Rank

R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG) R(ET) R(EG)

BP 2.925 2.6 4 2.90625 3.6875 2.4375 4.75 4.4375 2.5625 2.5625 3.585 2.98875

RBP 4.775 4.625 2.09375 4.71875 1.34375 3.25 4.03125 4.3125 5 5 3.44875 4.38125

RPSO 2.2 2.675 3.1875 2.75 2.0625 2.71875 1.75 1.71875 3.34375 3.0625 2.50875 2.585

CPSO 2.9 2.55 2.5 2.09375 3.6875 3 2.28125 2.3125 2.28125 2.28125 2.73 2.4475

QPSO 2.2 2.55 3.21875 2.53125 4.21875 3.59375 2.1875 2.21875 1.8125 2.09375 2.7275 2.5975

Table 6.67: Best performing algorithms under varying spatial severity for the five considered

dynamic classification problems

Step Size 50 100 500 1000 2500

SEA Concepts RPSO RPSO, QPSO QPSO BP BP

Moving Hyperplane RPSO RPSO CPSO BP -

Dynamic Sphere RPSO RPSO BP RBP -

Sliding Thresholds RPSO RPSO RPSO, CPSO, QPSO QPSO -

Electricity Pricing QPSO CPSO, QPSO BP BP -

alternative to hill-climbing training algorithms such as BP and RBP: all three dynamic

PSOs obtained a higher overall rank than both BP and RBP. Table 6.66 shows that BP

managed to outperform the dynamic PSOs only on the dynamic sphere problem, which,

as discussed in Section 6.2.3, is a rather trivial problem.

Table 6.66 also indicates that, out of the three dynamic PSOs considered, the RPSO

produced the highest rank for problems where prompt “unlearning” of stale data was

important (i.e. the dynamic sphere and sliding thresholds problems). The CPSO and

the QPSO, on the other hand, performed superior to the RPSO for problems where

preservation of memory was more important, i.e. where the new boundaries were derived

from the old boundaries (electricity pricing), or where no conflicting boundaries were

present (SEA concepts). Hence, the choice of the best dynamic PSO remains problem-

specific.

6.3. SUMMARY 238

Table 6.68: Best performing algorithms under varying temporal severity for the five considered

dynamic classification problems

Change Frequency A (10) B (50) C (100) D (250)

SEA Concepts BP RPSO, QPSO RPSO, QPSO RPSO, QPSO

Moving Hyperplane CPSO CPSO CPSO RPSO

Dynamic Sphere RPSO CPSO CPSO BP

Sliding Thresholds CPSO, QPSO RPSO RPSO RPSO

Electricity Pricing BP QPSO QPSO CPSO, QPSO

Table 6.67 lists the best performing algorithms under various sliding window step

sizes (i.e. spatial severity) considered for the five dynamic classification problems. Table

6.67 shows that the dynamic PSOs were more successful under gradual to semi-gradual

scenarios, and BP and RBP were more successful under abrupt scenarios. It was observed

throughout the empirical analysis carried out in this chapter that the dynamic PSOs

exploited and tracked the decision boundaries better than BP and RBP. Hence, the

dynamic PSOs were more successful under scenarios where new information arrived in

small portions. Table 6.68 lists the top performing algorithms under various change

frequencies (i.e. temporal severity). BP and RBP converged faster than the dynamic

PSOs, and were much more sensitive to the presence of stale data. Thus, as Tables 6.67

and 6.68 show, BP and RBP were more successful under frequent and abrupt scenarios,

where changes were either drastic, or had to be adjusted to in a short period of time,

and where the stale data was promptly discarded.

Table 6.66 shows that RBP obtained the lowest overall EG rank among the consid-

ered algorithms. Indeed, a complete restart of the training algorithm proved to be an

inefficient approach to NN training in dynamic environments.

It was also observed for all considered problems that the dynamic PSOs exhibited a

stronger sensitivity to such characteristics of dynamic environments as spatial severity

and temporal severity. The dynamic PSO algorithms involve more parameter optimisa-

6.3. SUMMARY 239

tion than the hill-climbing BP and RBP, since, in addition to the standard PSO param-

eters, parameters specific to each dynamic PSO also require optimisation. Hence, the

dynamic PSOs require more fine-tuning than BP and RBP, but have a high potential

to outperform the hill-climbers when properly optimised. The dynamic PSOs exhibited

higher capacity for learning than BP and RBP even under abrupt changes for the sliding

thresholds problem, where multiple decision boundaries were present.

RBP was subject to overfitting under all gradual scenarios where conflicting bound-

aries were present. BP overfitted whenever the temporal severity allowed BP to train for

too long. The dynamic PSOs, however, exhibited minor overfitting under most scenarios

considered. The tendency of the dynamic PSOs to overfit remains a topic for future

research, since multiple factors may be contributing to such behaviour; for example, the

sigmoid activations function used [119], the values of Vmax, and the diversity-preserving

mechanisms which never allow complete convergence, yielding continuous refinement of

already good enough solutions.

The next chapter summarises the findings of this study and lists possible topics for

future research.

Chapter 7

Conclusions

When a love comes to an end, weaklings cry, efficient ones instantly find

another love, and the wise already have one in reserve.

Oscar Wilde

This chapter summarises the work presented in this thesis and all the important findings

derived from the empirical study conducted. Section 7.1 presents the conclusions, and

Section 7.2 lists possible topics for future research.

7.1 Summary of Conclusions

The main objective of this thesis was to show that dynamic PSO algorithms have po-

tential to be efficiently applied to NN training in the presence of concept drift. Different

dynamic PSO algorithms were applied to NN training on a selection of dynamic clas-

sification problems under a representative selection of dynamic scenarios in order to

examine the applicability of dynamic PSOs as dynamic NN training algorithms. This

240

7.1. SUMMARY OF CONCLUSIONS 241

chapter summarises the major observations and contributions made in the course of this

study.

This study involved three CI research fields, namely PSO, NNs, and concept drift.

The research started with a discussion of the PSO algorithm, as well as the algorithm

parameters that have an influence on the performance of PSO. NNs were discussed next,

with a thorough overview of back propagation and the algorithm parameters that have

an influence on the performance of back propagation. The applicability of PSO as a

NN training algorithm was discussed, and the advantages and disadvantages of PSO

compared to back propagation were outlined.

Although PSO was applied to NN training with a high degree of success before, it was

usually assumed that the training data was static. The falsity of such assumption was

substantiated with some real-life examples of dynamic NN training problems. Various

properties of dynamic environments were discussed next, and it was determined that

dynamic classification problems, or problems with concept drift, are a subset of the

larger set of dynamic optimisation problems.

PSO is capable of adjusting to the changing objective function landscape until the

swarm reaches convergence. Loss of swarm diversity, as well as outdated swarm memory,

prevent the standard PSO from being efficient in dynamic environments. Some popular

dynamic PSO approaches that address these two issues were discussed, namely RPSO,

CPSO, and QPSO.

The applicability of BP as a NN training algorithm under concept drift was discussed

next. A selection of hypothetical scenarios illustrated that, although BP is indeed im-

plicitly dynamic, BP still has significant limitations. It was suggested that dynamic PSO

algorithms be used to train NNs under concept drift as an alternative to BP. Possible ad-

vantages of the dynamic PSOs applied to train NNs under concept drift were discussed.

The problem of overfitting, architecture selection, and algorithm parameter optimisation

in the context of concept drift was also discussed.

7.1. SUMMARY OF CONCLUSIONS 242

An experimental procedure was designed to compare the training algorithms on a rep-

resentative selection of dynamic classification problems under a representative selection

of dynamic environments. A sliding window was used for pattern selection, and dynamic

environments of varying spatial and temporal severity were simulated by adjusting the

step size of the sliding window and the number of algorithm iterations between the sliding

window shifts, respectively.

Four artificially generated dynamic classification problems and one real-life data set

with concept drift were used in the experiments. The problems differed in terms of

dimensionality, decision boundary shape, total number of decision boundaries, and the

probability of encountering conflicting decision boundaries in the sliding window data.

BP was compared to RBP, as well as to the three dynamic PSO algorithms previously

mentioned: the RPSO, the CPSO, and the QPSO.

The major findings of the empirical study conducted can be summarised as follows:

• The dynamic PSOs are viable NN training algorithms in the context of dynamic

classification problems.

• The dynamic PSOs exploited and tracked decision boundaries better than BP

and RBP. Hence, the dynamic PSOs outperformed BP and RBP under scenarios

exhibiting infrequent to moderately infrequent gradual changes.

• BP and RBP converged faster than the dynamic PSOs. Hence, BP outperformed

the dynamic PSOs under frequent abrupt changes.

• RBP exhibited the worst performance under most scenarios for most problems.

Hence, a complete reinitialisation of NN weights is an inefficient approach to han-

dling concept drift.

• The dynamic PSOs outperformed BP and RBP on a real-life data set with concept

drift.

7.2. FUTURE WORK 243

• The dynamic PSOs exhibited stronger sensitivity to the extent of temporal and

spatial severity than BP and RBP. Hence, the dynamic PSOs require scenario-

specific optimisation.

• Dynamic PSOs were less sensitive to the total number of decision boundaries or

the presence of stale data in the sliding window than BP and RBP. Hence, the

dynamic PSOs are expected to perform better than hill-climbers on rugged NN

error surfaces.

• The RPSO performed better than the CPSO and the QPSO on problems which

required prompt “unlearning” after a change (e.g. conflicting data present in the

sliding window, numerous decision boundaries). The CPSO and the QPSO per-

formed better than the RPSO on problems which required previously learned in-

formation to be preserved (e.g. no conflicting boundaries present, new decision

boundaries derived from old decision boundaries).

7.2 Future Work

A number of possible future research topics have emerged from this study, and are briefly

discussed below.

Overfitting Study

The experiments conducted for this study indicated that the dynamic PSOs are sus-

ceptible to minor overfitting. Possible causes of overfitting in dynamic PSOs are values

chosen for Vmax, the sigmoid activation function used in the neurons, and preserved

diversity. All existing techniques to counteract overfitting were developed with static

environments in mind. Adapting the existing techniques and developing new techniques

to prevent overfitting in dynamic environments is an important topic for future research.

7.2. FUTURE WORK 244

Correlation Between Problem Types and Dynamic Training Algorithms

The conclusions above suggested that dynamic classification problem attributes, such as

the number of decision boundaries and the correlation between old and new boundaries,

determine the optimal NN training algorithm for each problem. That is, the optimal

training algorithm is problem-specific. Discovering the connection between particular

dynamic problem parameters and corresponding optimal NN training algorithms would

significantly help the progress of dynamic optimisation in general, and would aid prac-

titioners to choose the most appropriate dynamic NN training algorithms for real-life

dynamic optimisation problems without the wearisome exhaustive empirical testing.

Adaptive Algorithm Parameters

The dynamic PSO algorithms used in this study, as well as BP and RBP, were optimised

once for each problem, afterwards the algorithm parameters remained static throughout

the algorithm runs. Existing adaptive parameter strategies were developed with static

environments in mind, thus they can not be blindly applied to dynamic problems. The

efficiency of existing dynamic NN training algorithms can be improved by considering

adaptive algorithm parameters, either by adapting the existing strategies accordingly, or

by developing new self-adaptive parameter strategies specific to dynamic environments.

Dynamic Architecture Selection

The number of hidden units and the number of connections in the NN were optimised

once for each problem, and did not change during the algorithm run. However, a real-life

problem with a fluctuating number of decision boundaries may require changes to the

NN architecture in order to prevent underfitting and overfitting. Developing adaptive

architecture selection strategies specific to dynamic environments is an important topic

for future research.

7.2. FUTURE WORK 245

Active Search Space Bounds for PSO Training

The search space of the PSO is unbounded, and, although the NN weight space is not

bounded either, the studies of NN error surfaces suggest that error surfaces tend to have

large flat regions asymptotically approaching infinity [38, 55]. Unbounded exploration

exhibited by the swarm is thus likely to lead to unfruitful search space regions. An

investigation of NN error surfaces is required in order to obtain any guidelines to the

possible bounds of the active search space.

Triggering Agents

Mining continuous data streams is usually carried out by continuously training a learner

on the data. However, the pitfall of continuous training is the increased possibility of

overfitting, since the training algorithm may train for too long between environment

changes. A possible alternative to continuous training would be to have a separate

change-detecting agent that would trigger the training algorithm when a change occurs,

and suspend training when signs of overfitting are observed.

Dynamic Function Approximation

This study was dedicated to classification problems with concept drift. Another appli-

cation area of dynamic PSO training would be to dynamic function approximation.

Other Population-Based Algorithms Applied to Dynamic NN Training

PSO is not the only CI technique that has already been adapted to dynamic environ-

ments. Another broad CI field that has been successfully applied to dynamic problems

is EC. It has also been applied to NN training before, and it would be interesting to

determine the applicability and efficiency of dynamic EC algorithms to dynamic NN

training.

7.2. FUTURE WORK 246

Ensemble Learning

Ensemble learning is the most popular approach to handle concept drift to date. The

performance of ensemble learning in the presence of concept drift could be significantly

improved through the use of dynamic training algorithms in the classifiers, such as the

dynamic PSOs. Using a dynamic PSO to train each NN in the NN ensemble would make

every NN adjust to concept drift automatically, thus improving the overall performance

of the ensemble. Application of dynamic training algorithms to ensemble learning in the

presence of concept drift should be further investigated.

Bibliography

[1] M. Anthony and P. L. Bartlett. Neural Network Learning: Theoretical Foundations.

Cambridge University Press, 1999.

[2] T. Bäck. On the behavior of evolutionary algorithms in dynamic environments.

In Proceedings of the IEEE World Congress on Computational Intelligence, pages

446–451. IEEE, 1998.

[3] E. Barnard and J. E. W. Holm. A comparative study of optimization techniques

for backpropagation. Neurocomputing, 6(1):19–30, 1994.

[4] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,

1995.

[5] T. M. Blackwell. Particle swarms and population diversity. Soft Computing-A

Fusion of Foundations, Methodologies and Applications, 9(11):793–802, 2005.

[6] T. M. Blackwell. Particle swarm optimization in dynamic environments. In Shengx-

iang Yang et al., editor, Evolutionary Computation in Dynamic and Uncertain

Environments, volume 51 of Studies in Computational Intelligence, pages 29–49.

Springer Berlin / Heidelberg, 2007.

[7] T. M. Blackwell and P. J. Bentley. Dynamic search with charged swarms. In

Proceedings of the Genetic and Evolutionary Computation Conference, pages 19–

26. Morgan Kaufmann Publishers Inc., 2002.

247

BIBLIOGRAPHY 248

[8] T. M. Blackwell and J. Branke. Multi-swarm optimization in dynamic environ-

ments. Applications of Evolutionary Computing, 3005:489–500, 2004.

[9] T. M. Blackwell and J. Branke. Multiswarms, exclusion, and anti-convergence

in dynamic environments. IEEE Transactions on Evolutionary Computation,

10(4):459–472, 2006.

[10] W. J. Blackwell and F. W. Chen. Neural networks in atmospheric remote sensing.

Artech House Publishers, 2009.

[11] J. Branke. Evolutionary algorithms for neural network design and training. Tech-

nical Report 322, University of Karlsrühe, Institute AIFB, January 1995.

[12] J. Branke. Evolutionary optimization in dynamic environments. Kluwer Academic

Publishers, Norwell, MA, USA, 2002.

[13] J. Branke, T. Kaußler, C. Schmidt, and H. Schmeck. A multi-population approach

to dynamic optimization problems. Adaptive computing in design and manufac-

turing, 2000:299, 2000.

[14] Z. W. Cao, L. Y. Han, C. J. Zheng, Z. L. Ji, X. Chen, H. H. Lin, and Y. Z. Chen.

Computer prediction of drug resistance mutations in proteins. Drug Discovery

Today, 10(7):521–529, 2005.

[15] A. Carlisle and G. Dozier. Adapting particle swarm optimization to dynamic envi-

ronments. In Proceedings of the International Conference on Artificial Intelligence,

volume 1, pages 429–434, 2000.

[16] A. Carlisle and G. Dozier. Tracking changing extrema with particle swarm opti-

mizer. Technical Report CSSE01-08, Auburn University, Auburn, Alabama, 2001.

BIBLIOGRAPHY 249

[17] A. Carlisle and G. Dozler. Tracking changing extrema with adaptive particle swarm

optimizer. In Proceedings of the 5th Biannual World Automation Congress, vol-

ume 13, pages 265–270. IEEE, 2002.

[18] C. Charalambous. Conjugate gradient algorithm for efficient training of artificial

neural networks. In IEE Proceedings on Circuits, Devices and Systems, volume

139, pages 301–310. Institution of Electrical Engineers, 1992.

[19] F. Chu, Y. Wang, and C. Zaniolo. An adaptive learning approach for noisy data

streams. In Proceedings of the IEEE International Conference on Data Mining,

pages 351–354, November 2004.

[20] M. Clerc. Particle swarm optimization. Wiley-ISTE, 2006.

[21] M. Clerc and J. Kennedy. The particle swarm – explosion, stability and conver-

gence in a multidimensional complex space. IEEE Transactions on Evolutionary

Computation, 6(1):58–73, February 2002.

[22] H. G. Cobb. An investigation into the use of hypermutation as an adaptive op-

erator in genetic algorithms having continuous, time-dependent nonstationary en-

vironments. Technical Report AIC-90-001, Navy Center for Applied Research in

Artificial Intelligence, Naval Research Laboratory, Washington, D. C., 1990.

[23] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273–

297, 1995.

[24] G. W. Cottrell. Extracting features from faces using compression networks: Face,

identity, emotion, and gender recognition using holons. In Proceedings of the Con-

nectionist Models Summer School, pages 328–337, San Mateo, USA, 1990.

[25] A. Cournane and R. Hunt. An analysis of the tools used for the generation and

prevention of spam. Computers & Security, 23(2):154–166, March 2004.

BIBLIOGRAPHY 250

[26] S. J. Delany, P. Cunningham, A. Tsymbal, and L. Coyle. A case-based technique

for tracking concept drift in spam filtering. Knowledge-Based Systems, 18(4-5):187–

195, 2005.

[27] J. Dems̆ar. Statistical comparisons of classifiers over multiple data sets. Journal

of Machine Learning Research, 7:1–30, 2006.

[28] G. Dreyfus. Neural networks: methodology and applications. Springer, 2005.

[29] R. Durbin and D. E. Rumelhart. Product units: A computationally powerful and

biologically plausible extension to backpropagation networks. Neural Computation,

1(1):133–142, 1989.

[30] R. C. Eberhart and Y. Shi. Comparing inertia weights and constriction factors in

particle swarm optimization. In Proceedings of the IEEE Congress on Evolutionary

Computation, volume 1, pages 84–88, 2000.

[31] R. C. Eberhart and Y. Shi. Tracking and optimizing dynamic systems with par-

ticle swarms. In Proceedings of the IEEE Congress on Evolutionary Computation,

volume 1, pages 94–100, 2001.

[32] A. P. Engelbrecht. Computational Intelligence: An Introduction. John Wiley &

Sons, Chichester, December 2002.

[33] A. P. Engelbrecht. Fundamentals of Computational Swarm Intelligence. John

Wiley & Sons, 2005.

[34] A. P. Engelbrecht and A. Ismail. Training product unit neural networks. Stability

and Control: Theory and Applications, 2(1–2):59–74, 1999.

[35] D. B. Fogel, L. J. Fogel, and V. W. Porto. Evolving neural networks. Biological

Cybernetics, 63(6):487–493, 1990.

BIBLIOGRAPHY 251

[36] A. S. Fraser. Simulation of genetic systems by automatic digital computers. Aus-

tralian Journal of Biological Science, 10:484–491, 1957.

[37] B. Fritzke. Incremental learning of local linear mappings. In Proceedings of the

International Conference on Artificial Neural Networks, volume 95, pages 217–222,

Paris, France, October 1995.

[38] M. R. Gallagher. Multi-layer Perceptron Error Surfaces: Visualization, Structure

and Modelling. PhD thesis, University of Queensland, St Lucia 4072, Australia,

2000.

[39] A. Gasper and P. Collard. From gas to artificial immune systems: improving

adaptation in time dependent optimization. In Proceedings of the IEEE Congress

on Evolutionary Computation, volume 3. IEEE, 1999.

[40] J. Ghosh and Y. Shin. Efficient higher-order neural networks for classification and

function approximation. International Journal on Neural Systems, 3(4):323–350,

1992.

[41] F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural networks

architectures. Neural computation, 7(2):219–269, 1995.

[42] J. J. Grefenstette. Genetic algorithms for changing environments. Navy Research

Laboratory, Navy Center for Applied Research in Artificial Intelligence, 1992.

[43] J. J. Grefenstette. Evolvability in dynamic fitness landscapes: A genetic algorithm

approach. In Proceedings of the IEEE Congress on Evolutionary Computation,

volume 3. IEEE, 1999.

[44] V. G. Gudise and G. K. Venayagamoorthy. Comparison of particle swarm opti-

mization and backpropagation as training algorithms for neural networks. In Pro-

ceedings of the IEEE Swarm Intelligence Symposium, pages 110–117, April 2003.

BIBLIOGRAPHY 252

[45] M. Harries. Splice-2 comparative evaluation: Electricity pricing. Technical Report

UNSW-CSE-TR-9905, Artificial Intelligence Group, School of Computer Science

and Engineering, The University of New South Wales, Sydney 2052, Australia,

July 1999.

[46] P. B. Harrington. Sigmoid transfer functions in backpropagation neural networks.

Analytical Chemistry, 65(15):2167–2168, 1993.

[47] M. H. Hassoun. Fundamentals of artificial neural networks. Bradford books. MIT

Press, 1995.

[48] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall PTR,

Upper Saddle River, NJ, USA, 1st edition, 1994.

[49] Y. Hirose, K. Yamashita, and S. Hijiya. Back-propagation algorithm which varies

the number of hidden units. Neural Networks, 4(1):61–66, 1991.

[50] J. E. W. Holm and E. C. Botha. Leap-frog is a robust algorithm for training neural

networks. Network: Computation in Neural Systems, 10(1):1–13, 1999.

[51] G. C. Homans. Social behavior as exchange. The American Journal of Sociology,

63(6):597–606, 1958.

[52] T. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are

universal approximators. Neural Networks, 2(5):359–366, 1989.

[53] X. Hu and R. C. Eberhart. Tracking dynamic systems with PSO: Where’s the

cheese? In Proceedings of the Workshop on Particle Swarm Optimization, pages

80–83, 2001.

[54] X. Hu and R. C. Eberhart. Adaptive particle swarm optimization: Detection and

response to dynamic systems. In Proceedings of the IEEE Congress on Evolutionary

Computation, volume 2, pages 1666–1670. IEEE, 2002.

BIBLIOGRAPHY 253

[55] D. R. Hush, B. Horne, and J. M. Salas. Error surfaces for multilayer perceptrons.

IEEE Transactions on Systems, Man and Cybernetics, 22(5):1152–1161, October

1992.

[56] A. Hussain, J. J. Soraghan, and T. S. Durbani. A new neural network for nonlinear

time-series modelling. NeuroVest Journal, pages 16–26, January 1997.

[57] J. Ilonen, J. K. Kamarainen, and J. Lampinen. Differential evolution training

algorithm for feed-forward neural networks. Neural Processing Letters, 17(1):93–

105, 2003.

[58] M. S. Islam, S. M. Khaled, K. Farhan, M. A. Rahman, and J. Rahman. Modeling

spammer behavior: Naive bayes vs. artificial neural networks. In Proceedings of

the International Conference on Information and Multimedia Technology, pages

52–55. IEEE, 2009.

[59] A. Ismail. Training and optimization of product unit neural networks. Master’s

thesis, University of Pretoria, Pretoria, South Africa, November 2001.

[60] R. A. Jacobs. Increased rates of convergence through learning rate adaptation.

Neural networks, 1(4):295–307, 1988.

[61] D. J. Janson and J. F. Frenzel. Training product unit neural networks with genetic

algorithms. IEEE Expert, 8(5):26–33, 1993.

[62] M. Jinli and S. Zhiyi. Application of combined neural networks in nonlinear func-

tion approximation. In Proceedings of the World Congress on Intelligent Control

and Automation, number 2, pages 839–841, 2000.

[63] J. Kennedy. The behavior of particles. In V. W. Porto, N. Saravanan, and D. Waa-

gen, editors, Proceedings of the International Conference on Evolutionary Program-

ming, pages 581–589, 1998.

BIBLIOGRAPHY 254

[64] J. Kennedy. Small worlds and mega-minds: Effects of neighborhood topology on

particle swarm performance. In Proceedings of the IEEE Congress on Evolutionary

Computation, volume 3, pages 1931–1938, 1999.

[65] J. Kennedy and R. C. Eberhart. Particle swarm optimization. In Proceedings of the

IEEE International Conference on Neural Networks, volume IV, pages 1942–1948,

Perth, Australia, 1995.

[66] J. Kennedy and R. C. Eberhart. New Ideas in Optimization, chapter The Parti-

cle Swarm: Social Adaptation in Information-Processing Systems, pages 379–387.

McGraw-Hill, 1999.

[67] J. Kennedy, R. C. Eberhart, and Y. Shi. Swarm Intelligence. Morgan Kaufmann

Publishers, USA, 2001.

[68] J. Kennedy and R. Mendes. Population structure and particle swarm performance.

In Proceedings of the Congress on Evolutionary Computation, pages 407–412, Hon-

olulu, Hawaii, 2002.

[69] R. Klinkenberg. Learning drifting concepts: Example selection vs. example weight-

ing. Intelligent Data Analysis, 8(3):281–300, 2004.

[70] T. Krink, J. S. Vesterstrom, and J. Riget. Particle swarm optimisation with spatial

particle extension. In Proceedings of the Congress on Evolutionary Computation,

volume 2, pages 1474–1479, 2002.

[71] T. Y. Kwok and D. Y. Yeung. Constructive feedforward neural networks for re-

gression problems: A survey. Technical Report HKUST-CS95-43, Department of

Computer Science, The Hong Kong University of Science & Technology, 1995.

[72] K. J. Lang, A. H. Waibel, and G. E. Hinton. A time-delay neural network archi-

tecture for isolated word recognition. Neural networks, 3(1):23–43, 1990.

BIBLIOGRAPHY 255

[73] B. Larder, D. Wang, A. Revell, J. Montaner, R. Harrigan, F. De Wolf, J. Lange,

S. Wegner, L. Ruiz, M.J. Pérez-Eĺıas, et al. The development of artificial neural

networks to predict virological response to combination HIV therapy. Antiviral

therapy, 12(1):15, 2007.

[74] M. Last. Online classification of nonstationary data streams. Intelligent Data

Analysis, 6(2):129–147, April 2002.

[75] R. Lau. Adaptive statistical language modeling. Master’s thesis, MIT Department

of Electrical Engineering and Computer Science, May 1994.

[76] S. Lawrence, A. C. Tsoi, and A. D. Back. Function approximation with neural

networks and local methods: bias, variance and smoothness. In Proceedings of the

Australian Conference on Neural Networks, pages 16–21, 1996.

[77] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and

L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural

computation, 1(4):541–551, 1989.

[78] F. Li, Q. H. Meng, S. Bai, J. G. Li, and D. Popescu. Probability-PSO algorithm

for multi-robot based odor source localization in ventilated indoor environments.

volume 5314 of Lecture Notes in Computer Science, pages 1206–1215. Springer

Berlin / Heidelberg, 2008.

[79] X. Li and H. D. Khanh. Comparing particle swarms for tracking extrema in dy-

namic environments. In Proceedings of the Congress on Evolutionary Computation,

volume 3, pages 1772–1779, 2003.

[80] G. D. Magoulas, M. N. Vrahatis, and G. S. Androulakis. Improving the convergence

of the backpropagation algorithm using learning rate adaptation methods. Neural

Computation, 11(7):1769–1796, 1999.

BIBLIOGRAPHY 256

[81] D. P. Mandic and J. A. Chambers. Recurrent neural networks for prediction:

learning algorithms, architectures and stability. Adaptive and learning systems for

signal processing, communications, and control. John Wiley, 2001.

[82] H. B. Mann and D. R. Whitney. On a test of whether one of two random variables

is stochastically larger than the other. Annals of Mathematical Statistics, 18(1):50–

60, 1947.

[83] R. Mendes, P. Cortez, M. Rocha, and J. Neves. Particle swarms for feedforward

neural network training. In Proceedings of the International Joint Conference on

Neural Networks, volume 2, pages 1895–1899, Honolulu, USA, 2002. IEEE.

[84] M. F. Møller. A scaled conjugate gradient algorithm for fast supervised learning.

Neural networks, 6(4):525–533, 1993.

[85] R. W. Morrison. Performance measurement in dynamic environments. In

J. Branke, editor, Proceedings of the Genetic and Evolutionary Computation Con-

ference Workshop on Evolutionary Algorithms for Dynamic Optimization Prob-

lems, pages 5–8, 2003.

[86] R. W. Morrison. Designing evolutionary algorithms for dynamic environments.

Natural computing series. Springer, 2004.

[87] O. Olorunda and A. P. Engelbrecht. Measuring exploration/exploitation in particle

swarm using swarm diverity. In Proceedings of the IEEE Congress on Evolutionary

Computation, pages 1128–1134, Hong Kong, 2008.

[88] A. E. Olsson. Particle Swarm Optimization: Theory, Techniques and Applications.

Nova Science Publishers Inc, 2011.

[89] G. B. Orr and T. K. Leen. Momentum and optimal stochastic search. In M. C.

Mozer, P. Smolensky, D. S. Touretzky, Elman J. L., and A. S. Weigend, edi-

BIBLIOGRAPHY 257

tors, Proceedings of the Connectionist Models Summer School, Erlbaum Associates,

1993.

[90] K. E. Parsopoulos and M. N. Vrahatis. Particle Swarm Optimization and Intelli-

gence: Advances and Applications. Information Science Reference, 2010.

[91] D. W. Patterson. Artificial Neural Networks: Theory and Applications. Prentice

Hall, USA, 1st edition, 1998.

[92] B. A. Pearlmutter. Learning state space trajectories in recurrent neural networks.

In Proceedings of the International Joint Conference on Neural Networks, pages

365–372. IEEE, 1989.

[93] E. S. Peer, F. van den Bergh, and A. P. Engelbrecht. Using neighborhoods with

guaranteed convergence PSO. In Proceedings of the IEEE Swarm Intelligence Sym-

posium, pages 235–242, Indianapolis, USA, 2003.

[94] R. Poli, J. Kennedy, and T. Blackwell. Particle Swarms: The Second Decade.

Hindawi Publishing Corporation, 2008.

[95] V. W. Porto and D. B. Fogel. Alternative neural network training methods [Active

sonar processing]. IEEE Expert, 10(3):16–22, 2002.

[96] L. V. Qiang and Y. U. Jin-shou. Self-organizing feature map neural network based

on particle swarm optimizer and its application. Control and Decision, 20(10):1115,

2005.

[97] Z. Qin, J. Chen, Y. Liu, and J. Lu. Evolving RBF neural networks for pattern

classification. In Y. Hao, J. Liu, Y. Wang, Y. Cheung, H. Yin, L. Jiao, J. Ma,

and Y. C. Jiao, editors, Computational Intelligence and Security, volume 3801 of

Lecture Notes in Computer Science, pages 957–964. Springer Berlin / Heidelberg,

2005.

BIBLIOGRAPHY 258

[98] A. Rakitianskaia and A. P. Engelbrecht. Cooperative charged particle swarm opti-

miser. In Proceedings of the IEEE Congress on Evolutionary Computation, pages

933–939, Hong Kong, 1–6 June 2008.

[99] A. Rakitianskaia and A. P. Engelbrecht. Training neural networks with PSO in

dynamic environments. In Proceedings of the IEEE Congress on Evolutionary

Computation, pages 667–673. IEEE, 2009.

[100] A. Röbel. The dynamic pattern selection algorithm: Effective training and con-

trolled generalization of backpropagation neural networks. Technical report, Tech-

nische Universität Berlin, 1994.

[101] R. Rojas. Neural networks: a systematic introduction. Springer-Verlag, 1996.

[102] L. Rokach. Pattern classification using ensemble methods. Series in machine per-

ception and artificial intelligence. World Scientific, 2010.

[103] C. Romero, M. G. Valdez, and A. Alanis. A comparative study of machine learning

techniques in blog comments spam filtering. In The Proceedings of the International

Joint Conference on Neural Networks, pages 1–7. IEEE.

[104] D. Saad. On-line learning in neural networks. Publications of the Newton Institute.

Cambridge University Press, 1998.

[105] J. C. Schlimmer and R. H. Granger. Incremental learning from noisy data. Machine

Learning, 1(3):317–354, 1986.

[106] M. Settles, B. Rodebaugh, and T. Soule. Comparison of genetic algorithm and

particle swarm optimizer when evolving a recurrent neural network. In Proceedings

of the Genetic and Evolutionary Computation Congress, pages 148–149. Springer,

2003.

BIBLIOGRAPHY 259

[107] R. S. Sexton, R. E. Dorsey, and J. D. Johnson. Optimization of neural networks: a

comparative analysis of the genetic algorithm and simulated annealing. European

Journal of Operational Research, 114(3):589–601, 1999.

[108] Y. Shi and R. C. Eberhart. Parameter selection in particle swarm optimization.

In V. Porto, N. Saravanan, D. Waagen, and A. Eiben, editors, Evolutionary Pro-

gramming VII, volume 1447 of Lecture Notes in Computer Science, pages 591–600.

Springer Berlin / Heidelberg, 1998.

[109] Y. Shi and R. C. Eberhart. Empirical study of particle swarm optimisation. In

Proceedings of the IEEE Congress on Evolutionary Computation, volume 3, pages

1945–1950, 1999.

[110] J. Sietsma and R. J. F. Dow. Neural net pruning - why and how. In Proceedings

of the IEEE International Conference on Neural Networks, pages 325–333, San

Diego, USA, 24–27 July 1988.

[111] W. N. Street and Y. S. Kim. A streaming ensemble algorithm (SEA) for large-

scale classification. In Proceedings of the International Conference on Knowledge

Discovery and Data Mining, pages 377–382, San Francisco, California, 2001. ACM.

[112] H. Tang, K. C. Tan, and Y. Zhang. Neural networks: computational models and

applications. Studies in computational intelligence. Springer, 2007.

[113] K. Trojanowski and Z. Michalewicz. Searching for optima in non-stationary envi-

ronments. In Proceedings of the Congress on Evolutionary Computation, volume 3.

IEEE, 1999.

[114] A. Tsymbal. The problem of concept drift: Definitions and related work. Technical

Report TCD-CS-2004-15, Trinity College, Dublin, 2004.

BIBLIOGRAPHY 260

[115] A. Tsymbal, M. Pechenizkiy, P. Cunningham, and S. Puuronen. Han-

dling local concept drift with dynamic integration of classifiers: Domain of

antibiotic resistance in nosocomial infections. In Proceedings of the IEEE

Symposium on Computer-Based Medical Systems, pages 679–684. IEEE, 22–

23 June 2006. DOI online: https://www.cs.tcd.ie/research_groups/mlg/kdp/

publications/Tsymbal_CBMS2006.pdf.

[116] A. Tsymbal, M. Pechenizkiy, P. Cunningham, and S. Puuronen. Dynamic inte-

gration of classifiers for handling concept drift. Information Fusion, 9(1):56–68,

2008.

[117] F. Van den Bergh. An Analysis of Particle Swarm Optimizers. Doctoral dis-

sertation, Department of Computer Science Scandinavica, University of Pretoria,

Pretoria, South Africa, 2002.

[118] F. Van den Bergh and A. P. Engelbrecht. Cooperative learning in neural networks

using particle swarm optimizers. South African Computer Journal, 26:84–90, 2000.

[119] A. B. van Wyk and A. P. Engelbrecht. Overfitting by PSO trained feedforward neu-

ral networks. In Proceedings of the IEEE Congress on Evolutionary Computation,

pages 1–8, 2010.

[120] A. Waibel. Modular construction of time-delay neural networks for speech recog-

nition. Neural Computation, 1(1):39–46, 1989.

[121] E. A. Wan. Neural network classification: A bayesian interpretation. IEEE Trans-

actions on Neural Networks, 1(4):303–305, 1990.

[122] D. Wang and B. Larder. Enhanced prediction of lopinavir resistance from genotype

by use of artificial neural networks. Journal of Infectious Diseases, 188(5):653,

2003.

https://www.cs.tcd.ie/research_groups/mlg/kdp/publications/Tsymbal_CBMS2006.pdf
https://www.cs.tcd.ie/research_groups/mlg/kdp/publications/Tsymbal_CBMS2006.pdf

BIBLIOGRAPHY 261

[123] H. Wang, W. Fan, P. S. Yu, and J. Han. Mining concept-drifting data streams

using ensemble classifiers. In Proceedings of the ACM international conference on

Knowledge discovery and data mining, pages 226–235, Washington, D.C., 2003.

ACM.

[124] N. Watanasusin and S. Sanguansintukul. Classifying chief complaint in ear diseases

using data mining techniques. In International Conference on Digital Content,

Multimedia Technology and its Applications, pages 149–153, August 2011.

[125] K. Weicker and N. Weicker. On evolution strategy optimization in dynamic envi-

ronments. In Proceedings of the Congress on Evolutionary Computation, volume 3.

IEEE, 1999.

[126] B. Wenerstrom and C. Giraud-Carrier. Temporal data mining in dynamic feature

spaces. In Proceedings of the International Conference on Data Mining, pages

1141–1145, 2006.

[127] P. J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the

Behavioural Sciences. PhD thesis, Harvard University, Boston, USA, 1974.

[128] L. F. A. Wessels and E. Barnard. Avoiding false local minima by proper initializa-

tion of connections. IEEE Transactions on Neural Networks, 3(6):899–905, 1992.

[129] G. Widmer and Kubat M. Effective learning in dynamic environments by explicit

context tracking. In Proceedings of the European Conference on Machine Learning,

pages 227–243. Springer-Verlag, 1993.

[130] G. Widmer and Kubat M. Learning in the presence of concept drift and hidden

contexts. Machine Learning, 23(1):69–101, 1996.

[131] P. M. Williams. Bayesian regularization and pruning using a laplace prior. Neural

Computation, 7(1):117–143, 1995.

BIBLIOGRAPHY 262

[132] R. J. Williams and D. Zipser. A learning algorithm for continually running fully

recurrent neural networks. Neural computation, 1(2):270–280, 1989.

[133] X. Xiao, E. R. Dow, R. Eberhart, Z. B. Miled, and R. J. Oppelt. Gene clustering

using self-organizing maps and particle swarm optimization. In Proceedings of the

International Parallel and Distributed Processing Symposium, page 10. IEEE, 2003.

[134] S. Yang, Y. S. Ong, and Y. Jin. Evolutionary computation in dynamic and uncer-

tain environments. Springer, 2007.

[135] Y. Yang and S. Elfayoumy. Anti-spam filtering using neural networks and baysian

classifiers. In Proceedings of the International Symposium on Computational Intel-

ligence in Robotics and Automation, pages 272–278. IEEE, 2007.

[136] X. Yao. Evolution of connectionist networks. In Proceedings of the International

Symposium on AI, Reasoning & Creativity, pages 49–52, Queensland, Australia,

1991.

[137] X. Yao. Evolutionary artificial neural networks. International Journal of Neural

Systems, 4(3):203–222, 1993.

[138] X. H. Yu and G. A. Chen. Efficient backpropagation learning using optimal learning

rate and momentum. Neural Networks, 10(3):517–527, 1997.

[139] X. H. Yu, G. A. Chen, and S. X. Cheng. Dynamic learning rate optimization of the

backpropagation algorithm. IEEE Transactions on Neural Networks, 6(3):669–677,

1995.

[140] T. Zhang. Class-size independent generalization analysis of some discriminative

multi-category classification. Advances in Neural Information Processing Systems,

17:1625–1632, 2005.

BIBLIOGRAPHY 263

[141] J. Zhao, M. Chen, and Q. Luo. Research of intrusion detection systems based

on neural networks. In International Conference on Communication Software and

Networks, pages 174–178. IEEE, 2011.

[142] J. M. Zurada. Introduction to artificial neural systems. West, 1992.

Appendix A

Acronyms

This appendix lists the acronyms used throughout this thesis. Acronyms are listed

alphabetically, and typeset in bold. Each acronym’s associated meaning is provided

alongside:

BP Back Propagation

CI Computational Intelligence

CPSO Charged PSO

EC Evolutionary Computation

FFNN Feedforward Neural Network

GA Genetic Algorithm

MSE Mean Squared Error

NN Neural Network

PSO Particle Swarm Optimisation

QPSO Quantum PSO

264

APPENDIX A. ACRONYMS 265

RBP Reinitialising Back Propagation

RPSO Reinitialising PSO

SSE Sum Squared Error

Appendix B

Symbols

This appendix lists the mathematical symbols used throughout this dissertation, and

their definitions. The symbols used within each chapter are listed under separate sections.

Each section lists only newly introduced symbols.

B.1 Chapter 2: Particle Swarm Optimisation

ω Inertia weight

c1 Cognitive coefficient

c2 Social coefficient

l Dimension index

n Search space dimensionality

SP Total number of particles in a swarm

P (t) Particle swarm

~r1, ~r2 Random components

t Time step

~vy(t) Velocity of particle y at time step t

266

B.2. CHAPTER ??: ARTIFICIAL NEURAL NETWORKS 267

~Vmax Maximum velocity

U(0, 1) Uniform random number distribution

~xy(t) Position of particle y at time step t

~xgbest(t) Global best position in a particle neighbourhood

~xpbest(t) Personal best position of a particle

Xn Search space of a n-dimensional problem

y Particle index

B.2 Chapter 3: Artificial Neural Networks

α The momentum term in back propagation

η The learning rate of back propagation

θ The bias threshold

D Set of NN data patterns

DT Set of NN training data patterns

DG Set of NN generalisation data patterns

Ep NN error per patern

ET NN error on the training set

EG NN error on the generalisation set

fAN Activation function of a neuron

fok Activation function of the output unit k

fuj Activation function of the hidden unit j

fanin The number of connections leading to a neuron

I Total number of input units

i Index of an input unit

J Total number of hidden units

B.3. CHAPTER ??: DYNAMIC ENVIRONMENTS 268

j Index of a hidden unit

K Total number of output units

k Index of an output unit

net Weighted sum of inputs

ok kth output unit

ok,p Output value produced by the kth output unit on pattern p

P Total number of data patterns

PG Total number of generalisation data patterns

PT Total number of training data patterns

p Data pattern index

R
I Set of all real numbers in I dimensions

tk,p kth target value of pattern p

~tp Target vector

uj Output of the jth hidden unit

vji Weight between the ith input unit and jth hidden unit

∆vji Adjustment of the weight between ith input unit and jth hidden unit

W NN weight vector, in other words, a set of all NN weights

wkj Weight between the jth hidden unit and kth output unit

∆wkj Adjustment of the weight between jth hidden unit and kth output unit

zi Output of the ith input unit

~zp Input vector

B.3 Chapter 4: Dynamic Environments

$(t) Vector of time-dependent control parameters of the objective function

ω Inertia weight

B.4. CHAPTER ??: EXPERIMENTAL RESULTS 269

~ay Acceleration term of the charged PSO velocity update equation

~dyg(t) Distance between the yth particle and the gth particle at time step t

Qy Charge of particle y

Rc Core radius

Rp Perception limit

rcloud Radius of the quantum cloud

~x∗(t) Optimum found at time step t

B.4 Chapter 6: Experimental Results

θ Threshold value separating classes in the SEA classification problem

ρF Generalisation factor

al lth linear coefficient

~b Center of the sphere for the Dynamic Sphere problem

c Constant value

d Swarm diversity

F Change frequency

F (T) Algorithm fitness after iteration t

Fmean(T) Collective mean fitness over T iterations

H0 Null hypothesis

H1 Alternative hypothesis

T Total number of iterations

µ1 Mean of the first sample being compared

µ2 Mean of the second sample being compared

M Number of data points

m Data point

B.4. CHAPTER ??: EXPERIMENTAL RESULTS 270

N Number of environment changes

nw Total number of NN weights

P Number of data patterns

Pw Sliding window size

R Sphere radius for the Dynamic Sphere problem

S Step size by which the sliding window shifts

t1, t2 Scalar thresholds used for the Sliding Thresholds problem

T Total number of iterations

Vmax Scalar maximum velocity

xy Particle position y

x̄ The swarm center

Appendix C

Derived Publications

This appendix lists the publications derived from the work presented in this thesis.

• A. Rakitianskaia and Andries P. Engelbrecht. Cooperative Charged Particle Swarm

Optimiser, Proceedings of the IEEE Congress on Evolutionary Computation, pages 933–

939, Hong Kong, 2008.

• A. Rakitianskaia and Andries P. Engelbrecht. Training Neural Networks with

PSO in Dynamic Environments, Proceedings of the IEEE Congress on Evolutionary

Computation, pages 667–673, Trondheim, Norway, 2009.

271

	Contents
	List of Figures
	List of Algorithms
	List of Tables
	1 Introduction
	1.1 Objectives
	1.2 Contributions
	1.3 Thesis Outline

	2 Particle Swarm Optimisation
	2.1 Basic PSO algorithm
	2.2 Neighborhood Topologies
	2.2.1 Star Topology
	2.2.2 Ring Topology
	2.2.3 Von Neumann Topology

	2.3 Impact of Parameters
	2.3.1 Acceleration parameters
	2.3.2 Inertia Weight
	2.3.3 Velocity Clamping

	2.4 Summary

	3 Artificial Neural Networks
	3.1 Artificial Neuron
	3.2 Feedforward Neural Network Structure
	3.3 Training Algorithms
	3.3.1 The Learning Process
	3.3.2 Back Propagation with Gradient Descent
	3.3.3 Population Based Algorithms: Particle Swarm Optimisation

	3.4 Performance Issues
	3.4.1 Architecture Selection
	3.4.2 Data Preparation
	3.4.3 Weight Initialisation

	3.5 Summary

	4 Dynamic Environments
	4.1 Real-Life Examples of Dynamic Optimisation Problems
	4.2 Dynamic Optimisation Problems
	4.2.1 Primary Concepts
	4.2.2 Terminology
	4.2.3 Characteristics of Dynamic Environments
	4.2.4 Concept Drift

	4.3 Existing Dynamic Optimisation Methods
	4.3.1 Optimisation in Dynamic Environments
	4.3.2 Dynamic Particle Swarm Optimisation
	4.3.3 Optimisation in the Presence of Concept Drift

	4.4 Summary

	5 Neural Networks in Dynamic Environments
	5.1 Dynamism of Back Propagation
	5.2 Population-Based Dynamic Training
	5.3 Architecture Selection and Parameter Optimisation in Dynamic Environments
	5.4 Overfitting in Dynamic Environments
	5.5 Summary

	6 Empirical Analysis
	6.1 Experimental Procedure
	6.1.1 Measuring NN Performance in Dynamic Environments
	6.1.2 Simulating Concept Drift
	6.1.3 Parameter Optimisation
	6.1.4 Naming Conventions

	6.2 Classification problems
	6.2.1 SEA Concepts
	6.2.2 Moving Hyperplane
	6.2.3 Dynamic Sphere
	6.2.4 Sliding Thresholds
	6.2.5 Electricity Pricing

	6.3 Summary

	7 Conclusions
	7.1 Summary of Conclusions
	7.2 Future Work

	Bibliography
	A Acronyms
	B Symbols
	B.1 Chapter 2: Particle Swarm Optimisation
	B.2 Chapter 3: Artificial Neural Networks
	B.3 Chapter 4: Dynamic Environments
	B.4 Chapter 6: Experimental Results

	C Derived Publications

