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Wait without thought, for you are not ready for thought:

So the darkness shall be the light, and the stillness the dancing.
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Summary

Due to their great importance, both from the fundamental and from

the practical points of view, it is imperative that the various facets of

the concepts of information and entanglement are explored system-

atically in connection with diverse physical systems and processes.

These concepts are at the core of the emerging field of the Physics of

Information. In this Thesis I investigate some aspects of the dynamics

of information in both classical and quantum mechanical systems and

then move on to explore entanglement in fermion systems by search-

ing for novel ways to classify and quantify entanglement in fermionic

systems.

In Chapter 1 a brief review of the different information and entropic

measures as well as of the main evolution equations of classical dy-

namical and quantum mechanical systems is given. The conserva-

tion of information as a fundamental principle both at the classical

and quantum levels, and the implications of Landauer’s theorem are

discussed in brief. An alternative and more intuitive proof of the

no-broadcasting theorem is also provided.

Chapter 2 is a background chapter on quantum entanglement, where

the differences between the concept of entanglement in systems con-

sisting of distinguishable subsystems and the corresponding concept

in systems of identical fermions are emphasized. Different measures of

 
 
 



entanglement and relevant techniques such as majorization, are intro-

duced. To illustrate some of the concepts reviewed here I discuss the

entanglement properties of an exactly soluble many-body model which

was studied in paper (E) of the publication list corresponding to the

present Thesis. An alternative approach to the characterization of

quantum correlations, based on perturbations under local measure-

ments, is also briefly reviewed. The use of uncertainty relations as

entanglement indicators in composite systems having distinguishable

subsystems is then examined in some detail.

Chapter 3 is based on papers (A) and (B) of the list of publications.

Extended Landauer-like principles are developed, based amongst oth-

ers on the conservation of information of divergenceless dynamical

systems. Conservation of information within the framework of gen-

eral probabilistic theories, which include the classical and quantum

mechanical probabilities as particular instances, is explored. Further-

more, Zurek’s information transfer theorem and the no-deleting the-

orem are generalized.

Chapter 4 is based on articles (C) and (D) mentioned in the publi-

cation list, and investigates several separability criteria for fermions.

Criteria for the detection of entanglement are developed based either

on the violation of appropriate uncertainty relations or on inequalities

involving entropic measures.

Chapter 5 introduces an approach for the characterization of quantum

correlations (going beyond entanglement) in fermion systems based

upon the state disturbances generated by the measurement of local

observables.

Chapter 6 summarizes the conclusions drawn in the previous chapters.

The work leading up to this Thesis has resulted in five publications

in peer reviewed science research journals:

(A) C. Zander, A.R. Plastino, A. Plastino, M. Casas and S. Curilef,

Entropy 11 (4), (2009) pp. 586-597

 
 
 



(B) C. Zander and A.R. Plastino, Europhys. Lett. 86 (1), (2009)

18004

(C) C. Zander and A.R. Plastino, Phys. Rev. A 81, (2010) 062128

(D) C. Zander, A.R. Plastino, M. Casas and A. Plastino, Eur. Phys. J. D

66, (2012) 14

(E) C. Zander, A. Plastino and A.R. Plastino, Braz. J. Phys. 39 (2),

(2009) pp. 464-467.

 
 
 



Zusammenfassung

Aufgrund ihrer großen Bedeutung, sowohl aus der Grundlagenfor-

schung heraus als auch von den praktischen Gesichtspunkten aus gese-

hen, ist es unerlässlich, dass die verschiedenen Facetten der Begriffe

Information und Verschränkung systematisch in Verbindung mit ver-

schiedenen physikalischen Systemen und Prozessen untersucht wer-

den. In dieser Arbeit untersuche ich erst einige Aspekte der Dynamik

der Information in klassischen und quantenmechanischen Systemen

und fahre dann mit der Erforschung der Verschränkung in Fermionen-

Systemen fort.

In Kapitel 1 wird eine kurze Übersicht über die verschiedenen Informa-

tions- und Entropiemaße geboten, sowie die wichtigsten Evolutions-

gleichungen der klassischen dynamischen und quantenmechanischen

Systeme gegeben. Die Erhaltung von Information als Grundprinzip

sowohl auf der klassischen Ebene als auch auf der quantenmechani-

schen Ebene, und die Auswirkungen des Landauer Satzes werden kurz

besprochen.

Kapitel 2 ist ein Hintergrundkapitel über Quantenverschränkung, in

dem die Unterschiede zwischen dem Konzept der Verschränkung in

Systemen bestehend aus unterscheidbaren Subsystemen und dem ent-

sprechenden Konzept in Systemen mit identischen Fermionen her-

vorgehoben werden. Verschiedene Maße der Verschränkung und rele-

vante Techniken werden vorgestellt. Darüber hinaus bespreche ich

die Verschränkungseigenschaften eines genau lösbaren Vielteilchen-

modells. Die Verwendung von Unbestimmtheitsrelationen als Ver-

schränkungsindikatoren in zusammengestellten Systemen mit unter-

scheidbaren Teilsystemen wird dann untersucht.

In Kapitel 3 werden erweiterte Landauer-ähnliche Prinzipien entwick-

elt, basierend unter anderem auf der Erhaltung von Information in di-

vergenzlosen dynamischen Systemen. Die Erhaltung von Information

im Rahmen der allgemeinen probabilistischen Theorien, die die klas-

 
 
 



sischen und quantenmechanischen Wahrscheinlichkeiten als besondere

Fälle enthalten, wird ebenfalls untersucht. Außerdem wird in diesem

Zusammenhang der Informationsübertragungs-Satz von Zurek verall-

gemeinert.

Kapitel 4 untersucht mehrere Separabilitätskriterien für Fermionen.

Kriterien für den Nachweis von Verschränkung sind entwickelt wor-

den, basierend entweder auf der Verletzung von angebrachten Unbe-

stimmtheitsrelationen oder auf Ungleichheiten, die wiederum die en-

tropischen Maße beinhalten.

Kapitel 5 stellt einen Ansatz zur Charakterisierung von Quanten-

Korrelationen (die über die Verschränkung hinausgehen) in Fermionen-

Systemen dar, basierend auf den Zustandsstörungen die durch die

Messung der lokalen Observablen erzeugt werden.

Kapitel 6 fasst die Schlussfolgerungen zusammen, die in den vorange-

gangenen Kapiteln gezogen wurden.

Die Arbeiten, die zu dieser These geführt haben, wurden in fünf Pub-

likationen in wissenschaftlichen Fachzeitschriften veröffentlicht.

 
 
 



Resumen

Debido a su gran importancia, tanto desde el punto de vista funda-

mental como desde el práctico, es imprescindible que las diversas fac-

etas de los conceptos de información y entrelazamiento se exploren de

forma sistemática en relación con diversos sistemas y procesos f́ısicos.

En esta tesis investigo algunos aspectos de la dinámica de la infor-

mación en los sistemas mecánicos clásicos y cuánticos, y luego paso a

explorar el entrelazamiento de los sistemas de fermiones.

En el caṕıtulo 1 se da una breve revisión de las diferentes medidas de

información y medidas entrópicas, aśı como de las principales ecua-

ciones de evolución de los sistemas dinámicos clásicos y mecánico-

cuánticos. También se discuten brevemente la conservación de la in-

formación, tanto a nivel clásico como cuántico, y las implicaciones del

teorema de Landauer.

En el caṕıtulo 2 se repasa brevemente el concepto de entrelazamiento

cuántico, haciendo énfasis en las diferencias existentes entre el con-

cepto de entrelazamiento en sistemas constituidos por subsistemas

distinguibles y el correspondiente concepto en sistemas de fermiones

idénticos. Diferentes medidas de entrelazamiento y técnicas relevantes

son introducidas. También discuto las propiedades de entrelazamiento

de un modelo de muchos cuerpos exactamente soluble. Luego se exam-

ina el uso de relaciones de incertidumbre como indicadores de entre-

lazamiento en los sistemas compuestos por subsistemas distinguibles.

En el caṕıtulo 3 investigo extensiones del principio de Landauer basadas

en la conservación de la información en sistemas dinámicos con flujo

en el espacio de las fases de divergencia nula. Luego investigo la

conservación de la información en el marco de teoŕıas probabiĺısticas

generales, que incluyen a las probabilidades clásicas y a la mecánica

cuántica como casos particulares. Además, en este contexto, el teo-

rema de Zurek de transferencia de información es generalizado.

En el caṕıtulo 4 desarrollo varios criterios de separabilidad para sis-

 
 
 



temas de fermiones. Investigo criterios para la detección del entrelaza-

miento basados tanto en la violación de relaciones de incertidumbre

adecuadas o en desigualdades entrópicas.

El caṕıtulo 5 presenta un enfoque para la caracterización de las cor-

relaciones cuánticas (más allá de entrelazamiento) en los sistemas de

fermiones, basado en las alteraciones del estado cuántico generadas

por la medición de observables locales.

El caṕıtulo 6 resume las conclusiones extráıdas en los caṕıtulos ante-

riores.

Las investigaciones desarrolladas en esta tesis han dado lugar a cinco

publicaciones en revistas cientficas sometidas a referato especialitado.
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Chapter 1

Physics and Information

In recent years the physics of information [1–7] has received increasing atten-

tion [5, 6, 8–16]. There is a growing consensus that information is endowed with

physical reality, not in the least because the ultimate limits of any physical de-

vice that processes or transmits information are determined by the fundamental

laws of physics [6, 12–14]. That is, the physics of information and computation

is an interdisciplinary field which has promoted our understanding of how the

underlying physics influences our ability to both manipulate and use informa-

tion. By the same token a plenitude of theoretical developments indicate that

the concept of information constitutes an essential ingredient for a deep under-

standing of physical systems and processes [1–6]. The physics of information also

comprises a set of ideas, concepts and techniques that provide a natural “bridge”

between theoretical physics and other branches of Science, particularly biology

[17]. Landauer’s principle is one of the most fundamental results in the physics

of information and is generally associated with the statement “information is

physical”. It constitutes a historical turning point in the field by directly con-

necting information processing with (more) conventional physical quantities [18].

According to Landauer’s principle a minimal amount of energy is required to be

dissipated in order to erase a bit of information in a computing device working

at temperature T . This minimum energy is given by kT ln 2, where k denotes

Boltzmann’s constant [19–21]. Landauer’s principle has deep implications, as

it allows for the derivation of several important results in classical and quantum

information theory [22]. It also constitutes a rather useful heuristic tool for estab-

1

 
 
 



lishing new links between, or obtaining new derivations of, fundamental aspects

of thermodynamics and other areas of physics [23].

Information is something that is encoded in a physical state of a system and

a computation is something that can be carried out on a physically realizable

device with real physical degrees of freedom. In order to quantify information

one will need a measure of how much information is encoded in a system or

process. Shannon entropy, Rényi entropy (which is a generalization of Shannon

entropy) and Tsallis’ S
(T )
q power-law entropies will be discussed. Since the uni-

verse is quantum mechanical at a fundamental level, the question naturally arises

as to how quantum theory can enhance our insight into the nature of information.

Entanglement is one of the most fundamental aspects of quantum physics. It

constitutes a physical resource that allows quantum systems to perform informa-

tion tasks not possible within the classical domain. That is, quantum information

is typically encoded in non-local correlations between the different parts of a phys-

ical system and these correlations have no classical counterpart. One of the aims

of quantum information theory is to understand how entanglement can be used as

a resource in communication and other information processes. Two spectacular

applications of entanglement are quantum teleportation and superdense coding

[7].

Since the outcome of a quantum mechanical measurement has a random el-

ement, we are unable to deduce the initial state of the system from the mea-

surement outcome. This basic property of quantum measurements is connected

with another important distinction between quantum and classical information:

quantum information cannot be copied with perfect fidelity. This is called the no-

cloning principle. If it were possible to make a perfect copy of a quantum state,

one could then measure an observable of the copy (in fact, we could perform

measurements on as many copies as necessary) without disturbing the original,

thereby defeating, for instance, the principle that two non-orthogonal quantum

states cannot be distinguished with certainty [24]. Perfect quantum cloning would

also allow the second principle of thermodynamics [24] to be defeated. It has also

been proved that quantum cloning would allow (via EPR-type experiments [25])

2

 
 
 



1.1 Information and entropic measures

information to be transmitted faster than the speed of light.

1.1 Information and entropic measures

Entropy is an extremely important concept in information theory, statistical

physics and in other fields as well. The entropy of a probability distribution

can be interpreted not only as a measure of uncertainty, but also as a measure

of information. The amount of information which one obtains by observing the

result of an experiment depending on chance, can be taken numerically equal

to the amount of uncertainty concerning the outcome of the experiment before

carrying it out [26].

The Shannon entropy, introduced by Claude E. Shannon, is a fundamental

measure in information theory [27]. In addition to the above two views of entropy,

another complementary view of the Shannon entropy is its application to data

compression. In that context the Shannon entropy gives the minimum number

of bits needed to store the result of a measurement of a random variable.

1.1.1 Shannon entropy

The most fundamental information measure is Shannon’s entropy which gives the

amount of uncertainty concerning the outcome of an experiment:

HShannon(p1, p2, . . . , pn) = −k
n∑
i=1

pi log2 pi, (1.1)

where pi is the probability that the discrete variable x will assume the value xi

(out of the n possible values (x1, . . . , xn)) and k is a positive constant which

when set to one gives the unit “bits” (from the abbreviation of binary digit) for

the entropy. Note that entropy is a functional of the distribution {x}, which

means it does not depend on the actual values taken by the random variable x,

but only on the probabilities [28]. HShannon is (for discrete probability distribu-

tions) a non-negative quantity: HShannon ≥ 0. It measures the lack of knowledge

about the precise value of x. Alternatively, HShannon can be interpreted as a

measure of the predictive power of the probability distribution {p}. The presence

3

 
 
 



1.1 Information and entropic measures

of Boltzmann’s constant k in the definition of the thermodynamic entropy is due

to historical reasons, reflecting the conventional units of temperature. It is there

to make sure that the statistical thermodynamic entropy definition matches the

classical entropy of Clausius. In the case of information entropy the logarithm

can also be taken to the natural base e. This is equivalent to choosing the “nat”

as unit of information or entropy, instead of the usual bits. In practice, infor-

mation entropy is almost always calculated using logarithms to base 2, but this

distinction amounts to nothing other than a change in units. The natural unit

of information (nat) is related to the bit as follows: 1 nat = 1/ln 2 bits. Two

important straightforward features of HShannon are that it vanishes in the case of

“certainty” (that is, when one has pi = 1 for one xi and pj = 0 for j 6= i) and it

adopts its maximum value for “uniformity” (that is, where all pi’s are equal to 1/n).

The three conditions which give rise to the above expression (1.1), are [29]

1. H is a continuous function of the pi

2. If all pi’s are equal, then H
(

1
n
, 1
n
, . . . , 1

n

)
is a monotonic increasing function

of n

3. The composition law:

H
(
p1, p2, . . . , pn

)
= H

(
w1, w2, . . . , wr

)
+ w1H

(
p1

w1
, . . . , pk

w1

)
+

w2H
(pk+1

w2
, . . . , pk+m

w2

)
+ . . . , (1.2)

where w1 = (p1 + . . .+ pk), w2 = (pk+1 + . . .+ pk+m), etc.

In the view of Jaynes [29–31], the relationship between thermodynamic and

informational entropy is, that thermodynamics should be seen as an application

of Shannon’s information theory. Thermodynamic entropy is then interpreted as

being an estimate of the amount of information that remains uncommunicated by

a description solely in terms of the macroscopic variables of classical thermody-

namics and that would be needed to define the detailed microscopic state of the

system. The increase in entropy characteristic of irreversibility always signifies,

both in quantum mechanics and classical theory, a loss of information. The prob-

ability distributions corresponding to states of thermodynamical equilibrium are
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1.1 Information and entropic measures

then determined by Jaynes’ maximum entropy principle [29]. That is, these dis-

tributions are those that maximize the entropy functional under the constraints

imposed by normalization and the available macroscopic data characterizing the

equilibrium state.

An important property of entropy is that S(p) is a concave function of its input

arguments p1, p2, . . . , pn. This means that for any two probability distributions

{p′i} and {p′′i } and for any λ such that 0 ≤ λ ≤ 1, we have

S(λp′ + (1− λ)p′′) ≥ λS(p′) + (1− λ)S(p′′). (1.3)

The physical meaning of this inequality is that mixing different probability dis-

tributions can only increase uniformity [24].

One of the most important properties of entropy is its additivity, that is, given

two probability distributions P = (p1, p2, . . . , pn) and Q = (q1, q2, . . . , qm),

HShannon[P ∗Q] = HShannon[P ] +HShannon[Q], (1.4)

where by P ∗Q we denote the direct product of the distributions. Now, one cannot

replace condition 3 with eq. (1.4), since the latter condition is much weaker.

Actually, there are several quantities other than eq. (1.1) which satisfy conditions

1, 2 and eq. (1.4). The following is one generalization of the Shannon entropy.

1.1.2 Rényi entropy

The entropy of order q of the distribution P = (p1, p2, . . . , pn) is defined to be

[2, 26]

S(R)
q (p1, p2, . . . , pn) =

1

1− q
log2

(
n∑
k=1

pqk

)
, (1.5)

where q ≥ 0, q 6= 1 and S
(R)
q is measured in units of bits. That is, the above

expression can be regarded as a measure of the entropy of the distribution P and
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1.1 Information and entropic measures

in the limiting case q → 1 we recover the Shannon entropy:

lim
q→1

S(R)
q (p1, p2, . . . , pn) =

n∑
k=1

pk log2

1

pk
. (1.6)

The Rényi entropy is an extensive quantity for statistically independent subsys-

tems (unlike Tsallis entropy) and concave only for 0 < q < 1.

An interpretation of Rényi entropy is, that the greater the parameter q the greater

the dependence of the entropy on the probabilities of the more probable values

and hence less on the improbable ones.

In the limit q →∞ the Rényi entropy becomes very simple and only depends

on the largest probability value of the distribution, namely

S(R)
∞ (P) = − log2(max{p ∈ P}). (1.7)

This extreme case constitutes a clear illustration of the previously mentioned in-

terpretation of S
(R)
q .

Note that in Chapter 4 I will use the equivalent notations S
(R)
q or H

(R)
q for

the Rényi measure.

Closely related to Rényi entropy is another generalization of Shannon’s en-

tropy that has been the subject of much interest recently, the Tsallis or S
(T )
q

power-law entropy.

1.1.3 Tsallis entropy

The power-law S
(T )
q entropies, advanced by Tsallis, are non-extensive entropic

functionals given by [32–37],

S(T )
q (P) =

1

q − 1

(
1−

∑
i

pqi

)
(1.8)

where P denotes the probability distribution and the parameter q is any real

number (characterizing a particular statistics), q 6= 1. The probabilities are
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1.1 Information and entropic measures

thus scaled by q, which means they may be reinforced or weakened. The Tsallis

entropy possesses the usual properties of positivity, equiprobability, concavity,

irreversibility and it generalizes the standard additivity (eq. (1.4)) as well as the

Shannon additivity (eq. (1.2)) [33]. The normal Boltzmann-Gibbs entropy is re-

covered in the limit q → 1.

The non-extensive thermostatistical formalism based upon the S
(T )
q entropies has

been applied to a variegated family of problems in physics, astronomy, biology

and economics [38]. In particular, the case q = 2 constitutes a powerful tool for

the study of quantum entanglement [39–41]. Tsallis entropy can also be regarded

as a one-parameter generalization of the Shannon entropy.

The characteristic property of Tsallis entropy is pseudoadditivity,

S(T )
q (A,B) = S(T )

q (A) + S(T )
q (B) + (1− q)S(T )

q (A)S(T )
q (B), (1.9)

with A and B being two mutually independent finite event systems whose joint

probability distribution satisfies

p(A,B) = p(A)p(B). (1.10)

From this it is evident that q is a measure of the non-extensivity of the system.

The Rényi entropy is a monotonic function of the Tsallis entropy,

S(R)
q (P) =

log2

[
1 + (1− q)S(T )

q (P)
]

1− q
(1.11)

and furthermore S
(R)
q (P) and S

(T )
q (P) both decrease monotonically in q.

Note that in Chapter 4 I will use the equivalent notation H
(T )
q for the Tsallis

measure.

The Shannon entropy, Rényi entropy and Tsallis entropy have found applica-

tions in a wide range of physical scenarios. In addition to their role in physics, they

7

 
 
 



1.1 Information and entropic measures

also have several multidisciplinary applications. Apart from its utility in mod-

ern information theory, the Shannon entropy has been successfully used amongst

others in biology, econophysics and astronomy. Rényi entropy has been used for

example in multifractal theory, non-linear chaotic dynamics and cryptography.

The Tsallis entropy has been applied for instance to systems with long-range

interactions or fluctuating temperature.

1.1.4 Related measures of information

The Shannon entropy can be used to define other measures of information which

express the relationship between two discrete random variables X and Y [7, 42]:

• relative entropy H(X||Y ): measures the similarity between two random

variables

• joint entropy H(X, Y ): measures the combined information in two random

variables

• conditional entropy H(X|Y ): measures the information contained in one of

the random variables provided that the outcome of another random variable

is known

• mutual informationH(X:Y ): measures the correlation between two random

variables, that is, how much information X and Y have in common. In other

words, how much knowledge of one random variable reduces the information

gained from then learning the other variable.

The definition of the joint entropy follows directly from the definition of the

Shannon entropy (1.1),

H(X, Y ) = −
∑
x,y

p(x, y) log p(x, y), (1.12)

where p(x, y) is the joint probability distribution. The marginal probability dis-

tributions are p(x) =
∑

y p(x, y) and p(y) =
∑

x p(x, y). The expressions for

H(X) and H(Y ) are then

H(X) = −
∑
x

p(x) log p(x)
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1.1 Information and entropic measures

H(Y ) = −
∑
y

p(y) log p(y). (1.13)

Suppose that we know the value of Y , which means we have H(Y ) bits of in-

formation about the pair (X, Y ). The remaining information we can gain about

(X, Y ) is the remaining information we can acquire about X, even given that we

have knowledge of Y . The conditional entropy H(X|Y ), that is, the entropy of

X conditional on knowing Y , is defined by

H(X|Y ) =
∑
y

p(y)H(X|Y = y)

= −
∑
y

p(y)
∑
x

p(x|y) log p(x|y)

= −
∑
x,y

p(x, y) log p(x|y), (1.14)

since p(x, y) = p(y)p(x|y) and using this again results in

H(X|Y ) = −
∑
x,y

p(x, y) log

(
p(x, y)

p(y)

)
= −

∑
x,y

p(x, y) log p(x, y)−
(
−
∑
x,y

p(x, y) log p(y)
)

= H(X, Y )−
(
−
∑
y

p(y) log p(y)
)

= H(X, Y )−H(Y ). (1.15)

This also gives a relationship between the joint entropy and the conditional en-

tropy. The mutual information was said to give the amount of information that

X and Y have in common. Suppose we add the information contents of X and Y ,

which means the sum H(X) + H(Y ) counts the information common to X and

Y twice whereas it counts the information not common only once. If we subtract

the joint entropy, we remain with exactly the information common to X and Y ,

H(X:Y ) = H(X) +H(Y )−H(X, Y ). (1.16)
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1.1 Information and entropic measures

Replacing the joint entropy with the final relation in equation (1.15), one obtains

an alternative expression for the mutual information,

H(X:Y ) = H(X)−H(X|Y ). (1.17)

This can be interpreted as the difference between the information gained from

learning X and the information gained from learning X when Y is already known.

The mutual information is symmetric, that is, the mutual information between

X and Y is the same as the mutual information between Y and X.

Figure 1.1 gives an intuitive illustration of the various useful ways in which the

quantities discussed above are related.

H(X:Y)H(X|Y)
H(Y|X)

H(Y)

H(X,Y)

H(X)

Figure 1.1: Relationship between the joint entropy H(X,Y ), the conditional entropy H(X|Y )
and the mutual information H(X:Y ).

When dealing with quantum discord in Section 2.3 we will first give the quan-

tum analogues of the above entropies and then find the corresponding quantum

relationships between the different quantum entropic measures.

The relative entropy or Kullback-Leibler distance is discussed in the next

Subsection, together with its generalizations. It is a distinguishability measure

for discrete or continuous classical probability densities.
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1.1 Information and entropic measures

1.1.5 Distinguishability measure for classical probability

densities: Kullback-Leibler measure and its gener-

alizations

The relative entropy or Kullback-Leibler distance is a measure of the distance

between two distributions p(x) and q(x), over the same index set, x. It can be

viewed as a measure of the inefficiency of assuming that the distribution is q when

the actual distribution is p. The definition of the Kullback-Leibler divergence for

probability distributions p and q of a discrete random variable, is [28]

H(p||q) =
∑
x

p(x) log
p(x)

q(x)
. (1.18)

Based on continuity arguments, one defines 0 log 0
q

= 0 and p log p
0

= ∞. What

the above equation says in words, is that the Kullback-Leibler divergence is the

average of the logarithmic difference between the probability distributions p and

q, where the average is taken using the probabilities p. The Kullback-Leibler

measure is only defined for discrete probability distributions with q(x) > 0 for all

x (among the p(x) there may be zeros) [26]. This quantity is always non-negative

and is zero if and only if p = q. The relative entropy increases as the distance be-

tween p and q increases. It is, however, not a true distance between distributions

since it is not symmetric and does not satisfy the triangle inequality. It should

be noted that Kullback and Leibler themselves actually defined the divergence

as H(p||q) + H(q||p) [43]. One can generalize the Kullback-Leibler measure by

replacing the logarithm with an arbitrary function. This will be shown for the

continuous case which is discussed next.

All the above information measures can be extended to the case of systems

with a continuous phase space. For instance, the Shannon entropy becomes

S[f ] = −
∫
f lnf dΩ, (1.19)

where f is a probability density and dΩ is the volume element in phase space.

Thus summations are replaced by integrals.
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1.1 Information and entropic measures

The generalization of the Kullback-Leibler measure is as follows. Given two

probability distributions P1 and P2 of continuous random variables, one can define

G
[
P1,P2

]
=

∫
P1 g

[
P1

P2

]
dx, (1.20)

where g[. . .] denotes an arbitrary function (we assume that the integral in the

above equation converges) [16, 44]. This general integral provides a convenient

way to measure distances between P1 and P2, depending on the explicit choice

of the function g[. . .] [16]. That is, the generalized divergence is intuitively an

average, weighted by the function g, of the odds ratio given by P1 and P2. Special

instances are given by the Kullback-Leibler distance H(P1||P2) =
∫
P1 log P1

P2
dx,

where g is the logarithm, and by the overlap O(P1,P2) =
∫√

P1P2 dx where

g[z] = z−1/2. One can also consider a mono-parametric family of functionals

based on Tsallis’ S
(T )
q entropy [45],

Iq
[
P1,P2

]
=

∫
P1

[P1/P2]q−1 − 1

q − 1
dx, (1.21)

parameterized by the real parameter 0 < q ≤ 1, where one has let g[z] =
1
q−1

(
zq−1 − 1

)
. The functional Iq can be interpreted as a non-extensive gener-

alization of the standard Kullback-Leibler distance [44–46].

1.1.6 Mixed states in quantum mechanics

The density operator language gives a description of quantum mechanics that

does not take as its foundation the state vector.

This alternative formulation is mathematically equivalent to the state vector

approach, however, it provides an extremely useful language for dealing with

commonly encountered scenarios in quantum mechanics. Mixed states arise in

situations where there is classical uncertainty and so it is unknown by the exper-

imenter which particular states are actually being manipulated. One should not

confuse this with the concept of quantum uncertainty, where the results of either

some or all measurements cannot be predicted even if the experimenter knows

exactly which particular states are being manipulated. This classical uncertainty
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1.1 Information and entropic measures

could be introduced intentionally, for example by preparing a quantum system in

such a way that there is a randomly-varying element in the preparation history

or it could also be introduced unintentionally, for example due to the effect of

quantum noise which creates ignorance in our knowledge of the quantum state.

Another example would be given by the loss of the record/s of a measurement

result. A quantum system in thermal equilibrium at finite temperatures is also

represented by a mixed state. For a closed system, one can view the mixed state

as either representing a single system or as representing an ensemble of systems,

which means a large number of copies of the system under consideration, where

pj is the proportion of the ensemble being in the state |ψj〉. If the system is not

closed, that is, there may be unwanted interactions due to the environment or the

system may be entangled with other systems as part of a composite system, then

one cannot say that the system has some definite but unknown state vector, since

the density operator records entanglements to other systems. In specific, mixed

states which are descriptions of subsystems of composite quantum systems thus

have an intrinsic classical uncertainty due to either some or all of the subsystems

being entangled. That is, if a quantum system has two or more subsystems that

are entangled, then each individual subsystem must be regarded as a mixed state

even if the complete system is in a pure state.

A quantum system whose state |ψ〉 is known exactly is said to be in a pure

state. In this case the density operator is simply the projector ρ = |ψ〉〈ψ|.
Otherwise, ρ is in a mixed state and it is said to be a mixture of the different

pure states in the ensemble for ρ [7]. That is, suppose a quantum system is in

one of a number of states |ψi〉 (where i is an index) with respective probabilities

pi. This ensemble of pure states is then denoted by {pi, |ψi〉}. It is important to

note that the states |ψi〉 do not need to be orthogonal to each other. The density

operator for the system is then defined by

ρ ≡
∑
i

pi|ψi〉〈ψi|, (1.22)

where
∑

i pi = 1. Now an operator ρ is the density operator associated with an

ensemble {pi, |ψi〉} if and only if it satisfies the conditions [7]:

(a) Hermicity condition: ρ is Hermitian, that is, ρ† = ρ
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(b) Normalization condition: ρ has trace equal to one

(c) Positivity condition: ρ is a positive operator, that is, 〈φ|ρ|φ〉 ≥ 0 for all

pure states |φ〉.

The above conditions provide a characterization of density operators that is in-

trinsic to the operator itself: one can define a density operator to be a positive

Hermitian operator ρ which has trace equal to one [7]. The set of legitimate

statistical operators (and the corresponding family of mixed states) is a convex

set and a state is pure when it is an extremal point of that set [47]. The den-

sity operator is often known as the density matrix or statistical operator and all

these terms are used interchangeably. The basic postulates of quantum mechan-

ics related to unitary evolution and measurement can be completely rephrased in

the density operator language. The expectation value of the measurement of an

observable M when the system is in the state ρ, is

〈M〉ρ =
∑
i

pi〈ψi|M |ψi〉 = Tr[ρM ] (1.23)

and the variance (or uncertainty) of M is given by

δ2(M)ρ = 〈(M − 〈M〉ρ)2〉ρ = 〈M2〉ρ − 〈M〉2ρ. (1.24)

Given a density matrix ρ, the decomposition in equation (1.22) is not unique.

One may have different {pi, |ψi〉} leading to the same ρ:∑
j

p′j|ψ′j〉〈ψ′j| =
∑
i

pi|ψi〉〈ψi|. (1.25)

As an illustration consider for instance two decompositions

ρ =


1
4

0 0 0

0 1
4

0 0

0 0 1
4

0

0 0 0 1
4

 =
1

4
|00〉〈00|+ 1

4
|01〉〈01|+ 1

4
|10〉〈10|+ 1

4
|11〉〈11|

=
1

8

(
|00〉+ |11〉

)(
〈00|+ 〈11|

)
+

1

8

(
|00〉 − |11〉

)(
〈00| − 〈11|

)
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+
1

8

(
|01〉+ |10〉

)(
〈01|+ 〈10|

)
+

1

8

(
|01〉 − |10〉

)(
〈01| − 〈10|

)
. (1.26)

Thus these two different ensembles of quantum states give rise to the same den-

sity matrix. In general, the eigenvalues and eigenvectors of a density matrix just

indicate one of many possible ensembles that may give rise to a particular density

matrix. Such equivalent ensembles or mixtures cannot be distinguished by mea-

surement of observables alone. This equivalence can be characterized precisely

by finding the class of ensembles which give rise to a particular density matrix.

The ensembles ρ =
∑

i pi|ψi〉〈ψi| and ρ′ =
∑

j p
′
j|ψ′j〉〈ψ′j|, where |ψi〉, |ψ′j〉 are

normalized states and pi, p
′
j are the probability distributions, define the same

density operator (1.25) if and only if there is a unitary matrix U = (uij), that is,

U †U = I such that
√
pi|ψi〉 =

∑
j

uij

√
p′j|ψ′j〉, (1.27)

where we may extend the smaller ensemble with entries having probability zero

in order to make the two ensembles the same size [7]. This unitary freedom in the

ensemble for density matrices characterizes the freedom in ensembles {pi, |ψi〉}
that gives rise to a given density matrix ρ.

This non-unique character of the decomposition of ρ as a “mixture” of pure

states is very relevant, amongst others, for the discussion of the concept of “en-

tanglement of formation”, see equations (2.16) and (2.17).

The main applications of the density operator formalism are the descriptions

of quantum systems whose state is only partially known, and the description

of subsystems of a composite quantum system, where the latter description is

provided by the reduced density operator. The reduced density matrices are

an extremely powerful and indispensable tool for the description of individual

subsystems and they form the basis of the description of the phenomenon of

quantum entanglement. The density matrix of the subsystem is calculated as a

partial trace of the density matrix of the whole system. To illuminate the concept

of partial trace, suppose we have two systems A and B whose state is described

by ρAB. The reduced density operator for system A is defined by ρA = TrB(ρAB),
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where TrB is the partial trace over system B. The partial trace is defined by [7]

TrB
(
|a1〉〈a2| ⊗ |b1〉〈b2|

)
= TrB

(
|a1b1〉〈a2b2|

)
= |a1〉〈a2|Tr

(
|b1〉〈b2|

)
= |a1〉〈a2|

(
〈b2|b1〉

)
(1.28)

where |a1,2〉 are any two vectors in the state space of A and |b1,2〉 are any two

vectors in the state space of B. In addition to eq. (1.28) the partial trace is

required to be linear in its input. Equation (1.28) leads to the expression for the

matrix elements of the reduced (also called marginal) density matrices ρA and

ρB. If we express ρA, ρB and ρAB in terms of the orthonormal bases {|i〉} and

{|j〉} (respectively, of the state spaces of A and B) and the associated product

basis {|ij〉}, one has,

〈i|ρA|j〉 =
∑
k

〈ik|ρAB|jk〉

〈k|ρB|l〉 =
∑
i

〈ik|ρAB|il〉. (1.29)

One sees that the matrix elements of the marginal density matrix of each subsys-

tem are actually obtained by recourse to a trace operation that “acts” upon the

labels corresponding to the other subsystem.

Marginal density matrices are the “quantum” analogues of marginal probability

distributions in classical probability theory.

The partial trace is used to describe part of a larger quantum system since it

is the unique operation which gives rise to the correct description of observable

quantities for subsystems of a composite system. That is, the reduced density

operator ρA provides the correct measurement statistics for measurements made

on system A. The partial trace can be regarded as averaging out the information

from the subsystem which is not under consideration (in this illustration B)

which can nonetheless be entangled with the subsystem whose description we

want (which is A in this case).
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1.1.7 Quantum entropic measures

A proper extension of Shannon’s entropy to the quantum case is given by the von

Neumann entropy, defined as

S(ρ) = −Tr(ρ log2 ρ), (1.30)

where ρ is the density matrix of the system. Thus quantum states are described

by replacing probability distributions with density operators. In order to com-

pute S(ρ), one has to write ρ in terms of its eigenbasis. Since limp→0 p log2 p = 0

is well defined, we can set 0 log2 0 = 0 by continuity.

If the system under consideration is finite, in other words it has a finite-

dimensional matrix representation, the entropy (1.30) describes the departure of

our system from a pure state. That is to say, it measures the degree of mixture

of our state describing a given finite system.

The following are properties of the von Neumann entropy [7]:

• S(ρ) is only zero for pure states.

• S(ρ) is maximal and equal to log2N for a maximally mixed state, N being

the dimension of the Hilbert space.

• S(ρ) is invariant under a change of basis of ρ, that is, S(ρ) = S(UρU †),

with U being a unitary transformation.

• Given two density matrices ρI , ρII describing independent systems I and

II, we have that S(ρ) is additive: S(ρI ⊗ ρII) = S(ρI) + S(ρII).

• If ρA and ρB are the reduced (marginal) density matrices of the general

state ρAB, then

S(ρAB) ≤ S(ρA) + S(ρB). (1.31)

The last property is known as subadditivity and also holds for the Shannon en-

tropy. However, some properties of the Shannon entropy do not hold for the von

Neumann entropy, thus leading to many interesting consequences for quantum
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information theory [7]. While in Shannon’s theory the entropy of a (discrete)

composite system can never be lower than the entropy of any of its parts, in

quantum theory this is not the case and can actually be seen as an indicator of

an entangled state ρAB.

Another property is the concavity of the entropy, that is, the entropy is a

concave function of its inputs. Given probabilities pi such that
∑

i pi = 1 and

corresponding density operators ρi, the entropy complies with the inequality [7]

S

(∑
i

piρi

)
≥
∑
i

piS(ρi). (1.32)

The input argument on the left side,
∑

i piρi, expresses the state of a quantum

system that is in an unknown state ρi with probability pi. Thus the uncertainty

about this mixture of states has to be greater than the average uncertainty of the

states ρi, since the state
∑

i piρi contains ignorance not only due to the states ρi,

but also due to the index i [7].

In the framework of quantum information theory the von Neumann entropy

is extensively used in different forms such as conditional and relative entropies.

The von Neumann entropy is the most fundamental quantum entropic measure.

However, other entropic measures, such as the Rényi and the Tsallis one, are

very useful in the analysis of several particular problems. For example, the Rényi

and the Tsallis entropies lead (for some values of the entropic parameter q) to

stronger entropic entanglement criteria for mixed states than the von Neumann

entropy.

In the quantum case the Tsallis entropy becomes

S(T )
q (ρ) =

1

q − 1

[
1− Tr

(
ρq
)]

(1.33)

and the Rényi entropy

S(R)
q (ρ) =

1

1− q
log2

[
Tr
(
ρq
)]
. (1.34)
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1.1 Information and entropic measures

The above quantum entropic measures, namely the von Neumann entropy, Tsallis

entropy and Rényi entropy are all invariant under unitary transformation, since

the trace is invariant under unitary transformation.

1.1.8 Distinguishability measure for quantum mechanical

density operators: fidelity distance

A measure of distance between quantum states is the fidelity. It is not a metric

on density operators, however, it has many of the properties one expects of a

good distance measure. The main properties of this measure that we are going

to use are briefly reviewed.

First, the fidelity distance between two quantum states (represented by two den-

sity matrices) of a given quantum system is given by [7]

F [ ρ, σ ] = Tr
√
ρ1/2σρ1/2. (1.35)

In the particular case that one of the states is pure, we have

F [ |ψ〉, ρ ] =
√
〈ψ|ρ|ψ〉, (1.36)

and when both states are pure the fidelity reduces to the modulus of the overlap

between the two states.

A fundamental property of the fidelity measure is that it remains constant under

unitary transformations,

F [UρU †, UσU † ] = F [ ρ, σ ]. (1.37)

If we have a composite system AB, the distance between two density matrices

describing two states of the composite system is smaller or equal to the distance

between the marginal density matrices associated with one of the subsystems,

F [ ρAB, σAB ] ≤ F [ ρA, σA ]. (1.38)
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1.2 Conservation of information

Finally, the fidelity distance between two factorizable density matrices complies

with

F [ ρ0 ⊗ σ0, ρ1 ⊗ σ1 ] = F [ ρ0, ρ1 ]F [σ0, σ1 ]. (1.39)

The fidelity distance is symmetric in its inputs and it is a number between

zero and one, F = 0 corresponds to completely distinguishable density matri-

ces, whereas F = 1 signifies that the density matrices are identical [7].

1.2 Conservation of information

The conservation of information is a fundamental principle of physics, both at

the classical and quantum levels. One of the most important features of the be-

haviour of closed, isolated physical systems is the conservation of information. A

nice description of information conservation in closed, isolated systems is given

by Susskind [48]: “There is another very subtle law of physics that may be even

more fundamental than energy conservation. It’s sometimes called reversibility,

but let’s just call it information conservation. Information conservation implies

that if you know the present with perfect precision, you can predict the future

for all time. But that’s only half of it. It also says that if you know the present,

you can be absolutely sure of the past. It goes in both directions.”

He goes on to say: “The laws of Quantum Mechanics are very subtle - so subtle

that they allow randomness to coexist with both energy conservation and infor-

mation conservation.”

The most complete possible knowledge about the state of a physical system is

represented in classical mechanics by a point in the associated phase space, and

in quantum mechanics by a vector in the system’s Hilbert space. Often one has

to deal with an incomplete or partial knowledge about the state of the system.

This situation is described classically by a probability density in phase space and

quantum mechanically by a density matrix. The amount of knowledge about

the system’s state associated with these descriptions does not change during the

evolution of a closed system. This conservation of information can be expressed

in two alternative and complementary ways. On the one hand, we can associate
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1.2 Conservation of information

an entropic functional to the aforementioned probability density or density ma-

trix. These entropic functionals provide a quantitative measure of the lack of

knowledge that we have about the precise dynamical state of the system. These

measures are preserved during the evolution of the system [49]. In the classical

regime this conservation of information is closely related to Liouville’s theorem

stating the conservation of phase space volume during Hamiltonian evolution.

The conservation of information can also be expressed in another way. Let us

consider two initial conditions described either by two initial phase space prob-

ability densities, or by two initial density matrices. Then, one can consider the

degree to which these initial states are distinguishable from each other. A quan-

titative measure of the amount of “distinguishability” is given classically by an

appropriate “distance” or “divergence” between the two probability densities [16].

The most useful ones are the Kullback-Leibler measure and its generalizations.

In the quantum case, distinguishability can be quantitatively characterized by

recourse to the fidelity measure [7]. In the quantum case this distinguishability

measure is also relevant for pure states, in which case it reduces to the modu-

lus of the overlap between the two states. These distinguishability measures are

preserved during the evolution of closed physical systems, and this fact consti-

tutes another manifestation of the conservation of information associated with

the basic laws of Nature. This distinguishability-based notion of conservation of

information is extremely important in quantum information theory and it is at

the basis of important features of quantum information, such as those described

by the no-cloning and the no-deleting theorems.

Both in the classical and quantum regimes, the information-preserving character

of dynamical evolution as given by the Liouville or the von Neumann equation

respectively, is one of the fundamental features of the basic laws of nature. That

is, in both quantum mechanics and classical mechanics the equations of motion

ensure the exact conservation of information for a closed, isolated system. In that

regard, I will discuss the main evolution equations, then show in some detail the

conservation of information in both the classical and quantum case and finally

move on to explain Landauer’s principle and its implications.
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1.2 Conservation of information

1.2.1 Main evolution equations

In classical and statistical Hamiltonian mechanics, the Liouville theorem plays

an important role. It states that the phase space distribution function, which is

a representation of the statistical properties of an ensemble of physical systems,

remains constant along the trajectories of the system. In other words, the den-

sity of systems in the vicinity of some given system in phase space is constant in

time. If we consider a dynamical system with canonical coordinates qi and con-

jugate momenta pi (i = 1, 2, . . . , n), the dynamical evolution of the phase space

distribution function ρ(p, q, t) is governed by the Liouville equation [50]

dρ

dt
=
∂ρ

∂t
+

n∑
i=1

(
∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi

)
= 0, (1.40)

where the time derivatives (denoted by dots) of the generalized coordinates and

momenta are evaluated according to Hamilton’s equations,

q̇i =
∂H

∂pi
ṗi = −∂H

∂qi
. (1.41)

The Liouville equation is linear and it governs the time evolution of a probability

density that describes a statistical ensemble of dynamical systems, all evolving

according to the same equations of motion. From this equation it is clear, that

the probability distribution function is conserved along the orbit in phase space.

In the case of general classical deterministic dynamical systems whose evolu-

tion is determined by the equations of motion

dx

dt
= v(x), with x,v ∈ RN (1.42)

where x indicates a point in the corresponding N -dimensional phase space. The

time-dependent probability distribution P(x, t) describes the dynamics of a sta-

tistical ensemble of such systems. The Liouville equation governs its dynamics

[16],
∂

∂t
P +∇ · (vP) = 0, (1.43)
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1.2 Conservation of information

where the ∇-operator is N -dimensional and defined in the standard way,

∇ =

(
∂

∂x1

,
∂

∂x2

, . . . ,
∂

∂xN

)
. (1.44)

Hamiltonian dynamics is a particular instance of (1.42). In that case we have a

Hamiltonian system with n degrees of freedom and so N = 2n, x = (q1, q2, . . . , qn,

p1, p2, . . . , pn), vi = q̇i = ∂H/∂pi (i = 1, 2, . . . , n) and vi = ṗi−n = −∂H/∂qi−n (i =

n + 1, n + 2, . . . , 2n), where qi and pi stand for the generalized coordinates and

momenta of the Hamiltonian system, respectively. The Liouville equation (1.43)

then becomes (1.40) [16].

In the quantum mechanical case, a statistical ensemble of several quantum

states is described by the density matrix. The density matrix is thus the quan-

tum mechanical analogue to the classical statistical phase space probability dis-

tribution. In classical physics, the only reason for introducing a phase space

probability is a lack of detailed knowledge of the state. In quantum mechanics,

there is another reason, namely entanglement [49]. The time evolution of pure

states is given by the Schrödinger equation. The von Neumann equation describes

the evolution of mixed states ρ(t)

i~
d

dt
ρ(t) = [H(t), ρ(t)], (1.45)

where the brackets denote the commutator and the assumption is that the Hamil-

tonian of the system H(t) is perfectly well known, unlike the state of the system.

The von Neumann equation can be derived from the Schrödinger equation using

the linearity of density matrices (1.22) and the Schrödinger equation [51]. Like-

wise, the Schrödinger equation can be derived from the von Neumann equation,

so both are equivalent.

1.2.2 Conservation of information in the classical and quan-

tum case

We now turn our attention to the conservation of information in both the clas-

sical and the quantum case. As was already said, this information conservation
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1.2 Conservation of information

can be expressed in two alternative ways. First, let us look at the conservation

of the generalized Kullback-Leibler measure in more detail. The evolution of the

system is determined by equation (1.42) and the Liouville equation (1.43) governs

the dynamics of the time-dependent probability distribution P(x, t). The idea is

to show that the generalized Kullback-Leibler distance G[P1,P2] as in equation

(1.20), remains constant during the time evolution of the system. The two prob-

ability distributions P1(x, t) and P2(x, t) satisfy the Liouville equation (1.43).

Since G[P1,P2] only depends on time (the integration was over x), it means that

[16]

dG

dt

(1)
=

∫
dx

[
∂P1

∂t
g + P1g

′ ∂

∂t

(P1

P2

)]
=

∫
dx

[
∂P1

∂t
g + P1g

′
{∂P1

∂t

1

P2

− P1

P2
2

∂P2

∂t

}]
=

∫
dx

[
∂P1

∂t

{
g +

P1

P2

g′
}
− ∂P2

∂t

P2
1

P2
2

g′
]

(2)
= −

∫
dx

[
∇ · (vP1)

{
g +

P1

P2

g′
}
−∇ · (vP2)

P2
1

P2
2

g′
]

(3)
=

∫
dx

[
P1v · ∇

(
g +

P1

P2

g′
)
− P2v · ∇

(P2
1

P2
2

g′
)]

−vP1

{
g +

P1

P2

g′
}∣∣∣∣∣+ vP2

P2
1

P2
2

g′

∣∣∣∣∣
=

∫
dx

[
v ·
(
P1∇g + P1g

′∇
(P1

P2

)
+

P2
1

P2

∇g′ − 2P1∇
(P1

P2

)
g′

−P2
1

P2

∇g′
)]
− vP1g

∣∣∣∣
(4)
=

∫
dx

[
v ·
(
P1∇g − P1∇

(P1

P2

)
g′
)]

(5)
=

∫
dx

[
v ·
(
P1g

′∇
(P1

P2

)
− P1g

′∇
(P1

P2

))]
= 0. (1.46)

Here we have made use of (1) product and chain rule, (2) Liouville equation,

(3) integration by parts, where v denotes the sum of the components of v, (4)

the assumption that eventual boundary/surface terms vanish and (5) chain rule

∇g = g′∇
(
P1

P2

)
. Thus G[P1,P2] is conserved during the dynamical evolution.
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1.2 Conservation of information

The second way of expressing the information conservation is that entropic

functionals associated with the probability density P(x, t) are preserved during

the evolution of the divergenceless system (see Subsubsection 3.1.2.1 for more

detail on divergenceless dynamical systems). Let the entropic functional be the

particular case of Tsallis’ family of measures, of which the Shannon entropy is

the limit case q → 1. In the continuous case the Tsallis entropy is

S(T )
q (P) =

1

q − 1

(
1−

∫
Pqdx

)
. (1.47)

Since the entropy only depends on time, we have that

dS
(T )
q

dt
= − 1

q − 1

∫
qPq−1∂P

∂t
dx

(1)
= − q

q − 1

∫
Pq−1

[
−∇ · (vP)

]
dx

(2)
= − q

q − 1

∫
{q − 1}Pq−2∇P · (vP)dx +

q

q − 1
Pq−1Pv

∣∣∣
(3)
= −q

∫
Pq−1∇P · vdx

(4)
= −

∫
∇(Pq) · vdx

(5)
= −Pq v

∣∣+

∫
Pq(∇ · v)dx

(6)
=

∫
Pq(∇ · v)dx

(7)
= 0, (1.48)

where one makes use of (1) Liouville equation, (2) integration by parts where

v is the sum of the components of v, (3) the assumption that eventual bound-

ary/surface terms vanish, (4) qPq−1∇P = ∇(Pq), (5) integration by parts again,

(6) vanishing of boundary terms again and (7) ∇ · v = 0 since we are consid-

ering divergenceless dynamical systems. Thus the Tsallis family of measures is

preserved during the evolution of the system.

We now move to the quantum case. As mentioned in Subsection 1.1.8, the

fidelity is invariant under unitary evolution and hence the distance between two

states remains the same. Given a finite-dimensional density matrix ρ(t), a general

entropic measure associated with it such as the Tsallis entropy, remains invariant
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1.2 Conservation of information

under unitary evolution, that is, is conserved when ρ(t) evolves according to the

von Neumann equation (1.45) with the Hamiltonian being time-independent. The

reason for this is that the trace is invariant under unitary transformations and

hence the Tsallis entropy is invariant under unitary evolution. Thus quantum

mechanics, despite its unpredictability, nonetheless respects the conservation of

information.

1.2.3 Landauer’s principle

There is a growing consensus that information is endowed with physical reality.

Instead of thinking of information as an abstract quantity that has nothing to do

with the physical world, we realize that information must be encoded into a phys-

ical system and must be processed using the physical dynamical laws. Quoting

Landauer [52], “Information is inevitably tied to a physical representation and

therefore to restrictions and possibilities related to the laws of physics and the

parts available in the universe”. This implies that all limitations on information

processing or transmission are determined by the restrictions of the underlying

fundamental laws of physics. The information theory of Shannon implicitly as-

sumes that information processing is governed by the laws of classical physics.

However, a more accurate description of the microscopic world is given by quan-

tum mechanics and so quantum information, which is governed by the laws of

quantum mechanics, is a more accurate description of information theory. Since

there is a fundamental difference between the classical laws and the quantum laws

of physics, the respective resulting information processing is also fundamentally

different. Quantum information is a much broader and more general concept

and thus allows information-processing protocols that have no classical analogue.

This renders the Shannon theory of information a special case of quantum infor-

mation theory.

Landauer’s principle states that by erasing one bit of information, one dis-

sipates on average at least kT ln 2 of energy into the environment, where T is

the temperature at which the erasure takes place and k is Boltzmann’s constant.

Landauer’s argument for this is roughly as follows. Erasure or overwriting of data

is associated with physical irreversibility since it is a logical function that does
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1.2 Conservation of information

not have a single-valued inverse [21] and thus transforms information from an ac-

cessible form to an inaccessible form, known as entropy [18]. He argues that this

requires the dissipation of heat of the order of magnitude kT since a bit has one

degree of freedom. Before erasure a bit can be in any of the two possible states

whereas after being erased it can only be in one state which implies a change in

information entropy of −k ln 2. Since entropy in a closed system cannot decrease,

Landauer reasons that it must appear somewhere else as heat. Thus Landauer’s

principle links information in the sense of Shannon’s measure [27] with the energy

that is required to erase it [19, 53, 54]. There is a crucial assumption implicit in

this reasoning, namely that information entropy translates into physical entropy.

Landauer’s principle is valid both for classical and quantum systems [21].

Landauer’s principle holds for any logically irreversible manipulation of in-

formation, the erasure of a bit being one case, the merging of two computation

paths another one. This is accompanied by a corresponding increase in entropy

of non-information-bearing degrees of freedom of either the environment or the

information processing apparatus [53]. This increase in entropy typically takes

the form of energy transferred into the computing device, converted to heat and

thus dissipated into the environment.

Conversely, any logically reversible transformation of information can in prin-

ciple be accomplished by an appropriate physical mechanism which operates in a

thermodynamically reversible manner. Bennett showed that in principle all com-

putation, which is inevitably done with real physical degrees of freedom, could

be performed in a logically reversible manner which implies that computation,

in principle, requires no dissipation [55]. The reason that real computers dis-

sipate large amounts of heat is solely due to practical engineering concerns, in

particular, due to the fact of having only a finite memory storage capacity and,

consequently, the need to erase lots of information during the computing process.

Landauer’s principle is one of the most fundamental results in the physics of

information. It constituted a historical landmark in the development of the field

by directly connecting information processing with conventional physical quan-

tities [18]. Most remarkably, it played a prominent role in the final defeat of
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1.2 Conservation of information

Maxwell’s demon [6, 53]. Landauer’s principle has profound implications since it

allows for novel, physically motivated derivations of several important results in

both classical and quantum information theory [22]. In addition, it is a useful

and powerful heuristic tool for obtaining new derivations of, or for establishing

new links between, fundamental aspects of thermodynamics and other areas of

physics [23].

It has to be said that most derivations of Landauer’s principle can be re-

garded as semi-phenomenological, since they are based on a direct application of

the second law of thermodynamics. However, derivations based upon dynamical

principles have also been advanced. They assume that the systems under consid-

eration are governed by a Hamiltonian dynamics and are in thermal equilibrium,

implying that they can be described by Gibbs’ canonical distributions. Piechocin-

ska [21] showed how to derive this principle microscopically for classical systems

that are either discrete or continuous in space and time and also for quantum sys-

tems, without referring directly to the second law of thermodynamics (Clausius’

inequality) in either cases. The derivation utilizes the concavity of the logarithm

which leads to an inequality equivalent to Landauer’s statement. An alternative

derivation based on well-established properties of the Shannon-Gibbs-Boltzmann

entropy is given by Daffertshofer and Plastino in [20]. This derivation makes

use of the (sub)additivity of the entropy, resulting in a least increase of entropy

in the heat bath and thus energy gain even if the information erasure is done

adiabatically. The reason for this is that the conservation of the total amount

of information implies that the surrounding heat bath must contain the informa-

tion being erased in the bit-ensemble. This argument also holds in the quantum

mechanical case when all the assumptions are adapted accordingly [20].

Information processing can be realized in various physical settings and so

more general formulations applicable to non-equilibrium scenarios which involve

non-Gibbs ensemble distributions have been advanced [56]. In view of the fun-

damental character of Landauer’s principle it is also highly desirable to explore

extensions of it applicable to systems governed by more general kinds of dynam-

ics, that is, by non-Hamiltonian dynamics [57]. This is investigated in Section 3.1.
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The ideas and methods from the physics of information lead to important

points of contact between physics and biology. In fact, information processing

is clearly at the very heart of biology and has been appropriately dubbed the

“touchstone of life” [17].

1.3 Quantum no-cloning

The quantum no-cloning theorem constitutes a hallmark feature of quantum in-

formation. It states that quantum information cannot be cloned: an unknown

quantum state of a given (source) system cannot be perfectly duplicated while

leaving the state of the source system unperturbed [58, 59]. No unitary (quantum

mechanical) transformation exists that can perform the process

|ψ〉 ⊗ |0〉 ⊗ |Σ〉 −→ |ψ〉 ⊗ |ψ〉 ⊗ |Σψ〉, (1.49)

for arbitrary source states |ψ〉. In the above equation |0〉 and |Σ〉 denote, respec-

tively, the initial standard states of the target qubit and of the copy machine, and

|Σψ〉 is the final state of the copy machine. In other words, universal quantum

cloning is not permitted by the basic laws of quantum mechanics. The impossi-

bility of universal quantum cloning can be proved in two different ways. One can

show that it is not compatible with the linearity of quantum evolution or that it

is not compatible with the unitarity of quantum evolution.

The above theorem can be generalized for mixed states and is then called

the no-broadcasting theorem, for which I will provide an alternative proof which

makes use of the fidelity distance between two quantum states (represented by

two density matrices) of a given quantum system. The main properties of this

measure that we are going to use have been briefly reviewed in Subsection 1.1.8.

1.3.1 No-broadcasting theorem

A general and intuitive proof of the no-broadcasting theorem is presented. This

theorem highlights the difference between classical and quantum mechanics and

is of great relevance in quantum information theory. It is a generalization of the
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1.3 Quantum no-cloning

no-cloning theorem as one considers general mixed states instead of just pure ones.

Exploring features of quantum mechanics that are purely quantum phenom-

ena is relevant in a theoretical fundamental context [60] and also in a practi-

cal context [61], as these features can either enhance quantum computation or

place constraints on it. The no-broadcasting theorem says that we cannot copy

an unknown mixed state even if we only reproduce it marginally on the two

separate quantum systems we are broadcasting onto. Broadcasting is achieved

strictly when all the input states are mutually commuting. The no-cloning and

no-broadcasting theorems have been of great interest since their initial conception

[58, 62]. Several different versions of the proofs have been given over the years

[63, 64] and the no-broadcasting theorem has also been extended to more general

frameworks [65].

Another proof of the no-broadcasting theorem is provided, where we only

initially follow the proof given in [62] but where we do not restrict ourselves to

invertible density matrices, as in [64]. The strategy is to assume that there exists a

physical process, that is, a unitary evolution such that at least two arbitrary mixed

states can be broadcast and then show that they necessarily have to commute.

The general problem is as follows: we have a three-partite quantum system ABC,

where systems A and B each have an N -dimensional Hilbert space. System A

is in either of the two quantum states ρ0 or ρ1 and we assume both states can

be broadcast. System B is in the standard quantum state Σ which is meant

to receive the unknown state. System C is the auxiliary system which acts as

the copy-machine and which is in some standard state Υ. The initial state of

our system is thus ρs ⊗ Σ ⊗ Υ and we do not know whether s = 0 or 1. After

successful broadcasting which is described by a unitary evolution of the three-

partite system, Ωs = U(ρs ⊗ Σ ⊗ Υ)U †, subsystem AB is in any state ρ̃s on the

N2-dimensional Hilbert space such that

TrA(ρ̃s) = ρs and TrB(ρ̃s) = ρs. (1.50)

Here TrA and TrB denote partial traces over A and B respectively and ρ̃s =

TrC(Ωs). We show that this is possible only if ρ0 and ρ1 commute.
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1.3 Quantum no-cloning

Our proof is based upon the concept of fidelity between two density operators

introduced in the previous Subsection 1.1.8. The fidelity between two quantum

states is a measure of distinguishability between the two states and is given by

eq. (1.35). So in our case we have

F [ ρ0, ρ1 ] = Tr

√
ρ

1/2
0 ρ1ρ

1/2
0 (1.51)

and making use of properties (1.37) and (1.39) respectively, we have

F [U(ρ0 ⊗ Σ⊗Υ)U †, U(ρ1 ⊗ Σ⊗Υ)U † ] = F [ ρ0 ⊗ Σ⊗Υ, ρ1 ⊗ Σ⊗Υ ] (1.52)

and

F [ ρ0 ⊗ Σ⊗Υ, ρ1 ⊗ Σ⊗Υ ] = F [ ρ0, ρ1 ]F [ Σ,Σ ]F [ Υ,Υ ]. (1.53)

Combining equations (1.52) and (1.53) results in

F [ Ω0,Ω1 ] = F [ ρ0, ρ1 ]. (1.54)

A more intuitive way of viewing the fidelity is in terms of generalized measure-

ments or positive operator-valued measures (POVM) {Eb}. To give a short review

of POVM measurements [7], Eb was defined to be Eb ≡ M †
bMb where Mb is the

measurement operator associated with outcome b of a measurement performed

upon a quantum system ρ. The measurement is described by these measurement

operators Mb and so the probability of outcome b is given by p(b) = Tr(ρEb).

Expressing the fidelity in those terms [7],

F [ ρ0, ρ1 ] = min
{Eb}

∑
b

√
Tr(ρ0Eb)

√
Tr(ρ1Eb), (1.55)

which gives the minimum overlap between the probability distributions p0(b) =

Tr(ρ0Eb) and p1(b) = Tr(ρ1Eb). The minimum is taken over all sets of positive

operators {Eb} such that
∑

bEb = I. The POVM that achieves the minimum

in eq. (1.55) is called the optimal POVM. In light of this, eq. (1.54) means that

our ability to distinguish which state we were given remains the same after we
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1.3 Quantum no-cloning

broadcast it.

Let us assume that {Eλi} is the optimal POVM for distinguishing ρ0 and ρ1.

We can construct it in such a way that Eλi = |λi〉〈λi|. For each s we have that

Tr[Ωs(Eλi ⊗ I⊗ I)] = TrA[TrB(TrCΩs)Eλi ] = TrA[ρsEλi ] = Tr[ρsEλi ] (1.56)

and so it follows that

FA[ ρ0, ρ1 ] =
∑
λi

√
Tr[Ω0(Eλi ⊗ I⊗ I)]

√
Tr[Ω1(Eλi ⊗ I⊗ I)]

=
∑
λi

√
Tr[ρ0Eλi ]

√
Tr[ρ1Eλi ] = F [ ρ0, ρ1 ] = F [ Ω0,Ω1 ].(1.57)

The second last equality follows from the assumption that {Eλi} is the optimal

POVM for distinguishing between ρ0 and ρ1 and the last equality follows from

eq. (1.54). We can deduce from this that the optimal POVM for distinguishing

ρ0 and ρ1 (as seen in the marginal sense of subsystem A after broadcasting) is

also the optimal POVM (expanded in the product space) for distinguishing Ω0

and Ω1. That is, when we perform the optimal measurement on subsystem A,

we have at the same time performed the optimal measurement on the entire tri-

partite system. We have thus performed the best possible measurement on the

whole system and there exists no other measurement from which we can obtain

more information to discriminate between states Ω0 and Ω1.

I am only going to focus on subsystem AB after broadcasting since we are

not concerned with what happens to the copy-machine. For subsystem A we

choose the basis corresponding to the optimal POVM, namely {|λi〉}, and for

subsystem B we choose an arbitrary basis {|αi〉}. We can then decompose the

state of subsystem AB as follows

ρ̃s =
∑
i

p
(s)
i |λi〉〈λi| ⊗Di + ρ′s (1.58)

where 〈λiαj|ρ′s|λiαj′〉 = 0. We now trace out subsystem A and obtain in the

32

 
 
 



1.3 Quantum no-cloning

arbitrary {|αi〉} basis

ρs = TrAρ̃s =
∑
i

p
(s)
i Di. (1.59)

After having performed the optimal measurement on the entire system after

broadcasting and the measurement outcome is λi, the marginal density matrix as-

sociated with subsystem B is Di. If this marginal density matrix were to depend

on s, then we could perform a second measurement, this time on subsystem B,

enabling us to obtain more information about the entire system and accordingly

distinguish more efficiently between Ω0 and Ω1. This is prohibited by quantum

mechanics as noted above and hence the marginal density matrices for s = 0 and

s = 1 of subsystem B after the measurement have to be identical. Thus the Di’s

in eq. (1.59) do not depend on s.

I am now going to make use of eq. (1.57) to obtain an expression for the

fidelity. In order to do that, we need to express ρs in the {|λi〉} basis instead of

the {|αi〉} basis which is done by tracing out subsystem B from ρ̃s in eq. (1.58):

ρs =
∑
i

p
(s)
i |λi〉〈λi|+ off-diagonal elements (1.60)

and thus Tr(ρsEλi) = 〈λi|ρs|λi〉 = p
(s)
i . So our final expression for the fidelity is

F [ ρ0, ρ1 ] =
∑
i

√
p

(0)
i p

(1)
i (1.61)

where p
(0)
i = Tr(ρ0Eλi) and p

(1)
i = Tr(ρ1Eλi). This expression must hold when

broadcasting takes place.

From eq. (1.59) we have that the Di’s are density matrices themselves and so

the strong concavity property of the fidelity [7] results in

F
[∑

i

p
(0)
i Di,

∑
i

p
(1)
i Di

]
≥
∑
i

√
p

(0)
i p

(1)
i , (1.62)
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1.3 Quantum no-cloning

and since the fidelity remains the same in any basis, it holds that

F [ ρ0, ρ1 ] ≥
∑
i

√
p

(0)
i p

(1)
i , (1.63)

irrespective of broadcasting. Comparing eqs. (1.61) and (1.63) we see that eq. (1.61)

implies that for broadcasting to take place there has to exist a constraint between

ρ0 and ρ1 in (1.63). What we have to do is find the conditions that enforce strict

equality in (1.63) and these are then the necessary conditions for broadcasting to

take place.

In the following part which is a bit technical we show that equality in (1.62) or

equivalently (1.63) is only achieved when the two linear combinations
∑

i p
(0)
i Di

and
∑

i p
(1)
i Di commute and hence ρ0 and ρ1 commute. First, let us assume {Ei}

is the optimal POVM for distinguishing ρ0 and ρ1 which are expressed in the

basis {|αi〉} ({Ei} and {Eλi} are related by a unitary transformation) and let us

introduce the following notation which enables us to write eq. (1.62) in a form

that can be related to the Schwarz inequality for which we know the criterion for

equality:

rij = Tr(EiDj) (1.64)

q
(0)
i =

∑
j

rijp
(0)
j

q
(1)
i =

∑
j

rijp
(1)
j . (1.65)

Using eq. (1.55) and keeping in mind that {Ei} is optimal, the left hand side of

eq. (1.62) becomes

F
[∑

i

p
(0)
i Di,

∑
i

p
(1)
i Di

]
=

∑
i

√
Tr
(∑

j

p
(0)
j DjEi

)√
Tr
(∑

j

p
(1)
j DjEi

)
=

∑
i

√∑
j

p
(0)
j Tr(EiDj)

√∑
j

p
(1)
j Tr(EiDj)

=
∑
i

√∑
j

p
(0)
j rij

√∑
j

p
(1)
j rij. (1.66)
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1.3 Quantum no-cloning

Thus eq. (1.62) turns out to be

∑
i

√
q

(0)
i q

(1)
i ≥

∑
i

√
p

(0)
i p

(1)
i . (1.67)

By relating the last inequality (1.67) with the Schwarz inequality

∑
j

√
ajbj ≤

√∑
j

aj

√∑
j

bj, (1.68)

we will show how one can deduce the criterion for equality in (1.67). Equality in

the Schwarz inequality occurs when {aj} and {bj} (which are real and positive

sets) are proportional. What we then get by performing the substitution {aj} ⇒
{rijp(0)

j } and {bj} ⇒ {rijp(1)
j } in eq. (1.68) is

∑
j

rij

√
p

(0)
i p

(1)
i ≤

√
q

(0)
i q

(1)
i (1.69)

and subsequently summing both sides over i and taking into account that
∑

j rij =

1 we have ∑
i

(∑
j

rij

)√
p

(0)
i q

(1)
i =

∑
i

√
p

(0)
i p

(1)
i ≤

∑
i

√
q

(0)
i q

(1)
i . (1.70)

This is exactly what we have in eq. (1.67). Equality in the last inequality (1.70)

can only be obtained if we have equality in the previous inequality (1.69) for all

i. This occurs only when {rijp(0)
j } and {rijp(1)

j } are proportional. Therefore the

condition for equality is

rijp
(0)
j = rijp

(1)
j · ci ∀i, j (1.71)

where ci is a proportionality constant. In order to prove that this condition implies

that ρ0 and ρ1 commute we need to get ρ0 and ρ1 in as compact a form as possible

in terms of linear combinations of density matrices. This compactification is

achieved by means of an iterative process as dictated by the optimal POVM.

Once that most compactified form has been obtained we show that the density

matrices in those final linear combinations commute. To that effect we introduce
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1.3 Quantum no-cloning

the following notation:

ρs =
∑
jm

p
(s)
jm,m

Djm,m (1.72)

rijm,m = Tr(EiDjm,m) (1.73)

rijm,m p
(0)
jm,m

= rijm,m p
(1)
jm,m
· ci,m (1.74)

with the new index m referring to the mth iteration of the compactification

process and m = 0 corresponds to the original expressions in eqs. (1.59), (1.64)

and (1.71). We are successively going to consider each element of the POVM in

order to compactify the original sums for ρ0 and ρ1. Let us demonstrate this for

E1. In order to cancel the r1j0,0’s from both sides in eq. (1.74) they have to be

non-zero. So we need to consider the set of all j0’s such that r1j0,0 is non-zero,

J1,0 = {j0|r1j0,0 6= 0}. For j0 ∈ J1,0 we have from eq. (1.74) that p
(0)
j0,0

= p
(1)
j0,0
· c1,0

and so ∑
j0∈J1,0

p
(0)
j0,0
Dj0,0 = c1,0

∑
j0∈J1,0

p
(1)
j0,0
Dj0,0. (1.75)

Since c1,0 may possibly be zero and hence the above p
(0)
j0,0

’s are then also zero, we

normalize the combined terms according to the p
(1)
j0,0

’s and give them a new label,

D1,1 =

∑
j0∈J1,0

p
(1)
j0,0
Dj0,0∑

j0∈J1,0
p

(1)
j0,0

. (1.76)

The new probabilities for D1,1 in the cases s = 0 and s = 1 become

p
(0)
1,1 = c1,0

 ∑
j0∈J1,0

p
(1)
j0,0

 p
(1)
1,1 =

∑
j0∈J1,0

p
(1)
j0,0
. (1.77)

Each p
(s)
j0,0
Dj0,0 with j0 /∈ J1,0 stays the same and is relabelled p

(s)
j1,1
Dj1,1 (j1 6= 1).

Thus

ρ0 =
∑
j0

p
(0)
j0,0
Dj0,0 =

∑
j1

p
(0)
j1,1
Dj1,1 ρ1 =

∑
j0

p
(1)
j0,0
Dj0,0 =

∑
j1

p
(1)
j1,1
Dj1,1

(1.78)

with dim{j1} ≤ dim{j0}. The dimensions are equal when only one r1j0,0 6= 0 and
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1.3 Quantum no-cloning

so nothing changes. Apart from that case we have compactified the sum over the

index j0 to a sum over j1 which consists of fewer terms. This procedure is then

repeated for the next element of the POVM.

At the nth step (when we consider the POVM element En) we either have

that nothing changes since only one rnjn−1,n−1 6= 0 (for that particular jn−1,

rnjn−1,n−1 = 1) or we reduce the number of terms in the sum by combining the

terms with rnjn−1,n−1 6= 0 into one new term as shown explicitly for n = 1. Since

the dimension N of our Hilbert space is finite, the number of Ei’s and Dj0,0’s is

finite and so either we terminate the process with only one final term which would

be identical for both ρ0 and ρ1 and hence ρ0 and ρ1 are the same, or we come to a

point where we can collapse the sum no longer and so from that POVM element

onwards, say Er+1, only one rijt,t 6= 0 (t ≥ r, ∀i). The final sums subsequently

have the following form,

ρ0 =
∑
j0

p
(0)
j0,0
Dj0,0 =

∑
jr

p
(0)
jr,r
Djr,r (1.79)

ρ1 =
∑
j0

p
(1)
j0,0
Dj0,0 =

∑
jr

p
(1)
jr,r
Djr,r. (1.80)

Now that ρ0 and ρ1 have been expressed in this compactified form where both

are linear combinations of Djr,r’s we can easily demonstrate that they commute

by providing an intuitive argument why the Djr,r’s have to commute. In order

to show that the Djr,r commute for all jr, we now consider a different situation

where we prepare a system in the state
∑

jr
p

(1)
jr,r
Djr,r and perform the POVM

measurements {Ei} on that system. Since for each i we have one jr, say j′r, for

which rijr,r = Tr(EiDjr,r) = 1 we know with certainty the system is in the state

Dj′r,r if we obtain outcome i . So we can perfectly distinguish between all the

Djr,r’s which means they are orthogonal and hence commute. Coming back to the

original situation, we thus have that eq. (1.79) and eq. (1.80) commute and hence

ρ0 and ρ1 commute. Thus the equality (1.61) imposed upon a general property

of the fidelity (1.63) when broadcasting is implemented, implies that ρ0 and ρ1

commute. This proves in an intuitive manner that broadcasting is only possible

when ρ0 and ρ1 commute.
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Chapter 2

Quantum Entanglement in

Distinguishable and

Indistinguishable Subsystems

Quantum entanglement is one of the most essential and fundamental aspects of

quantum physics [7, 66, 67]. Entanglement constitutes a fundamental resource

for the implementation of quantum information processes [7] which are of techno-

logical relevance, such as quantum teleportation [68], superdense coding [7, 69],

entanglement-assisted communication [70], quantum cryptography [71] and quan-

tum computation [7, 72]. Moreover, recent developments related to the study of

quantum entanglement are leading to a deeper understanding of various funda-

mental features of quantum physics, such as, for example, the foundations of

quantum statistical mechanics [73], quantum interference [74] and the origins of

quantum-to-classical transitions via the decoherence process [75]. The entangle-

ment properties of atomic and molecular systems have also been the focus of

considerable research activity (see for instance [76] and references therein).

Einstein, Podolski and Rosen were the first to point out some of the counter-

intuitive properties of entangled quantum states in their famous “EPR” article in

1935 [77]. They reasoned that the strange features exhibited by entangled states

suggested that quantum mechanics does not provide a “complete” description

of reality. Schrödinger’s paper [78] in 1935 was a response to the EPR paper.
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There Schrödinger coined the term entanglement in its German version, namely

“Verschränkung”, and discussed the concept of entanglement, emphasizing its re-

sponsibility for the strangeness of the world revealed by quantum mechanics. In

his own words, quantum entanglement is “the characteristic trait of Quantum Me-

chanics, the one that enforces its entire departure from classical lines of thought”.

The superposition principle in quantum mechanics gives rise to the property

of entanglement between quantum mechanical systems. This is due to the Hilbert

space structure of the quantum mechanical state space. Thus quantum entangle-

ment is closely related to the tensor product structure of the Hilbert space used to

describe quantum mechanical composite systems. This tensor product structure

admits that pure states of composite systems exist which cannot be factorized

as the product of states associated with each subsystem. Such pure states of

a compound quantum system that admit no description in terms of pure states

of the constituent parts, are dubbed entangled. The simplest quantum system

admitting entangled states is the one composed of two particles, lets label them 1

and 2, each one described by a two-dimensional Hilbert space, that is, two qubits.

Let |0〉1,2 and |1〉1,2 denote the respective orthonormal basis states for particles 1

and 2 and so the composite system is then described by a Hilbert space of dimen-

sion four, with basis {|0〉1|0〉2, |0〉1|1〉2, |1〉1|0〉2, |1〉1|1〉2}. The convention will be

to drop the subscripts and so it is implicit that the first ket in the tensor product

refers to particle 1 and the second ket to particle 2, where the symbol for the

tensor product has been omitted already and is naturally implicit. A separable

or non-entangled state would then for example be

|ψsep〉 = |00〉 (2.1)

and an entangled or non-separable state would be given by a Bell state

|ψent〉 =
1√
2

(
|01〉+ |10〉

)
. (2.2)

An important event in the history of the study of the foundations of quantum

mechanics was the development of the de Broglie-Bohm theory, also called the

pilot-wave model of quantum mechanics. It is the simplest example of what is
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often called a hidden variables model for quantum mechanics. In Bohmian me-

chanics a system of particles is partly described by its wave function, evolving as

usual according to Schrödinger’s equation. This description is completed by the

specification of the actual positions of the particles. The latter evolve according

to the “guiding equation” which expresses the velocities of the particles in terms

of the wave function. Thus, in Bohmian mechanics the configuration of a system

of particles evolves via a deterministic motion guided by the wave function. The

Bohmian theory then postulates an appropriate statistical ensemble of systems,

each one following this deterministic motion with different initial conditions. It is

worthwhile to emphasize that the experimental predictions of Bohmian mechanics

are exactly the same as those derived via the standard quantum mechanical for-

malism. In this sense the Bohmian model constitutes a powerful counter-example

of some “no-go” theorems that “forbid” general hidden variable models for quan-

tum mechanics [79]. An important feature of the Bohmian model is that it is

strongly non-local. This leads to the natural question as to whether it is possible

to find a local hidden variable model for quantum mechanics.

In 1964, Bell [80] formalized the ideas of EPR of a local hidden variable model

and based it on the following assumptions known as local realism and free will:

• Realism: Physical properties have definite values which exist independent

of observation. In other words, the outputs of measurements are determined

by the properties of the system and not by the measurement process.

• Locality: The output of a local measurement is independent of any other

event or action performed with a space-like separation from the local mea-

surement.

• Free will: Any “observer” has the freedom, at all places and all times,

to choose at will, what observables to observe and measure. That is, the

measurement settings of a local apparatus are independent of the properties

of the system which determine the local result.

With these assumptions Bell derived an inequality for the statistical correlations

of measurements performed on a bipartite system. He proved that this inequality

is violated by some states of two-qubit systems. The original Bell inequality was
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2.1 Entanglement measures for composite systems with
distinguishable subsystems

the inspiration for the formulation by Clauser, Horne, Shimony and Holt (CHSH)

[81] of an inequality which can be experimentally tested. The CHSH inequality

is part of a larger set of inequalities known generally as Bell inequalities, since

Bell found the first one.

Bell inequalities can be considered as the first procedure to distinguish entangled

from separable states. All entangled pure states of bipartite systems exhibit non-

local features which manifest themselves through the violation of Bell inequalities

[7, 24]. However, there exist mixed states that comply with all Bell inequalities

but that are nonetheless entangled [82].

2.1 Entanglement measures for composite sys-

tems with distinguishable subsystems

Consider a pure bipartite state |ψ〉AB ∈ HAB = HA ⊗ HB, where the Hilbert

space of the complete composite system HAB is the tensor product of the Hilbert

spaces of the two subsystems. This state is entangled if it cannot be expressed

as a direct product,

|ψ〉AB = |φ〉A ⊗ |ϕ〉B. (2.3)

Pure states that can be factorized as (2.3) are called separable or non-entangled.

This definition can be extended in a natural way to hold for any number of sub-

systems. In the case of three or more subsystems, when the global state cannot

be factorized as direct products, it does not imply that every subsystem is entan-

gled with the rest of the system. Some subsystems may be entangled amongst

themselves and disentangled from the rest.

The marginal density matrices ρA = TrB(|ψ〉AB〈ψ|) and ρB = TrA(|ψ〉AB〈ψ|)
associated with an entangled pure state correspond to mixed states. This means

that the joint state can be completely known, yet the subsystems are in mixed

states and hence we do not have maximal knowledge concerning them. Or, using

Schrödinger’s words “Maximal knowledge of a total system does not necessarily

imply maximal knowledge of all its parts” [83, 84]. A classic example is the sin-

glet state of two spin-1
2

particles, 1√
2
(|↑↓〉 − |↓↑〉), in which neither particle has a
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distinguishable subsystems

definite spin direction, but when one is observed to be spin-up, the other one will

always be observed to be spin-down and vice versa. This is the case despite the

fact that it is impossible to predict (using quantum mechanics) which set of mea-

surement results will be observed. As a consequence, measurements performed on

one system seem to be instantaneously influencing other systems entangled with

it. This “instantaneous effect” is not in conflict with special relativity theory

because it cannot (on its own) be used to send a message. This is known as the

“no-signalling” principle. If the state is separable then subsystems A and B are

with certainty in the pure states |φ〉A and |ϕ〉B respectively.

The general idea behind the most important entanglement measures of pure bi-

partite states is the following. The more “mixed” the marginal density matrices

associated with the subsystems are, the more entangled is the global state of

the bipartite system. Consequently, any appropriate measure of the degree of

mixedness of a subsystem’s marginal density matrix (such as entropic measures)

provides a measure of the amount of entanglement exhibited by the global, bi-

partite pure state.

A bipartite mixed state of a composite quantum system is entangled if it

cannot be represented as

ρAB =
∑
i

λiρ
(A)
i ⊗ ρ

(B)
i , (2.4)

where λi are positive weights satisfying
∑

i λi = 1 and {ρ(A)
i }, {ρ

(B)
i } are mixed

states of the respective subsystems. We can assume without loss of generality in

the above expression that {ρ(A)
i } and {ρ(B)

i } are all rank-1 projections, that is,

they represent pure states of the subsystems. Thus, alternatively, an equivalent

definition is that the state ρAB is entangled if it cannot be written as a mixture

of factorizable pure states

ρAB =
∑
i

pi|αi〉〈αi| ⊗ |βi〉〈βi|, (2.5)

where the pi are, again, positive weights adding up to one and |αi〉 and |βi〉 are

pure states of subsystems A and B respectively. It is clear from the definition
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distinguishable subsystems

that the family of separable states is a convex set. Separable states can be char-

acterized physically as those that can be prepared by distant agents that can only

communicate classically and where each agent operates locally on their subsystem.

The problem of deciding whether a state is separable in general is often called

the “separability problem” in quantum information theory. That is, the exis-

tence of non-separable states naturally leads to the following problem. Given a

mixed state ρ of a bipartite system, we want to determine whether ρ represents

a separable state or not. A simple example of a separability test would be to

check if the state violates a Bell inequality. However, in 1989 Werner proved that

some non-separable or entangled states satisfy all generalized Bell inequalities

[82]. Thus this separability test is not fully reliable.

It is also of substantial interest to quantify the entanglement of general bi-

partite mixed states, but unfortunately mixed-state entanglement is often very

difficult to characterize quantitatively. This is why the development of new en-

tanglement criteria or entanglement indicators is still a very active research area.

One reason for the relevance of mixed-state entanglement is a connection with

the transmission of quantum information through noisy quantum channels [85].

Entanglement can be regarded as a physical resource which is associated with

the peculiar non-classical correlations that are possible between separated quan-

tum systems. Entanglement lies at the basis of important quantum information

processes such as quantum cryptographic key distribution [71], quantum telepor-

tation [68], superdense coding [69] and quantum computation [72]. The experi-

mental implementation of these processes could lead to a deep revolution in both

the communication and computational technologies. There are several valid mea-

sures of entanglement, some more useful and practical than others, depending on

the type of analysis to be performed and on the specific application or system

being analyzed.

Entangled states cannot be prepared locally by acting on each subsystem in-

dividually [86]. This property is directly related to entanglement being invariant

under local unitary transformation: one can perform a unitary operation on a

43

 
 
 



2.1 Entanglement measures for composite systems with
distinguishable subsystems

subsystem without changing the entanglement of the global system. As an illus-

tration consider a system consisting of two subsystems A and B. A local unitary

operator is then defined to be U = UA⊗UB where the unitary operators UA and

UB solely act on A and B respectively. A bipartite pure state can be expressed

in a standard form (the Schmidt decomposition) that is often useful. That is,

according to the Schmidt decomposition an arbitrary state |ψ〉AB in the Hilbert

space H = HA ⊗HB of the composite system can be expressed as follows

|ψ〉AB =
∑
i

√
λi|φ(A)

i 〉|φ
(B)
i 〉 (2.6)

in terms of particular orthonormal bases {|φ(A)
i 〉} and {|φ(B)

j 〉} in HA and HB

respectively. These bases are called the Schmidt bases for A and B respectively

[7]. The summation over the index in the Schmidt decomposition goes to the

smaller of the dimensionalities of the two Hilbert spaces HA and HB [87]. The

λi’s are non-negative real numbers satisfying
∑

i λi = 1. It is important to note

that the Schmidt decomposition of a given quantum state is not unique and that

the Schmidt decomposition pertains to a specific state of the composite system, so

for two different states we have two different Schmidt decompositions [87]. Also,

the Schmidt decomposition can only be performed on pure states. The marginal

density matrices for ρA and ρB are given by

ρA = TrB
[
|ψ〉AB〈ψ|

]
=

∑
i

λi|φ(A)
i 〉〈φ

(A)
i | (2.7)

ρB =
∑
i

λi|φ(B)
i 〉〈φ

(B)
i |. (2.8)

From this it is clear that ρA and ρB have the same non-zero eigenvalues, which

are precisely the non-vanishing Schmidt coefficients λi. If the subsystems A and

B have different dimensions, then the number of zero eigenvalues of ρA and ρB

differ. The number of non-zero eigenvalues in ρA (or ρB) and hence the number

of terms in the Schmidt decomposition of |ψ〉AB is called the Schmidt number

(or Schmidt rank) for the state |ψ〉AB. The Schmidt number is preserved under

unitary transformations on system A or system B alone and hence remains con-

stant for a given state [7]. Many important properties of pure quantum states are
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distinguishable subsystems

completely determined by the eigenvalues of the reduced density operator of the

system and so for a pure state of a composite system such properties will be the

same for both systems [7]. For example, in terms of this quantity one can define

what it means for a bipartite pure state to be entangled: |ψ〉AB is entangled if its

Schmidt number is greater than one, otherwise it is separable [7].

From equations (2.7) and (2.8), the von Neumann entropies of ρA and ρB are

equal,

SvN(ρA) = −
∑
i

λi log2 λi = SvN(ρB). (2.9)

Acting on |ψ〉AB with the local unitary operator U results in the state |ψ′〉AB,[
UA ⊗ UB

]
|ψ〉AB =

∑
i

√
λi

(
UA|φ(A)

i 〉 ⊗ UB|φ
(B)
i 〉
)
. (2.10)

The marginal density matrix for subsystem A then becomes

ρ′A = TrB

([
UA ⊗ UB

]
|ψ〉AB〈ψ|

[
U †A ⊗ U

†
B

])
(2.11)

and so the von Neumann entropy is

SvN [ρA] = SvN [ρ′A] = −
∑
i

λi log2 λi (2.12)

which implies that the entanglement remains constant under local unitary op-

eration. This means that the only way to entangle A and B is for the two

subsystems to directly interact with one another, that is, one has to apply a col-

lective or global unitary transformation to the state. It is a law of entanglement

theory (which can be derived as a theorem of quantum mechanics [88]) that the

entanglement between two spatially separated systems cannot, on average, be

increased by carrying out local operations and classical communications (LOCC)

protocols [89].

2.1.1 Entropy of entanglement or von Neumann entropy

The entropy of entanglement is given by the von Neumann entropy of the marginal

density matrices. This is an operational measure: it gives the number of ebits
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that are needed to create a pure entangled state in the laboratory. An “ebit”

or entanglement bit is a unit of entanglement and is defined as the amount of

entanglement in a Bell pair |β00〉, |β01〉, |β10〉 or |β11〉, see equations (2.30). These

states and any related to them by local unitary operations are maximally entan-

gled states of two qubits, and can be used to perform a variety of non-classical

feats such as superdense coding and quantum teleportation and are thus a valu-

able resource [89].

For each pure state |ψ〉AB, the entanglement is defined as the von Neumann

entropy of either of the two subsystems A and B [90],

E(|ψ〉AB) = −Tr(ρA log2 ρA) = −Tr(ρB log2 ρB), (2.13)

where ρA and ρB are the marginal density matrices of the subsystems:

ρA = TrB(|ψ〉AB〈ψ|)
ρB = TrA(|ψ〉AB〈ψ|). (2.14)

These reduced density matrices correspond to mixed states when the pure state

|ψ〉AB is entangled. The von Neumann entropy, which is the most fundamental of

these entanglement measures, measures the degree of mixedness of these marginal

density matrices and is thus a measure of the amount of entanglement of |ψ〉AB.

2.1.2 Entanglement measure based upon the linear en-

tropy

Another useful entanglement measure which gives the degree of mixedness of

the density matrix ρ and which is easy to compute (since there is no need to

diagonalize ρ) is given by the linear entropy,

SL(ρ) = 1− Tr(ρ2). (2.15)

This entropic measure coincides (up to a constant multiplicative factor) with the

quantum power-law entropy S
(T )
q with Tsallis’ parameter q = 2. Similar to the

von Neumann entropy, for each pure state |ψ〉AB the entanglement is defined as

46

 
 
 



2.1 Entanglement measures for composite systems with
distinguishable subsystems

the linear entropy of either of the two subsystems A and B. The linear entropy

does not stem from an operational point of view, but it gives a good idea of how

much entanglement is present in quantum states when one is not interested in

the detailed resources needed to create these states in a laboratory.

2.1.3 Entanglement of formation and concurrence

This is a physically motivated measure of entanglement for mixed states which is

intended to quantify the resources needed to create a given entangled state [91].

That is, from an “engineering” point of view this measure gives the minimum

number of ebits that are needed to create entangled states. Since entanglement

is a valuable resource one wants to minimize the amount of ebits needed.

The entanglement of formation is defined as follows [91, 92]: given a density

matrix ρ of a pair of quantum systems A and B, consider all possible pure-state

decompositions of ρ, that is, all ensembles of states |ψi〉 with probabilities pi such

that

ρ =
∑
i

pi|ψi〉〈ψi|. (2.16)

The non-unique character of the decomposition of ρ has been discussed in Sub-

section 1.1.6.

For each pure state, the entanglement E is defined as the von Neumann entropy of

either of the two subsystems A or B (see (2.13)). The entanglement of formation

of the mixed state ρ is then defined as the average entanglement of the pure

states of the decomposition, minimized over all decompositions of ρ, that is, the

minimum is taken over all statistical mixtures {pi, |ψi〉} that lead to the same

state ρ:

E(ρ) = min
{pi,|ψi〉}

∑
i

piE[|ψi〉]. (2.17)

In other words, the entanglement of formation of a mixed state ρ is defined as the

minimum average entanglement of an ensemble of pure states that represents ρ.

Of particular interest is the “entanglement of formation” (EOF) for mixed states

of a two-qubit system. In that special case an explicit formula for the entangle-

ment of formation has been discovered. For bipartite states of higher dimension
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or for three and more qubits one has to resort to numerical optimization routines

which are computationally expensive and often extremely hard to compute. In

the latter instance one then has to use other measures such as the negativity

discussed in Subsection 2.1.4. To obtain the EOF of an arbitrary state of two

qubits, one has to follow the procedure by Wootters [91]. For a general state ρ of

two qubits, the spin-flipped state is

ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy), (2.18)

where ρ∗ is the complex conjugate of ρ taken in the standard basis and σy is the

usual Pauli matrix. The EOF is then given by

E(ρ) = E(C(ρ)), (2.19)

where the function E is

E(C) = h

(
1 +
√

1− C2

2

)
,

h(x) = −x log2 x− (1− x) log2(1− x) (2.20)

and the “concurrence” C is defined as

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (2.21)

with the λi’s being the eigenvalues, in decreasing order, of the Hermitian matrix

R =
√√

ρ ρ̃
√
ρ. This procedure clearly also holds for bipartite pure states |φ〉

and in that case the EOF can be interpreted roughly as the number of qubits

that must have been exchanged between two observers in order for them to share

the state |φ〉 [91].

2.1.4 The Peres separability criterion and the Negativity

entanglement measure

In 1996 Peres [93] derived a separability criterion for density matrices which

can detect entanglement better than the Bell inequalities. The Peres separability

criterion is also known as the positive partial transpose (PPT) test. Peres realized
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that the partial transpose of a density matrix ρ can be used to determine whether

the mixed quantum state represented by ρ is separable [93] and can therefore

also be used to detect entanglement in ρ [41, 94]. He proved that a necessary

condition for separability is that the partial transpose of ρ has only non-negative

eigenvalues. In other words, what it says for bipartite states is that if ρAB is

separable, then the new matrix ρTBAB with matrix elements defined in some fixed

product basis as

〈m|〈µ|ρTBAB|n〉|ν〉 = 〈m|ν|ρAB|n〉|µ〉 (2.22)

is a density operator, that is, it has a non-negative spectrum [67]. The partial

transpose TB, is an operation which corresponds to transposition of indices cor-

responding to the second subsystem. The Peres-Horodecki criterion states that

PPT is a necessary and sufficient condition for bipartite states to be separable

in the particular case of two-qubit systems and qubit-qutrit systems. In other

cases PPT is only a necessary but not sufficient condition for separability [94].

An entanglement measure based on the PPT criterion is the negativity [41]. This

entanglement measure is effective in numerical explorations of multipartite mixed

states due to its relative simplicity and computability [95].

Consider an N -qubit state of the form

|ψ〉 =
2N−1∑
k=0

ck|k〉, (2.23)

where the ck satisfy the normalization condition and each |k〉 is a basis state

|a1a2 . . . aN〉 with a1a2 . . . aN being the binary representation of the integer k,

ai ∈ {0, 1}. A density operator of a mixed state ρ can be written in terms of pure

states having the same form as |ψ〉:

ρ =
n∑
j=1

pj|ψj〉〈ψj|

=
n∑
j=1

pj

1∑
a1,a2,...,aN=0

cja1a2...aN
|a1a2 . . . aN〉

1∑
a′1,a

′
2,...,a

′
N=0

cj∗a′1a′2...a′N
〈a′1a′2 . . . a′N |
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=
n∑
j=1

pj

1∑
a1,a2,...,aN=0

a′1,a
′
2,...,a

′
N=0

dja1a2...aNa
′
1a
′
2...a

′
N
|a1a2 . . . aN〉〈a′1a′2 . . . a′N |, (2.24)

dja1a2...aNa
′
1a
′
2...a

′
N

= cja1a2...aN
cj∗a′1a′2...a′N

. To construct the partial transpose of ρ with

respect to the index i (corresponding to the cut set {i}), we have to transpose

the bits ai and a′i in the basis states:

ρT{i} =
n∑
j=1

pj

1∑
a1,a2,...,aN=0

a′1,a
′
2,...,a

′
N=0

dja1...ai...aNa
′
1...a

′
i...a

′
N
|a1 . . . a

′
i . . . aN〉〈a′1 . . . ai . . . a′N |

=
n∑
j=1

pj

1∑
a1,a2,...,aN=0

a′1,a
′
2,...,a

′
N=0

dja1...a′i...aNa
′
1...ai...a

′
N
|a1 . . . ai . . . aN〉〈a′1 . . . a′i . . . a′N |.(2.25)

The partial transpose with respect to a larger set of indices (larger cut set) is

constructed in a similar way by transposing the bits corresponding to each index

in the set. To obtain the entanglement of the mixed state (2.24) we need to

consider all unique cut sets and then sum the negative eigenvalues of the corre-

sponding partially transposed matrices. As entanglement measure one then takes

the absolute value of the aforementioned sum. The number of unique cut sets is

2N−1−1, since the complementary cut sets result in partially transposed matrices

which have the same eigenvalues and the trivial partial transpose with respect to

the empty cut gives the original density matrix which has no negative eigenvalues

[41, 94, 95].

2.1.5 Multipartite entanglement measures

Due to its great relevance, both from the fundamental and from the practical

points of view, it is imperative to explore and characterize all aspects of the

quantum entanglement of multipartite quantum systems [39, 96]. There are sev-

eral possible N -qubit entanglement measures for pure states |φ〉, one being the

average of all the single-qubit linear entropies,

Q(|φ〉) = 2

(
1− 1

N

N∑
k=1

Tr(ρ2
k)

)
. (2.26)
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Here ρk, k = 1, . . . , N , stands for the marginal density matrix describing the kth

qubit of the system after tracing out the rest. This quantity, often referred to as

“global entanglement” (GE), measures the average entanglement of each qubit of

the system with the remaining (N−1)-qubits.

The GE measure can be generalized by using the average values of the linear

entropies associated with more general partitions of the N -qubit system into two

subsystems (and not only the partitions of the system into a 1-qubit subsystem

and an (N −1)-qubit subsystem). A particular generalization is given by the

following family of multi-qubit entanglement measures,

Qm(|φ〉) =
2m

2m − 1

(
1− m!(N −m)!

N !

∑
s

Tr(ρ2
s)

)
, m = 1, . . . , bN/2c, (2.27)

where the sum runs over all the subsystems s consisting of m qubits, ρs are the

corresponding marginal density matrices and bxc denotes the integer part of x.

The quantities Qm measure the average entanglement between all the subsystems

consisting of m qubits and the remaining (N −m) qubits. Another way of char-

acterizing the global amount of entanglement exhibited by an N -qubit state is

provided by the sum of the (bipartite) entanglement measures associated with all

the possible bi-partitions of the N -qubits system [95]. These entanglement mea-

sures are given, essentially, by the degree of mixedness of the marginal density

matrices associated with each bi-partition. These degrees of mixedness can be, in

turn, evaluated in several ways. For instance, we can use the von Neumann en-

tropy, the linear entropy or a Rényi entropy of index q [39, 96]. There has recently

been great interest in the search for highly entangled multi-qubit states [95–97].

Multi-qubit entanglement measures have been applied to the study of several

problems, such as, for instance, the entanglement dynamics of open multi-qubit

systems [98].

2.1.6 Some examples of applications of entangled states

As mentioned before, two spectacular applications of entangled states are super-

dense coding and teleportation. Superdense coding combines all the basic ideas of

elementary quantum mechanics and is a prime example of information processing
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tasks that can be accomplished using quantum mechanics. Quantum teleporta-

tion is a technique for sending unknown quantum states without the need for a

quantum communications channel connecting the sender of the quantum state to

the recipient.

2.1.6.1 Superdense coding

For superdense coding we require two parties, conventionally known as ‘Alice’

and ‘Bob’, who are far from each other. Alice can send two classical bits of

information to Bob by sending him a single qubit, if they initially share a pair of

qubits in the entangled state:

|ψ〉 =
|00〉+ |11〉√

2
. (2.28)

The state |ψ〉 is fixed (no qubits need to be sent in order to prepare the state)

with Alice and Bob being in possession of the first and second qubit respectively.

The procedure Alice uses to send two bits of classical information via her qubit

is as follows [7]: if she intends to send the bit string ‘00’ to Bob then she does

nothing to her qubit. To send ‘01’ she applies the phase flip Z to her qubit. If

she wishes to send ‘10’ then she applies the quantum NOT gate, X, to her qubit

and to send ‘11’ she applies the iY gate. The X, Y and Z gates are given by

X =

(
0 1

1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0

0 −1

)
. (2.29)

The four resulting states are the Bell states:

00 : |ψ〉 → |β00〉 =
|00〉+ |11〉√

2

01 : |ψ〉 → |β01〉 =
|00〉 − |11〉√

2

10 : |ψ〉 → |β10〉 =
|10〉+ |01〉√

2

11 : |ψ〉 → |β11〉 =
|01〉 − |10〉√

2
, (2.30)
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which are orthonormal and can thus be distinguished by an appropriate quantum

measurement. Once Bob has received Alice’s qubit he can perform a measure-

ment in the Bell basis and determine which of the four possible bit strings Alice

sent. Thus superdense coding is achieved by transmitting two bits of informa-

tion through the interaction of a single qubit. This illustrates that information is

indeed physical and that quantum mechanics can predict surprising information

processing abilities [7].

2.1.6.2 Quantum teleportation

As for superdense coding, we need two separated parties Alice and Bob sharing

the entangled EPR state |β00〉. Alice wants to send Bob the unknown state

|ψ〉 = α|0〉 + β|1〉 (α and β are not known) by making use of the EPR pair and

sending classical information to Bob. She accomplishes this by recourse to the

following protocol. First she interacts the unknown qubit |ψ〉 with her half of the

EPR pair, leading to the state |ψ0〉

|ψ0〉 = |ψ〉|β00〉 =
1√
2

[
α|0〉

(
|00〉+ |11〉

)
+ β|1〉

(
|00〉+ |11〉

)]
, (2.31)

where the first two qubits (|ψ〉 and the first qubit in the EPR pair) belong to

Alice and the third qubit to Bob. She then sends her two qubits (|ψ〉 and her

half of the EPR pair) of the resultant state |ψ0〉 through a CNOT gate

UCN =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 , (2.32)

obtaining the state

|ψ1〉 =
1√
2

[
α|0〉

(
|00〉+ |11〉

)
+ β|1〉

(
|10〉+ |01〉

)]
. (2.33)
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She then sends her first qubit through a Hadamard gate

Hd =

(
1 1

1 −1

)
, (2.34)

obtaining

|ψ2〉 =
1

2

[
α
(
|0〉+ |1〉

)(
|00〉+ |11〉

)
+ β

(
|0〉 − |1〉

)(
|10〉+ |01〉

)]
. (2.35)

Rewriting this state by grouping Alice’s qubits together, results in

|ψ2〉 =
1

2

[
|00〉

(
α|0〉+ β|1〉

)
+ |01〉

(
α|1〉+ β|0〉

)
+|10〉

(
α|0〉 − β|1〉

)
+ |11〉

(
α|1〉 − β|0〉

)]
. (2.36)

Then Alice performs on her two qubits a joint measurement of a (non-degenerate)

observable with eigenbasis {|00〉, |01〉, |10〉, |11〉}. From the first term in (2.36) it

can be seen that when Alice’s qubits are in the state |00〉 then Bob’s qubit is in

the state |ψ〉. Thus when Alice performs the measurement and obtains the result

00, Bob’s post-measurement state will be |ψ〉. In a similar way we can determine

the state of Bob’s system given Alice’s measurement outcomes:

00 7−→ |ψ3(00)〉 = α|0〉+ β|1〉
01 7−→ |ψ3(01)〉 = α|1〉+ β|0〉
10 7−→ |ψ3(10)〉 = α|0〉 − β|1〉
11 7−→ |ψ3(11)〉 = α|1〉 − β|0〉. (2.37)

Alice now sends Bob the classical information of her outcome, thereby telling

him in which one of the four possible states his qubit has ended up. This is

tantamount to sending two classical bits. This classical information enables him

to recover the state |ψ〉 by either doing nothing when the outcome is 00, applying

the gate X when he receives 01, the Z gate when getting 10 or first applying

an X and then a Z gate when the information 11 reaches him. Since classical

information needs to be exchanged, quantum teleportation does not enable faster

than light communication. Consequently, teleportation does not imply a conflict

with special relativity. It is also interesting that the state |ψ〉 is completely erased
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from the qubits in Alice’s possession, in accordance with the no-cloning theorem.

Quantum teleportation illustrates that different resources in quantum mechanics

can be interchanged: one shared EPR pair together with two classical bits of

communication is a resource at least the equal of one qubit of communication [7].

2.2 Quantum entanglement in a many-body sys-

tem exhibiting multiple quantum phase tran-

sitions

This Section is based on the publication [99] “Quantum entanglement in a many-

body system exhibiting multiple quantum phase transitions”, C. Zander, A. Plas-

tino and A.R. Plastino, Braz. J. Phys. 39 (2), (2009) pp. 464-467.

I investigate the quantum entanglement-related features of the many-body

model of Plastino and Moszkowski [100]. This is an exactly solvable N -body,

SU2 two-level model exhibiting several quantum phase transitions. We show that

these transitions happen to be also entanglement-transitions associated with dif-

ferent many-body Dicke states. The main properties of the model considered

here make it particularly well suited to study, by recourse to exact analytical

computations, some connections between quantum phase transitions and quan-

tum entanglement-theory.

2.2.1 Introduction

A quantum phase transition (QPT) is a phase transition between different quan-

tum phases (phases of matter at zero temperature). The transition describes a

structural change in the ground state of a many-body system.

Even at zero temperature a quantum-mechanical system can still support

phase transitions. As a relevant physical quantity is varied (represented by a

parameter in the system’s Hamiltonian) it is possible to induce a phase tran-

sition into a different phase of matter. A paradigmatic example of a quantum

phase transition is the well-studied superconductor/insulator transition in disor-
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dered thin films which separates two quantum phases having different symmetries.

Quantum magnets provide another example of QPT. Thus, in infinite as well as

in finite systems a type of phase transition, often referred to as a quantum phase

transition, may occur at T = 0. Such quantum phase transitions generally signal

a change in the correlations present in the ground state of the system. For a

system described by a Hamiltonian, H(ξ) = H0 + ξH1, which varies as a function

of the coupling constant ξ, the presence of a QPT can easily be understood in

the following manner: level crossing may come about and the ground state energy

is no longer analytic nor monotonic. Although there are other valid mathemati-

cal reasons that lead to the loss of analyticity, the above simple explanation will

suffice for our purposes and provides a simple means for defining a QPT.

2.2.2 The Plastino-Moszkowski model

This is an exactly solvable N -body, SU2 two-level model [100]. Each level can

accommodate an even number N of particles, i.e., is N -fold degenerate. There

are two levels separated by an energy gap, say ε = 1, and occupied by N particles.

In the model the angular momentum-like operators Ĵ2, Ĵx, Ĵy, Ĵz, with J(J+1) =

N(N + 2)/4 are used (see details below). The Hamiltonian is given by [100]

Ĥ = Ĵz − ξ
[
Ĵ2 − Ĵ2

z − N̂/2
]
, (2.38)

where N̂ is the number operator. States belonging to the lowest lying multiplet,

i.e., that with J = N/2, are usually referred to as Dicke-states |J,M〉 (M standing

for the Ĵz-eigenvalues) [101]. In building up our many-body Hamiltonian we use

the second quantization form

Ĵz =
1

2

N∑
i=1

2∑
σ=1

â†i,σ âi,σ, (2.39)

with corresponding expressions for Ĵx, Ĵy. This is a simple yet non-trivial case of

the Lipkin model [102–104]. Note that we deal here with a bonafide many-body

system, since the number of states grows with N as 2N . Here we will discuss only

the model in the zero-temperature regime. The operators appearing in the model

Hamiltonian form a commuting set of observables and are thus simultaneously
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diagonalizable.

2.2.2.1 QPTs in the PM-model

The ground state of the unperturbed system (ξ = 0 and at T = 0) is |J,M〉 =∣∣N
2
, -N

2

〉
with the eigen-energy E0 = −1

2
N . When the interaction is turned on

(ξ 6= 0) and gradually becomes stronger, the ground state energy will in general

be different from the unperturbed system for some critical value of ξ that we

will call ξc. This sudden change of the ground state energy signifies a quantum

phase transition. It should be noted that for a given value of N , there could be

more than one critical point, since there exist 2J + 1 possible values for M . If we

denote by n the number of “holes” in the lowest of the two N -degenerate levels,

then the critical value ξc of the nth transition point can be found from equation

(2.40) below, provided that ξc > 0 and ξc 6=∞ [100]

ξc,n =
1

N − (2n− 1)
. (2.40)

2.2.3 Dicke-states’ two-qubit entanglement

Remember that for these states J = N/2 and M = −J, . . . , J [105, 106]. In the

computational basis

|00〉, |01〉, |10〉, |11〉,

one has a reduced two-body matrix [105, 106]

ρ12 =


v+ 0 0 0

0 y y 0

0 y y 0

0 0 0 v−

 , (2.41)

with [105, 106]

v± =
(N ± 2M)(N − 2± 2M)

4N(N − 1)

y =
N2 − 4M2

4N(N − 1)
(2.42)
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and concurrence,

C[ρ12] = 2 Max
{

0, y −
√

(v−v+)
}
, (2.43)

where, as stated, C[ρ12] stands for the all-important quantity that measures the

entanglement-degree, namely, the concurrence. In Fig. 2.1 the concurrence of

the ground states of the Plastino-Moszkowski model is depicted for N = 10. We

immediately realize that at the extremal multiplet values M = ±J one has y = 0,

C[ρ12] = 0, so that these are two separable states, and, further,

v+ = 1; v− = 0 M = N/2

v+ = 0; v− = 1 M = −N/2. (2.44)

Instead, for M = 0 we get a “minimal-finite” entanglement amount, i.e., that

particular many-body state with thisM -value is the least entangled non-separable

Dicke state, for which

y =
N

4(N − 1)

v± =
N − 2

4(N − 1)
, (2.45)

leading to

C[ρ12] =
1

N − 1
lim
N→∞

C[ρ12] = 0. (2.46)

Notice that C[ρ12] ≤ 1 forN ≥ 2. For givenN , the concurrence is always maximal

for M = ±N
2
∓ 1, which is a so-called W-state [39, 96]. In terms of the number

of holes n in the lowest lying of our two levels, the W-states are those with n = 1

or n = N − 1. The pertinent concurrence becomes CW = 2
N

. These are known

to be maximally entangled states in general. For an arbitrary Dicke-state the

concurrence reads

C[ρ12] =
N2 − 4M2 −

√
(N2 − 4M2) [(N − 2)2 − 4M2]

2N(N − 1)
, (2.47)
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Figure 2.1: Concurrence of the ground states of the Plastino-Moszkowski model with N = 10
particles as a function of the quantum number M . All depicted quantities are dimensionless.

leading to the limit value

lim
N→∞

C[ρ12] = 0. (2.48)

2.2.3.1 QPT and entanglement

The ground state of the unperturbed system (ξ = 0 and at T = 0), i.e., |J,M〉 =∣∣N
2
, -N

2

〉
is a separable state. When the interaction is turned on (ξ 6= 0) and

gradually becomes stronger, the ground state will in general be different from the

unperturbed system for critical values ξc. Such sudden change of the ground state

signifies both a quantum phase transition and an entanglement transition. As, for

a given value of N , there exists more than one critical point (indeed N
2

ones) we

have a matching set of sudden entanglement changes. The first transition is from

a separable to a maximally entangled state. In our model Hamiltonian (2.38)

the last transition occurs when the ground state becomes
∣∣N

2
, 0
〉
, that is, when

M = 0 is attained [100]. Thus, at the nth transition ξc, where the number of

holes n grows by one, and ξc,n = 1
N−(2n−1)

, the ground state of the many-body

system becomes a new kind of entangled state.

2.2.3.2 Thermodynamic limit

Notice that the very presence of other particles, even without interaction, dimin-

ishes the concurrence of ρ12. What happens in the thermodynamic limit N →∞?

In answering, we can without loss of generality limit our considerations to
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the W-states, whose concurrence steadily diminishes with N . Obviously, C[ρ12]

vanishes then in the thermodynamic limit, which is, in a way, a classical one.

This is consistent with other instances of quantum systems adopting classical-

like properties in the limit cases corresponding to a large number of particles or a

large number of degrees of freedom [39, 107]. An interesting example of this kind

of behaviour concerns a typical feature of the dynamics of multipartite quantum

systems: for some quantum states entanglement enhances the “speed” of quantum

evolution, as measured by the time τ required to reach a state orthogonal to the

initial one [39]. This evolution time τ has a lower bound τmin determined by

the energy resources of the quantum state under consideration. When one has

a system of N independent qubits, a certain amount of entanglement is always

needed in order to saturate the aforementioned bound on the evolution time.

However, when the number of qubits goes to infinity the entanglement required

to reach this “quantum speed limit” goes to zero [39], which may be interpreted

as a classical-like feature exhibited by the N →∞ limit.

2.2.4 Conclusion

We have in this Section obtained some significant new results:

1) The Plastino-Moszkowski model [100] exhibits a rich variety of entangled

states. The transition between them takes place precisely at those critical values

of the coupling constant for which a quantum phase transition occurs.

2) The above makes the Plastino-Moszkowski system a useful solvable model to

study the link between entanglement and QPTs in many-body systems.

3) In the thermodynamic limit, which in a sense may be regarded as the classical

limit, one analytically ascertains that the entanglement of the many-body system

vanishes, at it should.

4) The PM model was advanced to exhibit inadequacies of the Hartree-Fock

approach [100], which is unable to detect the QPTs. This fact is illuminated

here on the basis of the QPT-entanglement link that we have investigated in the

present contribution. The Hartree-Fock state is represented by one single Slater

determinant and is, consequently, always a separable state. In fact, in modern

quantum mechanical terminology, the Hartree-Fock approach can be described

as a “zero entanglement” approximation.
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2.3 Measures of quantum correlations: quan-

tum discord

Characterizing and quantifying the information-processing capabilities exhibited

by quantum phenomena such as entanglement and superposition has been the

subject of intense research efforts [7, 66, 67, 108]. It is well established that

entanglement is essential for certain types of quantum information tasks like su-

perdense coding and teleportation (see Subsubsections 2.1.6.1 and 2.1.6.2). In

both Shor’s factoring algorithm [72] and Grover’s search algorithm [7], the flow

of entanglement plays a crucial role in the quantum evolution that implements

these algorithms.

However, there are several instances where there is a quantum advantage in

the absence or near absence of entanglement. One such case is quantum cryp-

tography [7, 71], where several protocols involve quantum states that are not

entangled. These quantum cryptography protocols have been proved to be more

secure and thus better than the best known classical cryptographic techniques.

In the model referred to as “deterministic quantum computation with one

qubit”, introduced by Knill and Laflamme [109] in 1998, which is the first in-

trinsically mixed-state scheme of quantum computation, there are non-classical

correlations present between the control qubit and the mixed qubits, despite there

being no entanglement between these two parts [110]. These correlations are char-

acterized by the quantum discord, which acts as a resource in this computational

model [110].

Thus entanglement does not describe all aspects of the quantum correlations

exhibited by multipartite physical systems. The quantum discord supplements

the measures of entanglement which can be defined on the system under consider-

ation and goes beyond them since it also includes quantum correlations different

from those involved in entanglement. This concept has been receiving much at-

tention lately and the reason for this is that the study of quantum discord is not

only of intrinsic conceptual interest, but may also have technological implications

[110–115].
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Quantum discord has been related to the superposition principle and the van-

ishing of discord has been shown to be a criterion for the preferred, effectively

classical state of a system, namely the pointer states [111]. It has been used in

the investigation of the powers of a quantum Maxwell’s demon [116].

Quantum discord tries to quantify all quantum correlations including entan-

glement. In the case of non-entangled mixed states there are correlations that

cannot be captured by a probability distribution defined over the states of an

equivalent classical system [110]. For pure states all non-classical correlations

identified by the quantum discord coincide with the entanglement as measured

by the von Neumann entropy of the reduced density matrix.

Quantum discord [111] is a quantitative measure of the non-classical correla-

tions of a bipartite system. It arises from the discrepancy between the quantum

analogues of two classically equivalent expressions for the mutual information

given by equations (1.16) and (1.17). That is, quantum discord is defined as

the difference between the two quantum mechanical expressions of the entropic

quantifier, the mutual information. So let us identify the quantum mechanical

counterpart of (1.16). In the quantum case, density matrices are used instead of

probability distributions and the Shannon entropy is replaced by the von Neu-

mann entropy. Let ρAB be the bipartite mixed state under consideration, ρA and

ρB the reduced density matrices and let S stand for the von Neumann entropy.

Then the quantum mutual information corresponding to (1.16) is

Iq(A :B) = Iq(ρAB) = S(ρA) + S(ρB)− S(ρAB). (2.49)

To obtain the quantum analogue of (1.17) is not as straightforward as the above

expression, since now we have to find the counterpart to H(X|Y ) which depends

on a measurement of the second system. That is, S(A|B) gives the uncertainty

of the state of subsystem A, given a measurement on B, however, when A is

a quantum system, the amount of information that can be extracted about it,

depends on the choice of measurement. So one needs to define a measurement

basis: let {ΠB
j } be a complete set of orthogonal projectors, then the state after
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outcome i is obtained is

ρA|ΠBi =
ΠB
i ρABΠB

i

Tr(ΠB
i ρAB)

, (2.50)

where outcome i occurs with probability

pi = TrAB(ΠB
i ρAB). (2.51)

The uncertainty in A after measurement outcome i has been obtained is S(ρA|ΠBi )

and so if a complete projective measurement ΠB
j is performed on B, then the

conditional entropy becomes

S(A|{ΠB
j }) =

∑
j

pjS(ρA|ΠBj ). (2.52)

Now, we would like to maximize the amount of information gained from the

measurement on B and hence minimize the uncertainty. This leads one to define

a measurement-independent quantum conditional entropy,

S(ρA|ρB) = min
{ΠBj }

{∑
j

pjS(ρA|ΠBj )

}
(2.53)

and thus the counterpart to (1.17) is measurement-independent and defined to

be

Jq(A :B) = S(ρA)− S(ρA|ρB). (2.54)

The quantum discord is then obtained,

D(A :B) = Iq(A :B)− Jq(A :B) = S(ρB)− S(ρAB) + S(ρA|ρB), (2.55)

which quantifies non-classical correlations in a quantum system, including those

not captured by entanglement.

The discord is non-negative and is zero only for states that exhibit strictly

classical correlations [111]. Such kind of states have negligible Hilbert space

volume [114], which means that a randomly picked state from the Hilbert space
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must have positive discord. As was mentioned before, for a pure state

D(A :B) = S(ρB), (2.56)

which uniquely quantifies bipartite entanglement. Thus all separable pure states

have zero discord, however, the discord can be non-zero for certain separable

mixed states involving mixtures of non-commuting product states [117].

To get some intuitive understanding of the quantum discord, we observe that

Iq(A :B) contains all information common to A and B, thus all correlations be-

tween them, whereas Jq(A :B) contains the information gained about A as a result

of a measurement {ΠB
j } on B. Thus if D = 0, then the measurement has ex-

tracted all information about correlations between A and B. Since S(ρAB)−S(ρB)

is the entropy of A before measurement and S(ρA|ρB) is the entropy of A after

measurement of B, D = 0 also means that the system isn’t perturbed by the mea-

surement (no change in entropy of A), which it shouldn’t be for purely classical

correlations. So D measures the information that cannot be extracted by local

measurements or alternatively, it can be viewed as the minimal correlations’ loss

due to measurement [118]. It should be noted that the discord is invariant under

local unitary transformations, however, it is not symmetric under the exchange

of the subsystems.

2.3.1 Perturbations under local measurements

For any bipartite state ρAB and complete local orthogonal projective measure-

ments {ΠA
i } and {ΠB

j } on A and B respectively, one can associate with them a

classical state Π(ρAB) after the measurement [119],

Π(ρAB) =
∑
ij

ΠA
i ⊗ ΠB

j ρAB ΠA
i ⊗ ΠB

j . (2.57)

In the case when Π(ρAB) = ρAB, it would mean that ρAB is not perturbed by

a local measurement and hence it is classical with respect to the measurement

{ΠA
i ⊗ ΠB

j }. Any other state would be truly quantum. Since Π(Π(ρAB)) =

Π(ρAB), it means that any complete local projective measurement {ΠA
i ⊗ ΠB

j }
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will induce a classical state. The difference between the classical state Π(ρAB)

and the original state ρAB captures the quantum correlations in ρAB.

Suppose that the eigenprojectors of the reduced states ρA and ρB are {ΠA
i }

and {ΠB
j } respectively, that is, the spectral decompositions are

ρA =
∑
i

pAi ΠA
i ρB =

∑
j

pBj ΠB
j . (2.58)

Luo [119] showed that ρAB is a classical state when {ΠA
i ⊗ ΠB

j } are the eigen-

projectors of ρAB. He then argued that when taking as measurement Π the one

induced by the spectral resolutions of the reduced states as given in eq. (2.58),

this results in the closest classical state to the original quantum state, since this

measurement leaves the reduced states ρA and ρB invariant. When ρAB is classi-

cal, the measurement Π = {ΠA
i ⊗ ΠB

j } will leave the state unchanged.

The quantum mutual information as given in eq. (2.49) quantifies the total

correlations in a bipartite state ρAB and so Iq(Π(ρAB)) specifies the classical cor-

relations in ρAB, as well as in Π(ρAB). Luo then proposed the following measure

for quantum correlations,

Q(ρAB) = Iq(ρAB)− Iq(Π(ρAB)), (2.59)

where Π = {ΠA
i ⊗ ΠB

j } and {ΠA
i }, {ΠB

j } are as determined by eq. (2.58). When

ρAB is a pure bipartite state, then Q(ρAB) = S(ρA) which agrees with (2.56) and

Q(ρAB) = 0 if ρAB is classical [119]. Also, Q(ρAB) is invariant under local unitary

transformations.

In Chapter 5 I introduce an approach for the characterization of quantum

correlations in fermion systems based upon the state disturbances generated by

the measurement of “local” observables (that is, quantum observables represented

by one-body operators). This approach leads to a concept of quantum correlations

in systems of identical fermions different from entanglement.
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2.4 Distinguishable and indistinguishable parti-

cles

In this Section it will be explained what is meant by identical particles and by

distinguishable and indistinguishable subsystems. A definition of identical par-

ticles can be given as follows: Two particles are said to be identical if all their

intrinsic properties such as mass, electrical charge, spin, etc. are exactly the same

[51]. Thus, we consider all electrons in the universe to be identical, as well as any

other kind of quantum particles such as protons, positrons, photons, neutrons,

muon neutrinos, up quarks, hydrogen atoms, etc. They each have exactly the

same defining properties and behave the same way under interactions associated

with those properties [120].

Another purely quantum effect is that of indistinguishable particles. To see

that this is not a classical phenomenon, imagine we have two completely identi-

cal classical objects that we are unable to differentiate in any way. If we were to

assign arbitrary labels to them, we could always, at least in principle, keep track

of each object by following their respective trajectories. However, in quantum

mechanics we have to abandon this classical concept since the best information

we can obtain about the location of some particle without measuring it (and

hence disturbing it) is that it has a certain probability of being in a particular

position in space, at a given instant in time. This information is contained in the

spatial state of the particle. The particle’s wave function gives the probability of

finding the particle at a certain position at time t and this wave function has a

certain spread which determines how localized the particle is. Also bringing to

mind Heisenberg’s uncertainty relation, we cannot simultaneously measure the

particle’s position and its momentum with arbitrary precision.

The question arises how one can distinguish identical particles. Using their

possibly different internal states as a criterion is not a good idea, since the dy-

namics can in general affect the internal degrees of freedom of the particles. The

same holds for their momentum or other dynamical variables [120]. However,

their spatial location can actually be used to distinguish them, if these particles

are either kept distant enough or there is a sufficiently large enough energy bar-
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rier separating them so that their wave functions in practice never overlap during

the time interval of consideration. Then one can use the same method as in the

classical case to keep track of them. If, however, the wave functions do overlap

at some point, then we no longer know which particle is where. The particles

then become completely indistinguishable and they are identified by completely

arbitrary labels that have no physical meaning [120]. Note that swapping the

fictitious labels of two identical particles is not the same as actually swapping

their positions and other physical properties. In the former case we have a pas-

sive transformation whereas in the latter case we have an active transformation

(objects are actually moved around) which may cause a phase shift, which is ex-

perimentally observable [24].

A consequence of the indistinguishability of particles is the exchange degen-

eracy [51]. Finding the unambiguous description for such systems requires the

introduction of a new postulate for quantum mechanics, namely the Symmetriza-

tion Postulate [51, 120]: in a system containing indistinguishable particles, the

only possible states of the system are the ones described by vectors that are, with

respect to permutations of the fictitious labels that we arbitrarily attach to those

particles, either

1. completely symmetrical - in which case the particles are called bosons

2. completely antisymmetrical - in which case the particles are called fermions.

The above postulate, which has been corroborated by extensive experimental ob-

servation, lifts the exchange degeneracy. The existence of fermions and bosons

and their respective properties accounts for a series of fascinating new physical

phenomena. To decide which particles belong to a particular symmetry is some-

thing that ultimately has to be determined by observation. Empirical knowledge

of the collective behaviour of particles in indistinguishable situations tells us that

there are two classes of particles in Nature, namely bosons and fermions. This

could not have been deduced from the other postulates of quantum mechanics.

The following empirical rule is obeyed by all currently known particles: parti-

cles with integer spin are bosons and particles with half-integer spin are fermions

[51]. Within quantum field theory this rule can be derived as a theorem from
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more fundamental principles. This is Pauli’s celebrated “spin-statistics” theo-

rem. Once this rule has been established for elementary particles, it then also

holds for composite particles and is consistent with the fact that particles com-

posed of an arbitrary number of bosons and/or of an even number of fermions are

bosons, and that if particles are composed of an odd number of fermions they are

fermions [120]. A prime example is given by the two isotopes of helium: 4He is a

boson (composed of 2 electrons, 2 protons and 2 neutrons) and 3He is a fermion

(composed of an odd number of fermions).

The Symmetrization Postulate needs to be applied only to indistinguishable

particles, not to identical particles in general, since it can be shown that the

(anti)symmetrization terms have a vanishing probability when one can distin-

guish the identical particles [51]. It should be noted that given a system, sepa-

rate vectors are often considered to describe its spatial and its internal degrees

of freedom. The symmetries of each vector are not independent since they have

to consistently contribute to the symmetry requirement of the entire vector de-

scribing the state of the system [120].

Particles known to be fermions include electrons and in general all leptons as

well as quarks, protons (made of three quarks), neutrons and in fact all baryons,
3He, etc. Nuclei whose mass number A (total number of nucleons) is even are

bosons and those whose mass number is odd are fermions [51].

2.5 Systems of identical fermions

Fermions are identical particles that, in a situation where they are indistinguish-

able, can only be found in completely antisymmetric states. That is, a fermionic

state changes sign if any two labels (associated with the degrees of freedom of

two particles) are swapped. This means their state vector is in the antisymmetric

subspace of the system. To see what is meant by that, suppose we have a system

of N indistinguishable fermions. Let us first consider the tensor product Hilbert

space HN = H⊗N , where each particle is described by the same single-particle

Hilbert space H. We have arbitrarily assigned labels 1 to N to the particles.

The Hilbert space comprising all the antisymmetric vectors of HN is HA, the
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fully antisymmetric subspace of HN . Similarly HS is the completely symmetric

subspace of HN . We can then write

HN = HA ⊕HS ⊕Hm (2.60)

where Hm is the subspace of HN with mixed symmetry [120]. The vectors in

HA represent all the possible (pure) quantum states of a system of N identical

fermions.

If we have N states |k1〉, . . . , |kN〉 belonging to an orthonormal basis of the

single-particle Hilbert space {|1〉, |2〉, . . .}, there is a natural way to construct a

fully antisymmetric N -particle state via a structure known as a “Slater determi-

nant”. For instance, for N = 3, a Slater determinant has the form

1√
6

{
|k1k2k3〉 − |k1k3k2〉 − |k2k1k3〉+ |k2k3k1〉+ |k3k1k2〉 − |k3k2k1〉

}
. (2.61)

These Slater determinants describe legitimate pure states of N identical fermions.

A Slater determinant like (2.61) describes a physical situation where we can say

that “we have” one particle in state |k1〉, one in state |k2〉 and one in state |k3〉
(of course, due to indistinguishability, it makes no sense to ask “which particle

is in which state”). The Slater determinant is zero if two of the individual states

of the particles coincide and so we obtain Pauli’s exclusion principle: the same

quantum mechanical state cannot be simultaneously occupied by several identical

particles [51]. The set of Slater determinants constructed out of a single-particle

orthonormal basis constitutes a basis of the state space describing the N -fermion

system: any fully antisymmetric state of the N fermions can be written as a

linear combination of these Slater determinants.

Throughout my Thesis, when discussing fermionic systems, I am going to

use the first quantization formalism. The second quantization formalism [24] is

not needed in this work, because I am going to investigate the entanglement

between particles (as opposed to entanglement between modes [121, 122]) in non-

relativistic fermion systems consisting of a constant number of particles.
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The characterization of the entanglement features of systems of identical

fermions constitutes a subject that is currently attracting the attention of sev-

eral researchers. For example, the entanglement between pairs of electrons in a

conduction band [123], the entanglement features exhibited by the eigenstates

of soluble two-electrons atomic models [124, 125], the entanglement dynamics

in scattering processes involving two electrons [126], the different families of en-

tangled states in systems of three fermions [127], the role of entanglement in

time-optimal evolutions of fermionic systems [128, 129] and the detection of en-

tanglement in fermion systems through the violation of appropriate uncertainty

relations [130, 131] have recently been investigated.

2.5.1 Separability criteria and entanglement measures

In a system composed of indistinguishable identical fermions, the definition of a

separable system as given in eq. (2.3) is not valid since the Hilbert space of the

system cannot be expressed as the tensor product of the single-particle Hilbert

spaces. It therefore follows that a new definition of entanglement is required for

those fermion systems. Note that from now on when the word fermions is used it

is implied that they are indistinguishable and hence the fermionic character has

to be taken into account.

To illustrate the problem of entanglement in fermion systems let us follow the

discussion in reference [132]. A system consisting of two identical spin-1
2

parti-

cles separated by a potential barrier is analyzed, see Fig. 2.2. The particles are

modelled by their spin degrees of freedom (| ↑〉, | ↓〉) and by their spatial single-

particle wave functions (|φL〉, |φR〉) localized in the left and right potential well

respectively. When the barrier is very high the overlap of the particles wave func-

tions is negligible (they are spatially localized) and they can thus be regarded as

effectively distinguishable particles.

We thus regard the system as being effectively described by a four-dimensional

single-particle Hilbert space {|φL ↑〉, |φL ↓〉, |φR ↑〉, |φR ↓〉}. An initial state of the
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A B

Figure 2.2: Illustration of the initial state |ψini〉AB of two identical fermions, separated by a
high potential barrier in order for them to be considered distinguishable.

system can then be represented as

|ψini〉AB = |φL ↑〉A ⊗ |φR ↓〉B, (2.62)

where A and B are physically meaningful labels for the particle in the left and

right potential well respectively. This state is clearly separable with respect to the

usual definition of separability as in eq. (2.3). In the situation shown in Fig. 2.3

where after a certain time t1 the energy barrier between the particles is lowered,

the antisymmetry of the wave function must be explicitly taken into account and

so the state becomes

|ψ(t1)〉 =
1√
2

{
|φL ↑〉1 ⊗ |φR ↓〉2 − |φR ↓〉1 ⊗ |φL ↑〉2

}
, (2.63)

where the attached labels are now arbitrary and due to the spatial overlap of

the wave functions the particles are not independently accessible anymore. Both

particles are present in each one of the two states, as illustrated by Fig. 2.3. The

antisymmetrized state |ψ(t1)〉 formally resembles an entangled state although the

correlations of this system are not accessible which means the system must be

considered non-entangled. A state of the form of a single Slater determinant such

as eq. (2.63) effectively behaves as the non-entangled (in the usual sense) state

|φL ↑〉A ⊗ |φR ↓〉B describing two distinguishable objects A and B.

Suppose that the coupling between the electrons has been controlled in such
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-

Figure 2.3: Representation of |ψ(t1)〉, where the wave functions are no longer completely
localized in one of the wells due to the tunnelling barrier being lowered.

- +
-

Figure 2.4: Illustration of |ψ(t2)〉, which is an entangled state of the system of indistinguish-
able fermions.

a way that at time t2 the system is described by

|ψ(t2)〉 =
1

2

{
|φL ↑〉1 ⊗ |φR ↓〉2 − |φR ↓〉1 ⊗ |φL ↑〉2

+ |φL ↓〉1 ⊗ |φR ↑〉2 − |φR ↑〉1 ⊗ |φL ↓〉2
}
, (2.64)

which is represented in Fig. 2.4. In the given single-particle basis, |ψ(t2)〉 is

expressed in terms of two elementary Slater determinants and there is evidently no

basis in which it can be written as a single one. Besides the required permutation

symmetry, this state contains some useful correlations as can be seen through

localizing the particles again by raising the potential barrier. This corresponds

to a partition of the single-particle basis between A and B, {|φL ↑〉, |φL ↓〉} forms

the basis for A and the basis for B’s space is {|φR ↑〉, |φR ↓〉}. Then the electrons
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A B A B

+

Figure 2.5: Representation of the final entangled state |ψfin〉AB , obtained by raising the
tunnel barrier which then localizes the wave functions again.

can again be regarded as effectively distinguishable and the final state of the

system is

|ψfin〉AB =
1√
2

{
|φL ↑〉A ⊗ |φR ↓〉B + |φL ↓〉A ⊗ |φR ↑〉B

}
, (2.65)

where new labels A and B are attributed to the electrons, corresponding to which

potential well (left or right one respectively) they are found in after separation.

The final state shown in Fig. 2.5 is a maximally entangled (in the usual sense)

state. It is thus reasonable to call |ψ(t2)〉 a maximally entangled state of two

indistinguishable fermions in a four-dimensional single-particle space.

The above discussion makes it clear that a system composed of indistinguish-

able identical particles should be considered separable if and only if it can be

expressed as a single Slater determinant [132]. Therefore entangled states are

those that cannot be described by a single Slater determinant. Hence a pure

state of identical fermions must be regarded as non-entangled (separable) if it is

of the form of a single Slater determinant, that is, in the case of two fermions

|ψsl〉 =
1√
2

{
|φ1〉|φ2〉 − |φ2〉|φ1〉

}
, (2.66)

with |φ1〉 and |φ2〉 orthonormal, single-particle states. Elementary Slater deter-

minants in two-fermion systems are thus the natural analogues of product states

in systems of distinguishable particles.
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When studying entanglement-related properties of pure states of bipartite

distinguishable quantum systems it is sometimes convenient to use the Schmidt

decomposition of the joint state, as described in Section 2.1. The Schmidt rank

was shown to be a separability criterion and it is also an entanglement measure.

The Schmidt decomposition admits a natural generalization in the case of a sys-

tem composed of two identical fermions, namely the Slater decomposition which

gives rise to the Slater rank, which is analogous to the Schmidt rank for the dis-

tinguishable case.

Given a pure state |ψ〉 of two fermions, it is possible in this case to find an

orthonormal basis {|k〉, k = 0, 1, . . .} of the single-particle Hilbert space, such

that |ψ〉 can be written as [125]

|ψ〉 =
∑
k

√
λk
2

(
|2k〉|2k + 1〉 − |2k + 1〉|2k〉

)
, (2.67)

where the Slater coefficients λk satisfy

0 ≤ λk ≤ 1 and
∑
k

λk = 1. (2.68)

If the single-particle Hilbert space has finite dimension N , then one assumes that

N is even and so the summation over the index k goes from k = 0 to k = N/2.

Thus, when expressed in such a basis, the state |ψ〉 is a sum of non-overlapping

elementary Slater determinants where each single-particle basis state occurs at

most in only one Slater term.

The concept of entanglement in systems of indistinguishable particles is more

controversial than it is in the case of systems composed of distinguishable subsys-

tems. However, there is by now a general agreement among researchers working

in this field that in systems of two or more identical fermions quantum corre-

lations between the particles that are solely due to the antisymmetric character

of the fermionic state do not contribute to the state’s amount of entanglement

[108, 123, 132–134]. For instance, an M -fermion pure state of Slater rank equal
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2.5 Systems of identical fermions

to one (that is, a state whose wave function can be represented as a single Slater

determinant) has to be regarded as non-entangled [108, 134]. There are pro-

found physical reasons for this. On the one hand, the correlations exhibited by

such states cannot be used as a resource to implement non-classical information

transmission or information processing tasks [132]. On the other hand, the non-

entangled character of states represented by one Slater determinant is consistent

with the possibility of associating complete sets of properties to both parts of the

composite system [133]. Here, by entanglement in systems of identical fermions

we mean entanglement between particles and not entanglement between modes,

as was mentioned before (see reference [122] for a comprehensive discussion of

entanglement between modes).

A convenient entanglement criterion for pure states |ψ〉 of systems of M iden-

tical fermions can be formulated in terms of the trace of the square of the single-

particle reduced density matrix ρ1 = Tr2,...,M(ρ), where ρ = |ψ〉〈ψ| [135]. The

criterion is Tr(ρ2
1) = 1

M
non-entangled,

1
N
≤ Tr(ρ2

1) < 1
M

entangled,
(2.69)

where N is the dimension of the single-particle state space and M ≤ N . If

M > N , then it is not possible to construct an antisymmetric M -fermion state

[135].

The simplest fermionic system allowing a Slater rank greater than one and

thus admitting entanglement is composed of two fermions with a four-dimensional

single-particle Hilbert space, thus resulting in a six-dimensional two-particle Hilbert

space. One of the implementations of such a system is exactly the system used for

illustrative purposes in the example discussed in detail at the beginning of this

Subsection. This system can be viewed as the fermionic version of the standard

system composed of two distinguishable qubits. It allows for a fermionic ana-

logue of the two-qubit concurrence (described in Subsection 2.1.3), both for pure

and mixed states of two fermions. Thus a closed analytical expression for the

amount of entanglement exhibited by a (mixed) state of two identical fermions

(as measured by the concurrence) is known only for the fermionic case of smallest
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dimensionality admitting the phenomenon of entanglement [132] (these systems

can be mapped onto systems of spin-3
2

particles).

Mixed states of systems of M identical fermions are non-entangled when they

can be written as a mixture of Slater determinants,

ρsl =
∑
i

λi|ψ(i)
sl 〉〈ψ

(i)
sl |, (2.70)

where the states |ψ(i)
sl 〉 can be represented as single Slater determinants, and

0 ≤ λi ≤ 1 with
∑

i λi = 1.

All multipartite fermionic systems consisting of fermions with a single-particle

Hilbert space of dimension 2k (with k ≥ 2) can be mapped onto systems consisting

of spin-s particles, with s = (2k− 1)/2. According to this mapping the members

{|i〉, i = 1, . . . , 2k} of an orthonormal basis for the single-particle Hilbert space

can be denoted |s,ms〉, with ms = s− i+ 1, i = 1, . . . , 2k. Since each particular

case considered by us corresponds to a given value of k (and, consequently s),

we are going to designate these states using the compact notation {|ms〉, ms =

−s, . . . , s}. Following this angular momentum representation, a basis for a system

consisting of two identical fermions is given by the antisymmetric joint eigenstates

{|j,m〉, −j ≤ m ≤ j, 0 ≤ j ≤ 2s} of the total angular momentum operators Jz

and J2. The antisymmetric states |j,m〉 are those having an even value of the

quantum number j. These states can be classified in multiplets according to the

value of j. The notation we will use for the product basis is the following:

|s,m1,m2〉 = |s,m1〉|s,m2〉 = |m1m2〉, (2.71)

where m1 and m2 are always half-integral. The Clebsch-Gordan coefficients,

which are the expansion coefficients of total angular momentum eigenstates in

an uncoupled tensor product basis, are used to transform between the two bases

[51]:

|j,m〉 =
∑
m1m2

|m1m2〉〈m1m2|j,m〉 =
∑
m1m2

|m1m2〉Cm1m2
jm . (2.72)

An exact, analytical formula for the amount of entanglement (as given by the
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concurrence) of general (mixed) states of two identical fermions is known only

for systems with single-particle Hilbert space of dimension four (that is, s = 3
2
)

[132]. This concurrence can be written as

CF(ρ) = max{0, λ1 − λ2 − λ3 − λ4 − λ5 − λ6} (2.73)

where the λi’s are, in descending order of magnitude, the square roots of the

eigenvalues of ρρ̃ with ρ̃ = DρD−1, where the operator D is given by

D =



0 0 0 0 1 0

0 0 0 −1 0 0

0 0 1 0 0 0

0 −1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1


K (2.74)

where K is the complex conjugation operator and D is expressed with respect to

the aforementioned total angular momentum basis, ordered as |2, 2〉, |2, 1〉, |2, 0〉,
|2,−1〉, |2,−2〉 and i|0, 0〉. Note that the phase of the last singlet state has been

adjusted.

There is a need for separability criteria and entanglement indicators that are

relatively easy to implement in practice and which can be extended to higher di-

mensional two-fermion systems or to situations involving more than two fermions

[135]. In fact, the field of separability criteria and entanglement indicators for

systems of identical fermions is a largely unexplored one.

2.6 Relevant properties and techniques related

to uncertainty relations and entropic inequal-

ities

The property required to move from entropic uncertainty relations involving pure

states to uncertainty relations holding for mixed states, is the concavity property
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of the entropy described in Subsection 1.1.7, eq. (1.32). This will be the tool used

to establish uncertainty relations for mixed states of distinguishable subsystems

(see Section 2.7) as well as mixed states of indistinguishable fermions (see Section

4.1).

For uncertainty relations involving the variances of observables Mk, one makes

use of the fact that the uncertainty of a mixture is always greater or equal than

the averaged uncertainties of the components, to move from uncertainty relations

involving separable pure states to separable mixed states. This property is uti-

lized in scenarios involving either distinguishable or indistinguishable subsystems.

Thus in the case of two distinguishable subsystems, if
∑

k δ
2(Mk)|αi〉|βi〉〈αi|〈βi| ≥ C,

then this bound also holds for separable mixed states ρsep written in the form of

eq. (2.5), ∑
k

δ2(Mk)ρsep ≥
∑
i

pi
∑
k

δ2(Mk)|αi〉|βi〉〈αi|〈βi| ≥ C, (2.75)

since
∑

i pi = 1. The physical meaning of this is, that one cannot decrease the

uncertainty of an observable by mixing several states.

The unitary freedom in the ensemble for density matrices as described in

Subsection 1.1.6, eq. (1.27) was utilized by Nielsen and Kempe [136] in their

proof of the disorder criterion for separability (described in the next Subsection)

and will be used in our proof of the entropic entanglement criteria based on the

Rényi entropies (see Subsubsection 4.2.3.3).

2.6.1 Majorization

The theory of majorization is an area of mathematics that actually predates

quantum mechanics. The powerful techniques related to the majorization con-

cept were introduced to the field of quantum entanglement by Nielsen and Kempe

[136].

Majorization is an ordering on d-dimensional real vectors, which is intended

to capture the notion that one vector is more or less “mixed”, that is, disordered

than another [7]. To be more precise, suppose x = (x1, x2, . . . , xd) and y =
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(y1, y2, . . . , yd) are two d-dimensional real vectors and suppose in addition that

x and y are probability distributions, which means the components are non-

negative and add up to one. Using the notation x↓ to signify x rearranged in

such a way that its components are in decreasing order, for instance x↓1 would

denote the largest component of x. In other words, x↓ = (x↓1, x
↓
2, . . . , x

↓
d), where

x↓1 ≥ x↓2 ≥ . . . ≥ x↓d. The following relation is intended to capture the notion that

x is more disordered or mixed than y: x ≺ y (in words “x is majorized by y”) if

k∑
j=1

x↓j ≤
k∑
j=1

y↓j , (2.76)

for k = 1, 2, . . . , d− 1 and with equality holding when k = d (both vectors repre-

sent probability distributions).

The connection between majorization and disorder is clearly seen by means

of the following result:

x ≺ y if and only if x = Dy, (2.77)

where D is a doubly stochastic matrix (that is, it has non-zero entries and each

row and column add up to one). Thus, when x ≺ y one can think of y as being

the input probability distribution to a noisy channel described by the doubly

stochastic matrix D, resulting in a more disordered output probability distri-

bution x [136]. Relating this to entropy, one has that if x ≺ y it follows that

H(x) ≥ H(y). However, the converse does not necessarily hold in general and

so majorization is a more stringent notion of disorder than entropy [136]. The

connection between majorization and entropic functions is as follows: x ≺ y iff

for all entropic functions S(x) ≥ S(y) holds [137]. It has been shown in [138] that

there is a smaller set of concave entropic functions which is sufficient for implying

x ≺ y in the above statement.

To have another intuitive meaning of the concept of majorization, one can

make use of a result known as Birkhoff’s theorem, which implies that the doubly

stochastic matrices correspond exactly to the set of matrices which can be written

as convex combinations of permutation matrices [7]. Then x ≺ y ⇐⇒ x = Dy
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can be interpreted as x being more disordered than y since x can be obtained by,

say first permuting the elements of y and then mixing the resulting vectors [7],

thus resulting in greater disorder.

Given the known connections between separability and measures of disorder

such as the von Neumann entropy, it makes sense to expect a relationship be-

tween separability and majorization involving the vectors of eigenvalues for ρAB

and the reduced density matrices ρA and ρB. Nielsen and Kempe [136] proved

the disorder criterion for separability: non-entangled states of quantum systems

having distinguishable subsystems are such that the total density matrix ρAB

is always majorized by the marginal density matrix associated with one of the

subsystems, ρA or ρB. That is, the set of eigenvalues of separable mixed states

ρAB is majorized by those of ρA and ρB (zeros are appended to the vectors of

eigenvalues of ρA and ρB, in order to make their dimension equal to that of the

vector of eigenvalues of ρAB). For mixed states the disorder criterion is only a

necessary condition for separability since no sufficient condition for mixed states

can be solely based on the knowledge of the eigenvalues of ρAB, ρA and ρB [136].

The proof by Nielsen and Kempe is as follows [136]. If ρAB is separable it can

be written in the form eq. (2.5). Suppose the spectral decomposition for ρAB is

ρAB =
∑

k rk|ek〉〈ek|. By making use of the unitary freedom eq. (1.27), there is a

unitary matrix (uki) such that

√
rk|ek〉 =

∑
i

uki
√
pi|αi〉|βi〉. (2.78)

Tracing out system B in eq. (2.5) gives ρA =
∑

i pi|αi〉〈αi|, then letting ρA =∑
l al|fl〉〈fl| be a spectral decomposition and once again using the unitary free-

dom, results in
√
pi|αi〉 =

∑
l vil
√
al|fl〉 with (vil) being a unitary matrix. Sub-

stituting this into eq. (2.78) gives

√
rk|ek〉 =

∑
il

√
al uki vil|fl〉|βi〉. (2.79)

Multiplying this equation with its adjoint and then utilizing the orthonormality
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of the vectors |fl〉, one gets

rk =
∑
l

Dklal, (2.80)

where

Dkl =
∑
i1i2

u∗ki1uki2v
∗
i1l
vi2l〈βi1|βi2〉. (2.81)

To show that the eigenvalues of ρAB, namely {rk}, are majorized by the eigen-

values of ρA, namely {al}, one has to show that Dkl is doubly stochastic. By

defining |γkl〉 =
∑

i uki vil|βi〉 one sees that Dkl = 〈γkl|γkl〉 ≥ 0. The next step is

to demonstrate that the rows and columns sum to one by using the unitarity of

(uki) and (vil):∑
k

Dkl =
∑
i1i2

(∑
k

u∗ki1uki2

)
v∗i1l vi2l〈βi1|βi2〉

=
∑
i1i2

δi1i2 v
∗
i1l
vi2l〈βi1|βi2〉 =

∑
i

v∗il vil = 1, (2.82)

and similarly one has
∑

lDkl = 1. Therefore (Dkl) is a doubly stochastic matrix.

In the case of non-entangled states of a system of identical fermions the total

density matrix ρ is not necessarily majorized by the one-particle reduced density

matrix ρr. In Section 4.2 I am going to derive entropic entanglement criteria for

fermion systems by making use of majorization amongst others.

2.7 Uncertainty relations for distinguishable par-

ticles

The establishment of appropriate separability criteria is a fundamental first step

in the study of the entanglement properties of a given class of quantum systems.

This then enables us to tell whether a given quantum state is separable or en-

tangled. However, a good separability criterion, in addition to being a tool for

determining the absence or presence of entanglement, should also act as a basis

for quantitative measures of entanglement. An estimation of the amount of en-

tanglement exhibited by a given quantum state is provided by the deviation of
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2.7 Uncertainty relations for distinguishable particles

the actual properties of the state from those required by the separability criterion

[135].

The approach for entanglement detection by means of local uncertainty rela-

tions advanced by Hofmann and Takeuchi [139] for systems with distinguishable

subsystems is as follows. The idea is that the sum of the variances of local ob-

servables of a system admits a non-zero lower bound for separable states, and so

any state violating this bound is necessarily entangled.

The statistical variance of measurement outcomes of an observable Ai gives

the uncertainty of that Hermitian operator for any given quantum state |ψ〉 of

the system:

δAi(|ψ〉) = 〈(Ai − 〈Ai〉|ψ〉)2〉|ψ〉 = 〈A2
i 〉|ψ〉 − 〈Ai〉2|ψ〉. (2.83)

This uncertainty is positive for all relevant observables {Ai} of the system and

is zero only when the given quantum state is an eigenstate of Ai. However,

the uncertainty principle in its general form states that it is never possible to

simultaneously determine the measurement outcomes for all observables of the

system. Thus, if there is no simultaneous eigenstate of all the operators in {Ai},
there must exist an absolute lower limit U > 0 for the sum of their uncertainties,

holding for any quantum state |ψ〉,∑
i

δAi(|ψ〉) ≥ U ∀ |ψ〉. (2.84)

We now look at a bipartite quantum system composed of subsystems A and

B, characterized by the operators Ai and Bi respectively. Using the previous

argument, the sum uncertainty relations are then∑
i

δAi(|φ(A)〉) ≥ UA ∀ |φ(A)〉,
∑
i

δBi(|φ(B)〉) ≥ UB ∀ |φ(B)〉. (2.85)

The aim of the strategy was to find an uncertainty relation involving separable

states. Recall that a mixed state was said to be separable if it can be written

as a mixture of product states, see eq. (2.4) or eq. (2.5). So let us first look at
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what happens with the sum of the local uncertainties for a joint measurement

Ai +Bi = Ai ⊗ I + I⊗Bi on any product state ρm = ρ
(A)
m ⊗ ρ(B)

m :

δ[Ai +Bi](ρm) = δAi(ρ
(A)
m ) + δBi(ρ

(B)
m ) ∀ ρm = ρ(A)

m ⊗ ρ(B)
m . (2.86)

Without loss of generality one can use as general separable state the form in

eq. (2.5) and so we can take the product state ρm to be composed of the tensor

product of two projectors, which gives rise to∑
i

δ[Ai +Bi](ρm) ≥ UA + UB ∀ ρm = |φ(A)
m 〉〈φ(A)

m | ⊗ |φ(B)
m 〉〈φ(B)

m |. (2.87)

Bringing to mind that the uncertainty of a mixture is always greater or equal

than the averaged uncertainties of the components, one has that for a general

separable mixed state ρsep =
∑

m pmρm and an arbitrary observable R,

δR(ρsep) ≥
∑
m

pmδR(ρm). (2.88)

It is thus clear that∑
i

δ[Ai+Bi](ρsep) ≥ UA+UB ∀ ρsep =
∑
m

pm|φ(A)
m 〉〈φ(A)

m |⊗|φ(B)
m 〉〈φ(B)

m |. (2.89)

Hence any violation of this uncertainty relation indicates that the quantum state

has to be entangled, since entanglement describes correlations that are more

precise (hence the uncertainty is smaller than the lower bound) than the ones

represented by mixtures of product states [139]. A quantitative measure of en-

tanglement which can be implemented experimentally is provided by the relative

violation of a local uncertainty [139], given by

CLUR(ρ) = 1−
∑

i δ[Ai +Bi](ρ)

UA + UB
. (2.90)

For 0 < CLUR(ρ) ≤ 1, the state ρ is entangled and the greater the value the

more entangled is the state. Note that when CLUR(ρ) ≤ 0, we cannot draw any

conclusion since the state ρ might be either separable or entangled as it complies

with the uncertainty relation. To detect a given entangled state, one therefore
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has to choose Ai and Bi in such a way that this given state actually violates the

resulting uncertainty relation.

The approach described next was applied by Gühne [140] to composite quan-

tum systems with distinguishable subsystems. Instead of formulating separabil-

ity criteria based upon the uncertainties of observables of the form Ai + Bi =

Ai ⊗ I + I ⊗ Bi, one considers families of non-local observables of the form

Mi = |ψi〉〈ψi|, where |ψi〉 are appropriate pure states of the system under consid-

eration. The advantage of this method is that it can be generalized to multipartite

systems.

Let us illustrate this scheme by considering a bipartite system composed of

two qubits. The notation used for the variance or uncertainty of an observable

M is

δ2(M)ρ = 〈M2〉ρ − 〈M〉2ρ. (2.91)

One starts with |ψ1〉 = a|00〉 + b|11〉, an entangled state written in the Schmidt

decomposition, with a ≥ b. The idea is that there exist Mi such that, for |ψ1〉,∑
i δ

2(Mi)|ψ1〉〈ψ1| = 0 holds, whereas separable states ρsep fulfil

4∑
i=1

δ2(Mi)ρsep ≥ 2a2b2. (2.92)

To achieve this one defines |ψ2〉 = a|01〉 + b|10〉, |ψ3〉 = b|01〉 − a|10〉, |ψ4〉 =

b|00〉 − a|11〉 and so Mi = |ψi〉〈ψi|, i = 1, 2, 3, 4. This indeed gives∑
i

δ2(Mi)|ψ1〉〈ψ1| = 0. (2.93)

Making use of eq. (2.75), one only needs to prove the bound in eq. (2.92) for a

pure product vector |φsep〉. Writing

4∑
i=1

δ2(Mi)|φsep〉〈φsep| = 1−
∑
i

(|〈φsep|ψi〉|2)2, (2.94)

one can find the maximum of
∑

i(|〈φsep|ψi〉|2)2 instead of the minimum on the left
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hand side. This one does by expanding the product vector |φsep〉 in the product

basis determined by the Schmidt basis of the |ψi〉’s,

|φsep〉 = (α0|0〉+α1|1〉)(β0|0〉+β1|1〉) = α0β0|00〉+α0β1|01〉+α1β0|10〉+α1β1|11〉.
(2.95)

So one should find the maximum of |〈φsep|ψi〉|2 for each i, however, by making

use of symmetry, it suffices to find the maximum for one i. Now

|〈φsep|ψ1〉| = |aα∗0β∗0 + bα∗1β
∗
1 |

≤ |a||α0||β0|+ |b||α1||β1| (subadditivity of absolute value)

≤ |a|(|α0||β0|+ |α1||β1|) (a ≥ b)

≤ |a|
√
|α0|2 + |α1|2

√
|β0|2 + |β1|2 (Schwarz inequality)

= |a| (normalization). (2.96)

Thus for all i, |〈φsep|ψi〉|2 ≤ a2 and so
∑

i(|〈φsep|ψi〉|2)2 ≤ (a2)2 +(1−a2)2, where

the maximum is attained when |φsep〉 is a Schmidt basis state. Then again using

the normalization of the |ψi〉’s, this finally leads to

4∑
i=1

δ2(Mi)|φsep〉〈φsep| ≥ 2a2b2. (2.97)

Since we want an uncertainty relation involving mixed separable states we make

use of eq. (2.75) to arrive at

4∑
i=1

δ2(Mi)ρsep ≥ 2a2b2. (2.98)

Choosing a = b = 1/
√

2 gives the greatest value for the right hand side of the above

expression and hence the best entanglement criterion, since any state violating

the uncertainty relation is entangled.

Entropic uncertainty relations provide an alternative way to develop entan-

glement criteria based upon uncertainty relations. The idea of this approach is

to replace the statistical variance or uncertainty with either the Shannon, Rényi

or Tsallis entropy as a means of estimating the uncertainties associated with
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the measurement process. The application of this procedure to the detection of

entanglement in quantum systems consisting of distinguishable subsystems was

investigated by Gühne and Lewenstein in [141] and by Giovannetti in [142].

The idea is to find entropic uncertainty relations which have to hold for sep-

arable states, but which might be violated by entangled states. Assume that one

has a non-degenerate observable M with a spectral decomposition

M =
n∑
i=1

µi|mi〉〈mi|. (2.99)

When the system is in a given quantum state ρ, a measurement of this observable

gives rise to a probability distribution of the different outcomes (that is, the

probabilities of obtaining the different eigenvalues of M),

P(M)ρ = (p1, . . . , pn), pi = Tr(|mi〉〈mi|ρ) = 〈mi|ρ|mi〉. (2.100)

One can now look at the entropy of this probability distribution, written as

S[P(M)]ρ = S[M ]ρ. The scheme is to take one or several observables Mi and

investigate the sum of the entropies
∑

i S[Mi]ρ. Lower bounds for this sum can

be derived for product states and then by concavity, these bounds also hold for

separable mixed states. When a state violates this entropic uncertainty relation,

it implies that the state must be entangled.

Gühne and Lewenstein [141] devised two methods for obtaining separabil-

ity criteria from entropic uncertainty relations. For the first method one only

looks at one observable M . The choice of M is such that the set {|mi〉} of

eigenvectors of M does not contain any product vector and is non-degenerate,

M =
∑

i µi|mi〉〈mi|. This means that there must exist a bound C > 0 such that

for all separable pure states |φsep〉,

S(T )
q [P(M)]|φsep〉〈φsep| ≥ C ∀ |φsep〉 (2.101)

since pi = |〈mi|φsep〉|2 6= 1 ∀ i and so the Tsallis entropy can never be zero. One

can determine C from the Schmidt coefficients of the eigenvectors |mi〉 of M .
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Assume that c < 1 is an upper bound for all the squared Schmidt coefficients of

all the |mi〉. Since the maximal Schmidt coefficient of an entangled state |mi〉
is just the maximal overlap between |mi〉 and the product states [141], it means

that all the probabilities pi appearing in P(M)|φsep〉〈φsep| are bounded by c (all

separable states are product states). Knowing this, one now has to minimize

S
(T )
q [P(M)]|φsep〉〈φsep| in order to obtain C. Since the Tsallis entropy is concave,

the minimum will be obtained when the probability distribution is as peaked as

possible. For that we need to introduce the notation bxc to denote the integer

part of x. The minimum is reached when letting as many as possible, namely b1
c
c

of the pi satisfy the bound pi = c (the sum of their probabilities is then b1
c
cc),

while at most one other pi does not satisfy the bound but is as big as possible,

namely 1 − b1
c
cc (remember

∑
i pi = 1) and the remaining pi are equal to zero.

Then

S(T )
q [M ]|φsep〉〈φsep| ≥

1− b1
c
ccq − (1− b1

c
cc)q

q − 1
. (2.102)

From the concavity of the entropy we have

S(T )
q [M ]ρsep ≥

1− b1
c
ccq − (1− b1

c
cc)q

q − 1
(2.103)

for all separable mixed states [141].

The second method for deriving separability criteria deals with product ob-

servables, which might be degenerate. Since the spectral decomposition of a de-

generate observable M is not unique, the definition of P(M) is not unique. How-

ever, by combining eigenvectors with the same eigenvalue one obtains a unique

decomposition of the form M =
∑

i ηiXi with ηi 6= ηj for i 6= j and the Xi are

orthogonal projectors of maximal rank [141]. Hence one can define pi = Tr(ρXi).

Gühne and Lewenstein showed that for a bipartite Hilbert space H = HA ⊗HB

and observables An and Bn (with non-zero eigenvalues) on HA and HB respec-

tively, we have that for all product states ρ = ρA ⊗ ρB

P(An ⊗Bn)ρ ≺ P(An)ρA ∀ ρ = ρA ⊗ ρB (2.104)
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2.7 Uncertainty relations for distinguishable particles

and also P(An ⊗Bn)ρ ≺ P(Bn)ρB . This means

S[An ⊗Bn]ρA⊗ρB ≥ S[An]ρA (2.105)

and also S[An ⊗ Bn]ρA⊗ρB ≥ S[Bn]ρB . Now considering two observables (with

non-zero eigenvalues) on each subsystem, namely A1, A2 and B1, B2, one has

that if they obey an entropic uncertainty relation of the type

S[A1]ρ(A) + S[A2]ρ(A) ≥ C (2.106)

or the same bound for B1, B2, then

S[A1 ⊗B1]ρ + S[A2 ⊗B2]ρ ≥ C (2.107)

when ρ =
∑

i qiρ
(A)
i ⊗ ρ

(B)
i is a separable mixed state. This follows directly from

the concavity property of entropy and eq. (2.105). This demonstrates how any

entropic uncertainty relation on one subsystem can be transferred into a separa-

bility criterion. Also of interest is when one performs numerical calculations for

separable states to determine the bounds on S[A1⊗B1]ρ+S[A2⊗B2]ρ since then

one only has to minimize the entropy for one subsystem [141].

In Section 4.1 I am going to extend the above approaches to fermionic systems.
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Chapter 3

Extensions of Landauer’s

Principle and Conservation of

Information in General

Probabilistic Theories

3.1 Landauer’s Principle and Divergenceless Dy-

namical Systems

Landauer’s principle is one of the pillars of the physics of information as discussed

in Subsection 1.2.3. It constitutes one of the foundations behind the idea that

“information is physical”. Landauer’s principle establishes the smallest amount

of energy that has to be dissipated when one bit of information is erased from a

computing device. In this Section I explore an extended Landauer-like principle

valid for general dynamical systems (not necessarily Hamiltonian) governed by

divergenceless phase space flows.

This Section is based on the publication [57] “Landauer’s Principle and Diver-

genceless Dynamical Systems”, C. Zander, A.R. Plastino, A. Plastino, M. Casas

and S. Curilef, Entropy 11 (4), (2009) pp. 586-597 and is organized as follows.

In Subsection 3.1.1 a brief introduction is provided and in Subsection 3.1.2 we

derive a generalized Landauer-like principle valid for divergenceless systems. Sub-
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3.1 Landauer’s Principle and Divergenceless Dynamical Systems

section 3.1.3 attempts to provide a further extension of this result utilizing the

superstatistical formalism. Some conclusions are given in Subsection 3.1.4.

3.1.1 Introduction

The physics of information constitutes an active research field that has been the

focus of considerable attention in recent times [1–6, 15, 16, 143, 144]. Due to sem-

inal results generated by these research efforts the physical reality of information

is by now generally acknowledged. In this regard, the ultimate performance lim-

its imposed by the laws of physics on any real device that processes or transmits

information are starting to be understood [6, 39]. On the other hand, several

theoretical developments indicate that the concept of information is essential for

understanding the basic fabric of the physical world [1–6]. Tools inspired by

information-theoretical ideas, such as the maximum entropy (maxent) principle

[145–147] have been successfully applied to the study of several physical scenar-

ios. Last, but certainly not least, the ideas and methods from the physics of

information lead to important points of contact between physics and biology. In

fact, information processing is clearly at the very heart of biology and has been

appropriately dubbed the “touchstone of life” [17].

Landauer’s principle is one of the most fundamental results in the physics

of information. It constituted a historical landmark in the development of the

field by directly connecting information processing with conventional physical

quantities [18]. Most remarkably, it played a prominent role in the final defeat of

Maxwell’s demon [6]. Landauer’s principle states that there is a minimum amount

of energy that has to be dissipated, on average, when erasing a bit of information

in a computing device working at absolute temperature T . This minimum en-

ergy is equal to kT ln 2, where k is Boltzmann’s constant [19–21, 56]. Landauer’s

principle has profound implications as it allows for novel, physically motivated

derivations of several important results in classical and quantum information the-

ory [22]. Moreover, it proved to be a powerful heuristic tool for establishing new

links between, or obtaining new derivations of, fundamental aspects of thermo-

dynamics and other areas of physics [23].

90

 
 
 



3.1 Landauer’s Principle and Divergenceless Dynamical Systems

It is fair to say that most derivations of Landauer’s principle can be regarded as

semi-phenomenological, since they are based on a direct application of the second

law of thermodynamics. However, derivations based upon dynamical principles

have also been advanced. They assume that the systems under consideration are

governed by a Hamiltonian dynamics and are in thermal equilibrium, implying

that they can be described by Gibbs’ canonical distributions. In view of the

fundamental character of Landauer’s principle, however, it is highly desirable to

explore extensions of it applicable to systems governed by more general kinds of

dynamics. These developments are inscribed within the more general program

of extending the methods of statistical mechanics to non-Hamiltonian systems

[148, 149]. Of special relevance is the class of dynamical systems with divergence-

less phase space flows, that include Hamiltonian systems as particular members.

Divergenceless systems are characterized by the remarkable property that their

dynamics preserves information. There are interesting divergenceless dynamical

systems in physics, theoretical biology and other areas that are not Hamiltonian,

or that have their most natural description in terms of a non-canonical set of

variables. For example, the Lotka-Volterra predator-prey systems [150, 151] and

the Nambu systems [152] share the vanishing divergence property. The Lotka-

Volterra predator-prey systems constitute some of the most important dynamical

systems considered in theoretical biology [150]. Nambu systems have been the

focus of considerable research activity (see [153–157] and references therein). The

main difference between Hamiltonian systems and Nambu systems is that, while

the dynamics of a Hamiltonian system is governed by one single phase space func-

tion (the Hamiltonian function) the dynamics of a Nambu system is governed by

a set of N (N ≥ 2) such functions or “Hamiltonians” [152]. The dynamics of

Nambu systems can be formulated in terms of Poisson-like brackets involving,

in general, more than two functions. In the case of a Nambu system with N

“Hamiltonians” the time derivative of a general phase space function A is given

by an appropriate (N + 1)-bracket depending on the function A and on the N

Hamiltonians. Unlike Hamiltonian systems, Nambu systems can be defined on

phase spaces with an odd number of dimensions. The Nambu dynamical struc-

tures arise in a natural way in several contexts. For instance, Nambu dynamics

has been applied to the relativistic dynamics of charged spinning particles [156],

and to some hydrodynamical type systems [157].
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3.1 Landauer’s Principle and Divergenceless Dynamical Systems

Information processing can be realized in various physical settings. Indeed,

one of the main ideas behind the physics of information and computation is that

every physical system (even the whole universe) can be construed as an informa-

tion processing system. Consequently, it is of considerable interest to extend the

fundamental principles of the physics of information to more general scenarios.

These more general situations may encompass compelling examples of physical

realizations of information processes such as, for instance, those related to biol-

ogy. Indeed, biological systems process information at molecular, cellular, and

higher levels [17].

The aim of the present work is to explore extensions of Landauer’s principle

to the aforementioned more general scenarios. We shall derive a Landauer-like

principle for dynamical systems with divergenceless phase space flows. This result

establishes a direct connection (within the alluded dynamical context) between

an information-processing operation, on the one hand, and changes in the mean

value of a relevant dynamical quantity, on the other hand. In the particular case

of the usual Hamiltonian scenario our generalized result reduces to the standard

Landauer principle. There is much to be gained from considering Landauer-

like principles within the abovementioned general dynamical settings. Besides

opening a range of possible new applications, this line of enquiry contributes

to a deeper understanding of the main dynamical and information-theoretical

ingredients at play behind Landauer’s principle.

3.1.2 An extension of Landauer’s principle to divergence-

less dynamical systems

In this Subsection I am going to formulate a generalization of Landauer’s princi-

ple appropriate for dynamical systems with vanishing divergence. We are going

to consider a composite system A + B compounded by an information “storing

device” A and an “environment” B. The composite system will be described by

an appropriate ensemble probability density describing the probability of finding

the system in different regions of phase space. Generalizing the standard Hamil-

tonian scenario, the erasure of one bit of information from the storing device
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3.1 Landauer’s Principle and Divergenceless Dynamical Systems

A will be identified with a dynamical process (described by an appropriate Li-

ouville equation) where the Gibbs-Shannon entropy of the marginal probability

density corresponding to the device A decreases by k ln 2 (here k is an appropri-

ate constant defining the units in which the entropy is measured; in the standard

Hamiltonian statistical mechanics setting k stands for Boltzmann’s constant). In

the Hamiltonian case the device A is modelled as a particle moving in a one-

dimensional double-well potential, with the left and right wells representing the

two possible states of the classical bit (“0” and “1”). Before erasure the marginal

probability density describing the particle is such that the particle is equally

likely to be in either well. This corresponds to a situation where the two states

of the bit are equally probable. After erasure the bit is set to one of its possible

states (say, state “0”), the particle’s marginal probability density is concentrated

in one well, and its entropy decreases by an amount k ln 2. In the more general

setting that we are going to explore we shall interpret the decrease in k ln 2 of the

entropy of subsystem A as the most fundamental characterization of a process

corresponding to the erasure of one bit of information from A. This entropy re-

duction corresponds to a decrease of the “spread” of the phase space distribution

of A and, consequently also to a decrease of the amount of information that can

be encoded in the precise location of system A in phase space.

3.1.2.1 Divergenceless dynamical systems

Let us consider a dynamical system

ż = w (z), z,w ∈ RN (3.1)

where the vector z represents a point in the system’s phase space. The phase

space variables are separated in two subsets,

z = (x,y) (3.2)

with

x ∈ RN1 ,

y ∈ RN2 , N1 +N2 = N (3.3)

93

 
 
 



3.1 Landauer’s Principle and Divergenceless Dynamical Systems

where x stands for the phase space coordinates of the “information storage de-

vice” A and y denotes the phase space coordinates of the environment B.

The dynamical equations of motion of the composite A+B can be written as

ẋ = u(x,y)

ẏ = v(x,y) (3.4)

where w = (u,v) is a divergence-free phase space flow. That is,

∇ ·w =

(
N1∑
i=1

∂ui
∂xi

)
+

(
N2∑
j=1

∂vj
∂yj

)
= 0 (3.5)

where the N -dimensional ∇-operator is defined in the standard way,

∇ =

(
∂

∂x1

, . . . ,
∂

∂xN1

,
∂

∂y1

, . . . ,
∂

∂yN2

)
. (3.6)

We are going to consider divergenceless dynamical systems (3.4) admitting a

constant of motion I(x,y),

dI

dt
=

(
N1∑
i=1

∂I

∂xi
ui

)
+

(
N2∑
j=1

∂I

∂yj
vj

)
= 0. (3.7)

Hamiltonian systems fulfil condition (3.5) and admit the Hamiltonian itself as a

constant of motion, but there are other interesting systems compliant with (3.5)

and admitting an integral of motion I. Indeed, these two fundamental features

allow for deriving many aspects of the canonical statistical mechanical formal-

ism without recourse to the detailed structure of standard Hamiltonian dynamics

[149, 158]. Among others, the Lotka-Volterra predator-prey systems [150, 151]

and the Nambu systems [152–157] share the vanishing divergence property and

admit an integral of motion.

If the system A is to behave as a proper “information storage device”, it

is reasonable to assume that before and after the information erasure process,

the systems A and B are only weakly coupled. In fact, as far as the storage
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3.1 Landauer’s Principle and Divergenceless Dynamical Systems

of information is concerned, the effect of this “weak coupling” is assumed to

be negligible before and after the erasure process (a system that “preserves”

information should not interact too strongly with the environment). That is, we

assume that in equation (3.4), u depends weakly on y and v depends weakly

on x. Consistent with the weak coupling between systems A and B, we are also

going to assume that before and after the information erasure the integral of

motion I adopts the additive form

I = D(x) + C(y). (3.8)

The vector fields u and v are assumed to be time-independent before and after

the erasure process (that is, the dynamical system (3.4) is autonomous), but u

and v may depend explicitly on time during the erasure process. Consequently,

during the erasure process the quantity I may not be conserved, but it is strictly

conserved before and after that process. Notice, however, that the conservation

of I does not imply that D and C are individually conserved. Even the weak cou-

pling between the systems A and B allows for changes in C and D, but keeping

their sum constant. (In the limit case of no interaction between systems A and

B, the quantities D and C become individual integration constants of these two

systems, respectively.) This situation is similar to the one considered (in connec-

tion with the energy) in standard statistical mechanics when discussing a system

weakly coupled to a heat bath. The divergenceless property (3.5), which is the

most important feature characterizing the dynamical systems that are considered

here, and the main ingredient in the derivation of the extended Landauer’s prin-

ciple, is assumed to hold all the time.

A time-dependent statistical ensemble of systems evolving according to the

equations of motion (3.4) is described by a phase space probability density F (x,y, t)

governed by Liouville’s equation,

∂F

∂t
+∇ · (F w) = 0 (3.9)
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3.1 Landauer’s Principle and Divergenceless Dynamical Systems

which, due to the divergenceless condition ∇ ·w = 0 reduces to

∂F

∂t
+ w · ∇F = 0. (3.10)

As mentioned before, this includes Hamiltonian systems but encompasses more

general situations as well, such as the Nambu systems and Lotka-Volterra predator-

prey systems [155].

The Boltzmann-Gibbs-Shannon information measure is given by

S[F ] = −k
∫
F lnFdΩ (3.11)

where k is an appropriate constant determining the units in which S is mea-

sured and dΩ is the phase space volume element. The time dependence of the

Boltzmann-Gibbs-Shannon measure evaluated on a time-dependent solution of

Liouville’s equation complies with (see [155] and references therein)

dS

dt
=

∂S

∂t
= −

∫
∂F

∂t
lnFdΩ =

∫
∇ · (Fw) lnFdΩ

= −
∫

w · ∇FdΩ =

∫
F (∇ ·w) dΩ

= 〈∇ ·w〉 (3.12)

where the fact has been used that F is normalized to unity and then repeated

integration by parts has been performed where one assumes that eventual bound-

ary terms vanish. This relation holds for any autonomous dynamical system [155]

and in the case of divergenceless systems this implies that we have

dS

dt
= 0. (3.13)

This equation summarizes one of the most important features of the behaviour of

divergenceless dynamical systems: the conservation of information. If, following

Jaynes, we interpret S[F ] as a measure of our lack of knowledge of the precise

state of the system, then equation (3.13) means that the amount of “missing”

knowledge is constant in time. This information-preserving character of dynam-

ical evolution is one of the most important features of the basic laws of nature,
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3.1 Landauer’s Principle and Divergenceless Dynamical Systems

both in the classical and in the quantum regimes. Not only at the fundamental

level is divergenceless dynamics relevant but also, in some cases, in connection

with the phenomenological description of higher-level systems in physics, biology

and other fields.

3.1.2.2 Extended Landauer-like principle

As part of the program of exploring some basic aspects of the physics of infor-

mation within general dynamical settings, I here extend Landauer’s principle to

systems described by divergenceless phase space flows.

Prior to erasure the composite system is described by the ensemble distribu-

tion Finitial = Finitial(x,y) where, as already said, x and y represent the com-

plete sets of phase space variables of the storage device A and the environ-

ment B, respectively. After erasure the composite A + B is given by the final

distribution Ffinal = Ffinal (x,y). The concomitant marginal distributions read

F
(A)
initial/final = F

(A)
initial/final (x) =

∫
Finitial/final dΩ(B) and F

(B)
initial/final = F

(B)
initial/final (y) =∫

Finitial/final dΩ(A), where dΩ(A) and dΩ(B) denote the phase space volume elements

associated with the storing device and the environment, respectively. The total

volume element of the composite system is dΩ(A+B) = dΩ(A)dΩ(B). The erasure

process starts with an initial distribution of the form

Finitial (x,y;λ) =
e−

λ
k

(D(x)+C(y))

Z(A)(λ)Z(B)(λ)
=

e−
λ
k
D(x)

Z(A)(λ)
· e
−λ
k
C(y)

Z(B)(λ)

= F
(A)
initial (x;λ) · F (B)

initial (y;λ) (3.14)

where I = D(x)+C(y) denotes some appropriate, conserved dynamical quantity

(see equation (3.8)). Z(A)(λ) and Z(B)(λ) are the accompanying partition func-

tions of the bit-storage device (system A) and the “environment” (system B),

respectively given by

Z(A)(λ) =

∫
e−

λ
k
D(x)dΩ(A)

Z(B)(λ) =

∫
e−

λ
k
C(y)dΩ(B). (3.15)

We assume that both D(x) and C(y) comply with all the properties required for
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3.1 Landauer’s Principle and Divergenceless Dynamical Systems

the convergence of Z(A)(λ) and Z(B)(λ). In particular, we assume that D(x) and

C(y) are bounded from below. In the standard Hamiltonian case we have that

D = HA and C = HB are the Hamiltonians of the information storage device

and the environment (heat bath), respectively, and the initial distribution (3.14)

corresponds to the Gibbs canonical distribution describing thermal equilibrium at

temperature T =1/λ. The initial distribution is also a maximum entropy distri-

bution that maximizes the entropy under the constraint given by the mean value

of 〈I〉 = 〈D + C〉. Before the erasure process (when the dynamics of the A + B

system is autonomous and the quantity I is conserved) this maxent distribution

constitutes a stationary solution of Liouville’s equation. This stationary maxent

density can be regarded, according to information theoretical interpretation of

equilibrium statistical mechanics, as the natural one for describing an equilib-

rium situation.

After erasure, the composite system, i.e., storage device plus heat bath, has

evolved into a new state whose final distribution Ffinal = Ffinal (x,y;λ) yields a

marginal distribution of the storage device that verifies:

S
[
F

(A)
initial

]
= S

[
F

(A)
final

]
+ k ln 2. (3.16)

In other words, the erasure of a single bit of memory implies a decrease of k ln 2

in the entropy of the storage device.

The Lagrange multiplier λ describing the initial distribution can be seen as

a parameter that characterizes a family of different realizations of the erasure

process Finitial (x,y;λ) → Ffinal (x,y;λ). Each realization is associated with a

particular time-dependent solution of Liouville’s equation, ∂F
∂t

+ ∇ · (F w) = 0.

Notice, however, that the total ensemble distribution is not required to have the

canonical form throughout the erasure process, particularly, not after the erasure

process has finalized.

Before and after erasure the total entropies of the composite system are related
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by

S
[
Finitial

]
= S

[
F

(A)
initial

]
+ S

[
F

(B)
initial

]
= S

[
Ffinal

]
≤ S

[
F

(A)
final

]
+ S

[
F

(B)
final

]
. (3.17)

In (3.17) the first equality represents the additivity of Shannon’s entropy for the

initial canonical distribution (which is factorizable) and the second equality is the

conservation of the total entropy in the course of Liouville’s evolution. The in-

equality, in contrast, is due to the subadditivity of Shannon’s entropy [137]. This

inequality becomes an equality if the final joint probability density describing the

composite A+B is factorizable. In the general case, however, when the systems

A and B are correlated after the erasure process, we have a strict inequality in

(3.17).

Combining (3.16) with (3.17) leads to

S
[
F

(B)
final

]
− S

[
F

(B)
initial

]
≥ k ln 2. (3.18)

The maxent probability density can be characterized either as the probability

density of maximum entropy S for a given value of 〈C〉 or, alternatively, as the

probability density of minimum 〈C〉 for a given S. Therefore, the initial and final

mean values of C(y) verify

〈C〉final − 〈C〉initial ≥ 〈C〉(canonical)
final − 〈C〉initial (3.19)

where 〈C〉(canonical)
final is the value of 〈C〉 associated with a maxent distribution hav-

ing the same value of the entropy as F
(B)
final. The maxent probability distribution

formally has the same structure as the canonical ensemble in standard statistical

physics. The canonical distribution is a mono-parametric one, so that everything

can be regarded as depending on one quantity. For instance, one can regard

〈C〉 as a function of the entropy S, where in the standard canonical ensemble 〈C〉
plays the role of the mean energy and λ plays the role of inverse temperature 1/T .

Now, we have the following relations (which, replacing H for C, coincide with
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well known relationships satisfied by Gibbs canonical distribution):

d〈C〉
dS

=
1

λ
> 0

d2〈C〉
dS2

= −
(

1

λ2

)(
dλ

dS

)
> 0, (3.20)

where in these derivatives 〈C〉 always refers to the canonical distribution. This

means that 〈C〉 is an increasing function of S and the derivative d〈C〉/dS is

also increasing with S. The latter statement is due to dλ/dS < 0, which in

the standard sense arises from the entropy S being an increasing function of the

temperature T and consequently S is a decreasing function of 1/T . The first part

of equation (3.20) can be seen from the expression of the entropy for the initial

distribution which is canonical,

S[Finitial] = λ〈D〉initial +k lnZ(A) +λ〈C〉initial +k lnZ(B) = S
[
F

(A)
initial

]
+S
[
F

(B)
initial

]
.

(3.21)

The above two properties in (3.20) together with eq. (3.18) gives rise to the

following inequality

〈C〉(canonical)
final − 〈C〉initial =

∫ S
(B)
final

S
(B)
initial

(
d〈C〉
dS

)
dS

≥
∫ S

(B)
final

S
(B)
initial

(
d〈C〉
dS

)
initial

dS

=
[
S

(B)
final − S

(B)
initial

]
·
(
d〈C〉
dS

)
initial

=
1

λ

[
S

(B)
final − S

(B)
initial

]
≥ k

λ
ln 2. (3.22)

Combining now the inequalities (3.19) and (3.22), one readily obtains a general-

ized version of Landauer’s principle:

〈C〉final − 〈C〉initial = ∆〈C〉(λ) =

∫ {
F

(B)
final−F

(B)
initial

}
C(y)dΩ(B) ≥ 1

λ
k ln 2

(3.23)

which relates the initial and final mean values of the dynamical quantity C as-

sociated with the environment B. Summing up, using (3.18) and basic features

of the maxent probability density (which are basically those satisfied by Gibbs
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canonical distribution) one can derive an extension of Landauer’s principle valid

in the context of general divergenceless dynamical systems. This result estab-

lishes a direct link between an information-processing operation (the erasure of

one bit of information from system A) and the change in the mean value of a

dynamical quantity that is relevant for characterizing the state of system B. In

the standard Hamiltonian case, this means the minimum increase in energy of

system B is kT ln 2 (Landauer’s principle in the standard sense).

3.1.2.3 Discussion on the derivation of the Landauer-like principle

It is worth noticing that some of the assumptions made in order to obtain a

Landauer-like principle for general divergenceless dynamical systems were not

explicitly used in the derivation of the main result (3.23). Specifically, the con-

servation of the dynamical quantity I (equation (3.8)) and the hypothesis of weak

interaction between systems A and B were not, strictly speaking, used in order

to derive equation (3.23). Even though these assumptions are physically very

reasonable, they are not essential for obtaining (3.23). The precise form of the

initial phase space probability density (3.14) is not required either. It can be

verified that a more general initial probability density of the form:

Finitial (x,y;λ) = F
(A)
initial (x)

e−
λ
k
C(y)

Z(B)(λ)
(3.24)

with an arbitrary (normalizable) starting marginal probability density F
(A)
initial for

the system A still leads to the Landauer-like result (3.23).

It must be emphasized that, even if the previously mentioned assumptions

are not mathematically indispensable for the derivation of (3.23), they are phys-

ically reasonable and, in particular, lend plausibility to the initial phase space

probability density (3.14) as a maxent description of an equilibrium situation.

3.1.3 Systems described by non-exponential distributions

An interesting proposal for the description of non-equilibrium, meta-stable states

has been advanced by Beck and Cohen (BC) [159–162]. The BC approach is based

on the representation of statistical ensemble distributions as superpositions of
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Gibbs distributions characterized by different temperatures. The corresponding

formalism is usually referred to as “superstatistics” and proved to be successful

in dealing with various physical scenarios, most notably turbulence [161]. We are

now going to use the BC procedure to obtain an extended Landauer-like principle

for divergenceless systems described by non-exponential distributions associated

with out of equilibrium situations.

In order to develop the aforementioned extension of Landauer’s principle one

needs a proper representation of statistical ensembles that are more general than

the standard, exponential maxent ensembles. One may consider maximum en-

tropy representations of probability distributions based on generalized entropic

measures. This approach has been adopted by several researchers in recent years,

with remarkable success in the modelling of different systems in meta-stable

states. Alas, this procedure does not seem to be appropriate for the general-

ization of Landauer’s principle because the physically most relevant, generalized

entropies are not subadditive. To overcome this difficulty we here apply the afore-

mentioned alternative description of non-equilibrium ensembles, namely the one

based on the BC formalism [159, 160]. This approach has the important advan-

tage of being independent of specific properties of generalized entropic measures.

Moreover, the BC formalism still allows for exploiting some of the nice and famil-

iar features of the conventional Boltzmann-Gibbs-Shannon logarithmic entropy

and of the associated canonical formalism. We introduce a normalized BC rep-

resentation of the initial distribution of the composite system A+B as

Finitial (x,y) =

∫∞
0
f(λ)

[
e−

λ
k

(D(x)+C(y))

Z(A)(λ)Z(B)(λ)

]
dλ∫∞

0
f(λ)dλ

. (3.25)

A non-equilibrium phase space probability density of the form (3.25) is a linear

superposition of a family of exponential maxent probability densities, in which

the weight corresponding to each temperature is given by the function f(λ) -

the composite system ‘bit-storing device A plus environment B’ is in a non-

equilibrium state characterized by a “superposition of different temperatures” or

a “fluctuating temperature” described by f(λ). The environment (both before

and after the erasure process) “selects” a particular distribution of temperatures
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f(λ) for the bit-storing device. In the special case of f(λ) = δ(λ− λ0), the usual

equilibrium case ensues. Notice that, for any given weight function f(λ), the

initial probability density (3.25) constitutes a stationary solution of Liouville’s

equation if I = D(x) + C(y) is a constant of motion.

The starting probability density (3.25) is a linear combination of canonical expo-

nential distributions Finitial (x,y;λ). Due to the linearity of Liouville’s equation

this initial distribution (3.25) leads, after the erasure process is completed, to the

final distribution

Ffinal (x,y) =

∫∞
0
f(λ)Ffinal(x,y;λ)dλ∫∞

0
f(λ)dλ

. (3.26)

By combining (3.23) with (3.25) and (3.26) we obtain a generalized Landauer-

like principle providing a lower bound for the change in 〈C〉 during the erasure

process,

∆〈C〉=
∫ {

F
(B)
final − F

(B)
initial

}
C(y) dΩ(B)

=
1∫∞

0
f(λ)dλ

∫ ∞
0

f(λ)

[∫ (
Ffinal (x,y;λ)− e−

λ
k

(D(x)+C(y))

Z(A)(λ)Z(B)(λ)

)
C(y) dΩ(B)

]
dλ

≥
∫∞

0
f(λ) k

λ
dλ∫∞

0
f(λ)dλ

ln 2, (3.27)

where F
(B)
initial and F

(B)
final are, again, the bath’s initial and final marginal probability

distributions, respectively.

Remarks similar to those made in Subsubsection 3.1.2.3 apply here concerning

the role played by the assumptions of weak coupling between the bit-storage

system A and the environment B and the conservation of C + D. Furthermore,

it can be verified that an initial phase space probability density of the form

Finitial (x,y) = F
(A)
initial (x)

∫∞
0
f(λ) 1

Z(λ)
e−

λ
k
C(y)dλ∫∞

0
f(λ)dλ

(3.28)

also leads to the Landauer-like result (3.27).
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3.1.4 Summary and conclusions

In the present effort I have developed extended Landauer-like principles valid

within scenarios involving general dynamical systems exhibiting divergenceless

phase space flows.

Two fundamental features of Shannon’s information measure S[F ] lead to

these Landauer-like results:

• The conservation of S under the Liouville’s ensemble dynamics associated

with divergenceless systems.

• The subadditive character of S.

The profound links between Landauer’s principle and the second law of ther-

modynamics [22] suggest that the present results may help to explore analogues

of the second law in non-standard contexts, like the biological ones discussed in

[150, 151].

The lack of subadditivity exhibited by some important non-logarithmic in-

formation or entropic functionals seems to be a serious difficulty for deriving

generalizations of Landauer’s principle in terms of the non-standard maxent for-

malisms that are nowadays popular for the study of non-equilibrium, meta-stable

states. On the other hand, the Beck-Cohen approach allows for the extension of

Landauer’s principle to some of those scenarios. This important issue, however,

needs further exploration and the idea would be to obtain a valid formulation of

Landauer-like principles directly based upon generalized, non-standard entropic

measures.
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3.2 Fidelity Measure and Conservation of Infor-

mation in General Probabilistic Theories

I investigate the main features of a measure of fidelity between states in a general

family of probabilistic theories admitting classical probability theory and stan-

dard quantum theory as particular instances. We apply the aforementioned mea-

sure to investigate information-theoretical features of these theories related to the

conservation of information during the evolution of closed physical systems. In

particular, we derive a generalization of a fundamental result in quantum theory

relevant for the measurement problem: Zurek’s recent extension of the no-cloning

theorem.

This Section is based on the publication [163] “Fidelity measure and con-

servation of information in general probabilistic theories”, C. Zander and A.R.

Plastino, Europhys. Lett. 86 (1), (2009) 18004 and is organized as follows. In

Subsection 3.2.1 I provide a brief introduction and in Subsection 3.2.2 the BBLW

operational framework is reviewed. The time evolution of closed systems and

measurements as physical processes are considered in Subsection 3.2.3. In Sub-

section 3.2.4 the fidelity measure for states in general probabilistic theories is

investigated. The conservation of the fidelity under the evolution of closed sys-

tems is explored in Subsection 3.2.5. Then, in Subsections 3.2.6 and 3.2.7 the

generalized Zurek’s information transfer theorem and the generalized no-deleting

theorem are established. Finally, some conclusions are drawn in Subsection 3.2.8.

3.2.1 Introduction

The physics of information and computation [1–6] has been the focus of an intense

and increasing research activity in recent years [5–7, 12, 144, 164–167]. Part of

this research effort has been devoted to determine the ultimate limits imposed by

the fundamental laws of physics on any device processing or transmitting informa-

tion [6, 12, 164]. On the other hand, a growing body of theoretical developments

indicate that the concept of information constitutes an essential ingredient for a

deep understanding of physical systems and processes [1–6, 144, 165–167]. Ideas,

techniques and models inspired on the theoretical analysis of information process-
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ing devices proved to be relevant for the study of a variegated range of physical

scenarios, including applications to subjects as diverse as quantum thermody-

namical machines [165] or the fundamental limits on the accuracy of spacetime

measurements [166]. Interesting attempts have been recently made to derive the

basic formalism of quantum theory from information-theoretical concepts [167].

The advent of quantum information science, and the concomitant discovery of the

novel, subtle, and counter-intuitive ways of processing and transmitting informa-

tion allowed by quantum mechanics [6, 7] greatly stimulated the interest in these

lines of enquiry. Work on quantum information theory is shedding new light on

the foundations of quantum theory and on the relationships between the classical

and quantum mechanical descriptions of Nature. An interesting and powerful new

approach to these issues has been recently advanced by Barnum, Barrett, Leifer

and Wilce [65] (from here on BBLW). These researchers proposed to investigate

systematically the information-theoretical aspects of probabilistic descriptions of

Nature, within a general operational framework that encompasses classical prob-

abilities and quantum mechanical probabilities as two particular instances of a

wide family of probabilistic theories. Similar or related ideas have been discussed

previously in the literature (see [168, 169] and references in [65]) but BBLW pro-

vided the first systematic analysis of fundamental aspects of information physics,

such as the no-broadcasting principle, within the general framework.

There is much to be gained from exploring generalizations of existing physi-

cal theories [170]. Historically this has been wonderfully illustrated by the great

stimulus that research on general relativity got from the study of alternative the-

ories of gravitation [171]. This kind of approach allows for the identification and

investigation of important problems that otherwise might have gone unnoticed.

For example, generalizations of the standard quantum theory are currently being

used to study one of the most intriguing open questions on the foundations of

quantum mechanics [172]: why doesn’t Nature permit the maximum amount of

nonlocality consistent with causality? Last, but certainly not least, these lines

of research may shed new light on the epistemic vs. ontic debate on the basic

meaning of the quantum mechanical formalism [173].

The aim of the present work is to investigate the main properties of a measure
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of fidelity between states in general probabilistic theories described by the BBLW

framework, and to explore its application to the study of basic information-related

processes. We shall use the alluded fidelity measure to derive, within the afore-

mentioned probabilistic theories, a generalization of a basic result in quantum

theory with implications for the measurement problem: Zurek’s recent extension

of the no-cloning theorem.

3.2.2 The BBLW operational framework

The basic ingredients of the BBLW approach are the concepts of states, effects,

measurements and transformations, as defined below (see [65] for details). These

concepts generalize some well-known concepts of standard quantum mechanics.

States: The set Ω of all possible states of a physical system is a finite dimensional,

compact and convex set. The extreme points of the set Ω are called “pure” states.

In standard quantum mechanics the state set Ω corresponds to the set of all sta-

tistical operators ρ on the system’s Hilbert space H. In classical mechanics, the

set of states is given by the set of all normalized probability distributions defined

on an appropriate, classical phase space. A state determines the probabilities for

different measurement outcomes. Let e(ω) denote the probability of obtaining

outcome e when the system is in state ω.

Effects: Mathematically the probability e(ω) is given by an affine functional

e : Ω → [0, 1] which is referred to as an effect. In particular, we have the unit

effect u verifying u(ω) = 1 for all ω ∈ Ω. In quantum theory an effect is repre-

sented by a positive operator E bounded by 0 and the identity operator I. The

probability of the concomitant outcome (if the system is in state ρ) is Tr(Eρ).

The unit effect is given by the identity I. We are going to assume that a state ω

is completely characterized by the probabilities e(ω). In other words, two states

ω1 and ω2 yield the same probabilities for all effects e (that is e(ω1) = e(ω2) for

all e) iff ω1 = ω2.

Measurement: A measurement is identified with a set of effects {ei} such that∑
i ei = u, and, consequently,

∑
i ei(ω) = 1 for all ω ∈ Ω. This generalizes the
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concept of a POVM in quantum theory.

Transformations: Physical transformations of a system are described by an ap-

propriate set of affine mappings T : Ω→ Ω′, where Ω and Ω′ stand, respectively,

for the system’s state space before and after the transformation. These transfor-

mations play the role of linear, trace-preserving, completely positive maps in the

standard quantum formalism.

The rules for the description of bipartite systems constitutes another impor-

tant component of the BBLW framework.

Bipartite Systems: Let us consider a bipartite system AB constituted by subsys-

tems A and B. Lets denote the state spaces of subsystems A and B respectively

by ΩA and ΩB. The state space of the composite system AB is denoted by ΩAB.

A joint state ωAB ∈ ΩAB specifies completely the joint probabilities ωAB(eA, eB)

corresponding to pairs of effects (eA, eB) where eA,B are effects defined with re-

spect to the individual subsystems A and B. Conversely, the joint probabilities

for all pairs of effects (eA, eB) fully characterize the joint state ωAB. The joint

probabilities comply with the no-signaling constraint.

For each state ωAB of the bipartite system there are reduced states ωA,B character-

ized by eA(ωA) = ωAB(eA, uB) and eB(ωB) = ωAB(uA, eB). If either marginal state

is pure, then the joint state is factorizable: ωAB = ωA ⊗ ωB and ωAB(eA, eB) =

eA(ωA)eB(ωB).

3.2.3 Time evolution of closed systems and measurements

as physical processes

I am going to assume that there is a set of invertible transformations Γ : Ω→ Ω

representing the fundamental transformations that a closed physical system (with

state space Ω) can experience. Each one of these transformations Γ admits an

inverse Γ(−1) which is also a legitimate physical transformation for the system
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under consideration. For all ω ∈ Ω we have

Γ(−1)(Γ(ω)) = Γ
(
Γ(−1)(ω)

)
= ω. (3.29)

These invertible transformations are to be regarded as the truly fundamental

ones. We assume that when one studies a given physical system it is always pos-

sible to extend it, and regard it as a subsystem of a larger, closed system. In this

way, all possible transformations affecting the original system are manifestations

of invertible transformations acting upon the extended closed system. This as-

sumption is not part of the BBLW framework as exposed in [65]. However, both

classical and quantum mechanics comply with it and it is therefore reasonable to

regard it as a basic ingredient of our present understanding of the fundamental

laws of physics.

Since measurement processes are themselves physical processes, there has to

be a physical consistency relation between the set of all possible measurements

and the set of all invertible operations acting upon a physical system. If we

first apply a transformation Γ to our system, and then perform a measurement

{ei} upon it, the overall process can always be regarded as performing a certain

measurement {ẽi} on the initial state of the system. For instance, if we consider

the state of a spin-1
2

particle in standard quantum mechanics, to first apply a
π/2 rotation around the x-axis and then measure Sz is equivalent to measure Sy

on the original state. In the context of a general probabilistic theory, given an

effect e and an invertible operation Γ there exists an effect ẽ such that, for all

states ω ∈ Ω, ẽ(ω) = e(Γ(ω)). As a consequence, given a measurement {ei}
and an invertible transformation Γ there is another measurement {ẽi} such that

ẽi(ω) = ei(Γ(ω)) for all ω ∈ Ω.

3.2.4 Fidelity measure for states in general probabilistic

theories

As a generalized fidelity measure between two states ω1 and ω2 we propose the

infimum (that is, the largest lower bound) of the set of overlap values between

the pairs of probability distributions ei(ω1,2) associated with all the possible mea-
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surements {ei},
F[ω1, ω2] = inf

{ei}

∑
i

√
ei(ω1) ei(ω2). (3.30)

The alluded set of overlap values is bounded from below (all the overlaps are non-

negative numbers) and, consequently, the aforementioned infimum always exists

and we have

0 ≤ F[ω1, ω2] ≤ 1, (3.31)

with

F[ω1, ω2] = 1 iff ω1 = ω2. (3.32)

The fidelity F[ω1, ω2] measures how well the two states ω1 and ω2 can be dis-

tinguished by recourse to measurements. The extreme case F[ω1, ω2] = 0 corre-

sponds to a pair of states that can be distinguished with certainty by recourse to

an appropriate measurement, while in the other limit case F[ω1, ω2] = 1 the two

states are identical and, consequently, indistinguishable. It is worth emphasizing

that equation (3.30) provides an operational definition of the fidelity F[ω1, ω2]

since the quantities appearing in the right hand side of (3.30) can be determined

experimentally.

In the particular case of standard quantum mechanics the measure (3.30)

reduces to the fidelity measure between density matrices [7]

F[ρ, σ] = Tr
√
ρ1/2σρ1/2, (3.33)

see Subsection 1.1.8 for more detail.

Now I am going to study the main properties of the generalized fidelity func-

tional (3.30). As we are going to see, most of the properties exhibited by the

quantum mechanical fidelity (3.33) are shared by the measure (3.30), and can

be proved in general, without using specific features of the quantum mechanical

formalism.

Given a pair of states ω1,2 let us consider the two states ω1,2 ⊗ ω0 where ω0 is

a state of an ancilla system. Any measurement done on ωi⊗ω0 can be construed

110

 
 
 



3.2 Fidelity Measure and Conservation of Information in General
Probabilistic Theories

as a measurement on ωi (the state ω0 of the ancilla system can be regarded as

characterizing the initial setting of (part of) the measurement apparatus). Indeed,

the act of performing a measurement on ωi ⊗ ω0 can be interpreted as follows:

take the system to be measured (which is in the unknown state ωi), “attach” to

it an ancilla system in a standard initial state ω0, and perform a measurement on

the resulting composite (which is in state ωi⊗ω0). Physically, it is clear that this

procedure is tantamount to performing a measurement on ωi. In point of fact, in

any real measurement one always has to “attach” ancilla systems (in prescribed,

standard initial states) to the system being measured. Now, since the set of

possible measurements on ωi ⊗ ω0 is a subset of all the possible measurements

on ωi, it follows from (3.30) that F[ω1 ⊗ ω0, ω2 ⊗ ω0] ≥ F[ω1, ω2]. Conversely, a

measurement on ωi can also be regarded as a measurement performed on ωi⊗ω0.

Therefore, (3.30) implies that F[ω1⊗ ω0, ω2⊗ ω0] ≤ F[ω1, ω2] and, consequently,

F[ω1 ⊗ ω0, ω2 ⊗ ω0] = F[ω1, ω2]. (3.34)

The argument leading to the inequality F[ω1 ⊗ ω0, ω2 ⊗ ω0] ≥ F[ω1, ω2] does not

constitute a formal mathematical proof. In the strict mathematical sense this

inequality has to be regarded as an assumption that we are making about the

behaviour of the fidelity function. But it is an assumption based on a compelling

physical argument. The second inequality leading to (3.34) can be obtained as a

particular case of (3.37), which is proved below.

Given a pair of joint states ω
(AB)
1,2 (of a bipartite system AB) with reduced

states ω
(A)
1,2 and ω

(B)
1,2 , we have

F
[
ω

(A)
1 , ω

(A)
2

]
≥ F

[
ω

(AB)
1 , ω

(AB)
2

]
, (3.35)

since any measurement performed on subsystem A can be construed as a mea-

surement upon the composite system AB. Similarly,

F
[
ω

(B)
1 , ω

(B)
2

]
≥ F

[
ω

(AB)
1 , ω

(AB)
2

]
. (3.36)

Let us consider now the fidelity F[ω
(A)
1 ⊗ω

(B)
1 , ω

(A)
2 ⊗ω

(B)
2 ] between two factor-

izable states. If one uses equation (3.30) to compute F[ω
(A)
1 ⊗ ω(B)

1 , ω
(A)
2 ⊗ ω(B)

2 ]
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it is clear that evaluating the infimum over the restricted family of product mea-

surements {(eAi, eBi)} (which would yield F[ω
(A)
1 , ω

(A)
2 ]F[ω

(B)
1 , ω

(B)
2 ]) cannot lead

to a smaller number than the one obtained by an unrestricted evaluation of the

infimum. Consequently, we have

F
[
ω

(A)
1 ⊗ ω(B)

1 , ω
(A)
2 ⊗ ω(B)

2

]
≤ F

[
ω

(A)
1 , ω

(A)
2

]
F
[
ω

(B)
1 , ω

(B)
2

]
. (3.37)

Given two sets of states {ω1i, i = 1, . . . ,M} and {ω2i, i = 1, . . . ,M} of a

given system, and a measurement {ej}, let us consider the fidelity measure be-

tween two convex linear combinations
∑

i piω1i and
∑

i qiω2i of the alluded states,

where {pi, i = 1, . . . ,M} and {qi, i = 1, . . . ,M} are two normalized probability

distributions over the same index set. We have,

∑
j

{
ej

(∑
i

piω1i

)
ej

(∑
i

qiω2i

)} 1
2

=

∑
j

{(∑
i

piej(ω1i)

)(∑
i

qiej(ω2i)

)} 1
2

≥∑
j

∑
i

{
piqiej(ω1i)ej(ω2i)

} 1
2 =

∑
i

√
piqi

{∑
j

[
ej(ω1i)ej(ω2i)

] 1
2

}
≥∑

i

√
piqi F

[
ω1i, ω2i

]
, (3.38)

where the first inequality follows from the Schwarz inequality (
√∑

i xi
∑

i yi ≥∑
i

√
xiyi) and the second inequality is a consequence of the definition of the fi-

delity measure F. Since equation (3.38) holds for any measurement {ej}, includ-

ing the one that gives rise to the infimum in the definition of F
[∑

i piω1i,
∑

i qiω2i

]
,

it also implies that

F

[∑
i

piω1i,
∑
i

qiω2i

]
≥
∑
i

√
piqi F

[
ω1i, ω2i

]
, (3.39)

meaning that the generalized fidelity measure complies with the strong concavity

property.
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Almost all the main properties of the quantum fidelity (3.33) (including invari-

ance under unitary transformation, whose generalization we are going to discuss

in the next Subsection) are shared by the general fidelity measure (3.30) defined

in the BBLW family of probabilistic theories. An important property of the quan-

tum fidelity that is not satisfied in the general scenario is given by Uhlmann’s

theorem, which says that,

F[ρ, σ] = max
|ψ〉,|φ〉

|〈ψ|φ〉|, (3.40)

where the maximum is taken over all possible pairs of states |ψ〉 and |φ〉 con-

stituting purifications of the two density matrices ρ and σ, respectively [7]. A

purification of a state ρ (not necessarily pure) of a system S is a pure state |ψ〉 of

a larger system (of which S is a subsystem) such that the corresponding marginal

state of S is given by ρ. Uhlmann’s theorem is not generalizable within the

BBLW framework because purification is not possible within arbitrary members

of the BBLW family of theories. For instance, purification is not possible within

classical probabilistic theories.

3.2.5 Conservation of the fidelity under the evolution of

closed systems

The previously discussed consistency relation between measurements and invert-

ible operations has the following consequence. Given a measurement {ei} to be

performed on either of a pair of states ω1,2, and an invertible transformation

Γ, there exists another measurement {ẽi} yielding the same probabilities when

performed, respectively, upon either of the states Γ(ω1,2). Moreover, given any

measurement {ei} to be performed on either of the states Γ(ω1,2) there is another

measurement {e∗i } exhibiting the same probabilities when performed upon the

states ω1,2 = Γ(−1)(Γ(ω1,2)). Consequently, it follows from the definition (3.30) of

the generalized fidelity that

F[Γ(ω1),Γ(ω2)] = F[ω1, ω2]. (3.41)

This constitutes a generalization of the invariance property of the quantum fi-

delity measure under unitary transformations [7]. A similar invariance property
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is satisfied by the Liouville dynamics of classical ensemble probability densities

[16, 174]. A relation like (3.41), stating the preservation of the distinguishability

between states, can be regarded as meaning that information is conserved by the

time evolution of a closed physical system [16].

3.2.6 Generalized Zurek’s information transfer theorem

The quantum no-cloning theorem [58] is nowadays regarded as encapsulating one

of the most distinctive features of quantum information, see Section 1.3 for more

detail. The multiple and profound implications of this principle, and of its various

extensions and generalizations, constitute an active research area [60, 64, 175–

177].

A recent generalization of the no-cloning theorem advanced by Zurek sheds

new light on the nature of the quantum mechanical measurement process [60].

During such a process information is transferred from the system being measured

to the recording apparatus. An intuitive, basic feature of a physical measurement

is that its immediate repetition always yields the same result. As a consequence,

if the state of the system immediately after the measurement is ω, this state

will be left unperturbed if the same measurement is performed a second time

quickly after the first one. This uncontroversial assumption is referred to as the

predictability postulate [60]. Zurek showed that two basic postulates of quantum

mechanics, (i) the representation of quantum states by vectors in the system’s

Hilbert space and (ii) the unitarity of quantum evolutions, together with the pre-

dictability postulate, are enough to prove that the allowed outcome states of the

system after a quantum measurement are restricted to an orthonormal subset of

the system’s possible states. This result holds true even for imperfect measure-

ments: no matter how little information about the system’s state is transferred

to the apparatus (as long as this information is not strictly zero) the only al-

lowed unperturbed outcome states for the system have to be orthonormal. This

is a profound and intriguing result. It shows that a basic aspect of quantum

measurements that is usually regarded as having or needing the status of an in-

dependent postulate can actually be derived from the most basic ingredients of

quantum theory. Zurek’s results have been deservedly hailed as “dissolving one
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aspect of quantum weirdness” [177]. I am now going to show that a result similar

to Zurek’s holds true within the general family of probabilistic theories described

by the BBLW framework.

Let us consider a special type of processes which are an extension to general

probabilistic theories of the processes studied by Zurek [60]. Suppose that we

have a composite system SA consisting of a system S and an “apparatus” A.

We shall consider the possibility of implementing transformations that transfer

information from the system S to the “recording apparatus” A. In particular, we

want to determine under what circumstances this can occur without altering the

initial state of S. We assume that S starts in a pure state ωi and the apparatus in

an initial reference state Σ0. The process is represented by an invertible transfor-

mation Γ. This does not imply a loss of generality since, as we already said, we

assume that the invertible transformations constitute the fundamental ones for

closed systems. We can always consider the system A to be large enough so that

the composite system SA can be regarded as closed, and all the transformations

affecting it can be regarded as invertible. The main question that we want to

address is the following: For which initial pure states ωi of S is it possible to

perform this operation without altering the state ωi? Let us consider two initial

states ω1,2 for which the aforementioned information transfer is doable. We then

have,

Γ(ω1 ⊗ Σ0) = ω1 ⊗ Σ1,

Γ(ω2 ⊗ Σ0) = ω2 ⊗ Σ2. (3.42)

Therefore,

F [ω1, ω2] = F [ω1 ⊗ Σ0, ω2 ⊗ Σ0] from eq. (3.34)

= F [Γ(ω1 ⊗ Σ0),Γ(ω2 ⊗ Σ0)] from eq. (3.41)

= F [ω1 ⊗ Σ1, ω2 ⊗ Σ2] from eq. (3.42)

≤ F [ω1, ω2] F [Σ1,Σ2] from eq. (3.37). (3.43)

Now, it follows from the last equation that it is not possible to have F[Σ1,Σ2] < 1
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when F[ω1, ω2] 6= 0. Consequently,

Σ1 6= Σ2 =⇒ F[ω1, ω2] = 0. (3.44)

That is, if the final states of A are even partially distinguishable we necessarily

have F[ω1, ω2] = 0. This means that information can be transferred from system

S to system A without altering the initial (pure) state of S only for states of S that

have zero mutual fidelity. That is, if Zurek’s process can be implemented for a

family ωi of initial pure states of S, these states must be perfectly distinguishable.

This constitutes a generalization of the fundamental theorem recently proved by

Zurek [60, 177]. In terms of the measurement problem our present result can be

stated as follows: if a probabilistic theory contained within the BBLW framework

complies with the predictability postulate, then the only possible output states of a

measurement (even an imperfect one) are restricted to a set of states with mutual

zero fidelity. Our generalization of Zurek’s theorem constitutes a general principle

constraining the transfer of information between physical systems that admits as

a particular case the BBLW-no-cloning theorem discussed in [178]. Our approach

is different from the one adopted in [178], which is not based on the generalized

fidelity measure. Note that in classical probabilistic theories all “pure” states are

perfectly distinguishable from each other so that, in such a context, the present

result imposes no restrictions on the possible outcomes of measurements.

3.2.7 Generalized no-deleting theorem

Let us consider now a counterpart of the quantum no-deleting theorem [179] hold-

ing within general BBLW probabilistic theories. We are going to study processes

whose aim is to delete information from a given system against that of a second

system (both initially in the same, unknown state ω) bringing the state of one of

these systems to a blank state ω0 without altering the state of the other one,

ω ⊗ ω −→ ω ⊗ ω0. (3.45)

In order to investigate the possible implementation of such a process in a universal

way (that is, for any state ω) let us consider a tripartite system comprising a

source system, a target system, and a “deleting machine”. We assume that this
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tripartite system can be treated as closed and, consequently, evolves in a reversible

way. We shall also assume that initially the source and the target systems are

both described by the same state ω while the deleting machine starts in an initial

standard state Σ0. During the deleting process the information stored in the

target system is deleted against that of the source system. Hence, the joint

evolution of the tripartite system (which, as said, we assume to be a closed one)

is

Γ(ω ⊗ ω ⊗ Σ0) = ω ⊗ ω0 ⊗ Σω. (3.46)

As already said, we are interested in a universal deleting process. That is, equa-

tion (3.46) must hold for an arbitrary state ω. In particular, let us assume that

(3.46) is verified for two particular states ω1,2. Then, the conservation of the

fidelity measure during the transformation (3.46) leads to

F [ω1 ⊗ ω1, ω2 ⊗ ω2] =

F [ω1 ⊗ ω1 ⊗ Σ0, ω2 ⊗ ω2 ⊗ Σ0] =

F [Γ(ω1 ⊗ ω1 ⊗Σ0) ,Γ(ω2 ⊗ ω2 ⊗Σ0)] =

F [ω1 ⊗ ω0 ⊗ Σω1 , ω2 ⊗ ω0 ⊗ Σω2 ] . (3.47)

Applying now property (3.34) of the fidelity measure we obtain,

F [ω1 ⊗ ω1, ω2 ⊗ ω2] = F [ω1 ⊗ Σω1 , ω2 ⊗ Σω2 ] , (3.48)

meaning that the initial degree of distinguishability of the source-target composite

coincides with the final degree of distinguishability between the source-deleting

machine composite. This implies that the information deleted from the target

system is not “destroyed”, but is entirely transferred into the final state of the

deleting machine. This constitutes a generalization of the quantum no-deleting

theorem. It is worth mentioning that, strictly speaking, what we have shown is the

impossibility of deleting information in a reversible way. The same observation

applies to the standard quantum derivation of the no-deleting theorem [179].

3.2.8 Conclusions

In the present contribution I have explored some information-related aspects of

the BBLW framework for probabilistic physical theories. We have investigated,
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within this general setting, the main features of a fidelity measure between pairs

of states that reduces, in the case of quantum theory, to the standard fidelity

measure between statistical operators. We showed that our generalized fidelity

measure complies with all the basic properties (excepting Uhlmann’s theorem)

satisfied by the quantum fidelity measure for density matrices. All the alluded

properties admit direct derivations not involving specific features of standard

quantum theory, such as the Hilbert space formalism or the properties of density

matrices.

I have used the aforementioned fidelity measure to obtain a generalization

to the BBLW family of probabilistic theories of Zurek’s recent extension of the

quantum no-cloning theorem. We considered two systems S and A interacting in

such a way that a finite amount of information is transferred from S to A. No

matter how little information about the state of S is finally stored in A (as long

as it is not strictly zero) the only initial states of S that are left unchanged by

this process are restricted to a set of states with vanishing mutual fidelity.

It would be interesting to apply the present results to other specific theories

(besides classical probabilistic ones or standard quantum mechanics). An inter-

esting candidate is the recent proposal by Hall [180] of a theory incorporating a

consistent classical and quantum mixed dynamics. According to Hall’s formalism

mixed classical-quantum physical systems are characterized by joint classical-

quantum configurations, and states are described by mixed classical-quantum

ensembles. Hall provides specific prescriptions for evaluating the expectation val-

ues of classical phase space functions, on the one hand, and of quantum Hermitian

operators, on the other one. It then seems possible to identify “classical effects”

with phase space functions f adopting the value 1 inside a given region R of the

classical phase space and vanishing outside R. The expectation value 〈f〉 then

represents the probability of finding the classical part of the system’s configura-

tion within the region R. In a similar fashion, “quantum effects” can be associated

with Hermitian operators having eigenvalue 1 for some of their eigenstates and

eigenvalue zero for the rest (that is, these operators are projectors on a subspace

of the full Hilbert space associated with the possible quantum configurations of

the system).
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Some of the ideas advanced here may also be useful for analyzing even the-

ories not belonging to the BBLW framework, such as the toy model proposed

by Spekkens [173] to explore the ontic vs. epistemic controversy concerning the

meaning of the quantum formalism. Spekkens’ model is a probabilistic one where

a physical state determines the probabilities of getting different outcomes when

measuring physical observables. Therefore, it is then possible the define a fidelity

measure between states. It would be interesting to explore which of the prop-

erties exhibited by fidelity measures in BBLW theories are also satisfied within

Spekkens’ model.
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Chapter 4

Separability Criteria for Fermions

Entanglement is one of the most fundamental features of quantum systems [7, 66].

In addition to its revolutionary technological implications, current research in

quantum entanglement is providing deep new insights in connection with funda-

mental issues such as the justification of the basic tenets of equilibrium quantum

statistical mechanics [73], the origins of the quantum-to-classical transition [75]

and the thermodynamic arrow of time [181] (some aspects of this last point are,

however, the subject of controversy).

The entanglement features exhibited by systems consisting of identical fermions

have attracted the attention of several researchers in recent years [108, 123, 124,

126–130, 132, 133, 135, 182–185]. Entanglement in fermion systems has been

studied in connection with different problems, such as the entanglement between

electrons in a conduction band [123], the entanglement dynamics associated with

scattering processes involving two electrons [126], the role played by entanglement

in the time-optimal evolution of fermionic systems [128, 129], the classification of

three-fermion states based on their entanglement features [127], the detection of

entanglement in fermion systems through the violation of appropriate uncertainty

relations [130, 131], the entanglement features of fractional quantum Hall liquids

[185] and the entanglement properties of the eigenstates of soluble two-electrons

atomic models [124, 125].

The concept of entanglement in systems of indistinguishable particles exhibits
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some differences from the corresponding concept as applied to systems consist-

ing of distinguishable parts. There is general consensus among researchers that

in systems of identical fermions the minimum quantum correlations between the

particles that are required by the antisymmetric character of the fermionic state

do not contribute to the state’s amount of entanglement [108, 123, 124, 126–

130, 132, 133, 135, 182–185]. There are profound physical reasons for this. First,

the correlations exhibited by such states cannot be used as a resource to imple-

ment non-classical information transmission or information processing tasks [132].

Second, the non-entangled character of states represented by one Slater determi-

nant is consistent with the possibility of associating complete sets of properties to

both parts of the composite system [133]. This means that the separable (that is,

non-entangled) pure states of N fermions are those having Slater rank 1. These

are the states whose wave function can be expressed (with respect to an appro-

priate single-particle basis) as a single Slater determinant [108]. On the other

hand, the set of mixed non-entangled states comprises those states that can be

written as a statistical mixture of pure states of Slater rank 1. So the amount of

entanglement associated with an N -fermion state corresponds in essence to the

quantum correlations exhibited by the state on top of the minimum correlations

needed to comply with the constraint of antisymmetry on the fermionic wave

function [135]. Here, when discussing systems of identical fermions, we are con-

sidering entanglement between particles and not entanglement between modes.

The problem of determining whether a given quantum state ρ is separable

or entangled is known as “the separability problem”. It constitutes one of the

most fundamental problems in the theory of quantum entanglement and is the

subject of a sustained and intense research activity (see [67, 142, 186–191] and

references therein). Besides its intrinsic interest, the development of separability

criteria also leads to useful quantitative entanglement indicators: the degree to

which a separability criterion is violated constitutes in itself a valuable quantita-

tive indicator of entanglement. For instance, the well-known negativity measure

of entanglement (which is one of the most used practical measures of entangle-

ment for mixed states of systems with distinguishable subsystems) is based upon

the celebrated Peres’ separability criterion [67], see Subsection 2.1.4.
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In the case of pure states of two identical fermions, necessary and sufficient

separability criteria can be formulated in terms of the entropy of the single-

particle reduced density matrix [133, 135, 184]. Alas, no such criteria are known

for general, mixed states of two fermions, except for the case of two fermions

with a single-particle Hilbert space of dimension four, for which a closed ana-

lytical expression for the concurrence (akin to the celebrated Wootters’ formula

for two qubits [91]) is known. In general, to determine whether a given density

matrix of a two-fermion system represents a separable state or not is a notori-

ously difficult (and largely unexplored) problem. Consequently, there is a clear

need for practical separability criteria, or entanglement indicators, which can be

extended to systems of higher dimensionality or to scenarios involving more than

two fermions [135].

An overview of distinguishable and indistinguishable particles was provided

in Section 2.4 and a review of the entanglement between particles in systems of

identical fermions has been given in Section 2.5.

4.1 Uncertainty Relations and Entanglement in

Fermion Systems

The violation of uncertainty relations is used as a signature of entanglement for

both pure and mixed states of two identical fermions. In the case of fermions with

a four-dimensional single-particle Hilbert space we obtain several different types

of uncertainty-related entanglement criteria based on local uncertainty relations,

on the sum of variances of projectors, and on various entropic measures. Within

the latter approach we consider either entropic uncertainty relations involving a

single observable or relations based upon the sum of entropies associated with

more than one observable. We extend the projector-based entanglement crite-

rion to the case of two-fermion and three-fermion systems with a six-dimensional

single-particle Hilbert space.

This Section is based on the publication [130] “Uncertainty relations and en-

tanglement in fermion systems”, C. Zander and A.R. Plastino, Phys. Rev. A 81,
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(2010) 062128 and is organized as follows. In Subsection 4.1.1 the use of uncer-

tainty relations as entanglement detection criteria is placed into context. Subsec-

tion 4.1.2 deals with the connection between entanglement and local uncertainty

relations for pure and mixed states of two fermions with a four-dimensional single-

particle Hilbert space. In Subsection 4.1.3 the violation of variance-based uncer-

tainty relations of projectors is used as a signature of entanglement for systems

of two fermions, for both four-dimensional and six-dimensional single-particle

Hilbert spaces, and also for systems of three fermions with a six-dimensional

Hilbert space. In Subsection 4.1.4 we investigate entanglement detection through

uncertainty relations based on q-entropies (of which the Shannon entropy is a

special, limit case). Finally, in Subsection 4.1.5 some conclusions are given.

4.1.1 Introduction

The development of criteria for the detection of entanglement based on the vio-

lation of appropriate uncertainty relations has been the focus of some interesting

recent investigations [139–141, 192–195]. One can establish uncertainty relations

that are satisfied by all separable (pure or mixed) states and, consequently, any

violation of these relations indicates that the quantum state under consideration

is entangled. Since these uncertainty-based entanglement criteria are directly for-

mulated in terms of the expectation values of quantum mechanical observables,

they provide potentially valuable tools for the experimental detection of entangle-

ment, complementing other ways of detection. The use of uncertainty relations

for entanglement characterization has so far only been established for systems

consisting of distinguishable subsystems. The aim of this Section is the appli-

cation of various uncertainty relations to the study of entanglement in fermionic

systems. Besides its practical usefulness for the identification of families of entan-

gled states, the characterization of entanglement via uncertainty relations is also

of considerable conceptual interest because it establishes a connection between

two fundamental ingredients of quantum mechanics, namely the uncertainty re-

lations and entanglement.

In the present work we are going to investigate entanglement-related proper-

ties of systems consisting of a given, fixed number of identical fermions. Con-
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sequently, all our present developments can be formulated in terms of the first

quantization formalism.

4.1.2 Local uncertainty relations for systems of two identi-

cal fermions with a four-dimensional single-particle

Hilbert space

I am going to use the violation of uncertainty relations as a signature of entangle-

ment for pure and mixed states of systems consisting of two identical fermions. In

this way we are going to extend to fermionic systems the approach advanced by

Hofmann and Takeuchi in [139] for systems with distinguishable subsystems. We

are going to identify appropriate sets of observables such that the sum δ of their

uncertainties admits a non-zero lower bound δmin for separable states. Therefore,

a state violating this uncertainty relation (that is, a state exhibiting a δ-value

smaller than δmin) is necessarily entangled. This violation of the uncertainty rela-

tion is not only a means of entanglement detection but can also be regarded as a

rough indicator of the amount of entanglement exhibited by the state under con-

sideration, since the general tendency when entanglement is detected is that the

smaller the value of δ (i.e. the greater the violation of the uncertainty relation)

the more entangled the state is. In fact, in the case of composite quantum systems

consisting of distinguishable subsystems, lower bounds for the concurrence have

been recently established based upon the violation of appropriate uncertainty re-

lations [193–195].

In order to appreciate and highlight the difference between the uncertainty

relations for distinguishable particles and for identical fermions, we look at the

behaviour of the uncertainty δ when evaluated for arbitrary observables of the

form A(1) + A(2) = A ⊗ I + I ⊗ A, where A is an observable corresponding to

one fermion and I is the identity operator acting in the single-particle Hilbert

space. We are going to refer to this kind of observables as “local”. Since we are

interested in finding lower bounds for separable states, let us consider a separable

pure state. Let |ψ〉 be as in eq. (2.66), then

δ(|ψ〉) = 〈(A(1) + A(2))2〉|ψ〉 − 〈A(1) + A(2)〉2|ψ〉
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= 〈A2〉|φ1〉 − 〈A〉2|φ1〉 + 〈A2〉|φ2〉 − 〈A〉2|φ2〉 − 2|〈φ2|A|φ1〉|2. (4.1)

When comparing the above expression with the corresponding one for factorizable

states |φ1〉|φ2〉 of bipartite systems with distinguishable subsystems, it is clear

that the uncertainty evaluated on separable states of fermionic systems has the

additional term −2|〈φ2|A|φ1〉|2, which makes the study of uncertainty relations

more complicated in the fermion case. Since the additional term is negative,

it means that the uncertainty for identical fermions is always smaller than that

for distinguishable particles. Thus we can have a state which gives a non-zero

value for the two individual uncertainties 〈A2〉|φ1,2〉 − 〈A〉2|φ1,2〉 in eq. (4.1), but

the resultant uncertainty δ(|ψ〉) is zero. As an illustration let A = Sz (s = 3/2)

and |φ1〉 = 1√
2

[∣∣-1
2

〉
−
∣∣1

2

〉]
, |φ2〉 = 1√

2

[∣∣-1
2

〉
+
∣∣1

2

〉]
. Then we have 〈S2

z 〉|φ1〉 −
〈Sz〉2|φ1〉 = 1

4
= 〈S2

z 〉|φ2〉 − 〈Sz〉2|φ2〉, however, the variance of the Slater state is

δ = 0. This is due to the correlations between the two particles which arise

from the antisymmetric character of the state. A similar situation may occur if,

instead of looking at just one observable, we evaluate the sum of the uncertainties

associated with a given set of observables. For example, let us consider the sum

δ(|ψ〉) =
3∑
i=1

{
〈(A(1)

i + A
(2)
i )2〉|ψ〉 − 〈A(1)

i + A
(2)
i 〉2|ψ〉

}
, (4.2)

where the observables A
(1)
i + A

(2)
i = Ai ⊗ I + I ⊗ Ai, i = 1, 2, 3, correspond-

ing to the composite system, are given in terms of the non-commuting (one

fermion) observables A1, A2 and A3 represented (in the single-particle basis{∣∣-3
2

〉
,
∣∣-1

2

〉
,
∣∣1

2

〉
,
∣∣3

2

〉}
) by the matrices

A1 =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 A2 =


0 −i 0 0

i 0 0 0

0 0 0 −i
0 0 i 0

 A3 =


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

 .

(4.3)

We have that δ(|ψ〉) = 0 for the state,

|ψ〉 =
1√
2

[∣∣∣-3

2

〉∣∣∣-1

2

〉
−
∣∣∣-1

2

〉∣∣∣-3

2

〉]
. (4.4)
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Therefore, there are separable two-fermion states with vanishing δ(|ψ〉) even

though the three (one-fermion) non-commuting operators A1, A2, and A3 don’t

share a common eigenvector and, consequently, the uncertainty sum
∑3

i=1 (〈A2
i 〉−

〈Ai〉2) has a non-trivial (that is, non-zero) lower bound over the single-particle

states. We are going to show that, in spite of this difficulty, it is possible to find

sets of non-commuting local observables for two-fermion systems such that the

corresponding sum of variances admits a non-trivial, finite lower bound over the

set of separable fermion states.

Regarding, as already mentioned, our two-fermion system as a system of two

spin-s particles, we are now going to focus on the uncertainties associated with

the three components Jx, Jy, Jz of the total angular momentum of the system.

The sum of the corresponding uncertainties evaluated on a pure state |ψ〉 of the

two fermions is then

δ(|ψ〉) = 〈ψ|J2|ψ〉 − 〈ψ|Jx|ψ〉2 − 〈ψ|Jy|ψ〉2 − 〈ψ|Jz|ψ〉2 (4.5)

where

J2 = J2
x + J2

y + J2
z

Jx = Sx ⊗ I + I⊗ Sx
Jy = Sy ⊗ I + I⊗ Sy
Jz = Sz ⊗ I + I⊗ Sz, (4.6)

Sx, Sy, Sz are the angular momentum operators corresponding to one fermion and

I denotes the identity operator for the single-particle Hilbert space. From here

on we are going to assume that ~ = 1.

The sum of uncertainties δ corresponding to a general mixed state ρ of the

two-fermion system reads

δ(ρ) = Tr(ρJ2
x)− [Tr(ρJx)]

2 + Tr(ρJ2
y )− [Tr(ρJy)]

2 + Tr(ρJ2
z )− [Tr(ρJz)]

2. (4.7)

Our aim is to determine an uncertainty relation for separable mixed states ρsl of

two-fermion systems based on the quantity (4.7). In order to achieve this end it
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is enough to establish a lower bound for (4.7) valid for pure states |ψsl〉 having

Slater rank 1. To see that the uncertainty limit for separable pure states also

applies to mixed separable states, we note that the uncertainty of a mixture is

always equal to or greater than the averaged uncertainties of the components.

Thus for a general mixture of pure states of Slater rank 1 as in eq. (2.70), we

have

δ(ρsl) ≥
∑
i

λiδ(|ψ(i)
sl 〉). (4.8)

In the s = 3/2 case (corresponding to a single-particle Hilbert space of dimension

four) we are going to establish that for any pure state |ψsl〉 of the Slater form,

δ(|ψsl〉) ≥ 2s− 1. (4.9)

Consequently, we also have

δ(ρsl) ≥ 2s− 1, (4.10)

for general non-entangled mixed states ρsl of the two-fermion system.

The following is a list of the antisymmetric total angular momentum eigen-

states for s = 3/2 (which, according to the angular momentum representation,

constitute a basis of the Hilbert space describing the two-fermion system) with

the value for the uncertainty δ indicated on the right:

δ

|2, 2〉 = − 1√
2
|1
2

3
2
〉+ 1√

2
|3
2

1
2
〉 2

|2, 1〉 = − 1√
2
|-1

2
3
2
〉+ 1√

2
|3
2
-1

2
〉 5

|2, 0〉 = −1
2
|-3

2
3
2
〉 − 1

2
|-1

2
1
2
〉+ 1

2
|1
2
-1

2
〉+ 1

2
|3
2
-3

2
〉 6

|2,−1〉 = − 1√
2
|-3

2
1
2
〉+ 1√

2
|1
2
-3

2
〉 5

|2,−2〉 = − 1√
2
|-3

2
-1

2
〉+ 1√

2
|-1

2
-3

2
〉 2

|0, 0〉 = −1
2
|-3

2
3
2
〉+ 1

2
|-1

2
1
2
〉 − 1

2
|1
2
-1

2
〉+ 1

2
|3
2
-3

2
〉. 0

The singlet state |0, 0〉 has δ = 0 and is maximally entangled, Tr(ρ2
1) = 1/4. What

we want to find is the minimum δmin for δ(|ψsl〉) among all separable pure states

|ψsl〉, such that for 0 ≤ δ < δmin the state is certainly entangled (not separable)
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and for δmin ≤ δ ≤ 6 the state is either entangled or separable. This bound is

min
{|ψsl〉}

δ(|ψsl〉) = 2. (4.11)

In order to prove this we first establish the maximum of |〈ψsl|0, 0〉| among separa-

ble states, which turns out to be 1/
√

2. When expressing a general state |ψ〉 in the

total angular momentum basis (which comprises the j = 0 singlet and the j = 2

multiplet) we see that the maximum of |c0|2 is 1/2, where c0 is the coefficient

of the singlet state. After an uncertainty inequality (4.24) holding for general

two-fermion states is established, we then use the previous result to obtain the

uncertainty relation (4.26) for separable states. To see the first part, let

|ψsl〉 =
1√
2

{
|φ1〉|φ2〉 − |φ2〉|φ1〉

}
(4.12)

with normalized, orthogonal single-particle states

|φ1〉 = α1

∣∣∣3
2

〉
+ α2

∣∣∣1
2

〉
+ α3

∣∣∣-1

2

〉
+ α4

∣∣∣-3

2

〉
(4.13)

|φ2〉 = β1

∣∣∣3
2

〉
+ β2

∣∣∣1
2

〉
+ β3

∣∣∣-1

2

〉
+ β4

∣∣∣-3

2

〉
. (4.14)

Then

〈0, 0|ψsl〉 =
1√
2

[
α3β2 − α2β3 + α1β4 − α4β1

]
. (4.15)

Using first the subadditivity property, then the Schwarz inequality and finally the

normalization condition of the states |φ1〉 and |φ2〉, we obtain

|〈0, 0|ψsl〉| ≤
1√
2

[
|α3||β2|+ |α2||β3|+ |α1||β4|+ |α4||β1|

]
≤ 1√

2

√
|α1|2 + |α2|2 + |α3|2 + |α4|2

√
|β1|2 + |β2|2 + |β3|2 + |β4|2

=
1√
2
. (4.16)

Equality can be achieved by |ψsl〉 = 1√
2

[∣∣3
2

〉 ∣∣-3
2

〉
−
∣∣-3

2

〉 ∣∣3
2

〉]
and thus

max|〈0, 0|ψsl〉| =
1√
2
. (4.17)
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Now any two-fermion state |ψ〉 (whether separable or not and with a four-

dimensional single-particle state space) can be expressed as

|ψ〉 = c0|0, 0〉+ c1|ψ̃〉 (4.18)

with 〈ψ̃|ψ̃〉 = 1 (normalized) and |ψ̃〉 being a linear combination of the five

members of the j = 2 multiplet. Therefore we have

〈ψ̃|0, 0〉 = 0

|c0|2 + |c1|2 = 1. (4.19)

Obviously we have c0 = 〈0, 0|ψ〉 and therefore we know that for separable states

the maximum possible value for |c0|2, is

max|c0|2 =
1

2
. (4.20)

The allowed values for |c0|2 for separable states |ψ〉 are then

0 ≤ |c0|2 ≤
1

2
. (4.21)

Now we have to find an expression for the variance (4.5) from which we can then

obtain an uncertainty relation for general bipartite states with s = 3/2 and then

using the previous information we establish an uncertainty relation for separable

states. This means we have to simplify eq. (4.5). By observing that Jx, Jy, Jz and

J2 have vanishing matrix elements (in the basis |j,m〉) connecting states with

different values of j,

j 6= j′ →


〈j,m|Jx|j′,m′〉 = 0

〈j,m|Jy|j′,m′〉 = 0

〈j,m|Jz|j′,m′〉 = 0

〈j,m|J2|j′,m′〉 = 0

(4.22)

129

 
 
 



4.1 Uncertainty Relations and Entanglement in Fermion Systems

and by making use of the normalization condition,

〈ψ|J2|ψ〉 = |c0|2
=0(0+1)︷ ︸︸ ︷

〈0, 0|J2|0, 0〉+|c1|2
=2(2+1)︷ ︸︸ ︷
〈ψ̃|J2|ψ̃〉 = 6|c1|2 = 6(1− |c0|2)

〈ψ|Jx|ψ〉 = |c0|2 〈0, 0|Jx|0, 0〉︸ ︷︷ ︸
=0

+|c1|2〈ψ̃|Jx|ψ̃〉 = (1− |c0|2)〈ψ̃|Jx|ψ̃〉 (4.23)

and similarly for Jy and Jz. So eq. (4.5) becomes

δ(|ψ〉) = 6(1− |c0|2)− (1− |c0|2)2
[
〈ψ̃|Jx|ψ̃〉2 + 〈ψ̃|Jy|ψ̃〉2 + 〈ψ̃|Jz|ψ̃〉2

]
≥ 6(1− |c0|2)− 4(1− |c0|2)2. (4.24)

This last inequality holds because the maximum possible value of 〈ψ̃|Jx|ψ̃〉2 +

〈ψ̃|Jy|ψ̃〉2 + 〈ψ̃|Jz|ψ̃〉2 is 4. This can be seen by rotating the axes such that 〈Jx〉
and 〈Jy〉 are zero and so the maximum of the above is the square of j = 2. For

example the state |2, 2〉 achieves this. Expanding eq. (4.24) results in

δ(|ψ〉) ≥ 2(1 + |c0|2 − 2|c0|4). (4.25)

This inequality holds for any two-fermion state with s = 3/2, regardless of it being

separable or not. Now for separable states we have that |c0|2 lies in the interval

[0, 1/2]. Within this interval we have (1 + |c0|2 − 2|c0|4) ≥ 2. This expression

achieves the value 2 only in the extremes of the interval, |c0|2 = 0 or |c0|2 = 1/2.

Therefore, for separable states we have that

δ(|ψ〉) ≥ 2 (|ψ〉 separable). (4.26)

The equality case can be achieved, for instance, by the state |2, 2〉.

In order to illustrate this method of entanglement detection we consider three

examples of two-fermion states (with s = 3/2). In each case we compute the con-

currence of the states and the relative violation of the local uncertainty relation,

which is defined as [139]

δ′ = 1− δ

δmin
, (4.27)

where δmin is the uncertainty limit for separable states, in this case δmin = 2.
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C ; ∆' ; ∆' M

Figure 4.1: Concurrence (thick line),
δ′ and δ′M (dashed line) for the state in
eq. (4.28).
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Figure 4.2: Concurrence and δ′ (dashed
line) for the state in eq. (4.31).

For the first example, let ρ be a mixture of a maximally entangled state and

a maximally mixed state of the fermion system,

ρ = p|0, 0〉〈0, 0|+ 1− p
6

I, (4.28)

where

I = |0, 0〉〈0, 0|+
2∑

m=−2

|2,m〉〈2,m| (4.29)

is the identity operator acting on the six-dimensional Hilbert space correspond-

ing to the two-fermion system. The plot of the concurrence as a function of p

depicted in Figure 4.1 indicates that all states with p larger than p∗ = 0.4 are

entangled. In comparison, we have δ(p) = 5 − 5p and so the uncertainty based

criterion detects entanglement for 3/5 < p ≤ 1. Thus, the interval of p-values

where entanglement is detected is 2/3 of the total range of p-values corresponding

to entangled states.

As a second illustration of the criterion we now consider the family of states

ρ = p|0, 0〉〈0, 0|+ 1− p
2

(
|2,−2〉〈2,−2|+ |2, 2〉〈2, 2|

)
. (4.30)

The expression for δ(p) = 6− 6p and thus the minimal p for which entanglement

is detected is pmin = 2/3. Evaluating the concurrence for these states shows that
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they are entangled from p∗ = 0.5 and hence 2/3 of entangled states are detected.

As third example we take

|ψ〉 =
sin θ√

2

[∣∣∣-3

2

〉∣∣∣3
2

〉
−
∣∣∣3
2

〉∣∣∣-3

2

〉]
+

cos θ√
2

[∣∣∣-1

2

〉∣∣∣1
2

〉
−
∣∣∣1
2

〉∣∣∣-1

2

〉]
. (4.31)

From Figure 4.2 we can see that for θ ∈ (0, π), θ 6= π
2

all states are entangled.

In comparison, the uncertainty measure detects entanglement for 1.74071 < θ ≤
2.97167, thus about 0.392 of the entangled states are detected.

4.1.2.1 Bipartite states with higher-dimensional single-particle sys-

tems

Performing numerical searches for six-dimensional (s = 5
2
) up to 16-dimensional

(s = 15
2

) single-particle Hilbert spaces, I conjecture that the general uncertainty

relation for separable pure bipartite states is δ(|ψ〉) ≥ 2s − 1, where s is the

dimension of the single-particle Hilbert space. The searches converged to 2s− 1

with a precision of nine digits. Thus we conjecture that both pure and mixed

bipartite states are entangled with certainty when

δ(|ψ〉 or ρ) < 2s− 1 =⇒ |ψ〉 or ρ entangled. (4.32)

As an illustration for a bipartite mixed state with single-particle Hilbert space

of dimension six (s = 5
2
), we choose

ρ = p|0, 0〉〈0, 0|+ 1− p
15

I, (4.33)

where 0 ≤ p ≤ 1, |0, 0〉 is given in the Table below and I is the identity operator

acting on the Hilbert space associated with the two-fermion system. For this

state we have δ(p) = 14(1− p) and thus for 5/7 < p ≤ 1 states are entangled. The

degree of violation of the uncertainty relation is then also used as a measure of

entanglement for those states.

The following is a list of the antisymmetric total angular momentum eigen-

states for s = 5/2 (which, according to the angular momentum representation,
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constitute a basis of the Hilbert space describing the two-fermion system) with

the value for the uncertainty δ indicated on the right:

δ

|4, 4〉 = − 1√
2
|3
2

5
2
〉+ 1√

2
|5
2

3
2
〉 4

|4, 3〉 = − 1√
2
|1
2

5
2
〉+ 1√

2
|5
2

1
2
〉 11

|4, 2〉 = − 3
2
√

7
|-1

2
5
2
〉 − 1

2

√
5
7
|1
2

3
2
〉+ 1

2

√
5
7
|3
2

1
2
〉+ 3

2
√

7
|5
2
-1

2
〉 16

|4, 1〉 = − 1√
7
|-3

2
5
2
〉 −

√
5
14
|-1

2
3
2
〉+

√
5
14
|3
2
-1

2
〉+ 1√

7
|5
2
-3

2
〉 19

|4, 0〉 = − 1
2
√

7
|-5

2
5
2
〉 − 3

2
√

7
|-3

2
3
2
〉 − 1√

7
|-1

2
1
2
〉+ 1√

7
|1
2
-1

2
〉+ 3

2
√

7
|3
2
-3

2
〉+ 1

2
√

7
|5
2
-5

2
〉 20

|4,−1〉 = − 1√
7
|-5

2
3
2
〉 −

√
5
14
|-3

2
1
2
〉+

√
5
14
|1
2
-3

2
〉+ 1√

7
|3
2
-5

2
〉 19

|4,−2〉 = − 3
2
√

7
|-5

2
1
2
〉 − 1

2

√
5
7
|-3

2
-1

2
〉+ 1

2

√
5
7
|-1

2
-3

2
〉+ 3

2
√

7
|1
2
-5

2
〉 16

|4,−3〉 = − 1√
2
|-5

2
-1

2
〉+ 1√

2
|-1

2
-5

2
〉 11

|4,−4〉 = − 1√
2
|-5

2
-3

2
〉+ 1√

2
|-3

2
-5

2
〉 4

|2, 2〉 = −1
2

√
5
7
|-1

2
5
2
〉+ 3

2
√

7
|1
2

3
2
〉 − 3

2
√

7
|3
2

1
2
〉+ 1

2

√
5
7
|5
2
-1

2
〉 2

|2, 1〉 = −
√

5
14
|-3

2
5
2
〉+ 1√

7
|-1

2
3
2
〉 − 1√

7
|3
2
-1

2
〉+

√
5
14
|5
2
-3

2
〉 5

|2, 0〉 = − 5
2
√

21
|-5

2
5
2
〉 − 1

2
√

21
|-3

2
3
2
〉+ 2√

21
|-1

2
1
2
〉 − 2√

21
|1
2
-1

2
〉+ 1

2
√

21
|3
2
-3

2
〉+ 5

2
√

21
|5
2
-5

2
〉 6

|2,−1〉 = − 5√
14
|-5

2
3
2
〉+ 1√

7
|-3

2
1
2
〉 − 1√

7
|1
2
-3

2
〉+ 5√

14
|3
2
-5

2
〉 5

|2,−2〉 = −1
2

5√
7
|-5

2
1
2
〉+ 3

2
√

7
|-3

2
-1

2
〉 − 3

2
√

7
|-1

2
-3

2
〉+ 1

2
5√
7
|1
2
-5

2
〉 2

|0, 0〉 = −1
6
|-5

2
5
2
〉+ 1√

6
|-3

2
3
2
〉 − 1√

6
|-1

2
1
2
〉+ 1√

6
|1
2
-1

2
〉 − 1√

6
|3
2
-3

2
〉+ 1√

6
|5
2
-5

2
〉. 0

Any state for which δ(ρ) < 4 is necessarily entangled. Thus in the above list of

states, three of the eleven entangled states are detected.

4.1.3 Characterization of entanglement via the variances

of projector operators

Here I am going to formulate separability criteria for systems of identical fermions

based upon the uncertainties of observables that are not of the form A(1) +A(2) =

A⊗I+I⊗A. Instead, we are going to consider families of observables of the form

Mi = |ψi〉〈ψi|, where |ψi〉 are appropriate pure states of the N -fermion system

under consideration. This kind of approach was recently applied by Gühne [140]

to composite quantum systems with distinguishable subsystems.
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4.1.3.1 Bipartite states of two fermions with a four-dimensional single-

particle Hilbert space

We are interested in finding an entanglement detection criterion involving the

sum δM =
∑

i δ
2(Mi) of the variances of an appropriate set of projector operators

{Mi}. First, let’s introduce the following notation:

|m1m2| =
1√
2

[
|m1〉|m2〉 − |m2〉|m1〉

]
. (4.34)

We now define six orthogonal basis states each exhibiting the same amount of

entanglement and all consisting of a linear combination of two Slater determinants

which are orthogonal as well,

|ψ1〉 = a

∣∣∣∣32 1

2

∣∣∣∣+ b

∣∣∣∣-1

2
-
3

2

∣∣∣∣
|ψ2〉 = b

∣∣∣∣32 1

2

∣∣∣∣− a ∣∣∣∣-1

2
-
3

2

∣∣∣∣
|ψ3〉 = a

∣∣∣∣12-
1

2

∣∣∣∣+ b

∣∣∣∣32-
3

2

∣∣∣∣
|ψ4〉 = b

∣∣∣∣12-
1

2

∣∣∣∣− a ∣∣∣∣32-
3

2

∣∣∣∣
|ψ5〉 = a

∣∣∣∣32-
1

2

∣∣∣∣+ b

∣∣∣∣12-
3

2

∣∣∣∣
|ψ6〉 = b

∣∣∣∣32-
1

2

∣∣∣∣− a ∣∣∣∣12-
3

2

∣∣∣∣ , (4.35)

where a and b are assumed to be real and |a| ≥ |b|. Then we let Mi = |ψi〉〈ψi|, i =

1, . . . , 6. The proof of the uncertainty relation (4.40) is as follows. We let |φsl〉,
|φ1〉 and |φ2〉 be the same as in eqs. (4.12), (4.13) and (4.14). The idea is to find

the minimum of

6∑
i=1

δ2(Mi)|φsl〉〈φsl| = 1−
6∑
i=1

(
|〈φsl|ψi〉|2

)2
(4.36)

for all separable states |φsl〉, so that when
∑6

i=1 δ
2(Mi)|ψ〉〈ψ| is less than that

minimum, we know with certainty that the state |ψ〉 is entangled. This amounts

to finding the maximum for
∑6

i=1 (|〈φsl|ψi〉|2)
2
. This can be determined by finding
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first the maximum of |〈φsl|ψi〉|2 for each i (here we follow a procedure similar to

the one used in [140] for systems of two distinguishable qubits). Due to symmetry,

it is only necessary to find the maximum for one i. Now,

|〈φsl|ψ1〉| =
∣∣aα1β2 − aα2β1 + bα3β4 − bα4β3

∣∣
≤ |a|

[
|α1||β2|+ |α2||β1|

]
+ |b|

[
|α3||β4|+ |α4||β3|

]
≤ |a|

[
|α1||β2|+ |α2||β1|+ |α3||β4|+ |α4||β3|

]
≤ |a|

√
|α1|2 + |α2|2 + |α3|2 + |α4|2

√
|β1|2 + |β2|2 + |β3|2 + |β4|2

= |a|, (4.37)

where the inequalities follow from subadditivity, then from |a| ≥ |b| and the

last inequality comes from the Schwarz inequality and the equality follows from

the normalization of |φ1〉 and |φ2〉. As mentioned, due to symmetry, this last

inequality will hold for all |ψi〉,

|〈φsl|ψi〉|2 ≤ a2 ∀i. (4.38)

The inequality (4.38) together with the normalization of |φsl〉, leads to the in-

equality
6∑
i=1

(
|〈φsl|ψi〉|2

)2 ≤ a4 + (1− a2)2. (4.39)

This upper bound is achieved, for instance, by the state |φ′sl〉 =
∣∣3

2
1
2

∣∣.
From (4.39) and using the normalization of the |ψi〉’s (a2 + b2 = 1), we finally

obtain,
6∑
i=1

δ2(Mi)|φsl〉〈φsl| ≥ 2a2b2. (4.40)

At least one entangled state violates this inequality, namely |ψ1〉 which gives

zero for the left hand side of equation (4.40). To compare the efficiency of this

entanglement criterion with the previous one we use the same families of mixed

states ρ as in equations (4.28) and (4.30). When applying the criterion to those

states we consider the case a = b = 1/
√

2, which is the one maximizing the right

hand side of equation (4.40). The results corresponding to the first illustration

are shown in Figure 4.1 where we again use the relative violation (4.27) with
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δmin = 1/2,

δ′M = 1− 2δM , (4.41)

and since δM(p) = -5
6
(−1 + p2), entanglement is detected for

√
2
5
< p ≤ 1.

Thus the range of entanglement detection in this case is very close to the one of

the first uncertainty relation established. For the second density matrix (4.30),

δM(p) = 1
2

+ p − 3p2

2
and so entanglement is detected from pmin = 2/3, which is

exactly the same as for the local uncertainty relation.

4.1.3.2 Two-fermion systems with a six-dimensional single-particle

Hilbert space

As mentioned before, the particular case of systems of two identical fermions

with a four-dimensional single-particle Hilbert space (the simplest fermion system

admitting entanglement) is the only one for which we have a closed, analytical

expression for the concurrence. No such expression is known for fermion systems

of higher dimensionality, nor any necessary and sufficient separability criteria

for general mixed states of those systems. It is thus of considerable interest to

explore the application of separability criteria based upon uncertainty relations of

a two-fermion system with single-particle Hilbert space of dimension larger than

four. Here we are going to consider fermions with single-particle Hilbert space of

dimension six. The dimension of the concomitant two-fermion system is then 15

and, again, we have to choose a basis of orthogonal states {|ψi〉, i = 1, . . . , 15}, all

exhibiting the same amount of entanglement. We are going to use an orthonormal

basis comprising five “triplets” of states of the form

a |m1m2| + a |m3m4| −
a

2
|m5m6| ,

a |m1m2| −
a

2
|m3m4|+ a |m5m6| ,

−a
2
|m1m2| + a |m3m4|+ a |m5m6| , (4.42)

where the six mi’s appearing in (4.42) are all different and a = 2/3. The three

Slater determinants |mimj| appearing in each of the “triplets” are different from
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the Slater determinants appearing in the other four triplets. Thus the basis reads

|ψ1〉 =
2

3

∣∣∣∣52 3

2

∣∣∣∣+
2

3

∣∣∣∣12-
1

2

∣∣∣∣− 1

3

∣∣∣∣-3

2
-
5

2

∣∣∣∣
|ψ2〉 =

2

3

∣∣∣∣52 3

2

∣∣∣∣− 1

3

∣∣∣∣12-
1

2

∣∣∣∣+
2

3

∣∣∣∣-3

2
-
5

2

∣∣∣∣
|ψ3〉 = −1

3

∣∣∣∣52 3

2

∣∣∣∣+
2

3

∣∣∣∣12-
1

2

∣∣∣∣+
2

3

∣∣∣∣-3

2
-
5

2

∣∣∣∣
|ψ4〉 =

2

3

∣∣∣∣52 1

2

∣∣∣∣+
2

3

∣∣∣∣-1

2
-
3

2

∣∣∣∣− 1

3

∣∣∣∣32-
5

2

∣∣∣∣
|ψ5〉 =

2

3

∣∣∣∣52 1

2

∣∣∣∣− 1

3

∣∣∣∣-1

2
-
3

2

∣∣∣∣+
2

3

∣∣∣∣32-
5

2

∣∣∣∣
|ψ6〉 = −1

3

∣∣∣∣52 1

2

∣∣∣∣+
2

3

∣∣∣∣-1

2
-
3

2

∣∣∣∣+
2

3

∣∣∣∣32-
5

2

∣∣∣∣
...

|ψ13〉 =
2

3

∣∣∣∣52-
5

2

∣∣∣∣+
2

3

∣∣∣∣32-
1

2

∣∣∣∣− 1

3

∣∣∣∣12-
3

2

∣∣∣∣
|ψ14〉 =

2

3

∣∣∣∣52-
5

2

∣∣∣∣− 1

3

∣∣∣∣32-
1

2

∣∣∣∣+
2

3

∣∣∣∣12-
3

2

∣∣∣∣
|ψ15〉 = −1

3

∣∣∣∣52-
5

2

∣∣∣∣+
2

3

∣∣∣∣32-
1

2

∣∣∣∣+
2

3

∣∣∣∣12-
3

2

∣∣∣∣ . (4.43)

The derivation of the uncertainty relation (4.45) follows along similar lines as the

one in the previous Subsubsection. The general separable state is as in eq. (4.12),

however, the two orthogonal single-particle states are of dimension six. The

overlap between a member |ψi〉 of the above basis and any separable state |φsl〉
is always less or equal to a. Making use of the normalization of the |ψi〉’s, 2a2 +

(a
2
)2 = 1, this leads to the inequality

15∑
i=1

(|〈φsl|ψi〉|2)2 ≤ 2a4 + (1− 2a2)2 =
33

81
(4.44)

which, in turn, implies the following lower bound for the sum of the uncertainties

evaluated on a separable state,

15∑
i=1

δ2(Mi)|φsl〉〈φsl| ≥
48

81
. (4.45)
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The separable state |φ′sl〉 =
∣∣5

2
3
2

∣∣ attains this lower bound and at least one entan-

gled state violates this inequality, namely |ψ1〉 gives
∑15

i=1 δ
2(Mi)|ψ1〉〈ψ1| = 0.

As an illustration of this separability criterion let us look at the following

family of states having Slater rank equal to 2,

|φ〉 =
1√
2

[
|φ1φ2|+ |φ3φ4|

]
, (4.46)

with the |φi〉’s being four normalized, orthogonal single-particle states. The over-

lap between this family of states and |ψ1〉 is less or equal to 4
3
√

2
. The minimum

value adopted by the quantity
∑15

i=1 δ
2(Mi) when evaluated on states belonging

to the family (4.46) is 33
162

and it is achieved by the state |φ′〉 = 1√
2

[∣∣5
2

3
2

∣∣+
∣∣1

2
-1

2

∣∣].
Thus we obtain

15∑
i=1

δ2(Mi)|φ〉〈φ| ≥
33

162
. (4.47)

So all the states within the family (4.46) whose sum of uncertainties lies between
33
162

and 48
81

are identified as entangled.

As a second example we apply the criterion to mixed states of the form

ρ = p|ϕi〉〈ϕi|+
1− p

15
I, (4.48)

where 0 ≤ p ≤ 1, |ϕi〉 is an entangled pure state, and I =
∑15

i=1 |ψi〉〈ψi| is the

identity operator acting on the Hilbert space associated with the two-fermion

system, the |ψi〉’s being the members of an orthonormal basis of this space (for

instance, the basis (4.43)). We are going to consider the following three different

cases for the state |ϕi〉:

1) |ϕ1〉 = 1√
3

[∣∣5
2

3
2

∣∣+
∣∣1

2
-1

2

∣∣− ∣∣-3
2
-5

2

∣∣], in which case entanglement is detected in

the interval 1 ≥ p >
√

207
482
≈ 0.655, since δM = 14

15
− 964

1215
p2.

2) |ϕ2〉 = |ψ1〉, then δM = −14
15

(−1 + p2) and entanglement is detected for

1 ≥ p >
√

23
63
≈ 0.604.
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3) |ϕ3〉 = 1√
2

[∣∣5
2

3
2

∣∣+
∣∣1

2
-1

2

∣∣], with δM = 1
270

(252− 197p2) and entangled states are

detected for 1 ≥ p >
√

92
197
≈ 0.683.

4.1.3.3 Systems of three fermions with a six-dimensional single-particle

Hilbert space

In the case of three fermions with s = 5/2, a general separable state (Slater

determinant) is of the form

|φsl〉 = |φ1φ2φ3| =
1√
6

[
|φ1〉|φ2〉|φ3〉 − |φ1〉|φ3〉|φ2〉 − |φ2〉|φ1〉|φ3〉+ |φ2〉|φ3〉|φ1〉

+|φ3〉|φ1〉|φ2〉 − |φ3〉|φ2〉|φ1〉
]
, (4.49)

with the three orthonormal single-particle states being

|φ1〉 = α1

∣∣∣5
2

〉
+ α2

∣∣∣3
2

〉
+ α3

∣∣∣1
2

〉
+ α4

∣∣∣-1

2

〉
+ α5

∣∣∣-3

2

〉
+ α6

∣∣∣-5

2

〉
|φ2〉 = β1

∣∣∣5
2

〉
+ β2

∣∣∣3
2

〉
+ β3

∣∣∣1
2

〉
+ β4

∣∣∣-1

2

〉
+ β5

∣∣∣-3

2

〉
+ β6

∣∣∣-5

2

〉
|φ3〉 = γ1

∣∣∣5
2

〉
+ γ2

∣∣∣3
2

〉
+ γ3

∣∣∣1
2

〉
+ γ4

∣∣∣-1

2

〉
+ γ5

∣∣∣-3

2

〉
+ γ6

∣∣∣-5

2

〉
. (4.50)

In this Subsubsection we are extending the previous one to three fermions. Since

the dimension of the system is 20, we need to construct 20 orthogonal states

whose entanglement is the same and where there is no overlap between the two

Slater determinants that each state consists of. So the basis consists of ten pairs

of states which are unique combinations of non-overlapping Slater determinants

and where the members of each pair are permutations of each other:

|ψ1〉 =
1√
2

(∣∣∣∣52 3

2

1

2

∣∣∣∣+

∣∣∣∣-1

2
-
3

2
-
5

2

∣∣∣∣)
|ψ2〉 =

1√
2

(∣∣∣∣52 3

2

1

2

∣∣∣∣− ∣∣∣∣-1

2
-
3

2
-
5

2

∣∣∣∣)

|ψ3〉 =
1√
2

(∣∣∣∣32-
1

2
-
5

2

∣∣∣∣+

∣∣∣∣52 1

2
-
3

2

∣∣∣∣)
|ψ4〉 =

1√
2

(∣∣∣∣32-
1

2
-
5

2

∣∣∣∣− ∣∣∣∣52 1

2
-
3

2

∣∣∣∣)
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...

|ψ19〉 =
1√
2

(∣∣∣∣52-
1

2
-
5

2

∣∣∣∣+

∣∣∣∣12-
3

2

3

2

∣∣∣∣)
|ψ20〉 =

1√
2

(∣∣∣∣52-
1

2
-
5

2

∣∣∣∣− ∣∣∣∣12-
3

2

3

2

∣∣∣∣) . (4.51)

Once again, let Mi = |ψi〉〈ψi|, i = 1, . . . , 20 and so we obtain exactly the same

equation as in (4.36), except that the summation goes to 20. A bound on the

maximum overlap of |ψi〉 and |φsl〉 is

|〈φsl|ψi〉| =
1√
2

∣∣α1β2γ3 − α1β3γ2 − α2β1γ3 + α2β3γ1 + α3β1γ2 − α3β2γ1

+α4β5γ6 − α4β6γ5 − α5β4γ6 + α5β6γ4 + α6β4γ5 − α6β5γ4

∣∣
≤ 1√

2
, (4.52)

where the last inequality follows from the Schwarz inequality and normalization.

A state that realizes the maximum is |φ′sl〉 =
∣∣5

2
3
2

1
2

∣∣ and so together with normal-

ization
20∑
i=1

(
|〈φsl|ψi〉|2

)2 ≤ 1

2
(4.53)

and hence
20∑
i=1

δ2(Mi)|φsl〉〈φsl| ≥
1

2
∀ |φsl〉. (4.54)

At least one entangled state violates this inequality, namely |ψ1〉 gives zero for

the sum on the left hand side of eq. (4.54).

As an example of entanglement detection, let us consider the following family

of states

|Φ〉 = a|φ1φ2φ3|+ b|φ4φ5φ6| (4.55)

with the |φi〉’s being six orthogonal single-particle states. The above procedure

is repeated, this time for the family given in eq. (4.55). Then

20∑
i=1

δ2(Mi)|Φ〉〈Φ| ≥ 1− 1

4

[
|a+ b|4 + |a− b|4

]
(4.56)
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and the specific case a =
√

2
3
, b = 1√

3
[127, 134] (which is a state with genuine

tripartite entanglement) gives the value 1
18

for the right hand side. Thus all the

states whose sum of uncertainties lies between 1
18

and 1
2

are identified as entangled.

4.1.4 Separability criteria for two-fermion systems with a

four-dimensional single-particle Hilbert space based

on entropic uncertainty relations

Entropic uncertainty relations provide an alternative way to develop entanglement

criteria based upon uncertainty relations. The application of this procedure to the

detection of entanglement in quantum systems consisting of distinguishable sub-

systems was investigated by Gühne and Lewenstein in [141] and by Giovannetti

in [142]. Here we are going to explore the use of entropic uncertainty relations

to identify entangled states of systems constituted by identical fermions. Within

this approach the statistical variances are replaced by entropic measures as a

means of estimating the uncertainties associated with the measurement of ob-

servables. If {pi} denotes the probabilities of obtaining the different eigenvalues

of an observable A when measuring it on a system prepared in a given state ρ,

one can use the concomitant Shannon entropy,

H[A]ρ = −
∑
i

pi ln pi, (4.57)

to characterize the uncertainty associated with the measurement. Alternatively,

one can consider the Rényi or the Tsallis families of q-entropies [142, 191, 196],

respectively given by

H(R)
q [A]ρ =

1

1− q
ln

(∑
i

pqi

)
, (4.58)

and

H(T )
q [A]ρ =

1−
∑

i p
q
i

q − 1
. (4.59)

The Shannon measure is a particular member of the above two entropic families,

corresponding to the limit case q → 1. The above entropic measures have been

discussed in Subsections 1.1.1, 1.1.2, 1.1.3 and 1.1.7.
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Given a suitable set of observables {Ak} we want to establish the minimum

value

Hmin = min
{|ψsl〉}

∑
k

H[Ak]|ψsl〉, (4.60)

over all separable pure states |ψsl〉, adopted by the sum of the entropies H[Ak]

associated with the measurement of the observables Ak. If the entropic measure

H used in (4.60) is concave, then∑
k

H[Ak]ρ ≥
∑
k,i

λiH[Ak]|ψ(i)
sl 〉
≥
∑
i

λiHmin = Hmin, (4.61)

for any separable mixed state ρ of the form (2.70).

We are going to consider the set of observables

X̂ = Sx ⊗ Sx, Ŷ = Sy ⊗ Sy, Ẑ = Sz ⊗ Sz, (4.62)

associated with a system of two identical fermions, where Sx, Sy and Sz are the

single-fermion angular momentum operators in the x, y and z direction respec-

tively. Once again, we are going to assume that ~ = 1. In order to determine

the minimum value of the corresponding entropic sum (4.60), it is convenient to

represent the general separable state |ψsl〉 as

|ψsl〉 =
|χ〉√
〈χ|χ〉

, (4.63)

where

|χ〉 = |φ1〉|φ2〉 − |φ2〉|φ1〉, (4.64)

and the single-particle states |φ1〉 and |φ2〉 are parameterized as [197]

|φ1〉 = cosα3

∣∣∣-3

2

〉
+ sinα3 cosα2 e

iγ3

∣∣∣-1

2

〉
+ sinα3 sinα2 cosα1 e

iγ2

∣∣∣1
2

〉
+ sinα3 sinα2 sinα1 e

iγ1

∣∣∣3
2

〉
|φ2〉 = cos β3

∣∣∣-3

2

〉
+ sin β3 cos β2 e

iδ3
∣∣∣-1

2

〉
+ sin β3 sin β2 cos β1 e

iδ2
∣∣∣1
2

〉
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+ sin β3 sin β2 sin β1 e
iδ1
∣∣∣3
2

〉
. (4.65)

The six parameters α1, α2, α3, β1, β2, β3 ∈ [0, π
2
], whereas the phase-parameters

lie in the interval [0, 2π]. Note that here we don’t require that |φ1〉 and |φ2〉 are

orthogonal. Thus the state (4.63) has Slater rank 1 even if the states |φ1〉 and

|φ2〉 are non-orthogonal. This means 〈φ1|φ2〉 = c, however, as long as c 6= 1 we

have |φ1〉 and |φ2〉 linearly independent and so |ψsl〉 is proportional to a Slater

determinant. The entropic uncertainties (Shannon entropy) corresponding to the

measurement of the observables X̂, Ŷ and Ẑ on the state (4.63) are calculated

and added together. This procedure leads to two functions, H[X̂] + H[Ŷ ] and

H[X̂] + H[Ŷ ] + H[Ẑ], of the 12 parameters characterizing the state (4.63), that

have to be minimized in order to obtain the separability criteria. Since the states

are expressed in the product basis, one first has to obtain the eigenvectors of X̂,

Ŷ and Ẑ in the product basis, then take linear combinations of the degenerate

eigenvectors to get six antisymmetric eigenvectors for each observable. These are

then used to obtain the probabilities

pk = |〈ψsl|ekv〉|2 k = 1, 2, . . . , 6. (4.66)

In all three cases X̂, Ŷ , Ẑ, two of the eigenvalues are two-fold degenerate and so

one respectively adds the two probabilities corresponding to the same eigenvalue.

When measuring either X̂, Ŷ or Ẑ, we thus have the probabilities for obtaining

the four eigenvalues when the system is in the state |ψsl〉. It is these probabilities

that are used in the Shannon entropy in eq. (4.60). Since the resultant expressions

H[X̂] + H[Ŷ ] and H[X̂] + H[Ŷ ] + H[Ẑ] are much too complicated to establish

the corresponding minima Hxy and Hxyz analytically, we implemented instead

a numerical minimization using the Metropolis algorithm. The idea behind the

Metropolis algorithm is to try and prevent ending up with a local minimum by

doing the following. Starting from a random configuration A, one calculates the

entropy HA = H[X̂]A + H[Ŷ ]A and then makes a change in the configuration to

obtain a new (nearby) configuration B which is also normalized. The entropy HB

is then computed and if HB < HA the new configuration is assumed since it has

lower entropy. However, if HB > HA, the new higher entropy configuration is ac-

cepted with probability p = e−(HB−HA)/T , where T is a parameter that is decreased
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as the algorithm proceeds in order to settle into the lowest entropy configuration

one can find in the neighbourhood. That is, when T is larger there is a greater

probability of moving out of local minima regions and hence exploring the config-

uration space in order to find the global minimum. As T is decreased it forces the

algorithm to narrow its search and one can simultaneously then also decrease the

amount by which one perturbs the parameters in order to narrow the search even

further. The Metropolis algorithm was run numerous times with different ran-

dom initial states to ensure that it always converges to the same global minimum.

The result of this numerical optimization is Hxy = 0.693147 and Hxyz = 1.38629.

This means that states for which H[X̂] +H[Ŷ ] or H[X̂] +H[Ŷ ] +H[Ẑ] is smaller

than their respective minimal values, are necessarily entangled.

In what follows we are going to consider separability criteria for systems of

two identical fermions based, instead of on the Shannon entropy, on Tsallis’ q-

entropy. The separability bounds associated with the q-entropies are obtained

by recourse to a procedure similar to the previously discussed one corresponding

to Shannon’s measure. In fact, the Shannon-based criteria can be regarded as

special instances of the Tsallis-based ones, corresponding to q → 1. So for a range

of values of q we numerically determine the minima

Hxy(q) = min
|ψsl〉

{
H(T )
q [Sx ⊗ Sx]|ψsl〉 +H(T )

q [Sy ⊗ Sy]|ψsl〉
}

Hxyz(q) = min
|ψsl〉

{
H(T )
q [Sx ⊗ Sx]|ψsl〉 +H(T )

q [Sy ⊗ Sy]|ψsl〉+

H(T )
q [Sz ⊗ Sz]|ψsl〉

}
, (4.67)

where |ψsl〉 is a pure state of Slater rank 1 (expressed as in (4.63)) with |φ1〉, |φ2〉
being the same as in eq. (4.65). Then we have

H(T )
q [Sx ⊗ Sx]|ψsl〉 +H(T )

q [Sy ⊗ Sy]|ψsl〉 ≥ Hxy(q)

H(T )
q [Sx ⊗ Sx]|ψsl〉 +H(T )

q [Sy ⊗ Sy]|ψsl〉 +H(T )
q [Sz ⊗ Sz]|ψsl〉 ≥ Hxyz(q), (4.68)

for all separable pure states |ψsl〉. Since the entropic measure H
(T )
q is concave,

the inequality (4.68) actually holds for any separable state ρ, pure or mixed. The

results corresponding to the numerical minimization (4.67) are shown in Figure

4.3. The Metropolis algorithm was used to obtain the minimum for each q, with
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Figure 4.3: Numerical lower bounds in
eq. (4.68). The upper curve is Hxyz(q) and
the lower one Hxy(q).
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Figure 4.4: Minimal values pmin depend-
ing on q such that for p > pmin entangle-
ment in (4.69) is detected. These states are
entangled for p > 0.4. The upper curve is
pxy(q) and the lower one pxyz(q).

q increasing in intervals of 0.1. The starting point for each minimization were

the values of the 12 parameters which minimized the sum of the Tsallis entropies

for the previous value for q, and for q = 1.1 the initial values taken were the

result from the Metropolis algorithm for the sum of the Shannon entropies (re-

member that the Shannon entropy is recovered from the Tsallis entropy in the

limit q → 1). To make sure that this perturbation-based minimization approach

works, cross-checks were performed for a select number of values of q by running

the Metropolis algorithm directly with random initial input values. These results

did indeed correspond to the minima obtained by the perturbation method.

As illustrations of the efficiency of these criteria we can consider the same

families of states (4.28) and (4.30) as in Subsection 4.1.2. The six antisymmetric

eigenvectors of X̂ are utilized to obtain the probabilities pk = 〈ekv|ρ|ekv〉, k =

1, 2, . . . , 6 and probabilities arising from eigenvectors corresponding to degenerate

eigenvalues are added together. So one ends up with four resultant probabilities

which are used in the Tsallis or Shannon entropies. Similarly for Ŷ and Ẑ two of

the eigenvalues are two-fold degenerate. However, neither the Shannon nor the

Tsallis entropic criteria detect entanglement for these states. Another family of

states was thus constructed

ρ = p · 1

2

(
|2, 2〉 − |2,−2〉

)(
〈2, 2| − 〈2,−2|

)
+

1− p
6

I, (4.69)
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where 1√
2
(|2, 2〉 − |2,−2〉) is maximally entangled and is a common eigenvector

of X̂, Ŷ and Ẑ. Evaluating the concurrence shows that the state is entangled for

0.4 < p ≤ 1. The values of p from which onward the criteria detect entanglement

are given in Figure 4.4. These values are obtained by setting

H(T )
q [Sx ⊗ Sx]ρ +H(T )

q [Sy ⊗ Sy]ρ = Hxy(q)

H(T )
q [Sx ⊗ Sx]ρ +H(T )

q [Sy ⊗ Sy]ρ +H(T )
q [Sz ⊗ Sz]ρ = Hxyz(q) (4.70)

for the values of q for which the minima Hxy(q), Hxyz(q) were obtained, and solv-

ing for p. This gives the minimal value of p for which entanglement is detected.

Thus for q between 2.5 and 2.9 the greatest range of entanglement is detected.

Next we are going to formulate another family of separability criteria for

systems of two fermions. These criteria are based upon either Tsallis or Rényi

entropies, and are similar to the ones proposed by Gühne and Lewenstein [141]

for bipartite systems comprising distinguishable subsystems.

Lets consider the non-degenerate observable M

M =
6∑
i=1

µi|ψi〉〈ψi|, (4.71)

with the |ψi〉’s being the states in eq. (4.35) with a = 1/
√

2. When measuring M

on a separable state |ψsl〉 (that is, a state of Slater rank 1) the maximum possible

value of the probability |〈ψsl|ψi〉|2 of obtaining a given eigenvalue of M is 1
2
. Due

to concavity of the Tsallis entropy, the minimum possible value of H
(T )
q (M)|ψsl〉

is then attained when two of these probabilities are equal to 1
2

and the other

four probabilities are zero, since then the probability distribution is as peaked

as possible. Therefore (for q > 1) we have that any separable state ρ (pure or

mixed) complies with

H(T )
q (M)ρ ≥

1− 21−q

q − 1
. (4.72)

This inequality provides an entanglement criterion since any state violating this

inequality is necessarily entangled. For q = 2 this criterion turns out to be equiv-

alent to the one considered in Subsection 4.1.3, which is formulated in terms of
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the variances of projector operators (an equivalent situation occurs in the case of

distinguishable subsystems [141]).

Since the Rényi entropy is a monotonic function of the Tsallis entropy, see

eq. (1.11), this bound reads

H(R)
q (M)ρ ≥ ln 2 (4.73)

and the criterion gets stronger as q increases. For q → ∞ the Rényi entropy

becomes very simple, namely H
(R)
∞ (M)ρ = − ln(max{p ∈ P(M)ρ}), where P(M)ρ

is the probability distribution associated with the measurement of the observable

M .

To have an idea of the power of this criterion, we apply it to the states given

by (4.28). The expression for the Tsallis entropy is then

H(T )
q (M)ρ =

6−q
(

6q − 5(1− p)q − (1 + 5p)q
)

q − 1
. (4.74)

However, it is more useful to use the Rényi entropy as the violations of (4.72)

become smaller and smaller as q increases until it becomes impossible to say

clearly whether the inequality (4.72) is violated or not due to finite accuracy.

Table 4.1 shows the minimal p from which onwards entanglement is detected for

various values of q. The limit q → ∞ gives the best result, namely entangle-

ment detection for p > 0.4 (thus all the entangled states in the family (4.28) are

detected) and the violation of the inequality (4.73) as a function of p is very clear.

Table 4.1: Minimal values of p for which entanglement is detected in eq. (4.28).

q 2 4 6 8 10 20 50 ∞
min p 0.632 0.513 0.473 0.454 0.443 0.421 0.408 0.4

For the family of states (4.30) the limit q → ∞ gives entanglement detec-

tion for p > 0.5, so entanglement is detected within the total range of p-values
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corresponding to entangled states.

4.1.5 Conclusions

I derived a separability criterion for states (pure or mixed) of two fermions with

a single-particle Hilbert space of dimension four (s = 3
2
) based on the violation of

local uncertainty relations. The violation of these relations provides a means of

entanglement detection and also a quantitative indicator of entanglement. Then

we developed separability criteria for fermion systems using sums of variances

of appropriate projector operators. We implemented this type of criterion for

two-fermions systems with four-dimensional (s = 3
2
) and six-dimensional (s = 5

2
)

single-particle Hilbert spaces, and for systems of three identical fermions with

a six-dimensional single-particle Hilbert space. In the latter two instances no

analytical, closed expression for the concurrence, nor a necessary and sufficient

separability criterion exists. Therefore, the present criteria for entanglement de-

tection provide in these cases a valuable tool for the identification of families of

entangled mixed states. The violation of entropic uncertainty relations was then

investigated as a means of entanglement detection. Criteria were established us-

ing the Shannon, Tsallis and Rényi entropies. I also provided illustrations of

families of entangled states that are detected by our separability criteria.
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4.2 Entropic Entanglement Criteria for Fermion

Systems

Entanglement criteria for general (pure or mixed) states of systems consisting

of two identical fermions are introduced. These criteria are based on appropri-

ate inequalities involving the entropy of the global density matrix describing the

total system, on the one hand, and the entropy of the one-particle reduced den-

sity matrix, on the other hand. A majorization-related relation between these

two density matrices is obtained, leading to a family of entanglement criteria

based on Rényi’s entropic measure. These criteria are applied to various illustra-

tive examples of parameterized families of mixed states. The dependence of the

entanglement detection efficiency on Rényi’s entropic parameter is investigated.

The extension of these criteria to systems of N identical fermions is also consid-

ered.

This Section is based on the publication [131] “Entropic Entanglement Criteria

for Fermion Systems”, C. Zander, A.R. Plastino, M. Casas and A. Plastino,

Eur. Phys. J. D 66, (2012) 14 and is organized as follows. The development

of entropic separability criteria is placed into context in Subsection 4.2.1. A

brief review of entanglement between particles in systems of identical fermions

is given in Subsection 4.2.2. Entropic entanglement criteria for systems of two

identical fermions based on the von Neumann, the linear, and the Rényi entropies

are derived in Subsection 4.2.3. These entropic criteria are applied to particular

families of states of two-fermion systems in Subsections 4.2.4 and 4.2.5. The

extension to systems of N fermions of the entanglement criteria based upon the

Rényi entropies is considered in Subsection 4.2.6. Finally, some conclusions are

drawn in Subsection 4.2.7.

4.2.1 Entropic criteria and the separability problem

The problem of determining whether a given quantum state ρ is separable or

entangled is known as “the separability problem”. It constitutes one of the most

fundamental problems in the theory of quantum entanglement and is the subject

of a sustained and intense research activity (see [67, 142, 186–191] and references
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therein). Besides its intrinsic interest, the development of separability criteria

also leads to useful quantitative entanglement indicators: the degree to which

a separability criterion is violated constitutes in itself a valuable quantitative

indicator of entanglement. For instance, the well-known negativity measure of

entanglement (which is one of the most used practical measures of entanglement

for mixed states of systems with distinguishable subsystems) is based upon the

celebrated Peres’ separability criterion [67], see Subsection 2.1.4.

Entropic separability criteria have played a distinguished role in the study of

the entanglement-related features of mixed states of multipartite systems consti-

tuted by distinguishable subsystems [67, 186–191]. For this kind of composite

quantum system, non-entangled states behave classically in the sense that the

entropy of a subsystem is always less or equal than the entropy of the whole sys-

tem. If the entropy of a subsystem happens to be larger than the entropy of the

whole system, then we know for sure that the state is entangled (that is, this con-

stitutes a sufficient entanglement criterion). This statement can be formulated

mathematically in terms of the Rényi entropic measures,

S(R)
q [ρ] =

1

1− q
ln(Tr[ρq]), (4.75)

leading to the following family of inequalities satisfied by separable states [67, 186–

191],

S(R)
q [ρA] ≤ S(R)

q [ρAB]

S(R)
q [ρB] ≤ S(R)

q [ρAB]. (4.76)

In the above equations ρAB is the joint density matrix describing a bipartite sys-

tem consisting of the subsystems A and B, and ρA,B are the marginal density

matrices describing the subsystems. The entropic parameter in (4.75) and (4.76)

adopts values q ≥ 1. In the limit q → 1 the Rényi entropy reduces to the von

Neumann entropy. Note that the entropic criteria considered in [67, 186–191] and

in the present work, which depend on the entropies of the total and reduced den-

sity matrices, are different from those studied in [141, 142], which involve entropic

uncertainty relations associated with the measurement of particular observables.
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The study of entropic entanglement criteria based upon the above consider-

ations has been the focus of a considerable amount of research over the years

[67, 186–191]. It would be interesting to extend this approach to systems con-

sisting of identical fermions. The aim of the present work is to investigate entan-

glement criteria for general (mixed) states of systems of two identical fermions

based upon the comparison of the entropy of the global density matrix describing

the total system and the entropy of the one-particle reduced density matrix.

4.2.2 Entanglement between particles in fermionic sys-

tems

As already explained in Section 2.5, the concept of entanglement between parti-

cles in a system of identical fermions is associated with the quantum correlations

exhibited by quantum states on top of the minimal correlations due to the in-

distinguishability of the particles and the antisymmetric character of fermionic

states. A pure state of N identical fermions that has Slater rank 1 (that is, a

state that can be described by one single Slater determinant) must be regarded

as separable (non-entangled) [108, 132]. The correlations exhibited by such states

do not provide a resource for implementing non-classical information transmis-

sion or information processing tasks. Moreover, the non-entangled character of

states of Slater rank 1 is consistent with the possibility of assigning complete sets

of properties to the parts of the composite system [133]. Consequently, a pure

state of two identical fermions of the form

|ψsl〉 =
1√
2

{
|φ1〉|φ2〉 − |φ2〉|φ1〉

}
, (4.77)

where |φ1〉 and |φ2〉 are orthonormal single-particle states, is regarded as separa-

ble.

A pure state |ψ〉 of a system of N identical fermions has Slater rank 1, and is

therefore separable, if and only if

Tr(ρ2
1) =

1

N
, (4.78)
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where ρ1 = Tr2,...,N(ρ) is the single-particle reduced density matrix, ρ = |ψ〉〈ψ|, n
is the dimension of the single-particle state space and N ≤ n [135]. On the other

hand, entangled pure states satisfy

1

n
≤ Tr(ρ2

1) <
1

N
. (4.79)

It is interesting that this relation can be re-cast under the guise of an entropic

inequality involving the linear entropy (2.15),

n− 1

n
≥ SL(ρ1) >

N − 1

N
. (4.80)

In fact, the quantity SL(ρ1)− N−1
N

constitutes a useful measure of entanglement,

especially in the case of systems of two fermions [124–126]. This suggests that

entropic inequalities may lead to useful entanglement criteria (and entanglement

indicators) also in the case of mixed fermionic states. As we are going to see in

this Section, this is indeed the case.

Non-entangled mixed states of systems of N identical fermions are those that

can be written as a mixture of Slater determinants,

ρsl =
∑
i

λi|ψ(i)
sl 〉〈ψ

(i)
sl |, (4.81)

where the states |ψ(i)
sl 〉 can be expressed as single Slater determinants, and 0 ≤

λi ≤ 1 with
∑

i λi = 1.

As has been discussed in Subsection 2.5.1, systems of identical fermions with

a single-particle Hilbert space of dimension 2k (with k ≥ 2) can be formally re-

garded as systems consisting of spin-s particles, with s = (2k−1)/2. The members

{|i〉, i = 1, . . . , 2k} of an orthonormal basis of the single-particle Hilbert space

can be identified with the states |s,ms〉, with ms = s− i + 1, i = 1, . . . , 2k. We

can use for these states the shorthand notation {|ms〉, ms = −s, . . . , s}, because

each particular example discussed here will correspond to a given value of k (and

s). According to this angular momentum representation, the antisymmetric joint

eigenstates {|j,m〉, −j ≤ m ≤ j, 0 ≤ j ≤ 2s} of the total angular momentum
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operators J2 and Jz constitute a basis for the Hilbert space associated with a

system of two identical fermions. The antisymmetric states |j,m〉 are those with

an even value of the quantum number j.

A closed analytical expression for the concurrence of general (pure or mixed)

states of two identical fermions sharing a single-particle Hilbert space of dimen-

sion four (corresponding to s = 3/2) was discovered by Eckert, Schliemann, Bruss,

and Lewenstein (ESBL) in [132]. The ESBL concurrence formula is given in Sub-

section 2.5.1, eq. (2.73).

In what follows we are going to consider systems comprising a given, fixed

number of identical fermions. Therefore, we are going to work within the first

quantization formalism.

4.2.3 Entropic entanglement criteria for systems of two

identical fermions

In this Subsection I am going to derive the main results of the present Section.

We shall advance new entropic criteria for mixed states of systems constituted by

identical fermions. In Subsubsection 4.2.3.1 we derive entropic criteria for mixed

states of two fermions (based on inequality (4.84)) and N fermions (based on

inequality (4.86)) formulated in terms of the von Neumann entropy, and an en-

tropic criterion for two fermions based upon the linear entropy. In Subsubsection

4.2.3.2 we introduce a full family of entropic criteria based on the Rényi entropy.

4.2.3.1 Entanglement criteria based on the von Neumann and the

linear entropies

Let ρ be a density matrix describing a quantum state of two identical fermions

and ρr be the corresponding single-particle reduced density matrix, obtained by

computing the partial trace over one of the two particles.

If ρ = |ψsl〉〈ψsl|, where |ψsl〉 represents a separable pure state of the form

(4.77), and

SvN[ρ] = −Tr(ρ ln ρ) (4.82)
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is the von Neumann entropy of ρ, we have that SvN[ρ] = 0 and SvN[ρr] = ln 2,

since ρr = 1
2
(|φ1〉〈φ1| + |φ2〉〈φ2|). That is, for separable pure states we have

SvN[ρ] − SvN[ρr] = − ln 2. It then follows from the concavity property of the

quantum conditional entropy [137] that, for a separable mixed state ρsl of the

form (4.81), SvN[ρsl]− SvN[ρr] ≥ − ln 2. To see this, let ρ(i) = |ψ(i)
sl 〉〈ψ

(i)
sl | and ρ

(i)
r

be the corresponding reduced density matrix. Then SvN[ρ(i)]− SvN[ρ
(i)
r ] = − ln 2

and the reduced density matrix of ρsl in eq. (4.81) is ρr =
∑

i piρ
(i)
r . The quantum

conditional entropy is then

SvN[ρr|ρr] = SvN[ρsl]− SvN[ρr]

≥
∑
i

pi
{
SvN[ρ(i)]− SvN[ρ(i)

r ]
}

=
∑
i

pi(− ln 2) = − ln 2, (4.83)

where the inequality follows from the conditional entropy being concave in ρsl

[137]. Consequently, all separable states (pure or mixed) of a system of two

identical fermions satisfy the inequality

SvN[ρr] ≤ SvN[ρsl] + ln 2, (4.84)

where ρr is the single-particle reduced density matrix.

Hence, if the quantity

DvN = SvN[ρr]− SvN[ρ]− ln 2 (4.85)

is positive the state ρ is necessarily entangled. Indeed, in the particular case of

pure states this quantity has been used as a measure of entanglement in some

applications (see, for instance, [185] and references therein).

The argument leading to inequality (4.84) can be extended to the more general

case of systems of N identical fermions. A separable pure state ρ = |ψsl〉〈ψsl| of N

identical fermions (that is, a pure state expressible as a single Slater determinant)

satisfies SvN[ρ] = 0 and SvN[ρr] = lnN . To see the latter, we notice that the Slater

determinant |ψsl〉 consists of N ! permutation terms and so the single-particle
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reduced density matrix is then ρr = 1
N

(|φ1〉〈φ1| + |φ2〉〈φ2| + . . . + |φN〉〈φN |).
Hence SvN[ρr] = −N [ 1

N
ln( 1

N
)] = lnN . Therefore, for this kind of state we have

SvN[ρ] − SvN[ρr] = − lnN . The concavity property of the quantum conditional

entropy then implies that for a separable mixed state ρ of N fermions having the

form (4.81) we have SvN[ρ]− SvN[ρr] ≥ − lnN . Consequently, a separable mixed

state of N fermions (that is, a state that can be written as a statistical mixture

of pure states each having the form of a single Slater determinant) satisfies the

inequality

SvN[ρr] ≤ SvN[ρ] + lnN. (4.86)

Consequently, a state of N fermions violating inequality (4.86) is necessarily en-

tangled. In the case of pure states of N fermions this entanglement criterion

reduces to one of the entanglement criteria previously discussed in [135]. The

special case of this criterion corresponding to pure states of two fermions was

first analyzed in [133]. That is, our present result (4.86) constitutes a generaliza-

tion to arbitrary mixed states of an inequality that has been previously known

and shown to be useful for the study of fermionic entanglement in the special

case of pure states. When deriving the inequalities (4.84) and (4.86) we have

used the concavity of the quantum conditional entropy. This property is usually

discussed in connection with composite systems comprising distinguishable sub-

systems. However, within the first quantization formalism, any density matrix

of two identical fermions has mathematically also the form of a density matrix

describing distinguishable subsystems (in fact, it is just a density matrix that

happens to be expressible as a statistical mixture of antisymmetric pure states).

Consequently, any mathematical property that is satisfied by general density ma-

trices describing distinguishable subsystems is also satisfied by the special subset

of density matrices that can describe a system of identical fermions.

An entanglement criterion for states of two fermions which is similar to the

previous one involving the von Neumann entropy, can be formulated in terms of

the linear entropy (2.15),

SL[ρ] = 1− Tr(ρ2). (4.87)

Given a quantum state ρ of two fermions, lets consider the concurrence-like quan-
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tity

c[ρ] = inf
∑
i

pic[|φi〉], (4.88)

where c[|φi〉] =

√
2
[
1− Tr

[
(ρ

(i)
r )2

]]
, ρ

(i)
r is the one-particle reduced density ma-

trix corresponding to |φi〉, ρ =
∑

i pi|φi〉〈φi|, and the infimum is taken over all

the possible decompositions of ρ as a statistical mixture {pi, |φi〉} of pure states

(note that c[ρ] adopts values in the range [0,
√

2]). The quantity defined in (4.88)

satisfies the inequality [198]

c[ρ]2 ≥ 2
[
Tr(ρ2)− Tr

(
ρ2
r

)]
. (4.89)

If ρ corresponds to a separable state of the two fermions, we have that ρ =∑
i pi|ψ

(i)
sl 〉〈ψ

(i)
sl | with c[|ψ(i)

sl 〉] = 1 for all i, since (ρ
(i)
r )2 = 1

4
(|φ1〉〈φ1| + |φ2〉〈φ2|)

and so Tr[(ρ
(i)
r )2] = 1

2
. Therefore, for a separable state we have from (4.88) that

c[ρ] ≤ 1 and combining this with (4.89), gives 1 ≥ c [ρ]2 ≥ 2 [Tr(ρ2)− Tr (ρ2
r)].

Hence

1
2
≥

{
1− Tr

(
ρ2
r

)}
−
{

1− Tr
(
ρ2
)}

⇒ 1
2
≥ SL[ρr]− SL[ρ]. (4.90)

Consequently, separable states (pure or mixed) of a system of two identical

fermions comply with the inequality,

SL[ρr] ≤ SL[ρ] +
1

2
. (4.91)

In other words, states for which the quantity

DL = SL[ρr]− SL[ρ]− 1

2
(4.92)

is positive are necessarily entangled. In the particular case of pure states of two

identical fermions, the positivity of (4.92) becomes both a necessary and sufficient

entanglement criterion (see [135] and references therein). That is, for a pure state

Tr(ρ2) = 1 and so the pure state is entangled when Tr(ρ2
r) <

1
2
, which corresponds

to eq. (4.79) for N = 2. Moreover, a quantity basically equal to (4.92) has been
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proposed as an entanglement measure for pure states of two fermions and indeed

constitutes one of the most useful entanglement measures for these states [126].

4.2.3.2 Entropic entanglement criteria based on the Rényi entropies

On the basis of the Rényi family of entropies we are going to derive now a gen-

eralization of the separability criterion associated with inequality (4.84). We

are going to prove that a (possibly mixed) quantum state ρ of a system of two

identical fermions satisfying the inequality

S(R)
q [ρ] + ln 2 < S(R)

q [ρr], (4.93)

for some q ≥ 1, is necessarily entangled. Here S
(R)
q stands for the Rényi entropy,

S(R)
q [ρ] =

1

1− q
ln(Tr[ρq]). (4.94)

The inequality (4.93) leads to an entropic entanglement criterion that detects

entanglement whenever the quantity

Rq = S(R)
q [ρr]− S(R)

q [ρ]− ln 2 (4.95)

is strictly positive. In the limit q → 1 the Rényi measure reduces to the von

Neumann entropy and we recover the entanglement criterion given by inequality

(4.84). When q →∞ the Rényi entropy becomes

S(R)
∞ [ρ] = − ln

(
λ(ρ)

max

)
, (4.96)

where λ
(ρ)
max is the largest eigenvalue of ρ. In this limit case, the entropic criterion

says that any state satisfying

− ln
(
λ(ρr)

max

)
+ ln

(
λ(ρ)

max

)
− ln 2 > 0

⇒ ln
(
λ(ρ)

max

)
> ln

(
2λ(ρr)

max

)
⇒ 2λ(ρr)

max < λ(ρ)
max (4.97)

157

 
 
 



4.2 Entropic Entanglement Criteria for Fermion Systems

is entangled, where λ
(ρ)
max and λ

(ρr)
max are, respectively, the largest eigenvalues of ρ

and ρr.

4.2.3.3 Proof of the entropic criteria based on the Rényi entropies

The following proof is based on the powerful techniques related to the majoriza-

tion concept [136, 138] that were introduced to the field of quantum entanglement

by Nielsen and Kempe in [136]. These authors proved that non-entangled states

of quantum systems having distinguishable subsystems are such that the total

density matrix is always majorized by the marginal density matrix associated

with one of the subsystems, see Subsection 2.6.1 for details of their proof. In the

case of non-entangled states of a system of identical fermions the total density

matrix ρ is not necessarily majorized by the one-particle reduced density matrix

ρr. However, as we are going to prove, there is still a definite majorization-related

relation between ρ and ρr that yields a family of inequalities between the Rényi

entropies of these two matrices, which leads in turn to a family of entropic en-

tanglement criteria.

In our proof of the entropic criterion associated with the inequality (4.93)

we are going to use the fundamental property of quantum statistical mixtures

discussed in Subsection 1.1.6, eq. (1.27). If ρ =
∑

i pi|ai〉〈ai| =
∑

j qj|bj〉〈bj| are

two statistical mixtures representing the same density matrix ρ, then there exists

a unitary matrix {Uij} such that [7, 136]

√
pi|ai〉 =

∑
j

Uij
√
qj|bj〉. (4.98)

The other property utilized is majorization, which is reviewed in Subsection 2.6.1.

Given two probability distributions {pi} and {qk} such that pi =
∑

kMikqk, where

the matrix {Mik} is doubly stochastic:
∑

iMik =
∑

kMik = 1 and each element

is real and Mik ≥ 0. Then the probability {pi} is said to be more “mixed” than

the probability {qk}. Alternatively {qk} is said to “majorize” {pi} and

S(R)
q [pi] ≥ S(R)

q [qk]. (4.99)

The two probability distributions need not have the same number of events and
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consequently the matrix Mik does not have to be a square matrix [7, 199].

Let us now consider a separable state of two identical fermions,

ρ =
∑
j

pj
2

(
|ψ(j)

1 〉|ψ
(j)
2 〉 − |ψ

(j)
2 〉|ψ

(j)
1 〉
)(
〈ψ(j)

1 |〈ψ
(j)
2 | − 〈ψ

(j)
2 |〈ψ

(j)
1 |
)

(4.100)

where 0 ≤ pj ≤ 1,
∑

j pj = 1 and |ψ(j)
1 〉, |ψ

(j)
2 〉 are normalized single-particle

states with 〈ψ(j)
1 |ψ

(j)
2 〉 = 0. Equation (4.100) represents the standard definition

of a non-entangled mixed state of two identical fermions. Notice that in (4.100)

no special relation between states |ψ(j)
i 〉 with different values of the label j is

assumed. In particular, the overlap between two states with different labels j is

not necessarily equal to 0 or 1. This, in turn, means that the overlap between

two different members of the family of (separable) two-fermion pure states par-

ticipating in the statistical mixture leading to (4.100) may be non-zero.

Let us consider now a spectral representation

ρ =
∑
k

λk|ek〉〈ek| (4.101)

of ρ. That is, the |ek〉 constitute an orthonormal basis of eigenvectors of ρ and the

λk are the corresponding eigenvalues. Then, (4.100) and (4.101) are two different

representations of ρ as a mixture of pure states. Therefore, there is a unitary

matrix U with matrix elements {Ukj} such that

√
λk|ek〉 =

∑
j

Ukj

√
pj
2

(
|ψ(j)

1 〉|ψ
(j)
2 〉 − |ψ

(j)
2 〉|ψ

(j)
1 〉
)
. (4.102)

The single-particle reduced density matrix corresponding to the two-fermion den-

sity matrix (4.100) is

ρr =
∑
j

pj
2

(
|ψ(j)

1 〉〈ψ
(j)
1 |+ |ψ

(j)
2 〉〈ψ

(j)
2 |
)
, (4.103)
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admitting a spectral representation

ρr =
∑
l

αl|fl〉〈fl|. (4.104)

We now define,

q2j = q2j−1 =
1

2
pj (j = 1, 2, 3, . . .) (4.105)

|φ2j−1〉 = |ψ(j)
1 〉

|φ2j〉 = |ψ(j)
2 〉 (j = 1, 2, 3, . . .). (4.106)

Now, since (4.103) and (4.104) correspond to two statistical mixtures yielding the

same density matrix, there must exist a unitary matrix W with matrix elements

{Wil} such that,

√
qi|φi〉 =

∑
l

Wil

√
αl|fl〉 (i = 1, 2, 3, . . .). (4.107)

Now, eq. (4.102) can be rewritten as√
λk|ek〉 =

∑
j

Ukj

(√
q2j−1|φ2j−1〉|φ2j〉 −

√
q2j|φ2j〉|φ2j−1〉

)
. (4.108)

Combining (4.107) and (4.108) gives

√
λk|ek〉 =

∑
j

Ukj

[∑
l

(
W2j−1,l|φ2j〉 −W2j,l|φ2j−1〉

)√
αl|fl〉

]

=
∑
l

[∑
j

Ukj

(
W2j−1,l|φ2j〉 −W2j,l|φ2j−1〉

)]√
αl|fl〉. (4.109)

Therefore, since 〈ek|ek′〉 = δkk′ and 〈fl|fl′〉 = δll′ , we have that

λk =
∑
l

[(∑
j′

U∗kj′
{
W ∗

2j′−1,l〈φ2j′ | −W ∗
2j′,l〈φ2j′−1|

})
×(∑

j′′

Ukj′′
{
W2j′′−1,l|φ2j′′〉 −W2j′′,l|φ2j′′−1〉

})]
αl. (4.110)
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From (4.110) it follows that we can write

λk =
∑
l

Mklαl, (4.111)

where

Mkl =

(∑
j′

U∗kj′
{
W ∗

2j′−1,l〈φ2j′ | −W ∗
2j′,l〈φ2j′−1|

})
×(∑

j′′

Ukj′′
{
W2j′′−1,l|φ2j′′〉 −W2j′′,l|φ2j′′−1〉

})
. (4.112)

We now investigate the properties of the matrix M with matrix elements {Mkl}.
First of all, we have

Mkl ≥ 0, (4.113)

since the matrix elements of M are of the form Mkl = 〈Σ|Σ〉, with

|Σ〉 =
∑
j

Ukj

(
W2j−1,l|φ2j〉 −W2j,l|φ2j−1〉

)
. (4.114)

We now consider the sum of the elements within a given row or column of M .

The sum of a row yields,

∑
k

Mkl =
∑
j′j′′

[∑
k

U∗kj′Ukj′′

](
depends on

j′

)(
depends on

j′′

)
=
∑
j′j′′

[∑
k

U †j′kUkj′′

](
depends on

j′

)(
depends on

j′′

)
=
∑
j′j′′

δj′j′′
(
W ∗

2j′−1,l〈φ2j′ | −W ∗
2j′,l〈φ2j′−1|

)(
W2j′′−1,l|φ2j′′〉 −W2j′′,l|φ2j′′−1〉

)
=
∑
j

(
W ∗

2j−1,lW2j−1,l +W ∗
2j,lW2j,l

)
=
∑
i

(
W †)

li
Wil = 1, (4.115)

while the sum of a column is,

∑
l

Mkl =
∑
j′j′′

U∗kj′Ukj′′

(
〈φ2j′|φ2j′′〉

[∑
l

W ∗
2j′−1,lW2j′′−1,l

]
+
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〈φ2j′−1|φ2j′′−1〉

[∑
l

W ∗
2j′,lW2j′′,l

]
− 〈φ2j′|φ2j′′−1〉

[∑
l

W ∗
2j′−1,lW2j′′,l

]
−

〈φ2j′−1|φ2j′′〉

[∑
l

W ∗
2j′,lW2j′′−1,l

])
=
∑
j′j′′

U∗kj′Ukj′′
(
〈φ2j′ |φ2j′′〉δj′j′′ + 〈φ2j′−1|φ2j′′−1〉δj′j′′

)
= 2

∑
j

U∗kjUkj = 2
∑
j

(
U †
)
jk
Ukj = 2. (4.116)

When deriving the above two equations (4.115) and (4.116) we made use of the

unitarity of the matrices {Ukj} and {Wil}. Summing up, we have,∑
k

Mkl = 1∑
l

Mkl = 2. (4.117)

We now define a new set of variables {λ′n} and a new matrix M ′ with elements

M ′
nl, respectively given by,

λ′2k−1 = λ′2k =
1

2
λk (k = 1, 2, 3, . . .) (4.118)

M ′
2k−1,l = M ′

2k,l =
1

2
Mkl (k = 1, 2, 3, . . .), (4.119)

and so we have that eq. (4.111) can be expressed as

λ′n =
∑
l

M ′
nlαl. (4.120)

By construction, then, we have

{λk} = {λ1, λ2, λ3, . . .}

{λ′n} =

{
λ1

2
,
λ1

2
,
λ2

2
,
λ2

2
,
λ3

2
,
λ3

2
, . . .

}
. (4.121)

Let us now compare the matrices {Mkl} and {M ′
nl}. The matrix {M ′

nl} has

twice as many rows as {Mkl}, but the rows of {M ′
nl} can be grouped in pairs of

consecutive rows such that within each pair the rows are equal to 1/2 a row of

162

 
 
 



4.2 Entropic Entanglement Criteria for Fermion Systems

{Mkl}. It follows that∑
k

Mkl = 1 =⇒
∑
n

M ′
nl = 1∑

l

Mkl = 2 =⇒
∑
l

M ′
nl = 1. (4.122)

Thus, ∑
n

M ′
nl =

∑
l

M ′
nl = 1 (4.123)

and, therefore, {M ′
nl} is a doubly stochastic matrix. Interpreting the λ′n’s and

the αl’s as probabilities, it follows from (4.120) and (4.123) that the probability

distribution {λ′n} is more “mixed” than the probability distribution {αl} [137]

(or, alternatively that {αl} majorizes {λ′n} [136]). This, in turn, implies that for

any Rényi entropy S
(R)
q with q ≥ 1, we have

S(R)
q [λ′n] ≥ S(R)

q [αl]. (4.124)

Thus,

S(R)
q [λ′n] =

1

1− q
ln

(
2
∑
k

(
λk
2

)q)
=

1

1− q
ln

(
21−q

∑
k

λqk

)

=
1

1− q

{
ln
(
21−q)+ ln

(∑
k

λqk

)}

= ln 2 +
1

1− q
ln

(∑
k

λqk

)
= ln 2 + S(R)

q [λk]. (4.125)

Therefore, all separable states of the two-fermion system comply with the in-

equality S
(R)
q [λk] + ln 2 ≥ S

(R)
q [αl] and since {λk} and {αl} are the eigenvalues of

ρ and ρr respectively,

S(R)
q [ρ] + ln 2 ≥ S(R)

q [ρr]. (4.126)

The above inequality leads to an entanglement criterion that detects entanglement

when the indicator Rq defined in equation (4.95) is strictly positive.
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4.2.3.4 Connection with a quantitative measure of entanglement

As already mentioned in Subsection 4.2.1, the development of separability criteria

often leads to useful entanglement indicators. In particular, when the separability

criterion takes the form of an inequality, such that entanglement is detected when

the inequality is not verified, the degree of violation of the inequality constitutes

an entanglement indicator. In the case of the entropic indicators advanced in

the present work, it is indeed a reasonable expectation that states with larger

values of the indicators DvN and Rq tend to be more entangled. In the next

Subsection we shall illustrate this behaviour in the case of two-fermion systems

with a single-particle Hilbert space of dimension four, where the exact amount of

entanglement can be evaluated analytically.

Now we shall discuss two general aspects of the connection between the above-

mentioned entanglement indicators and a quantitative measure of entanglement.

First of all, it is worth emphasizing that in the case of pure states, the indica-

tors DvN and DL themselves coincide (up to unessential multiplicative constants)

with useful quantitative measures of entanglement for fermion systems that have

already been applied to the study of fermionic entanglement. In particular, let

us focus on the indicator DvN of a two-fermion system, which is based on the von

Neumann entropies of the total and single-particle density matrices, ρ and ρr. For

a pure state |Φ〉 of the two-fermion system we have ρ = |Φ〉〈Φ| and SvN[ρ] = 0.

Consequently, in this case we have DvN = SvN[ρr] − ln2. As already mentioned,

this quantity constitutes a quantitative entanglement measure for pure states,

ε[|Φ〉] = SvN[ρr]− ln2. (4.127)

The extension of this quantitative entanglement measure to mixed two-fermion

states ρ is obtained via the standard convex roof construction,

ε[ρ] = inf
∑
i

pi ε[|Φi〉], (4.128)

where the infimum is taken over all the possible mixtures {pi, |Φi〉} of pure states

|Φi〉 (with weights pi, 0 ≤ pi ≤ 1,
∑

i pi = 1) generating the mixed state un-

der consideration, ρ =
∑

i pi|Φi〉〈Φi|. Now, given a particular decomposition
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ρ =
∑

i pi|Φi〉〈Φi| of the two-fermion state ρ, let ρ(i) = |Φi〉〈Φi| be the total den-

sity matrix corresponding to the pure state |Φi〉 and ρ
(i)
r be the corresponding

single-particle reduced density matrix. Then, using the concavity property of the

quantum conditional entropy (see Subsubsection 4.2.3.1) one obtains,

DvN[ρ] = SvN[ρr]− SvN[ρ]− ln2

≤
∑
i

pi

[
SvN[ρ(i)

r ]− SvN[ρ(i)]− ln2
]

(4.129)

which implies that

DvN[ρ] ≤ inf
∑
i

pi

[
SvN[ρ(i)

r ]− SvN[ρ(i)]− ln2
]

= ε[ρ], (4.130)

which leads to an inequality directly linking the entropic indicator DvN[ρ] with

the quantitative entanglement measure ε[ρ],

ε[ρ] ≥ DvN[ρ]. (4.131)

Summing up, the entropic indicator DvN[ρ] provides a lower bound for the quan-

titative entanglement measure ε[ρ]. In the case of pure states of a systems of

two fermions this lower bound is saturated and the inequality (4.131) becomes

an equality.

4.2.4 Two-fermion systems with a single-particle Hilbert

space of dimension four

In this Subsection and the next one we are going to illustrate our entanglement

criteria by recourse to examples of fermion systems with a single-particle Hilbert

space of low dimensionality. In this Subsection we are going to focus on systems

of two fermions with a single-particle Hilbert space of dimension four. This case

is of considerable relevance both from the conceptual and the practical points of

view, and has been the subject of various recent research efforts [130, 132, 184].

It is the fermionic system of lowest dimensionality admitting the phenomenon of

entanglement and it has profound physical and mathematical relationships with

the celebrated two-qubit system of paramount importance in quantum informa-
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tion science [132]. It is worth mentioning that, in spite of its low dimensionality,

this system is of considerable complexity, its generic (mixed) state depending on

35 (real) parameters. This system can be realized when one has spin-1
2

particles

confined by an external potential well such that, within the range of energies

available in the experimental setting, there are only two relevant eigenfunctions,

Ψa(x) and Ψb(x) [132] corresponding, for instance, to the ground and first excited

states of the confining potential. In such a scenario, the relevant single-particle

Hilbert space is spanned by the single-particle states |Ψa,+〉, |Ψa,−〉, |Ψb,+〉,
|Ψb,−〉 (here we use standard, self-explanatory notation, the ± signs correspond-

ing to the spin degree of freedom).

Now we are going to apply our entropic entanglement criteria derived in the

previous Subsection to some parameterized families of states of two fermions with

a single-particle Hilbert space of dimension four. In this case there is an exact,

analytical expression for the state’s concurrence C, see eq. (2.73). It is then pos-

sible to compare the range of parameters for which entanglement is detected by

the criteria with the exact range of parameters for which the states under con-

sideration are entangled. We also illustrate the fact that the quantities DvN, DL

and Rq involved in the entanglement criteria advanced here can also be regarded

as entanglement indicators, in the sense that states exhibiting large values of

these quantities tend to have higher entanglement. Two-fermion states with a

single-particle Hilbert space of dimension four allow for the illustration of this,

because in the case of these systems we have a closed analytical expression for

the amount of entanglement of mixed states,

E[ρ] = h

(
1 +

√
1− C[ρ]2

2

)
,

h(x) = −x log2 x− (1− x) log2(1− x). (4.132)

As mentioned in Subsection 4.2.2, in this case the two-fermion states can be for-

mally mapped onto the states of two s = 2
3

spins. The antisymmetric eigenstates

|j,m〉 of the total angular momentum operators J2 and Jz constitute then a basis

of the system’s Hilbert space. These states are |0, 0〉, |2,−2〉, |2,−1〉, |2, 0〉, |2, 1〉
and |2, 2〉.
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To have an idea of the efficiency of the criteria discussed in Subsubsections

4.2.3.1 and 4.2.3.2, we are going to analyze three families of states. The one

family consists solely of pure states, whereas the other two comprise mixed states.

In the case of distinguishable subsystems, the latter two families would be the

Werner state [82] and a mixed state introduced by Gisin [200], which are different

representative ways of mixing a maximally entangled state and separable states.

The Werner state can be viewed as an impure singlet state, consisting of a mixture

of a maximally entangled state and a maximally mixed state. The Gisin state

mixes a maximally entangled state with a mixture of product states, which enables

one to investigate the role of classical correlations of the product states. These

two classes of states are then translated into their fermionic counterpart.

4.2.4.1 Werner-like states

First we are going to consider a family of states consisting of a mixture of the

maximally entangled state |0, 0〉 and a totally mixed state. These states are of

the form

ρW = p|0, 0〉〈0, 0|+ 1− p
6

I, (4.133)

where 0 ≤ p ≤ 1, and

I = |0, 0〉〈0, 0|+
2∑

m=−2

|2,m〉〈2,m| (4.134)

is the identity operator acting on the six-dimensional Hilbert space corresponding

to the two-fermion system. Evaluation of the concurrence shows that these states

are entangled when p > 0.4. For these states, we have

DvN[ρW ] = ln 2 +
5

6
(1− p) ln

(
1− p

6

)
+

1

6
(1 + 5p) ln

(
1

6
(1 + 5p)

)
DL[ρW ] = − 7

12
+

5p2

6

R2[ρW ] = ln

(
1 + 5p2

3

)
R∞[ρW ] = ln

(
1 + 5p

3

)
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C[ρW ] =

0 0 ≤ p ≤ 0.4

−2
3

+ 5p
3

0.4 ≤ p ≤ 1.
(4.135)

Figure 4.5(a) shows the entanglement measure (eq. (4.132)) and depicts when the

entanglement indicators given in eq. (4.135) detect entanglement. The logarithms

in the entanglement indicators are taken to the base 2 for comparison purposes.

The minimum values pmin of the parameter p such that for p > pmin the entan-

glement indicators DvN, DL, R2 and R∞ are positive (and thus entanglement is

detected by the corresponding criteria) are given in the following Table (that is,

in each case, entanglement is detected when p is larger than the listed value):

DvN > 0 DL > 0 Rq=2 > 0 Rq→∞ > 0

pmin ≈ 0.809
√

0.7 ≈ 0.837 ≈ 0.632 0.4 .

0.0 0.2 0.4 0.6 0.8 1.0
p0.0

0.2

0.4

0.6

0.8

1.0
E, R¥, R2 , D vN , DL

(a)

0.0 0.2 0.4 0.6 0.8 1.0
p0.0

0.2

0.4

0.6

0.8

1.0
E, R¥, R2 , D vN , DL

(b)

Figure 4.5: Entanglement measure (thick line) and entanglement indicators R∞ (solid
line), R2 (dash-dotted line), DvN (dotted line) andDL (dashed line) for the states (a) ρW defined
in eq. (4.133) and (b) ρG given by eq. (4.138). The logarithms in the entanglement indicators
are taken to the base 2.

The entanglement detection efficiency of the entropic criterion based upon Rényi

entropy increases with q. Indeed, in the limit q →∞ the Rényi entropic criterion

detects all the entangled states within the family of states (4.133). The behaviour

of the minimum value of p for which entanglement is detected as a function of

the entropic parameter q is depicted in Figure 4.6.
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Figure 4.6: Minimum p-value for which entanglement is detected in the case of ρW defined
in eq. (4.133) (dashed line) and ρG given by eq. (4.138) (solid line).

4.2.4.2 θ-state

As second illustration we consider the following pure state,

|ψ〉 =
sin θ√

2

[∣∣∣-3

2

3

2

〉
−
∣∣∣3
2

-
3

2

〉]
+

cos θ√
2

[∣∣∣-1

2

1

2

〉
−
∣∣∣1
2

-
1

2

〉]
, (4.136)

for which

DvN[|ψ〉〈ψ|] = − ln 2− cos2θ ln

(
cos2θ

2

)
− sin2θ ln

(
sin2θ

2

)
DL[|ψ〉〈ψ|] = cos2θ sin2θ. (4.137)

Thus, both DvN and DL = 0 for θ = 0, π
2
, π and both quantities are positive for

all other values of θ in the interval [0, π]. We also have S
(R)
q [ρ] + ln 2 < S

(R)
q [ρr]

for all θ ∈ (0, π), θ 6= π
2
. Therefore, comparing this with the concurrence, one sees

that all entangled states are detected.

4.2.4.3 Gisin-like states

As a final example let us consider the parameterized family of mixed states given

by,

ρG = p|0, 0〉〈0, 0|+ 1− p
2

(
|2,−2〉〈2,−2|+ |2, 2〉〈2, 2|

)
, (4.138)
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with 0 ≤ p ≤ 1. In this case, we have

DvN[ρG] = (1− p) ln(1− p) + p ln(2p)

DL[ρG] =
1

4

(
−1− 4p+ 6p2

)
R2[ρG] = ln(1− 2p+ 3p2)

R∞[ρG] =

ln(1− p) 0 ≤ p ≤ 1
3

ln(2p) 1
3
≤ p ≤ 1

C[ρG] =

0 0 ≤ p ≤ 0.5

2p− 1 0.5 ≤ p ≤ 1.
(4.139)

Figure 4.5(b) shows the entanglement measure (eq. (4.132)) and depicts when the

entanglement indicators given in eq. (4.139) detect entanglement. The logarithms

in the entanglement indicators are taken to the base 2 for comparison purposes.

The critical p values at which the entropic criteria based on the indicators DvN,

DL, R2 and R∞ begin to detect entanglement are listed in the Table below:

DvN > 0 DL > 0 Rq=2 > 0 Rq→∞ > 0

pmin ≈ 0.773 2+
√

10
6
≈ 0.860 ≈ 0.667 0.5 .

From the evaluation of the concurrence it follows that the Gisin-like states are

entangled for p > 0.5. Thus, once again, the Rényi-based entropic criterion based

on the indicator R∞ detects all the entangled states in the family (4.138). The

behaviour of the minimum value of p for which entanglement is detected as a

function of the entropic parameter q is depicted in Figure 4.6.

We shall now illustrate the fact that the quantities DvN, DL and Rq involved

in the entanglement criteria advanced here can also be regarded as entanglement

indicators, in the sense that states exhibiting large values of these quantities tend

to have higher entanglement. Two-fermion states with a single-particle Hilbert

space of dimension four allow for the illustration of this, because in the case of

these systems we have a closed analytical expression for the amount of entangle-

ment of mixed states, see eq. (4.132).
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In Figures 4.5(a) and 4.5(b) we compare, for two parameterized families of

mixed states, the behaviour of the entanglement measure with the behaviour of

the abovementioned quantities. Note that in order to compare the entanglement

measure with our entanglement indicators, the logarithms in the entanglement

indicators are taken to the base 2 in Figures 4.5(a) and 4.5(b). It transpires

from Figures 4.5(a) and 4.5(b) that for these families of states the indicators

associated with our entropic entanglement criteria do indeed tend to increase

with the amount of entanglement exhibited by these states.

4.2.5 Two-fermion systems with a single-particle Hilbert

space of dimension six

Two identical fermions with a four-dimensional single-particle Hilbert space (the

simplest fermionic system admitting the phenomenon of entanglement) consti-

tutes the only fermion system for which an exact analytical formula for the con-

currence has been obtained. It is thus of interest to apply the entropic entangle-

ment criteria to systems of higher dimensionality, for which such an expression for

the concurrence is not known. Here we are going to consider a system consisting

of two identical fermions with a single-particle Hilbert space of dimension six.

The Hilbert space of this system is 15-dimensional. The generic (mixed) state

of this system depends on 224 (real) parameters. The entanglement features of

mixed states of this system are (up to now) basically “terra incognita”. Here we

are going to identify, for some parameterized families of mixed states, the range

of values of the relevant parameters for which the states are entangled.

Using the angular momentum representation, the two-fermion system consid-

ered in this Subsection can be mapped onto a system of two spins with s = 5
2
. It

is useful to introduce the following notation,

|m1m2| =
1√
2

[
|m1〉|m2〉 − |m2〉|m1〉

]
. (4.140)

I am going to study three particular families of mixed states of the form

ρi = p|ϕi〉〈ϕi|+
1− p

15
I, (4.141)
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where 0 ≤ p ≤ 1 and

I = |0, 0〉〈0, 0|+
2∑

m=−2

|2,m〉〈2,m|+
4∑

m=−4

|4,m〉〈4,m| (4.142)

is the identity operator acting on the 15-dimensional Hilbert space describing the

two-fermion system, and |ϕi〉 is an entangled two-fermion pure state. We con-

sider three particular instances of |ϕi〉. In each case we provide the expressions

for the indicators DvN, DL, R2 and R∞, and give the minimum values pmin of

the parameter p such that for p > pmin entanglement is detected by the criteria

based on the positivity of the entanglement indicators.

The first illustration corresponds to

|ϕ1〉 =
1√
3

[∣∣∣∣52 3

2

∣∣∣∣+

∣∣∣∣12-
1

2

∣∣∣∣− ∣∣∣∣-3

2
-
5

2

∣∣∣∣] , (4.143)

for which

DvN[ρ1] = ln 3 +
14

15
(1− p) ln

(
1− p

15

)
+

1

15
(1 + 14p) ln

(
1

15
(1 + 14p)

)
DL[ρ1] =

1

15

(
−9 + 14p2

)
R2[ρ1] = ln

(
1

5
(1 + 14p2)

)
R∞[ρ1] = ln

(
1

15
(1 + 14p)

)
+ ln 3, (4.144)

resulting in

DvN > 0 DL > 0 Rq=2 > 0 Rq→∞ > 0

pmin ≈ 0.767 3√
14
≈ 0.802 ≈ 0.535 2

7
≈ 0.286 .

The second example is given by

|ϕ2〉 = −2

3

∣∣∣∣52 3

2

∣∣∣∣− 2

3

∣∣∣∣12-
1

2

∣∣∣∣+
1

3

∣∣∣∣-3

2
-
5

2

∣∣∣∣ , (4.145)
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with

DvN[ρ2] =
1

45

(
−45 ln 2 + 42(1− p) ln

(
1− p

15

)
− 5(3− 2p) ln

(
3− 2p

18

)
−10(3 + p) ln

(
3 + p

18

)
+ 3(1 + 14p) ln

(
1

15
(1 + 14p)

))
DL[ρ2] = −3

5
+

121p2

135

R2[ρ2] = − ln(9 + 2p2) + ln

(
9

5
(1 + 14p2)

)
R∞[ρ2] = − ln

(
1− p

6
+

2p

9

)
+ ln

(
1

15
(1 + 14p)

)
− ln 2, (4.146)

and

DvN > 0 DL > 0 Rq=2 > 0 Rq→∞ > 0

pmin ≈ 0.788 9
11
≈ 0.818 ≈ 0.557 12

37
≈ 0.324 .

As a third instance we tackle

|ϕ3〉 =
1√
2

[∣∣∣∣52 3

2

∣∣∣∣+

∣∣∣∣12-
1

2

∣∣∣∣] , (4.147)

leading to

DvN[ρ3] = − ln 2− 1− p
3

ln

(
1− p

6

)
− 2 + p

3
ln

(
2 + p

12

)
+

14

15
(1− p) ln

(
1− p

15

)
+

1 + 14p

15
ln

(
1

15
(1 + 14p)

)
DL[ρ3] = −3

5
+

17p2

20

R2[ρ3] = − ln(2 + p2) + ln

(
2

5
(1 + 14p2)

)
R∞[ρ3] = − ln

(
1− p

6
+
p

4

)
+ ln

(
1

15
(1 + 14p)

)
− ln 2, (4.148)

and

DvN > 0 DL > 0 Rq=2 > 0 Rq→∞ > 0

pmin ≈ 0.825 2
√

3
17
≈ 0.840 ≈ 0.590 8

23
≈ 0.348 .
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Figure 4.7: Minimum value of p, as a function of the entropic parameter q, for entanglement
detection in the states (4.141) with |ϕ1〉 (solid line), |ϕ2〉 (dashed line) and |ϕ3〉 (dash-dotted
line).

For the above three cases, the behaviour of the minimum value of p for which

entanglement is detected, as a function of the entropic parameter q, is depicted

in Figure 4.7.

4.2.6 Systems of N identical fermions

Let us consider the general case of N fermions with single-particle Hilbert space of

general (even) dimension n > N . The dimension of the Hilbert space associated

with the N -fermion system is then d = n!
(n−N)!N !

. The Rényi-based entropic

criterion for two fermions that we derived in Subsection 4.2.3 can be extended

to the case of N fermions. According to the extended criterion a state ρ of N

identical fermions satisfying the inequality

S(R)
q [ρr] > S(R)

q [ρ] + lnN (4.149)

for some q ≥ 1, is necessarily entangled, where ρr is the single-particle reduced

density matrix. This criterion can be derived following a procedure that is a

straightforward generalization to the case of N fermions of the one detailed in

Subsubsection 4.2.3.2 for the case of two fermions. One starts with a state of

the N fermions that is a statistical mixture of pure states, each one represented

by a single Slater determinant which contains N ! terms. Then one considers two
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equivalent representations for the total density matrix ρ: the spectral one, and

the abovementioned one as a mixture of separable pure states. On the other

hand, one considers two equivalent representations for the single-particle reduced

density matrix ρr: again, the spectral one, and the one derived from the represen-

tation of the total state as a mixture of separable states. The two representations

for ρ and the two ones for ρr are then related via appropriate unitary transforma-

tions according to equation (4.98). Following the same steps as in Subsubsection

4.2.3.3 it is then possible to obtain a majorization relation connecting ρ and ρr,

which finally leads to the inequality (4.149). The generalized proof is as follows.

First, a separable pure state of N identical fermions is given by a single Slater

determinant

∣∣ψ(j)
1 ψ

(j)
2 . . . ψ

(j)
N

∣∣ =
1√
N !

N∑
m1,m2,...,mN=1

εm1m2...mN |ψ(j)
m1
〉|ψ(j)

m2
〉 . . . |ψ(j)

mN
〉, (4.150)

where the single-particle states are all orthonormal and εm1m2...mN is the general-

ized Levi-Civita symbol,

εijkl... =


+1 if (i, j, k, l, . . .) is an even permutation of (1, 2, 3, 4, . . .)

−1 if (i, j, k, l, . . .) is an odd permutation of (1, 2, 3, 4, . . .)

0 otherwise.

(4.151)

Let us consider a separable mixed state of N identical fermions,

ρ =
∑
j

pj
N !

( N∑
m1,m2,...,mN=1

εm1m2...mN |ψ(j)
m1
〉|ψ(j)

m2
〉 . . . |ψ(j)

mN
〉
)
×

( N∑
m1,m2,...,mN=1

εm1m2...mN 〈ψ(j)
m1
|〈ψ(j)

m2
| . . . 〈ψ(j)

mN
|
)

(4.152)

where 0 ≤ pj ≤ 1,
∑

j pj = 1 and |ψ(j)
1 〉, |ψ

(j)
2 〉, . . . , |ψ

(j)
N 〉 are normalized single-

particle states with 〈ψ(j)
n |ψ(j)

n′ 〉 = δnn′ (n, n′ = 1, 2, . . . , N), for all j. Equation

(4.152) represents the standard definition of a non-entangled mixed state of N

identical fermions. Notice that in (4.152) no special relation between states |ψ(j)
i 〉
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with different values of the label j is assumed. In particular, the overlap between

two states with different labels j is not necessarily equal to 0 or 1. This, in turn,

means that the overlap between two different members of the family of (sepa-

rable) two-fermion pure states participating in the statistical mixture leading to

(4.152) may be non-zero.

Let us consider now a spectral representation

ρ =
∑
k

λk|ek〉〈ek| (4.153)

of ρ. That is, the |ek〉 constitute an orthonormal basis of eigenvectors of ρ and the

λk are the corresponding eigenvalues. Then, (4.152) and (4.153) are two different

representations of ρ as a mixture of pure states. Therefore, there is a unitary

matrix U with matrix elements {Ukj} such that

√
λk|ek〉 =

∑
j

Ukj

√
pj
N !

N∑
m1,m2,...,mN=1

εm1m2...mN |ψ(j)
m1
〉|ψ(j)

m2
〉 . . . |ψ(j)

mN
〉. (4.154)

The single-particle reduced density matrix corresponding to the N -fermion den-

sity matrix (4.152) is

ρr =
∑
j

pj
N

(
|ψ(j)

1 〉〈ψ
(j)
1 |+ |ψ

(j)
2 〉〈ψ

(j)
2 |+ · · ·+ |ψ

(j)
N 〉〈ψ

(j)
N |
)
, (4.155)

admitting a spectral representation

ρr =
∑
l

αl|fl〉〈fl|. (4.156)

We now define,

qNj−(N−1) = qNj−(N−2) = . . . = qNj−2 = qNj−1 = qNj =
1

N
pj (j = 1, 2, 3, . . .)

(4.157)

|φNj−(N−1)〉 = |ψ(j)
1 〉

|φNj−(N−2)〉 = |ψ(j)
2 〉

...
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|φNj−2〉 = |ψ(j)
N−2〉

|φNj−1〉 = |ψ(j)
N−1〉

|φNj〉 = |ψ(j)
N 〉 (j = 1, 2, 3, . . .). (4.158)

Now, since (4.155) and (4.156) correspond to two statistical mixtures yielding the

same density matrix, there must exist a unitary matrix W with matrix elements

{Wil} such that,

√
qi|φi〉 =

∑
l

Wil

√
αl|fl〉 (i = 1, 2, 3, . . .). (4.159)

Now, eq. (4.154) can be rewritten as√
λk|ek〉

=
∑
j

Ukj√
(N − 1)!

√
pj
N

N∑
m1,m2,...,mN=1

εm1m2...mN |ψ(j)
m1
〉|ψ(j)

m2
〉 . . . |ψ(j)

mN
〉 =

∑
j

Ukj√
(N − 1)!

{
√
qNj−(N−1)|φNj−(N−1)〉

N∑
s2,s3,...,sN=2

εs2s3...sN |φNj−(N−s2)〉|φNj−(N−s3)〉 . . . |φNj−(N−sN )〉

−√qNj−(N−2)|φNj−(N−2)〉
N∑

s1,s3,...,sN=1,3

εs1s3...sN |φNj−(N−s1)〉|φNj−(N−s3)〉 . . . |φNj−(N−sN )〉

+ . . .+

−√qNj−1|φNj−1〉
N−2,N∑

s1,s2,...,sN−2,sN=1

εs1s2...sN−2sN |φNj−(N−s1)〉 . . . |φNj−(N−sN−2)〉|φNj−(N−sN )〉

+
√
qNj|φNj〉

N−1∑
s1,s2,...,sN−1=1

εs1s2...sN−1
|φNj−(N−s1)〉|φNj−(N−s2)〉 . . . |φNj−(N−sN−1)〉

}
.(4.160)

Combining (4.159) and (4.160) gives

√
λk|ek〉 =

∑
j

Ukj√
(N − 1)!

[∑
l

(

WNj−(N−1),l

N∑
s2,s3,...,sN=2

εs2s3...sN|φNj−(N−s2)〉|φNj−(N−s3)〉 . . . |φNj−(N−sN )〉

−WNj−(N−2),l

N∑
s1,s3,...,sN=1,3

εs1s3...sN |φNj−(N−s1)〉|φNj−(N−s3)〉 . . . |φNj−(N−sN )〉
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+ . . .+

−WNj−1,l

N−2,N∑
s1,s2,...,sN−2,sN=1

εs1s2...sN−2sN |φNj−(N−s1)〉 . . . |φNj−(N−sN−2)〉|φNj−(N−sN )〉

+WNj,l

N−1∑
s1,s2,...,sN−1=1

εs1s2...sN−1
|φNj−(N−s1)〉|φNj−(N−s2)〉 . . . |φNj−(N−sN−1)〉

)
√
αl|fl〉

]
.

(4.161)

Therefore, since 〈ek|ek′〉 = δkk′ and 〈fl|fl′〉 = δll′ , we have that

λk =
∑
l

[
1

(N − 1)!

(∑
j′

U∗kj′
{

W ∗
Nj′−(N−1),l

N∑
s2,s3,...,sN=2

εs2s3...sN〈φNj′−(N−s2)|〈φNj′−(N−s3)| . . . 〈φNj′−(N−sN )|

−W ∗
Nj′−(N−2),l

N∑
s1,s3,...,sN=1,3

εs1s3...sN 〈φNj′−(N−s1)|〈φNj′−(N−s3)| . . . 〈φNj′−(N−sN )|

+ . . .+

−W ∗
Nj′−1,l

N−2,N∑
s1,s2,...,sN−2,sN=1

εs1s2...sN−2sN 〈φNj′−(N−s1)| . . . 〈φNj′−(N−sN−2)|〈φNj′−(N−sN )|

+W ∗
Nj′,l

N−1∑
s1,s2,...,sN−1=1

εs1s2...sN−1
〈φNj′−(N−s1)|〈φNj′−(N−s2)| . . . 〈φNj′−(N−sN−1)|

})
×

(∑
j′′

Ukj′′
{
WNj′′−(N−1),l

N∑
s2,s3,...,sN=2

εs2s3...sN|φNj′′−(N−s2)〉|φNj′′−(N−s3)〉 . . . |φNj′′−(N−sN )〉

−WNj′′−(N−2),l

N∑
s1,s3,...,sN=1,3

εs1s3...sN |φNj′′−(N−s1)〉|φNj′′−(N−s3)〉 . . . |φNj′′−(N−sN )〉

+ . . .+

−WNj′′−1,l

N−2,N∑
s1,s2,...,sN−2,sN=1

εs1s2...sN−2sN |φNj′′−(N−s1)〉 . . . |φNj′′−(N−sN−2)〉|φNj′′−(N−sN )〉

+WNj′′,l

N−1∑
s1,s2,...,sN−1=1

εs1s2...sN−1
|φNj′′−(N−s1)〉|φNj′′−(N−s2)〉 . . . |φNj′′−(N−sN−1)〉

})]
αl.

(4.162)
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From (4.162) it follows that we can write

λk =
∑
l

Mklαl, (4.163)

where Mkl is the expression in the square brackets in equation (4.162).

We now investigate the properties of the matrix M with matrix elements {Mkl}.
First of all, we have

Mkl ≥ 0, (4.164)

since the matrix elements of M are of the form Mkl = 〈Σ|Σ〉 as can be seen

directly from equation (4.162). We now consider the sum of the elements within

a given row or column of M . The sum of a row yields,

∑
k

Mkl =
1

(N − 1)!

∑
j′j′′

[∑
k

U∗kj′Ukj′′

](
depends on

j′

)(
depends on

j′′

)
=

1

(N − 1)!

∑
j′j′′

[∑
k

(U †)j′kUkj′′

](
depends on

j′

)(
depends on

j′′

)
=

1

(N − 1)!

∑
j′j′′

δj′j′′

(
depends on

j′

)(
depends on

j′′

)
=
∑
j

1

(N − 1)!

(
W ∗
Nj−(N−1),lWNj−(N−1),l (N − 1)!

+W ∗
Nj−(N−2),lWNj−(N−2),l (N − 1)! + . . .

+W ∗
Nj−1,lWNj−1,l (N − 1)!

+W ∗
Nj,lWNj,l (N − 1)!

)
=
∑
i

(
W †)

li
Wil = 1, (4.165)

while the sum of a column is,

∑
l

Mkl =
1

(N − 1)!

∑
j′j′′

U∗kj′Ukj′′

(∑
l

W ∗
Nj′−(N−1),lWNj′′−(N−1),l (N − 1)! δj′j′′

+
∑
l

W ∗
Nj′−(N−2),lWNj′′−(N−2),l (N − 1)! δj′j′′ + . . .

+
∑
l

W ∗
Nj′−1,lWNj′′−1,l (N − 1)! δj′j′′
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+
∑
l

W ∗
Nj′,lWNj′′,l (N − 1)! δj′j′′

)
=

1

(N − 1)!

∑
j

U∗kjUkj (N − 1)!

(∑
l

(W †)l,Nj−(N−1)WNj−(N−1),l

+
∑
l

(W †)l,Nj−(N−2)WNj−(N−2),l + . . .

+
∑
l

(W †)l,Nj−1WNj−1,l

+
∑
l

(W †)l,NjWNj,l

)
= N

∑
j

U∗kjUkj = N
∑
j

(
U †
)
jk
Ukj = N. (4.166)

When deriving the above two equations (4.165) and (4.166) we made use of the

unitarity of the matrices {Ukj} and {Wil}. Summing up, we have,∑
k

Mkl = 1∑
l

Mkl = N. (4.167)

We now define a new set of variables {λ′n} and a new matrix M ′ with elements

M ′
nl, respectively given by,

λ′Nk−(N−1) = λ′Nk−(N−2) = . . . = λ′Nk−1 = λ′Nk =
λk
N

(k = 1, 2, . . .)(4.168)

M ′
Nk−(N−1),l = M ′

Nk−(N−2),l = . . .= M ′
Nk−1,l = M ′

Nk,l =
Mkl

N
(k = 1, 2, . . .),(4.169)

and so we have that eq. (4.163) can be expressed as

λ′n =
∑
l

M ′
nlαl. (4.170)

By construction, then, we have

{λk} = {λ1, λ2, λ3, . . .}

{λ′n} =

{
λ1

N
,
λ1

N
, . . . ,

λ1

N︸ ︷︷ ︸
N terms

,
λ2

N
,
λ2

N
, . . . ,

λ2

N︸ ︷︷ ︸
N terms

, . . .

}
. (4.171)
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Let us now compare the matrices {Mkl} and {M ′
nl}. The matrix {M ′

nl} has N

times as many rows as {Mkl}, but the rows of {M ′
nl} can be divided into groups of

N consecutive rows such that within each group of N rows, these rows are equal

to N times the corresponding row of {Mkl}. The number of columns of M ′
nl and

Mkl are clearly the same and so the sum of the entries of any row of {M ′
nl} is 1

N

of the corresponding one for Mkl. It follows that∑
k

Mkl = 1 =⇒
∑
n

M ′
nl = 1∑

l

Mkl = N =⇒
∑
l

M ′
nl = 1. (4.172)

Thus, ∑
n

M ′
nl =

∑
l

M ′
nl = 1 (4.173)

and, therefore, {M ′
nl} is a doubly stochastic matrix. Interpreting the λ′n’s and

the αl’s as probabilities, it follows from (4.170) and (4.173) that the probability

distribution {λ′n} is more “mixed” than the probability distribution {αl} [137]

(or, alternatively that {αl} majorizes {λ′n} [136]). This, in turn, implies that for

any Rényi entropy S
(R)
q with q ≥ 1, we have

S(R)
q [λ′n] ≥ S(R)

q [αl]. (4.174)

Thus,

S(R)
q [λ′n] =

1

1− q
ln

(
N
∑
k

(
λk
N

)q)
=

1

1− q
ln

(
N1−q

∑
k

λqk

)

=
1

1− q

{
ln
(
N1−q)+ ln

(∑
k

λqk

)}

= lnN +
1

1− q
ln

(∑
k

λqk

)
= lnN + S(R)

q [λk]. (4.175)

Therefore, all separable states of theN -fermion system comply with the inequality

S
(R)
q [λk] + lnN ≥ S

(R)
q [αl] and since {λk} and {αl} are the eigenvalues of ρ and
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ρr respectively,

S(R)
q [ρ] + lnN ≥ S(R)

q [ρr]. (4.176)

The above inequality leads to an entanglement criterion that detects entanglement

when the indicator Rq is strictly positive,

Rq = S(R)
q [ρr]− S(R)

q [ρ]− lnN. (4.177)

As an illustration of the entanglement criterion based on the inequality (4.149)

let us consider a family of states of a system of N fermions having the form

p |Φ〉〈Φ|+ (1− p)
d

Id, (4.178)

where 0 ≤ p ≤ 1, Id is the identity operator acting on the N -fermion Hilbert space

(the dimension associated with the N -fermion system is d = n!
(n−N)!N !

, n > N),

and the single-particle Hilbert space has dimension n = kN , with k ≥ 2 integer

when N is even and for N odd k ≥ 2t (t ≥ 1 integer). We also assume that the

(pure) N -fermion state |Φ〉 is of the form

|Φ〉 =
1√
k

(
|1, 2, . . . , N |+ |N + 1, N + 2, . . . , 2N |+ . . .

+ |(k − 1)N + 1, (k − 1)N + 2, . . . , kN |
)
, (4.179)

where |i1, i2, . . . , iN | denotes the Slater determinant (as in equation (4.140)) con-

structed withN different members {|i1〉, . . . , |iN〉} of an orthonormal basis {|1〉, . . . ,
|n〉} of the single-particle Hilbert space. The state |Φ〉 is constructed in such a

way that the Slater determinants it consists of do not overlap. The single-particle

reduced density matrix associated with the (pure) state |Φ〉 corresponds to the

totally mixed (single-particle) state 1
k

1
N !

(N−1)!(|1〉〈1|+. . .+|n〉〈n|) = 1
n
In, where

In is the identity operator corresponding to the single-particle Hilbert space. On

the basis of the Rényi entropic criterion corresponding to q → ∞ we identify as

entangled the states of the form (4.178) satisfying the inequality,

lnn+ ln

(
p+

(1− p)
d

)
− lnN > 0 (4.180)
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Figure 4.8: pmin vs. N for eq. (4.178) with
n = 12.
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Figure 4.9: pmin vs. n for eq. (4.178) with
N = 2 (dashed line), N = 3 (solid line) and
N = 10 (dotted line).

and hence entanglement is detected for

p >
N
n
− (n−N)!N !

n!

1− (n−N)!N !
n!

=
N (n− 1)!− (n−N)!N !

n!− (n−N)!N !
. (4.181)

With N fixed, we find that the efficiency of the entanglement criterion grows as

the dimension of the single-particle states, n, increases (that is, pmin decreases

with n). The behaviour of pmin vs. N or n is illustrated in Figures 4.8 and 4.9

respectively.

4.2.6.1 Full multi-particle entanglement: the case of systems of three

fermions

When studying entanglement criteria for composite systems with more than two

distinguishable subsystems a new problem arises: how to distinguish states ex-

hibiting full multipartite entanglement from those that, although being entangled,

are such that a subset of the parts constituting the system is disentangled from

the rest of the system. A problem somewhat similar to this one also arises in the

case of systems of N identical fermions with N > 2, although in the fermionic

case this problem is much more subtle than in the case of distinguishable sub-

systems [183]. Although the analysis of this problem is beyond the scope of the

present work, we shall now discuss it (in connection with our entropic entangle-

ment criteria) for the case of systems of three identical fermions.
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In the case of three fermions, a general separable state (Slater determinant)

is of the form

|φsl〉 = |φ1, φ2, φ3| =
1√
6

[
|φ1〉|φ2〉|φ3〉 − |φ1〉|φ3〉|φ2〉 − |φ2〉|φ1〉|φ3〉+ |φ2〉|φ3〉|φ1〉

+|φ3〉|φ1〉|φ2〉 − |φ3〉|φ2〉|φ1〉
]
, (4.182)

with |φ1〉, |φ2〉, φ3〉 being three orthonormal single-particle states. A general, sep-

arable mixed state is a state that can be expressed as a statistical mixture of

states like (4.182). Now, let us consider a pure state of three fermions of the

form,

|Ψ〉 =
∑

1<i<j

cij |1, i, j| , (4.183)

where |1, i, j| stands for the Slater determinant constructed with the three nor-

malized and orthogonal single-particle states |1〉, |i〉, |j〉, and {|k〉, k = 1, 2, . . .}
is a single-particle orthonormal basis. Now, in general, pure states of the above

form are entangled in the sense that they cannot be written as one, single Slater

determinant (that is, they are not “fully separable”). However, these states are

special because they are a superposition of Slater determinants each of them in-

volving the single-particle state |1〉. This means that it is physically sensible to

say that when the system is in a state like (4.183) one of the particles is in the

state |1〉 (although it does not make sense to ask which particle is in the state

|1〉). Consequently, according to the analysis made in [133], where separabil-

ity is associated to the possibility of assigning complete set of properties to the

constituting particles, the state (4.183) can be regarded as describing a physical

situation where one of the particles is disentangled from the other two. The same

considerations apply to mixed states that are a mixture of states like (4.183)

(each one involving the same “privileged” single-particle state |1〉).

The above discussion raises the following question: can the entropic entangle-

ment criteria advanced here be used to discriminate between entangled states that

are mixtures of states of the form (4.183) (having one “disentangled” particle in

a given, single-particle state |1〉), on the one hand, and entangled states that can-

not be expressed as (4.183) (or cannot be written as statistical mixtures of states
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like (4.183)) on the other hand? To address this problem let us first notice that,

as can be verified after some algebra, the single-particle, reduced density matrix

ρr corresponding to states of the form (4.183) (or to mixtures of such states)

always has its largest eigenvalue equal to 1
3
. This implies that S

(R)
∞ (ρr) = ln 3.

Consequently, if a three-fermion state satisfies the (strict) inequality

R∞ = S(R)
∞ (ρr) − S(R)

∞ (ρ) − ln 3 > 0, (4.184)

which implies S
(R)
∞ (ρr) − ln 3 > S

(R)
∞ (ρ) ≥ 0, one then knows for sure that this

state is entangled and that it cannot be written as a statistical mixture of states

like (4.183) (all with the same “privileged” single-particle state |1〉). In other

words, for three-fermion systems, the entropic entanglement criterion based on

the Rényi entropy with q →∞ is not just a sufficient entanglement criterion, but

also a sufficient criterion for full, three-particle entanglement.

To illustrate the above discussion we choose the minimum single-particle di-

mension compatible with three-fermion entanglement, namely the single-particle

Hilbert space of dimension six. As examples of entangled three-fermion states

that do not exhibit full three-particle entanglement, let us consider the following

family of states,

ρ = p|φ〉〈φ|+ (1− p)ρmix, (4.185)

where

|φ〉 = cos θ|1, 2, 3|+ sin θ|1, 4, 5|, (4.186)

ρmix is a mixture (with equal weights) of the projectors corresponding to the ten

Slater states containing a “1”, that is, |1, 2, 3|, |1, 2, 4|, |1, 2, 5|, |1, 2, 6|, |1, 3, 4|, . . . ,
|1, 5, 6|, where |1〉, |2〉, . . . , |6〉 are normalized and mutually orthogonal single-

particle states that form a basis for the single-particle state space. It is clear

that one particle is in the state |1〉 whereas the other two particles are entangled

(although, as mentioned before, it does not make sense to ask which particle is

in the state |1〉), which means this is a multipartite system that is neither fully

separable, nor fully entangled in the sense that all three particles are entangled.

In order to evaluate the entanglement indicators DvN, R2 and R∞, one has to

find the eigenvalues of ρ and ρr. These are, {0, . . . , 0, 1−p
10
, . . . , 1−p

10
, 1+9p

10
} and
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{1
3
, p cos2θ

3
+ 2

15
(1−p), p cos2θ

3
+ 2

15
(1−p), p sin2θ

3
+ 2

15
(1−p), p sin2θ

3
+ 2

15
(1−p), 2

15
(1−p)}

respectively. In this case R∞ = ln(1+9p
10

) ≤ 0 and consequently full three-particle

entanglement is (correctly) not detected. However, the entanglement indicators

DvN and R2 do detect entanglement and Figures 4.10(a) and 4.10(b) show the

results. Hence entanglement is detected for this multipartite state where not all

particles are entangled with each other. However, full multi-particle entanglement

is (correctly) not detected.

(a) (b)

Figure 4.10: Entanglement indicators (a) DvN and (b) R2 for the state (4.185).

Summing up, we have seen that the entropic criterion based on the Rényi

entropy S
(R)
∞ is, in the three-fermion case, also a sufficient criterion for full three-

particle entanglement. Incidentally, this is another manifestation of the fact that

the most powerful entropic entanglement criterion based upon the Rényi entropy

corresponds to the limit q → ∞. The case of N -fermion systems with N ≥ 4

is much more complex and certainly deserves further research. Previous experi-

ence with composite quantum systems with distinguishable subsystems (see [96]

and references therein) suggests that in this case, besides the entropies of the

single-particle reduced density matrix, the entropies of M -particle reduced den-

sity matrices (with 2 ≤M < N) are going to be necessary to tackle this problem.

4.2.7 Summary

In the present Section new entropic entanglement criteria for systems of two iden-

tical fermions have been advanced. These criteria have the form of appropriate

inequalities involving the entropy of the density matrix associated with the total
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system, on the one hand, and the entropy of the single-particle reduced density

matrix, on the other hand. I obtained entanglement criteria based upon the von

Neumann, the linear, and the Rényi entropies. The criterion associated with the

von Neumann entropy constitutes a special instance, corresponding to the par-

ticular value q → 1 of the Rényi entropic parameter, of the more general criteria

associated with the Rényi family of entropies. Extensions of these criteria to

systems constituted by N identical fermions were also considered.

I applied our entanglement criteria to various illustrative examples of parame-

terized families of mixed states, and studied the dependence of the entanglement

detection efficiency on the entropic parameter q. For the two-fermion states we

considered, the entanglement criterion improves as q increases and is the most

efficient in the limit q →∞.

For the two-fermion states with single-particle Hilbert space of dimension four,

we illustrated the fact that the quantities DvN, DL and Rq involved in the entan-

glement criteria advanced here can also be regarded as entanglement indicators,

in the sense that states exhibiting large values of these quantities have higher

entanglement.

In the three-fermion case we have seen that the entropic criterion based on the

Rényi entropy S
(R)
∞ is also a sufficient criterion for full three-particle entanglement.

Incidentally, this is another manifestation of the fact that the most powerful

entropic entanglement criterion based upon the Rényi entropy corresponds to the

limit q →∞.
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Chapter 5

Characterization of Correlations

in Fermion Systems Based on

Measurement Induced

Disturbances

I introduce an approach for the characterization of quantum correlations in fermion

systems based upon the state disturbances generated by the measurement of “lo-

cal” observables (that is, quantum observables represented by one-body opera-

tors). This approach leads to a concept of quantum correlations in systems of

identical fermions different from entanglement.

5.1 Introduction

Considerable attention has been devoted recently to the applications of tools and

concepts from quantum information theory to the study of correlations in sys-

tems of identical fermions [123, 124, 127, 129, 130, 132, 133, 135, 182]. Most

of these developments have focused on the analysis of quantum entanglement in

fermion systems. However, it is well-known that the concept of entanglement

does not capture all the relevant, information-theoretical aspects of the quantum

correlations exhibited by composite systems. Indeed, as was established in a pi-

oneering work by Zurek and Ollivier [111], even separable mixed states can be
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endowed with correlations exhibiting non-trivial quantum features. In the case of

systems consisting of distinguishable parts various measures have been advanced

to characterize quantitatively the different ways (besides entanglement) in which

quantum correlations can manifest themselves [111, 119, 201–207]. Prominent

among these are quantum discord (discussed in Section 2.3) and the measures

of correlations based upon the disturbances of quantum states due to local mea-

surements proposed by Luo [119, 202, 203] (discussed in Subsection 2.3.1) and

by SaiToh and collaborators [204, 205]. In the case of pure states these measures

reduce to quantum entanglement. In the case of mixed states, however, these

measures describe physical properties of quantum states that are different from

entanglement.

The purpose of the present work is to investigate manifestations of the quan-

tum correlations in fermion systems that do not correspond to quantum entan-

glement, focusing on the measurement induced disturbance approach. Quantum

discord does not seem to admit a counterpart in the case of systems of identical

fermions, because its definition involves a strong asymmetry between the consti-

tuting parts of the composite system under consideration. On the other hand,

as we shall see, the measures of correlations based upon measurement induced

disturbances do admit a natural generalization to the fermion systems.

5.2 Correlations in fermion systems and mea-

surement induced disturbance

As already mentioned, a pure state of a system of two identical fermions is non-

entangled if and only if it can be written as a single Slater determinant,

|ψ(1, 2)〉 =
1√
2

[
|α1〉 ⊗ |α2〉 − |α2〉 ⊗ |α1〉

]
, (5.1)

where the single-particle states |α1〉, |α2〉 are two orthogonal and normalized

states. A state like (5.1) exhibits the “classical-like” feature that both con-

stituents of the composite system possess a complete set of properties [133]. That

is, one can objectively say that one particle possesses the complete set of prop-
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erties associated with the single-particle pure state |α1〉 and the other particle

possesses the set of properties corresponding to |α2〉 (of course, it makes no sense

to ask “which particle possesses which set of properties”). States having the form

(5.1) are the only pure states of two fermions exhibiting this classical property.

Indeed, the possibility of assigning a definite set of properties to each of the two

fermions constitutes one of the strong conceptual reasons for regarding the state

(5.1) as non-entangled.

The above discussion naturally leads to the question of how to characterize

the set of mixed states that share the “classical-like” features of (5.1). There are

at least two possible ways of extending the above discussion to the case of mixed

states of systems of two identical fermions. On the one hand, we can consider

the set of mixed states that are expressible as a statistical mixture of a family of

pure states, each one being of the form (5.1). That is, we may consider states of

the form,

ρsep =
∑
k

pk
2

[
|φ(k)

1 〉⊗|φ
(k)
2 〉−|φ

(k)
2 〉⊗|φ

(k)
1 〉
][
〈φ(k)

1 |⊗〈φ
(k)
2 |−〈φ

(k)
2 |⊗〈φ

(k)
1 |
]
, (5.2)

where 0 ≤ pk ≤ 1,
∑

k pk = 1, and the single-particle pure states |φ(k)
i 〉 verify,

〈φ(k)
i |φ

(k)
j 〉 = δij. (5.3)

Equation (5.2) represents the standard definition of a non-entangled, or separa-

ble, mixed state of two identical fermions. Notice that in (5.2) no special relation

between states |φ(k)
i 〉 with different values of the label k is assumed. In particular,

the overlap between two states with different labels k is not necessarily equal to

0 or 1. This, in turn, means that the overlap between two different members of

the family of (separable) two-fermion pure states participating in the statistical

mixture leading to (5.2) may be non-zero.

The above considerations suggest an alternative, and complementary, way of

extending to mixed states the “classical-like” features exhibited by pure states of

the form (5.1). One can consider statistical mixtures of states like (5.1) such that

for all these states the two (complete) sets of properties associated with the pair
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of particles belong to the same family F of mutually exclusive sets of (complete)

single-particle properties. This family F corresponds to an orthonormal basis

{|αi〉, i = 1, 2, 3, . . .} of the single-particle Hilbert space. Such a state then has

the form

ρclass =
∑
i<j

pij
2

[
|αi〉 ⊗ |αj〉 − |αj〉 ⊗ |αi〉

][
〈αi| ⊗ 〈αj| − 〈αj| ⊗ 〈αi|

]
, (5.4)

with 0 ≤ pij ≤ 1,
∑

i<j pij = 1. The density operator (5.4) is diagonal in

an orthonormal basis of the two-fermion state space consisting of all the states

of the Slater determinant form, 1√
2
(|αi〉 ⊗ |αj〉 − |αj〉 ⊗ |αi〉), i < j, that can

be constructed with states belonging to the single-particle basis {|αi〉}. Such a

basis of the two-fermion system will be called a “Slater basis”. We shall say

that this Slater basis is constructed from, or induced or generated by the single-

particle orthonormal basis {|αi〉}. Let us now consider a single-particle non-

degenerate observable Asp with eigenbasis {|αi〉} and corresponding eigenvalues

{ai}, Asp =
∑

i ai|αi〉〈αi|, and also the two-fermion observable (which we also

assume to be non-degenerate)

A = A(1)
sp ⊗ I(2) + I(1) ⊗ A(2)

sp . (5.5)

The two-fermion observable A has as its eigenbasis the Slater basis constructed

from the single-particle basis {|αi〉}, the eigenvalue corresponding to the eigen-

vector 1√
2
(|αi〉 ⊗ |αj〉 − |αj〉 ⊗ |αi〉) being ai + aj. We shall call the measurement

of an observable of the form (5.5) a “local” measurement. In other words, a local

measurement is a measurement in a Slater basis. To each possible outcome of the

measurement of A we can associate the projector

Pij =
1

2

(
|αi〉 ⊗ |αj〉 − |αj〉 ⊗ |αi〉

)(
〈αi| ⊗ 〈αj| − 〈αj| ⊗ 〈αi|

)
, i < j. (5.6)

These projectors satisfy,

PijPi′j′ = Pijδii′δjj′ , i < j, i′ < j′∑
i<j

Pij = I. (5.7)
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Now, the process of measurement in quantum mechanics is associated with an

alteration of the state. If the two-fermion system is initially in the state ρ, the

state immediately after the measurement (and before the observation) is given

by

Π(ρ) =
∑
i<j

PijρPij. (5.8)

If the initial state ρ is of the form (5.4) then one has Π(ρ) = ρ. In other words,

for a state of the form (5.4) there always exists a local measurement that leaves

the state undisturbed. As a particular instance of two-fermion states with this

property we have the pure, separable states (5.1). We then propose to adopt

this property as the criterion characterizing two-fermion states (pure or mixed)

with “minimal quantum correlations”. In summary, a two-fermion state has min-

imal quantum correlations if there exists a local measurement that leaves the state

undisturbed (in the sense that Π(ρ) = ρ). To denote these two-fermion states

with minimal quantum correlations we shall also use the expressions “classically

correlated states” or “classical states”.

It follows from the above definition of classically correlated two-fermion states

that the following statements are equivalent (see Appendix A, Section 5.7),

1. The state ρ is classical.

2. There exists a local measurement, with associated projectors Pij (of the

form (5.6)) such that ρ commutes with each Pij.

3. The state ρ can be represented as

ρ =
∑
i<j

pij
2

(
|αi〉 ⊗ |αj〉 − |αj〉 ⊗ |αi〉

)(
〈αi| ⊗ 〈αj| − 〈αj| ⊗ 〈αi|

)
(5.9)

for some single-particle orthonormal basis {|αi〉} and some probability dis-

tribution {pij} (normalized as
∑

i<j pij = 1).

The single-particle reduced density matrix ρr = Tr2ρ = Tr1ρ associated with

a two-fermion state of the form (5.9) is given by,

ρr =
∑
i<j

pij
2

(
|αi〉〈αi|+ |αj〉〈αj|

)
. (5.10)
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5.3 Measure of quantum correlations for two-

fermion systems

The above definition of classically correlated two-fermion states (or of states with

minimal quantum correlations) suggests to one to adopt as a quantitative measure

of quantum correlations of a two-fermion state ρ the minimum possible “distance”

between ρ and the disturbed state Π(ρ) resulting from a local measurement. That

is, a measure of the form

ξD(ρ) = inf
Π
D(ρ,Π(ρ)), (5.11)

where the infimum is taken over all complete local projective measurements and

D may be almost any distance or divergence measure for quantum states (a

similar proposal was advanced by Luo for treating systems with distinguishable

subsystems [119]). To calculate ξD from the above definition it is necessary to

implement an optimization procedure to determine the local measurement leading

to the minimal disturbance, which is in general a very difficult problem. A more

tractable approach is given by the expression

ξspD (ρ) = D(ρ,Πsp(ρ)), (5.12)

where the measurement Πsp is the one induced by the spectral resolution of the

single-particle reduced state ρr. That is, in (5.12) we consider a local measure-

ment in the Slater basis constructed from the (single-particle) eigenbasis of ρr.

The main problem with the measure (5.12) is that it is not unique when ρr has

degenerate eigenvalues. This problem obviously disappears if one introduces in

(5.12) a minimization over all the Slater bases induced by an eigenbasis of ρr. If

we call these bases “local bases”, we can then adopt the measure

ξlocalD (ρ) = inf
local bases

D(ρ,Πsp(ρ)). (5.13)

It is clear that a measurement associated with a local basis leaves the single-

particle reduced density matrix ρr undisturbed.

A convenient way of implementing the above ideas is the one advanced by
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SaiToh et al. [204] in the case of distinguishable subsystems: we can define as a

measure of correlations,

ξ(ρ) = min
local bases

S[Π(ρ)]− S[ρ]. (5.14)

This is the measure we are going to use in order to characterize the quantum

correlations in systems of two identical fermions. Notice that we always have

S[Π(ρ)] ≥ S[ρ] and, consequently, the measure (5.14) is always a non-negative

quantity. In fact, it vanishes if and only if ρ is a classically correlated state.

In order to evaluate (5.14) we have to determine the local measurement that

minimizes S[Π(ρ)] under the constraint that ρr remains undisturbed (from here

on, unless the contrary is explicitly stated, this constraint is always assumed when

we discuss optimization processes over the set of local measures or, equivalently,

over the set of Slater bases). As we are going to see in the following Sections,

in many cases this optimization problem can be conveniently tackled using the

concept of majorization. Let us consider a local measurement associated with

the Slater basis {|sl1〉, |sl2〉, . . .}. We denote by λ(Π(ρ)) = {〈sl1|ρ|sl1〉, . . .} the

eigenvalues of Π(ρ). If we now compare two local measurements, we have that

λ(Π(ρ)) ≺ λ(Π∗(ρ)) → S[Π∗(ρ)] ≤ S[Π(ρ)]. (5.15)

Consequently, if we find a local measurement associated with a Slater basis {|sl∗i 〉}
such that the eigenvalues λ(Π∗(ρ)) satisfy λ(Π(ρ)) ≺ λ(Π∗(ρ)) for any other local

measurement, then we have that

ξ(ρ) = S[Π∗(ρ)]− S[ρ]. (5.16)

Summing up, the optimization problem is solved if one finds a local measurement

such that the set of eigenvalues λ(Π∗(ρ)) majorizes the set of eigenvalues λ(Π(ρ))

associated with any other local measurement.
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5.4 Pure states of two identical fermions

First I am going to analyze the quantum correlations exhibited by pure states

of a two-fermion system. So I am going to evaluate the measure ξ(ρ) defined

in eq. (5.14) on a pure state ρ = |ψ〉〈ψ| of a two-fermion system with a single-

particle Hilbert space of dimension 2k, k ≥ 2. In order to evaluate ξ(ρ) in this

case it will prove convenient to use the fermionic Schmidt decomposition of the

state |ψ〉. It is always possible to find an orthonormal basis {|1〉, |2〉, ..., |2k〉} of

the single-particle Hilbert space (the “Schmidt basis”) such that the state |ψ〉
can be cast as,

|ψ〉 =
k∑
i=1

√
λi
2

(
|2i− 1〉|2i〉 − |2i〉|2i− 1〉

)
, (5.17)

with the Schmidt coefficients λi satisfying 0 ≤ λi ≤ 1 and
∑k

i=1 λi = 1. The

single-particle reduced density operator is,

ρr =
k∑
i=1

λi
2

(
|2i− 1〉〈2i− 1|+ |2i〉〈2i|

)
, (5.18)

so that the Schmidt basis is an eigenbasis of ρr, and the halved Schmidt coeffi-

cients, λi/2, are the eigenvalues of ρr. Notice that each of these eigenvalues is (at

least) two-fold degenerate. Since in this case we have S[ρ] = 0, the correlations

measure (5.14) reduces to the infimum of S[Π(ρ)] over all the possible local mea-

surements.

Let us first discuss the case where the k Schmidt coefficients are all different.

Each eigenvalue of ρr is then two-fold degenerate: the eigenvectors |2i − 1〉 and

|2i〉 of ρr share the same eigenvalue λi/2. Consequently, we have to minimize

S[Π(ρ)] over all possible local bases consisting of Slater determinants constructed

from single-particle bases of the form,

|εi〉 = c
(i)
11 |2i− 1〉+ c

(i)
12 |2i〉,

|ε⊥i 〉 = c
(i)
21 |2i− 1〉+ c

(i)
22 |2i〉, i = 1, . . . , k, (5.19)
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with appropriate coefficients c
(i)
jl such that |εi〉 and |ε⊥i 〉 are normalized and or-

thogonal. However, it can be verified that, for any of these local bases we have

Π(ρ) =
k∑
i=1

λi
2

(
|2i− 1〉|2i〉 − |2i〉|2i− 1〉

)(
〈2i− 1|〈2i| − 〈2i|〈2i− 1|

)
. (5.20)

That is, in this case the disturbed two-fermion density operator Π(ρ) is the same

for all the possible local bases. Consequently, S[Π(ρ)] is constant over all the

associated local measurements, and so we have that the quantum correlations

measure is,

ξ(ρ) = −
k∑
i=1

λi log2 λi. (5.21)

Now, suppose that two or more λi’s are equal. Assume, for instance, that t

Schmidt coefficients have the same value, λji = λ, i = 1, 2, . . . , t. In such a case

we have within the Schmidt expansion of |ψ〉 a term of the form,√
λ

2

t∑
i=1

(
|2ji − 1〉|2ji〉 − |2ji〉|2ji − 1〉

)
, (5.22)

with t ≤ k. The eigenvalue λ/2 of ρr is then 2t-fold degenerate. Consequently,

within the single-particle orthonormal basis inducing the local (Slater) two-fermion

basis we can substitute the set {|2ji − 1〉, |2ji〉, i = 1, 2, . . . , t} by any other set

of 2t orthonormal linear combinations of these vectors. The corresponding two-

fermion local basis (characterizing a local measurement) will then include the

t(2t − 1) Slater determinants constructed with these new 2t single-particle vec-

tors. Let us now compare the set of eigenvalues λ(Π(ρ)) of the disturbed density

matrix Π(ρ) associated with this new local basis (resulting from the above substi-

tution) with the set λ(Sch) = {λ1, λ2, . . . , λk, 0, . . .} of eigenvalues of the disturbed

density matrix Π(Sch)(ρ) associated with the local (Slater) basis induced by the

Schmidt basis {|1〉, |2〉, . . . , |2k〉}. Let |ζ〉 be one of the Slater determinants con-

structed with two of the abovementioned orthonormal linear combinations of the

states {|2ji − 1〉, |2ji〉, i = 1, 2, . . . , t}. It can be shown, after some algebra (see
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Appendix B, Section 5.8), that

∣∣∣〈ζ| 1√
2

t∑
i=1

(
|2ji − 1〉|2ji〉 − |2ji〉|2ji − 1〉

)∣∣∣ ≤ 1. (5.23)

This means that, as a result of the abovementioned substitution, the eigenvalue λ,

which appears t times in λ(Sch), is substituted in λ(Π(ρ)) by a new set of eigenvalues,

each one of them less or equal to λ, and adding up to tλ. This substitution leads

to a λ(Π(ρ)) that is majorized by λ(Sch). That is, we have

λ(Π(ρ)) ≺ λ(Sch), (5.24)

and thus

−
k∑
i=1

λi log2 λi ≤ S[Π(ρ)], (5.25)

meaning that the quantum correlation measure for the pure two-fermion state is

again given by (5.21).

The expression on the right hand side of equation (5.21) coincides with the

amount of entanglement of the two-fermion pure state |ψ〉. This means that,

in the case of pure states the concept of quantum correlation for two-fermion

systems introduced here by us coincides with entanglement. In particular, our

measure vanishes for a pure state if and only if this state has Slater rank equal

to one (that is, if we have one Schmidt coefficient λl = 1 and λi = 0 ∀ i 6= l).

5.5 Mixed states of two identical fermions

In this Section I shall compute analytically the above-introduced measure of quan-

tum correlations for some relevant instances of mixed states of two-fermion sys-

tems. Here we shall use the angular momentum representation for two-fermion

states, as described in Subsection 2.5.1. Within this representation, the states

|j,m〉 constitute a natural basis for the two-fermion state space. We use a compact

notation according to which, for instance, the ket |0, 0〉 stands for |j = 0,m = 0〉.
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5.5 Mixed states of two identical fermions

I first consider fermions with a single-particle Hilbert space of dimension four.

We shall evaluate the correlation measure for the state,

ρ = p|0, 0〉〈0, 0|+ (1− p)ρmix, (5.26)

where

ρmix =
1

6

(
|0, 0〉〈0, 0|+

2∑
m=−2

|2,m〉〈2,m|
)

(5.27)

is the totally mixed state of the two-fermion system. The state (5.26) is entangled

if p > 0.4. The single-particle reduced density matrix ρr corresponding to this

state is proportional to the identity matrix. Then, the choice of the local mea-

surement (in a Slater basis constructed from an eigenbasis of ρr) is not uniquely

defined. Using the majorization technique we can optimize this local measure-

ment, finding the one leading to the disturbed matrix Π∗(ρ) of minimum entropy.

When performing a local measurement on ρ the eigenvalues of the resulting Π(ρ)

are of the form,

〈Sl|ρ|Sl〉 = p|〈Sl|0, 0〉|2 +
1− p

6
, (5.28)

where |Sl〉 is a two-fermion state of Slater rank 1. For these states one al-

ways has |〈Sl|0, 0〉|2 ≤ 1
2
, see eq. (4.16). Equality here can be achieved by

|Sl〉 = 1√
2
[|3

2
〉|-3

2
〉 − |-3

2
〉|3

2
〉] [130].

Let us first consider the local measurement performed in the Slater basis gener-

ated from the single-particle basis {|3
2
〉, |1

2
〉, |-1

2
〉, |-3

2
〉} (we shall sometimes refer

to this basis as {|1〉, |2〉, |3〉, |4〉}). Let Π∗(ρ) denote the density matrix result-

ing from this local measurement, and λ(Π∗(ρ)) = {λ∗1, . . . , λ∗6} the corresponding

set of eigenvalues. We now prove that that this set majorizes the eigenvalues

λ(Π(ρ)) = {λ1, . . . , λ6} corresponding to any other local measurement. The mem-

bers of λ(Π∗(ρ)) are λ∗1 = λ∗2 = p
2

+ 1−p
6

and λ∗3 = · · · = λ∗6 = 1−p
6

. The eigenvalues

of the operator Π(ρ) corresponding to a general local measurement are of the

form,

〈Sli|ρ|Sli〉 = pεi +
1− p

6
, 0 ≤ εi ≤

1

2
;

6∑
i=1

εi = 1. (5.29)
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Figure 5.1: ξ(ρ) (solid line) and concurrence (dotted line) for the state given by eq. (5.26).

The majorization inequalities
∑t

i=1 λ
∗
i ≥

∑t
i=1 λi, 1 ≤ t ≤ 6 are then satisfied,

and consequently we have that λ(Π(ρ)) ≺ λ(Π∗(ρ)), meaning that the quantum

correlations measure is equal to S[Π∗(ρ)] − S[ρ]. Thus, for the state (5.26) we

have,

ξ(ρ) =
1− p

6
log2

1− p
6

+
1 + 5p

6
log2

1 + 5p

6
− 1 + 2p

3
log2

1 + 2p

6
. (5.30)

The concurrence of this state is given by

C(ρ) =

0, if 0 ≤ p ≤ 0.4

5p−2
3
, if 0.4 < p ≤ 1.

(5.31)

When p = 1, the state (5.26) is a pure, maximally entangled state of two fermions,

and the quantum correlations measure adopts its maximum value, ξ(ρ) = 1. On

the other hand, when p = 0 the state is equal to the maximally mixed one, ρmix

and in this case ξ(ρ) = 0. However, we have non-vanishing quantum correlations,

i.e. ξ(ρ) 6= 0, for non-entangled states. ξ(ρ) can be larger than the concurrence

for some states and it can be smaller for other states, see Fig. 5.1. In this respect,

the behaviour of the fermionic quantum correlations measure exhibits some sim-

ilarities with the behaviour of the quantum correlations measure corresponding

to distinguishable systems [202].

The previous example admits a generalization to systems of two identical
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5.5 Mixed states of two identical fermions

fermions with a d-dimensional single-particle Hilbert space. Let d∗ = d(d−1)
2

de-

note the dimension of the corresponding two-fermion state space. We consider

states consisting of a mixture of a maximally entangled state |ψ〉 and the maxi-

mally mixed one,

ρ = p|ψ〉〈ψ|+ (1− p) 2

d(d− 1)
I. (5.32)

Here I is the d∗× d∗ identity matrix, and |ψ〉 can be written as a superposition

of non-overlapping Slater terms

|ψ〉 =
1√
d

[
|2〉|1〉 − |1〉|2〉+ |4〉|3〉 − |3〉|4〉+ ...+ |d〉|d− 1〉 − |d− 1〉|d〉

]
, (5.33)

where {|1〉, |2〉, . . . , |d〉} is a single-particle orthonormal basis. Let

|Sl〉 =
1√
2

[
|φ1〉|φ2〉 − |φ2〉|φ1〉

]
, (5.34)

be an arbitrary pure state of Slater rank one, constructed from the pair of or-

thonormalized single-particle states, |φ1〉 and |φ2〉. Then

|〈ψ|Sl〉| ≤
√

2

d
, (5.35)

with equality obtained for states of the form 1√
2
(|l + 1〉|l〉 − |l〉|l + 1〉), see Ap-

pendix B (Section 5.8). The eigenvalues of ρ are (1−p)
d∗

with multiplicity d∗ − 1

and p+ 1−p
d∗

with multiplicity 1, and the single-particle reduced density operator

is ρr = I/d.

Let Π∗(ρ) denote the density matrix resulting from the local measurement asso-

ciated with the Slater basis generated by the single-particle basis {|1〉, . . . , |d〉},
and λ(Π∗(ρ)) = {λ∗1, . . . , λ∗d∗} the corresponding set of eigenvalues. Let λ(Π(ρ)) =

{λ1, . . . , λd∗} be the eigenvalues of the Π(ρ) corresponding to any other local mea-

surement. The members of λ(Π∗(ρ)) are p(d−2)+1
d∗

with multiplicity d
2

and 1−p
d∗

with

multiplicity d(d−2)
2

. On the other hand, due to (5.35), the members of λ(Π(ρ)) are of

the form pεi + 1−p
d∗

, with εi ≤ 2
d

and
∑d∗

i=1 εi = 1. It follows that λ(Π(ρ)) ≺ λ(Π∗(ρ)),
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5.5 Mixed states of two identical fermions

and therefore we have,

ξ(ρ) = S[Π∗(ρ)]− S[ρ]

= (d∗ − 1)
(1− p)
d∗

log2

(1− p)
d∗

+

(
p+

1− p
d∗

)
log2

(
p+

1− p
d∗

)
−d(d− 2)

2

(1− p)
d∗

log2

(1− p)
d∗

− d

2

p(d− 2) + 1

d∗
log2

p(d− 2) + 1

d∗
. (5.36)

We shall now compute the quantum correlations measure of the state

ρ = p|0, 0〉〈0, 0|+ (1− p)
[
q|2,−2〉〈2,−2|+ (1− q)|2, 2〉〈2, 2|

]
, (5.37)

with 0 ≤ p, q ≤ 1. It will prove convenient to rewrite this state under the guise

ρ = pρ1 + (1 − p)ρ2, where ρ1 = |0, 0〉〈0, 0| and ρ2 = q|2,−2〉〈2,−2| + (1 −
q)|2, 2〉〈2, 2|. Then, it is possible to prove that the set of eigenvalues λ(Π∗(ρ)) of

the density matrix Π∗(ρ) resulting from the local measurement in the Slater basis

generated by the single-particle states {|3
2
〉, |1

2
〉, |-1

2
〉, |-3

2
〉} is the one that majorizes

the set of eigenvalues λ(Π(ρ)) associated with any other local measurement. The

single-particle reduced states corresponding to the three states ρ, ρ1 and ρ2 are

all diagonal in the same single-particle basis. Consequently, these three states

share the same family of admissible local measurements. Our strategy will be to

show that the local measurement in the Slater basis associated with the single-

particle basis {|3
2
〉, |1

2
〉, |-1

2
〉, |-3

2
〉} is the optimal one both for ρ1 and ρ2, and then

conclude that it is optimal for ρ as well. To that effect first note that, if one

has four probability distributions λ(1), λ(1∗), λ(2), λ(2∗), such that λ(1) ≺ λ(1∗) and

λ(2) ≺ λ(2∗) then for any p (0 ≤ p ≤ 1) we have that

pλ(1) + (1− p)λ(2) ≺ pλ(1∗) + (1− p)λ(2∗). (5.38)

Now, it is clear that for any local measurement we have λ(Π(ρ1)) ≺ λ(Π∗(ρ1)), since

this is a particular instance of the previously considered case corresponding to

the state (5.26). Now, the state ρ2 is a convex linear combination of the states

ρ2a = |2,−2〉〈2,−2| and ρ2b = |2, 2〉〈2, 2|. It is clear that λ(Π(ρ2a)) ≺ λ(Π∗(ρ2a)) and

λ(Π(ρ2b)) ≺ λ(Π∗(ρ2b)), since for both λ(Π∗(ρ2a)) and λ(Π∗(ρ2b)) we have one eigenvalue

equal to 1 and the rest equal to zero (remember that the states |2,−2〉 and

|2, 2〉 are themselves members of the Slater basis induced by the single-particle
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5.5 Mixed states of two identical fermions

Figure 5.2: Concurrence for the state
given by (5.37).
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Figure 5.3: ξ(ρ) (solid line) and concur-
rence (dotted line) for the state given by
eq. (5.37). For this state ξ(ρ) does not de-
pend on q. The concurrence is evaluated by
setting q = 1

2 .

basis {|3
2
〉, |1

2
〉, |-1

2
〉, |-3

2
〉}). Then, since λ(Π(ρ2)) = qλ(Π(ρ2a)) + (1 − q)λ(Π(ρ2b)) and

λ(Π∗(ρ2)) = qλ(Π∗(ρ2a)) + (1 − q)λ(Π∗(ρ2b)) it follows from (5.38) that λ(Π(ρ2)) ≺
λ(Π∗(ρ2)). Then, taking into account that for any local measurement we have

λ(Π(ρ)) = pλ(Π(ρ1)) + (1 − p)λ(Π(ρ2)), and applying once more the relation (5.38),

we obtain that λ(Π(ρ)) ≺ λ(Π∗(ρ)).

So finally we find that

ξ(ρ) = p. (5.39)

We also compute the concurrence C(ρ) = C(p, q), see Figure 5.2. For q = 1
2

we

obtain

C(ρ) =

0, if 0 ≤ p ≤ 0.5

2p− 1, if 0.5 < p ≤ 1.
(5.40)

Note that in this case ρ is entangled for p > 0.5. We plot the concurrence and

ξ(ρ) in Fig. 5.3 for this state, with q = 1
2
.

I now consider the following state,

ρ = p|Ψ〉〈Ψ|+ (1− p)ρmix, (5.41)

with ρmix as in eq. (5.27) and

|Ψ〉 =
sin θ√

2

[∣∣∣-3

2

〉∣∣∣3
2

〉
−
∣∣∣3
2

〉∣∣∣-3

2

〉]
+

cos θ√
2

[∣∣∣-1

2

〉∣∣∣1
2

〉
−
∣∣∣1
2

〉∣∣∣-1

2

〉]
. (5.42)
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5.5 Mixed states of two identical fermions

The eigenvalues of ρ are {1−p
6
, ..., 1−p

6
, 1+5p

6
} and the eigenvalues of the single-

particle reduced density matrix ρr are p sin2θ
2

+ (1−p)
4

(corresponding to the eigen-

vectors |-3
2
〉 and |3

2
〉) and p cos2θ

2
+ (1−p)

4
(corresponding to the eigenvectors |-1

2
〉 and

|1
2
〉). The admissible local measurements are thus those done in the Slater basis

generated by a single-particle orthonormal basis {|αl〉} consisting of four states

of the form,

|α1〉 = d11

∣∣∣-3

2

〉
+ d12

∣∣∣3
2

〉
,

|α2〉 = d21

∣∣∣-3

2

〉
+ d22

∣∣∣3
2

〉
,

|α3〉 = d31

∣∣∣-1

2

〉
+ d32

∣∣∣1
2

〉
,

|α4〉 = d41

∣∣∣-1

2

〉
+ d42

∣∣∣1
2

〉
, (5.43)

with complex coefficients dij such that the vectors {|αl〉} are orthonormal. Now,

it can be verified after some algebra that the eigenvalues of the statistical operator

Π(ρ) resulting from any of these local measurements are always the same (that

is, they do not depend on the particular values adopted by the coefficients dij).

These eigenvalues are {1−p
6
, ..., 1−p

6
, 1−p

6
+p cos2θ, 1−p

6
+p sin2θ}. Consequently, we

have ξ(ρ) = S[Π(ρ)]− S[ρ], yielding

ξ(ρ) =
1− p

6
log2

1− p
6

+
1 + 5p

6
log2

1 + 5p

6

−
[

1− p
6

+ p cos2θ

]
log2

[
1− p

6
+ p cos2θ

]
−
[

1− p
6

+ p sin2θ

]
log2

[
1− p

6
+ p sin2θ

]
. (5.44)

The concurrence of the state (5.41) is,

C =
1

6

(√
c1 + c2 −

√
c1 − c2

)
− 4

1− p
6

, (5.45)

where c1 and c2 are given by the following expressions,

c1 = 1 + 4p+ 4p2 − 9p2 cos(4θ)

c2 = 3p
√

2
[
2 + 8p− p2(1 + 9 cos(4θ))

] ∣∣sin(2θ)
∣∣. (5.46)
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5.5 Mixed states of two identical fermions

I plot the concurrence and ξ for this state in Figures 5.4(a) and 5.4(b) respectively.

Setting p = 1 gives ρ = |Ψ〉〈Ψ| and so we obtain

ξ(ρ, p = 1) = − sin2θ log2(sin2θ)− cos2θ log2(cos2θ). (5.47)

We plot the slice p = 1 in Fig. 5.4(c) and the difference C(ρ)−ξ(ρ) in Fig. 5.4(d).
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(c) ξ(ρ) (solid line) and concurrence
(dotted line) for p = 1.
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(d) Difference between concurrence and
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Figure 5.4: The graphs pertain to the state given by eq. (5.41).

We consider now a mixture of two orthogonal, maximally entangled states,

|φ1〉 =
1√
2

(
|12|+ |34|

)
|φ2〉 =

1√
2

(
|12| − |34|

)
, (5.48)
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5.6 Conclusions

where |ij| = (|ij〉 − |ji〉)/
√

2. That is, we shall now study the state,

ρ = p|φ1〉〈φ1|+ (1− p)|φ2〉〈φ2|. (5.49)

The concurrence of (5.49) is given by C = |2p − 1|. The eigenvalues of the

state Π∗(ρ) resulting from a local measurement in the Slater basis induced by the

single-particle basis {|1〉 = |3
2
〉, |2〉 = |-3

2
〉, |3〉 = |1

2
〉, |4〉 = |-1

2
〉}, are λ(Π∗(ρ)) ={

1
2
, 1

2
, 0, 0, 0, 0

}
. Now, for any two-fermion state |Sl〉 of Slater rank 1 we have

〈Sl|ρ|Sl〉 = p|〈φ1|Sl〉|2 + (1− p)|〈φ2|Sl〉|2

≤ 1

2
. (5.50)

Thus, the two non-vanishing eigenvalues of Π∗(ρ) adopt the maximum possible

value, equal to 1
2
. It is plain then that λ(Π∗(ρ)) majorizes the set of eigenvalues

λ(Π(ρ)) corresponding to any other possible local measurement. This leads to a

quantum correlations measure for (5.49) equal to,

ξ(ρ) = 1 + p log2 p+ (1− p) log2(1− p). (5.51)

5.6 Conclusions

I introduced an approach for the analysis of quantum correlations in fermion

systems based upon the state disturbances generated by the measurement of

“local” observables (that is, quantum observables represented by one-body oper-

ators). The concomitant concept of quantum correlations in systems of identical

fermions differs from entanglement. According to this approach the quantum

states of two identical fermions exhibiting the minimum amount of quantum cor-

relations (“classical” states) are those that are diagonal in a Slater basis (induced

by a single-particle basis). We proposed a quantitative measure for the quan-

tum correlations of two-fermion systems, and computed it analytically for some

relevant states. In the case of pure states of two identical fermions the present

concept of quantum correlations coincides with entanglement, and the measure

of quantum correlations reduces to the amount of entanglement exhibited by the

fermionic state.
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5.7 Appendix A: Quantum states undisturbed by a projective
measurement

5.7 Appendix A: Quantum states undisturbed

by a projective measurement

Let {|k〉} be an orthonormal basis of a quantum system’s Hilbert space and

{Pk = |k〉〈k|} the corresponding complete set of one-dimensional projectors, so

that PkPk′ = δkk′Pk and I =
∑

k Pk is the identity operator. Then, given a

quantum state ρ, the following three statements are equivalent:

• (i) The state ρ is undisturbed by a measurement in the basis {|k〉}. That

is, ρ =
∑

k PkρPk.

• (ii) The density operator ρ commutes with all the projectors: Pkρ = ρPk.

• (iii) The state ρ is of the form ρ =
∑

k λkPk, with 0 ≤ λk ≤ 1 and
∑

k λk = 1.

It follows from (i) that Pkρ =
∑

k′ PkPk′ρPk′ =
∑

k′ Pk′ρPk′Pk = ρPk. Therefore

(i) → (ii). Now, if ρ verifies (ii) we have ρ = ρ I =
∑

k ρPk =
∑

k ρPkPk =∑
k PkρPk =

∑
k λkPk, with λk = 〈k|ρ|k〉. Therefore, (ii) → (iii). Finally, it is

clear that (iii) → (i).

The equivalence between the three statements concerning classical states of

two fermions, discussed in Section 5.2, follows immediately from the above con-

siderations if we identify the projectors {Pk} with the projectors associated with

a local measurement of the system (that is, with the projectors corresponding to

a Slater basis of the two-fermion system).

5.8 Appendix B: Upper bound for the overlap

between a maximally entangled state and a

state of Slater rank one

A maximally entangled state of two fermions with single-particle Hilbert space of

dimension d can be written as a superposition of non-overlapping Slater determi-

nants,

|ψ〉 =
1√
d

[
|2〉|1〉 − |1〉|2〉+ |4〉|3〉 − |3〉|4〉+ ...+ |d〉|d− 1〉 − |d− 1〉|d〉

]
, (5.52)
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5.8 Appendix B: Upper bound for the overlap between a maximally
entangled state and a state of Slater rank one

where {|1〉, |2〉, . . . , |d〉} is a single-particle orthonormal basis. Let

|Sl〉 =
1√
2

[
|φ1〉|φ2〉 − |φ2〉|φ1〉

]
, (5.53)

be an arbitrary pure state of Slater rank one, constructed from the pair of or-

thonormalized single-particle states, |φ1〉 =
∑d

i=1 αi|i〉 and |φ2〉 =
∑d

i=1 βi|i〉.
Then

〈ψ|Sl〉 =

√
2

d

[
α2β1 − α1β2 + α4β3 − α3β4 + ...+ αdβd−1 − αd−1βd

]
(5.54)

|〈ψ|Sl〉| =

√
2

d

∣∣α2β1 − α1β2 + α4β3 − α3β4 + ...+ αdβd−1 − αd−1βd
∣∣

≤
√

2

d

[
|α2||β1|+ |α1||β2|+ |α4||β3|+ |α3||β4|+ ...

+|αd||βd−1|+ |αd−1||βd|
]

(5.55)

and using the Schwarz inequality we obtain

|〈ψ|Sl〉| ≤
√

2

d
. (5.56)

The equality is obtained for states of the form

|Sl〉 =
1√
2

(
|l + 1〉|l〉 − |l〉|l + 1〉

)
. (5.57)
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Chapter 6

Conclusions

The first theme of the present work was to explore some aspects of the dynamics

of information in both classical and quantum mechanical systems. The relevant

background was provided in Chapter 1, while the new work done in this direction

was presented in Chapter 3.

The second topic concerned entanglement in fermion systems and this was

analyzed by means of the classification and quantification of entanglement in

fermionic systems. The necessary background material was given in Chapter 2,

followed by several new entanglement indicators and entanglement measures be-

ing advanced in Chapter 4. In Chapter 5 an approach for the characterization of

quantum correlations going beyond entanglement was investigated for fermionic

systems.

Besides background material, Chapters 1 and 2 also contained some new re-

sults. In Chapter 1 I presented an alternative and more intuitive proof of the

no-broadcasting theorem. In Chapter 2 I included an exploration of some entan-

glement features of an exactly solvable SU2 many-body model.

In Chapter 3 I investigated extended Landauer-like principles that were based

amongst others on the conservation of information of divergenceless dynamical

systems. Conservation of information within the framework of general probabilis-

tic theories, which included the classical and quantum mechanical probabilities

as particular instances, was explored. Furthermore, in the context of general
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probabilistic theories, Zurek’s information transfer theorem and the no-deleting

theorem were generalized.

In Section 3.1 I developed extended Landauer-like principles valid within sce-

narios involving general dynamical systems exhibiting divergenceless phase space

flows. Two fundamental features of Shannon’s information measure S[F ] lead to

these Landauer-like results:

• The conservation of S under the Liouville’s ensemble dynamics associated

with divergenceless systems.

• The subadditive character of S.

The profound links between Landauer’s principle and the second law of ther-

modynamics [22] suggest that the present results may help to explore analogues

of the second law in non-standard contexts, like the biological ones discussed in

[150, 151].

The lack of subadditivity exhibited by some important non-logarithmic informa-

tion or entropic functionals seems to be a serious difficulty for deriving generaliza-

tions of Landauer’s principle in terms of the non-standard maxent formalisms that

are nowadays popular for the study of non-equilibrium, meta-stable states. On

the other hand, the Beck-Cohen approach allows for the extension of Landauer’s

principle to some of those scenarios. This important issue, however, needs further

exploration and the idea would be to obtain a valid formulation of Landauer-like

principles directly based upon generalized, non-standard entropic measures.

Conservation of information within the framework of general probabilistic

theories, which include the classical and quantum mechanical probabilities as

particular instances, was explored in Section 3.2. That is, information-related

aspects of the BBLW framework for probabilistic physical theories were ana-

lyzed and within this general setting I investigated the main features of a fidelity

measure between pairs of states that reduced, in the case of quantum theory,

to the standard fidelity measure between statistical operators. We showed that

our generalized fidelity measure complies with all the basic properties (excepting
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Uhlmann’s theorem) satisfied by the quantum fidelity measure for density matri-

ces. All the alluded properties admitted direct derivations not involving specific

features of standard quantum theory, such as the Hilbert space formalism or the

properties of density matrices.

I used the aforementioned fidelity measure to obtain a generalization to the BBLW

family of probabilistic theories of Zurek’s recent extension of the quantum no-

cloning theorem. We considered two systems S and A interacting in such a way

that a finite amount of information was transferred from S to A. No matter how

little information about the state of S was finally stored in A (as long as it was

not strictly zero) the only initial states of S that were left unchanged by this

process were restricted to a set of states with vanishing mutual fidelity.

In Chapter 4 I investigated several separability criteria for fermions. Criteria

for the detection of entanglement were developed, based either on the violation of

appropriate uncertainty relations or on inequalities that involved entropic mea-

sures.

In Section 4.1 I derived a separability criterion for states (pure or mixed) of

two fermions with a single-particle Hilbert space of dimension four (s = 3
2
) based

on the violation of local uncertainty relations. The violation of these relations

provided a means of entanglement detection and also a quantitative indicator

of entanglement. Then we developed separability criteria for fermion systems

using sums of variances of appropriate projector operators. We implemented

this type of criterion for two-fermion systems with four-dimensional (s = 3
2
) and

six-dimensional (s = 5
2
) single-particle Hilbert spaces, and for systems of three

identical fermions with a six-dimensional single-particle Hilbert space. In the

latter two instances no analytical, closed expression for the concurrence, nor a

necessary and sufficient separability criterion exists. Therefore, the present cri-

teria for entanglement detection provided in these cases a valuable tool for the

identification of families of entangled mixed states. The violation of entropic un-

certainty relations was then investigated as a means of entanglement detection.

Criteria were established using the Shannon, Tsallis and Rényi entropies. I also

provided illustrations of families of entangled states that were detected by our
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separability criteria.

In Section 4.2 new entropic entanglement criteria for systems of two identical

fermions were advanced. These criteria had the form of appropriate inequalities

involving the entropy of the density matrix associated with the total system,

on the one hand, and the entropy of the single-particle reduced density matrix,

on the other hand. I obtained entanglement criteria based upon the von Neu-

mann, the linear, and the Rényi entropies. The criterion associated with the von

Neumann entropy constituted a special instance, corresponding to the particular

value q → 1 of the Rényi entropic parameter, of the more general criteria associ-

ated with the Rényi family of entropies. Extensions of these criteria to systems

constituted by N identical fermions were also considered.

I applied our entanglement criteria to various illustrative examples of parame-

terized families of mixed states, and studied the dependence of the entanglement

detection efficiency on the entropic parameter q. For the two-fermion states we

considered, the entanglement criterion improved as q increased and was the most

efficient in the limit q → ∞. For the two-fermion states with single-particle

Hilbert space of dimension four, we illustrated the fact that the quantities DvN,

DL and Rq involved in the entanglement criteria that were advanced here could

also be regarded as entanglement indicators, in the sense that states which ex-

hibited large values of these quantities had higher entanglement.

In the three-fermion case we had seen that the entropic criterion based on the

Rényi entropy S
(R)
∞ was also a sufficient criterion for full three-particle entan-

glement. Incidentally, this was another manifestation of the fact that the most

powerful entropic entanglement criterion based upon the Rényi entropy corre-

sponds to the limit q →∞.

In Chapter 5 I introduced an approach for the analysis of quantum correlations

in fermion systems which was based upon the state disturbances generated by the

measurement of “local” observables (that is, quantum observables represented by

one-body operators). The concomitant concept of quantum correlations in sys-

tems of identical fermions differs from entanglement. According to this approach
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6.1 The End

the quantum states of two identical fermions exhibiting the minimum amount of

quantum correlations (“classical” states) are those that are diagonal in a Slater

basis (induced by a single-particle basis). We proposed a quantitative measure

for the quantum correlations of two-fermion systems, and computed it analyti-

cally for some relevant states. In the case of pure states of two identical fermions

the present concept of quantum correlations coincided with entanglement, and

the measure of quantum correlations reduced to the amount of entanglement

exhibited by the fermionic state.

6.1 The End

What we call the beginning is often the end,

And to make an end is to make a beginning.

The end is where we start from...

And the end of all our exploring

Will be to arrive where we started

And know the place for the first time.

T.S. Eliot
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[41] K. Życzkowski, P. Horodecki, A. Sanpera and M. Lewenstein, “Volume of

the set of separable states”, Phys. Rev. A 58 (2), (1998) pp. 883–892

[42] V. Vedral, Introduction to Quantum Information Science (New York: Ox-

ford University Press, 2006)

[43] S. Kullback and R. A. Leibler, “On Information and Sufficiency”, Ann.

Math. Stat. 22 (1), (1951) pp. 79–86

[44] A. R. Plastino, “Liouville Equation, Entropic Distances, and Classical Uni-

versal Information Processes”, Prog. Theor. Phys. Suppl. 162, (2006) pp.

173–182

[45] C. Tsallis, “Generalized entropy-based criterion for consistent testing”,

Phys. Rev. E 58 (2), (1998) pp. 1442–1445

[46] L. Borland, A. R. Plastino and C. Tsallis, “Information gain within nonex-

tensive thermostatistics”, J. Math. Phys. 39 (12), (1998) pp. 6490–6501

216

 
 
 



REFERENCES

[47] A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory

(Amsterdam: North-Holland Publishing Company, 1982)

[48] L. Susskind, The Black Hole War: My Battle with Stephen Hawking to

Make the World Safe for Quantum Mechanics (New York: Little, Brown

and Company, 2008)

[49] L. Susskind and J. Lindesay, An Introduction to Black Holes, Information

and the String Theory Revolution: The Holographic Universe (Hackensack,

New Jersey: World Scientific, 2005)

[50] H. Goldstein, Classical Mechanics (Reading, Massachusetts: Addison-

Wesley, 1980)

[51] C. Cohen-Tannoudji, B. Diu and F. Laloë, Quantum Mechanics (New York:
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