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Preface

The ultimate aim of functional genomics is to increase one’s ability to understand genome
function. In order to achieve this aim, many gene discovery and functional annotation
projects are underway. Although there are several alternative approaches such as cDONA-AFLP,
DD-RT-PCR and RNA-Seq, SSH remains a popular approach for gene discovery from
non-model organisms, for which an annotated genome sequence is not available. A recent
search with the keywords ’suppression subtractive hybridization’ in the title of research
articles on PubMed produced 1213 hits, which confirmed the technique’s popularity.

The Molecular Plant-Pathogen Interactions (MPPI) research group at the University
of Pretoria (UP) chose to apply SSH to gene discovery in cowpea (Vigna unguiculata (L.)
Walp), pearl millet (Pennisetum glaucum (L.) R. Br.) and Arabidopsis (Arabidopsis thaliana
(L.) Heynh) ecotype Kil-0, where the objective of each library was to enrich for genes ex-
pressed during drought stress, biotic stress and treatment with the bacterial wilt pathogen
Ralstonia solanacearum, respectively. This dissertation describes two software innovations
that facilitate gene discovery using SSH in the form of the “SSHscreen-SSHdb pipeline”, that
was used to screen these libraries and to manage the resulting sequencing and annotation
information.

A method for screening SSH libraries using Microsoft Excel calculations, is outlined in
van den Berg et al., 2004. SSHscreen version 1.0.1 was developed as an R package by Dr.
Wiesner Vos (while at the Department of Statistics, Oxford University), in collaboration with
Prof. Dave Berger (Department Plant Science, FABI, UP) (Berger et al., 2007), including
more sophisticated normalization and statistical analysis steps using the limma package from
the BioConductor project. In this MSc study, substantial improvements to the functionality
of SSHscreen were added, leading to the latest version, SSHscreen 2.0.0, available at http:
//microarray.up.ac.za/SSHscreen/. The necessity for a database system to manage the
resulting data and sequence information, lead to the development of SSHdb, a web-based
tool for the management and annotation of cDNA sequences in a SSH ¢cDNA library, which
can be accessed at http://sshdb.bi.up.ac.za/.

Chapter 1 of this dissertation is a literature survey dealing with methods to identify
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differentially expressed genes, the statistical principles in the data analysis of two-colour
microarrays using limma and databases for the management of cDNA sequences.

Chapter 2 describes the development and validation of the SSHscreen-SSHdb pipeline
using a cowpea drought expression SSH cDNA library.

Chapters 8 and 4 aim to demonstrate specific features of the SSHscreen-SSHdb pipeline
using two different case studies. Chapter 3 focuses mainly on the flexibility and the use of
different SSHscreen argument options using the pearl millet case study and Chapter 4 on
the biological annotation of individual genes identified by the pipeline with SSHdb and other
bioinformatics tools, using the Arabidopsis case study.

Chapter 5 provides a general concluding discussion and is followed by a summary.

The Bibliography of the complete dissertation is at the end of the document. Although
Chapter 2 has been submitted to the journal Plant Methods, the references are included in
the Bibliography at the end to ensure consistency with the rest of the dissertation layout.

The Appendixz contains the SSHscreen R documentation.

The primary aim of this MSc study was the development of the two software tools, SSH-
screen and SSHdb, which forms part of a pipeline for gene discovery using SSH. SSHscreen,
used for quantitative screening of clones in a SSH library, was improved, and SSHdb was
developed as a web-based tool to manage the cDNA sequences.

In this dissertation, it was hypothesized that using the SSHscreen-SSHdb pipeline, differ-
ential gene expression can be quantified and defense-related genes identified, following stress
response (i.e. drought or pathogen challenge) in Pearl Millet, Cowpea, Arabidopsis ecotype

Kil-0, in a quick, easy and efficient way.
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Chapter 1

Introduction /Background

Functional genomics attempts to make use of the vast wealth of data produced by genome
projects, for example genome sequencing projects, to describe gene functions and interac-
tions. Transcriptomics is the branch of functional genomics that focuses on the subset of the
genome that is ’expressed’, since unlike the genome, the transcriptome can vary with external
environmental conditions. Hence, the regulatory mechanisms and transcriptional networks
underlying particular biological processes can be studied using either high-throughput tran-
scriptome profiling techniques, such as Serial Analysis of Gene Expression (SAGE), DNA
microarrays or RNA-Seq, or other molecular techniques which identifies differentially ex-
pressed genes between different populations, such as cDNA amplified fragment length poly-
morphism (¢cDNA-AFLP) or suppression subtractive hybridization (SSH). Techniques like

these are often used in gene discovery projects, when studying non-model organisms.

1.1. Identification of differentially expressed genes

1.1.1. Using cDNA sequences in transcriptome profiling

The first step in a gene discovery project is usually to construct a gene library in the
laboratory. A genomic library represents all the DNA sequences found in the genome of a
particular organism (Alberts et al., 1997), whereas a cDNA library refers to a complete, or
near complete, set of all the mRNAs present in a particular tissue or cell line of interest.
Soltis et al., 2002, Dowd et al., 2004 and Collett et al., 2004 constructed cDNA libraries in
order to study gene expression changes in non-model plants.

ESTs can be used as a tool for gene discovery and expression analysis, allowing the rapid
characterization of thousands of cDNAs at a minimal cost. It is created by single pass
sequencing of the 5" and/or 3’ ends of randomly isolated gene transcripts after converted
into cDNA. A fraction of the resulting sequence data is normally erroneous and the length of

a typical EST is approximately 200-900 nucleotides, representing only a portion of a coding
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sequence. Despite these limitations, EST databases can be an effective and reliable source
of gene expression data (Adams et al., 1991; Alba et al., 2004). Luo et al., 2005 used an
Expressed sequence tag (EST) library to identify resistance genes in peanut in response to
Aspergillus parasiticus infection under drought stress.

To study the molecular regulation in particular biological processes in more depth, it is
necessary to identify and clone the relevant subsets of differentially expressed genes of interest
so that it can be studied in detail. A variety of molecular techniques are available to isolate
and characterize cDNA fragments that are differentially expressed under specific conditions
(Diatchenko et al., 1996; Bachem et al., 1998). Three main categories of such techniques
include RNA-fingerprinting techniques, sequencing-based approaches and PCR-based cDNA

subtractive hybridization methods.

1.1.2. Molecular techniques to identify differentially expressed genes

Differential display reverse transcriptase PCR (DD-RT-PCR) uses oligonucleotide primer
pairs to define mRNA sub-populations for comparison. The first primer is always anchored to
the 3’ poly-A tail of an mRNA molecule whereas the other primer is short and non-specific
in sequence, so that it anneals at different positions in relation to the first primer. The
resulting mRNA sub-populations are reverse transcribed, amplified and visualized on poly-
crylamide gels. Side-by-side comparison of the band patterns of related samples, lead to the
identification of differentially expressed cDNA fragments which can be isolated from the gel
for sequencing (Liang and Pardee, 1992).

RNA-fingerprinting by arbitrarily primed PCR (RAP-PCR) also displays the products of
cDNA synthesis after amplification by PCR on a gel as a fingerprint. An arbitrarily chosen
primer initiates first strand cDNA synthesis by reverse transcriptase at sites in the RNA
that best match the primer, whereas an extension of the same arbitrarily primer initiates
second strand cDNA synthesis using Taq polymerase on the first strand cDNA product at
sites where matching is less stringent. When comparing the band patterns of separate RNA
populations on the gel, differences in the pattern reflect abundance differences in individual
RNAs (Welsh et al., 1992; Ralph et al., 1993).

DD-RT-PCR and RAP-PCR are collectively referred to as RNA-fingerprinting. This is
a relatively fast way to identify differentially expressed genes, however limitations include
problems with reproducibility and the generation of a high percentage of false positives. It
is also limited by its ability to capture low abundance clones and gives inaccurate results
when only a few genes are expected to vary (Diatchenko et al., 1996; Zegzouti et al., 1997).

cDNA amplified fragment length polymorphism (cDNA-AFLP) is another PCR based ge-

netic fingerprinting technique and it largely overcomes these limitations, except for the ability
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of resulting cDNA libraries to capture low-abundance transcripts. Following cDNA synthesis,
two restriction enzymes are used to digest the cDNA, whereafter adaptors are ligated to the
ends of the double stranded restriction fragments. Two PCR primers with a complementary
sequence to the adaptor and restriction site fragments, and with higher annealing tem-
peratures than the annealing temperatures used in the above mentioned RNA-fingerprinting
techniques, are used to selectively amplify subsets of the cDNA populations. Electrophoretic
separation of amplicons on polyacrylamide gels can be performed for visualization and com-
parison of the band patterns (Bachem et al., 1998).

Serial analysis of gene expression (SAGE) combines differential display and ¢cDNA se-
quencing approaches. Short diagnostic sequence tags are extracted from mRNA molecules,
to be concatenated, cloned and sequenced. The output is a list of short sequence tags,
together with the number of times it is observed. By comparing these tags to sequence
databases, it is usually possible to determine with a reasonable level of confidence the orig-
inal mRNA that the tag was extracted from. Although SAGE has the advantage that it
allows a quantitative analysis, it is labour-intensive and requires a large-scale foundation of
sequence information. SAGE also suffers from its limited ability to capture low abundance
transcripts (Velculescu et al., 1995; Alba et al., 2004).

cDNA representational difference analysis (cDNA-RDA) is a PCR-based technique where
the difference between cDNA sequences from two samples are analyzed using subtractive
DNA hybridization. The two samples involved are the tester and the driver, usually rep-
resenting the treated and the control samples respectively. In ¢cDNA-RDA the first step
is to amplify the mRNA representations to ensure that there are enough tester and driver
material to start with. An adapter is added to the tester population, and the two populations
(tester and driver) are mixed together. After denaturation and hybridization, the result will
include tester cDNA bound to driver cDNA, tester cDNA bound to itself and driver cDNA
bound to itself. The ends of the fragments are filled so that the tester cDNA bound to itself
have an adapter at each end on each strand. After running a PCR reaction with primers
that can recognize a sequence on the adapter, the tester cDNA bound to itself will be
exponentially enriched, whereas the tester cDNA bound to driver cDNA will only be linearly
enriched. The aim is to enrich for differentially expressed transcripts in the treated sample,
represented by tester cDNA bound to itself. Thus a few rounds of subtractive hybridization
and PCR amplification are necessary to fulfill this aim. ¢cDNA-RDA allow the cloning of
rare differentially expressed transcripts to a sufficiently higher extent when compared to the
methods described above (O’Neill and Sinclair, 1997).

SSH is a newer and highly effective PCR-based cDNA subtractive hybridization method.

In a single procedure, SSH combines normalization and subtraction. Normalization equalizes
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the abundance of cDNAs within the tester population, and subtraction excludes the common
sequences between the tester and the driver populations. Two libraries can be constructed by
SSH, a forward library which enriches for target genes up-regulated in response to treatment
and a reverse library which enriches for target genes down-regulated in response to the same
treatment. The reverse subtractive library is one where the tester would be the untreated
sample and the driver the treated sample (Figure 1.1). Two issues when constructing a
cDNA library with SSH, is firstly the necessity to determine if the experimental aim requires
a wide or narrow subtraction and secondly it is important to make sure that there is sufficient
material to make both forward and reverse cDNA subtraction libraries (Diatchenko et al.,
1996).

(Forward library: ) < Reverse library: >

Driver Tester Driver Tester
*Untreated *Treated *Treated *Untreated
*uD Ut UD uT
‘ SSH ’ ‘ SSH ‘
SSH library SSH library
*Enrich for genes up-regulated after treatment || +Enrich for genes down-regulated after treatment
'STF 'STR

Figure 1.1: Forward and reverse SSH libraries. The reverse library differs from the forward library
in that the starting material is switched. In the forward library, the driver is the untreated sample
and the tester is the treated sample, whereas in the reverse library, the driver is the treated sample
and the tester is the untreated sample. The resulting forward (STF; forward library subtracted
tester) and reverse (STg; reverse library subtracted tester) SSH libraries enrich for target genes up-
and down-regulated after treatment respectively.

1.1.3. The SSH technique

Figure 1.2 on the next page outlines the SSH method. Firstly the tester and driver
populations, also called unsubtracted tester (UT) and unsubtracted driver (UD), are digested
with a four-base cutting restriction enzyme Rsal, yielding blunt ends. The tester population
is divided into two sub-populations, which are then ligated with two different adaptors. An
excess of driver cDNA fragments is added to both the tester samples whereafter the respective
samples are heat-denatured and allowed to hybridize. After this first hybridization, the

resulting molecules are numbered (a), (b), (¢) and (d).
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Tester cDNA with adaptor 1 Driver cDNA (in excess) Tester cDNA with adaptor 2
— — L e—

~N ~ First hybridization
a BRN——
b BN——
—N
c BRN——
d
- ~ ‘/Second hybridization: mix samples, add
fresh denatured driver, and anneal
ab,cd+ e E1 N |
¢ Fill in the ends and PCR amplification
a + BN—— No amplification
b Hl—1H ., EiS———#H No amplification R
#l [FH BR— |
c ﬂl + BN Linear amplification
N———
d No amplification
e Bl Exponential amplification

—

Figure 1.2: A schematic outline of the SSH metod (Diatchenko et al., 1996). Solid lines represent
the Rsal digested tester or driver cDNA. Dark shaded boxes represent the outer part of adaptor 1
and 2 longer strand and corresponding PCR primer sequences. Brighter boxes represent the inner
part of the adaptors and corresponding nested PCR primer sequences.
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The aim of the first hybridization is to generate single stranded tester molecules (a).
These molecules (a) are normalized and subtracted. Normalized, in that concentrations of
high and low abundance cDNA become roughly equal. This happens due to the fact that
reannealing, which is the generation of molecules (b) is faster for more abundant molecules.
It is subtracted because molecules (c¢), which results from fragments present in the tester and
driver populations, are in effect canceled out. The two samples resulting from the first hy-
bridization as well as fresh denatured driver are mixed together and allowed to anneal, where
only the normalized and subtracted single stranded tester cDNAs are able to re-associate.

The second hybridization result in molecules (a), (b), (¢), (d) and a new combination (e).
The aim of the second hybridization is to enrich for tester hybrids with different adaptor
sequences (e). Adding a second portion of denatured driver further enrich hybrids (e) which
are the differentially expressed genes. After filling in the ends of the molecules by adding
two primers corresponding to the outer part of the two different adaptors, the resulting
sample is amplified by PCR. Exponential amplification can only occur with tester hybrids
having different adapter sequences (e). Thus the aim of the PCR amplification is to produce
an ending sample called the subtracted tester (ST), which is ¢cDNA enriched and expo-
nentially amplified for differentially expressed transcripts. Apart from the advantage that
SSH includes a normalization step that enables the detection of low abundance differentially
expressed transcripts, it also yields cDNA fragments that can be used to generate a cDNA
library that can be used in subsequent cDNA microarray expression profiling (Diatchenko
et al., 1996; Yang et al., 1999).

1.1.4. Screening SSH cDNA libraries

SSH ¢DNA libraries do not always yield differentially expressed genes due to the nature
of the SSH technique and therefore it is standard approach to screen such libraries in or-
der to identify clones that are most likely to be differentially expressed. Therefore, as a
test for quality control, patterns of gene expression can be compared with methods such
as cDNA-AFLP or inverse northern blot analysis (Birch et al., 1999; Mahalingam et al.,
2003). Apart from the fact that normalization of radioactivity membrane blots is difficult,
other disadvantages are that both these methods are tedious and do not allow the level of
enrichment of a transcript to be quantified. ¢cDNA microarrays on the other hand, provide
a rapid and high throughput method for the quantitative screening of an SSH ¢cDNA library
(Yang et al., 1999; van den Berg et al., 2004).
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Figure 1.3: Diagram of a two-colour microarray experiment. cDNA prepared from the two samples
to be compared (for example cells from a drought treated cowpea plant and cells from an untreated
cowpea plant) are labeled using different fluorescent dyes, mixed in equal proportions and hybridized
to the arrayed probes. After competitive hybridization, the slides are imaged using a specialized
scanner to measure the amount of hybridized target at each probe. These measurements are reported
as intensities by image analysis software. Before the differentially expressed genes can be identified,
the data is usually adjusted using background subtraction and normalization methods, since various
sources of variation need to be accounted for.

1.1.5. cDNA microarrays

Microarray technology allows the monitoring of expression levels for thousands of genes
simultaneously. Several competing microarray gene expression platforms have emerged, of
which one-colour platforms such as Affymetrix GeneChips and two-colour platforms such as
spotted DNA microarrays have gained increasing use and acceptance. Both these platforms
have matured into complex technologies as biologists have teamed with statisticians to ad-
dress the problems associated with the manipulation of large data sets (Hardiman, 2004;

Park et al., 2003). This dissertation focuses on two-colour microarray experiments.
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Two-colour spotted microarrays can be used to measure the difference in quantity of spe-
cific nucleic acid transcripts of interest present in two samples, in effect comparing two con-
ditions. These arrays consist of thousands of different single-stranded nucleic acid molecules,
known as the probes and printed in a high-density array on a glass microscope slide using a
robotic arrayer. The probes are obtained from PCR-amplifications of cDNA clones.

Figure 1.3 on the preceding page is a diagram of a typical two-colour microarray ex-
periment. ¢cDNA prepared from the two samples to be compared, for example cells from
a drought treated cowpea plant versus cells from an untreated (water-treated) cowpea, are
labeled using different fluorescent dyes, then mixed in equal proportions and hybridized to
the arrayed probes. After competitive hybridization, the slides are imaged using a specialized
scanner to measure the amount of hybridized target at each probe. These measurements are
reported as intensities by image analysis software packages such as Genepix, Spot, ArrayVi-
sion, Imagene and TIGR__Spotfinder. The log ratio of the pixel intensities from the Cyanine
Dye 3 (Cy3; green) and Cyanine Dye 5 (Cyb; red) channels for each spot is intended to be
indicative of the relative abundance of the corresponding molecule in the two target samples
(Smyth, 2005).

Before these data can be used in research it is usually adjusted, since various sources
of variation need to be accounted for. This modification of the intensity data is commonly
referred to as pre-processing and includes processes such as background correction and nor-
malization. The objective of a microarray study is often the identification of differentially
expressed genes in order to identify candidate genes that might play a role in particular

biological processes related to the biological question under investigation.

1.1.6. Software for microarray data analysis

R (R Development Core Team, 2009) is a powerful statistical programming environment,
made freely available through the internet under the General Public License (GPL). It pro-
vides an environment in which one can perform statistical analyses and produce graphics
(Dalgaard, 2002). Rooted in R, BioConductor (Gentleman et al., 2004) is a widely used open
source and open development software project, for the analysis and comprehension of data
arising from high-throughput experimentation in genomics and molecular biology. Limma
(Linear Models for Microarray Data) is available as part of the BioConductor project and
it can be installed from the R Project CRAN (Comprehensive R Archive Network) reposi-
tory (Smyth, 2005). Limma provides the tools for assessing designed experiments, thereby
disclosing differential expression by fitting a linear model to the expression data for each
gene. Using these linear models, it is possible to analyze complex experiments involving

comparisons between many RNA targets simultaneously. Shrinkage methods such as empir-
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ical Bayes are used to borrow information across genes, making the analyses stable even for
experiments with a small number of arrays (Smyth, 2004). Limma can be used in conjunction
with other R packages, for example affy (Methods for Affymetrix Oligonucleotide Arrays)
or affyPLM (Fitting Probe Level Models) for Affymetrix data, and marray for two-colour
microarray data. Marray is a powerful package for quality assessment and normalization
before applying limma functions to the data for ranking the genes in terms of differential ex-
pression. However, limma itself also provides input and normalization functions that support
features especially useful for the linear modeling approach and is based on a more general
separation between within-array and between-array normalization than marray. Limma as
a command-driven package is very powerful, although the R packages limmaGUI (Linear
Models for Microarray Data Graphical User Interface) and affylmGUI (Affymetrix Linear
Modeling Graphical User Interface) are also available, which provide graphical user interfaces
to the most commonly used functions in limma (Smyth et al., 2008). Compared to other
alternatives, the flexibility of limma is exceptional.

The TM4 suite (Saeed et al., 2003) is an alternative to using GenePix (or any other image
analysis software) for image analysis together with R and limma for microarray data analysis,
and additional web-based tools for exploration (for example gene ontologies). It consists of
four main applications: Microarray Data Manager (MADAM), TIGR _ Spotfinder for seg-
mentation /quantitation, Microarray Data Analysis System (MIDAS) for data analysis and
Multiexperiment Viewer (MeV) for visualization and exploration. It also includes a Minimal
Information About a Microarray Experiment (MIAME)-compliant MySQL database for the
organization of experiments. TM4 is free, open-source software released under the Open
Source Initiative (OSI) certified Artistic license.

GEPAS (Herrero et al., 2003) is a collection of web-based tools including tools for scanning
slides, quantitation, normalization, quality checking, plotting, cluster analysis, classification
and comparison of gene lists. The drawback, since it is a web-based tool, is that it can be

slow in handling large data sets.

1.1.7. Validation of selected transcripts

Quantitative PCR (qPCR) is a powerful tool for the accurate quantification of mRNA
expression levels in cells of different populations (Toegel et al., 2007). Microarray results of

selected transcripts can be verified by qPCR on ¢cDNA templates, or by quantitative Reverse
Transcriptase-RCR (qRT-PCR) on RNA templates.
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1.2. Statistical principles in the data analysis of two-colour

microarrays using limma

1.2.1. Experimental design

Experimental design before conducting a microarray experiment is crucial. It includes
the choice and collection of samples; the choice of probes and array platform; the choice of
controls, RNA extraction method, amplification method, labeling method, and hybridization
procedures; the allocation of replicates; and the scheduling of the experiments (Smyth, 2005).
In this regard, (Wit and McClure, 2004), emphasize the importance of replication, which
implies the repetition of a certain experiment in order to decrease the uncertainty introduced
in the experiment by systematic and random variations.

The hypothesis tested for each gene g when comparing two conditions using two-colour

c¢DNA microarrays, is

e Hj: gene g is not differentially expressed between the two conditions

e H, : gene g is differentially expressed between the two conditions

Ideally, each condition should be represented by multiple independent biological samples
(biological replicates) in order to conduct statistical tests. Biological replicates represent
RNA samples obtained from independent biological sources, and technical replicates rep-
resent repeated sampling of the same biological material. If only technical replicates are
available, statistical testing is still possible but the scope of any conclusions drawn may be
limited. Two typical constraining factors in deciding on the number of microarrays to use in
an experiment, are the costs of the physical microarray and the amount of RNA available
for performing the hybridization. With two-colour arrays, samples can be compared directly
on the same microarray or indirectly by hybridizing each sample with a common reference
sample.

The central idea behind limma, is to fit a linear model to the expression data for each
gene. The expression data can be log-ratios from two-colour microarrays or log-intensities
from one-channel technologies such as Affymetrix. Empirical Bayesian methods are used
to borrow information across genes, providing stable results even with a small number of
replicates per gene.

Analyzing two-colour spotted microarrays, a range of limma functions covering the data
analysis process are available. These limma functions can be divided into 5 main categories
which are in turn discussed below: functions for reading in the data; functions for exploratory

data analysis; pre-processing functions including background subtraction and normalization;
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the linear model and differential expression functions; and functions handling multiple testing

and output.

1.2.2. Limma functions for reading two-colour data

Data importation methods should be flexible, since data comes in different formats where
data is scattered across a number of fields in various files. To partly deal with this problem,
limma requires the preparation of a targets file and a spot types file for each analysis. These
files can be created in Microsoft (MS) Excel, but should be saved as tab delimited text files
in the same directory, together with the image analysis output files (for example .gpr files

from GenePix) and sometimes also a GAL file.

1.2.2.1. The targets file

The targets file (for example Figure 1.4a) describes, for each array, which RNA target
was labeled with the Cy3 and Cy5 dyes respectively before hybridization. Each row corre-
sponds to an individual array. The targets file should include columns labeled Cy3 and Cy3,
specifying the labeled RNA sample, as well as a column named FileName giving the names
of the files containing the image analysis output (Smyth et al., 2008). For ImaGene (image
analysis software) the FileName column is split into FileNameCy3 and FileNameCy5, since
ImaGene stores red and green intensities in separate files. Other columns are optional. The

limma function readTargets() reads the targets file (Figure 1.5a shows the R code).

1.2.2.2. Intensity data files

The RGList (Red-Green list) is a class in R defined by limma, used to store raw intensities
as they are read in from the image analysis output files. The read.maimages() function
extracts the foreground and background intensities from a series of image analysis output
files, and assembles them into the components of the RGList (Figure 1.5b shows the R code).
Usually the mean feature pixel intensities and the median feature background intensities are
used, depending on the image analysis program specified by the user. The RGList object
is designed to obey many analogies with matrices. In the RGList, rows correspond to spots
and columns to arrays. It has components R (red channel foreground intensities), Rb (red
channel background intensities), G (green channel foreground intensities), Gb (green channel
background intensities), weights (spot quality weights), genes (gene names, gene IDs and
spacial positions on the array), targets (information from the targets file), source (the image
analysis program) and printer (information about the process used to print spots on a
microarray for example the number of grid rows and columns, number of spots per grid,

number of duplicate spots and the spacing between duplicate spots) (Smyth, 2005).
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Spot quality weights

Limma calculates a weight (a value between 0 and 1) for each spot, calculated as function
of the flags (from the image analysis program) associated with that spot. It indicates the
reliability of the acquired intensities for each spot (Smyth et al., 2008). This forms the
weights component in the RGList.

1.2.2.3. The GAL file

In some cases the genes component in the RGList will not be set (after reading in the
intensity data), if there is no probe information in the image analysis output files. In this
case, the probe information needs to be read in separately through a GAL file. GAL files (for
example Figure 1.4c) are produced by image analysis software, for example GenePiz or Spot,
when the array images are scanned with a GenePix 4000B scanner (Axon Instruments, USA),
such as the one installed at the ACGT microarray facility at UP. The GAL file contains data
columns labeled Block, Column, Row, ID and Name. Other columns are optional. This
information can also be referred to as the “gene list”. The limma function read GAL() reads
the GAL file (Figure 1.5¢ shows the R code).

Printer layout

The “printer layout” refers to the arrangement of spots and blocks of spots on the arrays
(for example Figure 1.6). Each block corresponds to a print tip on the print-head of the
printer /arrayer, and the number of spots in each block refers to the number of times the
print-head was lowered onto the array. The limma function getLayout() determines the
printer layout from the GAL file, and the printer component of the RGList is set accordingly
(Figure 1.5d shows the R code).

1.2.2.4. The spot types file

The spot types file (for example Figure 1.4b) allows the user to identify different types
of spots from the gene list, with rows corresponding to types of spots and the following
columns: SpotType gives the name of the spot type, ID is a regular expression matching the
ID column in the gene list, Name is a regular expression matching the Name column in the
gene list, and colour is the R name for the colour to be associated with the spot type. This
information is used to set the “control status” of each spot on the arrays so that plots may
highlight different types of spots in an appropriate way. The limma function readSpot Types()
reads the spot types file (Figure 1.5e shows the R code).
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The control status

The limma function controlStatus() specifies the type/status of each spot on the array by
searching for patterns in the gene list, according to the description in the spot types file (Fig-
ure 1.5f shows the R code). This function, adds an extra column to the genes component
of the RGList, called Status. In this way, different types of controls spots and the genes of

interest can be distinguished.

a < A B C D
1 SlideNumber FileName Cy3 Cy5s
2 40 40_up_NC_gpr.gpr ST uT
3 42 42_up_NC_gpr.gpr UT ST
4 58 58_up_NC_gpr.gpr UD uT
5 114 114_up_NC_gpr.gpr UT ub

b < A B ) C [ D
1 SpotType 1D Name Color
2 cDNA *-x cDNA blue
3 control_Gus control_Gus Gus yellow
4 control_Bar control_Bar Bar red
5 control_Luc control_Luc Luc green
6 control_ITS control_ITS ITS brown
7 blank BLANK blank NA

C < A B C [ D E
1 Block Column Row Name 1D
2 1 1 1 cDNA M56_01-A1
3 1 2 1 cDNA M56_01-A2
4 1 3 1 cDNA M56_01-B1
5 1 4 1 cDNA M56_01-B2
6 1 5 1 cDNA M56_01-C1
7 1 6 1 cDNA M56_01-C2
8 1 7 1 cDNA M56_01-D1
9 1 8 1 cDNA M56_01-D2
10 1 9 1 cDNA M56_01-E1
11 1 10 1 cDNA M56_01-E2

Figure 1.4: Example of a targets file, spot types file and part of a GAL file. The targets file (a) and
the spot types file (b) can be prepared and viewed in MS Excel. These files need to be saved as
tab-delimited text files before submitting to limma. The GAL file (¢ shows only part of a GAL file),
also in tab-delimited text format, is produced by image analysis software, for example GenePiz or
Spot when the image is scanned with a GenePix 4000B scanner (Axon Instruments, USA).
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> setwd("/Users/nanette/data/pearl_millet")
a > targets <- readTargets()
[ > RG <- read.maimages(targets$FileName, source="genepix", verbose = TRUE,
path=path, wt.fun=wtflags(@))
b Read /Users/nanette/Documents/Bioinformatics/SSHscreen/Datasets/pearl_millet/
summary_15_01_08/Forward/1imma/ER3/58_up_NC_gpr.gpr
Read /Users/nanette/Documents/Bioinformatics/SSHscreen/Datasets/pearl_millet/
| summary_15_01_08/Forward/1imma/ER3/114_up_NC_gpr.gpr
c > RG$genes <- readGAL()
[> RG$printer <- getlLayout(RG$genes)
> RG$printer
$ngrid.r
[1] 6

$ngrid.c
d-om-2

$nspot.r
[1] e

$nspot.c

L[1] 32

e > spottypes <- readSpotTypes()

[ > RG$genes$Status <- controlStatus(spottypes, RG)
Matching patterns for: ID
Found 1920 cDNA
Found 336 blank

f - Found 12 control_Gus

Found 12 control_Bar

Found 12 control_Luc

Found 12 control_ITS

| Setting attributes: values Color

Figure 1.5: R code showing the limma functions for reading the required files. Before any analy-
sis, the working directory or environment needs to be appropriately set using the limma function
setwd(). The following limma functions are used to read in the files for data analysis of two-colour
microarrays: (a) readTargets() reads the targets file, (b) read.maimages() extracts the foreground
and background intensities from a series of image analysis output files, (¢) read GAL() reads the
GAL file, (d) getLayout() determines the printer layout from the GAL file, (e) readSpotTypes()
reads the spot types file and (f) controlStatus() specifies the type/status of each spot on the array
according to the description in the spot types file.
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32 spot columns

(—)\—\

6 spot rows {

— 6 grid rows

T
2 grid columns

Figure 1.6: An example of the layout of a microarray slide. The printer layout for this microarray
slide can be determined by the GAL file using the limma function getLayout() (Figure 1.5d shows
the R code). The result is stored in the printer component in the RGList. There are 6 grid rows
(RGSprinter$ngrid.r) and 2 grid columns (RG$printer$ngrid.c). Within each block, there are 6
spot rows (RG$printerdnspot.r) and 32 spot columns (RG3printerdnspot.c).

1.2.3. Limma functions for data exploration

It is advisable to display the raw data in various ways as a quality check and also to check
for unexpected effects (Smyth et al., 2008). Image analysis produces four sets of probe-level
data per microarray, the red and green foreground intensity measurements and also the red
and green local background noise levels. The latter is measured from areas in the glass slide
not containing probe and Figure 1.7 on the next page shows the region on the slide that
GenePix uses for background calculation. The limma function imageplot() allows the user
to get an idea of the variation of the red and green background values over the arrays, as
illustrated in Figure 1.8 on page 17. Image plots can be used to explore any spatial effects
across the microarray slides.

The red and green intensities are used to measure the relative abundance of each probe

sequence in the two target samples by calculating the fold change, in the form of an expression
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ratio of these intensities, i.e.

Cys intensit R
Fold change for gene g = (Cys m ensz. Yo =_9, (1.1)
(Cys intensity), G,

The logarithms of the expression ratios rather than the ratios themselves are mostly used
in calculations. This is because effects on intensity of microarray signals tend to be mul-
tiplicative and the log-transformation converts these multiplicative effects into additive ef-
fects, which is easier to model (Cui and Churchill, 2003). Another advantage of using the
log-transformation is that up- and down-regulated genes are treated symmetrically. There-
fore, when comparing two samples using two-colour cDNA microarrays and the two samples
are respectively labeled with Cy3 and Cy5 dyes, the log-2 fluorescence intensity ratio is

calculated for each spot on the microarray. This is called the M-value for gene g, i.e.

(Cybintensity), R,

| = logg(Gg). (1.2)

M, =1
s = log,| (Cy3intensity),

MA-plots can give the user an idea of the behavior of the microarray data for each slide
before normalization (raw data) and after normalization. An MA-plot can be produced with

the limma function MAplot(). It is a scatter plot of log intensity ratio M = logs(£) versus

R+G
2

brightness), where R and G represent the red and green fluorescence intensities respectively

the average log intensity A = logs(~:=) for each spot (A is in units of 2-fold increase in

for a specific spot (Smyth et al., 2003). Figure 1.12 on page 24 is an example of MA-plots

after within-array normalization for each slide.

B background pixels
2-pixel exclusion region

feature pixels

Figure 1.7: GenePix background calculation. The black region represents the pixels used for com-
puting the background, the dark gray region represents the pixels used for the feature intensities,
and the light gray region represents excluded pixels.
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IVERS

Slide 58 Slide 58

Slide 114 Slide 114

Figure 1.8: Image plots showing the variation of the red and green background values for two
microarray slides, numbered 58 and 114.

1.2.4. Limma functions for pre-processing two-colour microarray data

1.2.4.1. Background correction

It is possible that some target attach to the array even when there is no probe avail-
able. This can be due to non-specific hybridization and the noise in the optical detection
system. Therefore the existence of persistent background signal is a common problem. This
background signal is measured irrespective of any true signal.

Most of the solutions to counteract this effect assume that the background effect is
additive, that is, that the observed signal S is a sum of the true signal 7" and the background
signal B, i.e.

S=T+B. (1.3)

Because the background (B in figure 1.3) in the spot cannot be measured, the only
measurement available is the background value near the spot. Figure 1.7 on the preceding
page illustrates which regions the image analysis program GenePix Pro uses to calculate the
background signal B and foreground signal S.

The simplest background correction method simply subtracts this value B from the ob-
served foreground signal S to get an estimate of the true signal (Wit and McClure, 2004).

This method for background correction, is called subtract. However this may cause other
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problems such as negative corrected intensities and high variability of low intensity log-ratios.
After background correction, a new RGList object is created in which components R and G
are background corrected and components Rb and Gb are removed from the list.

The limma function to do the background adjustment, is backgroundCorrect(). The user
can specify the desired background correction method. These include subtract, movingmin,

minimum, half, edwards and normexp.

Subtract subtracts the estimated background value from the observed foreground value.

Movingman replaces the background estimates by the minimum background of a moving
3 x 3 grid of spots (the spot self and its eight neighbors), before subtracting the back-
ground intensities from the foreground intensities. Since the interpretation of a negative
gene expression value is not clear, the remaining methods are all designed to produce
positive corrected intensities.

Half subtracts the background from the foreground observed value and sets any intensity,
which is less than 0.5, equal to 0.5.

Minimum sets any intensity, which is zero or negative after background subtraction, to
half the minimum of the positive corrected intensities for that array.

Edwards uses a log-linear interpolation method to adjust lower intensities.

Normezp fits a convolution of normal and exponential distributions to the foreground
intensities, using the background intensities as a covariate. The model suggests that the
observed intensities (S in equation 1.3), result from a convolution of the true signal (7" in
equation 1.3) and a background noise component (B in equation 1.3). The true signal is
assumed to be exponentially distributed, i.e. "~ Exponential(a), and the background
noise is assumed to have a normal distribution, i.e. B ~ N(u,0?). The expected signal
given the observed foreground, i.e. E(T']S), becomes the corrected intensity. Estimates
of the mean, p, and variance, o2, of the normal distribution as well as the rate parameter,
«, of the exponential distribution are needed to calculate this expectation. This results
in a smooth monotonic transformation of the background subtracted intensities such that
all the corrected intensities are positive. Figure 1.9 on the next page shows a comparison

between the subtract and normezp background correction methods.

An offset (a constant value) can be added to the intensities before log-transforming, so
that the log-ratios are shrunk towards zero at the lower intensities. This may eliminate or
reverse the usual “fanning” of log-ratios at low intensities associated with local background
subtraction (Figure 1.9). In other words, it will stabilize the variability of the M-values as
a function of intensity. Smyth et al., 2008, encourages the normexp background correction

method with an offset, since the empirical Bayes methods implemented in the limma package
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for assessing differential expression will yield most benefit by reducing the dependence of
variability on intensity as far as possible. According to Ritchie et al., 2007, this method (the
normezp method with an offset) is found to give the lowest false discovery rate, compared

to all other background correction methods.

a Slide 58: After background correction b Slide 58: After background correction
Subtract Normexp with offset=50

|| « cONA_F “ 0, conaF
blank blank
» control_ITS . - Y « control_ITS
* control_Bar * control_Bar
control_Luc
control_Gus

control_Luc
control_Gus

)

A A

Figure 1.9: MA-plots after background correction. (a) shows that there is a high variability in the
low intensity M-values after using the subtract method. This is known as the “fanning” of log-ratios
at low intensities associated with local background subtraction. (b) shows that using the normezp
background correction method with an offset of 50, stabilizes the variability of the M-values as a
function of intensity.

1.2.4.2. Normalization

Normalization is intended to remove from the expression measures any systematic trends,
which arise from the microarray technology rather than from biological differences between
the probes or between the target RNA samples hybridized to the arrays. Sources of varia-
tion causing these trends may include different efficiencies of reverse transcription, labeling,
or hybridization reactions, physical problems with the arrays, reagent batch effects, and
laboratory conditions (Yang et al., 2001;Yang et al., 2002).

There are two stages of normalization. Normalization within arrays, where the M-values
for each array are normalized separately, and normalization between arrays, which normalize
log-ratios so that it can be compared across arrays. The limma functions normalize Withi-
nArrays() and normalizeBetweenArrays() are used to perform normalization.

The MAList (M-value A-value expression list) is a class in R defined by limma, containing
all components found in the RGList (see a description of the RGList on page 11), except
that the R and G values (the background corrected intensities) are replaced with M and A

values on the log-2 scale. M and A calculations from the R and G values are given on page
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16. The M and A values are adjusted after within-array normalization and once again after

between-array normalization.

1.2.4.3. Within-array normalization methods

The different within-array normalization methods available in limma are median, global
loess, print-tip loess, composite, control and robust spline. All these methods assume that
there is a relationship between dye bias and spot intensity and aim to minimize this correla-
tion. When fitting an overall trend line through the data points on a MA-plot, as estimated
by loess regression (the orange line in Figure 1.10), it is clear that there is a gradual trend
from green-bias at low intensities to red-bias at high intensities. A loess curve is a locally
weighted smooth curve plotted through a set of data points using polynomial regression
(Smyth et al., 2003). In [oess normalization, each M-value is adjusted by subtracting from it
the value of the estimated loess curve. Median normalization simply subtracts the weighted

median (the blue line in Figure 1.10) from the M-values for each array.
Global loess normalization

With global loess normalization, each M-value is normalized by subtracting from it, the
corresponding value of the global loess curve (loess curve fitted through all the data points),
ie.

N =M —loess(A)
where loess(A) is the global loess curve as a function of A.
Print-tip loess normalization

Print-tip loess normalization uses individual loess curves for each print-tip group and the
M-values are normalized by subtracting from it, the corresponding value of the print-tip

group loess curve, i.e.

N =M —loess;(A)

where loess;(A) is the loess curve as a function of A for the " print-tip group (Smyth and
Speed, 2003; Yang et al., 2001). Figure 1.11 on page 23 illustrates print-tip loess normaliza-
tion. The use of all genes per tip-group for normalization offers stability in terms of numbers

of spots and flexibility in terms of estimating tip-group specific trends.
Robust spline loess normalization

Robust spline normalization is an empirical Bayes compromise between print-tip loess and
global loess normalization, with 5-parameter regression splines used in place of the loess

curves.
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Global Loess
Titration Loess

& 8 A 12 14

Figure 1.10: MA-plot showing three different trend lines (Smyth and Speed, 2003). The horizontal
blue line shows the median of the M-values. The continuous orange curve shows the overall trend
line as estimated by loess regression. The yellow curve shows the loess 