Persistence of Human Pathogens in a Crop Grown from Sewage Sludge Treated Soil

by

Jacobeth Raesibe Bettina Chale-Matsau

Submitted in partial fulfillment of the requirement for the degree of PHILOSOPHIAE DOCTOR (Water Utilisation)

in the

Faculty of Engineering, the Built Environment and Information Technology University of Pretoria Pretoria

June 2005

I, Jacobeth Raesibe Bettina Chale-Matsau hereby declare that the work on which this thesis is based is original (except where acknowledgements indicate otherwise) and that neither the whole work or any part of it has been, is being, or is to be submitted for another degree at this or any other university

Signed:

Acknowledgements

I would like to express my sincere appreciation and gratitude to the following persons and organizations, without whose involvement this work would not have been possible.

- 1. Dr Heidi Snyman, my promotor, who did not only advise and support me, but shaped my thinking immensely
- 2. Prof Schoeman for assistance with statistical analysis
- Boet Weyers for technical assistance and support especially during the terminal stages of this project
- 4. Lebo Hanyane, for assistance and support throughout the study
- Julian Japhta for assistance with molecular techniques. Juanita van der Heerver, Martella du Preez, Dr Ehlers and Elize Venter who made time to go through my work especially the risk assessment section
- 6. Dr John Dewar for proof-reading my thesis
- 7. WRC and ERWAT for funding the project
- 8. My employer, Medical University of Southern Africa for the time
- 9. My son, Moeletsi and my daughter, Lebohang whose time I've sacrificed, yet uncomplainingly accepted. My husband, Tshepo, for love and support.

And the Lord Almighty for life itself.

Summary

Persistence of Human Pathogens in a Crop Grown from Sewage Sludge Treated Soil

Jacobeth Raesibe Bettina Chale-Matsau

Promoter:	Dr HG Snyman
Department:	Department of Chemical Engineering (Water Utilisation)
University:	University of Pretoria
Degree:	Philosophiae Doctor

Key words:

sewage sludge, pathogen, *Ascaris*, *E.coli*, *Salmonella*, risk assessment, high metal sludge, low metal sludge, management practice, poverty.

Summary:

The advantages associated with the use of sewage sludge in agricultural land have motivated many countries to use sewage sludge for soil amendment purposes. South Africa's deteriorated agricultural soil could benefit from this nutritional and cost effective product. However, the major shortcoming of sewage sludge is the presence of various pathogenic microorganisms. This raised concern amongst researchers with regard to public safety. The focus of this study, was to investigate the prevalence of pathogens in a crop grown in soil enriched with sewage sludge and to determine risk of infection thereof and to suggest appropriate management practice for sewage sludge use.

Potato (*Solanum tuberrosum*), which is a high risk crop was used, to simulate a worst case scenario. Both the low metal sludge (LMS) and high metal sludge (HMS) were found to have associated diverse numbers of bacteria. Using culture-based technique, *E.coli* and *Salmonella* spp were found to persist in soil

University of Pretoria etd – Chale-Matsau, J R B (2005)

throughout the experimental period. One treatment option (LMS 16 tons/ha) showed a prevalence of these microorganisms in potatoes.

Subsequent molecular studies based on amplification of 16S rRNA gene, yielded limited contamination of potatoes with enteric pathogens, however diverse types of opportunistic, pathogens (mostly environmental pathogens) were isolated from the potatoes. Enteric pathogens were isolated from the sewage treated soil in which these potatoes were grown.

This study has indicated that growing even high risk crops, may lead to limited infestation of produce with primary pathogens. However, proper treatment of sewage sludge prior to use in agriculture is recommended to ensure public safety.

The management requirements indicated in this study serve as recommended actions that can be implemented to ensure human safety with regard to sludge application to agricultural land.

CONTENTS

Summary	i
List of Abbreviations	iii
Chapter 1: Introduction	
1.1 Background	1
1.2 Motivation for Present Study	2
1.3 Aim and Objectives	3
1.4 Approach	4
Chapter 2: Literature Review	
2.1 Introduction	5
2.2 Metals and Toxic Organic Pollutants in Sludge	6
2.3 Socio-economic Issues Regarding Sludge Use	7
2.4 Microorganisms Encountered in Sewage Sludge	8
2.4.1 Bacteria	9
2.4.2 Persistence of Bacteria in Soil	15
2.4.3 Viruses	16
2.4.4 Parasites	18
2.5 Disinfecting Treatment Processes	21
2.6 Treatment and Sewage Sludge Classification in South Africa	23
2.7 Resistance of Microorganisms to Disinfection	28
2.8 Protecting the Public and Environment through Regulatory	
Management	28
2.9 Public Perception	30
2.10 Assessing Human Risk Exposure	31
2.10.1 Health Risk Assessment	32

University of Pretoria etd – Chale-Matsau, J R B (2005)

2.11 Factors Affecting Management of Sewage Sludge	
Use in South Africa	35
2.12 Conclusion	35
2.13 References	37

Chapter 3: The Microbiological Quality of Sewage Sludge in South Africa

49
50
50
51
51
54
54
57
61
63

Chapter 4: Survival of Microorganisms in Soil Amended with Sewage Sludge, and their Subsequent Persistence in Crops

4.1 Introduction	68
4.2 Materials and Methods	69
4.2.1 Green House Experiments	69
4.2.2 Microbiological Determinations	70
4.3 Results and Discussion	72
4.3.1 Microorganisms in Sludge	72
4.3.2 Survival of Microorganisms in Contaminated Soil	73
4.3.3 Microorganisms in Potato	80
4.4 Conclusion	82
4.5 References	

Chapter 5: Identification of Pathogenic Bacteria from Solanum tuberosum Grown in Sewage Sludge Amended Soil

5.1 Introduction	
5.2 Materials and Methods	
5.2.1 Potato Samples	91
5.2.2 Extraction of Genomic DNA	91
5.2.3 PCR Amplification of the 16S rRNA Gene	92
5.2.4 Agarose Gel Eletrophoresis	93
5.2.5 DNA Purification	93
5.2.6 Cloning	94
5.2.7 Plasmid Extraction	94
5.2.8 Plasmid Purification	94
5.2.9 Restriction Enzyme	95
5.2.10 Sequencing	95
5.2.11 DNA Precipitation	95
5.2.12 Sequence Determination	96
5.3 Results and Discussion	96
5.3.1 DNA Extraction and PCR Amplification	
of the 16S Gene	96
5.3.2 Homology Searches Using the BLAST	98
5.3.3 Bacteria Associated with Sewage Sludge Use	102
5.4 Conclusion	105
5.5 References	

Chapter 6: Microbial Risk Assessment of Using Sewage Sludge for Soil

Enrichment

6.1 Introduction	112
6.2 Health Considerations for Consumption of Contaminated	
Vegetables	114
6.3 Assumptions	115
6.4 Methodology	116

6.5 Results and Discussion	118
6.6 Conclusions and Recommendations	127
6.7 References	130

Chapter 7: Management Practices Regarding Sewage Sludge

Use in Agricultural Land

7.1 Introduction	135
7.2 International Trends Regarding Microbiological Sludge Quality	135
7.3 Factors that Influence Sludge Management Practice	
in South Africa	137
7.4 Exposure Pathways	139
7.5 Ranking of Exposure Pathways for South African Conditions	141
7.6 Risk Management	145
7.7 Conclusion and Recommendations	148
7.8 References	150

Chapter 8: Concluding Remarks

8.1 Introduction	152
8.2 Research Findings	152
8.3 Sewage Sludge Management Requirements	153
8.4 Future Trends	155
8.5 References	157

Chapter 9: Appendices 158

List of Abbreviations

AMP	:	ampicilin
mg	:	milligram
μg	:	microgram
μL	:	microlitre
ton	:	tonne
ha	:	hectare
ml	:	millilitre
IPTG	:	isopropyl β -D-galactopyranoside
dNTP	:	deoxyribonucleoside triphosphate
bp	:	base pairs
EtoH	:	Ethanol
HCI	:	Hydrochloric acid
NaCl	:	Sodium chloride
NaoAG	C	Sodium acetate
LB	:	Luria Bertani
SDS	:	Sodium dodecyl sulphate
DNA	:	Deoxyribonucleic acid
RNA	:	Ribonucleic acid
PCR	:	Polymerase Chain Reaction
X-gal	:	5-bromo-4-chloro-3-indolyl- β -D-galactoside