
University of Pretoria etd - Slaviero, M L (2005)

Secure and Distributed Multicast

Address Allocation on IPv6 Networks

M. L. Slaviero

University of Pretoria etd - Slaviero, M L (2005)

Secure and Distributed Multicast

Address Allocation on IPv6 Networks

by

M. L. Slaviero

Submitted in partial fulfillment of the requirements for the degree

Magister Scientia (Computer Science)

in the

Faculty of Engineering, Built Environment and Information

Technology

at the

University of Pretoria

October 2004

University of Pretoria etd - Slaviero, M L (2005)

Secure and Distributed Multicast

Address Allocation on IPv6 Networks

by

M. L. Slaviero

Abstract
Address allocation has been a limiting factor in the deployment of multicast

solutions, and, as other multicast technologies advance, a general solution to

this problem becomes more urgent.

This study examines the current state of address allocation and finds

impediments in many of the proposed solutions. A number of the weaknesses

can be traced back to the rapidly ageing Internet Protocol version 4, and

therefore it was decided that a new approach is required. A central part

of this work relies on the newer Internet Protocol version 6, specifically the

Unicast prefix based multicast address format.

The primary aim of this study was to develop an architecture for secure

distributed IPv6 multicast address allocation. The architecture should be

usable by client applications to retrieve addresses which are globally unique.

The product of this work was the Distributed Allocation Of Multicast

Addresses Protocol, or DAOMAP. It is a system which can be deployed

on nodes which wish to take part in multicast address allocation and an

implementation was developed.

Analysis and simulations determined that the devised model fitted the

stated requirements, and security testing determined that DAOMAP was

safe from a series of attacks.

Keywords: address allocation, algorithms, distributed systems, IPv6, multi-

cast, protocols, security

Supervisor: Prof. M.S. Olivier

Department of Computer Science

Degree: Magister Scientia

University of Pretoria etd - Slaviero, M L (2005)

Acknowledgements

The following people have been instrumental in the completion of this dis-

sertation, and without their help, encouragement and support my journey

would have been that much harder.

• Professor Martin Olivier, for his thorough and professional supervision.

• My parents, Luigi and Lucy, for the foundation they provided.

• Juliette, for her patience and kind words.

• The members of the ICSA research group, especially Vafa Izadinia, for

the feedback and conversation they supplied.

• The staff of the Department of Computer Science, for the vision they

display and advice they dispense.

• The financial assistance of the Department of Labour (DoL) towards

this research is hereby acknowledged. Opinions expressed and conclu-

sions arrived at, are those of the author and are not necessarily to be

attributed to the DoL.

University of Pretoria etd - Slaviero, M L (2005)

iii

Table of Contents

Chapters

1 Research Overview and Objectives 1

1.1 Introduction . 1

1.2 Problem Statement . 2

1.3 Research Methodology . 3

1.4 Overview . 3

2 Internet Protocol Version 6 5

2.1 Introduction . 5

2.2 A brief Internet Protocol History 5

2.3 Moving on from IPv4 . 8

2.3.1 CATNIP . 9

2.3.2 SIPP . 9

2.3.3 TUBA . 10

2.4 The Internet Protocol version 6 11

2.4.1 IPv6 Addressing . 11

2.4.2 Address Types . 14

2.4.3 Header format . 20

2.4.4 Global Unicast Routing 23

2.4.5 IPv4 to IPv6 changeover 24

2.5 Conclusion . 26

3 User Datagram Protocol 27

3.1 Introduction . 27

University of Pretoria etd - Slaviero, M L (2005)

Table of Contents iv

3.2 UDP . 28

3.2.1 Header . 28

3.2.2 Pseudo Header . 29

3.2.3 Multicasting over UDP 30

3.3 Conclusion . 31

4 Multicasting Basics 32

4.1 Introduction . 32

4.1.1 Router-dependent Multicast 34

4.1.2 Application-layer Multicast 34

4.1.3 Hybrids . 35

4.2 IP Multicasting . 35

4.2.1 Multicast Listener Discovery 36

4.2.2 Multicast packet handling 42

4.2.3 Multicast Routing . 43

4.2.4 IP Multicast Drawbacks 52

4.3 Application-layer multicast . 55

4.4 Hybrids . 56

4.5 Conclusion . 58

5 The Multicast Address Allocation Problem 59

5.1 Introduction . 59

5.2 Address Configuration Methods 59

5.3 Group Identifiers . 63

5.4 Requirements . 66

5.4.1 Dynamic allocation . 67

5.4.2 Distributed structure 67

5.4.3 Integrable . 68

5.4.4 Lifetime limitation . 68

5.4.5 Secure . 68

5.4.6 Fair-use enforcement 69

5.4.7 Robustness . 69

5.4.8 Address collision limitation 69

University of Pretoria etd - Slaviero, M L (2005)

Table of Contents v

5.5 Conclusion . 70

6 The DAOMAP Model 71

6.1 Introduction . 71

6.2 Assumptions . 72

6.3 The DAOMAP Architecture 73

6.3.1 Components . 73

6.3.2 Functional Overview 75

6.4 Data store . 76

6.5 Address generation module . 78

6.5.1 Deterministic Algorithms 79

6.5.2 General Address Selection Algorithm 84

6.6 Network communications module 90

6.7 Client communications module 94

6.8 Operational Aspects . 97

6.9 Security . 98

6.9.1 Claiming all addresses 101

6.9.2 Collide attacks . 102

6.9.3 Claim attacks . 102

6.9.4 Combined attacks . 102

6.9.5 Thresholds and packet discarding 103

6.10 Compliance to our requirements 110

6.11 Conclusion . 111

7 Implementation 113

7.1 Introduction . 113

7.2 Platform . 113

7.3 Internal Components . 114

7.3.1 Data Store . 114

7.3.2 Deterministic Function 115

7.3.3 Network Module . 115

7.3.4 Client API . 115

7.4 Operational Flowcharts . 116

University of Pretoria etd - Slaviero, M L (2005)

Table of Contents vi

7.4.1 Sub-processes . 116

7.4.2 Main thread . 117

7.4.3 Timer thread . 119

7.5 Benchmarking . 122

7.6 Attack Analysis . 125

7.6.1 Flooding Attacks on Unallocated Addresses 127

7.6.2 Attacks in the Allocating Phase 128

7.6.3 Attacks on Allocated Addresses 129

7.6.4 Scenario Summary . 130

7.7 Conclusion . 132

8 Conclusion 133

8.1 Summary . 133

8.2 Limitations . 136

8.3 Future Work . 136

Appendices

A The Berkeley DB 138

A.1 Database creation . 139

A.2 Lookups . 140

A.3 Database Writing . 141

A.4 Entry deletion . 142

A.5 Entry looping . 142

B IPv6 code snippets 144

C Unix Domain Sockets 146

Glossary of Abbreviations 149

Bibliography 152

University of Pretoria etd - Slaviero, M L (2005)

vii

List of Figures

2.1 Protocol layering . 8

2.2 Unicast prefix based multicast address 17

2.3 IPv6 Header . 20

2.4 Global Unicast Address Format 23

3.1 UDP Packet Header . 28

3.2 UDP Pseudo Header . 29

4.1 ICMPv6 Packet Header . 42

4.2 Graph Types . 45

4.3 Core Based Tree . 50

4.4 Hybrid Multicast . 57

5.1 Current Address Allocation Architecture 61

5.2 Collision Probabilities up to 100,000 addresses 64

5.3 Collision Probabilities up to 10,000,000 addresses 65

6.1 DAA Architecture . 74

6.2 Claim process overview . 77

6.3 Address Generation Streams 80

6.4 Function: rand(3) . 83

6.5 Function: MD4 . 85

6.6 Function: MD5 . 86

6.7 DAOMAP Message Format 90

6.8 DAOMAP Packet Exchange 98

6.9 Behaviour of response ratio 106

University of Pretoria etd - Slaviero, M L (2005)

List of Figures viii

6.10 ClaimReduce = 1.5×CollideReduce 109

6.11 ClaimReduce = 10×CollideReduce 109

7.1 Processes A and N . 117

7.2 Process Q . 118

7.3 Main thread . 120

7.4 Timer thread . 121

7.5 Allocation Ratio . 123

7.6 Packet origination . 124

7.7 Number of allocations and collisions 124

7.8 Deterministic function performance 125

University of Pretoria etd - Slaviero, M L (2005)

ix

List of Tables

2.1 Address Types and their prefixes 14

5.1 Number of addresses per node before collisions are probable . 65

6.1 Parameter values with 100 nodes 107

7.1 Attack Scenarios . 125

7.2 Calculated Parameter Values 127

University of Pretoria etd - Slaviero, M L (2005)

x

List of Algorithms

1 Address generation algorithm 87

2 Address generation algorithm 89

3 Address Allocation . 92

4 Claim Receipt Process . 95

5 Collide Receipt Process . 96

6 Ignore Message Function . 105

University of Pretoria etd - Slaviero, M L (2005)

xi

Listings

A.1 DB structures . 138

A.2 DB setup . 139

A.3 DB Reading . 140

A.4 Secondary Index Reading . 141

A.5 DB writing . 141

A.6 Entry Deletion . 142

A.7 DB Cursors . 143

B.1 Creating an IPv6 Socket . 144

C.1 Creating an Unix Domain Socket with Credential Passing . . . 146

C.2 Receiving Unix Domain Message with Credential Passing . . . 147

University of Pretoria etd - Slaviero, M L (2005)

1

Chapter 1

Research Overview and

Objectives

1.1 Introduction

The Internet Protocol Multicast standard was released in 1989 [1], and her-

alded a new form of communication on IP networks. For the first time, a

source could send a single packet and reach a set of recipients; and this break

through had major implications for technologies such as conferencing and

video broadcasting.

Indeed, in their proposal for on-demand video based on IP Multicast, Lit-

tle et al. [2] stated that “future multimedia information systems will have a

dramatic effect on the dissemination of information to individuals . . . [provi-

ding] services including games, movies, home shopping, banking, health care,

electronic newspapers/magazines, classified advertisements, etc.” It was en-

visaged that these services could use multicasting to streamline data delivery.

Other projected multicast uses included distributed databases and file stores,

according to Ngoh and Hopkins [3].

However, fifteen years after its introduction IP Multicast still has not

seen popular uptake by general users. Private conversation with technicians

from a large Internet Service Provider in South Africa revealed that in order

for their customers to make use of multicast, special arrangements must be

University of Pretoria etd - Slaviero, M L (2005)

1.2. Problem Statement 2

made since the ISP does not, in general, provide multicast services to users.

Why is the exploitation of a resource which promised so much, so limited?

A common argument made is that many devices do not support multicast,

and this is examined in a later chapter. Jonathan Barter, a self-proclaimed

multicast evangelist, believes that better marketing is required to increase

multicast use: “The [satellite communications] industry keeps assuring itself

about the potential for multicast services, yet has made an appalling job of

communicating the advantages to the outside world” [4].

As will be seen, there are numerous obstacles standing in the way of

widespread multicast use on IP networks. This dissertation is focused on

just one of these hurdles, the address allocation problem [5]. This problem

manifests itself whenever applications require multicast addresses on an ad-

hoc basis; such applications might include instant messaging or conferencing

where sets of friends or colleagues join transient groups which fall away once

their purpose has been achieved.

Current address allocation schemes are static in nature, or require the

roll-out of an ungainly multi-tier architecture which contains undefined stan-

dards. These restrictions have certainly limited multicast deployment; if

addresses could be assigned in a dynamic and reusable fashion, developers

could more easily produce multicast-enabled software since addresses would

not need to be reserved or clumsy allocation structures utilised.

Certainly the rigid IPv4 address format has not helped matters. The lack

of addresses along with a flat routing space combine to limit design choices

for a multicast address allocation scheme in IPv4.

The preceding paragraphs have briefly laid out the status quo, with details

to follow. The aim of this work is then to determine a set of requirements

which an allocation scheme should fulfill in order to be scalable and usable,

and develop a model which satisfies the proposed requirements.

1.2 Problem Statement

We have chosen to explore the opportunities which the newer IPv6 standard

affords. A much larger and more flexible address format allowed for the

University of Pretoria etd - Slaviero, M L (2005)

1.3. Research Methodology 3

creation of a special address type, the unicast based prefix address format,

which permits the construction of multicast addresses unique to a network.

This address type forms the basis for the author’s proposed allocation design.

In conjunction with the address type, a network protocol is also needed

to ensure that addresses are legal and unique amongst participating nodes.

The primary problem is then to develop an architecture for secure dis-

tributed IPv6 multicast address allocation. The architecture should be used

by client applications to retrieve addresses which are globally unique. Sec-

ondary problems are investigating IPv6 and multicast paradigms so that an

optimal solution is developed, and ensuring that address use is limited in

both time and quantity.

An implementation of the model will be developed as a proof of concept

in answer to the problems posed.

1.3 Research Methodology

Firstly, the current state of address allocation will be thoroughly explored in

an survey of the literature. Problems which have been identified by various

authors will be expounded upon, and the strengths of each scheme should

also be noted. From this survey, a set of requirements which a proposed

allocation architecture must fulfill, will be deduced.

Once the requirements have been identified, a model which satisfies the

determined requirements will be constructed. A primary objective for the

model is that it must be feasible to implement and deploy; further, it should

introduce new ideas and not simply ape previous attempts.

Finally, an implementation demonstrating the viability of the model will

be developed.

1.4 Overview

This dissertation has the following structure:

Chapter 2 provides an introduction to the Internet Protocol version 6. It

University of Pretoria etd - Slaviero, M L (2005)

1.4. Overview 4

commences with a short history of the development of the IPv6 standard and

goes on to define and explain the format of IPv6 addresses. Special attention

is paid to the unicast prefix based address format and various configuration

mechanisms are explained. The layout of the IPv6 packet is then provided, as

well as a summary on how routing in a hierarchical address space functions.

The chapter is concluded with an outline of transition mechanisms from IPv4

to IPv6.

A brief introduction to the User Datagram Protocol, on which the pro-

posed network protocol runs, is provided in Chapter 3.

The next chapter, Chapter 4, deals with the basic questions concerning

multicasting: What is multicasting and how does it improve on other delivery

models? In what manner do listeners join groups? How are packets routed

around IP networks? Is there more than one type of multicast model? These

questions are answered here so that the reader may sufficiently understand

multicasting in anticipation of Chapter 5.

In Chapter 5 we expand on the multicast address allocation problem.

More background is provided by examining the state of the art, before an

analysis is undertaken to determine what an allocation system should look

like. A set of requirements is distilled from the analysis.

The main contribution of this work appears in Chapter 6 with the in-

troduction of our model DAOMAP, the Distributed Allocation Of Multicast

Addresses Protocol. The protocol is defined in terms of four components

(data store, address generation module, network communications module

and client communications module), and the functioning of each component

is described and documented. It is also shown how the model fulfills the

requirements proposed in the previous chapter.

Chapter 7 records the implementation produced to verify that DAOMAP

works. The prototype is benchmarked, and simulations are carried out to

ensure that the built-in security protections operate well.

Lastly, this research is concluded in Chapter 8, where a summary of the

dissertation is presented along with pointers for possible future work.

University of Pretoria etd - Slaviero, M L (2005)

5

Chapter 2

Internet Protocol Version 6

2.1 Introduction

We begin this dissertation with an overview of IPv6, since that protocol

provides the platform upon which DAOMAP is built. Because IPv6 is so

important to this work, it is vital that the reader understand why a newer

protocol than IPv4 is required, and it follows that a short overview illustrat-

ing the progression from IPv4 to IPv6 is necessary.

Following on from that overview, the intricacies of IPv6 addressing will

be recounted, with special attention paid to the unicast prefix based address,

which is key to our proposal.

The IPv6 packet format is explained, and a brief description of how hi-

erarchical addresses are assigned and how they aid routing is provided.

Finally, the chapter is concluded with an exposition of changeover mech-

anisms, designed to ease the transition from IPv4 to IPv6.

2.2 A brief Internet Protocol History

The fundamental technicalities of the Internet have changed little since the

early 1980’s when the protocols which carry data around the Internet were

invented. In 1981, the Internet Protocol version 4 (IPv4) was standard-

ised with the release of Request For Comment (RFC) 791, authored by Jon

University of Pretoria etd - Slaviero, M L (2005)

2.2. A brief Internet Protocol History 6

Postel. He defined [6] the objective of IPv4: “to move datagrams through

an interconnected set of networks. This is done by passing the datagrams

from one internet module to another until the destination is reached.” He

further stated that “datagrams are routed from one internet module to an-

other through individual networks based on the interpretation of an internet

address. Thus, one important mechanism of the internet protocol is the in-

ternet address.”

An IPv4 Internet Address is a unique 32 bit number assigned to each

interface on an IPv4 network, such as the Internet. It is important to note

that the term ‘interface’ is used, rather than ‘machine’ or ‘computer’. This

is because a single computer may have many interfaces, each with a unique

address. Such a computer is generally termed ‘multi-homed’.

IPv4 addresses are normally presented in the ‘dotted-quad’ notation, to

aid readability. When writing an IPv4 address in the dotted-quad notation,

consider the 32 bits1 as a sequence of four 8 bit words. Each 8 bit word

is converted into decimal, and the four decimal numbers are concatenated

using a period to separate each number.

As an example, take the 32 bit address

10001001
︸ ︷︷ ︸

137.

11010111
︸ ︷︷ ︸

215.

00101000
︸ ︷︷ ︸

40.

01110111
︸ ︷︷ ︸

119

or 137.215.40.119

There are three mechanisms for data transmission in IPv4, and the ad-

dress structure determines which mechanism is to be used:

Unicast A datagram is sent from one interface to another, one-to-one com-

munication. The range of addresses is 0.0.0.0 – 223.255.255.255, al-

though many addresses in this range have special meaning.

Broadcast A datagram is sent from one interface to every other interface

on the network, one-to-all communication. Broadcast addresses occur

within the Unicast address space.

Multicast A datagram is sent from one interface to a group of interfaces,

one-to-many communication. Multicast addresses are assigned from

1The 32 bit address is written with the most significant bit first, with each subsequent
bit decreasing in significance, also known as the Big-Endian format [7].

University of Pretoria etd - Slaviero, M L (2005)

2.2. A brief Internet Protocol History 7

the range 224.0.0.0 – 239.255.255.255.

The broadcast has two large deficiencies.

1. The address used in a broadcast is not easily identifiable without in-

formation about the network.

2. A broadcast sends data to all interfaces on a network, regardless of

whether an application is waiting on the interface. This causes wasted

processing time when a datagram arrives because even though an ap-

plication might not be waiting for the data, the datagram is still passed

to software where it is eventually discarded.

As we will see, IPv6 changes this paradigm by excluding the Broadcast

and introduces a new address type, the Anycast.

IP provides a ‘best effort’ delivery mechanism. There are no guarantees

that IP will deliver the datagram correctly and in the right order, if at all.

We saw that IP is merely a carrier of datagrams from one node to another.

Other protocols which are layered above extend the capabilities and useful-

ness of IP (one such example is the Transmission Control Protocol (TCP)

which provides a reliable service). Figure 2.1 displays an example of this

layering. IP sends packets via the Device Driver, while the Transmission

Control Protocol uses IP to deliver packets, and an application uses TCP to

transfer data.

The layering model should allow a module which occupies one layer to be

replaced with another module which performs the same function. In reality

this is not the case. For instance, TCP uses a checksum to verify the integrity

of a packet and fields from the IP layer are used in this checksum. This binds

TCP to IP, as the IP layer could not be replaced without changes to the TCP

module2.

2UDP suffers from the same limitation, as will be seen.

University of Pretoria etd - Slaviero, M L (2005)

2.3. Moving on from IPv4 8

Application

TCP

IP

Device Driver

Application

TCP

IP

Device Driver

Network

Figure 2.1: Protocol layering

2.3 Moving on from IPv4

In the previous section we very briefly examined IPv4, which has become the

de facto standard for Internet communication. However, IPv4 has a number

of drawbacks. The most widely published is the apparent shortage of IPv4

addresses. When the protocol was designed the engineers had no idea that

their small research network would eventually become the largest computer

network ever created, so 32 bits was thought to be large enough to handle

future growth.

At that stage personal computers had just come onto the market, mem-

ory and other hardware resources were scarce and few computers were net-

worked. The 32 bit format extended several advantages to programmers, as

Huitema [8, p. 312] explains: “The convenience of an address that could be

stored in a standard 32 bit memory word as well as the programming effi-

ciency of a well-aligned header were too attractive.”

He also notes however, that “A more complex format . . . would not have

attracted as many followers.” This would have hampered the explosive

growth of IPv4 and the Internet; and therefore we can then observe that

the decision to use 32 bits was not incorrect at that time.

A further consequence of the IPv4 design was that the routing tables on

the core routers were growing extremely quickly, as more and more networks

were connected (the so-called ‘flat routing space’ problem [9]). Although this

was ameliorated with the introduction of Classless Inter-Domain Routing

(CIDR), CIDR could not be seen as more than a finger in a dyke holding

University of Pretoria etd - Slaviero, M L (2005)

2.3. Moving on from IPv4 9

the problem in check until the successor of IPv4 was ready. CIDR uses a

scheme whereby IPv4 addresses are allocated in blocks, so that routers hold

one entry for each block rather than one entry per network.(In fact, we have

already passed the sell-by date for CIDR, according to a prediction made in

1994 [10])

A number of protocols were presented in 1993 as replacements for IPv4

as part of the process for choosing IPng (IP Next Generation). We will

describe three of the main proposals very briefly, before tackling the protocol

which was selected. The descriptions are a summary of RFC 1454 [9] and

RFC 1752 [11] which outlined a number of candidates for IPv4 succession.

2.3.1 CATNIP

CATNIP (Common Architecture for the Internet [12]) planned to integrate

various network layer protocols, specifically CLNP, IP and IPX. The authors

recognized that as global communications became more tightly coupled to

the Internet, ISO standards would come into play. “ISO convergence is both

necessary and sufficient to gain international acceptance and deployment of

IPng. Non-convergence will effectively preclude deployment.” [12].

2.3.2 SIPP

SIPP (Simple IP Plus [13]) was the product of a merger between two propos-

als, SIP and PIP. SIPP attempts to retain the coding efficiency of SIP and

the routing flexibility of PIP.

SIP

SIP (Simple Internet Protocol) was IPv4 with a 64 bit address space and

reduced set of options [8, p. 313]. While its main advantage was its simplicity

which resulted in more efficient handling, the 64 bit address space seemed

dangerously inadequate considering the 32 bits used in IPv4 was not enough.

University of Pretoria etd - Slaviero, M L (2005)

2.3. Moving on from IPv4 10

PIP

PIP (P Internet Protocol [14]) was an entirely new protocol. It introduced

a new header format with fields whose meaning could differ. “PIP gives

the source the flexibility to write small ‘programs’ which direct the routing of

packets through the network.” [9].

The most drastic change was altering the flat routing space to a hier-

archical space. Packets could now be routed according to portions of their

addresses, rather than having to lookup each address in a routing table. This

solved the IPv4 routing table explosion problem. PIP addresses were “effec-

tively unlimited” [9] in length, due to the hierarchical network topology.

2.3.3 TUBA

TUBA (TCP and UDP with Bigger Addresses [15]) was a proposal which

used the Connectionless Network Protocol (CLNP). CLNP is an OSI proto-

col and is very similar in nature to IPv4 except that it has a variable address

space of up to 20 octets. Historically the OSI protocols have been somewhat

dated, as well as exhibiting “convergence on the lowest-common denomina-

tor” [9]. As an example we note that CLNP does not support “multicast,

mobility or resource reservation” [8, p. 313]. The CLNP multicast standard

is still deemed ‘Experimental’ [16] but was published in 1995.

TUBA basically offered a larger address space, TCP and UDP would

remain and be modified to run over CLNP. TUBA also allowed for host

autoconfiguration.

“[T]the main argument againt [sic] TUBA is that it is rather too like

IPv4, offering nothing other than larger, more flexible, addresses” [9]. There

was also an unwillingness amongst IETF members to use the OSI-sponsored

CLNP and this forced them to develop the alternatives, SIP and PIP.

University of Pretoria etd - Slaviero, M L (2005)

2.4. The Internet Protocol version 6 11

2.4 The Internet Protocol version 6

SIPP was ultimately selected as the basis for IPng, which was renamed

IPv6 [17] (IPv5 was an experimental protocol called the Internet Stream

Protocol.) Although IPv6 contains many improvements over IPv4, the basic

objective stated in Section 2.2 for IPv4 is still applicable to IPv6.

According to Hagen [18, p. 3], IPv6 has five main enhancements over

IPv4:

• Expanded address capability and autoconfiguration mechanisms

• Simplification of the header format

• Improved support for extensions and options

• Extensions for authentication and privacy

• Flow labelling capability

Each of these features will be dealt with in the remainder of this chapter,

as we describe the IPv6 protocol.

2.4.1 IPv6 Addressing

This section is a summary of RFC 3513[19], which defines the IPv6 address

structure.

An IPv6 address is 128 bits long. This is an increase of 27 orders of

magnitude in the number of addresses supported compared with IPv4, and

should satisfy our address space needs for the foreseeable future3. The ad-

dress is written as a series of eight hexadecimal fields of 16 bits, separated

by colons, for example

fe80:0000:0000:0000:02b0:d0ff:fee7:6ebe

3The precise definition of ‘foreseeable future’ is left as an exercise to the reader.

University of Pretoria etd - Slaviero, M L (2005)

2.4. The Internet Protocol version 6 12

Abbreviations

Addresses can be unwieldy and difficult to remember which is why conven-

tions have been introduced to help reduce the size of the written address.

The addressing RFC 3513 [19] allows for leading zeros to be dropped in each

field, leaving our previous address as

fe80:0:0:0:2b0:d0ff:fee7:6ebe

A further convention allows a single group of successive zero fields to be

replaced with a double colon “::”, so that our address now looks like

fe80::2b0:d0ff:fee7:6ebe

Note that only one double colon may appear in an address, otherwise the

address is no longer determinate (for example it is not possible to state

without ambiguity what address fe80::1:: expands into).

Address Types

Similarly to IPv4, there are three types of IPv6 addresses:

Unicast An address which identifies a single interface, used in one-to-one

communication.

Multicast An address which identifies a set of interfaces, used in one-to-

many communication.

Anycast An address which identifies a set of interfaces. A packet4 sent to

an Anycast address is sent to the “nearest” interface, which is calcu-

lated by the routing protocol. This feature is still experimental, and

implementation requirements and restrictions have yet to be fully ex-

plored.

As noted earlier, the IPv4 Broadcast has been removed and the Anycast

has been introduced.
4Earlier we used the term “datagram” in accordance with RFC 791. The IPv6 standard

speaks only of packets which is the convention that is followed from now on.

University of Pretoria etd - Slaviero, M L (2005)

2.4. The Internet Protocol version 6 13

Address Prefixes

In order to route packets, an IPv6 implementation must be able to determine

“the subnet or a specific type of address” [18, p. 30]. This is accomplished

with the address prefix which indicates what portion of the address must be

examined to extract the routing information. The address prefix notation

has the following structure:

ipv6-address/prefix-length

Where ipv6-address is a legal IPv6 address and prefix-length is a deci-

mal value indicating “how many of the leftmost contiguous bits of the address

comprise the prefix.” [19].

To continue the address example used previously, when written with its

prefix the address would look like

fe80::2b0:d0ff:fee7:6ebe/64

This specifies that the first 64 bits of the address belong to the subnet.

The length of the prefix depends upon the type of address.

Address Prefix Types

Whereas IPv4 initially used different “classes” of addresses in a flat-routing

space, IPv6 uses an address hierarchy to decide where to send packets. Every

address has a type prefix, which is a number of contiguous bits at the start

of the address and determines the address type. The exact number of bits

differs for various address types. Table 2.1 is taken from RFC 3513 [19] and

lists the address types along with their prefixes. The prefix-length shows how

many bits need to be examined in order to guarantee an address type.

The various address types will be defined shortly, suffice to say that there

is no Anycast prefix as the Anycast addresses are assigned from the Unicast

range.

The address types are standardised so that whenever an IPv6 application

parses an address which starts with, for example ff, it immediately knows

the address is a multicast address.

University of Pretoria etd - Slaviero, M L (2005)

2.4. The Internet Protocol version 6 14

Address Type Binary Prefix IPv6 Notation

Unspecified 00...0 ::/128
Loopback 00...1 ::1/128
Multicast 11111111 ff00::/8
Link-local Unicast 1111111010 fe80::/10
Site-local Unicast 1111111011 fec0::/10
Global Unicast (everything else)

Table 2.1: Address Types and their prefixes

Thus prefixes can be used to determine both address type, and, by utilis-

ing a longer prefix length, determine which subnet the address is associated

with in the case of a Unicast address.

2.4.2 Address Types

Address Scope

Before the various address types are defined, mention must first be made

about ‘address scope’. IPv6 uses the notion of address scope to define the

span within the network in which an address is valid. The three scopes are

Link-Local, Site-Local and Global, and below a brief description of each is

given.

Link-Local An address which is used only between two interfaces for point-

to-point communication, such as “automatic address configuration, nei-

ghbor discovery, or when no routers are present.” [19]. Packets with

Link-Local addresses as either Source or Destination are always dis-

carded by routers, since these packets must never cross network bound-

aries.

Site-Local A unique address which is used within a network, but which is

not globally routable. Routers must never forward Site-Local packets

outside of the site. These addresses are analogous to the private address

ranges of IPv4.

University of Pretoria etd - Slaviero, M L (2005)

2.4. The Internet Protocol version 6 15

Global A unique address which can be used to route packets within the

IPv6 Internet.

Every address must be unique within its scope.

Unicast Addresses

The three Unicast addresses referred to in Table 2.1 are used as unique iden-

tifiers for single interfaces according their assigned scope. Their construction

varies, but generally use the form of Prefix+InterfaceIdentifier and may

be constructed automatically. The Prefix is determined according to the ad-

dress type (Table 2.1) and network prefix, while the Interface Identifier is

calculated to be unique on the link. Calculation of the Interface Identifier

may use the IEEE Identifier (an identifier embedded in hardware, such as

the Ethernet MAC address) of the interface or could be generated randomly

for interfaces which lack IEEE Identifiers. Further details may be found in

RFC 3513 [19].

An example of a Unicast address may be found at the start of Sec-

tion 2.4.1.

Anycast Addresses

Anycast addresses are “syntactically indistinguishable from Unicast address-

es” [19], as they are taken from the same range. The Anycast mechanism is

new to the Internet, and at this stage only routers may be assigned Anycast

addresses.

Multicast Addresses

A multicast address identifies a set or group of interfaces. These interfaces

are generally (but not required to be) on different nodes. We will go into

much more detail on multicast in Chapter 4, for now we will examine the

multicast address structure.

The multicast address has the format Prefix
︸ ︷︷ ︸

ff

F lags
︸ ︷︷ ︸

4 bits

Scope
︸ ︷︷ ︸

4 bits

Group
︸ ︷︷ ︸

112 bits

eg. ff0e:0:0:0:0:0:0:10a

University of Pretoria etd - Slaviero, M L (2005)

2.4. The Internet Protocol version 6 16

• The Prefix is always ff.

• Two bits of the Flags field are defined, to indicate if the address is ‘well-

known’ or ‘transient’ and if the address is based on a Unicast prefix or

not [20]. In our example the Flags field is 0.

• The Scope field determines how far from the originator the packet will

travel. We will examine scope more closely in a later chapter, in our

example it is e, indicating the address has global scope.

• The Group field contains an identification for a multicast group, in this

case 0:0:0:0:0:0:10a.

There are numerous pre-defined or ‘well-known’ multicast addresses as-

signed in the RFC. Here we will look at some of the more important ones:

ff02::1 All Nodes on the local-link

ff05::1 All Nodes on the local-site

ff02::2 All Routers on the local-link

ff05::2 All Routers on the local-site

Some restrictions are placed on multicast address use:

1. They cannot be used as Source addresses.

2. They must not be forwarded past the scope indicated by the Scope

field.

Of further interest to us is the Unicast prefix based multicast address

defined in RFC 3306 [20]. This type of multicast address is dependent on

the Unicast prefix assigned to a network by a Registry. To appreciate the

importance of this address type, allow us to look at options available under

IPv4 for multicast address allocation:

1. Manually register a well-known address with IANA5.

5IANA, or the Internet Assigned Numbers Authority, is responsible for assigning various
Internet-wide numbers and addresses, for example port numbers or common addresses.

University of Pretoria etd - Slaviero, M L (2005)

2.4. The Internet Protocol version 6 17

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Prefix
︷ ︸︸ ︷

F lags
︷ ︸︸ ︷

Scope
︷ ︸︸ ︷

Reserved
︷ ︸︸ ︷

8−bit prefix length
︷ ︸︸ ︷

︸ ︷︷ ︸

At most 64 bits

︸ ︷︷ ︸

At least 32 bits

11111111 0011 SSSS 00000000 prefix length

unicast network prefix group ID

Figure 2.2: Unicast prefix based multicast address

2. Register as a user of the 233/8 address space and IANA allocates a 24

bit prefix to the registree.

3. Configure the cumbersome architecture described in Section 5.2.

With the addition of unicast prefix based multicast addresses, each of

these options becomes unnecessary for IPv6. Since each organisation on

the IPv6 Internet is assigned a unique Unicast prefix, an organisation can

generate its own multicast addresses based on its own Unicast prefix.

Figure 2.2 depicts the format of a unicast prefix based IPv6 multicast

address [20]. The four S bits indicate the scope of the multicast address,

which ranges from interface-local to global [19]. The prefix length field

denotes how long the unicast network prefix field is, which is at most 64

bits. Clearly the actual unicast prefix of the network is embedded in the

unicast network prefix field, and the remainder of the address is used for

group ID generation. The group ID will be some identifier for a particular

multicast group in a subnet, and it is this field which must be unique within

that subnet. Combined with a unique global unicast prefix, we can form

globally unique multicast addresses.

Unspecified Address

The Unspecified address has the abbreviation ::/128 and is never assigned to

any interface. It can be used as a Source address during autoconfiguration,

but must not be used as a Destination address. The Unspecified address

“indicates the absence of an address” [19].

University of Pretoria etd - Slaviero, M L (2005)

2.4. The Internet Protocol version 6 18

Loopback Address

The Loopback address has the abbreviation ::1/128, is a Link-Local Unicast

address and is never assigned to a physical interface. A node may use the

Loopback address as a Source or Destination address, but the packet is never

sent on a physical interface. The Loopback address can be used by a node

to communicate packets to itself.

Autoconfiguration

A major weakness of the IPv4 protocol was the fact that addresses were

either assigned manually, or special services such as DHCP (Dynamic Host

Configuration Protocol) had to be used. IPv6 corrects this with the inclusion

of autoconfiguration, which is defined in two broad flavours6:

Stateless The autoconfiguration of addresses and routing information from

node-held data and router advertisements. More details can be found

in RFC 2462 [21].

Stateful Autoconfiguration using information which is obtained from a ser-

ver, much like IPv4’s DHCP. It is specified in RFC 3315 [22];

Stateless and stateful autoconfiguration complement each other. A node

can obtain network connectivity using stateless autoconfiguration and then

use stateful autoconfiguration to assign a host-name, domain name or DNS

server. We will only cover stateless autoconfiguration here.

Autoconfiguration can only take place on multicast-enabled interfaces.

It was mentioned earlier that a Unicast address may be constructed au-

tomatically with a Prefix and an Interface Identifier. This forms a link-local

address which is not yet guaranteed to be unique and is termed “tentative”.

When the node configures the interface, it will first send out a Neighbour

Solicitation packet with the destination address equal to the tentative ad-

dress. If no replies are received within a time period, the tentative address

6Within the IPv6 Working Group at the IETF, the terms ‘stateless’/‘stateful’ are
frowned upon as they do not adequately categorise all autoconfiguration possibilities.
However, for our purposes and in the interest of simplification, their use is appropriate
here.

University of Pretoria etd - Slaviero, M L (2005)

2.4. The Internet Protocol version 6 19

can be presumed to be unique and the link-local address is assigned to the

interface. If a reply is received then autoconfiguration has failed and manual

intervention is required to assign a valid address.

At this point the node has link-local IP connectivity. What remains is to

determine routing information, if indeed a router is present. This is done by

sending a Router Solicitation message to the All-Routers Multicast group. If

a router is active on the link it will respond with information necessary to

obtain site-local or global connectivity. This can include prefixes to be used

and indicate whether stateful autoconfiguration is in effect.

The advantages of autoconfiguration are clear:

• Users can simply ‘Plug and Play’.

• Administrators do not have to deal with the propagation of erroneous

information, since configuration information is either determined au-

tomatically by means of a standardised process, or provided from a

central server.

• Site renumbering would be the simple case of changing the prefix which

the site routers advertise and waiting for the leases on the old addresses

to expire.

Address Privacy

The autoconfiguration mechanism has reduced the effort involved in config-

uring a network, but the use of devices with IEEE Identifiers introduces the

problem of a permanent address. The specific concerns are beyond the scope

of this document, but generally permanent addresses enable easier tracking

of users’ network habits than if they had a continually changing address.

RFC 3041, “Privacy Extensions for Stateless Address Autoconfiguration

in IPv6”, describes how the division of the IPv6 address into Prefix + Inter-

face Identifier facilitates tracking of users across different networks. When

a user plugs into another network, the Prefix will change but the Interface

Identifier remains the same. Since the Identifier is often globally unique, the

user can be monitored even if he decides to change network service provider.

University of Pretoria etd - Slaviero, M L (2005)

2.4. The Internet Protocol version 6 20

The RFC goes on to propose a framework whereby each node has both

“public” and “temporary” addresses. The public address, often stored in

DNS, is known to other nodes and is the address to which they will connect.

The temporary addresses are generated in sequence, used when initiating

communication with other nodes. These temporary addresses would be based

on the Interface Identifier and produced by an MD5 hash, with a random

component mixed in.

When a temporary address has been used for a certain length of time (the

RFC does not set limits, but mentions “hours to days”), it will be marked

as deprecated and the next address in the sequence will be used for all new

traffic streams originating from the node.

A continually changing address, while greatly benefiting users, may cause

some level of discomfort for network administrators who must debug and

maintain networks where the addresses are transient.

2.4.3 Header format
0 4 10 12 16 24 31
Version DS ECN

Payload Length Next Header Hop Limit
Flow Label

Source Address

Destination Address

Figure 2.3: IPv6 Header

Figure 2.3 shows the layout of the basic IPv6 header which every IPv6

packet is required to have. The figure is organised in a series of 32 bit rows.

The numbers across the top indicate the bit positions of the fields, from which

fields sizes can be calculated. Below is a brief description of each field, with

most of the information being drawn from RFC 2460, “Internet Protocol,

Version 6 (IPv6) Specification” [17].

University of Pretoria etd - Slaviero, M L (2005)

2.4. The Internet Protocol version 6 21

Version This field indicates the version of IP. It is always 0x06.

Differentiated Service Modern networks may be used to carry many kinds

of data, and each type of data may require different handling from the

network. These may be defined in “quantitative or statistical terms

of throughput, delay, jitter, and/or loss, or may otherwise be speci-

fied” [23].

This field is used by routers and hosts to determine the requirements

of the packet with regards to the network, and to attempt (if allowed)

to satisfy that request.

The DS field is backwards compatible with the IP Precedence field of

IPv4 [24].

Explicit Congestion Notification Traditionally network congestion has

been measured by the number of packets dropped within the network ie.

packets cannot be added to full queues so they are discarded. With the

addition of ECN, nodes can detect possible congestion before packets

are lost and notify other communication participants of the situation.

The ECN specification requires the Transport Layer to work in con-

junction with IP.

More details can be found in RFC 3168, “The Addition of Explicit

Congestion Notification (ECN) to IP” [25].

Flow Label A flow can be thought of as a related set of packets (eg. packets

in a specific TCP connection). This field is used to uniquely mark flows

so that nodes can apply special treatment to those data streams and is

specified in RFC 3697 [26].

The originator of the packet generates an ID for the flow which is identi-

fied by the 3-tuple (F lowLabel, SourceAddress, DestinationAddress)

and inserts the ID into the packet.

Either the Source or the Destination address may be wild-carded so

that the packets from multiple hosts will be treated as part of the same

flow (eg. multicast with multiple senders.)

University of Pretoria etd - Slaviero, M L (2005)

2.4. The Internet Protocol version 6 22

Any host or router which does not support Flow Labels must ignore

Flow Labels in packets destined for the node, leave the label as is when

forwarding a packet, and insert a 0 when sending a packet.

It is recommended that all flows be labelled, even if the sending node

does not require flow services as the recipient can use flows to aid load

balancing.

Nodes are also required to store recently used IDs, so that they are not

reused within 120 seconds.

Payload Length The length of the packet, excluding the IPv6 header which

is always 40 octets. This is different from IPv4 where the header con-

tained two length values, the header length and the total packet size.

Next Header While IPv6 has a fixed header to enable more efficient pro-

cessing, there is support for so-called “Extension Headers”. These are

optional and carry network layer information in the packet, where they

are placed between the IPv6 header and the payload. Some of the ex-

tension headers include Routing and Destination Options headers, as

well as encryption headers.

The Next Header field describes the type of header which follows the

IPv6 header. In the case where there are no extension headers, the

Next Header field might contain a value indicating that a TCP header

follows. Each extension header has a Next Header field, so it is possible

to chain headers together.

eg.

IPv6Header→ TCP → Payload

IPv6Header→ Routing → DestinationOptions→ UDP → Payload

More headers are defined in RFC 2460 [17].

Hop Limit Every time a packet is forwarded its Hop Limit is decremented

by one. If the Hop Limit reaches 0, the packet is discarded. This ensures

that packets caught in routing loops will not circulate indefinitely, and

can be used to limit packets to a certain radius.

University of Pretoria etd - Slaviero, M L (2005)

2.4. The Internet Protocol version 6 23

This is especially useful for multicast experiments where one might not

want packets to cross over any routers. In this case one could simply

set the Hop Limit to 1 and be assured that any router which receives

the packets will decrement the Hop Limit and discard the packet.

The Hop Limit replaces the IPv4 Time To Live field.

Source Address The IPv6 address of the originator of the packet.

Destination Address The IPv6 address of the destined recipient. This

might not be the final recipient if a Routing extension header is con-

tained in the packet.

2.4.4 Global Unicast Routing

It has already been stated that IPv6 is designed to use a hierarchical address

space, but what does this actually mean and how does this aid routing? Let

us first look at the format for a Global Unicast address [19] (Figure 2.4):

Global Unicast Addresses and Assignment

︸ ︷︷ ︸

n bits

︸ ︷︷ ︸

m bits

︸ ︷︷ ︸

128−n−m bits

Subnet IDGlobal Routing Prefix Interface Identifier

Figure 2.4: Global Unicast Address Format

The Global Routing Prefix together with the Subnet ID identifies a sin-

gle globally unique subnet, and the Interface Identifier points to a specific

machine on that subnet.

• The Global Routing Prefix is handed out to an organisation by a Reg-

istry. The Registry may, in turn, have been delegated its address space

from a higher Registry. For example, a South African university must

apply to the Local Internet Registry TENET [27] for IPv6 addresses be-

cause TENET provides the universities with Internet access. TENET

was assigned its global Unicast prefix from ARIN [28] and that prefix

is 2001:0548::/32.

University of Pretoria etd - Slaviero, M L (2005)

2.4. The Internet Protocol version 6 24

• The Subnet ID is assigned by the network administrator.

• We have already seen how the Interface Identifier is determined.

A university which applies to TENET for IPv6 addresses will receive

a /48 prefix from the 2001:0548:: netblock, assuming its application is

approved. Within the university’s prefix there is space for 216 subnets, since

the Interface Identifier is generally 64 bits.

Benefits to Routing

This hierarchical assignment of addresses allows for route aggregation. Core

routers need only store a single route for 2001:0548::/32 to reach any South

African university which has a TENET-assigned address. The significance of

this cannot be overstated, as previously with IPv4 a route had to be stored

for each network class before CIDR was introduced.

2.4.5 IPv4 to IPv6 changeover

An overnight switch from IPv4 to IPv6 is unrealistic and this was recognised

in RFC 2893, “Transition Mechanisms for IPv6 Hosts and Routers”. “The

key to a successful IPv6 transition is compatibility with the large installed

base of IPv4 hosts and routers” [29].” The authors list and describe var-

ious schemes which aid in running IPv6 networks in an IPv4 environment

and a summary is provided of both this RFC as well as other proposals

for IPv6/IPv4 integration. Unless otherwise indicated the proposals are de-

scribed in RFC 2893.

Dual Stack

The node has complete IPv4 and IPv6 stacks and both stacks may be used

simultaneously.

Manually configured IPv6 over IPv4 tunnel

The system administrator sets up the tunnel by designating end-points. Each

IPv6 packet has an IPv4 header prepended to it and the IPv4 destination

University of Pretoria etd - Slaviero, M L (2005)

2.4. The Internet Protocol version 6 25

address is the end-point of the tunnel. Once the end-point receives the packet

the IPv6 portion is extracted and sent on its way. An example of this is

the Freenet6 service (www.freenet6.net) which allows users without an IPv6

network to tunnel into the IPv6 Internet.

Configured tunnels are most useful in cases where small numbers of ma-

chines connect via a tunnel as there can be a reasonable amount of work in

configuring tunnels for each machine in a subnet. If there are numerous ma-

chines which require IPv6 access via tunnels then automatic tunneling might

be better suited.

Automatic tunneling of IPv6 over IPv4

The main difference between automatic and configured tunnels is that with

an automatic tunnel the end-point can be determined from the use of special

IPv4-compatible addresses. The address has the prefix 0::/96 followed by

the 32 bit IPv4 address. The tunnel is created by extracting the IPv4 address

from the IPv6 address, that is the 32 lower order bits.

6to4

A technique used to connect IPv6 networks over IPv4 infrastructure without

the need for explicit tunnel creation. The IPv6 network has border gateways

which wrap the IPv6 packets in IPv4 and send them to the destination sites

where they are stripped down and sent on their way. 6to4 is different from

the previous schemes in that it connects sites rather than hosts to hosts or

hosts to sites.

Detailed in RFC 3056 [30].

6over4

6over4 is a slightly older method of gaining IPv6 functionality which uses

IPv4 multicast to ‘simulate’ Ethernet across many hops. This is in contrast

to the tunnels which utilise point-to-point connections.

Detailed in RFC 2529 [31].

University of Pretoria etd - Slaviero, M L (2005)

2.5. Conclusion 26

Intra-Site Automatic Tunnel Addressing Protocol

ISATAP is a draft proposal which will allow IPv6 nodes within a site to in-

teract without the need for an IPv6 router. The IPv4 address of the recipient

is embedded in the ISATAP address, along with a standard 64 bit prefix. If

the site wishes to connect to the IPv6 Internet or other IPv6 sites, then a

border gateway must be installed. This gateway could, for example, run a

6to4 tunnel.

Detailed in draft-ietf-ngtrans-isatap-15.txt [32].

2.5 Conclusion

This first important chapter has explained IPv6, especially with regards to

addressing. The unicast prefix based format was introduced and documented,

and the structure of IPv6 packets was put forth.

Configuration mechanisms and routing of IPv6 packets were touched

upon, and the chapter finished with a description of various transition pro-

posals.

As stated previously, this chapter is important in laying the foundation

for our upcoming proposal.

The next chapter is describes the User Datagram Protocol, which is later

exploited to transport data.

University of Pretoria etd - Slaviero, M L (2005)

27

Chapter 3

User Datagram Protocol

3.1 Introduction

The User Datagram Protocol (UDP) is one of the cornerstone protocols which

give the Internet its solid foundation. Along with IPv6 which was discussed

in Chapter 2, UDP provides a platform for fast, connectionless delivery of

packets. This chapter briefly examines UDP over IPv6 and attempts to

explain why UDP is required when multicasting.

Let us begin with Comer’s [33, p. 331] description of transport protocols,

“Transport protocols assign each service a unique identifier. Both clients and

servers specify the service identifier; protocol software uses the identifier to

direct each incoming request to the correct service.”

Within the transport protocol domain, two classes for passing data exist:

connection-orientated and connectionless [33].

A connection-orientated protocol creates a link or circuit between com-

municating parties, across which data can be sent reliably and in order.

An analogous example is a telephone conversation; when the telephone

rings and is picked up, a link is established. The link is maintained

until one of the parties hangs up.

A connectionless protocol has no such reliability characteristic. No guar-

antees are made with respect to: the order in which packets arrive,

duplicate packet elimination, or indeed if the packet arrives at all (A

University of Pretoria etd - Slaviero, M L (2005)

3.2. UDP 28

good analogy in this case would be the Postal Services. Once a let-

ter has been dropped in a postbox, one can only hope for a successful

delivery.)

The IPv6 suite uses the Transmission Control Protocol (TCP) for con-

nection-orientated delivery, and UDP for connectionless delivery. Both pro-

tocols function above the IPv6 layer (Figure 2.1 from Chapter 2 shows where

TCP, and hence the UDP layer, fits in.)

3.2 UDP

The UDP specification was standardised in the three-page RFC 768 [34],

penned by Jon Postel. The brevity of the document underlines the sim-

plicity of the protocol; Postel states that “[UDP] provides a procedure for

application programs to send messages to other programs with a minimum

of protocol mechanism.” The benefits of the small protocol overhead include

faster processing of packets and fewer resource requirements on nodes.

UDP uses the notion of ‘port numbers’ to identify processes1 (fitting

Comer’s definition of transport protocols.) The benefit is that we can have

many UDP applications running simultaneously each receiving its own traffic.

3.2.1 Header

Let us examine the UDP header which is prepended to every UDP packet:
0 16 31

Source Port Destination Port
Length Checksum

Figure 3.1: UDP Packet Header

Figure 3.1 is formatted in rows of 32 bits, the numbers across the top

indicating the bit positions of the fields. The fields are explained below.

Source Port A number which identifies the process on the originating node.

This field is optional, and, if not used, should utilise a zero value.

1TCP uses the same mechanism.

University of Pretoria etd - Slaviero, M L (2005)

3.2. UDP 29

Destination Port A number which is used by the receiver to determine

which process the packet should be delivered to.

Length The length of the UDP header plus the UDP payload in octets.

Checksum “[T]he 16 bit one’s complement of the one’s complement sum of

a pseudo header of information from the IPv6 header, the UDP header,

and the data, padded with zero octets at the end (if necessary) to make

a multiple of two octets.” [34]. It should be noted that in IPv4, the

checksum was optional. However, IPv6 makes the checksum manda-

tory, and any UDP packets which arrives via IPv6 without a checksum

must be discarded. We discuss the pseudo header next.

3.2.2 Pseudo Header

The pseudo header is constructed using fields taken from the IPv6 header and

the transport-layer protocol, in this case UDP. It is used when calculating

the checksum required by the UDP protocol. The pseudo header is depicted

in Figure 3.2, which is defined in RFC 2460 [17, p. 27].

0 24 31

Source Address

Destination Address

UDP Length

zero Next Header

Figure 3.2: UDP Pseudo Header

The definition of the fields in Figure 3.2:

University of Pretoria etd - Slaviero, M L (2005)

3.2. UDP 30

Source Address Address of the originating node.

Destination Address Address of the final recipient.

UDP Length Length of the UDP packet, including its header. This is not

calculated, as the Length field from the UDP header is inserted. The

pseudo header is not UDP specific, hence the Length field is not 16 bits

but 32 bits.

Next Header The protocol number of the upper-layer protocol (17 for

UDP).

In Section 2.2 we alluded to the fact that the dependence of the pseudo-

header on the lower IPv6 layer, coupled with the mandatory checksum has

tightly bound the UDP layer to the IPv6 layer. This is unfortunate consid-

ering the desire for independence between the protocol layers, but has the

advantage that corrupted or incorrectly delivered packets will be detected.

3.2.3 Multicasting over UDP

There is no hard and fast rule requiring that multicast data be carried in

UDP packets. Indeed IPv6 has support for numerous upper-level protocols,

of which UDP is just one, and any upper-layer protocol may receive multicast

packets if its designer so chooses. Whether the protocol is actually able to use

multicast packets depends on its purpose. TCP, for instance, would not be a

candidate for multicast packets according to Stevens; “TCP is a connection-

orientated protocol that implies a connection between two hosts (specified by

IP addresses)” [35, p. 169] (emphasis added).

The advantage in using UDP to carry multicast data is that UDP adds

very little overhead to the process of packaging the data and sending it off,

while adding the benefits of a transport protocol. UDP is a ‘fire-and-forget’

protocol, once the packet has left the node no assurances are provided re-

garding packet delivery. The host requirements for multicasting are similarly

sparse: “the datagram is not guaranteed to arrive intact at all members of

the destination group or in the same order relative to other datagrams” [1].

University of Pretoria etd - Slaviero, M L (2005)

3.3. Conclusion 31

This close correlation between the needs of UDP and multicasting has

lead to the de facto standard for delivery of multicast packets occurring over

UDP.

3.3 Conclusion

This chapter briefly introduced UDP, giving a breakdown of the packet

header as well as showing how the checksum is computed. We also discussed

the reasons why UDP is generally used as the transport protocol when multi-

casting. The chapter has given the reader a basic insight into UDP and this

is important because in the next chapter we place multicasting under the

microscope and evaluate various multicasting schemes which utilise UDP.

University of Pretoria etd - Slaviero, M L (2005)

32

Chapter 4

Multicasting Basics

4.1 Introduction

The reader has now been presented with the building blocks of multicast

in IP networks: IPv6 carries the packets between nodes and UDP provides

the transport layer which delivers data to services. Next we examine how

multicast works both in and on top of IP networks, and describe and compare

various protocols which implement multicast routing.

In Section 2.2, we defined multicasting as one-to-many communication

where a sender can generate a packet and transmit it to a group of recipi-

ents. This definition clearly does not tie multicast to IPv4 or IPv6 networks

exclusively. As we will see, there are numerous mechanisms for enabling

multicast, of which IP Multicast1 is just one.

Multicasting provides many benefits over the traditional Unicast packet

delivery mechanism. If one considers Internet radio as an example, two

possibilities exist for delivery of the audio stream:

• Each listener connects to the server with a unique Unicast channel.

• Listeners become part of a multicast group.

1When the term ‘IP Multicast’ is used, we are referring to multicast on both IPv4 and
IPv6 networks. When there is a need to differentiate, we will make the distinction clear
by using either ‘IPv4’ or ‘IPv6’ in place of ‘IP’.

University of Pretoria etd - Slaviero, M L (2005)

4.1. Introduction 33

In the former case, bandwidth consumed it proportional to the number

of clients; if b is the bandwidth required for one client to receive audio, the

total bandwidth needed is b× n where n is the number of clients.

When multicasting however, the bandwidth requirements from the ser-

ver’s point-of-view are constant regardless of group size.

A further advantage to multicasting is that network resource discovery

becomes much easier. Machines providing network services join well-known

multicast groups, and hosts wishing to use those services make contact via

the multicast group without knowing the address of the server on which the

service is running.

Perhaps now is a good time to introduce the concept of multicast groups;

when transmitting and receiving multicast packets, it is often necessary to

be able to differentiate between multicast data meant for disparate sets of

interested listeners, especially when a generic packet delivery framework such

as IP Multicast is used. A multicast group is a subset of the multicast address

space, useful in the sense that when a packet is transmitted to that group’s

address, only that subset of the total address space will receive the packet.

Hosts may join or leave the group at any time, and no restriction is placed

on the number of groups a host may join, or on the location of the host [36].

In the ensuing chapter we use the terms ‘multicast address’ and ‘multicast

group’ interchangeably; both indicate a set of recipients with the property

that a particular set can be uniquely identified from other similar sets by

means of the unique address assigned to that particular set.

Since this dissertation is not specifically focused on the delivery of mul-

ticast packets but at multicast address allocation, we will briefly examine

general multicast mechanisms in order for the reader to have a superficial

understanding on how packets may be sent to multiple recipients, before

explaining how multicast works in IPv6 networks.

We can broadly categorise distribution of multicast packets as follows:

• Router-dependent Multicast

• Application-layer Multicast

• Hybrids of the above two approaches

University of Pretoria etd - Slaviero, M L (2005)

4.1. Introduction 34

4.1.1 Router-dependent Multicast

The distinguishing property of Router-dependent Multicast is that “[it] im-

poses dependency on routers” [37]. Multicasting in this manner is reliant on

support in the software modules of the router to process and forward pack-

ets correctly; without the software being available and functioning correctly,

multicasting cannot take place.

The prime example for router-dependent multicast is IPv4 Multicast-

ing [1], which is widely supported by both hosts and routers on the Internet,

but often not enabled. In order for routers to utilise internetwork IPv4 Multi-

casting, they must implement IGMPv3 (Internet Group Management Proto-

col), which provides both hosts and routers with the ability to “report their IP

multicast group memberships to any neighboring multicast routers” [38], and

support an internetwork multicast routing protocol, such as DVMRP [39],

PIM-SM [40] or MOSPF [41].

Included in this category is multicasting inside a LAN which lacks a

router or other network-layer device. In the case of Ethernet, when a link-

layer device might be in use, generally all the hosts will receive the packet and

it is either filtered by the network interface (if supported by the hardware)

or passed up to the host’s network-layer where an internal routing decision

is made to accept the packet or discard it.

We defer a deeper examination of IP Multicast internals to Section 4.2

when we cover multicast on IPv6 networks.

4.1.2 Application-layer Multicast

Application-layer multicast refers to multicast solutions implemented above

the network layer, at the application layer. It is also referred to as Application-

level multicast [42], End-host multicast [37, 43] or End System multicast [44]

because the only systems which need to run the multicast software are those

hosts interested in receiving multicast packets. These hosts are generally

located at network edges.

The primary advantage of application-layer multicast is that only hosts

that wish to participate in a multicast group need install the multicast soft-

University of Pretoria etd - Slaviero, M L (2005)

4.2. IP Multicasting 35

ware. Multicast packets are conducted along unicast channels, and inter-

mediate routers do not have to support any multicast services whatsoever.

A further extension of this advantage is that no changes need to be made

to the network layer module, which, considering the importance of the role

played by this layer in ensuring interoperability, should remain as stable and

compact as possible.

In Section 4.3 we will mention the functioning three Application-layer

multicast protocols: YOID, Narada and the Banana Tree protocol.

4.1.3 Hybrids

The hybrid approach strives to combine both router-dependent and app-

lication-layer multicast into one protocol which has the benefits of both.

Typically, application-layer multicast is used for interdomain multicasting,

while IP multicast is used for intradomain delivery.

Our candidate for discussion is HMTP, which is reviewed in Section 4.4.

4.2 IP Multicasting

When perusing multicast literature, is inevitable that the name Stephen

Deering crops up. In 1988 he published a paper [36] describing a method

for passing multicast packets between different networks. A year later he

solidified his ideas by releasing RFC 1112, ‘Host Extensions for IP Multicas-

ting’ [1], which became the standard for IP based multicast. He is also an

author of RFC 2710, ‘Multicast Listener Discovery (MLD) for IPv6’, which

introduces multicast group management to IPv62 [17].

Unfortunately, IPv4 Internet-wide multicast has proved to be a difficult

target to achieve, for a number of reasons. Many papers and projects make

the basic presumption that IP Multicast does not have widespread deploy-

ment, and seek ways to overcome this limitation with extensions above the

network layer. Later we look closely at the drawbacks which currently face

IP Multicast.

2Deering also penned RFC 2460, which is the IPv6 specification.

University of Pretoria etd - Slaviero, M L (2005)

4.2. IP Multicasting 36

What follows is an in-depth examination of multicast on IPv6. We divide

the discussion into three parts, Multicast Listener Discovery, multicast packet

handling and internetwork multicast routing.

4.2.1 Multicast Listener Discovery

The reader might recall from Section 2.2 that a primary drawback of the

IPv4 broadcast was that it caused unnecessary processing in the IP stacks

of hosts. With the introduction of IP Multicast, this processing burden has

been pushed downwards to the hardware level, and inwards towards routers

and other non-edge devices. Routers examine IP packets and if the packets

form part of a multicast traffic flow, the packets are only sent out on links if

hosts who wish to receive packets for that multicast group exist on a link.

This strategy clearly forces routers to keep track of what multicast groups

the attached listeners are interested in, and Multicast Listener Discovery

(MLD) provides the functionality. The current version of MLD is version

2, or MLDv2, and it is standardised in RFC 3810 [45]. In the upcoming

discussion, the term ‘hosts’ refers to nodes on the network which are not

part of any multicast group, and ‘multicast listeners’ or ‘listeners’ refer to

nodes which have somehow registered to receive multicast packets.

MLD defines different behaviours for routers and multicast listeners. If

a router is part of a multicast group, then it will act as both router and

multicast listener.

Router Behaviour

For each link attached to a router, a list of records per multicast address is

kept. A record is the 4-tuple

(Multicast Address, Filter Mode, Filter Timer, Source List)

This is significantly different from MLDv1, where a basic list of subscribed

groups per link was stored, as MLDv2 has been extended to handle Source

Specific Multicast (SSM) [46] as well as Source Filtered Multicast (SFM) [45].

Previously when a listener registered for multicast group G with a router,

University of Pretoria etd - Slaviero, M L (2005)

4.2. IP Multicasting 37

the router forwarded packets destined for G regardless of the source. This is

termed Any Source Multicast, or ASM, and is the model for multicast service

which complies with RFC 1112 [1].

SSM allows a host to inform its router which ‘channels’ the host wants

to become a listener for. Channels are formed by pairing the address of the

target multicast group G, with S, the source of the packets which the listener

wants to accept packets from. Together they constitute the 2-tuple (S,G)

which is stored on the listener and the router. Multicast packets destined

for G are only forwarded by the router if the source of the packets matches

S. The use of SSM is not forced on application developers, who are free to

decide which model best suits their needs.

A further extension to ASM is Source Filtered Multicast (SFM). SFM

provides the capability to filter based on the source address of a multicast

packet, it is different from SSM because no single channels are subscribed to,

rather normal multicast traffic is filtered. The SFM-capable host provides

the router with a list L of acceptable sources for group G, as well as a filter

directive to either

(i) only forward packets destined for G where the source address exists in

L

(ii) or to forward packets destined for G from all source addresses except

those in L.

In the interests of consistency, listeners also keep track of what filter

directives are set for the groups they are listening to. These directives can

be changed at any time by the listener.

MLDv2 supports all the multicast models given here, namely ASM, SSM

and SFM.

It is important to note that routers running the MLDv2 protocol do not

need to know the identities of the individual listeners for G on a given link,

nor is it required to keep count of the listeners. The reason for this is that if a

router receives notification of a listener on link L for G, then it is already has

enough information to distribute packets destined for G to all other listeners

of G on L.

University of Pretoria etd - Slaviero, M L (2005)

4.2. IP Multicasting 38

Returning to the 4-tuple listed earlier, we can now make some sense of

the fields. Multicast Address is an IPv6 multicast address which a listener is

interested in. Filter Mode is either INCLUDE or EXCLUDE, and corresponds

to one of the two filtering directives for SFM shown above. Filter Timer is

a countdown timer and Source List is a list of zero or more IPv6 Unicast

addresses. These Unicast addresses are used in conjunction with Filter Mode

to provide SFM.

Routers must configure every interface MLD is running on to accept all

IPv6 Multicast packets on that interface, using some link-layer multicast

address specific to the network technology. The RFC puts forth the example

of IPv6 multicast over Ethernet[47]: each interface on the router is configured

to accept packets whose Ethernet address starts with 0x3333, which under

Ethernet indicates a multicast packet. In this fashion the router receives all

packets originating from its links destined to any multicast address.

At varying time intervals, routers send out different Query messages on

attached links in order to discover information about which groups or chan-

nels listeners are interested in. Each listener replies with Report messages

informing the router of the listener’s state. State refers to the list of sub-

scribed multicast groups, as well as associated ancillary data such as source

filter lists and filter directives. State information is held in a state store.

Query messages have a hop-limit of 1 in the IP header, which ensures the

queries never cross subnet boundaries.

If there are multiple routers on a single subnet, an election takes place

and the winner becomes the Querier; only the Querier may issue Query

messages. The other routers stay silent but may still process Reports and

multicast packets, and if the Querier fails an election takes place and the

new Querier can step into the breach seamlessly (more details are available

in the RFC.)

There are three types of Queries a Querier may issue:

General Queries These messages have destination address ff02::1, and

discover which groups the attached listeners are interested in.

Multicast Address Specific Queries Sent to a particular multicast ad-

University of Pretoria etd - Slaviero, M L (2005)

4.2. IP Multicasting 39

dress to discover if there are listeners for a particular group.

Multicast Address and Source Specific Queries Sent to a particular

multicast address to discover if any listeners exist for a particular chan-

nel. The message carries a list a sources which the Querier knows some

listeners are interested in packets receiving from.

Further, there are two type of Reports which a listener may respond with:

Current State Reports Contains information about the state of multicast

addresses currently being listened to, triggered by a General Query.

State Change Reports Different State Change Reports exist, depending

on the nature of the change. These Reports are triggered when the state

of a listener is changed.

General Query messages are generated periodically by the router and trans-

mitted on each link L where the router is the elected Querier. When a Gen-

eral Query is received by a node, the listener creates a Current State

Report message, which contains a record of each group G the listener is

listening to on link L, as well as any associated Source list.

At unpredictable intervals the Querier may receive State Change Re-

ports, indicating that a listener has altered the state of an address record.

This could be a listener ceasing to be interested in a group, or changing

its filter directive for a group. The router then issues either a Multicast

Address Specific Query or a Multicast Address and Source Specific

Query, dependent on the nature of the change reported by the listener, and

the listeners respond with Current State Reports. This forces a coherent

view of the network to be maintained, within certain timing limits.

(In this distillation we have ignored a number of details, including timing

issues. The interested reader is referred to the RFC).

Listener Behaviour

The above describes MLD from the routers point-of-view: routers can issue

three kinds of Queries, and expect Reports from interested listeners. What

remains is MLD from a listener’s perspective; the specific Reports which

University of Pretoria etd - Slaviero, M L (2005)

4.2. IP Multicasting 40

listeners issue in response to Queries and the Reports listeners issue in re-

sponse to internal events. Events may be fired by countdown timers reaching

threshold values, or state in the listener changing.

When a Multicast Address Specific Query is received by a node on

link L querying listeners of group G, a Current State Report containing

the listener state for G is generated if the node is currently a listener for G on

L and sent to the address listed in the query. The router, which is listening

for all multicast packets, picks up the response and adds the information to

its state store.

Similarly, when a Multicast Address and Source Specific Query is

received on L, with the list of addresses S, then the listener responds with a

Current State Report containing listener state for G when either of the

following are true:

(i) The INCLUDE directive is set, and S contains at least one source address

the listener is prepared to accept packets from.

(ii) The EXCLUDE directive is set, and S is non-null when all the addresses

in the listener’s exclude list for G on L are removed.

When a host becomes a listener on a particular link, it immediately sends

an unsolicited Report message for the group the host has joined. This ensures

that, if the host is the first listener on that link for that group, the relevant

router is notified. If there is already a listener on that link for that address,

the Report is spurious but causes no harm.

Two methods for group leaving have been are available: ‘soft leave’ and

‘fast leave’.

Both methods make use of timers and the Report messages previously

discussed, but briefly: the soft leave mechanism involves no State Change

Report being issued, and no Current State Reports indicating any lis-

teners on the link forces routers to remove state information for that group,

while the fast leave method requires a listener to inform all the routers of

the cancellation of the listening socket with a State Change Report. The

Querier then issues a Multicast Address and Source Specific Query

for the address which is in the process of being unsubscribed. If no positive

University of Pretoria etd - Slaviero, M L (2005)

4.2. IP Multicasting 41

Reports are received within a time-frame, all the routers remove the group

from their respective state stores.

One of the important differences between MLDv1 and MLDv2 is that

MLDv1 required listeners to suppress Reports; if the Querier issued a Query

then listeners had to issue a Report after a random period of time, with

the condition that if a Report from another listener for the same Query

arrived before the listener’s Report had been sent, then the Report was to be

suppressed. The rationale behind this decision was that routers only needed

to know about one listener on a link in order to send the message to all other

listeners on that link, and that any reduction in the number of packets sent

was viewed as an efficiency gain. However, this approach had a number of

drawbacks (see [45], so this restriction has been dropped in MLDv2. The new

requirement that every listener responds to Queries to which the listener has

Reports for produces these benefits [45]:

• Routers can track group size.

• Avoids implementation issues on bridged LANS.

• Complexities in the state machine for nodes have been removed.

• More than one address can now be carried by MLDv2 Reports.

MLDv2 packets

MLDv2 is a subset of the ICMPv6, the Internet Control Message Protocol

for IPv6. The various Queries and Reports which make up the MLDv2 stan-

dard are contained in ICMPv6 packets, which in turn are carried by IPv6.

Remember from Chapter 2 that IPv6 only provides a ‘best effort’ delivery

service; no guarantees are in place to ensure packets reach their destination

intact and in order, unlike the TCP which adds reliability to the IP layer.

The designers of MLDv2 therefore built-in mandatory retransmission of im-

portant packets into the specification.

The format of the ICMPv6 packet has been drawn in Figure 4.1. At

first glance it appears highly simplistic, and this is true of base ICMPv6.

However one must consider it is merely a carrier and does not offer much

in the way of functionality, as a piece of copper wire is useful in conducting

University of Pretoria etd - Slaviero, M L (2005)

4.2. IP Multicasting 42

electro-magnetic signals. The strength of ICMPv6 is in the type of messages

transmitted. To extend the copper wire analogy, it is pointed out that basic

copper wire can be used for such disparate applications as turning electric

motors or passing data between computers. MLD messages are just one

application of ICMPv6, the interested reader is directed to RFC 2463 [48]

for more detail.

Type Code Checksum

Message Contents

0 8 16 31

Figure 4.1: ICMPv6 Packet Header

A breakdown of the fields in an ICMPv6 packet:

Type Indicates what ICMPv6 message the packet is carrying. For MLDv2

Queries, the value is 130 decimal and for MLDv2 Reports the value is

143 decimal.

Code Ignored by MLDv2, set to zero.

Message Contents Application specific data, presumably has some mean-

ing in the context of legitimate Type and Code values. When carrying

MLDv2 messages, this field holds the data of the message.

4.2.2 Multicast packet handling

In previous chapters both IPv6 and UDP were presented, but we have yet

to demonstrate how one can send and receive multicast packets. From a

practical point of view, these functionalities are provided by software calls.

Depending on the operating system, they may be library or system calls. This

is covered in more detail in Appendix B, but a superficial understanding at

this stage should help crystallise multicast programmatic concepts for the

reader.

The calling semantics presented here are applicable to version 2.6 of the

Linux kernel.

University of Pretoria etd - Slaviero, M L (2005)

4.2. IP Multicasting 43

A running program that wishes to become a listener on a multicast group

first creates a BSD-style socket with socket(2). The newly created socket

is then bound to a specific address with bind(2). Finally, the program calls

setsockopt(2) and passes the value MCAST JOIN GROUP to the socket. This

causes the underlying multicast module to issue a State Change Report

and create the state for the group. The listener is then able to receive mul-

ticast packets by iteratively using recvfrom(2) which returns the data from

received multicast packets.

Because MLDv2 requires the state record for a group to have a Source

list and Filter mode, when a host issues a join request for an ASM group the

Source list is set to {} (the empty set) and the Filter mode is set to EXCLUDE.

All packets addressed to the group will be forwarded by the routers involved.

Extending this, when a host wishes to join a SSM group the Source list

is set to the address of the acceptable source A, {A}, and the filter mode is

set to INCLUDE. Now only those packets with source {A} will be forwarded.

Finally, if a host wishes to make use of SFM, it can manipulate the Source

list and Filter mode to achieve the desired effect.

A listener will use the setsockopt(2) call to set the Source list as well

as the relevant Filter Directives.

If a listener wishes to leave a group, then setsockopt(2) is called and

passed the value MCAST LEAVE GROUP. This instructs the multicast module to

remove the group state, and issue a State Change Report.

When an application wishes to send data to a multicast address, the

sender uses socket(2) to create a BSD-style socket, and then calls sendto(2)

with the multicast address and data to be sent as arguments. The data is

passed to the kernel where it is packed and sent on its way.

4.2.3 Multicast Routing

At this point the reader should be comfortable with the notion of multicast

groups and the management thereof, as well as the steps an application needs

to perform in order to participate in a multicast group in the role of sender

or listener. Our explanation has covered multicasting on local networks, but

University of Pretoria etd - Slaviero, M L (2005)

4.2. IP Multicasting 44

what of multicasting across subnets or domains? We have only mentioned

routers in passing, and our coverage of the routers involved has treated them

as black boxes: they somehow provide packets addressed to locally joined

groups and they whisk away packets sent from local nodes to the group and

distribute the packets to all other listeners. In this subsection we examine the

evolution of multicast routing, as its packet delivery capabilities expanded

from LANs to the Internet.

Before we start, an informal refresher on graph theory is in order, as

the routing protocols make extensive use of this topic. A graph is simply a

connected set of objects. The objects are referred to as vertices (sometimes

the term node is used in computer network theory, the plural vertexes may

also be found in the literature) and the connections between the vertices

are termed edges. A cyclic graph is one where a path can be traced from a

vertex across at least two edges and arrive back at the starting vertex without

traversing any edge more than once. Conversely, an acyclic graph contains

no cycles. Figure 4.2(a) is an example of a cyclic graph.

A connected graph has a path between every vertex pair, where a path is

a list of vertices where each adjacent vertex pair in the list is connected by

an edge. Each of the graphs in Figure 4.2 is connected.

A spanning tree is a “connected, acyclic subgraph containing all the ver-

texes of a graph” [49]. From this definition it should be clear that a graph

may have more than one spanning tree. The root is a vertex which has been

arbitrarily designated, and forms the starting point when traversing the tree.

A parent node is one which is connected to at least one other node away from

the root. A child node is any node which is not the root. One of the spanning

trees for Figure 4.2(a) is given in Figure 4.2(b), with the root indicated by

R.

The reverse-path in a tree can be traced by starting at a child node and

recording the path to the root node.

Suppose a weight is assigned to each edge in the graph. The minimum

spanning tree or shortest path tree is the single spanning tree in a graph with

the least sum along the edges. We have assigned weights to the graph from

Figure 4.2(a) as shown in Figure 4.2(c), and indicated the minimum spanning

University of Pretoria etd - Slaviero, M L (2005)

4.2. IP Multicasting 45

��
��

��
��

��
��

��
��

��
��

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

����
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

�
�
�
��

��������

@
@@

(a) Cyclic Graph

��
��

��
��

��
��

��
��

��
��

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

����

@
@@

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

R

(b) Spanning Tree
Rooted at R

��
��

��
��

��
��

��
��

��
��

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

����
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

��������

e
e
e

�
�
�
��

2 1

11

R
2

2

1

(c) Minimum Span-
ning Tree Rooted at R

Figure 4.2: Graph Types

tree in bold lines. Again, the root node is denoted by R.

In Deering’s introduction to multicasting [36], he describes the state of

the art with regards to multicast routing. At that stage the field included

Single Spanning Tree, Distance Vector and the then brand new Link-State

routing protocols. Following on from that early work, CBT, PIM-SP, PIM-

DM and BGMP have been developed. What follows is a short description of

each of these models for multicast packet routing.

Single Spanning Trees

Before router-use became widespread, most sites connected LANs by means

of bridges. At the link-layer, bridges need to compute a single spanning tree

University of Pretoria etd - Slaviero, M L (2005)

4.2. IP Multicasting 46

of all bridges in the network to ensure that packets are not duplicated across

the network, and this spanning tree is ideal for use with multicast. Each

bridge needs to keep track of what groups the machines connected to that

bridge are members of, and the solution proposed was for group members to

periodically issue membership report packets with the source address set to

the group address. Thus the bridge could learn on which links listeners for

a given group were present.

When a packet addressed to a group was received by the bridge, it would

send it out on links where the bridge believed listeners were present.

Banikazemi’s [50] description of the IEE-802 MAC bridge implementation

for spanning tree multicasting shows that it requires less features, “Whenever

a router receives a multicast packet, it forwards the packet on all the links

which belong to the spanning tree except the one the packet arrived on”. The

only state a bridge has to store is whether a given link is part of the spanning

tree.

The disadvantages to this scheme are twofold:

1. Multicast traffic is sent on links regardless of whether a listener is present

or not.

2. A single set of links are used (the spanning tree), introducing possible

bandwidth contention issues

Further, this scheme in non-scalable in the extreme since, by design, it

is limited to bridges. However knowledge gained on spanning tree use was

later applied when designing internetwork multicast routing protocols.

Distance Vector

Distance Vector routing protocols have been with us for a long time now. Also

referred to as Bellman-Ford routing algorithms, Deering notes that the first

routing on the Arpanet was accomplished with a distance vector protocol [36].

In terms of multicast routing, distance vector protocols were established to

route multicast packets across networks (but not autonomous systems).

Routers store a table containing all reachable destinations (destinations

can be hosts or networks), as well as distance to and the next-hop of the

University of Pretoria etd - Slaviero, M L (2005)

4.2. IP Multicasting 47

destination. These records are regularly sent to neighbouring routers who

update their own stores if better routes are advertised and in turn send out

their own records. (This description suffices for our purposes, but the curious

reader is advised to consult other sources if distance vector routing is new

territory. An introduction may be found on page 628 of Forouzan’s “Data

Communications and Networking” [51].)

We saw that single spanning trees have disadvantages, and one possible

solution is to compute multiple minimum spanning trees, each rooted at a

different vertex of the tree. However this is not viable with distance vector

protocols as a minimum spanning tree would have to be computed for each

group at each source. Instead the notion of a broadcast tree for each source

S is defined: all possible minimum spanning trees for S are subtrees of the

broadcast tree. A packet sent on the broadcast tree reaches every node in the

tree, and the broadcast tree used in a number of distance vector algorithms,

including Reverse Path Flooding (RPF), Reverse Path Broadcasting

(RPB), Truncated Reverse Path Broadcasting (TRPB) and Reverse

Path Multicasting (RPM) [50].

In RPF, the router forwards a multicast packet on all links except that

link on which the packet arrived, provided the packet arrived on the link

which is the shortest away from the source. The disadvantage of RPF is that

packets may traverse a link more than once since, if more than one router is

present on a link L, each router on L will send the out the multicast packet

to L.

This weakness was addressed in RPB, where each router determines which

of its links are child links in the minimum reverse-path to a source node.

Once this information is calculated, the router only forwards a packet from

a source outwards on a link if that link is a child link for that source. The

information needed to compute the minimum reverse-path can be found from

the unicast distance vector routing protocol. The failing of RPB is that,

while it eliminates duplicate packets, unwanted packets are still transmitted

on networks where no listeners are present.

TRPB is a routing protocol which requires listeners to inform routers of

their desire to receive traffic for particular groups. A leaf link is defined to

University of Pretoria etd - Slaviero, M L (2005)

4.2. IP Multicasting 48

be a link on which no routers are present, only listeners. If a router with a

leaf link L discovers that no listeners for group G are present on that link

(via some group membership reporting protocol, MLDv2 mentioned earlier

is an example), then it can drop outgoing packets on L addressed to G.

Distance Vector Multicast Routing Protocol (DVMRP [39]) was the first

standardised internetwork multicast routing protocol. It is based on TRPB

and is defined as an “interior gateway protocol”, that is it cannot connect

different autonomous systems together. The MBONE, which is now defunct,

was the first internetwide multicast network, and used a modified version of

DVMRP [52].

An extension to TRPB is RPM, where routers can prune not only leaf

nodes, but branches in the tree as well. This is accomplished when a router

R determines that no listeners on leaf links exist for a group G, and that no

routers in the shortest reverse-path on child links exist. The router R then

sends a prune message to its parent containing the destination group address,

which forces the parent not to forward packets for G to R. A pruned branch

has a specific lifetime; once the lifetime expires packets are sent once again

throughout the network, and routers need to issue new prune messages.

Link-State

Link-state routing protocols are newer than distance vector protocols, and

work slightly differently. Instead of routers sharing information about the

network amongst each other, they share the information about the state of

their links [33]. This value can be a combination of many factors, including

“security levels, traffic, or the state of the link” [51]. This is unlike distance

vector protocols, where the only metric stored is hop count.

Whenever the state of a link on a router changes, the new state is flooded

throughout the network to all other routers. This allows each router to store

the complete topology of the network, and each router can then calculate

a minimum spanning tree rooted at itself using Dijkstra’s algorithm [51, p.

637].

In applying link-state routing to multicasting, it is again required for

University of Pretoria etd - Slaviero, M L (2005)

4.2. IP Multicasting 49

routers to determine whether listener for a group are present. When a packet

from source S destined for group G first arrives, the router calculates a

minimum spanning tree for the tree rooted at S. Once completed, the router

knows which links to send the packet out on, and does so provided listeners

are present for G. The minimum spanning tree is cached to facilitate faster

processing.

When the state of a link is altered, the changes are flooded across the

network as described above, and cached entries are removed from all routers.

Drawbacks for link-state routing include the memory requirements on

routers, flooding of state packets throughout the network and the need to

calculate minimum spanning trees which can be complex operations.

Multicast Extensions to Open Shortest Path First (MOSPF) implements

multicast routing in a link state protocol, OSPF. Similarly to DVMRP, MO-

SPF is an interior gateway protocol and requires listeners to report group

membership. A single router is elected the Designated Router (DR), and only

the DR queries listeners about group membership and sends out link-state

advertisements. Because of MOSPF’s basis in OSPF, the protocol responds

very quickly to changes in topology, which can be needful depending on the

importance of the packets.

Core Based Trees

In an attempt to eliminate the calculation of a spanning tree per potential

group source, Ballardie et al. proposed Core Based Trees [53] in 1993. The

essential idea when using Core Based Trees is that only one spanning tree is

computed for the entire group, called the shared tree. Packets may enter the

shared tree at any point, and will be distributed to all other nodes.

Figure 4.3 is reproduced from the paper referred to above and shows the

path of a packet sent to a Core Based Tree. The drawing illustrates how

using a single core creates a possible weakness; if for some reason the core

fails then distribution on the tree becomes impossible and links may become

congested. The tree will also very probably not be a shortest-path tree for all

sources. The advantage to CBT is that it scales linearly with the number of

University of Pretoria etd - Slaviero, M L (2005)

4.2. IP Multicasting 50

routers which join the tree [53] and has reduced multicast routing state [54].

h

h

��
��

h

h

h
h

h
h

h

��
��h

@@

@
@

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�
�

�
�

�
�

�
�

c
cc

�

?
-

......................................W
Z

ZZ~

...

��=��=

@@I

@
@I

�

Packet enters
tree

Direction of packet flow
Link
Non-core router

Core router

Figure 4.3: Core Based Tree

PIM-SP

Traditional distance vector and link-state multicast routing protocols suffer

from a crippling problem: scalability [54]. Both methods at some stage

require packets to be sent throughout the network, for example with DVMRP

when a source first transmits to a group, the packet is forwarded by all routers

and only then are prune messages triggered. While this is fine within an

autonomous system, it cannot possibly scale Internet-wide. Further, packets

addressed to group G are sent on links which might have no interest in the

G.

A new architecture was required for routing multicast packets across au-

tonomous systems, and the first effort was Protocol Independent Multicast

- Sparse Mode (PIM-SP)3. The designers of the PIM-SP model recognised

that shortest-path trees and shared trees have different strengths, and allow

a group to chose whether to use a shortest-path or shared tree.

3The addition of Sparse Mode indicates that another mode is available, and this is true.
PIM-Dense Mode exists but is very similar to DVMRP, and so will not be discussed at
all.

University of Pretoria etd - Slaviero, M L (2005)

4.2. IP Multicasting 51

While PIM-SP is dependent on an underlying unicast routing protocol, it

is not associated with any particular unicast routing protocol. Sparse mode

indicates that the receivers are scattered around the Internet, dense mode

then being the situation when receivers are close to each other.

PIM-SP is different from the previous multicast routing schemes we have

examined in two key areas[54]:

1. In dense mode multicast routing (like DVMRP, for instance), initial

packets reach all routers with leaf links before pruning takes place. In

PIM-SP, routers need to explicitly join a tree.

2. Senders and receivers need to meet at a nominated Rendezvous Point

(RP), instead of tree construction taking place from data flooded on the

network.

A host wishing to join group G, issues a request which is picked up by a

Designated Router, which performs the same group management functions as

the DR in MOSPF. A separate mechanism is used to determine the RP for G

(this could be manually configured, for instance, or a host-driven protocol).

The DR then sends a PIM-Join request out on an interface towards the RP.

Each upstream router receives the join message and issues a new PIM-Join

towards the RP. Once the RP receives the join message, a note is made of the

link L on which the join request arrived, and period of keep-alive messages

are transmitted on L to reassure down-stream routers that the RP is still

active.

At the start of a transmission from source S to group G, the DR for S

encapsulates the packet in a Register message and sends the message to the

RP via unicast. The RP then unwraps the message and injects it into the

shared tree. The packet will then be delivered to all members.

If an application needs to take advantage of shortest-path tree character-

istics, eg. bandwidth requirements are such that a shared tree is insufficient,

it may request the RP to form a shortest-path tree. Once the shortest-path

tree has been formed, routers will stop accepting packets for G from the RP,

and only process packets which arrive from S.

Much detail concerning switching from the shared to the shortest-path

University of Pretoria etd - Slaviero, M L (2005)

4.2. IP Multicasting 52

tree has been omitted, the entire protocol is explained in [54] and published

for comment in [40].

BGMP

The Border Gateway Multicast Protocol is an extension to the well known

Border Gateway Protocol [55], and BGMP provides support for interdomain

routing of multicast traffic. Under IPv4, BGMP was bundled together with

Multicast Address-Set Claim (MASC), which supplied domains with blocks

of multicast addresses for use inside their domains. Because of the hierarchi-

cal assignment of IPv6 addresses, MASC has been abandoned in favour of

multicast addresses which are based on the network prefix.

Border routers construct a shared tree for each group with each other

between their domains, and run either DVMRP or PIM-DM on their interior

interfaces.

4.2.4 IP Multicast Drawbacks

Application-layer multicast has received much attention in recent years, due

to the perceived slow rate of IP Multicast deployment. In fact, as we alluded

to earlier, a number of papers seem to take this as a truism [37, 43, 56] or base

this on now out-dated information [44]. In any case, anecdotal evidence sug-

gests that since many modern routers support IPv4 Multicast, the problem

appears to be either system administrators who have no desire or necessary

skill to implement IP Multicast, or a lack of demand from customers.

If one looks beyond the ‘lack of deployment’ argument (which is tenu-

ous at best, given the state of current internetworking equipment), there

are certainly legitimate reasons to question the effectiveness of current IPv4

Multicast. Diot and his colleagues [57] make several important points, which

we introduce and discuss in the next four paragraphs.

“A long-term problem for multicast deployment is that it upsets the router

migration model that ISPs follow.” In this model, new routers are installed

on the network’s core, while the replaced routers are shifted towards the edges

of the network. In this way the network is slowly upgraded in a step-wise

University of Pretoria etd - Slaviero, M L (2005)

4.2. IP Multicasting 53

fashion and newer functionality is propagated from the core outwards. The

problem with this model is that generally IP Multicast is not supported by

older routers. If vendors do not supply patches to support multicast, then the

routers have to be replaced before they have properly depreciated. Without

this disruption, a situation may arise where full multicast is available in the

network core, but the edges lack any multicast support.

“ISPs using ... core-based protocols face a number of problems regarding

domain independence.” Many multicast protocols (not just IP Multicast)

use the notion of a rendezvous point (RP) to facilitate group management.

When an RP is situated outside of an ISP’s administrative scope, the ISP is

not able to influence the functioning and configuration of the RP in order to

improve delivery. When an RP is situated within the ISP, the ISP might not

want to waste resources for a service which none of their customers utilise.

“The current service model does not consider group management.” There

are a number of issues to be worked on:

• No support for receiver authorisation. Anyone can join a multicast

group and listen in, there are no access controls.

• A sender authorisation protocol is still in draft form [46].

• Address assignment is not integrated, so two disparate applications

transmitting to the same group will confuse listeners.

• It is possible for an attacker to send large volumes of unwanted data to

the group, causing network congestion and loss of packets.

“Providing security for multicast-based communication is inherently more

complicated than for unicast-based communication.” Specifically, encryption

combined with multicast requires complex handling of the keys used, and

positioning of access control mechanisms.

The introduction of IPv6 is a double-edged sword. On the one hand mul-

ticast is an integral part of the standard; nodes which support IPv6 must

include multicasting support and this should make multicast application de-

velopment and deployment many times easier. The nuisance as far as vendors

are concerned are twofold: new IPv6 software has to be developed for network

University of Pretoria etd - Slaviero, M L (2005)

4.2. IP Multicasting 54

devices and many standards are not yet concrete4. In many cases the proto-

cols are dissimilar from their IPv4 counterparts, and so a simple substitution

of address formats is not sufficient.

Returning to the problems with the current address model mentioned

recently, we add the address allocation problem to that list. In IPv4 multicast

addresses were assigned the range 224/8 - 239/8. MASC [55] allowed for

dynamic allocation of this space, but has not become widely deployed.

On the MBONE, applications assigned addresses to themselves in a semi-

random fashion. Once assigned, the address was advertised in a session

directory (obviously this was only available to those running MBONE specific

applications). The directory contained the address of the group which a

session would use, and thus also performed the function of address allocation.

If two application advertised the same address, a conflict would be detected

and resolved.

Handley [58] points out that a fundamental issue arises with this kind

of address allocation and it involves the scope or time-to-live (TTL) of the

address requester. The TTL field in an IPv4 packet limits the number of

hops a packet would be forwarded over. To illustrate the problem, assume

address requester R2, with TTL 10, generates and advertises A in the ses-

sion directory. If another requester R1 is more than 10 hops away from R2

(say the distance is 15 hops), it will not see the session advertisement. In a

symmetric network where all TTL values are the same, this does not consti-

tute a problem. However in the real world different TTL values are used in

disparate networks. If R1 generates A, and has a TTL of more than 15, the

advertisement will cause a clash in the session directory.

He also advocates splitting the session directory from the address alloca-

tion mechanism, which is what the author has done in Chapter 6

A more general examination of the address allocation problem can be

found in the paper by Zappala et al. [5].

The IPv6 multicast address allocation problem has not been fully studied

at this point. The address allocation problem is the topic of this dissertation,

4An example of this is the deprecation of the site-local unicast address, which occurred
during the writing of this dissertation.

University of Pretoria etd - Slaviero, M L (2005)

4.3. Application-layer multicast 55

and an analysis of the problem is provided in Chapter 5, which is followed

by a proposed solution.

4.3 Application-layer multicast

There is somewhat of a naming quandary for this model of service delivery;

the various names have already been mentioned in Section 4.1.2 and we feel

application-layer is most descriptive, so this is the convention used in the

remaining part of this chapter.

At the end of the previous section a number of concerns which have dogged

IP Multicasting were noted, and the open nature issues lead many people

to think about alternatives (a mere smattering of the available application-

layer multicast protocols may be found in [37, 42, 43, 44, 56, 59]). Key

was the fact that support for multicast exists in most desktop operating

systems, but intermediate routers are not configured for or do not support

IP Multicast. Most of the papers cited acknowledge that scalability is an

issue with application-layer multicast, but believe the benefits outweigh this.

The obvious solution was to move the multicast logic in the network

layer higher, and implement it at the application layer. The benefit of this

approach is that no changes are required to the network infrastructure [56].

Three application-layer multicast protocols are explained here, to provide the

reader with a counterpoint to the IP Multicast protocols.

All application-layer multicast protocols overlay their topologies on an

existing unicast network, which in most cases is IP. The topology of the

overlay is not necessarily a tree, in the case of Narada [44], a mesh is overlayed

on the underlying physical network. Only then are minimum spanning trees

computed for each source. The advantages of this approach are: “group

management functions are abstracted out, and [not] replicated across multiple

(per source) trees”, mesh repair is easier because maintaining an acyclic graph

is not a constraint and standard routing algorithms may be employed to

calculate the delivery tree.

An example of a protocol which follows a tree-first strategy is YOID. A

Rendezvous Point (RP), similar in function to the RP of PIM is used. A

University of Pretoria etd - Slaviero, M L (2005)

4.4. Hybrids 56

URI-like notation for encoding the address of the RP is used,

eg. yoid://foo.bar.org/wb:55555[59]. The RP does not forward data

unless it is a member of the group, its only function is to keep track of

current group members. The first member to join the group contacts the RP

and becomes the root for the group. Following an initial join, other members

who join the group obtain a list of current members of the group. One of

the current members is chosen by the joining member to be its parent, and

a connection is made to the parent. The parent can refuse the request, in

which case the joining member selects a new parent. Data is disseminated

by each root, who sends packet to its children, who in turn distribute to

their children. This recursively repeats until the packets have reached all

leaf nodes.

Both Narada and YOID make provision for refinement of the overlay

network, the difference is in the pace at which these improvements occur as

well as metrics used when creating the trees.

The Banana Tree Protocol [43] (BTP) is our final example of application-

layer multicast. It is much simpler than the two other protocols presented

so far, and makes use of a tree topology. It does not perform well under

real world circumstances as the refinement operations allowed on the tree

are limited. It is included so as to demonstrate that complex solutions are

at this point required to solve the application-layer multicast problem.

4.4 Hybrids

The final service delivery model for multicast data are hybrids between IP

Multicast and Application-layer Multicast. They are a synthesis between

the speed of IP Multicast and the network independence of Application-

layer Multicast. Interdomain packets are routed between multicast ‘islands’

by application-layer multicast and once the packets enter these islands, IP

Multicast takes over and delivers the packet to group members. The example

protocol here is HMTP, the Host Multicast Tree Protocol [37].

Again, a RP is employed to keep track of current groups. In each island

one host is elected as the Designated Member (DM) whose purpose it is to

University of Pretoria etd - Slaviero, M L (2005)

4.4. Hybrids 57

establish connections with a current member of the group, obtained from the

RP. This forms a single shared tree. Wrapped packets are passed between

DMs via tunnels and when a DM receives a packet from another DM the

packet is unwrapped and placed on the local island using IP Multicast. When

a DM receives a packet from its local island, the packet is wrapped and sent

out to all neighbours.

HMTP provides a workable, but limited-scale, solution to multicasting on

the Internet. Figure 4.4 shows what a hybrid IP Multicast/Application-layer

network might look like [37], the lines connecting the DMs are the tunnels.

Designated Member
Internal Member
Rendezvous Point
IP Multicast connection
Tunnel
IP Multicast Island

Figure 4.4: Hybrid Multicast

University of Pretoria etd - Slaviero, M L (2005)

4.5. Conclusion 58

4.5 Conclusion

This chapter has introduced the reader to the very broad world of multi-

casting. It started by defining the three multicasting categories, namely IP

Multicast, Application-layer Multicast and Hybrids.

IP Multicast was then covered in some depth, examining the mechanisms

for group management, briefly touched on programmatic semantics and dis-

cussed the many IP Multicast routing protocols. We also pointed out the

shortcomings of current multicast models.

The chapter finished off with a look at Application-layer protocols and

Hybrids, and discovered that, though they have their uses, they suffer from

scalability issues which will make their widespread deployment unlikely.

Now that the reader has an understanding of how packets are multicast

on IP networks, let us move onto Chapter 5 where the address allocation

problem is discussed, analysed and the solution requirements enumerated.

University of Pretoria etd - Slaviero, M L (2005)

59

Chapter 5

The Multicast Address

Allocation Problem

5.1 Introduction

This chapter serves to elucidate the problem of multicast address allocation

(or the malloc problem). A little more background is provided on the issue,

followed by an analysis on aspects of the problem and from that a set of

requirements is distilled that the author believes a proposed solution should

fulfill. This work is preparation for Chapter 6, where the author’s solution

is presented.

5.2 Address Configuration Methods

Multicasting, like any other data transmission method, requires at least two

resources to exchange data between hosts: addresses and links. The links

provide a means for data to be transmitted, and addresses enable the data

to be received by the correct party; who can in turn verify the source of the

data. Generally links are a hardware feature, are static in nature and beyond

the scope of this dissertation; so they are not considered further. Addresses

on the other hand can be volatile; they are often altered, both manually and

automatically. To verify that this is true, South Africans need only look at

University of Pretoria etd - Slaviero, M L (2005)

5.2. Address Configuration Methods 60

how local ADSL is implemented: the link is always on and constant, but

the subscriber’s IP address changes every 24 hours [60]. This address change

occurs automatically, and the assigned addresses are thus termed dynamic

addresses. Static addresses are those which need to be manually altered.

Generally machines which provide services have static addresses; this al-

lows potential clients to have a high degree of confidence in the fact that the

correct machine is reachable when seeking a particular service. On the other

hand, applications should be able to request unique multicast addresses from

the operating system as and when such addresses are needed. It is illogical

to force a machine or site administer to manually configure every application

on her machine or network which needs to use a multicast address. In this

case, a dynamic solution is more appropriate than a static solution, and, as

will be demonstrated, no effective dynamic solution exists at the moment.

Under IPv6, a number of options are available to the entity assigned the

task of configuring unicast addresses automatically. These can be broadly

split in stateful and stateless categories, as was seen in Chapter 2.

The stateful configuration design has partially resolved the malloc prob-

lem; however it suffers from the administrative burden that is general to

stateful configuration. The best current practice for Internet-wide multicast

address allocation uses a 3-tier address hierarchy as follows [61]:

1. A super-block of addresses is split up amongst MASC [55, 62] (Multi-

cast Address-Set Claim) servers which provide interdomain allocation.

MASC provides a protocol for distributing addresses amongst these top

level servers.

2. Once a block of addresses is allocated to a domain, it is further split up

for intradomain allocation to the Multicast Address Allocation Servers

(MAASs [61]).

3. In the last step of the architecture, applications can request addresses

from a MAAS with the MADCAP [63] mechanism.

Figure 5.1 illustrates the architecture described above, and is

self-explanatory except, perhaps, for the Undefined Links indicated by dot-

ted lines. These undefined links show where no standard protocol has been

University of Pretoria etd - Slaviero, M L (2005)

5.2. Address Configuration Methods 61

MASC
Server

Undefined
link

Tier 1

Tier 3

Tier 2

Key

Client

MAAS

Link

Figure 5.1: Current Address Allocation Architecture

developed to connect objects. In this case, there is no specification for pass-

ing addresses from MASC servers to MAASs. The contents of these protocols

are beyond the scope of this work and so details are omitted, but they were

investigated by the author since they provide a solution to the malloc prob-

lem.

Unfortunately the architecture is unworkable for the following reasons:

• Three separate protocols are required for a working architecture.

• Management of the first tier is laborious because address blocks need

to be registered and manually injected into the MASC servers, and

connections between the servers are hand-configured.

University of Pretoria etd - Slaviero, M L (2005)

5.2. Address Configuration Methods 62

• Currently no protocol exists for allocating addresses from MASC servers

to intradomain servers (MAASs). While a draft protocol was developed,

it was never adopted as standard [64].

• MADCAP is a cumbersome protocol with eight different message types

and a client/server model.

Combining the above negatives, it is difficult to see how the architecture

would work successfully. In their description of the state of the malloc prob-

lem, Zappala et al. [5] report that “MASC (and the rest of the hierarchical

allocation structure) [have] never been deployed”. In light of the our rejection

of a centralised allocation scheme, we are lead to explore a solution to the

malloc problem which uses some kind of distributed and stateless paradigm,

where the administrative burden is much lighter.

Separate from stateful/stateless arguments is the notion of a session direc-

tory, briefly mentioned in the last chapter. Once an application has somehow

been assigned a multicast address (by stateful or stateless means), it needs to

be able to advertise its presence so that potential listeners can be informed

and this is accomplished by an announcement in the session directory. Ses-

sion announcements are especially important for dynamic addresses, where

the address an application is going to use is not known amongst its listeners

prior to the session announcement.

On the MBONE, the session directory also served as the address alloca-

tor; if an address was in the directory it was obviously in use and so could not

be used by another application. In Section 4.2.4, we saw how Handley [58]

showed that a session directory which combined the functions of session an-

nouncement and address allocation has fundamental design issues, and does

not scale well. He concluded that these two functions should be split.

Handley’s paper was seminal; he made several other important obser-

vations which affect how addresses ought to be generated. He noted that

purely random based address allocation is insufficient since clashes are ex-

pected once the square root of the available addresses have been allocated.

He also espoused the idea of an address hierarchy, which would simplify the

problem to allocating addresses from a local rather than a global pool of

University of Pretoria etd - Slaviero, M L (2005)

5.3. Group Identifiers 63

addresses (this is what the 3-tier address architecture just described tried

to achieve), and advocated third party defence. Third party defence occurs

when a node prevents allocation of a dynamic address not owned by itself.

In the first comprehensive analysis of the malloc problem, Zappala et al. [5]

pointed out that the malloc problem is simply another incarnation of a well

known resource allocation problem, where varying block sizes of resources

are allocated and deallocated to differing parties over time. They apply

techniques learned in the field of hypercube-computing processor allocation

and conclude that amongst three types of addressing, prefix -based allocation

performs at least as well as any of the other two.

Handley’s and Zappala’s results mesh well; a prefix-based allocation ap-

proach naturally forms an address hierarchy. This fact forms the basis for

the author’s allocation scheme that will be described later.

5.3 Group Identifiers

In Section 2.4.2 the unicast prefix based address format was presented, and

it was explained how the format could be used to generate globally unique

multicast addresses. To recap, a unicast network prefix is prepended to a

Group Identifier (group ID) and together they form a unique address suitable

for global multicast.

Clearly then, the scheme requires nodes in a subnet addressed by a par-

ticular prefix to generate group IDs which are unique on that subnet. Before

we move on, let us examine some statistical properties of the group IDs which

nodes must generate.

The first property measured is the probability of disparate nodes ran-

domly generating identical addresses. Such an event is termed an ‘address

collision’ or ‘clash’. If nodes choose addresses in a purely random fashion,

then Figure 5.2 depicts the probabilities of collisions for varying number of

addresses generated up to 100000. The figure includes probabilities for group

ID sizes of 32, 40, 48, 56 and 64 bits (note that all points, except those for the

32 bit curve, are very close to the horizontal axis.) Interpreting Figure 5.2,

the reader will deduce that only when the group ID is 32 bits in size, will

University of Pretoria etd - Slaviero, M L (2005)

5.3. Group Identifiers 64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

20
00

0

40
00

0

60
00

0

80
00

0

10
00

00

P
ro

b
ab

il
it
y

of
co

ll
is

io
n

Number of groups

Group ID Size
32 bits
40 bits
48 bits
56 bits
64 bits

Figure 5.2: Collision Probabilities up to 100,000 addresses

random selection become a limiting factor. However even in the case when

the group ID is 32 bits, the situation is not a grave as one might imagine for

the following reason. A group ID of 32 bits in size implies that the network

prefix is 64 bits in size (see Figure 2.2 and its accompanying discussion.)

Currently, 64 bits prefixes are only assigned to single subnets, and such large

numbers of groups in such a single subnet are difficult to imagine. Further,

when a 64 bit prefix has been assigned to a single machine, the machine can

perform other non-random transformations to generate addresses which do

not cause conflicts.

Figure 5.3 graphs the same probabilities as Figure 5.2, with a maximum

of 10 million addresses allocated. The expansion of scale shows that 32 and

40 bit group ID sizes are insufficient when millions of addresses are required,

and 48 bit group ID sizes also top out. 56 and 64 bits appear sufficient up

to at least 10 million addresses.

Continuing with the assumption that addresses are randomly generated,

Handley [58] states that we can expect a collision once approximately
√

n

addresses are allocated, where n is the size of the address space. The second

group ID property examined is presented in Table 5.1, which contains the

University of Pretoria etd - Slaviero, M L (2005)

5.3. Group Identifiers 65

0

0.2

0.4

0.6

0.8

1

0

2e
+

06

4e
+

06

6e
+

06

8e
+

06

1e
+

07

P
ro

b
ab

il
it
y

of
co

ll
is

io
n

Number of groups

Group ID Size
32 bits
40 bits
48 bits
56 bits
64 bits

Figure 5.3: Collision Probabilities up to 10,000,000 addresses

calculated number of groups for 32, 40, 48 and 64 bit group ID sizes above

which one expects an address collision, followed by the average number of

addresses per group ID size that each node can reserve before an address

collision becomes likely.

The values listed in Table 5.1 are used to determine whether a single

node is allocating too many addresses. A threshold similar to that in the

table is calculated by each node, if any node tries to allocate more addresses

than the threshold then the allocation attempt is rejected. While this means

Group ID bit size
32 40 48 64√

n 65536 1048576 16777216 4294967296
Addresses per node before collision expected
100 655 10485 167772 42949672

1000 65 1048 16777 4294967
10000 6 104 1677 429496

100000 0 10 167 42949

Table 5.1: Number of addresses per node before collisions are probable

University of Pretoria etd - Slaviero, M L (2005)

5.4. Requirements 66

that at most
√

n of the address space will be used, the author feels it is a

useful simplification at this stage. The use of thresholds is expanded on in

Section 6.9.

5.4 Requirements

Thus far the reader has been shown how an address may be constructed with

a unicast prefix based multicast address and a group ID of some size. However

this is not enough to ensure that the address is indeed unique (remember

that random generation will eventually produce a collision). What is needed

is some uniqueness verifying mechanism, and this mechanism will have to

operate between disparate nodes on a network. In other words, a network

protocol must be designed which ensures that generated addresses are unique

amongst all nodes on the network participating in the protocol.

In developing a protocol for multicast address allocation, it is wise to

first ask what the requirements of such a protocol should be. If such a list

can be compiled, then a base can be established against which any address

allocation protocol can be measured.

Below are eight factors which the author believes are core in a good

allocation protocol. These factors have been distilled from numerous sources

by examining the pros and cons of the current allocation architecture [55, 61,

62, 63] and theoretical studies of the problem [5, 58]. They are first listed,

then a discussion on each factor is undertaken.

1. Dynamic allocation.

2. Distributed structure.

3. Integrable.

4. Lifetime limitation.

5. Secure.

6. Fair-use enforcement.

7. Robustness.

8. Address collision limitation.

University of Pretoria etd - Slaviero, M L (2005)

5.4. Requirements 67

5.4.1 Dynamic allocation

Firstly, allocation must occur in a dynamic manner [61]. While static alloca-

tions have their place, they are mainly used by well known services such as the

Network Time Protocol (which is assigned the addresses ff0x ::101 [65].) A

dynamic mechanism would enable applications to solicit addresses from the

underlying operating system on an ad-hoc basis, when the need for addresses

arises. The mechanism should limit the amount of interaction required by

the administrator.

5.4.2 Distributed structure

When considering processing and its location in computer networks, (at least)

two options exists. The first is that processing occurs on central machines,

which non-central nodes connect to and draw data from. The second is a de-

centralised or distributed paradigm, where processing is shared out amongst

network nodes which communicate with each other.

Each has its merits and faults: centralised processing makes adminis-

tration easier but provides potential bottlenecks or a single point-of-failure,

while distributed processing can be difficult to maintain but a failure in one

machine does not bring the whole system to its knees.

A distributed structure was chosen for three reasons. Foremost was the

denial-of-service concern; that in a centralised system a single machine fail-

ure could halt address allocation on a subnet. Secondly, a centralised system

would require two separate software programs for the client and the server.

Lastly, a distributed system does not require any additional hardware since

it runs on pre-existing network nodes. An example of a centralised system

which failed may be found in [61], and strengthens the case for a distributed

architecture. Handley’s study of session directories also indicated that dis-

tributed directories were preferable [58].

University of Pretoria etd - Slaviero, M L (2005)

5.4. Requirements 68

5.4.3 Integrable

Simply put, the scheme must be easily integrable in current networks [58, 63].

This factor, while not essential to an allocation scheme, is intended to ease

roll-out. Various elements affect the integration constraint. For example,

only those nodes interested in running the allocation tool should have to

make changes, and no alterations should be required in routers and other

network equipment. Ideally the protocol should operate at the Application

Layer.

This ties in closely with the distributed structure factor listed above,

since administrators are not burdened with deployment of extra servers and

software upgrades for routers.

5.4.4 Lifetime limitation

Even though a large pool of addresses might be available, it is inevitable

that eventually the space will become full if applications do not release their

allocated addresses. In light of this, addresses must be issued with a life-

time [55, 61, 62]. Once the lifetime of an address expires, it should then be

added back into the pool of unallocated addresses.

Nodes should be free to renew the lease on allocated addresses.

5.4.5 Secure

Security is a term with many different meanings, and even more interpre-

tations. Certainly the basic aspects of Confidentiality, Authorisation and

Integrity form three pillars amongst which a balance must be obtained, and

is a topic which numerous sources expand on [55, 61, 62].

A secure protocol used in allocating multicast addresses can have multiple

security needs. For instance, a designer might wish her protocol to only

prevent unauthorised nodes from acquiring addresses. Here some form of

authenticated protocol will suffice. However if the designer wishes to keep

the contents of the messages private and confidential, then encryption will

need to be employed. Note that if the objective of encrypting messages is to

University of Pretoria etd - Slaviero, M L (2005)

5.4. Requirements 69

hide which addresses have been allocated, the designer would do well to re-

think the inclusion of encryption. This becomes obvious when one considers

that all an attacker has to do is monitor which addresses multicast messages

are sent to, after a sequence of encrypted messages have been noted. This is

mentioned in more detail in Section 6.9. Integrity ensures the data arrives

as it was transmitted and is vitally important to network communication.

5.4.6 Fair-use enforcement

It is untenable that a single application or node can allocate the entire address

space to itself [5, 55, 63]. If a rogue can allocate all possible addresses, then

other applications and nodes will suffer from a denial-of-service whenever

they request new addresses. This is difficult to satisfy in a distributed envi-

ronment, due to the lack of a distinct arbitrator, and is the major downfall

of a distributed system. However it is not insurmountable, and the judicious

use of quotas and thresholds can improve the situation significantly.

5.4.7 Robustness

Robustness should be a cornerstone for any network protocol [55, 61, 63]; it is

included here for completeness. Specifically in this case, robustness indicates

that when error conditions such as node failures or address collisions occur,

the protocol should still be able to allocate legitimate addresses.

5.4.8 Address collision limitation

Earlier it was remarked that the generation of group IDs cannot simply take

place in a random fashion. An allocation scheme should contain some method

for decreasing the chance of an address clash [61]. Address collision avoidance

is a priority because, if done properly, addresses can be allocated without

causing excess network traffic.

Advanced collision avoidance is notably absent from a proposed dynamic

stateless allocation mechanisms [66].

University of Pretoria etd - Slaviero, M L (2005)

5.5. Conclusion 70

5.5 Conclusion

In this chapter the malloc problem was examined by providing a background

against which a solution can be formulated.

The reader was shown how a dynamic stateless protocol would arguably

provide a best-fit for possible solutions. Two statistics of the group ID were

measured, namely the probabilities of collisions and the number of addresses

per node before collisions are probable.

Lastly, eight requirements for an allocation mechanism were listed and

defined. They are dynamic allocation, distributed scheme, integrable, limi-

tation of address lifetimes, security, address space fair-use enforcement, ro-

bustness in the face of failure and address collision limitation.

In the next chapter a proposed solution which fulfills the eight require-

ments is presented.

University of Pretoria etd - Slaviero, M L (2005)

71

Chapter 6

The DAOMAP Model

6.1 Introduction

At this point the reader should be fully conversant with the multicast address

allocation problem, and perhaps have an idea how the solution presented will

function. Chapters 1 to 4 provided the requisite background which details

the function of IPv6 networking (specifically addressing, configuration and

routing), the UDP protocol and the basics behind IP Multicast. Next, Chap-

ter 5 clarified the malloc problem. Two statistics were examined which will

aid in fine-tuning a potential protocol, and eight factors which will influence

our protocol design were spelled out.

What remains is to design an architecture which satisfies the eight factors,

implement and test it, and present the results. This chapter is concerned with

the first of these, the design of a malloc architecture. We have called this

architecture the Distributed Allocation Of Multicast Addresses Protocol, or

DAOMAP.

First some assumptions and basic design philosophies are discussed. Then

the system is presented followed by its analysis. Security issues are also

worked over and the chapter is then summed up.

University of Pretoria etd - Slaviero, M L (2005)

6.2. Assumptions 72

6.2 Assumptions

The architecture presented will be used to assign a globally unique IPv6

multicast address to an application residing on a host. It is not concerned

with the allocation of addresses from the IPv4 address space, and from this

point the general terms ‘address’ or ‘multicast address’ when applied to the

DAOMAP architecture refer to a globally unique IPv6 multicast address.

While no application has so far been selected for use with DAOMAP, it is

envisaged that the type of application which will utilise DAOMAP requires

multicast addresses on a recurring ad-hoc basis. Examples might include

conferencing and local instant messaging applications. In such software, ad-

dresses are required whenever a new communication group is intiated. If we

consider a conference application, users are not constantly involved in many

conferences continually, rather one or two at the most.

Unlike other allocation structures such as MASC and its friends, DAO-

MAP is concerned only with the assignment of single addresses. This vastly

simplifies the allocation methodology, since the complex issues of expand-

ing and moving blocks of addresses in an address space [5] are simply non-

existent.

This simplification can take place without any significant loss of func-

tionality. While DAOMAP cannot assign blocks, the author feels that this

extension is unnecessary for the conferencing type of applications which will

make use of DAOMAP. Block assignment is efficient in a multi-tier allocation

architecture such as MASC, but wasted under DAOMAP. Since conferencing

type applications do not require masses of addresses, only single addresses

may be assigned.

Although the need for ad-hoc addresses will be continuous, an allocation

rate in the order of tens of addresses per node per second is unwarranted

for conferencing style applications, as pointed out above. This restriction is

reflected in the rate limiting and threshold design, as will be seen.

In the previous chapter, security was mentioned as an important factor to

keep in mind when designing a malloc protocol. Since security has already

been the subject of many sizable discourses a current solution is partially

University of Pretoria etd - Slaviero, M L (2005)

6.3. The DAOMAP Architecture 73

used instead of building our own. Section 6.9 contains a discussion on the

chosen solution.

6.3 The DAOMAP Architecture

6.3.1 Components

A functional implementation of DAOMAP is termed a Distributed Address

Allocator (DAA) and has four logical components:

1. Data store

2. Address generation module

3. Network communications module

4. Client communications module

A data store provides state retention facilities. The stored data is used

by all three modules listed below, and its format is laid out in Section 6.4.

The address generation module is responsible for producing addresses

which are probably unique. It utilises data found in the state store in order

to avoid generating addresses which have already been allocated, or which

might be allocated in the future. Section 6.5 contains more details.

The network communications module passes data between disparate DA-

As, by means of a standardised protocol. It is the responsibility of this

module to ensure that an address is unallocated and to lay claim to the

address in such a way that all other DAAs mark the address as allocated.

The protocol also makes provision for informing DAAs when an address has

expired, as well as protecting addresses which have already been assigned.

This protocol is simple and easy to implement, is distributed in nature and

is discussed in Section 6.6.

The last component is the client communications module. This module

provides calling applications with methods to invoke the functions of the

local DAA. An API is presented in Section 6.7.

Figure 6.1 shows the four components of a DAA, as well as where the DAA

is situated in a computing environment. The digram also illustrates which

University of Pretoria etd - Slaviero, M L (2005)

6.3. The DAOMAP Architecture 74

.
API Call

.

.

.

.

Communication
Client

Module

Network

Module
Communication

Address
Generator

Data
Store

Network

Key

Interface

DAA

Application

Application

Figure 6.1: DAA Architecture

University of Pretoria etd - Slaviero, M L (2005)

6.3. The DAOMAP Architecture 75

components are accessible from outside the DAA, and which are private. Two

of the components are communication modules which provide interfaces to

the DAA and are used by local client applications and other DAAs running

on the network. Their interfaces are indicated by arrowed lines. The pair of

internal components service the DAA and are therefore unaccessible to any

agent other than the DAA.

In Section 2.2 it was mentioned how a multi-homed machine has more

than one network interface. Since each interface has different address at-

tributes, a separate DAA is run on each interface. Thus each machine will

have one DAA per link. However if, through some arcane setup, a machine

has more than one DAA per link, the only sacrifice will be in terms of re-

source usage; DAAs on a machine do not interact with each other except

via the network communications module and will therefore not adversely af-

fect one another. When referring to a DAA in the description below, it is

assumed the description is specific to a DAA on a single link; thus ‘partic-

ipating DAAs’ refers to all DAAs on a single link rather than all possible

DAAs in a multi-link network.

6.3.2 Functional Overview

In order to better understand how DAAs interact with one another, a broad

overview is needed before delving into the specifics of each component in

individual DAAs. A number of details are glossed over here in favour of a

clear description, however the intricacies of each step are provided later.

When a client application requests an address from the DAA; the DAA

generates an address that it believes is not ‘owned’ by another DAA. Two

items are worth noting here: the owner of an address is defined as the DAA

which reserved the address by means of the process set out below, and the

DAA does not have to generate an address guaranteed to be unowned. DAAs

use a predetermined method in order to select an address to allocate. The

method is a function which, when applied to the address last allocated pro-

duces a new address. This deterministic process allows DAAs to predict

what addresses are going to be allocated by other participants, and so pre-

University of Pretoria etd - Slaviero, M L (2005)

6.4. Data store 76

emptively avoid allocation attempts on those addresses. Addresses without

owners are also called ‘unallocated addresses’.

The DAA places the unallocated address in a packet and sends out a

Claim for the address on the attached link; the address is now in the ‘allo-

cating’ stage. n Claims are sent spaced t time intervals apart, after which the

address is termed ‘allocated’, assigned to the DAA and the requesting appli-

cation is passed the address. The sender of a Claim message is the claimant,

and n has been set to three for our purposes.

If an address is actually allocated to another DAA, then a portion of the

DAAs respond with a Collide message which informs the claimant that the

address is, in fact, already allocated (the sender of the Collide might not

be the actual owner of the address; this is part of the distributed nature

of the protocol.) The sender of a Collide message is the collidant, and the

occurrence of a Collide being issued for a Claim is termed an ‘address clash’

or ‘collision’. When an address clash takes place the claimant immediately

halts the claim process, generates a new probably unallocated address and

restarts the claim process with the new address.

Figure 6.2 portrays a bird’s eye-view of the process a DAA undertakes

when claiming an address.

6.4 Data store

The data store consists of two tables: addresses and nodes. addresses

stores information about allocated addresses and nodes holds information

about other participating DAAs. The tables should be optimised for efficient

lookup, since that is the operation will occur most often.

The addresses table contains a record of each address allocated on

the link, regardless of the owner. Each record holds at least the following

information:

(MulticastAddress, UnicastAddress, Lifetime)

MulticastAddress A globally unique multicast address.

UnicastAddress The multicast address owner’s unicast address.

University of Pretoria etd - Slaviero, M L (2005)

6.4. Data store 77

Request
Address

Generate
Address

Send
Claim

Collide

Received

Sent

n Claims

Allocate and
Return
Address

Yes

No

No

Yes

Figure 6.2: Claim process overview

University of Pretoria etd - Slaviero, M L (2005)

6.5. Address generation module 78

Lifetime Length of time in seconds that the address is allocated to the

owner, commencing from when allocation takes place. Effectively this

is a countdown timer which, once expired, forces the removal of the

record from the addresses table.

Lookups will be performed using the field MulticastAddress as the key.

The second table, nodes, stores information about specific DAAs on the

link. This information consists of these fields:

(UnicastAddress, AddressCount, ClaimCount, CollideCount,

CollisionCount, LastAllocatedAddress, NextAllocatedAddress,

Ignore)

UnicastAddress The address of a DAA.

AddressCount The number of addresses allocated to that DAA.

ClaimCount The number of claim messages sent by that DAA.

CollideCount The number of collide messages sent by that DAA.

CollisionCount The number of collisions that DAA has shared with the

local DAA.

LastAllocatedAddress The last multicast address that DAA was allocated.

NextAllocatedAddress An address which that DAA will probably attempt

to allocate next. See Section 6.5.

Ignore A boolean value indicating whether messages from this node should

be ignored.

Lookups will be performed using the fields UnicastAddress or

NextAllocatedAddress.

6.5 Address generation module

The claim/collide mechanism used is hindered by the fact that the alloca-

tion process requires at least n × t time units, where n is the number of

Claim packets sent by a claimant in the successful claim and t is the time

University of Pretoria etd - Slaviero, M L (2005)

6.5. Address generation module 79

interval between packet transmission. If an address clash takes place, then

the allocation process has to restart, more packets are transmitted, the pro-

cess is extended and the overall time taken increased. Given N , the number

of Claims packets sent in a successful claim without any collisions, a key

performance factor is then the number of packets sent before the address is

allocated. Expressed differently, the goal is to keep the difference nt − Nt

as close to 0 as possible. This is done by striving to complete a successful

first allocation. This requires the careful choosing of addresses, such that the

allocation process performs better than simple random selection of addresses

(which does not scale well, as mentioned in Section 5.2).

Assuming there is a general method to improve on random selection,

then presumably the first allocation attempt be more probable to succeed

than pure random address selection. If the method is general enough, then

subsequent allocation attempts in the case of collisions would also be more

likely to succeed than pure random selection. Luckily there is a method

by which collisions can be reduced, and it has two pillars: a deterministic

function for address generation and a state store of allocated addresses.

The deterministic address generator coupled with the state store empower

the DAA to predict what addresses other DAAs will try to assign at some

point in the future. Since the DAA can also predict what addresses it will

generate, potential clashes can be avoided with other DAAs, making the

allocation process more efficient.

Of course, it is vitally important that all participating DAAs implement

the same deterministic function otherwise address generation is no better

than random allocation. Possible algorithms will now be discussed, followed

by a general method which improves address selection, presented as an algo-

rithm.

6.5.1 Deterministic Algorithms

The deterministic function chosen must, when given a set of inputs, reliably

produce a corresponding set of outputs which remain identical no matter how

many times the experiment is repeated. For our purposes, the set of possible

University of Pretoria etd - Slaviero, M L (2005)

6.5. Address generation module 80

1

3

4

5

6

8

9

10

11

12

13

14

15

16

17

18

19

20

21

7

2

Generator seeded at address 1

Generator seeded at address 3

Address clash

Key

Address

Figure 6.3: Address Generation Streams

inputs are all unicast prefix multicast addresses (described in Section 2.4.2),

and the outputs must be suitable for transformation into a unicast prefix

multicast address.

Figure 6.3 shows an abstracted view of a sequence of generated addresses.

The paths between addresses represent the actions of the deterministic func-

tion. Note that the sequence is fixed; whenever the function is given the

input 3, its output will be 5. Chaining the output of one iteration of the

function to the input of the next iteration results in a sequence of addresses.

Thus any time the function is initialised with 3, the sequence will always

be 3,5,6,9,17,18,20,21. Likewise, when the function is seeded with 1,

the sequence will always be 1,4,11,8,14,16,20,21. Observe how the two

sequences converge at the address 20, and note that from this point on the

streams will be identical. It should then be clear that once an address clash

occurs, sequences need to be reseeded otherwise their uniqueness property

falls away.

University of Pretoria etd - Slaviero, M L (2005)

6.5. Address generation module 81

Concerning the function itself, the only requirement is that the generated

addresses are spread across the address space. The difficulty of inverting

the function is less important, as security in this regard holds little benefit.

If an attacker can easily deduce the input address used to generate a given

address, all that has taken place is information leakage. However, a function

which hides its input and does not add enormous complexity should, in this

case, be chosen.

Three possible generation functions are presented, after which one will

be selected. They are: the rand(3) function from the GNU C Library [67],

the MD4 algorithm [68] and lastly the MD5 algorithm [69]. The innards

of the three functions are not examined here; that is beyond the scope of

this dissertation. What is of interest is the applicability of each function in

generating multicast addresses.

In order to benchmark the range and distribution of each function, each

was randomly seeded and run through 5000 iterations to produce 5000 group

IDs of 32 bits. This process of random seeding and iterative generation was

then repeated for a group size of 64 bits. (32 and 64 bits are the minimum and

maximum group sizes, and demonstrate the limits of the functions.) The 5000

generated group IDs in each experiment were then sorted in ascending order

by treating each group ID as a whole number. In the upcoming graphs, plots

of sorted data aid in determining if the set is evenly distributed throughout

the range and not biased towards a particular area, and plots of unsorted

data visualises the distribution of the original sequence.

This process then leaves each function with four data sets: sorted with

32 bit group size, unsorted with 32 bit group size, sorted with 64 bit group

size and unsorted with 64 bits group size. A chart is plotted for each of the

four data sets, for each function leaving sixteen graphs in total. These will

be discussed along with the function they represent.

GNU Libc rand(3)

The rand(3) function supplied with the GNU C Library version 2.3.2 im-

plements a “non-linear additive feedback random number generator” [67],

University of Pretoria etd - Slaviero, M L (2005)

6.5. Address generation module 82

according to the appropriate entry in the system manual. After conducting

an experiment with the function, data was collected in the manner described

previously, and the plots in Figure 6.4. The unsorted points are widely scat-

tered, and the sorted points show an even distribution throughout the range.

This means that the function produces values which are pseudo-random and

evenly distributed, and are not concentrated in a few regions of the group

ID space.

There is, however, a major drawback to the rand(3) function, which is

hidden in the scale on the vertical axes. The maximum value of the range

never exceeds 231 − 1. The reason for this is that the rand(3) call returns

a 32 bit signed value. This drawback effectively halves the available address

space for a group size of 32 bits, and reduces the 64 bit group to a quarter

of its potential size. Such a weakness is untenable, especially since a large

address space supports a more efficient architecture.

One small point about Figure 6.4(d): the bend in the curve at iteration

2500 is due to a shift in scale on the vertical axis, rather than any peculiarity

of the function. In fact, the distribution is linear.

A further reason to disregard the rand(3) function is that it has different

implementations on different platforms. For example, even when seeded with

identical values, the rand(3) function produces a different output under

Linux (with glibc 2.3.2) to NetBSD 1.6.2.

The search to find a suitable function continues.

MD4 and MD5

The MD4 and MD5 algorithms were invented by Ron Rivest to be used

for the creation of message digests. They are published standards [68, 69]

and produce a 128 bit output from an arbitrary length input. Features of

these functions include speed, security, compactness and optimisation for

Little-Endian machines [70]. They are examined together since they are very

similar, the main difference being that MD5 is a little more “conservative in

design” [69] and is thus slightly slower. Figures 6.5 and 6.6 show the plotted

data for the two functions.

University of Pretoria etd - Slaviero, M L (2005)

6.5. Address generation module 83

0

5e+08

1e+09

1.5e+09

2e+09

2.5e+09

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00
50

00

A
d
d
re

ss

Iteration

(a) Unsorted 32 bit group size

0

5e+08

1e+09

1.5e+09

2e+09

2.5e+09

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00
50

00

A
d
d
re

ss

Iteration

(b) Sorted 32 bit group size

0

5e+18

1e+19

1.5e+19

2e+19

2.5e+19

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00
50

00

A
d
d
re

ss

Iteration

(c) Unsorted 64 bit group size

0

5e+18

1e+19

1.5e+19

2e+19

2.5e+19

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00
50

00

A
d
d
re

ss

Iteration

(d) Sorted 64 bit group size

Figure 6.4: Function: rand(3)

University of Pretoria etd - Slaviero, M L (2005)

6.5. Address generation module 84

The graphs show how effective the functions are, with uniform distribu-

tion virtually throughout both the sorted and unsorted sets (again, the slight

bend in the sorted plots at 64 bit group sizes are a trick of scale.)

Since it has already been stated that security (ie. the level of effort

required to invert the function) is not a priority, MD4 is more attractive

because of its speed advantage over MD51. It is thus selected for use in the

address generation module.

6.5.2 General Address Selection Algorithm

We are now in a position to develop a general address selection algorithm

which will reliably produce addresses that have a high chance of being unique.

The algorithm is presented in pseudo-code form, and then discussed. The al-

gorithm is not optimised; however it will be seen that optimisation is possible

given certain assumptions about the data store.

Functions used in Algorithm 1 are:

MD4 This function returns the MD4 hash of the given address, with the

network prefix mapped over the hash. This is more than just the MD4

algorithm invented by Rivest; computing the digest of an address pro-

duces some random looking value which is not very useful. The MD4

function referred to here modifies the produced hash so that it conforms

to the unicast prefix based multicast address format, by replacing the

first few bytes with the standard prefix type, and inserting the network

prefix in the correct part of the address. See Section 2.4.2.

GenerateRandomAddress When called, a random address is generated.

The algorithm has two stages: the first constructs an address while the

second checks if the address exists, or is likely to exist. Construction of

the address occurs on line 1, where the address to be checked is built by

running our MD4 function on the old address and transforming it into a

new address, and line 25, where a random address is selected. The reason for

this random selection is that if execution has proceeded to this point, then

1In spite of this slight advantage, one could easily pick MD5 here as well without loss
of functionality. The choice is near arbitrary.

University of Pretoria etd - Slaviero, M L (2005)

6.5. Address generation module 85

0
5e+08
1e+09

1.5e+09
2e+09

2.5e+09
3e+09

3.5e+09
4e+09

4.5e+09

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00
50

00

A
d
d
re

ss

Iteration

(a) Unsorted 32 bit group size

0
5e+08
1e+09

1.5e+09
2e+09

2.5e+09
3e+09

3.5e+09
4e+09

4.5e+09

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00
50

00

A
d
d
re

ss

Iteration

(b) Sorted 32 bit group size

0
5e+18
1e+19

1.5e+19
2e+19

2.5e+19
3e+19

3.5e+19
4e+19

4.5e+19

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00
50

00

A
d
d
re

ss

Iteration

(c) Unsorted 64 bit group size

0
5e+18
1e+19

1.5e+19
2e+19

2.5e+19
3e+19

3.5e+19
4e+19

4.5e+19

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00
50

00

A
d
d
re

ss

Iteration

(d) Sorted 64 bit group size

Figure 6.5: Function: MD4

University of Pretoria etd - Slaviero, M L (2005)

6.5. Address generation module 86

0
5e+08
1e+09

1.5e+09
2e+09

2.5e+09
3e+09

3.5e+09
4e+09

4.5e+09

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00
50

00

A
d
d
re

ss

Iteration

(a) Unsorted 32 bit group size

0
5e+08
1e+09

1.5e+09
2e+09

2.5e+09
3e+09

3.5e+09
4e+09

4.5e+09

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00
50

00

A
d
d
re

ss

Iteration

(b) Sorted 32 bit group size

0
5e+18
1e+19

1.5e+19
2e+19

2.5e+19
3e+19

3.5e+19
4e+19

4.5e+19

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00
50

00

A
d
d
re

ss

Iteration

(c) Unsorted 64 bit group size

0
5e+18
1e+19

1.5e+19
2e+19

2.5e+19
3e+19

3.5e+19
4e+19

4.5e+19

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00
50

00

A
d
d
re

ss

Iteration

(d) Sorted 64 bit group size

Figure 6.6: Function: MD5

University of Pretoria etd - Slaviero, M L (2005)

6.5. Address generation module 87

Algorithm 1 Address generation algorithm

1 new address←MD4(old address)
2 repeat
3 clash found← false
4 for each record rec in addresses
5 do
6 if new address = rec.multicastaddress
7 then
8 clash found← true
9 break

10 endif
11 endfor
12 if clash found = false
13 then
14 for each record rec in nodes
15 do
16 if new address =

MD4(rec.lastallocatedaddress)
17 then
18 clash found← true
19 break
20 endif
21 endfor
22 endif
23 if clash found = true
24 then
25 new address← GenerateRandomAddress()
26 endif
27 until clash found = false
28 old address← new address

University of Pretoria etd - Slaviero, M L (2005)

6.5. Address generation module 88

an address clash has occurred and the address sequence must be reseeded

with a random value.

The verification stages (lines 3—22) check that the address is not cur-

rently allocated, by looking in the addresses table, and that it is not going

to be allocated, by applying the MD4 function to the last allocated address

of each entry in the nodes tables.

Algorithm 1 is unoptimised, as mentioned before, but is generic and can

be implemented without the need for additional support. The main limiting

factor is the capability of the data storage mechanism; if it only supports

sequential access then each record needs to be retrieved to examine it. How-

ever, if the data store supports advanced indexing then improvements can

be made. A further restriction is the running of MD4 on each record in the

addresses table as the record is retrieved. It would be better to reposition

the MD4 function at record insertion; this ensures that the running time is

not compounded by the number of entries in the nodes table. An optimised

version of the address generation process is given in Algorithm 2.

This new algorithm assumes that a database of some kind is supported,

and that it allows the defining of secondary indices (that is, a key other

than the primary key can be used to look up entries. In this case, the

NextAllocatedAddress field in the nodes table is used.) Also, the MD4

function has been removed from line 16, and it is now run when data is

inserted (as will be demonstrated when Algorithm 4 is discussed later.)

New functions used in Algorithm 2 are:

AddressLookup Given a Multicast address, return the corresponding en-

try from the addresses table, otherwise return null if no such entry

exists. This function is used in numerous locations to read entries from

the addresses table.

NodeLookupIndex Given a Multicast address, return the corresponding

entry from the nodes table using the NextAllocatedAddress field as

the key, otherwise return null if no such entry exists. This function

is only called from within the address generation module, since it is

searching for possible future address allocations.

University of Pretoria etd - Slaviero, M L (2005)

6.5. Address generation module 89

Algorithm 2 Address generation algorithm

1 new address←MD4(old address)
2 repeat
3 clash found← false
4 if AddressLookup(new address) 6= null
5 then
6 clash found← true
7 endif
8 if clash found = false

and NodeLookupIndex(new address) 6= null
9 then

10 clash found← true
11 endif
12 if clash found = true
13 then
14 new address← GenerateRandomAddress()
15 endif
16 until clash found = false
17 old address← new address

University of Pretoria etd - Slaviero, M L (2005)

6.6. Network communications module 90

6.6 Network communications module

So far the internal structure of data storage has been introduced, along with

the method which will be used to generate addresses. Our collective attention

is now turned to the network component that a DAA must implement. A

protocol is defined by which DAAs may communicate, as well as the steps

to be taken when data is received or sent.

All messages on the network are sent to the All Nodes address, ff02::1

(Section 2.4.2), which is highly suitable since every IPv6 capable host on the

link is required to join this group. The data is transferred using UDP packets

(see Chapter 3) on port 49152. The selection of 49152 as the port number

is not arbitrary; this is the start of the port range defined by IANA to be

private or unregistered [71]. If DAOMAP were to become widespread, then

an official port would be requested.

DAOMAP messages are simple, and have the following format:

Ver Code Message ID Address

Address Lifetime/Padding

0 8 16 48

176

Figure 6.7: DAOMAP Message Format

The fields are given below:

Ver DAOMAP version number, currently 0x01. (1 byte)

Code Indicates whether the message is a Claim or Collide. A Claim has

code 0x03 and a Collide has code 0x04. (1 byte)

Message ID In a Claim message, this field determines the packet number

in a Claim sequence, otherwise in a Collide message it is zero. (4 bytes)

Address A unicast prefix based IPv6 multicast address. (16 bytes)

Lifetime/Padding A Claim message contains the lifetime a message is

valid for, in a Collide message this field is zeroed out. (4 bytes)

Thus DAOMAP messages are always 22 bytes in length. The two 32 bit

fields (Message ID and Lifetime) are always in network byte order [7]. The

University of Pretoria etd - Slaviero, M L (2005)

6.6. Network communications module 91

Address field is treated as a sequence of four 32 bit words with the most

significant bit of the address in the first word, and each word is converted to

network byte order before transmission. The 8 bit fields require no meddling.

It is not enough to only define how messages are exchanged; behaviour

on receipt of messages as well as API triggered procedures must also be

prescribed. The events and their responses which need clarification are:

• Address allocation.

• Receipt of a Claim message.

• Receipt of a Collide message.

Address Allocation

When a client application issues a request for an address via the API, the

DAA generates an address, issues 3 Claim messages spaced t time units apart

and then returns the address to the application, assuming no Collides are re-

ceived. The pseudo-code is given in Algorithm 3. In that algorithm and

subsequent ones, message refers to a DAOMAP message of the format de-

scribed previously and the fields of the message are concatenated to message

with a period (.).

Unseen functions used in Algorithm 3 are:

GenerateAddress Returns a probably unique address. The internals of

the function is the general allocation process, described in Algorithm 2.

SendPacket Transmits the DAOMAP message to the group.

Pause Halts execution for the specified time period.

Important to note here is that if a Collide is received, then Gener-

ateAddress on line 17 will produce a random address.

Claim Received

When a DAA issues a Claim message as above, the receivers verify that the

sender is not to be ignored and determine if the claim attempt is for an ad-

dress listed in the addresses table. If not, and another allocation attempt

University of Pretoria etd - Slaviero, M L (2005)

6.6. Network communications module 92

Algorithm 3 Address Allocation

1 message.version← 0x01
2 message.code← 0x03
3 message.address← GenerateAddress()
4 message.lifetime← RequestedLifetime
5 allocated← true
6 repeat
7 i← 3
8 message.messageID← message.messageID +

message.messageID mod 3
9 while i > 0 and allocated = true

10 do
11 SendPacket(message)
12 Pause(t)
13 if receive Collide for message.address
14 then
15 allocated← false
16 Increase the CollideCount field in nodes

for src, create entry if none exists.
17 message.address← GenerateAddress()
18 endif
19 i← i− 1
20 message.messageID← message.messageID + 1
21 endwhile
22 until allocated = true
23 return message.address to application

University of Pretoria etd - Slaviero, M L (2005)

6.6. Network communications module 93

for the same address is not ongoing, then a timer event is queued to add the

address in message.messageID modulus 3 seconds, since a successful allo-

cation requires three Claims. If an allocation attempt for the same address is

in progress by another node (either this node or any other node) then a Col-

lide is randomly issued ie. not all DAAs will respond. If the address already

exists and is owned by the sender of the Claim message, then the Lifetime

field in addresses is updated. Lastly, if the address already exists in the

addresses table but the source of the Claim does not match the owner as

listed in the table, the message has no effect.

This process has been formalised in Algorithm 4, where message has the

same meaning as before, src is the IPv6 unicast address of the sender of the

Claim, rec is a row entry from the addresses table returned by a lookup of

an address and myaddress is the IPv6 unicast address of the local DAA. The

number of DAAs which will respond with a Collide when a clash is detected,

is determined by the variable response ratio. This variable is expressed

as a probability between 0 and 1 that a node will transmit a Collide message.

New functions used in Algorithm 4 are:

IgnoreMessage Returns true if the sender is to be ignored, false oth-

erwise. See Section 6.9.

SearchQueuedAllocation Returns a record containing the details of an

allocation attempt present in the timer queue.

SendCollide Constructs a Collide message for the provided address and

transmits the message to the group.

InsertAddress Inserts the given address into the addresses table. The

MD4 function is run on the address to produce the NextAllocated-

Address field.

TotalNodes Returns the total number of rows in the nodes table.

Rand Generates a random number between 0 and 1.

RemoveQueuedAllocation The allocation event for the given address is

removed from the timer queue.

University of Pretoria etd - Slaviero, M L (2005)

6.7. Client communications module 94

QueueAllocation Creates an allocation event for the given address, and

places it on the timer queue.

Collide Received

The last event of interest arises when a Collide message is received. This

message is either in response to an allocation attempt by the local DAA, or

involves other DAAs. If it is the former case, then the allocation attempt is

cancelled and restarted with a new address as per Algorithm 3 (the generic

address allocation process). On the other hand, if a Collide arrives for an

address which a foreign DAA is attempting to allocate (evident by the pres-

ence of an allocation event in the timer queue), then that allocation attempt

is cancelled and a Collide is randomly issued.

When a Collide arrives for an address which has already been allocated

(simply, it is present in the addresses table), no action is taken. This

ensures that the addresses table remains consistent across all nodes.

Algorithm 5 specifies the steps to be taken when a Collide is received.

6.7 Client communications module

The last of the four internal components is the client communication module.

This takes the form of an API, and three calls are specified:

mcast addr acquire(lifetime) Returns a unicast prefix based IPv6 mul-

ticast address valid for lifetime.

mcast addr update(address, lifetime) Renews the lease on address to

lifetime.

mcast addr release(address) Informs the DAA that it may release ad-

dress.

The DAA must carefully determine that the application calling either

one of mcast addr release or mcast addr update on an address is

the same application which called mcast addr acquire. Otherwise it is

University of Pretoria etd - Slaviero, M L (2005)

6.7. Client communications module 95

Algorithm 4 Claim Receipt Process

1 Claim message received from src
2 Increase the ClaimCount field in nodes for src,

create entry if none exists.
3 issue collide = false
4 if IgnoreMessage(src) = true
5 then
6 return
7 endif
8 rec = AddressLookup(message.address)
9 if rec = null

10 then
11 event = SearchQueueAllocation(message.address)
12 if event 6= null and event.src 6= src
13 then
14 issue collide = true
15 Increase the CollisionCount field in nodes for src,

create entry if none exists.
16 if event.src = myaddress
17 then
18 Cancel and restart allocation process.
19 endif
20 RemoveQueuedAllocation(message.address)
21 elseif event = null
22 then
23 QueueAllocation(message.address, src)
24 endelseif
25 else
26 if rec.unicastaddress = src
27 then
28 Update Lifetime in addresses table for src
29 InsertAddress(message)
30 else
31 issue collide = true
32 endif
33 endelse

University of Pretoria etd - Slaviero, M L (2005)

6.7. Client communications module 96

34 if issue collide = true
35 then
36 total nodes← TotalNodes()
37 response nodes← total nodes ∗ response ratio
38 for i = 1→ 3
39 do
40 if Rand() < (response nodes/total nodes)
41 then
42 SendCollide(message.address)
43 Pause(t)
44 endif
45 endfor
46 endif

Algorithm 5 Collide Receipt Process

1 Collide collide message received from src
2 Increase the CollideCount field in nodes for src,

create entry if none exists.
3 if IgnoreMessage(src) = true
4 then
5 return
6 endif
7 If Collide is for an address this DAA is attempting to allocate,

then Algorithm 3 applies, otherwise continue.
8 event = SearchQueuedAllocation(collide message.address)
9 if event 6= null

10 then
11 RemoveQueuedAllocation(collide message.address)
12 if event.src 6= myaddress
13 then
14 Clear NextAllocatedAddress field in nodes for src.
15 endif
16 endif

University of Pretoria etd - Slaviero, M L (2005)

6.8. Operational Aspects 97

possible for a rogue application to change lease details of addresses not allo-

cated to that application.

6.8 Operational Aspects

Now that the functions of the four units have been specified, a closer exam-

ination of their inter-operation is warranted. In particular, an example of

packet exchange would benefit the reader and various, minor, details need to

be expounded.

Dealing with the last of these inter-operation aspects first, on startup the

addresses and nodes tables are assumed to be empty. The DAA chooses

an interface (which is not a loopback device) to bind to and determines the

best prefix to use on that interface. The best prefix would be the longest

globally routable prefix available. Prefixes can have limited lifetimes; if this

is the case then the DAA needs to refresh the prefix when its lifetime expires.

In the same vein, when the lifetime of an address expires, that address should

be removed from the addresses table and the relevant entry in the nodes

table has its AddressCount field decremented. Of course, nothing stops

the group owner from continuing to use the address; however that type of

lifetime enforcement is beyond the scope of this work. The initial seed for

the deterministic function would preferably be based on a hardware address

present in the network interface. If no such address is present, a random seed

is selected.

With regards to an example of how packets are exchanged, consider Fig-

ure 6.8. Node C wishes to allocate an address a1 and so generates a Claim

message which is distributed to all participating DAAs. Unfortunately this

address is already owned by Node D, but Node A generates the appropri-

ate Collide, again to all DAAs. Node C receives the Collides and restarts

the allocation process, this time with new address a2. Luckily no conflicts

are caused and the address is successfully allocated after 3 Claims have been

sent. The other nodes also issue Collides, spaced some time units apart, until

at least three Collides have been sent.

University of Pretoria etd - Slaviero, M L (2005)

6.9. Security 98

Node

Collide

Claim

Key

a
2

allocated

a
1

1st Collide for

a
1

1st Claim for

a
2

1st Claim for

3rd Claim for a
2

a
1

2nd Collide for

a
2

2nd Claim for

a
1

3rd Collide for

A B C D

T
im

e

Figure 6.8: DAOMAP Packet Exchange

6.9 Security

In Section 5.4.5 the author stated that security is a vital feature of address

allocation. The problem is quantifying that statement. How can one ensure

that a system is secure? Can a system ever be considered completely secure?

Can a system be both secure and usable? Many more such questions can

be asked, with each answer contributing a small piece to the overall idea of

‘security’.

The author has chosen to demonstrate DAOMAP’s security by first iden-

tifying possible weaknesses and well known attacks against multicasting. The

task is then to test against the catalogued risks. Kruus [72] lists six general

threats against IP Multicast traffic, namely: eavesdropping, unauthorised

data generation, alteration, destruction, denial of service and illegal data use.

Two basic security requirements as stated by Canetti et al. [73] are secrecy

and authenticity. Keeping in mind all this, it is not the author’s intention to

provide a complete introduction to the area of secure multicast; indeed there

University of Pretoria etd - Slaviero, M L (2005)

6.9. Security 99

are numerous texts which do just that (Kruus’ and Canetti’s provide a de-

parture point.) What is important is the application of an external security

mechanism to DAOMAP.

The current Internet standard for security at the IP level is IPSec [74],

which provides for encryption of packets at the network layer. Since it was

not designed to support multicast groups, we will not delve into too much

detail, since the application of IPSec to DAOMAP is a stop-gap until a

multicast alternative is available, however a brief introduction will aid the

reader in following the discussion below. IPSec allows hosts or gateways to

specify Security Associations (SA) between itself and other hosts or gateways

(in the case of DAOMAP, between the host and a multicast group.) Each

SA has various fields, detailing how packets applicable to the SA should be

dealt with. For example, what encryption algorithms are to be used, what

keys to use and anti-replay devices.

IPSec’s Encapsulating Security Payload (ESP) [75] in transport mode

was selected to secure the multicast data used by DAOMAP. Two modes are

available for ESP, transport and tunnel. Tunnel mode is normally used to

create Virtual Private Networks, where whole IP packets on a secure network

are encrypted by an end-point, transmitted across an insecure network and

arrive at the other end-point where the encrypted packet is decrypted and

placed on the secure network on the far side. Transport mode on the other

hand secures everything after the IP header, and is normally used by applica-

tions such as DAOMAP. Features of this mode include “confidentiality, data

origin authentication, connectionless integrity, an anti-replay service . . . and

limited traffic flow confidentiality” [75]. Of interest are origin authentication

and connectionless integrity.

In practical terms, whenever a packet leaves a DAA addressed to the

group, it is encrypted using a specified encryption scheme by a common

group key which is manually set2. The recipient’s IP stack decrypts the

payload and passes the clear data to the application. Unfortunately this

manually keying is required since automatic keying with IKE [76] is not

possible. Further, since all messages to that group are encrypted, it may

2Distribution of the key is beyond the scope of this work.

University of Pretoria etd - Slaviero, M L (2005)

6.9. Security 100

impact on the functioning of other protocols.

A drawback of IPSec applied to multicast is that, while messages can be

secured within a group, it is not possible to authenticate individual sources.

Hence it is only possible to say that a message has arrived from a node which

possesses the common group key, rather than from a particular node3. This

is partly mitigated by assuming if the node has knowledge of the group key,

then it is ‘trusted’, however more protection within the sheltered confines of

the group is needed.

Returning to Kruus’ threats, eavesdropping, data generation and alter-

ation and illegal data use by attackers outside the group are solved by the

use of IPSec. The remaining two, denial of service and data destruction, are

seemingly unsolvable under current Internet conditions. If either of these

attacks occur, a more coordinated response involving numerous parties (for

example, network and system administrators as well as service providers) is

required. Thus IPSec is used as far as possible to protect against outside

attacks, and at the point IPSec fails to provide external security, DAOMAP

will become vulnerable from an external position.

One additional attack which does exist for external adversaries is the

monitoring of MLD messages which emanate from a DAA (See Section 4.2.1).

In this way it is possible to build a list of addresses which are allocated to a

DAA by observing which unicast prefix based multicast addresses the node

joins. This information leakage attack has denial of service implications, and

is discussed shortly.

The process of securing DAOMAP inside the group also asks which of

the six threats are applicable. Eavesdropping is a non-issue since all mem-

bers ideally need to receive all messages. Data generation suffers from the

problems mentioned previously about source authentication. Alteration in

the absence of source authentication reduces to the problem of data genera-

tion, since an attacker might intercept a message, change data and encrypt

it and transmit the message. Destruction of messages is a network issue and

3Work by the Multicast Security (msec) Working Group at the IETF with regards to
many aspects of multicast security is dealing with this source authentication problem [77,
78], however little has been standardised.

University of Pretoria etd - Slaviero, M L (2005)

6.9. Security 101

would involve more than DAOMAP could provide, although judicious use

of the messageID field in the packet combined with source authentication

may provide a possible solution in keeping track of messages which have not

arrived. Illegal use of the data is limited to knowing which addresses are

assigned to any particular DAA.

The meaty concern facing DAOMAP are denial of service attacks (DoS),

both from outside as well as inside the group. As mentioned before, if an

external attacker E notices that node N has issued a MLD Report for address

a, then E can flood the link with messages addressed to a. These may or

may not overcome N , depending on the nature of resources available to N ;

however the DAA on N will never receive the messages since the network

layer will have filtered them out as they will not be encrypted with the

group key. Source Specific or Filtered Multicast (Section 4.2.1) would allow

for filtering at the router of possible external DoS attacks.

Internal DoS attacks are most important, and tie in closely with fair use

enforcement. Four instances of DoS attacks are relevant to DAOMAP, where

an attacker could:

1. try claim all possible addresses in the address space.

2. force collisions by issuing Collides in response to legal Claims.

3. force collisions by issuing Claims for addresses known to be allocated or

in the process of being allocated.

4. combine the above attacks with changing MAC and IPv6 addresses.

6.9.1 Claiming all addresses

To prevent a single DAA from claiming all addresses in the address space, a

ratio is required to determine whether a node has too many addresses. Ta-

ble 5.1 provided estimates at which address collisions become likely; however

in terms of ratios this becomes
√

2prefix−length

number of nodes
. Once a node has more than

its share of the space, that is, AddressCount in the nodes table rises above
√

2prefix−length

number of nodes
, Collide messages are issued randomly as per Algorithm 4.

This prevents a reflection attack whereby an attacker can force a single DAA

University of Pretoria etd - Slaviero, M L (2005)

6.9. Security 102

to respond to all Claims with Collides, and thereby find itself ignored.

6.9.2 Collide attacks

If a maleficent DAA starts issuing Collides for every Claim message received

then its CollideCount will increase. A time-based metric is needed; so many

Collide messages per second are allowed, after which the source is ignored.

6.9.3 Claim attacks

Perhaps a DAA decides to send Claim messages for addresses known to be al-

located. In line with DAOMAP, a certain ratio of the nodes will respond with

Collide messages. While this happens, the ClaimCount and CollideCount

of the various parties will be increasing. Again, a time-based threshold is

suitable for protection against Claim attacks. Since the attacker cannot pre-

dict which nodes will respond, the adversary effectively finds itself attacking

the entire group, rather than a single node.

An adversary could also attempt to issue Claims for addresses which are

in the process of being allocated (that is, the attacker receives a Claim for an

address and immediately issues a Claim for the same address.) The goal of

such action might be to prevent allocation of an address. In this particular

case, the CollisionCount field is increased only for the sender of the second

Claim (evident in Algorithm 5). Once this field crosses another time-based

threshold, the node is ignored. We discuss the relative functionings of the

thresholds shortly.

6.9.4 Combined attacks

The last of the attacks surveyed uses spoofing of source MAC and IPv6 ad-

dresses in conjunction with any of the above three attacks. The issue is that

entries in the nodes table are per-IP address. If an attacker can continually

change her address, then the safeguards afforded by the thresholds are ren-

dered useless. A program such as arpwatch [79], which keeps track of MAC

University of Pretoria etd - Slaviero, M L (2005)

6.9. Security 103

and IPv6 addresses would allow group members to determine where attacks

originate from.

6.9.5 Thresholds and packet discarding

In Algorithms 4 and 5 the function IgnoreMessage was used with the

proviso that it be defined later. That point has arrived: Algorithm 6 details

how IgnoreMessage operates. Once a DAA has been flagged as ignored

by this function, it remains ignored.

The only new function introduced in Algorithm 6 is NodesLookup()

which returns that entry from the nodes table where the primary key matches

the passed address.

The time-based thresholds operate by increasing the ClaimCount,

CollideCount and CollisionCount values at particular events such as Claim

or Collide receipt, and decrementing the values at regular intervals (say, every

second reduce the count by 1.)

A relation needs to be defined between the three maxima of the values,

in order that attacks are correctly prevented. To summarise the functions

of each threshold, ClaimThreshold prevents simple Claim flood attacks,

CollideThreshold prevents an adversary from preventing allocation from tak-

ing place by issuing Collides for every Claim received and CollisionThreshold

stops an evil-doer from denying allocations by duplicating allocation at-

tempts.

We define two relations:

Relation 1 ClaimThreshold > CollideThreshold

Relation 2 ClaimThreshold > CollisionThreshold

The reasoning for Relation 1 is that to prevent a Collide attack, the

attacker should be ignored before the legal claimant. Relation 2 is similar in

ensuring that an adversary is ignored whenever a attempt is made to interfere

with the allocation process by issuing duplicate Claim messages.

University of Pretoria etd - Slaviero, M L (2005)

6.9. Security 104

As will be seen, when defining the actual numerical relationships we chose

to use rate limits in order to maintain the relationships, rather than absolute

thresholds. However the relationships still hold.

No relation is defined between CollideThreshold and CollisionThre-

shold, since the attacks they prevent are unrelated.

Now that the function has been presented, the general mechanism for rate

limiting is described. Only the theory is dealt with here; simulations follow

in Chapter 7.

As described earlier in Section 6.4, each node has an entry in the nodes

table where counts of Claims and Collides received from that node, as well

as number of Collisions caused, are stored. These counts are periodically

decremented by a time event (Figure 7.4). If, at any stage, a count exceeds

the threshold as presented in Algorithm 6, it is marked as ignored and all

future packets from that node will be discarded.

Eight parameters affect the protecting function IgnoreMessage(), and

each is examined in detail. Three thresholds, respectively ClaimThresh-

old, CollideThreshold and CollisionThreshold, as well as the re-

sponse ratio, are used directly in the function to determine when rate

boundaries have been crossed. The remaining four, namely Decrement-

Interval, ClaimReduce, CollideReduce and CollsionReduce are timer-rela-

ted and provide limits per time interval for various events.

response ratio As mentioned in Section 6.6, this parameter controls how

many nodes respond when Collides need to be issued. Depending on

the number of nodes present, this value should shift; the justification for

this is easily understood. Suppose response ratio is defined as 0.1,

and the total number of participating DAAs is less than ten, then it is

very probable that occasionally no Collides are sent when they should

be. If the opposite extreme is visited and response ratio is set to 0.9,

then generally 90% of the nodes will issue Collides when such messages

are needed, which is undesirable due to scalablility concerns.

University of Pretoria etd - Slaviero, M L (2005)

6.9. Security 105

Algorithm 6 Ignore Message Function

IgnoreMessage(source)

1 rec = NodesLookup(source)
2 if rec.ignore = true
3 then
4 return true
5 endif

6 fair portion←
√

2prefix−length

TotalNodes()

7 if rec.addresscount > fair portion
8 then
9 Update nodes such that the Ignore field is true for source.

10 return true
11 endif
12 Calculate thresholds (Section 6.9.5).
13 if rec.claimcount > ClaimThreshold
14 then
15 Update nodes such that the Ignore field is true for source.
16 return true
17 endif
18 if rec.collidecount > CollideThreshold
19 then
20 Update nodes such that the Ignore field is true for source.
21 return true
22 endif
23 if rec.collisioncount > CollisionThreshold
24 then
25 Update nodes such that the Ignore field is true for source.
26 return true
27 endif
28 return false

University of Pretoria etd - Slaviero, M L (2005)

6.9. Security 106

Collidants
RR

Group Size
1009080706050403020100

12

10

8

6

4

2

0

Figure 6.9: Behaviour of response ratio

We define the response ratio as follows:

response ratio =
1

2 ln(TotalNodes())

This definition has two major implications. One is that, on average, at

least two nodes will respond when a Collide is required. The second is

that the response ratio does not grow linearly, which is important

if hundreds of groups members (or more!) are expected. The graph

depicted in Figure 6.9 shows how this definition of the response ratio

produces a flattening curve in the average number of Collidants which

will reply when a collision is detected.

The graph also shows how the response ratio gradually decreases

when the size of the group is increased.

DecrementInterval This is the period between all counter decrements

described below, and should be less than the period between legal Claim

or Collide transmissions. This restriction ensures that legal DAAs can

transmit at the peak rate without being punished. By default, the

period between Claim or Collide messages is one second, so Decre-

University of Pretoria etd - Slaviero, M L (2005)

6.9. Security 107

response ratio 0.108574
CollideReduce 10.857363
ClaimReduce 108.573624

Table 6.1: Parameter values with 100 nodes

mentInterval should be some interval marginally shorter than 1 sec-

ond (for instance, 950ms.)

CollideReduce Every DecrementInterval, each CollideCount in no-

des is decremented by this amount. In effect, it is the maximum number

of Collides allowed per DecrementInterval. The value is tightly

bound to response ratio (Section 6.6) since the more nodes on the

link, the more Collides would need to be issued. It has been set to

response ratio × TotalNodes(). Basically, this value defines the

maximum rate a node may legally send packets at.

ClaimReduce Similar to CollideReduce, but limits the rate of Claim

packets. Since it has already been determined that more Claims than

Collides are allowed (Section 6.9.5), it is set to 50% over the maximum

rate for Collide packets, or 1.5× CollideReduce.

The determination of this constant has taken place carefully; a subtle

attack occurs when the number of Claims allowed far exceeds the legal

rate for Collides. To demonstrate the problem, assume that the group

size is 100 and a node may, without fear of penalty, issue Claims at a

rate ten times that permitted for Collides. Using the definitions of re-

sponse ratio, CollideReduce and ClaimReduce as given above,

then Table 6.1 provides the numerical values for each of the three pa-

rameters.

Now an adversary who is able to send Claims does the following: he

notes at least 108 addresses which are already allocated. He then cre-

ates a Claim for each address and sends these off rapidly. Every other

node that receives these Claims and also has a record for each address

showing the address to be allocated, schedules a Collide sequence for

that address, in keeping with DAOMAP.

University of Pretoria etd - Slaviero, M L (2005)

6.9. Security 108

Thus, every second each node examines all 108 Collides and (using the

response ratio, Algorithm 4 abstracts this process), decides whether

or not to send a packet. In this example, on average the node will send

a packet 0.108574% of the time, or

0.108574× 108 = 11.725992

packets. But this is greater than the allowed CollideReduce of

10.857363. Thus the attacker could force some nodes to exceed the

legal Collide transmission rate. To ensure this does not happen, Re-

lation 3 needs to hold for all possible group sizes. While this relation

remains true, an attacker cannot force legitimate nodes from exceeding

their allowed Collide sending rate.

Relation 3 response ratio×ClaimReduce < CollideReduce

Clearly, setting the ClaimReduce to ten times that of the Collid-

eReduce is excessive; and so a factor of 1.5 was chosen. The difference

between the two multipliers is clear in Figures 6.10 and 6.11.

In each graph, the left and right side of Relation 3 are plotted against

group size. If an intersection occurs between the two lines, then at some

stage Relation 3 does not hold. In the first graph, Figure 6.10, the only

overlap occurs when there are 2 nodes in the group. In can be argued

that this simple case is of no interest; if the attack succeeds, only the

attacker will ignore the victim. The remaining points show a widening

of the lines; this indicates that the larger the group size, the greater

protection is provided against this type of attack.

However, when examining Figure 6.11 an overlap is visible until the

group size exceeds 148, and the constant 10 is then completely unsuit-

able for our purposes.

CollisionReduce Similar to CollideReduce, but counts the number

of duplicate Claims a node can issue. It is set to response ratio ×
TotalNodes().

University of Pretoria etd - Slaviero, M L (2005)

6.9. Security 109

RR x ClaimReduce
CollideReduce

Group Size
10009008007006005004003002001000

80

70

60

50

40

30

20

10

0

Figure 6.10: ClaimReduce = 1.5×CollideReduce

RR x ClaimReduce
CollideReduce

Group Size
10009008007006005004003002001000

80

70

60

50

40

30

20

10

0

Figure 6.11: ClaimReduce = 10×CollideReduce

University of Pretoria etd - Slaviero, M L (2005)

6.10. Compliance to our requirements 110

CollideThreshold Once a CollideCount exceeds this value, the node is

ignored. Effectively this is the number of DecrementIntervals a

node can maintain peak transmission rate for, prior to its packets being

dropped. Set to 3×CollideReduce.

ClaimThreshold Similar to CollideThreshold, once a ClaimCount

oversteps this boundary the node is ignored. Set to 3×ClaimReduce.

CollisionThreshold Similar to CollideThreshold, once a Collision-

Count oversteps this boundary the node is ignored. It has been set to

3×CollisionReduce.

6.10 Compliance to our requirements

Now that the DAOMAP architecture and mechanism have been presented,

it is a good idea to ascertain how well it fits in with the requirements listed

in Section 5.4.

Dynamic allocation DAOMAP provides for completely dynamic address

allocation. No addresses are statically assigned, save for the single ad-

dress which is used for message exchange. This goal has been achieved.

Distributed structure The core enabler of DAOMAP is the unicast prefix

based IPv6 multicast address. This address format allows DAOMAP

to exists without any hierarchy of address servers. The distributed

structure is scalable, since it only has to be deployed at the network

edge. This goal has been achieved.

Integrable Because the design specifically chose UDP for packet delivery,

any system which supports UDP over IPv6 can run a DAA. The running

of such a DAA does not affect other services, nor places heavy burdens

on administrators save for manually keying the IPSec rules. This goal

has been achieved.

Lifetime limitation This feature is present in DAOMAP, although enforce-

ment thereof in applications is not. This goal has been mostly achieved.

University of Pretoria etd - Slaviero, M L (2005)

6.11. Conclusion 111

Secure Two positions of attack on the group were considered, external and

internal. The use of IPSec nullifies most external attacks, and those

which are not covered are not specific to DAOMAP. Internal attacks

could be vastly reduced by the addition of source authentication, which

it not available at present. However the definition and positioning of

three thresholds, each designed to prevent a specific attack, enforces the

need for legal traffic to outlast illegal traffic. The goal has been mostly

achieved.

Fair-use enforcement By defining thresholds for messages and calculating

average number of groups per DAA, fair-use of the address space and

network resources is enforced. This goal has been achieved.

Robustness DAOMAP is robust in that re-sends are built-in to realise a

high level of probability that packets get transmitted correctly. When

address collisions occur, the protocol can resolve such cases. When a

node fails, other nodes are still able to allocate addresses independently

of the failed node. This goal has been achieved.

Address collision limitation Another cornerstone of DAOMAP, collision

prediction and limitation is provided through a deterministic address

generator. This goal has been achieved. A side issue here is that only
√

n

of the address space is utilised. Future work should focus on utilisation

of the entire address space.

To summarise, six of the eight targets have been attained, whilst two

were mostly attained. Introduction of source authentication would increase

the number of requirements reached to seven. The remaining issue of lifetime

enforcement is not currently possible.

6.11 Conclusion

This lengthy chapter has introduced the architecture behind the author’s

proposed solution to the malloc problem, DAOMAP. Four components, the

data store, address generator, network and client communication modules

were defined and their behaviour described.

University of Pretoria etd - Slaviero, M L (2005)

6.11. Conclusion 112

Six algorithms providing in-depth behavioural details were listed, along

with their descriptions. The functions required for the correct operation

of the algorithms were enumerated and their arguments and returns values

loosely described.

The subject of securing DAOMAP messages was examined, and con-

cluded with the application of IPSec to DAOMAP.

Lastly, DAOMAP was analysed with respect to the requirements de-

scribed in Section 5.4 and it was found that DAOMAP achieved six of the

eight goals named, with future enhancements possibly leading to seven of the

eight fully achieved. The remaining requirements were mostly achieved, and

are currently beyond the control of DAOMAP.

In the next chapter the implementation of DAOMAP is presented.

University of Pretoria etd - Slaviero, M L (2005)

113

Chapter 7

Implementation

7.1 Introduction

In this chapter, the author’s implementation of DAOMAP is documented

and benchmarked.

We begin by describing the internal structures used, and how they in-

teract. Flowcharts are used to depict the nature of execution, and provide

insight into the program design. Next, benchmarks illustrate how the sys-

tem functions under normal conditions, and the chapter is concluded with

simulations of identified attack scenarios.

7.2 Platform

Before the details of the implementation are discussed, let us first examine

the tools used to create it. The DAOMAP prototype consists of more than

3000 lines of code, written in the C programming language [80]. While

crafted for Linux, it will run on most Unix-type operating systems with

minor modifications in the networking code. Specifically, the 2.6 series of

the Linux kernel was used, as this has the best support for IPSec and IPv6

amongst the various Linux releases. The GNU[81] toolchain was used to

build the software, composing of make, gcc (the GNU Compiler Collection),

as and ld.

University of Pretoria etd - Slaviero, M L (2005)

7.3. Internal Components 114

Libraries used include the standard libraries plus the pthread, math,

Berkeley DB and OpenSSL libraries.

The application consists of two parts: the first runs as a daemon which

processes DAOMAP network traffic and allocates addresses to applications;

whilst the second is a library which other applications can link against. This

library provides the client APIs mentioned earlier which allow these appli-

cations to request addresses. The API calls connect to the daemon over a

Unix domain socket, as will soon be seen. This prototype only supports one

running daa per node, but is easily extensible to multiple interfaces.

The daemon is called daa and the library libdaomap.

7.3 Internal Components

7.3.1 Data Store

The most common operation performed on the data store are lookups. A

linear search through the table would have been inefficient, and so version 4

of the Berkeley DB [82] was selected to provide data storage functionality.

From their website, it is “the most widely-used embedded data management

software in the world, is open source and runs on all major operating systems,

including embedded Linux, Linux, MacOS X, QNX, UNIX, VxWorks and

Windows.” Its small footprint (less than 500k) makes it ideal for use by

DAOMAP, and the API provides calls for direct access to data, without the

need for a separately executing database engine and query layer [82].

Two separate databases are kept, for the addresses and nodes tables

respectively. Each database uses a balanced tree to store data, with the key

being an IPv6 address in bit format. Duplicate keys are not allowed, and

a secondary index was created for the nodes table. This secondary index

allows lookups to be performed on both the address of a node, as well as the

next address it is probably going to attempt to allocate (Algorithm 2).

In Appendix A, a brief tutorial displaying the Berkeley DB functionality

is provided.

University of Pretoria etd - Slaviero, M L (2005)

7.3. Internal Components 115

7.3.2 Deterministic Function

As was declared previously, the MD4 algorithm was selected as the determin-

istic function. The implementation provided by the OpenSSL1 [83] library

was utilised.

7.3.3 Network Module

The network module makes use of the standard BSD compatible socket in-

terface [84, p. 57] available under Linux. A UDP over IPv6 socket is created,

and the kernel is then informed via the setsockopt(2) call that the socket

is a Multicast socket. Interestingly, no MLD reports are issued when the ker-

nel is instructed to join the ff02::1 group, in accordance with the MLDv2

specification. This is a special case, as all IPv6 capable nodes must join this

group on network initialisation.

While host Endianness is accounted for with the correct byte-swapping

procedures, the code used to determine the prefix length is specific to Linux.

When the software is ported to other OSes, only that code portion will require

modification.

IPv6 socket code is provided in Appendix B.

7.3.4 Client API

Interaction between the daemon and client is achieved with the use of a Unix

domain socket [84, p. 373] which the daemon monitors. The client calls a

stub in libdaomap which connects to the Unix domain socket and passes an

instruction over the socket. This instruction is either to allocate an address

or update the lifetime of an allocated address. If a client wishes to release

an address, the lifetime is merely updated to zero, and the address will then

expire.

Since all clients on a single machine use the same Unix domain socket

to communicate with the daemon, some kind of authentication is required

1OpenSSL provides SSL/TLS functionality, as well as general purpose cryptographic
functionality.

University of Pretoria etd - Slaviero, M L (2005)

7.4. Operational Flowcharts 116

when lifetime update operations are executed, otherwise malicious clients

could force the release of addresses owned by other applications. Unix do-

main sockets provide for sender credentials; that is, whenever a packet is

received over a Unix domain socket which has the SO PASSCRED [85] option

set, the user and group identifiers as well as process identifiers are passed as

ancillary data to the message. The daemon records which process an address

was allocated to, and then any operations concerning that address are only

allowed from the owning process. These credentials are filled in by the kernel,

so applications cannot trick the daemon by spoofing credentials.

An example on how to use sender credential passing is provided in Ap-

pendix C.

7.4 Operational Flowcharts

Each daa has two threads of execution: the main controlling thread which

communicates with clients, generates addresses, sends and receives from the

network and queues events, and a timer thread which acts on the time-based

events queued by the controlling thread. Four flowcharts are presented: one

for each of the threads and two which depict sub-processes. The sub-processes

are explained first, followed by the thread flowcharts.

7.4.1 Sub-processes

Figure 7.1 provides the mechanism for accessing the addresses and nodes

tables. As can be observed, serial access to the data store is enforced by

means of a lock. Our application uses the mutexes provided by the Linux

implementation of the IEEE’s POSIX thread library [86], or libpthread [87].

A single lock must be acquired before accessing the data store. This ensures

that consistency and integrity of the data stores is maintained.

In order for the two threads of execution to communicate, they share a

common area in memory. This area is protected identically to the data stores

above; a mutex ensures that only one thread can ever access the memory

segment at a time. Figure 7.2 displays the steps taken by a thread when

University of Pretoria etd - Slaviero, M L (2005)

7.4. Operational Flowcharts 117

Release resource lock

Process data

Acquire resource lock

ADDRESSES or
NODES

Figure 7.1: Processes A and N

accessing the shared memory (note: this memory area is not POSIX shared

memory obtained with shmat() and shmget(), it is merely a global variable

both threads have access to.)

7.4.2 Main thread

At first glance Figure 7.3 can be quite daunting; there are numerous branches

with a number of steps in each as well as copious amounts of flow-lines.

However the diagram need not be too intimidating; it is divided into three

main components: network traffic handling, Unix domain packet handling

and communication with the timer thread. These three are linked by the

thick line on the left of the flowchart. Scattered throughout the flowchart

are references to the sub-processes A, N and Q. These have already been

provided in Figures 7.1 and 7.2.

Each component is handled in isolation:

Network Once a packet arrives on the network socket, it is copied from

the transport layer, after the necessary IPSec transforms have been

completed. A decision is then made as to whether the packet is to be

accepted. This judgement is the result of Algorithm 6, which outlines

the IgnoreMessage function. If the packet is allowed through, then,

University of Pretoria etd - Slaviero, M L (2005)

7.4. Operational Flowcharts 118

Release resource lock

Process data

Acquire resource lock

Queue
Shared
Memory

Figure 7.2: Process Q

depending on the type of packet, it is processed accordingly.

Collides for address which are in the process of being allocated force the

cancellation of the allocation process for the address contained in the

Collide message. If the allocation attempt was locally initiated, then a

new attempt commences restart with a new address.

Claims for addresses which have not been allocated cause the address to

be queued for allocation, while address clashes with allocated addresses

force the generation of Collides.

Note that no IPv6 packets are sent by the main thread, all transmission

is deferred to the timer thread.

Unix Two types of messages are accepted over the Unix domain socket:

allocations and updates. Allocation requests cause the address genera-

tion algorithm given in Algorithm 2 to proceed. A Claim event is then

placed on the timer queue. Updates are preceded by credential exami-

nation; only the process owning an address may alter its lifetime. Once

authorised to do so, the lifetime is changed locally and a Claim message

carrying the new lifetime is placed on the timer queue.

This system has no capacity for forcing clients to release addresses. If a

process carries on using an address past expiry, the daa cannot interfere.

University of Pretoria etd - Slaviero, M L (2005)

7.4. Operational Flowcharts 119

Inter-thread communication The smallest of the three components, it is

only concerned with checking if an address has been allocated by the

timer thread, and if so, returning the address to the correct client over

its open Unix domain socket.

7.4.3 Timer thread

Unfortunately it is not as easy to discern a common path in the flowchart

representing the timer thread, Figure 7.4, as it was for the main thread.

Simplifying, the thread stores a queue of timer events, sorted by the absolute

time of each event’s timeout. When a timeout triggers, or the status of the

queue changes (for example, when the main thread alters the queue), the

queue is re-examined for events which might have timed out. The list of

timed out events is removed from the queue, and processed. Once processing

of each event has completed, the thread halts execution once again, waiting

for either a timeout to occur or queue status to change.

Events are limited in the number of times they can be repeated (Claim

and Collide messages are only sent three times each, for instance); and actions

depend on whether events are finalised or being repeated. Of interest is the

Collide branch for repeating events, where a decision is made whether to send

a Collide for a non-local allocation. That decision is detailed in Algorithm 4,

lines 36—46.

Importantly, when a Claim event has passed through the queue three

times, it is assumed that allocation was successful since no Collides were

received. The address is then added to the addresses table and considered

allocated. Similarly, when a Claim is received from another node, then, as

per the Claim receipt process laid out in Algorithm 4, an allocation event is

placed on the timer queue. Once this event times out, then the address is

added to the addresses table.

Waiting for either a timeout or status change is accomplished via the

pthread cond timedwait(3) [88] call.

University of Pretoria etd - Slaviero, M L (2005)

7.4. Operational Flowcharts 120

Unix

Unix

LAN

Input
Packet

Is

Allowed?
Packet

Type?

Packet

OK?

Credentials

Allocated?
Address

Queue Claim in
timer thread

Copy from
timer thread

Socket

Input
Packet

Socket

Domain Packet
Unix

Arrived?

IPv6

Arrived?
Packet

Send
Response

address
to client

Return

Type?

Packet

Lifetimes
Update

Local
Address?

Update
Counters

in progress?
Allocation

Remove from
timer

Queue allocation
in timer thread

Already
Allocated?

source?
Attempt by

in progress?
Allocation

Queue Collide in
timer thread

Allocation
by local
node?

Remove allocation
from timer thread

Q matches Claimed
address

Source

Queue Collide in
timer thread

Lifetimes
Update

Q

Q

Q

N

Q

Q

A

Q

Remove pending
Claims from
timer thread

Generate
Address

Queue Claim in
timer thread

A

Q

No

Yes

Yes

Yes

Yes

No

Yes

No

No

UpdateOther
No

Other Collide

No

No

Yes

Yes

Yes

Yes

Claim

NoNo

Yes

Yes

No

Yes

No

Yes

No

Allocate

Figure 7.3: Main thread

University of Pretoria etd - Slaviero, M L (2005)

7.4. Operational Flowcharts 121

LAN

LAN

is ?

address in a

is ?

What
type of event

E

Is
E

local allocation?

packet to be
sent?

Is

Send claimHas

enough?
 repeatedE

Send Collide

Requeue
event

Reset
prefix

Clear
ADDRESSES

Clear
NODES

Add to
ADDRESSES

What
type of event

E

Add
timeout
event

address
Remove

Another
event in ?L

Wait until timeout fires
or staus of queue changes

Q A

Q

Q

A

N

Decrement
counters

Q

A

N

Remove list of timed
out events from time
queue and place in L

Place next unprocessed
event from in EL

No

Yes

Yes

Yes

Yes

No

No

No

Claim/Alloc Address timeout Other

Claim Collide
timeout
Prefix Counters Alloc

Figure 7.4: Timer thread

University of Pretoria etd - Slaviero, M L (2005)

7.5. Benchmarking 122

7.5 Benchmarking

The model and implementation have been presented to the reader, and so

the viability and performance of these should be demonstrated. Such an

exhibition forms a baseline which must be of sufficient standard, and against

which future work will be judged.

The results obtained sought to emulate a group of normal DAAs in a

LAN, by measuring various properties whilst allocation and deallocation took

place.

The LAN test was conducted on an isolated 10Mb network amongst 23

nodes with a 64 bit prefix length and 32 bit group ID. Each node ran a single

instance of the daa application, as well as a single instance of a request

simulator. This request simulator’s purpose was to allocate addresses as fast

as possible (remembering that the DAA enforces a 1 second pause between

packets, so a single allocation causes the client to wait for at least 3 seconds

before another address can be requested.) The simulator issued an update on

an already allocated address roughly 20% of the time, and about 60% of the

allocated addresses were explicitly released by the simulator. The remaining

40% would eventually timeout.

Thus the simulator provides a conjectured2 series of allocation, update

and release requests to the DAA.

Running the experiment over days proved invaluable in tracking scalabil-

ity and stability bugs. Once the daa application was stable, shorter experi-

ments could be conducted. The results presented here were gathered during

a three hour run of the request simulator.

The first graph, Figure 7.5, shows the ratio of allocations originating from

the network to allocations locally sourced. It is a function of the number of

nodes in the network, and notes the direct interest a node has in network

traffic. When fewer nodes are connected, on average each node issues a

greater proportion of Claims.

Another method to determine node interest is to directly plot the number

2The ambiguity here is unavoidable, since this has never been deployed in the real
world. One can only conjecture how ‘normal’ usage of such a system might appear.

University of Pretoria etd - Slaviero, M L (2005)

7.5. Benchmarking 123

Average
Local allocations to Network allocations

Node

R
a
ti
o

2520151050

0.04562

0.0456

0.04558

0.04556

0.04554

0.04552

0.0455

0.04548

0.04546

0.04544

0.04542

0.0454

Figure 7.5: Allocation Ratio

of Claims sent versus the number of Claims received, as in Figure 7.6. Sent

and received Collides were left out since in all cases those figures were zero.

The next statistic is important since it demonstrates the low likelihood

of collisions. Figure 7.7 illustrates that no Collide messages were sent at all

during the test. The significance could be somewhat mitigated in view of

the fact that the test was only run over three hours, however the smallest

possible group ID does provide the maximum probability of a collision. Note

the figure displays successful allocations, not just packets sent.

Recall that addresses are generated by a deterministic function. The

performance of the function is measured in Figure 7.8, where breaks from

the sequence are recorded against continuations. As can be seen, no breaks

were noted, implying that no collisions occurred. A longer simulation run

would eventually produce such a clash, however for our purposes this was

sufficient.

University of Pretoria etd - Slaviero, M L (2005)

7.5. Benchmarking 124

Claims sent
Claims received

Node

N
u
m

b
er

o
f
p
a
ck

et
s

2520151050

300000

250000

200000

150000

100000

50000

0

Figure 7.6: Packet origination

Collisions
Allocations (Local+Network)

Node

T
o
ta

l

2520151050

70000

60000

50000

40000

30000

20000

10000

0

Figure 7.7: Number of allocations and collisions

University of Pretoria etd - Slaviero, M L (2005)

7.6. Attack Analysis 125

Sequence incorrect
Sequence correct

Node

T
o
ta

l

2520151050

60000

50000

40000

30000

20000

10000

0

Figure 7.8: Deterministic function performance

7.6 Attack Analysis

The final results presented are traces of simulated attacks. These simulations

will show how DAOMAP nodes behave in the presence of a malevolent node

who has access to the group key, and is thus part of the group and can

attempt to influence other members.

Six attack scenarios have been identified for analysis, and are depicted in

Table 7.1. The scenarios were selected to represent all stages of DAOMAP;

each scenario is the intersection between a packet type (Claim or Collide) and

a stage in the allocation process (Unallocated, Allocating or Allocated, Sec-

tion 6.3.2). The cells contain references to the simulation for their respective

attack scenarios.

Claim Collide

Unallocated Simulation 1 Simulation 2
Allocating Simulation 3 Simulation 4
Allocated Simulation 5 Simulation 2

Table 7.1: Attack Scenarios

University of Pretoria etd - Slaviero, M L (2005)

7.6. Attack Analysis 126

Traces are presented in table form and reproduce various actions which

may take place as well as the effect such actions have on the ClaimCount,

CollideCount and CollisionCount for each node3. Actions may include

packets being transmitted or timers decremented, and are placed in the first

row. The result of an action, if any, is given below the action in the form of

changes to the counts stored.

Before the simulation is explained, a notation is introduced.

1. ai denotes an allocated address.

2. xi denotes an unallocated address or an address in the allocating phase.

3. xi|ai is either an allocated or unallocated address.

4. Nodes are represented by a slanted capital, such as A.

5. A set of nodes is denoted by {}.

6. The packet type is either Claimk(xi|ai) or Collidek(xi|ai) where k is the

packet sequence number and the address xi|ai is carried by the message.

7. The node → packet expression indicates that node sent packet to the

group, where node is the node name and packet is a packet type. It is

assumed that network errors are absent.

8. ⊖ indicates that a decrement event has passed, that is each count in

the nodes table has been decremented by the correct amount.

The general scenario used in the simulations is this: the group has four

nodes, A, B, C, and D. A assumes the role of the attacker in all scenarios.

The traces show counts from the nodes table of D, a member of the group.

Since the group size has been fixed at four, the calculated values for the pa-

rameters affecting the IgnoreMessage function described in Section 6.9.5

are given in Table 7.2. These values have been rounded up to the nearest

integer, to facilitate clearer observation, and remain constant throughout all

simulations.

To understand the traces, the reader should first identify the scenario

being played out as well as the nodes involved. Then, starting with the left-

3In the actual traces, shortened versions of these count names are used, respectively
Claims, Collides and Collisions

University of Pretoria etd - Slaviero, M L (2005)

7.6. Attack Analysis 127

most event, digest an event by determining what type of action occurred and

what the consequences were. Consequences are placed directly below the

action which caused them.

In three of the five simulations, some of the nodes are left out of the

traces. The reason for this is that counts for those nodes do not change.

Only when an action invokes a change in a value, is the new value printed.

Once a count has exceeded its threshold, the node is then ignored and the

trace halts.

response ratio = 0.360
CollideReduce = 1.443 or 2

ClaimReduce = 2.164 or 3
CollisionReduce = 1.443 or 2

CollideThreshold = 4.328 or 5
ClaimThreshold = 6.492 or 7

CollisionThreshold = 4.328 or 5

Table 7.2: Calculated Parameter Values

7.6.1 Flooding Attacks on Unallocated Addresses

The first two scenarios to be dealt with simulate trivial flooding attacks where

the attacker, A, attempts to flood the group with many Claim messages for

unallocated address, or Collide messages containing allocated or unallocated

addresses.

Simulation 1 shows how a node issuing Claims is ignored since Claims

for A rises above ClaimThreshold given in Table 7.2. Note the decrement

action and the effect on the Claims count for A.

Similarly, when A issues Collides for unallocated or allocated addresses,

Simulation 2 shows how A is also ignored. This trace applies to both allocated

and unallocated addresses, since according to the DAOMAP specification

other nodes issue no responses to these Collides.

University of Pretoria etd - Slaviero, M L (2005)

7.6. Attack Analysis 128

Claim/Unallocated

A
→

C
la

im
1
(x

1
)

A
→

C
la

im
1
(x

2
)

A
→

C
la

im
1
(x

3
)

A
→

C
la

im
1
(x

4
)

A
→

C
la

im
1
(x

5
)

A
→

C
la

im
1
(x

6
)

⊖ A
→

C
la

im
1
(x

7
)

A
→

C
la

im
1
(x

8
)

A
→

C
la

im
1
(x

9
)

A
→

C
la

im
1
(x

1
0
)

A
Ig

n
o
re

d

Claims 1 2 3 4 5 6 3 4 5 6 7

A Collides
Collisions

Simulation 1: A issues Claims for unallocated addresses, A is eventually
ignored.

Collide/Unallocated or Allocated

A
→

C
ol

li
d
e 1

(x
1
|a

1
)

A
→

C
ol

li
d
e 1

(x
2
|a

2
)

A
→

C
ol

li
d
e 1

(x
3
|a

3
)

A
→

C
ol

li
d
e 1

(x
4
|a

4
)

⊖ A
→

C
ol

li
d
e 1

(x
5
|a

5
)

A
→

C
ol

li
d
e 1

(x
6
|a

6
)

A
→

C
ol

li
d
e 1

(x
7
|a

7
)

A
Ig

n
o
re

d

Claims

A Collides 1 2 3 4 2 3 4 5
Collisions

Simulation 2: A issues Collides for addresses, A is eventually ignored.

7.6.2 Attacks in the Allocating Phase

Addresses which are in the process of being allocated are termed ‘allocating’

(Section 6.3.2). Attacks on allocating addresses can be launched with either

Claim or Collide messages; each has a different effect.

In Simulation 3, B is trying to allocate an address. A responds with Claim

messages for the same address. Without thresholds, A could continue this

course of action indefinitely and deny B from ever completing an allocation.

When C and D detect duplicate claims, they issue Collides. Note the

random transmission of Collides; whether or not a node emits a Collide is

University of Pretoria etd - Slaviero, M L (2005)

7.6. Attack Analysis 129

governed by the response ratio (Section 6.9.5). The result of this trace is

that A is ignored since the CollisionThreshold is exceeded.

The Collide trace portrayed in Simulation 4 illustrates how A issues a

Collide for every address B tries to allocate. Again, A is ignored, but this

time the CollideThreshold is overstepped.

Claim/Allocating

B
→

C
la

im
1
(x

1
)

A
→

C
la

im
1
(x

1
)

C
→

C
ol

li
d
e 1

(x
1
)

B
→

C
la

im
1
(x

2
)

A
→

C
la

im
1
(x

2
)

B
→

C
la

im
1
(x

3
)

A
→

C
la

im
1
(x

3
)

D
→

C
ol

li
d
e 1

(x
3
)

B
→

C
la

im
1
(x

4
)

A
→

C
la

im
1
(x

4
)

D
→

C
ol

li
d
e 1

(x
4
)

B
→

C
la

im
1
(x

5
)

A
→

C
la

im
1
(x

5
)

A
Ig

n
o
re

d

Claims

A Collides
Collisions 1 2 3 4 5

Claims 1 2 3 4 5

B Collides
Collisions

Claims

C Collides 1
Collisions

Claims

D Collides 1 2
Collisions

Simulation 3: B tries to allocate an address, A interferes with Claims. A is
eventually ignored.

7.6.3 Attacks on Allocated Addresses

It has already been stated in Section 7.6.1 that the Collide attacks on allo-

cated and unallocated addresses are identical, and so they are not discussed

further.

The attack with Claim messages generates an interesting trace, shown in

Simulation 5. A attempts to claim a1 which is already allocated to another

University of Pretoria etd - Slaviero, M L (2005)

7.6. Attack Analysis 130

Collide/Allocating

B
→

C
la

im
1
(x

1
)

A
→

C
ol

li
d
e 1

(x
1
)

B
→

C
la

im
1
(x

2
)

A
→

C
ol

li
d
e 1

(x
2
)

B
→

C
la

im
1
(x

3
)

A
→

C
ol

li
d
e 1

(x
3
)

B
→

C
la

im
1
(x

4
)

A
→

C
ol

li
d
e 1

(x
4
)

B
→

C
la

im
1
(x

5
)

A
→

C
ol

li
d
e 1

(x
5
)

A
Ig

n
o
re

d

Claims

A Collides 1 2 3 4 5
Collisions

Claims 1 2 3 4 5

B Collides
Collisions

Simulation 4: B tries to allocate an address, A interferes with Collides. A is
eventually ignored.

node. B and C respond with Collides. A continues to issue Claims for

allocated addresses until its Claims rises above ClaimThreshold.

7.6.4 Scenario Summary

After examining the six attack scenarios identified earlier by means of traced

simulations, it appears that the thresholds and decrements defined previ-

ously are satisfactory. In every scenario, the attacker was ignored before any

legitimate node; in fact no legitimate nodes were forced into isolation at all.

Further, isolation of the attacker occurred well before counts for legal

nodes ever approached any of the thresholds. We thus conclude that the

parameters work well and protect nodes from the identified attack scenarios.

University of Pretoria etd - Slaviero, M L (2005)

7.6. Attack Analysis 131

C
laim

/A
llocated

A→ Claim1(a1)

{B, C} → Collide1(a1)

A→ Claim1(a2)

C → Collide1(a2)

A→ Claim1(a3)

A→ Claim1(a4)

D → Collide1(a4)

A→ Claim1(a5)

D → Collide1(a5)

⊖
A→ Claim1(a6)

C → Collide2(a1)

B → Collide1(a6)

A→ Claim1(a7)

C → Collide2(a2)

{B, D} → Collide1(a7)

A→ Claim1(a8)

D → Collide1(a8)

B → Collide2(a3)

A→ Claim1(a9)

C → Collide2(a5)

A→ Claim1(a10)

A Ignored

C
la

im
s

1
2

3
4

5
2

3
4

5
6

7

A
C

ollid
es

C
ollision

s
C

la
im

s

B
C

ollid
es

1
2

0
1

2
3

C
ollision

s
C

la
im

s

C
C

ollid
es

1
2

0
1

2
3

C
ollision

s
C

la
im

s

D
C

ollid
es

1
0

1
2

3
C

ollision
s

S
im

u
lation

5:
A

tries
to

allo
cate

ad
d
resses

w
h
ich

are
alread

y
allo

cated
.

T
h
e

oth
er

n
o
d
es

rep
ly

w
ith

C
ollid

es.
A

is
even

tu
ally

ign
ored

.

University of Pretoria etd - Slaviero, M L (2005)

7.7. Conclusion 132

7.7 Conclusion

The DAOMAP implementation described in the chapter, daa, combined with

its client-side library libdaomap provide applications with globally unique

multicast addresses.

The platform on which the suite runs was described, followed by a brief

listing of requirements in terms of other software. Each internal component

(Data Store, Deterministic Function, Network Module, Client API) was anal-

ysed in terms of their functioning and interaction. A quick recap on each

component’s most salient point is helpful: the Data Store uses the Berkeley

DB, the Deterministic Function is provided by OpenSSL’s md4() function,

the Network Module is almost platform-independent and the Unix domain

sockets used by the Client API support credential passing allowing for se-

cured address lifetime manipulation.

Flowcharts illustrating various processes were provided, with the two ma-

jor charts showing execution of the main and timer threads.

Finally the results of test runs and simulations were presented, where legal

traffic and attacks were examined. Amongst the legal traffic, the determin-

istic function appeared to operate well since no sequence breaks or Collides

were seen. However, lengthier tests may be required in order to fully vali-

date this. After conducting the attack simulations, it was concluded that the

rate limiting protection provided by the IgnoreMessage() function works

successfully.

University of Pretoria etd - Slaviero, M L (2005)

133

Chapter 8

Conclusion

The work is now complete; what remains is to summarise the contents of this

dissertation, and to point to possible future research which may influence

multicast address allocation.

8.1 Summary

In the opening chapter it was stated that although multicasting has promised

much, the delivered services at this point are still lacking. Numerous imped-

iments exist; and the address allocation problem, which was selected as the

topic for this discourse, was only one. That introduction to the subject was

brief, the purpose only to whet the reader’s appetite.

A major portion of the background was presented in Chapter 2, Internet

Protocol Version 6. Since the developed protocol relies heavily on IPv6, a firm

grounding in the underlying principles of IPv6 was needed in order to fully

understand why DAOMAP is different from other allocation mechanisms.

The format and construction of IPv6 addresses was dealt with extensively;

as was the composition of IPv6 packets and the various transition options

available.

The User Datagram Protocol was explained in Chapter 3. Its connection-

less mode of operation made it ideal for use in multicast traffic, however the

drawback is one of reliability.

University of Pretoria etd - Slaviero, M L (2005)

8.1. Summary 134

Chapter 4 followed, and dealt with the basics behind multicasting. Three

possibilities exist for multicasting across network boundaries: Router-depen-

dent Multicast, Application-layer Multicast, and Hybrids. The first requires

support in devices which connect networks; such support allows these de-

vices to correctly transmit multicast packets to only those networks or hosts

which have expressed interest in that multicast traffic. The most prominent

example of this type of multicast is IP Multicast, which consists of two com-

ponents: a reporting protocol which routers use to determine which groups

the listeners are interested in, and an internetwork protocol for passing pack-

ets between networks.

The remaining two categories were touched on only momentarily as they

do not directly influence this work; references were provided for interested

parties.

The problem which the author attempted to solve was discussed at length

in Chapter 5. Drawbacks and failings of current address allocation proposal

were illuminated. Specifically, the 3-tier MASC-AAS-MADCAP architecture

was examined and found deficient. Literature in this area revealed that prefix

based address allocation was the likely direction in which address allocation

would proceed. Indeed, the Unicast prefix based multicast address depicted

in Chapter 2 exploits this property.

The most significant contribution of Chapter 5 was the listing and jus-

tification of eight requirements which an allocation scheme would have to

satisfy. They were:

dynamic allocation The model is able to assign and reclaim addresses con-

tinually.

distributed structure A major failing of current solutions is the need for

centralised services. A distributed architecture would be easier to de-

ploy.

integrable The final product must create as few deployment problems as

possible, requiring little in terms of human and machine resources.

lifetime limitation Each address must be limited in the time it can be

assigned to a particular application.

University of Pretoria etd - Slaviero, M L (2005)

8.1. Summary 135

security Current allocation schemes simply view security from an authen-

tication point of view, however various attacks exist which use a non-

authentication vector.

fair-use enforcement The address space is limited, and must therefore be

shared out amongst the group members, without a few members de-

vouring the address space.

robustness The model needs to handle error and failure gracefully.

address collision limitation In order to reduce network traffic and stream-

line the allocation process, addresses need to be chosen such that they

have a high probability of being unallocated.

DAOMAP (Distributed Allocation Of Multicast Addresses Protocol) was

the model presented in Chapter 6. The design goals were to produce a

structure for address allocation which could assign globally unique addresses

in a scalable manner. The system only assigns single addresses at a time;

and it was assumed that applications will not require many addresses per

second.

The model consisted of four components, namely the data store, address

generation module, network and client communications modules. Each com-

ponent was documented and its interactions with the environment and other

components were defined by means of six algorithms:

• A basic as well as refined address generation algorithms were presented.

• A general algorithm was given covering the allocation process.

• Two algorithms related to the network communications module detailed

prescribed behaviour on the receipt of Claim and Collide packets.

• The steps taken to determine when a node should be ignored were listed.

The data store and address generation modules are interesting as they

allow for collision prediction; by extension it is then easier to avoid address

collisions. The MD4 function was selected for use in the address generation

module, after testing four separate functions.

Since security was a focus for this study and the IgnoreMessage pro-

cedure was a vital link in the security chain, factors influencing that function

University of Pretoria etd - Slaviero, M L (2005)

8.2. Limitations 136

were examined in-depth and relations between three thresholds were defined.

Indeed, multicast security was deemed more than simply keeping attack-

ers out the group; strategies were devised to keep control within the group

distributed and to ensure that internal attackers are forced from the group

before placid members.

Lastly, the foregoing chapter chronicled the prototype that was devel-

oped. Flowcharts represented the internal apparatus of the program, and

the environment in which the prototype will run was described. The chapter

was concluded with a series of tests and attack simulations to gauge how

well the model withstands normal as well as abnormal use. This tests results

demonstrated the viability of the approach followed by DAOMAP.

8.2 Limitations

Concerning the design phase of this work, the network protocol has not been

formally analysed. In order for such analysis to occur, the protocol would first

have to be expressed in a specification language, and analysis tools applied.

Such analysis is important in ironing out small defects which may remain

hidden.

The testing of the implementation was limited in both time and resources.

A larger experiment would only be possible on a large IPv6 network, which

was not available at test time, and ideally tests would run over weeks in order

to prove stability.

8.3 Future Work

Much work still remains to be done in the area of multicasting. The topic

covers diverse research subjects such as transport protocols, distributed secu-

rity amongst group members, quality of service concerns and general network

efficiency. With regards to address allocation, a contribution has been made

in this dissertation by introducing the idea of collision avoidance, as well as in

defining various parameters and relations which affect security in the group.

University of Pretoria etd - Slaviero, M L (2005)

8.3. Future Work 137

Possibilities of a higher level secure protocol for general application multi-

casting become possible since such applications could request addresses in an

spontaneous manner; further the applications can have a reasonable degree

of confidence that the addresses they are assigned will be reserved for their

use.

Looking slightly farther afield, the standardisation of Group Secure As-

sociation Key Management Protocol (GSAKMP) by the Multicast Security

group at the IETF will allow for increased levels of security. This protocol is

similar to IPSec in that it provides a framework for securing communications.

Importantly it allows group members to determine the source of packets in

an unambiguous fashion, which, as was noted in Chapter 2, would allow for

greater security within the group. However at the moment it is still in draft

form [89].

At the beginning, many difficulties encountered by multicast researchers

were heaped up; while the mountain may seem insurmountable to one person,

chipping away one problem at a time eventually reduces the pile to ground

level. Hopefully this dissertation is a reasonably sized chip from that pile.

University of Pretoria etd - Slaviero, M L (2005)

138

Appendix A

The Berkeley DB

The nuts and bolts of the implementation has been delayed until now, so that

the reader did not become bogged down in technicalities whilst attempting to

conceive the system in its entirety. This appendix, and the subsequent two,

provide tutorials on their respective subject matter; in this case the Berkeley

DB.

The aim of each tutorial is to demonstrate how certain functionality may

be provided, as well as render a reference for those conversant in the broader

aspects of each subject, and who are looking for a specific feature. These

tutorials assume a knowledge of C, and ignore error checking as an aid to

brevity. This tutorial is in no way a complete reference to Berkeley DB, the

interested reader is directed to [90] if that is what is desired.

Before the actual database code is examined, here are the two structures

used in the addresses (address record t) and nodes (node record t)

tables:

typedef struct {

ip6_address_t mcast_address;

ip6_address_t unicast_address;

uint32_t lifetime;

5 uint8_t local;

pid_t pid;

} address_record_t;

typedef struct {

University of Pretoria etd - Slaviero, M L (2005)

A.1. Database creation 139

10 ip6_address_t unicast_address;

uint32_t address_count;

uint32_t claim_count;

uint32_t collide_count;

uint32_t collision_count;

15 ip6_address_t last_allocated_address;

ip6_address_t next_allocated_address;

uint32_t message_id;

uint8_t ignore;

} node_record_t;

Listing A.1: DB structures

In each example below certain structures are explicitly zeroed-out. This is

in line with the Berkeley DB documentation which strongly recommends such

actions. The reason given is that the internal formation of the structures is

not guaranteed to remain as-is, and additional fields could cause instabilities

in non-cleared structures.

A.1 Database creation

Listing A.2 shows how two databases, one with an index allowing lookups on

secondary keys, are created with the Berkeley DB API. Note that these API

calls are applicable to version 4 of Berkeley DB.

Initially a database environment is constructed which supports locking for

multiple access from within a single threaded program. Each database is then

created within the environment, using a sorted, balanced tree for storage.

Lastly, an index is created for nodes to allow lookups on a secondary key.

The user-supplied function get_node_address() is used by the DB to extract

a secondary key from data.

DB_ENV *db_env;

DB *addr_db , *node_db , *node_db_index;

db_env = NULL;

5 addr_db = node_db = NULL;

University of Pretoria etd - Slaviero, M L (2005)

A.2. Lookups 140

db_env_create(&db_env , 0);

db_env ->open(db_env, NULL , DB_CREATE | DB_INIT_LOCK |

DB_PRIVATE | DB_INIT_MPOOL | DB_THREAD , 0);

db_create(&addr_db , db_env , 0);

10 addr_db ->open(addr_db , NULL , NULL , NULL , DB_BTREE , DB_CREATE ,

0);

db_create(&node_db , db_env , 0);

node_db ->open(node_db , NULL , NULL , NULL , DB_BTREE , DB_CREATE ,

0);

db_create(&node_db_index , db_env, 0);

node_db_index ->open(node_db_index , NULL , NULL , NULL , DB_BTREE

, DB_CREATE , 0);

15 node_db_index ->associate(node_db , NULL , node_db_index ,

get_node_address , 0);

Listing A.2: DB setup

A.2 Lookups

Reading from a database requires the use of DBT structures, which hold in-

formation about keys and their values in the database, as well as where the

information should be copied. A code snippet which reads from the ad-

dresses table is given in Listing A.3.

DBT key , data;

memset (&key , ’\0’, sizeof(DBT));

memset (&data , ’\0’, sizeof(DBT));

5

key.data = key data;

key.size = sizeof(key data);

data.data = dst;

10 data.ulen = sizeof(table struct);

data.flags |= DB_DBT_USERMEM;

db handle->get(db handle, NULL , &key , &data , 0)

Listing A.3: DB Reading

University of Pretoria etd - Slaviero, M L (2005)

A.3. Database Writing 141

In the above snippet, key data is a pointer to the key, dst points to a por-

tion of memory where the retrieved entry can be written to, table struct is the

structure used for a single entry in the database (either address record t

or node record t) and db handle is one of addr_db or node_db. The flag

DB DBT USERMEM specifies that the memory pointed to by data.data

has already been allocated.

Reading from the secondary index is slightly different. Instead of one

key there are two; one each for the primary and secondary indices. In the

example below, pkey is a structure holding the primary key and likewise skey

stores the secondary key. New in this snippet is the DB DBT MALLOC

flag which asks the database to allocate memory for that destination. Also

note that the function called is pget() rather than get().

DBT skey , pkey , data;

memset (&skey , ’\0’, sizeof(DBT));

memset (&pkey , ’\0’, sizeof(DBT));

5 memset (&data , ’\0’, sizeof(DBT));

skey.data = key data;

skey.size = sizeof(key data);

10 data.data = dst;

data.ulen = sizeof(table struct);

data.flags |= DB_DBT_USERMEM;

pkey.flags |= DB_DBT_MALLOC;

15

db handle->pget(index handle, NULL , &skey , &pkey , &data , 0);

Listing A.4: Secondary Index Reading

A.3 Database Writing

Writing to a database is accomplished by:

DBT key , data;

University of Pretoria etd - Slaviero, M L (2005)

A.4. Entry deletion 142

memset (&key , ’\0’, sizeof(DBT));

memset (&data , ’\0’, sizeof(DBT));

5

key.data = key data;

key.size = sizeof(key data);

data.data = src;

10 data.size = sizeof(src);

db handle->put(db handle, NULL , &key , &data , flags)

Listing A.5: DB writing

where src points to a structure of the appropriate type and flags is either

DB NOOVERWRITE (don’t allow duplicates) or 0 (no flags set.) Writing

to a database with a secondary index automatically updates both indices, so

additional steps are not required.

A.4 Entry deletion

Deleting records from the database is demonstrated in Listing A.6.

DBT key;

memset (&key , ’\0’, sizeof(DBT));

5 key.data = key data;

key.size = sizeof(key data);

db handle->del(db handle, NULL , &key , 0)

Listing A.6: Entry Deletion

A.5 Entry looping

Berkeley DB provides the programmer with a ‘cursor’ type for iterating

through the database. Listing A.7 illustrates how successive records in the

database can be processed.

University of Pretoria etd - Slaviero, M L (2005)

A.5. Entry looping 143

DBC *cursor;

DBT key , data;

memset (&key , ’\0’, sizeof(DBT));

5 memset (&data , ’\0’, sizeof(DBT));

db handle->cursor(db handle, NULL , &cursor , 0);

while (cursor ->c_get(cursor , &key , &data , DB_NEXT) == 0){

10 .

.

.

}

cursor ->c_close(cursor);

Listing A.7: DB Cursors

At each iteration, the next available key and its data from db handle are

placed in their respective structures.

University of Pretoria etd - Slaviero, M L (2005)

144

Appendix B

IPv6 code snippets

The IPv6 specific code, as has already been mentioned, was written with

portability in mind. To this end, data is converted to and from network byte

order, and standard BSD-socket calls are used. The sole exception to this

occurs in the code where the prefix length of an address is determined.

The ‘correct’ method under Linux to discover such information is to access

the routing subsystem via Netlink sockets. We have taken a shortcut and

simply read the information from the /proc filesystem, which is a virtual

filesystem providing OS data.

The code example provided in Listing B.1 explains how to construct an

IPv6 UDP socket which listens on address listen address.

1 struct sockaddr_in6 sock_addr;

2 struct ipv6_mreq group_addr;

3 int hops = 1, on = 1, off = 0, if_index , group_sockfd;

4

5 group_sockfd = socket(AF_INET6 , SOCK_DGRAM , 0);

6 setsockopt(group_sockfd , SOL_SOCKET , SO_REUSEADDR , &on,

sizeof(on));

7

8 if_index = if_nametoindex(interface);

9

10 sock_addr.sin6_family = AF_INET6;

11 inet_pton(AF_INET6 , listen addr, &sock_addr.sin6_addr);

12 sock_addr.sin6_port = htons(port);

13 sock_addr. sin6_scope_id = if_index;

University of Pretoria etd - Slaviero, M L (2005)

145

14

15 bind(group_sockfd , (struct sockaddr *) &sock_addr , sizeof(

sock_addr));

16

17 inet_pton(AF_INET6 , listen addr, &group_addr.ipv6mr_multiaddr);

18 group_addr.ipv6mr_interface = if_index;

19

20 setsockopt(group_sockfd , SOL_IPV6 , IPV6_MULTICAST_HOPS , (int

*) &hops , sizeof(hops))

21 setsockopt(group_sockfd , SOL_IPV6 , IPV6_MULTICAST_LOOP , (

unsigned int *) &loop , sizeof(loop));

22 setsockopt(group_sockfd , IPPROTO_IPV6 , IPV6_JOIN_GROUP , (

struct ipv6_mreq *) &group_addr , sizeof(group_addr));

Listing B.1: Creating an IPv6 Socket

Lines 5 – 15 create a socket and bind it to the group address. Importantly,

a scope id must be assigned; the interface index is used in this case1. The

remaining lines fill in a structure containing information about the multicast

address the application will listen on, set the maximum number of hops the

packet will traverse, turn off local delivery of packets which originate locally

and finally instruct the kernel to join the multicast group.

Transmitting and receiving on the socket then occurs as per usual.

1The interface index is simply a unique number assigned to each network interface.

University of Pretoria etd - Slaviero, M L (2005)

146

Appendix C

Unix Domain Sockets

Probably the most interesting portion of the Unix socket code involves the

appending of the end-point processes’ credentials to the messages as they

travel over the socket. The example listings first demonstrate how to enable

such credential passing, and then proceed to use the credentials.

1 #define UNIX_SOCK_PATH "/tmp/daa"

2

3 struct sockaddr_un unix_d_server;

4 int unix_sockfd;

5 const int toggle_on = 1;

6

7 unix_sockfd = socket(AF_LOCAL , SOCK_STREAM , 0);

8

9 unlink (UNIX_SOCK_PATH);

10

11 memset (&unix_d_server , ’\0’, sizeof(unix_d_server));

12

13 unix_d_server.sun_family = AF_LOCAL;

14 strncpy(unix_d_server.sun_path , UNIX_SOCK_PATH , strlen(

UNIX_SOCK_PATH));

15

16 bind(unix_sockfd , (struct sockaddr *) &unix_d_server , sizeof(

struct sockaddr_un));

17

18 setsockopt(unix_sockfd , SOL_SOCKET , SO_PASSCRED , &toggle_on ,

sizeof(toggle_on));

University of Pretoria etd - Slaviero, M L (2005)

147

19

20 listen (unix_sockfd , LISTENQ);

Listing C.1: Creating an Unix Domain Socket with Credential Passing

A Unix domain socket’s end-point address is a file; in Listing C.1, the file

is defined as /tmp/daa. Before the socket can be created this file must not

exist, and hence the attempt to delete it with unlink(2).

Once the socket has been constructed, clients connect has usual. The

credential passing is completely transparent to them, as this data is filled in

by the kernel. On the server side, credentials are retrieved as follows:

1 char buf[100];

2 struct ucred creds;

3 struct msghdr msg_hdr;

4 struct cmsghdr *cmsg_hdr;

5 struct iovec iov[1];

6

7 union {

8 struct cmsghdr cm;

9 char control[CMSG_SPACE(sizeof(struct ucred))];

10 } control_un;

11

12 msg_hdr.msg_control = control_un.control;

13 msg_hdr.msg_controllen = sizeof(control_un.control);

14 msg_hdr.msg_name = NULL;

15 msg_hdr.msg_namelen = 0;

16

17 iov[0]. iov_base = buf;

18 iov[0]. iov_len = sizeof(buf);

19 msg_hdr.msg_iov = iov;

20 msg_hdr.msg_iovlen = 1;

21

22 recvmsg(sockfd , &msg_hdr , 0);

23

24 if (msg_hdr.msg_controllen > sizeof(struct cmsghdr)){

25 cmsg_hdr = CMSG_FIRSTHDR(& msg_hdr);

26 if (cmsg_hdr ->cmsg_len == CMSG_LEN(sizeof(struct ucred)) &&

cmsg_hdr ->cmsg_level == SOL_SOCKET && cmsg_hdr ->

cmsg_type == SCM_CREDENTIALS)

University of Pretoria etd - Slaviero, M L (2005)

148

27 memcpy (&creds , CMSG_DATA(cmsg_hdr), sizeof(struct ucred

));

28 }

Listing C.2: Receiving Unix Domain Message with Credential Passing

From the unix(7) manpage, the structure ucred has these fields:

1 struct ucred {

2 pid_t pid; /* process id of the sending process */

3 uid_t uid; /* user id of the sending process */

4 gid_t gid; /* group id of the sending process */

5 };

University of Pretoria etd - Slaviero, M L (2005)

149

Glossary of Abbreviations

AAS Address Allocation Server

API Application Program Interface

ASM Any Source Multicast

BGMP Border Gateway Multicast Protocol

BSD Berkeley Software Distribution

BTP Banana Tree Protocol

CATNIP Common Architecture for the Internet

CBT Core Based Trees

CIDR Classless Inter-domain Routing

DAA Distributed Address Allocator

DAOMAP Distributed Allocation Of Multicast Addresses Protocol

DHCP Dynamic Host Configuration Protocol

DM Designated Member

DNS Domain Name System

DS Differentiated Service

DVMRP Distance Vector Multicast Routing Protocol

ECN Explicit Congestion Notice

GNU GNU’s Not UNIX

GSAKMP Group Secure Association Key Management Protocol

HMTP Host Multicast Tree Protocol

University of Pretoria etd - Slaviero, M L (2005)

Glossary 150

IANA Internet Assigned Numbers Authority

ICMPv6 Internet Control Message Protocol for IPv6

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IKE Internet Key Exchange

IP Internet Protocol

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

ISATAP Intra-Site Automatic Tunnel Addressing Protocol

ISP Internet Sevice Provider

LAN Local Area Network

MAC Media Access Control

MADCAP Multicast Address Dynamic Client Allocation Protocol

MASC Multicast Address Set Claim

MD4 Message Digest 4

MD5 Message Digest 5

MBONE Multicast Backbone

MLDv2 Multicast Listener Discovery version 2

OSPF Open Shortest Path First

PIP P Internet Protocol

POSIX Portable Operating System Interface

RFC Request For Comment

RP Rendezvous Point

RPB Reverse Path Broadcasting

RPF Reverse Path Flooding

RPM Reverse Path Multicasting

SFM Source Filtered Multicast

University of Pretoria etd - Slaviero, M L (2005)

Glossary 151

SIP Simple Internet Protocol

SIPP Simple Internet Protocol Plus

SSM Source Specific Multicast

TCP Transmission Control Protocol

TENET Tertiary Education Network

TUBA TCP and UDP with Bigger Addresses

UDP User Datagram Protocol

YOID Your Own Internet Distribution

University of Pretoria etd - Slaviero, M L (2005)

152

Bibliography

[1] S Deering. Host Extensions for IP Multicasting. RFC 1112, Internet

Engineering Task Force, August 1989. 1, 30, 34, 35, 37

[2] T D C Little, G Ahanger, R J Folz, J F Gibbon, F W Reeve, D H Schel-

leng, and D Venkatesh. A digital on-demand video service supporting

content-based queries. In Proceedings of the first ACM international

conference on Multimedia, pages 427–436. ACM Press, 1993. 1

[3] L H Ngoh and T P Hopkins. Multicast communication facilities for

distributed multimedia information systems. In Second IEE National

Conference on Telecommunications, 1989. 1

[4] IP multicasting - the forgotten holy grail?

http://dataweek.co.za/Article.ASP?pklArticleID=2807&pklIssueID=441.

Last accessed 12 October 2004. 2

[5] D Zappala, V Lo, and C GauthierDickey. The multicast address allo-

cation problem: theory and practice. Computer Networks, 45(1):55–73,

2004. 2, 54, 62, 63, 66, 69, 72

[6] J Postel. Internet Protocol. RFC 791, Internet Engineering Task Force,

September 1981. 6

[7] D Cohen. ON HOLY WARS AND A PLEA FOR PEACE. IEN 137,

Internet Engineering Task Force, April 1980. 6, 90

[8] C Huitema. Routing in the Internet. Prentice Hall PTR, 1995. 8, 9, 10

[9] T Dixon. Comparison of Proposals for Next Version of IP. RFC 1454,

Internet Engineering Task Force, May 1993. 8, 9, 10

http://dataweek.co.za/Article.ASP?pklArticleID=2807&pklIssueID=441

University of Pretoria etd - Slaviero, M L (2005)

Bibliography 153

[10] R Carlson and D Ficarella. Six Virtual Inches to the Left: The Problem

with IPng. RFC 1705, Internet Engineering Task Force, October 1994.

9

[11] S Bradner and A Mankin. The Recommendation for the IP Next Gen-

eration Protocol. RFC 1752, Internet Engineering Task Force, January

1995. 9

[12] M McGovern and R Ullmann. CATNIP: Common Architecture for the

Internet. RFC 1707, Internet Engineering Task Force, October 1994. 9

[13] R Hinden. Simple Internet Protocol Plus White Paper. RFC 1710,

Internet Engineering Task Force, October 1994. 9

[14] P Francis. Pip Near-term Architecture. RFC 1621, Internet Engineering

Task Force, May 1994. 10

[15] R Callon. TCP and UDP with Bigger Addresses (TUBA), A Simple

Proposal for Internet Addressing and Routing. RFC 1347, Internet En-

gineering Task Force, June 1992. 10

[16] D Marlow. Host Group Extensions for CLNP Multicasting. RFC 1768,

Internet Engineering Task Force, March 1995. 10

[17] S Deering and R Hinden. Internet Protocol, Version 6 (IPv6) Specifica-

tion. RFC 2460, Internet Engineering Task Force, December 1998. 11,

20, 22, 29, 35

[18] S Hagen. IPv6 Essentials. O’Reilly & Associates, Inc., 2002. 11, 13

[19] R Hinden and S Deering. Internet Protocol Version 6 (IPv6) Addressing

Architecture. RFC 3513, Internet Engineering Task Force, April 2003.

11, 12, 13, 14, 15, 17, 23

[20] B Haberman and D Thaler. Unicast-Prefix-based IPv6 Multicast Ad-

dresses. RFC 3306, Internet Engineering Task Force, August 2002. 16,

17

[21] S Thomson and T Narten. IPv6 Stateless Address Autoconfiguration.

RFC 2462, Internet Engineering Task Force, December 1998. 18

University of Pretoria etd - Slaviero, M L (2005)

Bibliography 154

[22] R Droms (Ed.). Dynamic Host Configuration Protocol for IPv6

(DHCPv6). RFC 3315, Internet Engineering Task Force, July 2003.

18

[23] S Blake, D Black, M Carlson, E Davies, Z Wang, and W Weiss. An

Architecture for Differentiated Services. RFC 2475, Internet Engineering

Task Force, December 1998. 21

[24] K Nichols, S Blake, F Baker, and D Black. Definition of the Differen-

tiated Services Field (DS Field) in the IPv4 and IPv6 Headers. RFC

2474, Internet Engineering Task Force, December 1998. 21

[25] K Ramakrishnan, S Floyd, and D Black. The Addition of Explicit Con-

gestion Notification (ECN) to IP. RFC 3168, Internet Engineering Task

Force, September 2001. 21

[26] J Rajahalme, A Conta, B Carpenter, and S Deering. IPv6 Flow Label

Specification. RFC 3697, Internet Engineering Task Force, March 2004.

21

[27] TENET Home Page. http://www.tenet.ac.za. Last accessed 17 October

2004. 23

[28] ARIN Home Page. http://www.arin.net. Last accessed 17 October 2004.

23

[29] R Gilligan and E Nordmark. Transition Mechanisms for IPv6 Hosts and

Routers. RFC 2893, Internet Engineering Task Force, August 2000. 24

[30] B Carpenter and K Moore. Connection of IPv6 Domains via IPv4

Clouds. RFC 3056, Internet Engineering Task Force, February 2001.

25

[31] B Carpenter and C Jung. Transmission of IPv6 over IPv4 Domains

without Explicit Tunnels. RFC 2529, Internet Engineering Task Force,

March 1999. 25

[32] F Templin, T Gleeson, M Talwar, and D Thaler. Intra-Site Automatic

Tunnel Addressing Protocol (ISATAP). Ietf draft, Internet Engineering

Task Force, September 2003. 26

http://www.tenet.ac.za
http://www.arin.net

University of Pretoria etd - Slaviero, M L (2005)

Bibliography 155

[33] D Comer. Computer Networks and Internets. Prentice Hall, 2 edition,

1999. 27, 48

[34] J Postel. User Datagram Protocol. RFC 768, Internet Engineering Task

Force, August 1980. 28, 29

[35] W Richard Stevens. TCP/IP Illustrated, volume 1. Addison-Wesley,

1994. ISBN 0 201 63346 9. 30

[36] S Deering. Multicast routing in internetworks and extended lans. In

Symposium proceedings on Communications architectures and protocols.

ACM Press, 1988. 33, 35, 45, 46

[37] B Zhang, S Jamin, and L Zhang. Host multicast: A framework for

delivering multicast to end users. In IEEE Infocom, June 2002. 34, 52,

55, 56, 57

[38] B Cain, S Deering, I Kouvelas, B Fenner, and A Thyagarajan. Internet

Group Management Protocol, Version 3. RFC 3376, Internet Engineer-

ing Task Force, October 2002. 34

[39] D Waitzman, C Partridge, and S Deering. Distance Vector Multicast

Routing Protocol. RFC 1075, Internet Engineering Task Force, Novem-

ber 1988. 34, 48

[40] D Estrin, D Farinacci, A Helmy, D Thaler, S Deering, M Handley, V Ja-

cobson, C Liu, P Sharma, and L Wei. Protocol Independent Multicast-

Sparse Mode (PIM-SM): Protocol Specification. RFC 2362, Internet

Engineering Task Force, June 1998. 34, 52

[41] J Moy. Multicast Extensions to OSPF. RFC 1584, Internet Engineering

Task Force, March 1994. 34

[42] S Ratnasamy, M Handley, R Karp, and S Shenker. Application-level

multicast using content-addressable networks. Lecture Notes in Com-

puter Science, 2233:14–??, 2001. 34, 55

[43] D Helder and S Jamin. Banana Tree Protocol, an End-host Multicast

Protocol. Technical Report TR-429-00, University of Michigan, July

2000. 34, 52, 55, 56

University of Pretoria etd - Slaviero, M L (2005)

Bibliography 156

[44] Y Chu, S Rao, and H Zhang. A Case for End System Multicast. In

ACM SIGMETRICS 2000. ACM, June 2000. 34, 52, 55

[45] R Vida and L Costa. Multicast Listener Discovery Version 2 (MLDv2)

for IPv6. RFC 3810, Internet Engineering Task Force, June 2004. 36,

41

[46] H Holbrook and B Cain. Source-Specific Multicast for IP. Ietf draft,

Internet Engineering Task Force, October 2003. 36, 53

[47] M Crawford. Transmission of IPv6 Packets over Ethernet Networks.

RFC 2464, Internet Engineering Task Force, December 1998. 38

[48] A Conta and S Deering. Internet Control Message Protocol (ICMPv6)

for the Internet Protocol Version 6 (IPv6) Specification. RFC 2463,

Internet Engineering Task Force, December 1998. 42

[49] P A Laplante, editor. Dictionary of Computer Science, Engineering and

Technology. Lewis Publishers Inc., 2000. 44

[50] Mohammad Banikazemi. IP Multicasting: Concepts, Algorithms, and

Protocols. Last accessed 11 August 2004. 46, 47

[51] B Forouzan. Data Communications and Networking. McGraw Hill, 2

edition, 2001. 47, 48

[52] K Savetz, N Randall, and Y Lepage. MBONE: Multicasting Tomorrow’s

Internet. IDG, 1996. 48

[53] T Ballardie, P Francis, and J Crowcroft. Core based trees (CBT). In

SIGCOMM’93, pages 85–95. ACM Press, 1993. 49, 50

[54] S Deering, D Estrin, D Farinacci, V Jacobson, C Liu, and L Wei. The

PIM architecture for wide-area multicast routing. IEEE/ACM Trans-

actions on Networking, 4(2):153–162, 1996. 50, 51, 52

[55] S Kumar, P Radoslavov, D Thaler, C Alaettinoglu, D Estrin, and

M Handley. The MASC/BGMP Architecture for Inter-Domain Mul-

ticast Routing. In SIGCOMM’98, pages 93–104. ACM Press, 1998. 52,

54, 60, 66, 68, 69

[56] S Banerjee, B Bhattacharjee, and C Kommareddy. Scalable Application

Layer Multicast. In SIGCOMM’02. ACM Press, 2002. 52, 55

University of Pretoria etd - Slaviero, M L (2005)

Bibliography 157

[57] C Diot, B Levine, B Lyles, H Kassem, and D Balensiefen. Deployment

issues for the IP multicast service and architecture. IEEE Network,

14(1):78–88, / 2000. 52

[58] M Handley. Session Directories and Scalable Internet Multicast Address

Allocation. In SIGCOMM’98, pages 105–116. ACM Press, 1998. 54, 62,

64, 66, 67, 68

[59] P Francis and P Radoslavov and R Govindan and B Lidell. YOID: Your

Own Internet Distribution. WORK IN PROGRESS. 55, 56

[60] ADSL access - FAQ’s. http://www.telkom.co.za. Last accessed 17 Au-

gust 2004. 60

[61] D Thaler, M Handley, and D Estrin. The Internet Multicast Address

Allocation Architecture. RFC 2908, Internet Engineering Task Force,

September 2000. 60, 66, 67, 68, 69

[62] P Radoslavov, D Estrin, R Govindan, M Handley, S Kumar, and

D Thaler. The Multicast Address-Set Claim (MASC) Protocol. RFC

2909, Internet Engineering Task Force, September 2000. 60, 66, 68

[63] S Hanna, B Patel, and M Shah. Multicast Address Dynamic Client

Allocation Protocol (MADCAP). RFC 2730, Internet Engineering Task

Force, December 1999. 60, 66, 68, 69

[64] M Handley and S Hanna. Multicast Address Allocation Protocol

(AAP). Technical Report draft-ietf-malloc-aap-04.txt, Internet Engi-

neering Task Force, June 2000. Expired December 2000. 62

[65] Internet Protocol Version 6 Multicast Addresses.

http://www.iana.org/assignments/ipv6-multicast-addresses. Last

accessed 22 July 2004. 67

[66] O Catrina, D Thaler, B Aboba, and E Guttman. Zeroconf Multicast

Address Allocation Protocol (ZMAAP). Technical Report draft-ietf-

zeroconf-zmaap-02.txt, Internet Engineering Task Force, October 2002.

Expired April 2003. 69

[67] RAND(3) Linux Programmer’s Manual. Applicable to Glibc 2.3.2, dated

15 November 2003. 81

http://www.telkom.co.za
http://www.iana.org/assignments/ipv6-multicast-addresses

University of Pretoria etd - Slaviero, M L (2005)

Bibliography 158

[68] R Rivest. The MD4 Message-Digest Algorithm. RFC 1320, Internet

Engineering Task Force, April 1992. 81, 82

[69] R Rivest. The MD5 Message-Digest Algorithm. RFC 1321, Internet

Engineering Task Force, April 1992. 81, 82

[70] B Schneier. Applied Cryptography. Wiley, 1996. 82

[71] Port Numbers. http://www.iana.org/assignments/port-numbers. Last

accessed 10 August 2004. 90

[72] P Kruus. A SURVEY OF MULTICAST SECURITY ISSUES AND

ARCHITECTURES. 1998. 98

[73] R Canetti, J Garay, G Itkis, D Micciancio, M Naor, and B Pinkas.

Multicast Security: A Taxonomy and Some Efficient Constructions. In

INFOCOMM’99, 1999. 98

[74] S Kent and R Atkinson. Security Architecture for the Internet Protocol.

RFC 2401, Internet Engineering Task Force, November 1998. 99

[75] S Kent and R Atkinson. IP Encapsulating Security Payload (ESP). RFC

2406, Internet Engineering Task Force, November 1998. 99

[76] D Harkins and D Carrel. The Internet Key Exchange (IKE). RFC 2409,

Internet Engineering Task Force, November 1998. 99

[77] A Perrig, R Canetti, D Song, and D Tygar. Efficient and Secure Source

Authentication for Multicast. In NDSS’01, 2001. 100

[78] Baugher and Carrara. The Use of TESLA in SRTP. Technical Report

draft-ietf-msec-srtp-tesla-01.txt, Internet Engineering Task Force, July

2004. Expires January 2005. 100

[79] LBNL’s Network Research Group. http://www-nrg.ee.lbl.gov. Last ac-

cessed 17 August 2004. 102

[80] ANSI X3J11. American National Standard for Information Systems —

Programming Language — C. Technical Report X3.159-1989, 1989. Also

ISO/IEC 9899. 113

[81] GNU Operating System - Free Software Foundation.

http://www.gnu.org. Last accessed 23 August 2004. 113

http://www.iana.org/assignments/port-numbers
http://www-nrg.ee.lbl.gov
http://www.gnu.org

University of Pretoria etd - Slaviero, M L (2005)

Bibliography 159

[82] Berkeley DB. http://www.sleepycat.com/products/db.shtml. Last ac-

cessed 23 August 2004. 114

[83] OpenSSL: The Open Source toolkit for SSL/TLS.

http://www.openssl.org. Last accessed 24 August 2004. 115

[84] W Richard Stevens. UNIX Network Programming - Networking APIs:

Sockets and XTI, volume 1. Prentice-Hall, 2 edition, 1998. ISBN

0 13 490012 X. 115

[85] UNIX(7) Linux Programmer’s Manual. Applicable to Glibc 2.3.2, dated

2 December 2002. 116

[86] The IEEE and The Open Group. The Open Group Base Specifications

Issue 6. Technical Report POSIX.1c, 2004. Also ISO/IEC 9945-1:1996.

116

[87] GNU C Library - GNU Project - Free Software Foundation (FSF).

http://www.gnu.org/software/libc/libc.html. Last accessed 8 October

2004. 116

[88] PTHREAD COND(3) Manual. Applicable to Glibc 2.3.2. 119

[89] H Harney, U Meth, A Colegrove, and G Gross. GSAKMP. Techni-

cal Report draft-ietf-msec-gsakmp-sec-06.txt, Internet Engineering Task

Force, June 2004. Expires December 2004. 137

[90] Berkeley DB Reference Guide, Version 4.2.52.

http://www.sleepycat.com/docs/ref/toc.html. Last accessed 2 Septem-

ber 2004. 138

http://www.sleepycat.com/products/db.shtml
http://www.openssl.org
http://www.gnu.org/software/libc/libc.html
http://www.sleepycat.com/docs/ref/toc.html

	Front
	Cover Page
	Abstract
	Table of Contents

	Research Overview and Objectives
	Introduction
	Problem Statement
	Research Methodology
	Overview

	Internet Protocol Version 6
	Introduction
	A brief Internet Protocol History
	Moving on from IPv4
	CATNIP
	SIPP
	TUBA

	The Internet Protocol version 6
	IPv6 Addressing
	Address Types
	Header format
	Global Unicast Routing
	IPv4 to IPv6 changeover

	Conclusion

	User Datagram Protocol
	Introduction
	UDP
	Header
	Pseudo Header
	Multicasting over UDP

	Conclusion

	Multicasting Basics
	Introduction
	Router-dependent Multicast
	Application-layer Multicast
	Hybrids

	IP Multicasting
	Multicast Listener Discovery
	Multicast packet handling
	Multicast Routing
	IP Multicast Drawbacks

	Application-layer multicast
	Hybrids
	Conclusion

	The Multicast Address Allocation Problem
	Introduction
	Address Configuration Methods
	Group Identifiers
	Requirements
	Dynamic allocation
	Distributed structure
	Integrable
	Lifetime limitation
	Secure
	Fair-use enforcement
	Robustness
	Address collision limitation

	Conclusion

	The DAOMAP Model
	Introduction
	Assumptions
	The DAOMAP Architecture
	Components
	Functional Overview

	Data store
	Address generation module
	Deterministic Algorithms
	General Address Selection Algorithm

	Network communications module
	Client communications module
	Operational Aspects
	Security
	Claiming all addresses
	Collide attacks
	Claim attacks
	Combined attacks
	Thresholds and packet discarding

	Compliance to our requirements
	Conclusion

	Implementation
	Introduction
	Platform
	Internal Components
	Data Store
	Deterministic Function
	Network Module
	Client API

	Operational Flowcharts
	Sub-processes
	Main thread
	Timer thread

	Benchmarking
	Attack Analysis
	Flooding Attacks on Unallocated Addresses
	Attacks in the Allocating Phase
	Attacks on Allocated Addresses
	Scenario Summary

	Conclusion

	Conclusion
	Summary
	Limitations
	Future Work

	Appendices
	Appendix A - The Berkeley DB
	Database creation
	Lookups
	Database Writing
	Entry deletion
	Entry looping

	Appendix B IPv6 code snippets
	Appendix C - Unix Domain Sockets

	Glossary of Abbreviations
	Bibliography

