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Abstract

Designing object-oriented software is hard, and designing reusable object-oriented

software is even harder. This task is even more daunting for a developer of computa-

tional intelligence applications, as optimising one design objective tends to make others

inefficient or even impossible. Classic examples in computer science include ‘storage vs.

time’ and ‘simplicity vs. flexibility.’ Neural network requirements are by their very na-

ture very tightly coupled – a required design change in one area of an existing application

tends to have severe effects in other areas, making the change impossible or inefficient.

Often this situation leads to a major redesign of the system and in many cases a com-

pletely rewritten application. Many commercial and open-source packages do exist, but

these cannot always be extended to support input from other fields of computational

intelligence due to proprietary reasons or failing to fully take all design requirements

into consideration.

Design patterns make a science out of writing software that is modular, extensible

and efficient as well as easy to read and understand. The essence of a design pat-

tern is to avoid repeatedly solving the same design problem from scratch by reusing a

solution that solves the core problem. This pattern or template for the solution has well-

understood prerequisites, structure, properties, behaviour and consequences. CILib is a

framework that allows developers to develop new computational intelligence applications

quickly and efficiently. Flexibility, reusability and clear separation between components

are maximised through the use of design patterns. Reliability is also ensured as the

framework is open source and thus has many people that collaborate to ensure that the

framework is well designed and error free.
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This dissertation discusses the design and implementation of a generic neural network

framework that allows users to design, implement and use any possible neural network

models and algorithms in such a way that they can reuse and be reused by any other

computational intelligence algorithm in the rest of the framework, or any external ap-

plications. This is achieved by using object-oriented design patterns in the design of the

framework.

Keywords: artificial intelligence, artificial neural network, computational intelligence,

software engineering, design pattern, taxonomy, incremental learning, sensitivity analy-

sis, sensitivity analysis incremental learning algorithm, neural network library, CILib.
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If people do not believe that mathematics is simple, it is only because

they do not realise how complicated life is.

– John Louis von Neumann

Any fool can write code that a computer can understand. Good program-

mers write code that humans can understand.

– Martin Fowler
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Chapter 1

Introduction

If the human brain were so simple that we could understand it, we would

be so simple that we couldn’t.

— Emerson M. Pugh

Man has always been intrigued by the notion of intelligent computers, ranging from

the ideas of science fiction writers who dreamed of having conversations with artificial

beings that could reason and even feel, to the realists who wanted a computer that could

solve problems that they themselves could not. The Turing test [111] was proposed by

Alan Turing as a well-defined test for a machine’s capability to demonstrate thought.

The test assumes two parties, a human and a machine, that are engaged in conversation

with another human via a chat program. The machine is said to pass the test if the

human cannot reliably distinguish which one of the two parties is the machine and

which one is the human. While a machine as described by Turing has still not been

developed, extraordinary progress has been made in artificial intelligence in the last 50

years. Today the field is so immense that it has been split into subfields such as artificial

life [114], robotics [13], expert systems [55], case based reasoning [96], among others.

One such subfield is computational intelligence (CI). The CI field consists of four

areas, namely neural networks (NN) [50], evolutionary computation (EC) [5], [37], swarm

intelligence [7] and fuzzy systems [120]. Neural networks is used as a collective name

for topologies and algorithms that are based on biological neural systems found in living

animals and humans. Evolutionary computation is a field where scientists simulate

1
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the way that natural organisms evolve and adapt over time to overcome environmental

constraints. Swarm intelligence is the study of the dynamics in a natural social system

such as birds in a flock, a school of fish or a colony of ants. Finally, fuzzy systems

involves reasoning about problems and their solutions in such a way that the values of

‘true’ and ‘false’ are not binary – a statement’s logical validity can be a real value in

fuzzy logic as opposed to 1 or 0 in Boolean logic, the reason being that uncertainties are

being reasoned about.

The field of CI has enjoyed a lot of success, particularly in recent years. Neural

networks have been used to solve diverse problems such as classification problems found in

data mining [99], biochemistry [81], least cost routing in the telecommunications industry

[45], scheduling of airline crew [70], spam prevention in email [9], circuit design [124],

intrusion detection for computer systems [95], [102], game logic [109], [116], financial

applications [18], and medical research. An interesting medical example [1] used a radial

basis function network for phosphene localisation. The system involves an artificial retina

implant that translates images into signals which are used to stimulate the optic nerve,

which in turn generates phosphenes at different locations of the patient’s visual field.

It is shown that neural networks show promising results in helping to rehabilitate blind

patients.

Even with all these useful applications it is not easy to find applications or code

libraries that provide users with all the functionality they want. Commercial and open-

source applications exist that allow users to train and apply certain CI algorithms.

The main problems with these commercial packages are that they are often difficult or

impossible to extend or modify, and that they don’t always allow users to easily integrate

different areas of CI (such as neural networks and swarm intelligence for example).

In 2001, Edwin Peer started an open source project called the Computational Intel-

ligence Library, or CILib, as part of a Masters study [85]. The aim of CILib is to fully

integrate the areas of CI into one coherent library where code could be reused efficiently

and any CI algorithm could interface with any other algorithm. At the time of writing,

CILib included a vast amount of knowledge in the fields of particle swarms, evolutionary

computation, game theory and ant colony optimisation to name but a few. As a result of

this need for integration of all CI components, there is also a fair number of data struc-
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tures and algorithms that are implemented generically. These allow any CI algorithm to

interface with other components by providing a standard class hierarchy and enforcing

the same set of tools such as containers and types to increase interoperability.

This dissertation discusses the design and implementation of a generic neural network

framework in CILib that allows users to design, implement and use any possible neural

network architectures and algorithms in such a way that they can reuse and be used by

any other CI algorithm components in the rest of CILib (or any external1 application).

This is achieved by using object-oriented design patterns in the design of the framework

which maximises its reusability and extensibility.

1.1 Motivation

There are two ways that people can obtain neural network applications – they can write

their own implementation, or reuse other implementations. Both of these options face

the same fundamental challenge during design time of having requirements that are

very difficult to articulate in a complete and precise way. This section discusses the

fundamental dilemmas that neural network developers face. A short discussion on the

use, availability and capability of existing neural network packages and libraries is also

given.

1.1.1 Design Dilemmas

The implementation of a neural network model involves the same basic steps as with

the construction of any other application. This includes deciding what the application’s

key requirements are, designing a solution that will satisfy all the requirements, and

developing the application. It is advantageous to follow a methodology as part of a

software development lifecycle. Numerous such methodologies exist, of which extreme

1As will be seen in chapter 4, CILib is completely open and external applications can reuse these

components.
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programming (XP)2 and IBM’s Rational Unified Process (RUP)3 are two well-known

examples.

A person who wants to implement a specific neural network model or a framework

that supports quite a couple of neural network topologies and algorithms merely has

to find out what the exact requirements are, design an application that addresses these

requirements, implement it and test it.

This is where the design and implementation of neural network models turns out to

be very illusive.

Typical neural network implementations are mostly custom written ad-hoc applica-

tions developed by the users who need them. These applications have as many features

as their creators decided to incorporate. A designer would implement a neural network

application based on a set of requirements that is considered to be complete. Later dur-

ing a refactoring phase it would frequently be the case that requirements are expanded

or contracted. If the underlying structure of the neural network needs to change (like a

change in topology (neurons and weights), learning algorithm, data sources, or any other

logic), the designer has to change the program source code. Frequently one would find

that the original application design could not cater for the required change, as it was

never a design requirement. The effect of this is usually devastating to a neural network

implementation design. Often this situation leads to a major redesign of an existing

system, or in many cases a completely new application.

Researchers such as Kazmierczak, Senyard and Sterling [61] agree that one of the big

problems of developing neural networks in an ad-hoc manner using ‘trial and error’ and

‘build and fix’ approaches is that success is difficult to repeat. This means that developers

who employ such methods have to start from scratch everytime a new network has to be

developed, both from a development code base as well as problem solving experience.

Challenges such as those mentioned above occur because all components in a neural

network are functionally very tightly coupled. Most modern applications have a very

loosely coupled design. An example is a word processor. If one changes the font rendering

or line breaking components in a word processor, the spell checker will still work correctly,

2See http://www.extremeprogramming.org for more information on XP.

3See http://www.ibm.com/software/awdtools/RUP for more information on RUP.
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as these changes do not affect the spell checker functionality. In such an application it is

easy to define levels of abstraction and to separate the application functionality cleanly

into those layers.

In any neural network model implementation this is not always the case.

Each component of a neural network implementation is greatly dependent on the

slightest detail of one or more other components. A few examples of such dependencies

are included below. This list is by no means exhaustive. To make matters worse, it

frequently happens that trying to meet one requirement invalidates one or more of the

others. This is due to the tight coupling found in neural network systems. The details

of what these challenges entail can be seen in chapters 2 to 6.

• Net input signal: The net input signals of neurons can include many types such

as product units or summation units in the case of feedforward networks. Other

network topologies use different types of net input signals, such as self organis-

ing maps that use distance metrics like Euclidean distance. The choice of net

input signal directly influences network output, weight training algorithms, archi-

tecture selection algorithms, the type of data that a neuron can process, as well

as the choice of activation function. A change in net input signal has significant

consequences to the operations of other components, such as changes in learning

algorithm mathematics, architecture selection, network evaluation, data sets and

data types throughout the network, active learning algorithms and network topol-

ogy. Developers need to design their applications to be flexible enough to facilitate

these changes, yet also provide an efficient system.

• Activation functions: Related to the net input signal is the activation function

of a neuron. The type of function makes a profound difference in how one would,

for example, train a network with gradient descent optimisation. It may also

influence the heuristics that are used in certain active learning schemes. Some

neuron types such as the bias unit in feedforward networks give a constant output,

while others such as input neurons need to emit what they receive (perhaps adjusted

with a scaling factor). Output may also be restricted to certain ranges. Adaptive

activation functions as discussed in [27] also allow these functions to be learned

dynamically, which in turn may influence the entire system.
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• Neuron interpretation: Some network types such as feedforward networks re-

quire bias units while other networks with the same physical topology layout do

not require them. The designer has to keep track of the bias units and the ‘real’

neurons in these cases.

• Recurrent neurons: Recurrent neurons and layers of neurons require a history

of their previous output, while most other neurons do not. If the designer decides

to incorporate recurrent functionality in a neural network implementation during

a refactoring stage, it may be very difficult or inefficient to change the design to

achieve this.

• Topologies: Neurons need to be connected together to form a network. Many

types of connection schemes exist, ranging from fully connected topologies to bi-

partite topologies to partially connected topologies, as well as other types of con-

nection schemes. Weight connections can also potentially span from any neuron to

any other neuron, either unidirectional or multidirectional. Furthermore, ensem-

bles of topologies are possible, which allow multiple topologies to be used together

and their results combined in a multitude of ways. Modular neural networks are

similar in that many types of neural network topologies are combined into a single

coherent network. Both ensemble and modular neural network members can be

considered as neurons on a high level. Designers of a neural network implementa-

tion need to consider these points in their designs.

• Weights: The data types of weights may not always be the same, even in the

same network topology. These can vary from being discreet, real, binary, complex

or even vector values to name but a few. As weights values are the inputs to net

input signal functions in neurons, this dependency needs to be enforced (especially

in a dynamic environment that changes during runtime). Past weight values also

need to be kept track of in many applications. In some neural learning schemes it

may be required that the training algorithm be specified down to the individual

weight connection level.

• Growing/pruning: Adding neurons or weights to, or removing neurons or weights

 
 
 



CHAPTER 1. INTRODUCTION 7

from a layer of neurons (either at runtime or statically) needs to involve integrity

checks such as:

– adding and removing the weights associated with the relevant neuron,

– making sure that training algorithm implementations will still work on the

increased/decreased number of neurons (changes in the mathematics, array

sizes, error functions involving neuron outputs, and other details),

– making sure the data source still has the correct number of inputs and outputs

for the network topology, that patterns are still configured correctly and that

any components that use patterns are still in working order.

– clients that are loosely coupled to a neural network system need to be informed

in some manner when a change to a topology occurs. An effective way to

do this is publish/subscribe (sometimes called an observer), but the neural

network system must provide this functionality.

If growing/pruning functionality is added to the network design after the topology’s

implementation, it may be very difficult or impossible to implement efficiently.

• Learning strategies: There exists a multitude of ways to train any specific neural

network model. These include learning strategies such as gradient descent based

training algorithms, evolutionary algorithms, particle swarm optimisation, leapfrog

optimisation, among others. Neural network topology design needs to take these

different learning methods into account. Learning approaches may vary, as is the

case for batch (offline) and stochastic (on-line) training.

• Data sets: There are many different collections of patterns in neural network

models such as training sets, generalisation sets, validation sets and candidate

sets. This leads to many possible ways of distributing data into these sets (such as

random distributions, K-fold clustering, specific assignments, and many others).

• Sources of data: Data sources of neural networks may include many different

types such as flat files, databases, network locations, generated data, web services,

XML files, application output, and others. The system needs to make an abstrac-

tion here so that changes in data sources do not influence the rest of the system.
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• Pattern presentation and ordering: Different types of pattern presentation ex-

ist. Broadly speaking, there are a multitude of ways that patterns can be ordered

in data sets. Active learning and passive learning techniques are also possible and

need to be taken into account. All these techniques require information from vari-

ous sources across the neural network model in order to calculate how to perform

its role. A neural network framework needs to be flexible enough to allow these

components to be changed without affecting the rest of the system.

• Measurements: Measurements (such as a network’s training error) need to be

recorded when running simulations. Many of these measurements are common to

the majority of neural network types, and some measures are dedicated to certain

models only. More than one measurement can be active simultaneously. Simulation

engines need to perform integrity checks as well as allow many active measures at

any given time. New measurements must be easy to add without disrupting the

rest of the system and measures should be reusable.

• Stopping conditions: Many different stopping conditions exist, of which some

might be relevant to certain neural network models only. More than one stopping

condition might be active simultaneously as well. More stopping conditions must

be easy to add and reuse.

• Parallel computing: Some simulations can be very large and time consuming.

Running simulations in parallel can speed execution time up substantially. How-

ever, the logic of distributing, collecting and correlating results needs to be included

in the simulation manager. Exceptions such as machines rebooting, network fail-

ure, timeouts, and other problems also need to be handled. The neural network

components themselves need to take clustering into account, which is easy to do

via design patterns and object-orientation if the requirement is taken into account

early. Retro-fitting a neural network implementation to support parallel computing

may not be feasible in many cases.

• Integration and integrity: There are many complexities that arise when inte-

grating different neural network components that were written by different devel-

opers using different programming models, including challenges such as:
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– Data integrity when different components use different data structures to rep-

resent information. An example would be a component that reads data from

a source and returns a linked list of values, and a component that performs

training on a neural network that accepts an array of values.

– A composite application (i.e. integrating many separate components to form a

larger application) needs to be tested thoroughly as components are not always

guaranteed to work together – a common development model is needed.

– Development time is increased as a developer would need to learn how a new

component works, as well as learning a different programming model in many

instances.

In short, unnecessary time and effort is spent trying to adapt different program-

ming models to work together, which might lead to development errors, slow per-

formance, lack of flexibility, difficult maintenance and applications that cannot be

extended easily (or at all).

• Use cases: Neural networks need to be trained before they are useful in applica-

tions such as financial forecasting, routing and others. Developers need to decide

what type of neural network to use, which learning algorithm gives the best re-

sults (which will be problem specific) and finally provide an application component

that provides the functionality of the trained neural network. If developers are not

careful, they need to develop a neural network implementation for each type of

neural network (say a1 types), as well as each learning algorithm (say a2). This

could mean up to a1 × a2 separate neural network implementations need to be

developed, plus another application that uses the trained neural network.

A generic neural network framework will allow developers to develop solutions much

faster, as various neural network types can be tested with various different learning

algorithms by merely configuring existing components. Certain components may

also be reusable in a final user application, alleviating the need to rewrite the

neural network functionality.
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These are but a few of the dilemmas facing a neural network designer. Often, design-

ers would rather write a new application to implement a specific neural network rather

than modify an existing implementation. Modifying an existing implementation is often

more time consuming and difficult due to the nature of the type of problems mentioned

above.

Many researchers have started to address the challenges of neural network develop-

ment and show how existing software engineering principles can address neural network

development. Dart, Senyar and Sterling [14] present a unified framework in the form

of an extention to the capability maturity model (CMM) [52], which is known as the

neural network process model (NNPM). CMM is a world-renowned framework designed

to guide developers in improving the manner in which software solutions are developed.

CMM consists of 5 maturity levels, where each level addresses certain aspects of the de-

velopment process. The first level consists mostly of from ad-hoc development processes,

and process capability progresses cumulatively through levels to the fifth level, which

significantly raises the maturity level by addressing and optimising issues such as testing

strategies, separation of environments into development testing and production envi-

ronments, performance management, reference models for developed implementations,

amongst many other aspects. NNPM aims to provide a neural network development-

specific specification of CMM to aid neural network developers to implement neural

network applications more concisely and based on sound software engineering practices.

Kazmierczak, Senyard and Sterling [61] propose methods that can be used to both

build neural network applications based on requirements, as well as solve specific prob-

lems. These methods also focus on the validation and verification of learning, allowing

a more structured approach to building and using neural networks to solve problems.

Emphasis is placed on the fact that there must be separation between the generic and

application specific components of a neural network.

There are also frameworks which aid in the specification and development of specific

neural network models. Schikuta [97] shows how Rumbaugh’s object modelling technique

(OMT) [94] can be used for the specification and implementation of neural networks using

software engineering principles. Essentially, OMT is used to model the desired behaviour

of a neural network model and, using software engineering tools, is used to generate a
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neural network application outline in either the C or C++ language.

1.1.2 Neural Network Packages

This section gives a short overview of some well-known neural network packages and

libraries. An exhaustive overview is not given, as the aim of this dissertation is not

to provide a catalogue of available neural network libraries and packages. Rather, some

well-known examples are listed, their main capabilities are expressed, and challenges and

shortcomings that these packages have are highlighted.

There are a multitude (literally thousands) of neural network packages available to

developers today. These can be classified into two main categories, namely commercial

systems and open-source or freeware systems. These systems can again be classified into

those that merely provide a library of neural network models that developers can use

in their own projects, or applications that use proprietary neural network libraries to

perform tasks such as data mining, or stock price trend analysis.

Some examples of well-known neural network libraries include the Stuttgart Neural

Network Simulator (SNNS) [121] developed by the University of Stuttgart. SNNS in-

cludes about 20 types of neural network models and related training models that were

developed using the C language. Another example is the neural network toolbox for

MATLAB [16] that enables MATLAB users to train and use a host of predefined neu-

ral network models and algorithms. A well-known Java neural network package is Java

Object Oriented Neural Engine (JOONE) [76] which consists of a modular system for

constructing neural network models.

While these systems are all useful in their own right, they all tend to be designed

and constructed with merely neural networks as a field of computational intelligence in

mind. Connecting neural network models to other areas of CI such as particle swarm

optimisation and evolutionary computation is in most cases very difficult or inefficient to

do. While some libraries allow interactions with other CI algorithms, these algorithms

typically reside outside of the neural network library, creating the need for integration.

The results of such integration methods may include:

• Slow performance as there may be no efficient way of connecting a particular neural

network library to a custom CI implementation or existing CI library.
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• A high probability of integration errors, as developers have to manually integrate

a neural network library with a CI library or custom CI implementation to obtain

the desired result. This may happen, for example, if the two libraries use different

data representation (such as weight value sequences), data structures, amongst

other aspects.

• Long development cycles occur, as developers will in most cases have to start

from scratch if they need to integrate a neural network model with a new CI

implementation. Subsequently, the same amount of work will have to be performed

for every new CI algorithm, as each new CI algorithm will have its own methods

of operation that will have to be integrated.

• Closely related to the previous point, is the fact that the neural network library

and other CI libraries most probably will not share a common base framework

(or metamodel). This may severely limit the possibilities of reuse, the level of

abstraction that is supported (in terms of neural networks, examples would be to

have access to weights on a neuron- or layer level), and possible interaction patterns

between the libraries.

• As the neural network and external CI algorithms are in different libraries or im-

plementations, it will be difficult and inefficient to try and run simulations in a

parallel computing environment.

Furthermore, it is not always possible or easy to extend or modify a given neural

network model that resides in a library. This is mainly due to the dilemmas discussed

above, and sometimes for legal reasons too. Also, most neural network libraries typically

allow neural network models to be trained, but provide no way to use them in custom

applications. In these cases developers have to rely on their own means to incorporate a

neural network engine in their applications.

This dissertation aims to present and extend a framework called CILib that allows

developers to easily connect neural network implementations to CI implementations that

reside in the same framework in a structured way using design patterns. This allows

algorithms to be developed very quickly, easily and error-free.
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1.2 Scope

The aim of this dissertation is to lay a foundation of typical relationships and interactions

found in neural networks today, and show how developers of neural network implemen-

tations can avoid the design problems and dilemmas as discussed above. This is achieved

by extending and reusing a CI framework called CILib that aids developers to write CI

algorithms in an efficient and reusable manner. The aim of this dissertation is not to

create a neural network library. Rather the design of a framework for such a library is

presented. Some complete neural network implementations are developed as examples

of how the framework can be used. This dissertation has the following core objectives:

• Present a conceptual breakdown of existing neural network models, taking into ac-

count their architecture, data requirements, training methods and operating char-

acteristics.

• Briefly discuss object-oriented design patterns and show how patterns can be used

to design an effective generic neural network framework, using the conceptual

breakdown as requirements.

• Give a brief overview of CILib’s objectives, benefits and how the system works.

• Discuss the design and implementation of a generic neural network framework

in CILib that uses design patterns and how this framework addresses the core

requirements set by the conceptual breakdown of neural network models.

• Show some advanced implementations in the neural network framework, such as

modular and ensemble networks, active learning, architecture selection, as well

as external learning algorithms for neural networks such as other CI techniques.

A new performance metric is also added to the framework. These provide good

examples of how existing components can be reused to easily create completely

different neural network models by merely extending existing interfaces. As the

CILib metamodel is used, these new components are also fully reusable.

• Illustrate how to easily create neural network implementations in a controlled man-

ner by using the framework as guidance. In particular it shows how the framework
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guides development and greatly reduces errors by detecting incorrect configura-

tions. Reuse of existing neural network components by extending their function-

ality or create new components that can be used by the existing system is also

shown.

Note that the entire software development lifecycle, software engineering methodol-

ogy, use cases, and the application of the framework to iterative problem solving are not

in scope – only the actual technical design of the generic neural network framework is

covered with emphasis on design decisions, benefits and trade-offs.

1.3 Dissertation Layout

The remainder of this dissertation is organised as follows:

• Chapter 2: A brief overview of neural networks is given and a conceptual break-

down is presented. This breakdown states the functional requirements of typical

neural network models known today.

• Chapter 3: A discussion of the design patterns used in CILib and the generic

neural network framework is presented. An overview is given of the problem that

each pattern addresses along with an example of where it can be used to ease neural

network implementation design.

• Chapter 4: The layout and general operation of the CILib framework is discussed.

• Chapter 5: The implementation of the generic neural network framework is dis-

cussed. Continuous reference to chapter 2, 3 and 4 shows how the framework

addresses the key requirements listed in these chapters.

• Chapter 6: Some advanced implementations are discussed, including topics such

as active learning, modular and ensemble networks, network growing and pruning

as well as training neural networks using external training approaches such as

PSO. The ease of extending a neural network system with a complicated metric

such as receiver operating characteristics (ROC) is also presented. Throughout the

chapter, the reuse and efficiency of the framework and CILib is highlighted.

 
 
 



CHAPTER 1. INTRODUCTION 15

• Chapter 7: The dissertation conclusion is given and further work ideas are dis-

cussed.

 
 
 



Chapter 2

Artificial Neural Networks

Computational properties of use to biological organisms or to the con-

struction of computers can emerge as collective properties of systems having

a large number of simple equivalent components (or neurons). The physical

meaning of content-addressable memory is described by an appropriate phase

space flow of the state of a system. A model of suc̀h a system is given, based

on aspects of neurobiology but readily adapted to integrated circuits.

— Extract from [50] by J.J. Hopfield, 1982, as one of the pioneers of

modern neural networks.

An artificial neural network is, as the name suggests, a network of connected artificial

neurons. An artificial neuron in turn is a single processing element that accepts one or

more inputs and produces an output signal – most neurons generate signals in the range

(0,1). A fully functional artificial neural network is constructed by connecting these

artificial neurons together. Many types of topologies are possible depending on how

these artificial neurons are connected together. A topology that is often used, called

a layered topology, is shown in figure 2.1 to illustrate how artificial neurons can be

connected.

As this dissertation always refers to artificial neural networks (as opposed to the

biological neural networks that inspired scientists such as Hopfield), the term ‘artificial’

is omitted for convenience. This chapter gives a brief conceptual overview of neural

networks and all the components that make up a neural network system. The aim of

16
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Figure 2.1: A network of connected neurons

this overview is to give a broad understanding of the structure of neural network systems

as opposed to an exhaustive overview of all the known possibilities for each section. The

focus is on highlighting the main components of a neural network system, as well as

common high-level relationships between these components. For example, in section

2.2.3 which considers active learning, the characteristics of the active learning system

are discussed instead of a full listing of all the known approaches to active learning.

What is a neural network system and what are all of the components that a developer

needs to consider? Fiesler [33] states that a neural network system can be described

by a four-tuple, namely its topology, its constraints, its initial state and its transition

function. The topology describes the network’s layers and neurons (i.e. its frame) and

the interconnection scheme between layers and neurons. Network constraints describe

the ranges of weights and transfer functions, while the network’s initial state allocates

starting values to these components. Lastly, transition functions describe the methods

to reach successive network states, including neuron transfer functions, learning rules,

clamping functions as well as changes to network topology (called an ontogenic function).

Taking this into account, any neural network system can fundamentally be divided

into three main components. The rest of this chapter gives an overview of neural networks

by discussing how a neural network system can be described by these three components,
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which are

1. a topology component that encompasses the neuron and weight connection frame-

works,

2. a data component that outlines different ways that data can be presented to a

neural network, and

3. a learning component that stipulates various ways in which a neural network can

be trained.

Developers can use this breakdown as a requirements specification to construct neural

network implementations.

2.1 The Topology Component

A neural network topology comprises of the different connection schemes and neuron

types that together form a neural network. The topology defines the relationships be-

tween neurons by means of their weight connections. This connectionist approach can be

formally defined by using Graph Theory1 as stated in [34]. Neurons are viewed as ver-

tices and the weight connections are edges between the neuron vertices. This approach

is discussed in more detail in chapter 5.

Formally (see [34]), a neural network topology consists of a framework of neurons

and its interconnection structure (or weight connection framework). Note that topology

and architecture are used interchangeably in this dissertation.

2.1.1 Neuron Framework

The neuron framework consists of one or more layers of neurons that are interconnected

by weight connections.

1See [19] for a full overview of Graph Theory
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The Neuron

A neuron is a single processing unit inside a neural network. A typical neuron consists

of many components and processes as can be seen in figure 2.2:

• a number of input weight connections (the total number of input weights is known

as the fan-in of the neuron),

• a number of output weight connections (the total number of output weights is

known as the fan-out of the neuron),

• a net input signal that consolidates the input weights and input values,

• an activation function to generate an output signal based on the net input signal,

• a scaling and limiting phase may also be found (optional),

• a competition phase where neuron output is determined based on external factors

such as other neuron outputs (optional).

Figure 2.2: Processes in a neuron
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The input weights of a neuron consists of all the weight connections that provide

information to the neuron and is an important concept as the output of a neuron is

computed by directly using these weight values. The degree, dn, of a neuron n is the sum

of the fan-in, dIN
n , and the fan-out, dOUT

n of the neuron. That is,

dn = dIN
n + dOUT

n (2.1)

The net input signal of a neuron is a mathematical transformation that takes the

input weight strengths and the output of all the respective input neurons to compute a

net neuron signal. Duch and Jankowski [20] give a full taxonomy of net input signals.

These include:

• The inner product net input signal is defined as net = I(zp,wn) = wn · zp where

zp is the input vector and wn is the input weight vector of neuron n.

• The distance-based net input signal defined as net = D(zp, tp) = ‖zp − tp‖ where

zp is the input vector and tp is the target vector.

• A combination of distance-based and inner product, such as net = A(zp,wn, tp) =

αwn · zp + β‖zp − tp‖.

Net input signal output can be either scalar or vector values, although scalar values

are mostly used. The distance-based function is not restricted to the Euclidean norm,

so other norms such as quadratic distance functions can also be used. In most cases the

net input signal is unbounded and activation functions are used to impose bounds on

the neuron’s output. The most widely used net input signal (known as the summation

unit) is probably the inner product of the input vector zp and the weight vector wn to

give the net input signal of the neuron, namely

net = wn · zp (2.2)

=

dIN
n∑

i=1

zp,iwi

where dIN
n is the total number of input weights to the neuron. Another widely used net

input signal is the product unit as discussed in [21], [57] and [74]:

net =

dIN
n∏

i=1

zp,i
wi (2.3)
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A good example of a distance-based net input signal is the Euclidean distance metric,

which is commonly used in unsupervised networks, defined as

net =

√√√√dIN
n∑

i=1

(zp,i − wi)2 (2.4)

The choice of net input signal may have a profound affect on the learning algorithm.

For example, as explained in section 2.3.1, gradient descent weight updates depend on

the derivative of the net input signal. Thus using equation 2.2 or equation 2.3 makes a

dramatic difference in both neural network topology as well as the learning component.

The purpose of an activation function is to transform a neuron’s net input signal

into the neuron’s output (or firing strength). The combination of the net input signal

and the activation function is known as the neuron’s transfer function as can be seen

in figure 2.2. The value of the activation function is influenced by net as well as the

threshold value θ, also known as the bias.

There are two main types of activation functions, namely

• hard activation functions that include discrete functions such as the step or multi-

step functions, and

• soft activation functions that include continuous functions such as sigmoid and

radial functions.

Probably the most widely used activation function is the sigmoid function which is

defined as

f(net− θ) =
1

1 + e−λ(net−θ)
(2.5)

where λ determines the steepness of the respective function; usually λ = 1. The range

of the sigmoid is (0, 1). A function that shares the shape of the sigmoid function, but

has a greater range of (−1, 1), is the hyperbolic tangent function, defined as

f(net− θ) =
eλ(net−θ) − e−λ(net−θ)

eλ(net−θ) + e−λ(net−θ)
(2.6)

and is approximated by

f(net− θ) =
2

1 + e−λ(net−θ)
− 1 (2.7)
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A frequently used activation function is the step function, which implements a form

of discrete output. The multi-step function can produce any number of discrete output

values, while the step function produces a binary output of either β1 or β2, as defined by

f(net− θ) =

{
β1 if net ≥ θ

β2 if net < θ
(2.8)

A simple linear activation function is defined as

f(net− θ) = β(net− θ) (2.9)

A gaussian function is defined as

f(net− θ) = e−(net−θ)2/σ2

(2.10)

where net− θ is the mean and σ2 is the variance of a Gaussian distribution.

A very interesting activation function used in wavelet networks [123] uses wavelet

functions in the calculation of the hidden unit output. Notice that there is no separate

net input signal calculation, only the activation of hidden unit yj:

yj = ψ

(
zp − vj

aj

)
, j = 1, . . . , J (2.11)

where J is the total number of hidden units in the wavelet network, ψ(·) is a wavelet

function, vj and aj respectively are the translation parameter and dilation parameter

of ψ(·). The information of vj and aj is stored as weight values in the neural network,

where vj is the input to hidden layer weights (see figure 2.1). A commonly used wavelet

function, known as the inverse Mexican-hat function, is given by

ψ

(
zp − vj

aj

)
= (γ2

j − I)e−(
γ2
j
2

) (2.12)

where

γ2
j =

∥∥∥∥zp − vj

aj

∥∥∥∥ =

√√√√ I∑
i=1

(
zi,p − vji

aj

)2

(2.13)

In all the activation functions mentioned, the value of θ is used to determine what

corresponding output value will be generated for a given value of net. This can be
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clearly seen in the step function, where the value of θ categorically decides the value of

the activation function from β1 to β2.

More complex activation functions exist, such as proposed by Zurada [126] and ex-

tended by Engelbrecht et al. [27]. Essentially, the same sigmoid function as defined in

equation 2.5 is used, but a λ parameter is kept for each hidden and output unit. There

is also a % parameter which controls the range of the function. The definition of the

sigmoid function now becomes f(net− θ, λ, %) = %
1+e−λ(net−θ) . Several learning rules exist

that allow the network to learn the optimal λ and % values.

For a taxonomy and discussion on the different types of activation and output func-

tions, see [20].

The terms scaling and limiting refer to two optional operations on neuron outputs

after their transfer functions have been evaluated. Not all neural network topologies

support these operations and they should only be used if their effects are well understood.

Scaling is used to transform the output of an activation function to a desired range and

offset. For example, the range of the sigmoid function in equation 2.5 is (0, 1), but the

neuron’s final output can be in the range (−1, 1) or (5, 10) depending on the scaling

function used. The level of scaling is dictated by the activation functions of the neurons

that use the current neuron’s output, as these neurons will receive the scaled values as

input. Limiting is used to decide what the final output of a neuron will be. These can

be logical constructs such as stipulating the conditions under which a neuron will keep

its previous output value rather than using a newly computed value.2

Competition is another optional operation that some network topologies require. An

example of this is the linear vector quantiser-I developed by Kohonen [63], where the

algorithm requires a ‘winning’ neuron to be selected based on output values. Only

the weights of the winning neuron are updated (see algorithm 2.4). The concept of a

‘winning’ neuron can also be used in classification problems. Consider, for example, a

problem that has six classification outcomes. A feedforward neural network with six

output units utilising competition can be used to represent the problem – the winning

neuron represents the class that a particular input vector belongs to.

2This is sometimes called clamping.
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Neuron Layers

Most neural networks have a layered topology that typically consists of multiple layers.

There are exceptions where no layering is present, but such cases can be regarded as a

single layered network as stated in [34]. A layer consists of one or more neurons. In the

context of layers, three types of neurons can be distinguished:

• input neurons, which receive external input from data sources,

• hidden neurons, which receive input from other neurons in the network, and

• output neurons, which produce the network’s output.

In a similar way, input-, hidden- and output layers contain only input-, hidden- or

output neurons respectively. The total number of neurons, N , for all layers, L, is

N =
L∑

l=1

Nl (2.14)

where Nl is the number of neurons in layer l.

Neurons in the same layer are not ordered as each neuron has equal importance.

Exceptions do exist such as self organising maps [63] [64] (also refer to section 2.3.2) where

the relative position of neurons are important. From a programmatical perspective,

ordering of neurons is important in cases such as when training is performed by learning

algorithms such as a particle swarm optimiser (PSO), as a particle represents all the

network’s weights in a single linear vector. This is discussed in more detail in section

2.3.1. These weights need to be extracted and inserted into the network in the exact

same order every time. The order in which input and output vectors are mapped to an

application is also important.

2.1.2 Weight Connection Framework

The weight connection framework specifies the way in which all neurons are linked to-

gether to form a neural network. Fiesler [34] specifies four connection types are specified

based on a layered topology:
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Figure 2.3: Types of weight connections

• Inter-layer connections connect neurons in two adjacent layers (i.e. neuron layer

numbers differ by one).

• Intra-layer connections connect neurons in the same layer.

• Supra-layer connections connect neurons in layers that are not adjacent (i.e. neuron

layer numbers differ by more than one).

• Selfconnections connect neurons to themselves.

These weight types are illustrated in figure 2.3.

Each connection has a strength or weight component associated with it. This weight

value reflects the importance or influence of the source neuron to the neuron it is con-

nected to. The choice of net input signal and activation function determines which

weight values indicate strong or weak influence. Assuming a dot-product net input sig-

nal for example, weights that are close to zero indicate that the source neuron has a

low influence. Weights with zero values might be removed at a later stage by a process

called network pruning, which falls under architecture selection. Architecture selection

involves adding more weights and/or neurons, as well as removing irrelevant and redun-

dant weight connections and/or neurons from the topology. Refer to section 2.3.5 for

more information on architecture selection approaches.

Typically, the data types of weight connections are floating-point values. However,

this might not always be the case. There are a multitude of connection schemes such as:
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• Binary weights can be used where values can be either 0 or 1. Austin and Buckle

[2] used a binary weighted neural network is used to recognise features in images.

Binary weighted networks have been used to map Boolean functions [17].

• Fuzzy weights are used to build fuzzy number based neural networks. Training of

fuzzy neural networks is discussed in [32]. Nauck and Kruse [79] show how to use

fuzzy neural networks for function approximation based on supervised learning.

• Complex numbers can be used as weight values. Rattan and Hsieh [89] use complex-

valued weights and biases to perform non-linear complex principle component anal-

ysis on complex-valued input data.

• Rosen-Zvi and Kanter [92] show how to train networks that have weights with

discrete values. Nousis et al. [87] show how the use of discrete activation functions

can greatly reduce the complexity of neural network hardware implementations.

It is clear that weight values and network input data are not restricted to floating-

point values. This fact becomes even more apparent when one considers the fundamental

purpose of weight values – a weight is an input to a net input signal calculation. Thus

connection weights, net input signals and activation functions have dependencies on each

other and together have an influence on all aspects of the neural network system. Ex-

amples of aspects that are sensitive to changes in net input signal, activation function

or weight values include the calculation of network output, neural learning algorithms,

architecture selection, error metrics, objective functions, data sources and the interpre-

tations of network results. This relationship is of key importance in the construction

and use of any neural network framework.

Another characteristic of a connection is symmetry. A connection can be either unidi-

rectional or multidirectional. A unidirectional connection can only transfer information

in one direction. A multidirectional connection can transfer information in more than

one direction. In the multidirectional case a symmetric connection (see figure 2.4) has

the same weight value in all directions, while an asymmetric connection (see figure 2.5)

has different weight values for each direction. Unidirectional connections are asymmetric

by definition.
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Figure 2.4: Symmetric weight connection

Figure 2.5: Asymmetric weight connection

Fiesler [33], [34] discusses the notion of high-order weight connections. High-order

weights basically act as a splicing function that combines input weight values in a defined

manner that can then become a single input to a neuron. A good example of this is the

functional link neural network [41], [54], which is effectively a feedforward neural network

with an expanded input layer that includes one or more functional high-order units hl.

Each functional unit hl takes the original network input vector, zp, with dimension I as

input and its output is a function hl(zp). The output of these functional units is then

used as the input to the hidden layer.

Lastly, the initial weight values in a neural network can be initialised in a number

of ways. The initial value of the weight vector is very important – initial positions that

are close to a minimum will result in faster convergence in many learning algorithms.

If gradient descent based approaches are used, then positions on a flat area will result

in slower convergence speeds. Also, Horne et al. [53] show that too large initial values

can saturate neurons prematurely. Well-known initialisation strategies include random

initialisation, specific predetermined values and the inverse fan-in rule. The inverse fan-

in rule [115] states that the input weights of a neuron should be initialised in the range

[−1√
n
, 1√

n
] where n is the fan-in of the neuron. Network types such as the learning vector

quantiser developed by Kohonen [63] initialise weight values to the first input pattern’s

values.
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2.2 The Data Component

Artificial neural networks are used to solve problems. Problems are typically represented

as a data set of samples D that satisfy the constraints of the given problem. Examples of

data sets include inputs and outputs to an unknown function or a collection of attributes

that are related to a specific outcome or classification. This function can be expressed

as

FD : Z → O (2.15)

where Z is the set of input vectors with dimension I and O is the set of output (or

target) vectors with dimension K. Thus FD represents the mapping between input and

target data. Sometimes, O is not known or unavailable as is the case for unsupervised

networks such as the SOM.

The goal of a neural network is to approximate FD as well as possible. This is achieved

by using a neural learning algorithm to train the network’s weight vector W in such a

way that the network output matches FD for a data set D to within a given error range.

This neural network function can be expressed as

FNN(D,W) : Z → O (2.16)

where D is a data set sampled from FD. It is not always possible for FNN to approximate

FD precisely, which means that in most cases ‖FNN − FD‖ 6= 0. The aim of neural

learning is to minimise this difference until a suitable accuracy level is found, for example

‖FNN − FD‖ < τ . The smaller the value of τ , the more accurate the network becomes.

In most real-world applications the function FD is not known explicitly – the network

has to approximate the problem as well as possible based on the data, for both known

and unknown examples (see section 2.3 for a discussion on generalisation performance).

A single example from a data set is called a pattern. Thus a data set D can be regarded

as a set of input-target pairs such that D = {dp = (zp, tp) |p = 1, · · · , P} where zp is the

input vector with dimension I and tp is the target vector with dimension K for pattern

dp. Note that for certain neural networks the target tp can be null as is the case for the

self organising map (SOM) [63], in which case the network learning algorithm needs to

establish relationships between patterns using a metric.
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Patterns are utilised in types of learning problems such as function approximation and

classification. The goal for function approximation problems is to find a function FNN

that approximates FD. For example, for the patterns (z = 3, t = 9) and (z = 5, t = 25)

the function FNN = z2 is an appropriate function as it maps the relationship between z

and t very well.

Neural networks can also be used to solve classification problems by trying to classify

the input vector zp as belonging to an associated target class tp. Consider the problem

of determining what type of Iris flower one is dealing with when given only the attributes

sepal length, sepal width, petal length and petal width. By defining the input pattern

zp = (a, b, c, d) where a, b, c and d correspond to the respective attributes mentioned and

t ∈ {Iris Setosa, Iris Versicolour, Iris Virginica}3, the neural network can classify a given

pattern zp = (4.9, 3.1, 1.5, 0.1) as belonging to class t = Iris-setosa, for example.

It is important that any data set that is used for training be an accurate representation

of the problem. This includes aspects such as having enough training data as well as

making sure that the training examples are uniformly distributed across the problem

space in a manner that accurately reflects the problem. If this is not the case, the neural

network will not be able to approximate the problem to an acceptable accuracy. While

the network might succeed in learning the training data, generalisation performance will

most probably be adversely affected.

2.2.1 Data Considerations

There are several considerations mentioned in [25] regarding data sources for neural net-

works. It is crucial that these aspects be taken into account to ensure good performance

of any neural network. These aspects are

• missing values and how to handle them,

• statistical outliers,

• coding of non-numeric values,

• scaling and transformation,

3t is usually coded numerically
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• noise injection, and

• pattern sampling and presentation.

These aspects are discussed in more detail in the next subsections.

2.2.1.1 Missing Values

For a multitude of real-world problems it is very common to find that some patterns

contain missing values. There are many ways to deal with this situation depending on

the network type and data type. These vary from statistical solutions to changing the

network architecture itself.

Approaches in [25] include removing the incomplete pattern, replacing missing values

with the average value of the parameter (for the previous two cases this might bias

training due to information loss), adding additional input units to indicate which patterns

are incomplete or simply doing nothing as in the case of SOM (as the SOM algorithm

has a way to manage this).

2.2.1.2 Outliers

Statistical outliers are patterns that deviate substantially from the data distribution.

Examples of outliers include the value 47 in the set {3, 2, 5, 4, 7, 47} and one green dot in

a collection of red and blue dots. The problem that outliers present is that they result in

large errors when they are evaluated by the neural network. When using gradient-based

learning methods, this large error leads to large weight updates which drive the network

weights towards the outliers, thus adversely affecting any learning achieved up to that

point.

Approaches to deal with outliers include removing them from the training set before

training, removing them during training or using an objective function that is resistant

to outliers such as Huber’s objective function [51]. Approaches to remove outliers during

training are discussed in [101] and [40].
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2.2.1.3 Non-numeric Values

Input to a neural network from a data set needs to conform to the type of data that

neuron net input signal calculations expect. In most neural networks these values need

to be numeric. If non-numeric values are present in the data source, they need to be

transformed into numerical values.

According to [25], a good way to accomplish this is to present the nominal categories

as binary input units. Another approach is to use one input unit and map the nominal

values to numerical values. The drawback of this approach is that the range could be

interpreted as floating-point values.

It is important to note that data patterns are the input to net input signal and

(occasionally) activation function calculations. This entails that the types of data can

also be anything from real, discrete, complex, or fuzzy-valued (among others).

2.2.1.4 Scaling and Transformation

An important part of data preparation is scaling. Input values should (but do not have

to) be scaled to the active domain of the activation function – that is the range at which

the activation function is most sensitive to change. For example the active domain of

the sigmoid function is [−
√

3,
√

3] [25]. This helps to prohibit activation function values

that fall in inactive domains of the function, thereby causing ineffective small weight

updates. There are a multitude of scaling and transformation methods available that

can be used to scale values in problematic data sets where, for example, the minimum

and maximum values are not known, or different measuring units are used.

For bounded activation functions, the target values for each pattern need to be scaled

to fit into the activation function’s active range. A commonly used linear scaling function

is:

ts =
tu − tu,min

tu,max − tu,min

(ts,max − ts,min) + ts,min (2.17)

where tu is the unscaled value, ts is the scaled value, tu,min and tu,max are the mini-

mum and maximum values of the unscaled range respectively, and ts,min and ts,max are

respectively the minimum and maximum values of the scaled range.

For classification problems the target values are usually scaled to the range [0.1, 0.9]
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if sigmoid activation functions are used, as the function asymptotically approaches 0 and

1. This is a general guideline for any function with asymptotes.

2.2.1.5 Noise Injection

By injecting noise sampled from a normal distribution that has a zero mean and small

variance, it is possible to generate more training data using the same input vectors with

new target values. The new target vector, t, should conform to the signal-plus-noise

model as mentioned in [25], namely tp = µ(zp) + ζp where p is the index of the current

pattern, µ(z) is the unknown function to be approximated and ζ is noise with a zero

mean sampled from a uniform distribution. Increased accuracy and reduced training time

can also be achieved by injecting noise as this smooths the target function [82]. Noise

injection was also used by Engelbrecht [24] to generate new patterns around decision

boundaries and so gain better performance.

2.2.1.6 Pattern Sampling and Ordering

Data needs to be presented in different ways to different types of neural networks. In

literature there are mainly four classes of data sets, namely

• a training set, DT , containing all patterns used for training of the network,

• a validation set, DV , containing all patterns used to validate neural learning during

training,

• a generalisation set, DG, that is used after training to test network performance

on completely unknown examples. This is sometimes called a test set as well, and

• a candidate set, DC , of all patterns from a data set that are available to the

network, but don’t form part of DT , DG or DV . This set is mostly empty, except

when pattern sampling is done by many neural learning algorithms such as active

learning (see section 2.2.3).

There are many methods that govern how a data set could be distributed among

DT , DG, DV and DC depending on how a particular neural network system is set up.
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Examples include random sampling, performing fast clustering on the data to group

similar patterns together and then distributing these evenly over the desired sets, using

only data that lies close to decision boundaries as training data, and K-fold cross-

validation where the data set is divided into K parts with K − 1 parts assigned to

DT and one part assigned to DV . When using K-fold cross-validation, one has to run K

experiments, making sure that each of the K sets is used as the generalisation set once.

See [77] for a discussion on how to use K-fold cross-validation with neural networks.

Another very important approach to sampling is active learning (discussed in section

2.2.3), which allows a neural network to have control over which patterns to include in

DT . The training set is thus sampled dynamically and previously unused patterns are

assigned to DC .

Lastly, the order in which patterns are presented to the network (referred to as

pattern ordering) is important in many scenarios. When training a neural network

using stochastic gradient descent optimisation (see section 2.3.1), patterns from DT are

typically presented in a random order to prevent biasing the network as a result of pattern

order. An approach in [83] called selective presentation involves dividing the training

set into ‘typical’ and ‘confusing’ patterns (i.e. far or near to decision boundaries) and

having the network train on these patterns in alternating steps. The increased complexity

training approach in [10] lets the neural network learn easy patterns first and increases

complexity over time. Other approaches include ordering training patterns based on a

distance metric such as Hamming or Euclidean distance, as is done in [11].

It is important to note that, while sampling and ordering might influence each other,

they are seen as separate components. For example, a neural network implementation

might be set up to use active learning to dynamically choose which training patterns to

include in DT , yet might also use a pattern ordering scheme such as ‘easy patterns first’

or random sampling to determine in what order the selected patterns are presented to

the network.

2.2.2 Fixed Set Learning

Fixed set learning, also known as passive learning, involves using a fixed set of training

patterns for neural learning, just as the name suggests. The network has no control
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over which patterns from the problem domain are included in training set DT , which is

constructed offline before training. The logic is illustrated in figure 2.6.

Figure 2.6: Logic behind Fixed Set Learning

Once this training set is constructed, it remains unchanged for the duration of train-

ing. This approach is simple to understand and implement, but does have a number of

drawbacks:

• In order to accurately approximate a problem, ‘enough’ training patterns need to

be included in the training set that represents the problem domain ‘adequately’.

Creating concise training sets presents a huge problem, especially if prior knowledge

of the problem domain is not available.

• Lange and Männer [71] show that there exists a critical training set size. Including

more patterns after this size has been reached does not improve generalisation

performance. This maximum efficient size will need to be calculated manually

every time a new training set is constructed.

• Redundant training patterns only increase training time, as no real gain is achieved.

• Too large training sets might impact generalisation performance, as well as training

time.

• Patterns might not be equally distributed, thus biasing the network.

Although fixed set learning is easy to implement due to the lack of communication

with the network, it may result in inefficient pattern selection. Much better results can

be obtained if the network has the ability to decide which patterns from the problem

domain need to be included in the training set in a dynamic manner.
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2.2.3 Active Learning

Cohn, Atlas and Ladner [12] define active learning as follows:

“Active learning is any form of learning in which the learning algorithm has

some control over what part of the input space it receives information from.”

By using an active learning approach, a neural network can dynamically determine

which patterns will contribute the greatest to neural learning. The network can exploit

its current knowledge of the problem domain to select the most informative patterns to

be included in the training set DT – that is, patterns that have a strong influence on

network output will be selected. Thus the network has the ability to create and update

its training set dynamically, instead of simply receiving the same training data passively

from a statically defined training set. This may lead to faster training times and better

generalisation performance as shown in [12] and [122]. The logic is shown in figure 2.7.

Figure 2.7: Logic behind Active Learning

The two main approaches in active learning include incremental learning and selective

learning. Incremental learning starts off on a small initial training set that is a subset

of the candidate set, DC . At certain specified intervals, called selection intervals, infor-

mative patterns are selected from DC by using one or more evaluation criteria. These

patterns are removed from DC and added to the training set DT . Thus the training set

is the union of all previously selected augmentation subsets, while the candidate set has

these subsets removed every time.

Selective learning works similar to incremental learning in the sense that new subsets

of informative patterns are selected in each selection interval. Instead of removing pat-
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terns from DC and adding them to the training set DT , the size of DC never decreases.

The set DT is reconstructed completely from all of the available patterns in DC , keeping

none of the previous interval’s patterns. Training sets are thus totally new subsets after

every selection interval.

In both incremental and selective learning, the selection interval may be triggered by

events such as:

• A specified number of epochs has been reached.

• A certain percentage decrease in error has occurred.

• There is too little decrease in error per epoch.

• Bad generalisation performance is experienced, determined by using the generali-

sation factor εV /εT where εV is the validation error and εT the training error [122],

[91].

An important point here is that active learning needs to obtain information about the

network from a variety of sources. In [122] and [91], information about the network error

of all candidate set patterns is needed. In [23], sensitivity analysis information is used to

determine which patterns from the candidate set need to be included in the training set.

In short, active learning may need to extract information from any part of the neural

network system. This is an important aspect of neural networks when considering the

design of an application, as the various locations of information must be available to the

active learning component.

2.3 The Learning Component

Essentially, the purpose of a neural network is to find a solution to approximate a problem

that is expressed by samples in a data set. In most real-life scenarios, these input to

output vector mappings are the only information available to define problems.

The purpose of neural learning is to modify the neural network topology in such a

way that the neural network is able to solve a specific problem to a specified level of
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accuracy, given examples of input values and, if applicable, corresponding output values.

Changes in the topology may involve changing elements such as:

• network weights,

• neuron activation function and other neuron parameters4,

• pruning the network by removing redundant weights and neurons, and

• growing the network as needed by adding more weights and neurons.

Learning algorithms thus involve modifying components in the network topology in

an intelligent manner. There are four main learning paradigms that can be used to train

neural networks:

Supervised learning is achieved by having the network compare outputs to associated

targets to determine the error it made on pattern evaluation. This knowledge is

used to adjust weights to minimise overall error.

Unsupervised learning involves having the network determine by itself what features

and knowledge can be extracted from data – no external teacher oversees its learn-

ing.

Reinforcement learning involves a teacher that tells the network whether its actions

are ‘good’ or ‘bad.’ This form of learning works on a penalty/reward basis.

Hybrid learning involves combining elements of multiple learning paradigms in one

architecture for example radial basis function networks.

Learning in a neural network requires that the network topology is updated in the

manner dictated by a learning algorithm. In the case of weight updates, the learning

algorithm requires inputs to be presented to the network, after which the appropriate

weight updates are performed based on the network’s output. This process continues

until an acceptable error is reached. However, the order in which pattern presentation

and subsequent weight updates occur can be different in many optimisation algorithms.

The two main approaches are

4See [25] for a discussion on adaptive sigmoid functions as an example.
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• Stochastic learning, where weights are updated after each pattern presentation.

Patterns are selected from the training set by a chosen pattern sampling mechanism

as stated in section 2.2.1.6. Random presentation is a good choice as this prevents

any bias occurring due to pattern ordering. Stochastic learning tends to be slower

than batch learning as topology updates occur more often.

• Batch learning, where topology change information is accumulated until the end of

an epoch, after which the topology is updated only once. Batch learning typically

performs faster per epoch due to the fact that topology updates are only applied

after all patterns have been presented.

The next sections present an overview of some well-known learning algorithms and

optimisation methods that can be used to perform neural learning. The examples listed

in each category are by no means exhaustive, as there are probably an endless number of

different variations and approaches on how neural networks can be trained. The purpose

of these examples is to provide insight into how completely different types of approaches

to neural learning exist, even inside the same learning paradigm.

2.3.1 Supervised Learning

The main goal of this learning paradigm is to train a neural network up to a point where

it can solve problems to a specified level of accuracy, given examples of input and output.

Specifically, given a data set that expresses the function FD : Z → O, a neural network

FNN and a threshold τ > 0, the network should be trained until ‖FNN − FD‖ < τ . The

smaller the value of τ , the more accurately the network approximates FD. The problem

is presented to the network as a set of patterns D = {dp = (zp, tp) |p = 1, · · · , P}, where

dp denotes a single pattern. Patterns should ideally conform to the signal-plus-noise

model as mentioned in section 2.2.1.5.

Neural learning is performed on the patterns in DT . The input vector, zp, from

pattern dp ∈ DT is presented to the network and the output vector, op, is compared to

the target vector, tp, to obtain a pattern error, εp =
∑K

k=1
(tp−op)2

K
. Training is performed

on the patterns in DT while the output of DV is typically used to determine if overfitting

occurs or not. One such complete iteration over DT and DV is known as an epoch.
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A well-known method for calculating the total error for each epoch is the sum squared

error (SSE), defined as

εDT
=

PT∑
p=1

εp (2.18)

where PT is the total number of patterns in the data set DT . Similar errors can be

defined for DG and DV . The SSE can be misleading when compared to the SSE from

other simulations that have a different number of training patterns in DT . This is very

important to note in active learning scenarios where the size of DT changes often and

dynamically. An unbiased error estimate is the mean squared error (MSE), defined as

εDT
=

∑PT

p=1 εp

PT

(2.19)

The MSE error estimate takes the number of patterns into account and effectively

computes the average error per pattern in the set. During or after an epoch, depending

on whether stochastic or batch learning is used (see section 2.3), the network weights

are updated by an optimisation method. The MSE error estimate is used as an objec-

tive function that needs to be minimised by the optimisation method, but other error

estimates may also be utilised. Another well-known statistical accuracy measure is the

correlation coefficient, defined as

r =

∑P
p=1 ok,ptk,p − 1

P

∑P
p=1 ok,p

∑P
p=1 tk,p√∑P

p=1 o
2
k,p − 1

P
(
∑P

p=1 ok,p)2

√∑P
p=1 t

2
k,p − 1

P
(
∑P

p=1 tk,p)2

(2.20)

The correlation coefficient calculates the correlation between outputs and targets over

all patterns to give an indication of the relationship between the approximated function

FNN and the true function FD. Values closer to one indicate accurate approximations.

The choice of error estimate may have an impact on the learning equations of many

optimisation methods (for instance gradient descent that is discussed in the next section).

A few well-known optimisation methods are listed below. Only a brief discussion is

presented for each method.

Gradient Descent Optimisation

Gradient descent (GD) is one of the most well-known and popular optimisation methods

in neural computation. GD uses gradient information to move the weight vector along
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the negative gradient of the training error estimate εDT
in weight space. The basis for

GD is the error gradient with respect to the weights, defined as

∂εDT

∂wn

=
∂εDT

∂netn

∂netn
∂wn

(2.21)

where netn is the net input signal and wn is the weight vector for neuron n. The values

for
∂εDT

∂netn
and ∂netn

∂wn
depend on the net input signal and the activation function that are

used. Also note that, as the activation function fn depends on the net input signal netn,

the chain rule gives

δn =
∂εDT

∂netn
=
∂εDT

∂fn

∂fn

∂netn
(2.22)

where δn is known as the error signal for neuron n. The calculation of δn is different

for every choice of εDT
, netn and fn due to the difference in the differential equations.

Weights are updated by using the form

wn(t) + = ∆wn(t) + α∆wn(t− 1) (2.23)

where ∆wn = −ηδn ∂netn
∂wn

, α is the momentum factor and η is the learning rate. Mo-

mentum is needed when stochastic learning is used and assists in ‘smoothing out’ weight

changes that fluctuate between positive and negative updates (thus undoing the previous

step’s learning). The learning rate controls the size of each step’s update. The error sig-

nal δn as well as the weight updates for the hidden layer weights are computed similarly.

Refer to [25] and [80] for a full discussion on GD and details on any derivations.

LeapFrog Optimisation

LeapFrog was developed by Snyman [103] in 1982 as a method for unconstrained op-

timisation. Further improvements are discussed in [104]. It is based on the motion of

a particle in an multi-dimensional conservative force field. The objective is to conserve

the total energy of the particle which consists of its potential and kinetic energies. The

potential energy of the particle represents the function to be minimised. Thus for a

neural network the training error function (such as the MSE) represents the potential

energy.

The LeapFrog method tracks the movement of the particle and adapts the weights of

the network at intervals to reduce its potential energy in a suitable manner. A summary

of the algorithm is given in algorithm 2.1.
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1. Set w0 randomly, let ∆t = 0.5, δ = 1, m = 1, δ1 = 0.001 and ε = 10−5.

Also initialise i = 0, j = 2, s = 0, p = 1 and k = −1.

2. Compute acceleration a0 = −∇ε(w0) and velocity v0 = 1
2
a0∆t, where

ε(w0) is the MSE for w0.

3. Set k = k + 1 and compute ‖∆wk‖ = ‖vk‖∆t.
4. If ‖∆wk‖ < δ go to 5, else set vk = δvk/(∆t‖vk‖) and go to 6.

5. Set p = p+ δ1 and ∆t = p∆t.

6. If s < m go to 7, else set ∆t = ∆t/2 and wk = (wk + wk−1)/2,

vk = (vk + vk−1)/4, s = 0 and go to 7.

7. Set wk+1 = wk + vk∆t.

8. Compute ak+1 = −∇ε(wk+1) and vk+1 = vk + ak+1∆t.

9. If aT
k+1ak > 0 then s = 0, else s = s+ 1, p = 1 and go to 10.

10. If ‖ak+1‖ ≤ ε then stop, else go to 11.

11. If ‖vk+1‖ > ‖vk‖ then i = 0 and go to 3, else wk+2 = (wk+1 + wk)/2,

i = i+ 1 and go to 12.

12. Restart: If i ≤ j, then vk+1 = (vk+1)/4 and k = k + 1, go to 8, else

vk+1 = 0. j = 1, k = k + 1 and go to 8.

Algorithm 2.1: Outline of the LeapFrog algorithm.

Particle Swarm Optimisation

Particle swarm optimisation (PSO) models the social dynamics of natural systems such

as birds in a flock or schools of fish and was first devised by Kennedy and Eberhart in 1995

[62]. In broad terms, PSO works by grouping individuals called particles together to form

a swarm. All the particles have the same dimension (in standard PSO) and are ‘flown’

through a search space of the same dimension. Each particle’s position, xi, represents a

possible solution to the problem at hand. Each particle also has a velocity, vi, associated

with it. Optimisation is achieved by having each particle’s position modified based on

its own best experience (cognitive component) as well as the experience of its neighbours

(social component) based on a performance measure F . A particle’s neighbours may

include the whole swarm or certain subsets thereof. A particle’s velocity at time t is
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updated as follows using experience from both its own best position as well as that of

its neighbours:

vi(t) = vi(t− 1) + ρ1(xpbesti − xi(t)) + ρ2(xgbest − xi(t)) (2.24)

where pbesti is the index associated with the personal best performance of particle i

and gbest is the index associated with the global best performance of all particles in

the swarm. Using the velocity update in equation 2.24, a particle’s position at time t is

updated as follows:

xi(t) = xi(t− 1) + vi(t) (2.25)

The result is that particles still search large areas of the search space around the

solution while converging on an optimum point. The performance measure, F , that is

used to determine the effectiveness of a particle’s position is known as the fitness function.

This fitness function is thus the objective function to be optimised that characterises the

problem and is problem dependant. An outline of the standard PSO algorithm is given

in algorithm 2.2.

When using PSO to train neural networks, the position vector xi(t) of each particle

i represents the weight vector Wi(t) of a neural network i at time t. During the fitness

evaluation of each particle position xi(t), this weight vector Wi(t) needs to be obtained

from the particle and inserted into a network topology to be able to calculate the fitness

of the specific network. The PSO performance measure, F , comprises of the chosen

objective function for the neural network. The fitness calculation itself can take many

forms and is dependant on the type of network that is to be trained. In the case of a

feedforward neural network, the fitness value of a particle may be the MSE of all patterns

in DT , but a fitness value is not restricted to the MSE alone (see section 2.3.1). The

fitness function may also be a combination of error metrics over DT , DG and DV for

example.

The weights of all neural networks are then updated simultaneously by adjusting

the positions of all particles using equation 2.25 (as is the case when using standard

PSO – different PSO approaches may use different update strategies). Consult [113]

on how to train neural networks cooperatively and [56] for a discussion concerning the
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Initialise the position xi of each particle randomly.

Initialise the velocity vi of each particle to zero.

Set pbesti = i for each particle.

Set gbest = index of best pbesti.

Set the current iteration t = 0.

repeat

for each particle i

Evaluate F for particle i using position xi(t).

If F(xi(t)) < F(xpbesti(t)) then pbesti = i, xpbesti = xi(t).

If F(xi(t)) < F(xgbest(t)) then gbest = i, xgbest = xi(t).

Modify particle i’s velocity using eq. 2.24.

Modify particle i’s position using eq. 2.25.

end for

t = t+ 1.

until Convergence or stopping criteria are met.

Algorithm 2.2: Outline of the PSO training algorithm.

training of product unit networks using PSO. For an excellent discussion on training

neural networks using PSO, as well as performance comparisons against various other

optimisation techniques, refer to [112].

Evolutionary Computation

Evolutionary computation is based on the evolution of organisms in nature and has

been used in AI as early as by Barricelli [5] in 1954 and by Fraser in 1957 [37]. The

process of evolution has the aim of improving the ability of individuals to survive as

time passes. The characteristics of organisms are encoded as genes in a chromosome.

After reproduction, the chromosomes of offspring reflect those of both parents. Natural

selection is a process by which individuals who are more able to adapt to a changing

environment have a better chance of survival. In this way, evolution is an optimisation

process that ensures that only the fittest individuals survive.
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Set generation g = 0.

Initialise the population Cg of individuals.

repeat

Evaluate the fitness Fi of each individual i in Cg.

Select parents using selection operators.

Generate offspring and perform cross-over.

Perform mutation on offspring.

Select the new generation Cg+1

g = g + 1.

until stopping conditions are met.

Algorithm 2.3: Outline of the general evolutionary computation algorithm.

Evolutionary computation is a CI paradigm that endeavours to mimic the process

of evolution and natural selection in order to solve optimisation problems. A potential

solution to a problem is coded as a chromosome and evolutionary processes are used to

effectively search through chromosome space. There are many types of evolutionary al-

gorithms such as genetic algorithms [49], genetic programming [37], [5], evolutionary pro-

gramming [36], evolutionary strategies [90], differential evolution [88], and co-evolution

[15]. Each algorithm has its own representation of chromosomes, which may include

bit strings, trees or real numbers to name but a few. An instance of a chromosome is

called an individual and all the individuals in an experiment are called the population.

Iterations of evolutionary steps result in many different generations of a population.

The performance measure F that is used to indicate how well individuals are doing

is called a fitness function. The individuals in a population will typically have different

fitness values, resulting in some individuals being ‘more fit’ than others (i.e. the ‘more

fit’ chromosome represents a better solution to the problem). The fitness value is used

by selection operators to determine which individuals have a higher probability of being

selected to produce new offspring. The fitness is also used to decide which individuals

will survive to the next generation. Typical selection operators include random selection

(thus disregarding fitness), proportional selection based on the fitness value, tournament
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selection where the best individual wins, rank based selection that uses the rank of the

fitness values rather than the fitness values themselves, and finally elitism that involves

selecting the best individuals to survive to the next generation.

Reproduction consists of mainly two processes, namely cross-over and mutation.

Cross-over is the process of combining the chromosome information of two parent indi-

viduals to form an offspring individual containing elements of both parents. Mutation

randomly variates gene values of a chromosome to form a new individual. As an example,

a chromosome that consists of n bits is mutated by ‘flipping certain bits’ to form a new

individual. In both cross-over and mutation, the fitness of the offspring will be either

better, equal or worse than that of the previous generation’s individuals. It is up to the

developer of the evolutionary algorithm to combine the correct reproduction operators

with the right selection operators in order to solve a problem.

The general outline of an evolutionary algorithm as stated in [25] is shown in algo-

rithm 2.3. Note that specific types of algorithms might add, remove, or change the order

of the steps in this outline depending on its specific design. The algorithm terminates

when one or more stopping conditions are met, namely the maximum number of genera-

tions have been reached, the average fitness does not change significantly as generations

progress or an acceptable individual has evolved.

EC follows a similar approach to train neural networks as PSO does. Each chro-

mosome i in the population represents the neural network weight vector Wi(t) at time

t. The performance measure F is defined similar to that of PSO, in that the neural

network objective function over one or more datasets is used to indicate the fitness of

a chromosome. Various selection, cross-over, and mutation operators may be used to

create or change individuals in the population (as dictated by a specific EC algorithm).

Evolutionary algorithms have been used with great success to train neural networks.

Yao [119] shows how to use evolutionary computation to train neural networks. A good

example of using EC to train a neural network is the Neuro Evolution of Augmenting

Topologies (NEAT) algorithm [107]. Another good reference is [4], which contains a

preliminary taxonomy and guide to literature about how to use EC approaches to train

neural networks.
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2.3.2 Unsupervised Learning

Unsupervised learning has a different objective than supervised learning in that the aim

of unsupervised learning is to identify features and patterns in the data set without the aid

of a teacher. In most cases, unsupervised learning algorithms typically produce results

equivalent to a clustering of input space. Network weights are adapted in such a way

that ‘similar’ patterns are grouped together in output space (either the same neuron,

or a group/neighbourhood of neurons). Similarity depends on the type of comparison

metric that is used in the net input signal and/or activation functions of neurons such

as distance based net input signals discussed in section 2.1.1 for example. The type of

metric can also differ between network types.

Unsupervised learning is useful to solve problems where data sets of input-output

pairs are not readily available or impossible to obtain. Kröse and Van der Smagt [66]

give examples of the types of problems that unsupervised learning can solve:

• Clustering of input patterns into clusters where all the patterns in a cluster have

common features that are not present in other clusters.

• Vector quantisation is used to discretise continuous spaces by having vectors from

an n-dimensional space as input and a discrete representation as output.

• Mapping input vectors to a lower dimension than the original subspace while

preserving as much variance of the input data in the output data as possible.

• Feature extraction to find patterns and characteristics present in the data set.

Most unsupervised networks have a two layer architecture that maps input patterns

of dimensionality I to associated output neurons of dimensionality O. The following

sections list some well-known unsupervised learning algorithms.

Hebbian Learning Rule

The Hebbian rule was introduced by the neuropsycologist Hebb in 1949 [47] as a very

simple learning scheme. Hebb’s hypothesis states that the ability of a neuron to fire is

directly related to the ability of other neurons connected to it to fire (thus displaying
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associative behaviour). If such a correlation is found to be present between two neurons,

the weight that connects the neurons is strengthened. The weight change is calculated

as

∆wki = ηokzi (2.26)

where η is a constant learning rate, ok is output unit k and zi is input unit i. The weights

are then updated by

wki ← wki + ∆wki (2.27)

Hebbian learning has the effect that input and output neurons that have strong corre-

lations produce a large ∆wki and thus a greater emphasis is placed on the connection

between them.

Hebbian learning has a fundamental problem, namely that weight values are un-

bounded and tend towards infinity as more learning iterations are presented. There are

many different ways to address this, such as introducing a ‘forgetting factor’ to reduce

weight values over time. Oja [84] developed such a rule called the principle compo-

nent learning rule that is based on Hebbian learning. Principle component analysis

(PCA) is a statistical technique that is used to reduce an H-dimensional subspace to

an L-dimensional one where L < H by extracting the principle components of the H-

dimensional subspace. The weight changing method is identical to Hebbian learning,

but with an added forgetting factor :

∆wki = ηokzi + ηo2
kwki(t− 1) (2.28)

Learning Vector Quantiser

The learning vector quantiser (LVQ) was proposed by Kohonen [63] and is a very well-

known unsupervised learning algorithm used for clustering patterns. In general terms,

clustering can be defined as grouping all the data patterns in the set DT (where |DT | is
the total number of patterns in DT ) into C clusters where |DT | >> C and all patterns in

cluster Ci are ‘more alike’ than any patterns in all other clusters Cj where j 6= i. Thus

the aim of clustering is to produce groups (represented by output units) of similar input

vectors as measured by a specific metric such as Euclidean distance.
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Initialise all weights using a chosen initialisation scheme.

Initialise training parameters η and N (0) randomly.

repeat

for each input pattern zp

Calculate dk for each output neuron ok using eq. 2.4.

Find the output neuron ok with the smallest distance dk.

Update weights using equation 2.29.

end for

Update the learning rate, η.

Update the neighbourhood radius, N (0).

t = t + 1.

until Stopping criteria are met.

Algorithm 2.4: Outline of the learning vector quantiser training Algorithm

The LVQ architecture, illustrated in figure 2.8, facilitates clustering by utilising a

two layer topology. Each output neuron ok represents a cluster while each input neuron

zi corresponds to an attribute in the data pattern. The distance dk,p between the input

vector zp and the input weight vector uk for each output neuron is used to determine

the winning cluster. Any distance metric may be used, but Euclidean distance is mostly

used to determine which output neuron is the winner for the current pattern, as defined

in equation 2.4.

Note the usage of the ‘competition’ step as laid out in section 2.1.1. Once a winning

neuron is determined, the weight values are adjusted as follows:

∆uki =

{
η(t)[zi − uki(t− 1)] if k ∈ N (t)

0 otherwise
(2.29)

where η(t) is a learning rate and N (t) is the set of neighbours of the winning neuron

– that is the weight vectors of neurons around (and including) the winning neuron.

Algorithm 2.4 outlines the basic training approach for LVQ. Stopping criteria include:

• the maximum number of epochs is reached,
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• the quantisation error, defined as εT =
P|DT |

p=1 ‖zp−uk‖22
|DT |

, is small enough,

• there is no more gain in training as weight updates are too small.

Figure 2.8: The LVQ architecture

Self-Organising Maps

The self-organising map (SOM) was developed by Kohonen [63] [64]. The SOM was

largely motivated by the human cerebral cortex’s abilities to cluster sensory inputs by

using ordered maps.

A SOM is a multi-dimensional clustering method that is used to map I dimensional

input vectors zp to a discrete output space. The SOM, illustrated in figure 2.9, has a

two-layer topology that creates clusters of input patterns. The output units of a SOM

are arranged in an ordered grid, which is usually two-dimensional such as rectangular

or hexagonaland and can follow any connection pattern. This grid is used to learn the

probability density function of input space, while the original space’s topological struc-

ture is maintained. The relationships between vectors in input space will be preserved

in the grid.
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Figure 2.9: The SOM Architecture

There should be fewer neurons in the grid than there are training patterns, as the

goal of the SOM is to map input space to a lower dimensional output space. All neurons

in the grid, that is, each neuron kj in row k and column j;∀j = 1, · · · , J, k = 1, · · · , K,

are connected to the each input unit via an I dimensional weight vector wkj. These

weights can be initialised in many ways, including random initialisation, using known

codebook vectors, using the statistical principal components analysis of the input space,

among others.

Algorithms 2.5 and 2.6 respectively show two of the different approaches to train a

SOM, namely stochastic and batch learning. It is important to note that the two learning

approaches assume the same type of topology (neuron structure and weight connections)

and uses the same training data, but that the algorithm details are profoundly different.

See section 2.3 for more details on the difference between stochastic and batch learning.

When using stochastic learning, the weights of each neuron are updated after each

pattern presentation as follows:

wkj(t+ 1) = wkj(t) + hmn,kj(t)[zp −wkj(t)] (2.30)

where mn is the grid row and column of the winning neuron for input pattern zp. The

winning neuron, called the best matching unit (BMU), is the neuron that is ‘closest’ to
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Create a map of K × J neurons.

Initialise the weight vector of each neuron.

Set the current training epoch t = 0.

repeat

for each input vector zp in DT

Find the BMU using eq 2.31

for each neuron kj in the grid

Update wkj using equation (2.30).

end for

endfor

t = t+ 1

until Stopping criteria are met.

Algorithm 2.5: Outline of the stochastic SOM training algorithm.

Create a map of K × J neurons.

Initialise the neuron weight vectors to the first KJ patterns in DT .

Set the current training iteration t = 0.

repeat

for each neuron kj in the grid

Find all patterns zp in DT for which the neuron is the BMU.

Add zp to the current neuron’s BMU winner list.

end for

for each neuron kj in the grid

Update wkj as the mean over the BMU list of the neuron.

end for

t = t+ 1

until Stopping criteria are met.

Algorithm 2.6: Outline of the batch SOM training algorithm.
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the input vector and is selected using a distance metric such as the Euclidean distance.

That is,

‖ wmn − zp ‖2 = min
∀kj
{‖wkj − zp‖22} (2.31)

The function hmn,kj(t) in equation 2.30 is known as the neighbourhood function, which

is used to select the neurons around the winning neuron that will also have their weights

updated, as well as the magnitude of these updates. A condition for convergence of the

SOM is that hmn,kj(t) → 0 as t → ∞. The neighbourhood function is typically based

on the distance between the coordinates of neurons as they are located on the map. A

Gaussian neighbourhood function that is often used to implement hmn,kj(t) is given by

hmn,kj(t) = η(t)e
−
‖cmn−ckj‖

2
2

2σ2(t) (2.32)

where η(t) is the learning rate, cmn and ckj are coordinates of neurons on the map, and

σ2(t) is the width of the Gaussian kernel that defines the neighbourhood. Both η(t) and

σ2(t) need to be monotonically decreasing to ensure that hmn,kj(t)→ 0 as t→∞.

Training continues until an accurate map is constructed. The quantisation error

metric that is typically used to determine map accuracy is defined as

εT =

|DT |∑
p=1

‖zp −wmn(t)‖22 (2.33)

Batch versions of the SOM training rule have been developed as stochastic training

is very slow. Weight updates are only performed after all patterns have been presented.

For each neuron in the grid, a list is kept of all the patterns in DT for which it is the

BMU. After an epoch, the weights of each neuron is assigned the mean over the patterns

in its BMU list. An outline of the batch training algorithm as developed by Kohonen

[64] is given in algorithm 2.6.

The effect of SOM training is to cluster similar input patterns together. After SOM

training, whether using the batch or stochastic algorithm, the only network ‘output’ is

the grid of neurons and their respective weight vectors wkj. An additional clustering step

needs to be performed to locate cluster boundaries. A multitude of ways exist to accom-

plish this, of which the unified distance matrix (U-matrix) approach and Ward clustering

are popular. The U-matrix expresses the distance between neighbouring weight vectors
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for each neuron in the grid, with large values indicating cluster boundaries. The U-matrix

can then be visualised using schemes like grey-scale colour coding.

Ward clustering starts by having each neuron form the centroid of its own cluster.

Over time, the two clusters which are closest to each other are merged until either the

optimal number, or the specified number of clusters are found. The Ward distance

measure that is used to find the closest two clusters is given by

drs =
nrns

nr + ns

‖ wr −ws ‖22 (2.34)

where r and s are cluster numbers, nr and ns are the number of neurons in the respective

clusters, and wr and ws are the centroids of the respective clusters (i.e. the average of

all weight vectors in the cluster).

A key design problem that researchers face when using SOM is the choice of the

size of the grid. If the grid is too large, overfitting may occur. This may lead to a

large number of small clusters with few patterns in each - in the extreme case only

one pattern is assigned to each neuron. If the grid is too small, the variance between

the weight vectors wkj of any particular cluster may be found to be very high, thus

not yielding any valuable differentiation. A good approach to address this problem is

to introduce architecture selection as discussed in section 2.3.5 that grows the SOM.

Training starts on a small grid and more neurons are added over time. See [25] for a

discussion and algorithm for growing a SOM.

2.3.3 Reinforcement Learning

Reinforcement learning [6] can be described as the mapping from states in an environment

to actions with the main objective being the maximisation of a reinforcement signal, or

‘reward.’ It is based on the approach taken to train animals, for example teaching dogs

to be obedient or dolphins to perform tricks. In typical cases the learner has no prior

knowledge about the problem space and has to discover which actions yield high rewards

and which yield low rewards, or even penalties.

Neural networks that utilise reinforcement learning typically have two-layer architec-

tures. The training set consists of input patterns and associated actions. The typical

operation cycle starts by letting the network evaluate the environment via sensory inputs.
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The network then decides what action to take, which is then evaluated by an external

teacher. Positive or negative reward signals, rp, are then generated by the teacher which

is then used to update the weights using

∆wkj = η(rp − θk)ekj (2.35)

where η is the learning rate, θk is the reinforcement threshold and ekj is the eligibility of

weight wkj such that

ekj =
∂

∂wkj

ln(gj) (2.36)

where gj = Prob(ok,p = tk,p |wk, zp). This approach is but one of many possible ways to

train neural networks using reinforcement learning.

2.3.4 Hybrid Learning

As the name suggests, hybrid learning involves the combination of different learning

paradigms in a single neural network model. The most common combination is to use

elements of supervised and unsupervised algorithms together to permit the learning

algorithm to find a more compact representation of the problem space. This allows for

better generalisation performance and faster training times.

A typical example of a hybrid approach is the radial basis function network (RBFN)

[78], which is a combination of the learning vector quantiser (LVQ) and gradient descent

learning5. The first two layers of the RBFN form the LVQ consisting of I inputs and J

outputs (which serve as the hidden units for the RBFN), as illustrated in figure 2.10. The

hidden unit transfer functions are based on the LVQ output where the input vector’s

closeness to the hidden units are computed. The activation function of these hidden

units can be given by several types of kernel functions, of which two examples include a

Gaussian kernel,

yj = e
−
||zp−−→µ j ||

2

2σ2
j (2.37)

5Using LVQ and gradient decent learning for the RBFN is but one possibility and there are many

variations of possible combinations of learning approaches.
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Figure 2.10: An example radial basis function network architecture

or a logistic kernel,

yj =

[
1 + e

−
||zp−−→µ j ||

2

2σ2
j

−θj

]−1

(2.38)

The norm || • || in both equations is the Euclidean distance, σj is the standard deviation

of the basis function, and −→µ j is the mean of the basis function.

The final layer of the RBFN is computed using a standard feedforward network with

linear output units,

ok =
J+1∑
j=1

wkjyj (2.39)

Training of the specific RBFN discussed above is achieved in two steps: first the

unsupervised weights between the first two layers are found and then the supervised

training of the weights between the hidden and output layers follows. An outline of the

basic algorithm is given in Algorithm 2.7 and is but one example of how two types of

learning can be combined. The specific algorithm to training any particular RBFN in
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Initialise all µji to the average values of inputs in DT .

Initialise all σ2
j to the variance over training set.

Initialise all wkj to small random values.

repeat

Perform LVQ epoch to learn the centroids −→µ j.

Set σ2
j for all winning yj as the average of the Euclidean distances

of −→µ j to the input patterns for which yj was the winner.

until LVQ converges.

repeat

Learn wkj weights using ∆wkj = η(tk − ok)yj

until gradient descent phase converges.

Algorithm 2.7: Outline of a RBFN training algorithm for figure 2.10.

general is directly related to the types of learning algorithms that are combined.

2.3.5 Network Architecture Selection

It has been shown that when given n network architectures that are trained on the same

data set, the simplest network will give better generalisation performance on average

[100], [110]. Network architecture selection is used to optimise neural network topologies

and is commonly referrend to as the growth or pruning of a network. Architecture

selection algorithms add or remove weight connections or neurons from the topology

in order to select the architecture that gives the ‘best’ performance. Best performing

architecture can be interpreted as the network that shows one or more of the following

characteristics:

• The smallest number of neurons and weights for a desired accuracy level.

• The fastest convergence speed during training.

• The fastest evaluation time per pattern.

• The least overfitting of data during training.
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• The least overall computational complexity.

• Noise in the data is not memorised.

Broadly speaking, the following architecture selection approaches can be followed:

• Network growth: A small network architecture is used and more neurons or

weights are added during training, based on a construction algorithm. Examples

of such algorithms are discussed in [38], [48] and [69]. The aim of growing a network

is to start small and add more network elements only when needed.

• Network pruning: Training starts on an oversized network. Either during train-

ing or after convergence, the network is assessed and superfluous weights and/or

neurons are removed. The relevance of each neuron or weight is determined and are

removed if deemed irrelevant. A simple example of this is a weight connection that

has a value close to zero - by removing it there is no real change to the network’s

behaviour, but the model is simpler and less computationally intensive. Irrelevant

input parameters (i.e. those that don’t affect the output of the network) can also

be removed in this way in many network types.

• Regularisation: When regularisation is used to help facilitate architecture selec-

tion, the size and complexity of the network is added to the objective function to

be minimised, for example

ε = εT + ΥεC (2.40)

where εT is a standard objective function such as MSE, εC is a penalty term which

increases as network complexity increases and Υ controls the influence that the

penalty term has. By minimising this new objective function, smaller network

architectures are preferred. For an in-depth discussion on regularisation, see [42],

[118].

There are many different approaches to perform architecture selection, some of which

involve other fields of CI. These include intuitive techniques such as proposed in [44] that

considers weight strength and activation frequency, evolutionary algorithms as found in

[117], formal statistical hypothesis testing techniques as developed in [108] and sensitivity

analysis techniques as done in [26] and [28].
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Different architecture selection algorithms apply depending on the type of neural

network that is used. A feedforward neural network is grown or pruned in a completely

different manner than a SOM for instance. A full discussion on the different types of

architecture selection algorithms is out of scope of this dissertation. The key point is

that architecture selection algorithms can employ a variety of ways to grow or prune

network topologies and that these algorithms all need access to any information that

resides in the neural network system.

Architecture selection has serious implications for the design of neural network topol-

ogy implementations that need to support architecture selection. The framework’s topol-

ogy component must be flexible enough to allow neuron and weight connections to be

added or removed dynamically. Furthermore, any architecture selection algorithm needs

to obtain information about the network from a variety of sources, for example the train-

ing error at time t, current weight values, neuron function parameter values, learning

algorithm variables and any other metrics dictated by a particular architecture selec-

tion algorithm. The framework must allow any of this information to be accessible by

architecture selection algorithms.

2.4 Example Neural Network Models

This section illustrates some of the typical neural network topologies graphically, and a

brief overview of each one is provided. These include

1. a layered architecture (more than 1 layer),

2. an unstructured architecture (only 1 layer),

3. a recurrent architecture (more than 1 layer and at least one loop), and

4. a modular and an ensemble architecture.

These are definitely not the only types of topologies and merely serve to illustrate the

diversity of neural network models. This in turn indicates how flexible a neural network

framework needs to be.
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2.4.1 Layered Networks

Figure 2.11: The feedforward network as a layered architecture example

The layered network architecture is used extensively in both supervised and unsu-

pervised learning approaches. The most notable characteristics in a layered architecture

are that it consists of two or more layers (including the input layer) and that it contains

no loops. A single layered architecture is regarded as an unstructured architecture as

described in section 2.4.2 Arguably, the most well-known example of layered network

architecture is the feedforward network as illustrated in figure 2.11.

The output of a feedforward neural network is calculated as

ok,p = fok
(netok

)

= fok
(
J+1∑
j=1

wkjfyj
(netyj

))

= fok
(
J+1∑
j=1

wkjfyj
(

I+1∑
i=1

vjizi)
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Figure 2.12: The Hopfield network as an unstructured architecture example

2.4.2 Unstructured Networks

An unstructured network architecture is a single layer of neurons. Thus the only possible

weight connections between these neurons are intra-layer and self connections. Possibly

the best example of an unstructured network is the Hopfield network [50] (shown in

figure 2.12). This neural network is a form of recurrent neural network and serves as an

associative memory.

The Hopfield network consists of only one layer of J neurons, where each neuron is

connected to all other neurons except itself via symmetrical weight connections, i.e.

wij = wji,∀j, i

wii = 0,∀i

Each neuron i utilises an inner product net input signal as defined in equation 2.2

and a step activation function as in equation 2.8 to produce an output value oi that is
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typically either 0 or 1, as defined in Hopfield’s original paper [50]:

oi =

{
1 if net > θi

0 otherwise
(2.41)

where oj is the output value of neuron j, net =
∑J

j=1wijoj and θi is the threshold value of

the activation function of the current neuron i. Sources such as [75] state that activation

values can be -1 or 1 as well.

The state of the network is given by the vector (o1, o2, · · · , oN) where N is the total

number of neurons in the network. Evaluation of an input pattern consists of setting

the network state to be the same as that of the pattern. Neurons are then evaluated in

either a defined or random order and each neuron’s output (or state) will either change

or stay the same. Neurons are evaluated until the network reaches a stable state, that is,

neuron outputs do not change anymore. Over time the network will converge to a new

state which is the ‘remembered’ state for the input pattern. It is proven in [67] that the

network will reach a stable state in at most n2n steps.

Each state of the network has an ‘energy’ function E associated with it, defined as

E = −1

2

∑
i6=j

wijoioj (2.42)

A Hopfield network is trained by finding the correct set of weights that will allow a set of

inputs to converge on the correct remembered states respectively. E has been shown to

be a monotonically decreasing function that has one or more minima [50]. The network

is trained by lowering the energy of states that need to be remembered to coincide with

these minima. The definition of E ensures that random pattern presentations will have

the network converge on a state that is a local minimum of E.

2.4.3 Recurrent Networks

A layered network becomes a recurrent network architecture as soon as there are neurons

with self connections or ‘backward facing’ inter- or supra connections (or loops) that cross

layer boundaries.6 Thus certain neurons can make use of information that is obtained

6Note that the Hopfield network is an unstructured network that also has recurrent connections, but

it does not have multiple layers.
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Figure 2.13: The Elman network as a recurrant network architecture example

from other neurons in later layers (or from itself, as is the case with self connections).

This allows a neural network to learn temporal characteristics of the problem.

The Jordan network [59] and the Elman network [22] are good examples of simple

recurrent networks. The Elman network (illustrated in figure 2.13) makes a copy of the

hidden layer neurons in the input layer. Thus the hidden layer state of the previous

pattern is also input to the network for the next pattern. The Jordan network works on

the same principle, but makes a copy of the output layer neurons.
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2.4.4 Ensemble And Modular Networks

This section discusses ensemble and modular network topologies as examples of advanced

neural network topologies.

Ensemble Networks

An ensemble of neural networks [86] consists of a number of neural networks that are

combined to solve the same problem, as shown in figure 2.14. The simplest example of

an ensemble is a collection of neural networks that all share the same training data, the

same topology and the same learning algorithm. More complex examples may vary the

training sets between the networks in a variety of ways, use different learning strategies

for each network, use different initial conditions per network or even use completely

different types of networks to form part of the ensemble.

Figure 2.14: An Ensemble network architecture example

All the networks in the ensemble evaluate a pattern when it is presented. The output

of these various networks has to be combined to give a single output value. A variety of

ways of doing this exist, such as:

• Select the network in the ensemble that presents the lowest average generalisation

error. In effect this is not really an ensemble, as n networks are trained and only
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the best performing one is selected. This approach is simple, but disregards the

inputs from other networks that might have performed better on certain input

patterns.

• Calculate the average of the results of all networks to give a single answer, hopefully

improving performance as a result. This approach is a true ensemble that uses n

networks to evaluate a pattern.

FBEM =
1

n

n∑
i=1

FNNi
(zp) (2.43)

where FNNi
is the output of network i. This is called the basic ensemble method

(BEM) in literature [8].

• Use weighted values for the output of each network to minimise the MSE of the

ensemble. This approach ensures that networks with high generalisation errors

have a smaller effect on the value of the output of the ensemble than networks with

lower generalisation errors, and so improving accuracy. This weighted average of

all network outputs is computed as

FGEM =
n∑

i=1

αiFNNi
(zp) (2.44)

where
∑
αi = 1. This is called the generalised ensemble method (GEM) in litera-

ture [86].

• The dynamic ensemble method (DEM) [58] is based on the GEM method, but

the weighting for each network is determined dynamically on a per-pattern basis

instead of choosing static values (the αi values in GEM). This dynamic weighting

ωi(t) is based on the certainty of the network’s output – the ‘closer’ y = FNNi
(zp) is

to the activation function boundaries, the higher the confidence c(y) of the network

is, where

c(y) =

{
y if y ≥ 0.5

1− y otherwise
(2.45)

Equation 2.45 assumes an activation function in the range (0,1) and can be readily

adapted to other ranges. The confidence factor c(FNNi
(zp)) can now be used to
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rank each network against each other to produce a weighted average FDEM over

all networks, where FDEM is defined as

FDEM =
n∑

i=1

ωi(t)FNNi
(zp) (2.46)

where the ωi(t) are defined as

ωi(t) =
c(y)∑n
j=1 c(y)

(2.47)

and
∑
ωi(t) = 1.

Modular Networks

The concept of modularity involves the division of a complex system into smaller, simpler

units. These units accomplish the same original goal of the larger system by working

together. Units may be similar or different to each other – the key feature of modularity is

that there is separation of concerns by splitting functionality out into multiple modules.

Most neural network topologies have a monolithic structure – they typically have

a set number of neurons, weights and layers and use the same training strategy across

the entire topology. While these topologies are relatively simple to understand and

implement, their performance degrades very quickly when large input dimensions are

encountered [65]. Modular neural networks aim to make problems more manageable by

using decomposition and replication to help solve them. Azam [3] defines a modular

neural network (MNN) as follows:

“A neural network is said to be modular if the computation performed by

the network can be decomposed into two or more modules (subsystems) that

operate on distinct inputs without communicating with each other. The out-

puts of the modules are mediated by an integrating unit that is not permitted

to feed information back to the modules. In particular, the integrating unit

decides both (1) how the modules are combined to form the final output of

the system, and (2) which modules should learn which training patterns.”

Zhao [125] discusses a general model for MNNs which is illustrated in figure 2.15.

Input to the network is given to an allocator network, which distributes the pattern to
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Figure 2.15: A general model for modular neural networks.

one or more modules. A coordinator is then used to combine the results from all the

relevant modules (which can be either all or just a subset of all the modules) and give

the final output of the network. The allocator and coordinator may themselves be neural

networks. Based on the level of intelligence of the allocator and coordinator, there are

various possibilities:

• An allocator can be so strong that it always selects only one module to perform

the evaluation. This negates the need for a strong coordinator. In certain cases

the coordinator may even be removed.

• If a weak allocator is used, then more than one or all of the modules will be selected

to perform the task. A strong coordinator will be needed to combine the results

from all the modules into a meaningful answer. Note that if the allocator is so

weak that it may be removed, the network is effectively an ensemble network.

• In the extreme case where very strong modules are used, both the allocator and

coordinator may be removed. This setup is known as a one-class-one network, as

discussed in [68].

An important classification that can be made is whether the modules are trained

before becoming part of the MNN, or while they are part of the MNN. Ensemble member
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networks are typically trained beforehand, resulting in the fully trained network being

incorporated into an ensemble architecture. MNN architectures may follow a similar

approach, but may also allow the individual modules to train on different aspects of the

problem. The learning techniques used may even differ between modules.

Figure 2.16: A two-layer MNN with a moderate allocator and strong coordinator.

Two example MNN architectures are discussed next. Figure 2.16 shows a two-layer

MNN used for image classification [98]. The allocator (not shown in the figure) breaks

an input pattern with a very large dimension of mn up into m smaller input vectors.

Each of these vectors are then presented to individual modules, which allows different

modules to work on different aspects of the problem. The coordinator is called the

‘decision network’ and is responsible for combining the output of the m modules into a

classification result. It is shown in [98] that much higher generalisation performance is

achieved by this MNN design over a conventional neural network architecture.

The ‘NNTree’ [125] is illustrated in figure 2.17 and is a possible MNN model that aims

to fulfil the role of a decision tree. The difference is that neural networks are used for

decision making instead of simple decisions. Each node in the tree is an expert network

and all nodes have the same complexity. Figure 2.17 highlights four nodes in the tree
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Figure 2.17: A NNTree with no allocator or coordinator.

and shows a enlargement of these nodes to illustrate how each node is a network module.

Input is given to the root node for evaluation to produce an output vector o. If the output

unit oi of the node is the maximum, the entire vector o is assigned to the i-th child and

the process continues. If the node is a leafnode, the entire o is the output. In this way,

a decision tree is traversed and the final output is both a specific node (representing a

particular outcome) as well as an output vector. Compared to the general MNN model,

the allocator of the NNTree is the tree itself and there is no coordinator, as only one

‘leaf’ node network is selected. It is shown in [125] that NNTrees are more efficient than

traditional decision trees, as fewer nodes can be used to achieve higher recognition rates.

2.5 Summary

Neural network systems consist of a complex collection of components and algorithms.

The structure of and operations on a neural network are embodied as three compo-

nents namely topology, data, and learning. These components have complex inter-

dependencies, and changes in one will almost certainly affect all the others.

The topology component comprises of the different connection schemes and neuron

types that together form a neural network. A neuron is a single computation unit that

comprises of a pipeline of processes and phases. These neurons are connected together

via a multitude of ways to form a network with one or more layers.
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The data component provides information about a problem that the neural network

needs to approximate. This can be anything from function approximation to classifica-

tion or clustering problems to name a few. Collectively the data set represents a function

FD : Z → O which maps input vectors from the set Z to target vectors in the set O.

Sometimes, O is not known or unavailable as is the case for unsupervised networks. Data

needs to be distributed and sampled into specific data sets, namely a training set DT , a

generalisation set DG, a validation set DV and a candidate set DC (in the case of active

learning). The order in which patterns are presented also needs to be defined. Active

learning is introduced as a way for a neural network to decide which patterns are most

informative to its learning, and then train on those patterns first.

Neural learning involves changing a network’s topology to better solve a given prob-

lem. This includes aspects such as adaptive activation functions to update neuron func-

tions, architecture selection to change the layout of the topology, and weight vector

changes so that the neural network function FNN approximates FD better. Training is

complete when ‖FNN − FD‖ < τ for a given τ . Neural network learning algorithms

are divided into three main classes namely supervised, unsupervised and reinforcement

learning. Hybrid learning methods consist of a combination of two or more of the above

approaches. Neural learning can also be achieved by means of many types of optimisation

algorithms, such as PSO, gradient descent, and EC.

A generic neural network framework needs to be very flexible in order to facilitate

as many different types of neural models as possible. This chapter provided the base

requirements for a neural network framework that is developed in chapter 5.

 
 
 



Chapter 3

Design Patterns

Designing object-oriented software is hard, and designing reusable object-

oriented software is even harder. You must find pertinent objects, factor them

into classes at the right granularity, define class interfaces and inheritance

hierarchies, and establish key relationships among them. Your design should

be specific to the problem at hand but also general enough to address future

problems and requirements. You also want to avoid redesign, or at least

minimise it.

— E. Gamma, R. Helm, R. Johnson, J Vlissides (GoF)

The success of every well-written software application depends greatly on its design.

Every application has specific objectives that it has to address, yet developers often find

that many of these objectives tend to be opposites of sorts. Optimising one objective

tends to make others inefficient or even impossible to achieve. Classic examples in

Computer Science include ‘Storage vs. Time’ and ‘Simplicity vs. Flexibility.’

As recently as a decade ago, designing a good and maintainable application was more

of an art than a well-defined methodology. Developers usually needed years of experience

to build a well-designed application. In most cases the typical development cycle relied

on trial and error along with many iterations of a methodology where requirements were

reassessed and taken into account. The designs that resulted from such methodologies

eventually did deliver the required functionality, but weren’t necessarily extensible or

reusable.

70
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It was often the case that a specific application was working well, but its functionality

could not be reused or extended due to its monolithic design and tight coupling between

components. This lead developers to start thinking differently about application design.

Hardware was getting cheaper and ‘absolutely optimal code’ was no longer the key re-

quirement. Developers started to consider extensible applications to be more useful than

a very fast monolithic design. The concept of ‘write once, use many times’ also became

increasingly important. The rapid rise and general acceptance of the Java language and

the J2EE standard by companies such as Oracle, IBM, BEA and virtually the entire IT

industry confirms this.

In 1994 Erich Gamma, Richard Helm, John Vlissides and Ralph Johnson released

their world renowned book called Design Patterns: Elements of Reusable Object-Oriented

Software [39]. This book became one of the most well-known software engineering ref-

erences ever written. The authors became known as the Gang of Four (GoF). In [39]

the GoF show the important role that design patterns play in architecting complex ap-

plications. Design patterns made a science out of writing software that was modular,

extensible and efficient as well as easy to read and understand. Since 1994, many au-

thors such as Larman [73] have applied and expanded on the core GoF design patterns

by incorporating them in application development lifecycles and methodologies.

The essence of a design pattern is to avoid repeatedly solving the same design problem

from scratch by reusing a solution that solves the core problem. This pattern or template

for the solution has well-understood prerequisites, structure, properties, behaviour and

consequences. Design patterns allow developers to solve complex problems by using

specific patterns to solve specific aspects of problems in a well-proven and predictable

manner. Larman [73] defines a pattern as follows:

“Most simply, a good pattern is a named and well-known problem/solution

pair that can be applied in new contexts, with advice on how to apply it in

novel situations and discussions of its trade-offs, implementations, variations

and so forth.”

An example is the iterator design pattern which abstracts the logic of looping over

a collection so that it can be reused by any component that needs to iterate over a set

of values. The prerequisites, behaviour and consequences of this pattern are well-known
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and by using it, developers are assured that the looping operation in their code is working

in a well-understood manner. Design patterns remove the uncertainty and doubt related

to design. Their outcomes and consequences are well documented and understood, thus

making design faster and more robust.

Design patterns also provide a conceptual language that developers can use to simplify

the design process. Instead of thinking about the low-level details of everyday program-

matic operations, developers can think in a concise fashion on a pattern level. By using a

design pattern to address a design problem, designers never have to worry about the de-

tails of its implementation while trying to solve a complex problem – the chosen pattern

stipulates precisely how to proceed and what the outcomes will be. Furthermore design

patterns make it extremely easy for developers to discuss ideas and debug applications

by allowing developers to ‘speak the same design language.’ If a designer refers to using

an iterator pattern to pass over all elements in a composite structure and then update

the element values using the visitor pattern, everybody knows what he/she is talking

about.

The GoF present just over 20 design patterns that they describe as critical. These

patterns form the core of the majority of program requirements and a developer could

solve almost any design problem by using one or more of these patterns. The rest of

this chapter focuses on the design patterns that were used in the design of the neural

network framework for CILib. It is split into three sections corresponding to the three

classes of design patterns defined by the GoF [39]. These are creational, behavioural

and structural patterns. Each pattern is discussed by stating its name, the particular

problem it aims to solve and the solution details, of which the latter is given in UML

notation (see appendix B for an overview of UML).

For each pattern, an example that relates to the implementation of a neural network

system is given as this will best describe why the pattern is used. This example merely

serves as an illustration of how the particular pattern could solve a certain type of

problem. The full details of a generic neural network framework are discussed in chapter

5.
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3.1 Creational Patterns

Developers often run into several problems related to the creation of objects. These

include scenarios where:

• The object to be built is extremely complex, involving the creation of many sub-

components.

• The supertype of a specific product in a framework is known, but the exact type

of the product is only known when subclasses of clients implement it – which

constructor should the framework refer to when it needs to create products?

• A specific object is given and more instances are needed, but the type varies at

runtime.

As the name suggests, creational patterns are used to create objects. Creational

patterns offer developers a way to address problematic creation of objects in a stan-

dard, well-proven manner. The following sections give an overview of three well-known

creational design patterns, namely the builder, the prototype and the factory method.

3.1.1 Builder

“Separate the construction of a complex object from its representation so

the same construction process can create different representations” – GoF

Figure 3.1: The Builder pattern
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Most objects consist of members that consist of basic types and/or other objects.

Sometimes these member objects themselves can be quite complex. The implication

is that when such an object (called a product) is instantiated, all the member objects

(called parts) need to be created as well. This includes setting up each individual part

in the correct order, using the correct parameters and making sure that they can coexist

with the other parts of the product.

The first difficulty in setting up the product in a simple manner by using the product’s

constructor is that the creation method is fixed in the product’s constructor method.

Changing this behaviour requires a change in the product’s code. What if another

instance of the product needs to be constructed where the only difference in creating it

is the manner in which its parts are constructed? A good example of this would be a

graph class that can be constructed in many types of base configurations such as directed

or undirected graphs, simple graphs (no loops), complete graphs on n vertices, complete

bipartite graphs, disconnected graphs, various different trees, among others.1 A clean

way to solve this problem is to use the builder design pattern.

The builder pattern (shown in figure 3.1) is used to split the construction process

of a complex object from the representation of that object. It performs this role by

supplying a separate interface that allows a client to create new products. The class

that implements this interface is known as the builder and can be changed dynamically

at runtime. By using the builder object, clients do not need to know how to create parts

of products. When all parts are constructed by using the builder object’s interface,

a getResult() method is called to return the fully constructed product. To obtain

different configurations of the same product object, developers merely need to define

different builder objects to create parts differently.

The advantages of using the builder pattern include

• the ability to easily switch between different product creation implementations,

• a product’s parts can be varied easily, and

• the ability to decide how to construct a complex object at runtime.

1These are just some types of graphs as noted in [29].
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The builder pattern is well suited to be used in the construction process of a generic

neural network topology. Recall from section 2.1 that a neural network topology houses

information about neuron layers, neuron transfer functions, weight connections values,

and the weight connection scheme. The type of neural network that is represented

depends on the structure of the neuron layers in the component that implements the

topology. The builder pattern can be used to delegate the construction of the neuron

layers, weights and neuron functions to a topology builder object. To construct any of

the needed parts, the client merely calls the appropriate method in the builder.

3.1.2 Prototype

“Specify the kinds of objects to create using a prototypical instance, and

create new objects by copying this prototype.” – GoF

Figure 3.2: The Prototype pattern

The prototype pattern (shown in figure 3.2) is used in cases where an object is given

and it is required that more objects of the same type be created, without knowing the

type of the object. The prototype pattern allows developers to make deep copies of

objects (copy the object’s members instead of only referencing them). In most object

oriented languages a new object is instantiated by creating a variable and assigning a

new instance of a class to the variable using a constructor.

Consider a client application that needs to create many instances of certain types. A

simple design would have the client application contain the instantiation logic of which
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classes it needs to instantiate. When a new object is needed, the client simply calls the

appropriate class constructor. The main drawback of this static approach is that the

type of the object is explicitly stated in the client application code, which can yield the

following design problems:

• If a new type of object needs to be added to the application, the client application

code will need to be modified to allow this new type to be used. This means a lot

of rework and direct code-level changes.

• Certain products are easy to construct, while others can be quite complex to ini-

tialise. The client application needs to be aware of each type and how to construct

it. If there are many types, the client code can become quite complex.

• A possible solution to the previous point could be to use other creational design

patterns such as a factory or builder to facilitate the creation of complex types.

If the type hierarchy is very large, a parallel hierarchy will need to exist for the

creational patterns, which can become messy.

• If all types are statically defined in the client application, it is difficult or even

impossible to create new types based on runtime conditions.

The prototype pattern allows a developer to create an object in a dynamic way

without knowing its type. A prototypical object can be assigned at runtime and more

copies of it can be made at any time. By using the prototype pattern, developers can

avoid rewriting code when more object types are needed. This results in reduced coupling

between components as object creation and usage are cleanly separated.

A prime example of the prototype pattern in neural network implementations is the

performance reporting mechanism. There are many types of performance metrics avail-

able such as MSE, SSE, ROC (receiver operating characteristics) and AUC analysis (area

under ROC Curve) [30], distance based errors, percentage correctly classified patterns,

among many others. All of these functions are created differently, yet they are used by

the same component that evaluates an epoch. To avoid cluttering the neural network

logic with details on which metric instance to create during each iteration of an epoch,

a prototype error can be set and all future objects created by copying this prototype.
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This allows more metric types to be added in future without having to rewrite the neural

network component.

3.1.3 Factory Method

“Define an interface for creating an object, but let subclasses decide which

class to instantiate. The factory method lets a class defer instantiation to

subclasses.” – GoF

Figure 3.3: The Factory Method pattern

A framework is meant to provide a reusable shell that developers can use to build

applications with. The framework defines high-level components, responsibilities as well

as predefined relationships between components. In many cases the framework is re-

sponsible for creating many of these components as well.

The situation frequently arises that the framework itself needs to be responsible for

the creation of a product it defines, yet this product is defined as abstract – the developer

that implements a specific application using the framework has to implement the actual

class that represents the product. The problem the framework developers face is how

to create an instance of a product that they have no knowledge of as there are endless

possible application-specific product implementations.

The factory method design pattern shown in figure 3.3 allows developers to remove

the logic of which objects to create from the framework and lets the framework only be

concerned with when to create the object. Subclasses of the abstract creator class can
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then implement different factoryMethod() implementations that return different types

of products. The factory method is useful in situations where a class does not know the

type of the product object it needs to create, or when subclasses have the responsibility

of deciding which type of product to create.

An example of the use of the factory method in CILib is given in section 4.1.6.

3.2 Behavioural Patterns

Behavioural patterns endeavour to describe both the relationships between objects and

classes as well as the communication between objects. There are two main types of

behavioural patterns:

• Class patterns use inheritance to distribute different behavioural characteristics

between classes. An example is the template method pattern (see section 3.2.5).

• Object patterns distribute behaviour via object composition rather than inheri-

tance. The chain of responsibility pattern (section 3.2.7) is a good example.

Behavioural patterns typically complement each other to provide clean application

designs which promote loose coupling, better encapsulation and the ability to obtain

synergy between patterns very easily.

3.2.1 Strategy

“Define a family of algorithms, encapsulate each one, and make them

interchangeable. Strategy lets the algorithm vary independently from clients

that use it.” – GoF

The situation frequently arises that in a particular implementation a certain compo-

nent needs to be exchanged for another one. This can be due to a number of reasons,

such as the need for a different implementation of the same logic or a different algorithm

entirely. An example of this is a spell checker in a word processor. Many implementa-

tions of a spell checker can exist, such as implementations for different languages. The
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Figure 3.4: The Strategy pattern

same spell-checker can also be reused in other applications in the same suite such as a

spreadsheet editor.

The strategy pattern, illustrated in figure 3.4, allows a developer to wrap the re-

quired functionality into coherent interchangeable units. By keeping the interface to the

implementations the same, classes can reference specific methods and in this way access

different versions of an algorithm. The advantages of using the strategy pattern are:

• Algorithm encapsulation is preserved,

• client classes are simpler,

• clients are easier to extend with additional functionality, and

• the behaviour of certain client classes can vary dynamically at runtime based on

the strategy object it is using.

The strategy pattern plays an important role in developing generic neural network

implementations. A top-level example is the interface between the neural network and

its data sets. Best practises dictate that the data set as well as the operations on that

data set are encapsulated in a single component. Yet different approaches exist that

define how to distribute the data into the sets DT , DG, DV and DC (discussed in section

2.2.1.6). Different algorithms also exist such as active learning approaches (see section

2.2.3) that involve the redistribution of data patterns between the mentioned sets based

on different algorithms.
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By encapsulating all these responsibilities in a single component type using the strat-

egy pattern, any neural network topology can use these different approaches. This re-

quires that the strategy component’s interface is rich enough to support all operations

on data for example the ability to trigger an active learning update.

3.2.2 Iterator

“Provide a way to access the elements of an aggregate object sequentially

without exposing its underlying representation.” – GoF

Figure 3.5: The Iterator pattern

One of the most common operations in application development is looping over a

set of elements. Yet every time a developer needs to write a loop over such elements,

issues such as loop conditions, loop order and accessing the current element has to be

solved. All three these operations have to be done for every loop regardless of what type

the elements are. The developer must also have knowledge of the underlying structure

of the elements he is traversing, for example, a tree – two such traversals on a tree are

breadth-first traversal and depth-first traversal. Furthermore, if there are many nested

loops, the problem gets compounded and programming errors become common.

The iterator pattern (shown in figure 3.5) addresses this issue by abstracting the

three mentioned fundamentals of any loop. By developing an iterator for a collection
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of elements, the structure of the collection is decoupled from the client component that

iterates over it. By specifying an iterator class for a type of traversal on the collection and

encapsulating the three looping operations in the iterator, any traversal looks identical

from a client component’s perspective. As an example: if a client application needs

to iterate over a tree, the client would not have to have its code changed to switch

from breadth-first traversal to a depth-first traversal – by merely switching the iterator

object, any new iteration can be used. This new iterator can also be loaded dynamically

at runtime, giving even more flexibility.

The advantages of the iterator pattern are:

• Client components can use one interface to the iterator to specify many possible

types of traversals on a collection.

• Existing traversals on a collection can be optimised to perform well and then reused

by any client component. A developer never needs to reinvent the wheel when

considering traversing a collection.

• More than one traversal on a collection can be active at any given stage. Each

traversal’s conditions are managed by its own iterator object. Different types of

traversals can even be running simultaneously.

• The inner details of a collection are hidden from client components. This greatly

simplifies client code.

The data component in a neural network system is a key candidate for the iterator

pattern. This decouples the rest of the system from knowing how to traverse data

sets such as DT , DG, DV and DC or keeping track of the state of these sets (as this

state changes frequently in cases such as active learning). By using an iterator, the

implementation of data structures can also be changed without affecting the rest of the

system. Now it becomes possible to define data classes that use Java ArrayLists, basic

arrays, dynamically generated data, or any other type of storage as data type, without

having any client component have to know the details.
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3.2.3 Visitor

“Represent an operation to be performed on the elements of an object

structure. Visitor lets you define a new operation without changing the classes

of the element on which it operates.” – GoF

Figure 3.6: The Visitor pattern

The most common operations on the elements of a collection are to retrieve and set

their values and is usually achieved by using getter and setter methods in Java. Yet

in many cases a developer wants to perform an action that is applicable to the entire

collection. Typical operations include getting the average value, setting each element

to a random value, finding the sum over all values or extracting all the values from a

complex collection such as a tree and returning it as a sequential list. The most obvious

way to achieve these objectives is to write a method in the collection class that performs

the requested operation. However, consider the following problems:

• If there are many such operations, the collection class will be overly complicated.
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• When a new operation is needed, the collection class code will have to be modified.

• Should the underlying structure of the collection change, all operations may need

to be updated to still work correctly.

The visitor pattern (see figure 3.6) decouples the operations applicable on a collection

from the representation of the collection. The collection class never has to change when

a new operation is added to it, as no operations are actually implemented in the class

itself. By using a visitor object to update the elements (via the collection’s interface),

the implementation of the collection can change without affecting the visitors defined for

it. This of course assumes that all information needed by the visitors is still available to

them.

Visitors can be used to good affect in the topology of a neural network implemen-

tation. The topology can provide an acceptVisitor() method that traverses the un-

derlying structure of neurons and weight connections, and allows the visitor to access

each of these elements. This allows developers to perform operations such as random

weight initialisations, weight value extraction, setting weights to a specific weight vector

and many other operations that are applicable to neurons or weights in a neural network

architecture. The visitor code is independent of the neural network topology. This can

enable the use of weight initialising visitors in any type of architecture such as FFNN,

SOM or Hopfield networks for example.

3.2.4 Observer

“Define a one-to-many relationship between objects so that when one ob-

ject changes state, all its dependents are notified and updated automatically.”

– GoF

One of the most important aspects to handle in application design is a one-to-many

relationship between components. This situation occurs when a group of objects (called

observers) all depend on the state of a central component (called the subject). If any

change occurs in the subject, each of the observers needs to be updated. In a well

understood system this responsibility can fall with the subject. The subject keeps a

 
 
 



CHAPTER 3. DESIGN PATTERNS 84

Figure 3.7: The Observer pattern

reference to each of its dependants and then merely updates these observers when the

need arises. This is fine for a static system with few dependants, as the functionality to

update these objects will not overly complicate the subject and will not change often.

There are shortcomings to this approach:

• If more objects need to be added to the list of observers, code changes in the

subject are required.

• The code to update observers will eventually start having a negative effect on the

subject’s performance if the list of observers becomes large.

• All the dependants are active all the time if the update code is added to the subject.

It can be very tedious or even impossible to change the code to include only certain

dependants at any given stage.

The observer pattern, illustrated in figure 3.7, allows a developer to extract the

functionality of updating dependants (observers). The only functionality required in the

subject is a notify() method. When any change that might affect dependants occurs in

the subject, the notify() method needs to be called as well. This method iterates over

a list of registered observers and informs each observer of the update and also allows the

observer to take corrective action. This allows any number of observers to be dynamically
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registered with the subject at runtime, without complicating the subject’s code. The

required functionality is already implemented for any possible number of observers. A

client merely has to register the required observers with the components.

The topology component is the heart of any neural network implementation. A

good generic topology component typically has the expressive power to implement any

possible neural network architecture. Due to the nature of neural network systems,

all other components such as the learning algorithm, the data source, error reporting

mechanisms and the main neural network algorithm are dependent on the state of the

topology component.

In order to ensure that all components with inter-dependencies work together in con-

cert, the observer pattern is critical. One component may modify the topology state

and in so doing invalidate other components. A prime example is when an architecture

selection algorithm changes the network and other components (such as an error report-

ing system, a learning algorithm or components external to the system) are not aware

of this change. The problem may not be picked up at all, leading to erroneous results.

The observer pattern can be implemented in the topology class and any class that uses

the topology can register itself as an observer. After any significant changes occur, the

notify() method can be called and the change can be handled by all observers. In so

doing, all components will be able to validate any changes and throw an appropriate

exception if necessary.

3.2.5 Template Method

“Define the skeleton of an algorithm in an operation, deferring some steps

to subclasses. Template method lets subclasses redefine certain steps of an

algorithm without changing the algorithm’s structure.” – GoF

During the design of an application, it often happens that there is a great deal of

common behaviour between certain components. Yet each of these components is self-

containing – they don’t explicitly reuse the functionality they share. An example of this is

a collection of optimisation algorithms that follow the same high-level steps in optimising

a problem, but use totally different techniques to achieve their goals. Essentially these

algorithms share the same steps, but perform each step in different ways.
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Figure 3.8: The Template Method pattern

The template method pattern is used to extract the behaviour that is common be-

tween components and present a template class as a skeleton or outline of steps. Sub-

classes of this template class redefine each step as they need to by overriding the inherited

operations, as figure 3.8 shows. By using a template method, designers give the parent

class control over the invocation of subclass operations, while subclasses provide the

details of the operations.

Top-level application operations that are common to all neural network types such as

constructing all the components, initialising the system, running experiments, perform-

ing one iteration of the experiment, handling stopping conditions, finalising operations

after an experiment, and any other operations common to algorithms can be implemented

using one or more template methods. This allows different subclasses to implement these

operations. In chapter 4, CILib uses a template method to facilitate the above function-

ality, which enables any type of CI algorithm such as PSO, ACO, EC or NN to share

the same base class and template methods.

3.2.6 Mediator

“Define an object that encapsulates how a set of objects interact. Medi-

ator promotes loose coupling by keeping objects from referring to each other

explicitly, and it lets you vary their interaction independently.” – GoF
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Figure 3.9: The Mediator pattern

Object-oriented programming promotes the separation of concerns into different com-

ponents. Each component or class encapsulates only the logic that is needed to perform

its intended objective. This enables developers to implement systems cleanly and effec-

tively. It also introduces the need for these separate components to integrate with each

other.

The easiest way to integrate two objects is to have them merely refer to each other.

While this is a fast and simple solution, it has the drawback that it is not very flexible

from a reuse perspective. If left unchecked, it might occur that objects communicate

in complex and unstructured ways which becomes very difficult to understand. If an

object refers to many other objects, it becomes very difficult or impractical to reuse it

in other areas. Furthermore, the intended behaviour gets distributed among a set of

objects, which becomes difficult and error prone to maintain.

The mediator design pattern is illustrated in figure 3.9 and acts as a broker between

individual objects, called colleagues. The mediator pattern promotes loose coupling

between colleagues and greatly simplifies the design of systems where many objects

need to interact with one another. A mediator object is responsible for controlling and

coordinating all interactions between its colleagues, yielding consequences such as:

• Subclassing is mostly limited to the mediator class. If a new system behaviour is

desired, the colleague classes do not need to be modified – only the mediator class

needs to be changed.

• Loose coupling between colleague objects is achieved. This makes it easy to change
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colleague and mediator implementations without affecting other colleagues.

• Interaction between colleague objects is greatly simplified as all many-to-many rela-

tionships are replaced by one-to-many relationships, which are easier to understand

and maintain. It also becomes easier to reuse an existing component.

• The complexity of object interaction is factored out of the respective colleague

objects and is centralised in the mediator class. While this simplifies the entire

system, good design of the mediator class is needed to ensure good performance,

maintainability and ease of reuse.

The mediator pattern can be used in neural network implementations to help inte-

grate all the disparate components. The network topology, data source and learning

algorithms may be implemented in different components. A mediator class can be used

to good affect to integrate these separate components in a way that promotes loose

coupling. By doing this, it becomes very easy to reuse existing components to form

completely different implementations by merely exchanging one component for another.

An example of this is to exchange one learning algorithm for another while keeping all

other components the same.

The mediator class itself can also be changed to construct completely different ap-

plications that consist of exactly the same colleague classes – the only difference is the

manner in which components are invoked. For instance, a mediator implementation that

only uses the data set DT to train a network can be exchanged to train a network on DT

as well as validate learning using a validation set DV . A further validation may also be

performed after training by using DG. Note that only the central mediator is changed,

but that completely different behaviour is implemented.

3.2.7 Chain Of Responsibility

“Avoid coupling the sender of a request to the receiver by giving more than

one object a chance to handle the request. Chain the receiving objects and

pass the request along the chain until an object handles it.” – GoF
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Figure 3.10: The Chain Of Responsibility pattern

It frequently happens that an object needs to pass a request to other objects to

handle the request, either because the object cannot handle the request itself, or needs

other objects to assist in handling the request. In certain circumstances it might be

the case that the sender does not know which receiver should handle the request. The

receiver may also not be directly accessible by the sender, which requires that the request

be passed along a chain of objects (or intermediaries) before the intended receiver can

handle the request. More than one object may also need to handle the request as it

is passed along the chain. Another requirement may be that the receiver should be

specified dynamically at runtime.

The chain of responsibility pattern (see figure 3.10) allows senders to be decoupled

from the receivers of a request. The requester passes the request to a request handler

object. This handler has a method that is known to the requester as well as links to

other possible handler objects (if any). The handler then decides if it can handle the

request or if the request needs to be passed on to other handlers. In this way, many

handlers can help meet the request, but the original requester only knows about the

initial handler object. As this handler can be a Java interface or abstract class in the

purest form of the pattern, this handler can be set dynamically.

Consider the top-level application that is responsible for setting up a neural network

system. A neural network implementation in the CILib framework is a prime example.

The complete design principles and details of CILib are discussed in chapter 4. It is

sufficient at this point to know that CILib has a simulator component that is used to
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compose any CI algorithm dynamically at runtime using XML. The chain of responsi-

bility pattern can be used here to delegate certain requests to lower-level objects. The

way this works is to define the object structure in a tree-like representation using a com-

bination of default constructor calls, getter and setter methods as well as method calls.

After all objects have been created, the simulator uses the template method pattern

to call an initialise() method on the top-level Algorithm object. This method is

meant to be overridden to allow the particular Algorithm class to initialise itself. Yet

the lower-level classes that make up the neural network implementations might also need

to be initialised.

The chain of responsibility pattern allows the root Algorithm class to initialise itself

and pass the initialise request to all of its member objects in a depth-first manner. In

this way, the initialise request can be extended to the entire object tree. Note that this

is not the same as the builder pattern in section 3.1.1 – the builder pattern is used to

construct a complex object while the chain of responsibility pattern calls a method on

each element of an already existing chain of objects.

3.3 Structural Patterns

The main objective of structural patterns is to realise larger structures in sets of classes

or objects. Structural class patterns use inheritance and other methods to reconcile dif-

ferent classes’ interfaces and implementations with each other. The adapter and facade

patterns are good examples. Structural object patterns use object composition to dy-

namically build structures, allowing concepts like variable structures and object sharing

to be utilised. The composite pattern is a good example of a variable structure, allowing

applications to build complex tree-like structures during run-time.

3.3.1 Facade

“Provide a unified interface to a set of interfaces in a subsystem. Facade

defines a higher-level interface that makes the subsystem easier to use.” –

GoF
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Figure 3.11: The Facade pattern

Most systems today are built using more than one component. This enables clean

separation between functional areas which simplify implementation, maintainability, ex-

tensibility and reusability. Unfortunately it also complicates the usage of the system. All

the components need to interact with one another in a certain manner and this function-

ality is included in their interfaces. The client application that uses the system doesn’t

need to be exposed to these functions – from an encapsulation perspective clients should

not be able to see these inner details at all.

The facade pattern (shown in figure 3.11) is used to wrap all the components of a

system and then present just one, smaller functional interface to the client application.

The only interface the client needs to have access to is the facade component’s. It is

the facade component’s role to delegate the requests to the correct components in the

system.

The facade pattern can be used many times to varying degrees when implementing

neural networks. At the top-level the entire neural network system can be implemented

as a facade, which allows easy access to the functionality of all lower-level components.

The client can now evaluate a single data pattern, train a neural network on data, obtain
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the details of the neural network topology, or access any other network function from

a single interface. The topology component can also utilise the facade pattern to hide

details such as builder objects, neuron implementations, weight connections, and other

implementation details and present a simple interface to manage a topology.

3.3.2 Adapter

“Convert the interface of a class into another interface clients expect.

Adapter lets classes work together that couldn’t otherwise because of incom-

patible interfaces.” – GoF

Figure 3.12: An Object Adapter

The main goal of the adapter pattern is the reuse of existing components. It achieves

this goal by mapping operations of an existing component onto corresponding elements of

a new component that wants to reuse the existing implementation. There are two main

kinds of adapters in the object oriented programming model, namely the class adapter

and object adapter. A class adapter uses multiple inheritance to adapt one class’s in-

terface to another. Multiple inheritance is not possible in Java, but this pattern can be

realised through Java interfaces – the interface provides the desired requested interface

and the class with existing methods provides the implementation. The interface’s meth-

ods then merely forward calls to the correct existing methods. Effectively, an existing

java class merely implements more methods of a new interface while the functionality is

already provided by existing methods. This allows objects of the old class to be treated

as instances of the new interface.
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An object adapter relies on object composition (see figure 3.12). Rather than map-

ping interface methods to other class methods statically, the adapter class maps the

requested methods to the matching interface of an object reference. This entails that the

referenced object can be changed dynamically, thus allowing different implementations

to be assigned to the adapter at runtime. Note that this is not the same as a class

adapter which only maps methods in the same class.

Adapters can be used throughout CILib – a typical example would be when using

other optimisation techniques such as PSO or EC and neural networks together as de-

scribed in section 2.3.1. Each optimisation technique can only work on certain types of

data objects, as specified by their interfaces. The neural network component may specify

a different interface with different object types. By using adapters, the data objects and

interfaces of the neural network can be mapped to the data objects and interfaces of the

optimisation algorithm.

3.3.3 Composite

“Compose objects into tree structures to represent part-whole hierarchies.

Composite lets clients treat individual objects and compositions of objects

uniformly.” – GoF

Figure 3.13: The Composite pattern
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Consider a client application that has a requirement to create many different types

of objects as well as collections of these objects. Furthermore, collections of objects may

also contain other collections of objects, thus making this a recursive relationship. This

relationship can be realised with many different classes, for example a class hierarchy to

support different basic types and a class that acts as a container for these types using

a storage data structure such as a Java ArrayList. Yet another class can be written

to create collections of this container class to give the client application full recursive

composition capability.

The disadvantage of this approach is that the client application now has three different

types of classes to work with. In many applications this can become quite a problem

as the types need to be treated differently depending on whether they are an isolated

object, a container or a recursive container. In [39] the GoF illustrate this problem by

using a graphical drawing tool’s drawing interface. In a typical drawing tool, users can

create single objects such as lines, circles, rectangles, images and so forth, but can also

group these types to form groups of objects. The user treats a collection of objects as an

object as well. This means that the client application needs to know how to perform the

same actions on all three different object types, which increases complexity, duplicates

effort and increases the chance of programming errors.

The composite design pattern allows developers to create type hierarchies that in-

corporate recursive composition containers as part of the hierarchy. This means that

the class that acts as the container for the objects is part of the same hierarchy as the

types it contains, thus allowing collections to be treated as a subclass of the same type.

The client application can thus refer to the common base class and not be concerned

whether the type is a basic type, or a collection of those types. By letting the collection

class contain instances of the common base class, it may contain a mix of basic types

and other collections thus allowing tree structures to be built. The composite pattern is

illustrated in figure 3.13.

The advantages of using the composite pattern are:

• Primitive and composite objects are contained in the same hierarchy, allowing

primitive objects to be grouped into collections.

• Recursive composition of objects is made possible and simple.
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• Client application code is made simpler as objects and collections of these objects

are treated uniformly.

• It is much easier to add new types. These new types will work with the existing

primitive and composite types already defined.

The composite pattern has been used to good effect by CILib developers in chapter

4 as a way to build a common Type system.

3.4 Summary

This chapter discussed the main reasons why design patterns are needed to design sys-

tems efficiently. The advantages of using design patterns correctly include:

• Flexibility. Design patterns are aimed at giving more flexibility to applications,

allowing components to be switched very easily and with very well-documented

outcomes.

• Reusability. Design patterns allow well-written and proven components to be

reused in other applications with little or no modification. This allows new appli-

cations to be built much faster, easier and with fewer errors, without ‘reinventing

the wheel.’

• Extensibility. A direct consequence of many design patterns is that more func-

tionality can be added to a system at a later stage with minimal effort. More

functionality is simply contained in a new component that can be used by existing

applications.

• Speed. Development is made much simpler which in turn allows solutions to be

developed faster due to clearly understood system behaviour and consequences.

Reuse of well-written components also aids in developing new applications faster.

• Reliability. Design patterns, the problems that they are applicable to, their

consequences and their relationships are clearly understood and documented. This
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means that developers are never in the dark as to what the effect of any particular

pattern will be.

• Separability. Design patterns break a large problem down into smaller compo-

nents. Each of these components can then typically be solved by a specific design

pattern. This approach clearly separates functionality into specific components,

allowing components to be exchanged or modified without affecting the rest of the

application too much.

• Maintainability. Application maintenance is much easier in a system that com-

prises of design patterns, as application functionality is clearly separated into spe-

cific components. Changes in one component have fewer unintended side-affects in

other components when design patterns are used.

• Dynamicity. Many of the patterns discussed in this chapter allow application

behaviour to be modified at runtime. This characteristic is absolutely critical in

many applications today.

• Communication. Developers can share the same vocabulary when discussing

application designs. Design patterns allow developers to talk about a problem at

a higher level of abstraction than merely the programming language or modeling

tool.

Design patterns are crucial in designing good object-oriented software. Good use of

design patterns typically yield application designs that are smaller, simpler and better

understood than designs that don’t use patterns. Patterns allow design problems to be

solved methodically using a template rather than being solved ‘from scratch’ each time.

The next chapter shows how design patterns can be used to solve common yet chal-

lenging problems that designers face when building CI implementations. The purpose

and layout of the CILib library, how design patterns are used to solve complex problems

and how the framework lays the basis for any CI implementation are discussed.

 
 
 



Chapter 4

CILib – Computational Intelligence

Library

The hard and stiff breaks. The supple prevails.

— Tau Te Ching

The Computational Intelligence Library (CILib)1 is an open source project that

started off as the Masters degree topic of E. Peer in 2001 [85]. Since its inception,

developers all over the world have started using CILib for research purposes. The aim

of the CILib framework is to fully integrate the areas of computational intelligence (CI)

such as swarm intelligence (particle swarm optimisation, ant colony optimisation, and

others), evolutionary computation, neural networks, and fuzzy systems into one coherent

library that allows any CI algorithm to interface with any other algorithm as require-

ments dictate. Examples include using the PSO algorithm to train a neural network as

well as using an already trained neural network as the fitness function of a PSO. Note

the duality of this example - any algorithm should be reusable by any other algorithm

if a need for a specific type of interaction exists.

The framework should furthermore be easy to expand and be flexible to allow compo-

nents to be reused efficiently. Similar to neural network systems, PSO and EA approaches

also have a large number of design choices – PSO implementations have different types

1CILib can be found at http://cilib.sourceforge.net
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of velocity and position update strategies, particle definitions, topology layouts, swarm

layouts, and so forth. Evolutionary computation approaches have different chromosome

and gene representations, population grouping choices, cross-over operators, selection

operators, mutation operators among others. At the time of writing, CILib already in-

cluded a vast number of implementations in the fields of particle swarms, evolutionary

computation, game theory, ant colony optimisation, as well as custom data structures

and foundation classes. All these implementations are easy to reuse and expand with new

types of algorithms, many times without coding by merely reconfiguring components.

A more detailed breakdown of CILib’s goals, as listed in [85], are listed below and

reflect the advantages of using design patterns as listed in section 3.4:

• Flexibility and reusability: Design patterns should form the backbone of the

architecture to allow for the creation of a framework capable of expressing all the

complex interactions found in CI models. Furthermore, if a particular component

implementation can be realised by combining the functionality of other existing

components, the framework must allow this to be done easily and effectively.

• Experimentation: CILib should allow the easy configuration and execution of

simulations on any specific CI problem. The framework should allow any compo-

nent properties to be measured while allowing any combination of stopping condi-

tions to be set. These simulations should be fully configurable at runtime without

making any changes to CILib code.

• Collaboration: By having developers of different CI fields working together in the

same framework, it becomes easier to integrate components from different fields.

New developments in particular areas will also be accessible immediately to other

developers without rewriting code.

• Efficiency: There must be a well-balanced trade-off between pure object-oriented

design principles and improved performance. CI algorithms are generally very

CPU intensive, but performance should not impact the design decisions too heavily.

Parallel computing should also be supported and implemented for any application

written in the framework.
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• Separability: A clear abstraction between algorithms and problems must be de-

fined to allow any problem to be solved by any suitable algorithm. No simulation

measurements and stopping conditions should form part of the algorithm or prob-

lem components. This approach ensures that these components may be reused in

many contexts.

• Reliability: As the project is open source, full code reviews will be performed

frequently. Extensive unit testing on all components further enhances error-free

code.

The rest of this chapter describes the implementation details of the CILib framework.

These components form the base for the CILib implementation of a generic neural net-

work framework as discussed in chapter 5.

4.1 Components in CILib

CILib defines a framework consisting of multiple components and predefined relation-

ships between these components. This framework guides developers to easily implement

specific CI implementations by reusing and extending existing implementations. By hav-

ing all developers use the same framework components, design patterns and principles,

the ability to meet CILib’s goals becomes much easier. All CILib components either ex-

tend or directly support the top-level framework to form a particular CI implementation

such as a PSO or a neural network. The high-level components that make up any CILib

application are:

• Algorithm. Provides an implementation of actions that are common to all CI

algorithms. These include stopping conditions, an event processor for algorithm

events, common housekeeping tasks and thread handling. All algorithms extend

and use this component.

• Problem. An interface used to represent the problem types present in CI. Together

with sub-interfaces, it provides an interface to any given problem type.
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• Stopping condition. Provide support for custom stopping conditions. In con-

junction with the Algorithm component, multiple stopping conditions can be used

simultaneously via the observer pattern.

• Measurements. Provides the ability to extract information from a running sim-

ulation. Multiple measurements can be used via the observer pattern and more

measurements can be added easily.

• Type. A common type system aiding developers to easily integrate with other

components. Type supports arrays of type components by using the composite

pattern, and can be extended to include any other complex type (such as DNA

strands for example).

• Simulator. Used to instantiate any configuration of algorithm, problem, stopping

conditions, measurements and all supporting classes. Configurations are set via an

XML file2 and once instantiated, the simulation is run to completion.

It is important to note that CILib uses the component types above to both guide

developers in using and extending the library, and to highlight erroneous configurations

at runtime. The manner in which this is done is to use Java’s inherent error detection

capabilities when developers try to use incompatible objects/interfaces together. The

framework of components outlined above gives structure to all CI implementations and

in so doing almost completely eliminates incorrect configurations. The following sections

discuss the framework in more detail.

4.1.1 Algorithm

The algorithm component (shown in figure 4.1) provides the basic shell for any CI im-

plementation to run. This is done through the Algorithm class. This component is also

responsible for handling common housekeeping tasks related to any running algorithms

and making it possible to run simulations as Java threads (if needed in a clustered en-

vironment). Each subclass of Algorithm is associated with at least one Problem class.

2See http://www.w3c.org/xml for an overview of the XML specification.
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Figure 4.1: The Algorithm component

Many types of problems exist and a hierarchy of interfaces are used to define which

algorithms are able to solve which types of problems. This is discussed in section 4.1.2.

The algorithm component is implemented as an abstract class Algorithm with the
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bulk of the class providing the aforementioned functionality. The run() method is an

instance of the template method pattern which handles the outline and general execution

of algorithms. The run() method oversees calls to algorithm listeners and other house-

holding tasks as well, and also delegates a single iteration to the performIteration()

method. The performIteration() method forms the main link between any CI imple-

mentation and the Algorithm class and needs to be implemented by subclasses (thus

providing the particulars of a specific algorithm implementation).

The Algorithm class incorporates an event manager for handling any algorithm

events. The observer design pattern is used to register any class that implements the

AlgorithmListener interface as an observer. Algorithm notifies this list of listeners

when the algorithm is started, finished, terminated early or has completed an iteration.

An important challenge that all CILib Algorithm subclasses face is the initialisation

of themselves as well as any of their aggregated components. The Algorithm abstract

class includes an empty performInitialisation() method so that any subclasses of

Algorithm have the option to override this method to provide initialisation code if

needed. This CILib framework always calls this method via the initialise() method

in Algorithm by means of the template method design pattern3.

4.1.2 Problem

The problem component defines the particular CI problem that needs to be solved.

Every algorithm component has at least one problem component associated with it.

This component is implemented as a hierarchy of interfaces with the Problem interface

as its root. Each different type of problem is represented by a sub-interface which adds

more functionality that is required for the type of problem as illustrated in figure 4.2.

Only the OptimisationProblem interface and its sub-interfaces are shown in the figure

to avoid cluttering the diagram. This type of hierarchical ordering is useful as it can

limit what types of problems a particular algorithm can solve. This makes it easier to

expand the library as there is a well defined structure. It also prevents errors that result

3At the time of writing, this was the official method to initialise components. Java 1.5 offers new

ways using Annotations and CILib is poised to use this method in future. For more on Java 1.5, see

[35].
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Figure 4.2: The Problem component

from incompatible algorithm-problem combinations, as the system will indicate incorrect

object types. Each subclass of Algorithm refers to the specific type of problems that

the algorithm can solve, which limits incompatible combinations.

4.1.3 Stopping Conditions

CI algorithms are typically iterative procedures where the aim is to optimise the solution

to a problem as the algorithm progresses. Every algorithm needs certain conditions upon

which it can terminate. Example stopping conditions include:
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Figure 4.3: Example Stopping conditions

• A certain number of iterations has been reached.

• A certain amount of time has passed.

• The error estimate has reached an adequate accuracy.

• The error estimate does not improve significantly over time.

• The generalisation error estimate starts to become less accurate (i.e. overfitting

occurs).

Many stopping conditions exist, of which certain ones are generic to all CI algorithms

and the rest are specific to certain CI paradigms only.

A characteristic of CI algorithms is that more than one of these stopping conditions

can be associated with an experiment simultaneously. For example, an experiment could
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be set to end after 1000 epochs, stop if the error reaches a certain accuracy threshold,

but also stop if the accuracy does not improve significantly over time. A typical de-

sign problem when implementing CI algorithms without the aid of CILib is that most

implementations don’t cater for all the possible stopping conditions, the ability to have

multiple active ones or to easily extend the system with extra stopping conditions. CILib

allows any number of stopping conditions to be added to any simulation easily and effi-

ciently. Generic stopping conditions such as maximum iteration and maximum time can

be reused between CI algorithms.

As mentioned before, many stopping conditions are generic, yet certain stopping

conditions are only applicable to certain types of CI algorithms. An example of this is

a stopping condition that is triggered when a PSO swarm’s diameter is smaller than a

specific value (see figure 4.3). This stopping condition would make no sense in other CI

environments such as neural networks, ACO or EC. The CILib framework design ensures

that an appropriate exception is thrown as soon as invalid combinations occur.

CILib includes the concept of stopping conditions as a standard part of the framework

using the observer design pattern. The abstract Algorithm class includes an array of

type StoppingCondition and the methods to add and remove any StoppingCondition

objects. Thus any algorithm implemented in CILib has full support for multiple and

simultaneous stopping conditions.

4.1.4 Measurements

All CI simulations are run with the express requirement of being measurable. Different

researchers may also need to measure different things when running the same algorithm.

For instance, one researcher may want to measure the training accuracy of an algorithm,

while other researchers may be more interested in generalisation or time performance.

The designer of an algorithm can’t possibly think of all measurements that people may

want to perform in future. As with stopping conditions, there may also be multiple mea-

surements active at any given time, as well as the restriction that certain measurements

can only work on certain problems.

The CILib framework allows multiple measurements to be added to a simulation

via the observer design pattern. New measurements can easily be written by utilising
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Figure 4.4: Measurement system

the Algorithm class’s public interface to navigate the structures below. It remains the

measurement’s task to extract the needed information from the algorithm structure.

This reinforces the fact that, as with stopping conditions, certain measurements are

specific to certain types of algorithms, and this makes sense – one would for instance

never invoke a swarm diameter measurement (applicable to PSO) on a neural network.

The framework will highlight this as well, as it would actually be impossible to associate

measurements to an algorithm that does not support the measurement – Java will not

allow a variable name that is non-existent to be extracted from an algorithm. Some

example measurement implementations are shown in figure 4.4.
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An advantage of the Measurement classes is that Algorithm is not aware of any mea-

surements being taken – the measurements only use the public interface of Algorithm

to extract information. This means that there is a clean separation of measurement and

algorithm logic, which makes both code sets easier to maintain and reuse. Measure-

ments are added to experiments using the CILib simulator discussed in section 4.1.6. A

sampling rate can be set which allows measurements to be taken at specified frequencies.

4.1.5 Type

The Type package in CILib serves as a common base for all data representations in any

CI implementation. The reasons why Type is used include:

• Conformity and standards: Flexibility and reusability are drastically affected

if developers can use any data types they wish. This would lead to interfaces not

matching up without conversions via adapters, making interoperability difficult and

time consuming. In an environment with n interfaces, there are n(n−1)
2

possible

symmetrical connections and n(n − 1) possible asymmetrical connections4. By

having a single data representation, the number of data format conversions between

systems is drastically reduced.

• Concise data: Conversions between different representations may introduce er-

rors as complex data structures could be converted incorrectly, leading to invalid

experimental results. Development time and complexity would increase, as logic to

convert to and from other representations needs to be included in the application.

• Operational efficiency: The native Java data types such as Double and Integer

have extra functionality built-in (such as serialisability) that degrades their runtime

performance. By developing a Type package that is designed to support only the

needed functionality, performance at execution time is increased.

• Efficient development: The Type package allows developers to easily formulate

and expand complex data structures in their applications. By using the composite

4[29] states that the number of edges in a graph is the degree of the graph divided by 2.
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pattern, even complex data representations can be treated as Type objects. This

allows complex structures to be built once, and reused by any application that

supports Type objects.

Figure 4.5: The CILib Type hierarchy

At the heart of the Type package is the Type abstract class as can be seen in figure

4.5. This class provides the base functionality required by all data types in CILib.

This functionality is not specific to any particular data type and includes actions such as
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more resource efficient serialise() and deserialise() method implementations. Type

also specifies the basic interface to common actions such as toString() and clone()

(conforming to the prototype pattern) that subclasses of Type need to implement.

All other data types are subclasses of Type. The Numeric abstract class adds all

required functionality to represent numeric data types. This includes upper and lower

bounds and compareTo() method that facilitates comparison. Numeric also defines

methods to simplify the interpretation of one type as any other type in the Type hierarchy

(i.e. custom built-in type casting). This provides native functionality to interpret a

particular type as another type, but in a specific fashion as defined in the particular

method. As an example, the getReal() method returns a double, the getInt() method

returns an int and the getBit() method returns a boolean. This makes it very easy

to work with Numeric data types as first order Java types and also makes conversion

between Numeric types easy. There are three main Numeric subclasses, namely Real,

Int and Bit. Using these methods, a Bit can easily be interpreted as a boolean value,

or a numerical value of 1.0.

The Vector abstract class utilises the composite design pattern to allow the con-

struction of any complex tree-like data structure via recursive composition. Vector is

abstract and merely provides the interface for subclasses to provide the functionality.

MixedVector extends Vector and incorporates an ArrayList<Type> object. As the ar-

ray elements are all instances of Type, recursion is possible as MixedVector is a subclass

of Type as well.

Two more data types that are implemented are StringType and Set. StringType is

effectively a wrapper for the Java String type that allows the Type package to use String

objects as components. This also enables the creation of complex non-numeric data

structures by using a combination of StringType and MixedVector. A good example

is when modeling DNA, which typically consists of long arrays of code strings (A, C, T

and G). By using MixedVector and StringType together it becomes easy to build such

long strings. The Set type is used to hold an unordered collection of Type objects.

The Type system is fully extensible if very complex data types need to be repre-

sented. As a further example, the modeling of biological processes such as RNA folding

requires more information than what an array of strings could hold. This includes in-
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formation such as which pairs form Hydrogen bonds, Anticodon locations, loops, among

other information. RNA structures is just one example of complex data types that CI

algorithms may need to manipulate. For more info on RNA structures and other bio-

logical processes, see [105]. By extending the base Type class and reusing elements such

as StringType and MixedVector along with the extra information, it becomes easy to

create a type called RNA Type class that any application can reuse.

4.1.6 Simulator

Figure 4.6: Simulation factories

Once all the required classes for a given CI algorithm have been implemented in
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CILib, one needs to combine them together in order to execute – on their own these

classes are nothing more than components. A trivial way to achieve this is to create an

executable class (i.e. a Java class with a main() method), instantiate all the objects

correctly and run it. While this approach works fine for one simulation, it becomes un-

tidy and tedious to maintain once many developers start using the system and dozens

of simulations have been defined and configured. All simulation logic is then encapsu-

lated in this component, which handles detailed Java object creation for algorithms and

problems, handling simulation repetitions, as well as the configuration and capturing of

measurement data.

Typically one would find that simulation logic above and beyond the algorithm’s logic

will be duplicated every time a new simulation needs to be created. This includes details

such as running the algorithm 30 times for statistical analysis. Also, as Algorithm is

designed to be run in parallel Java threads, the logic for this needs to be implemented for

each simulation every time. For large CI problems, logic to run simulations in a multi-

computer cluster environment is also needed. Redoing this implementation for every

simulation drastically increases the likelihood of errors as well as increasing development

time and effort.

For these reasons, CILib has a mechanism for configuring and executing simulations

using a framework to handle all simulation related logic. It utilises XML object factories

which allow Algorithm, Problem, StoppingCondition and Measurement classes to be

constructed and configured by means of an XML document. The XML structure defines

exactly what objects need to be instantiated as well as all the members for each object.

As XML allows tree structures to be defined, this mechanism allows the ‘objects inside

object’ to be defined as well.

As can be seen in figure 4.6, the XMLObjectFactory subclasses are connected with the

corresponding Java interfaces to enable the creation of the relevant component classes.

However, the objects returned by the factories need to be configured with the correct

parameters in order to be executable. This is done via the XML document. Each

class must provide a default constructor that sets all properties in the object to sensible

defaults. All publicly accessible properties can be set by using the correct tags in the

XML document. Below is an outline of what such an XML document looks like:
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Figure 4.7: The CILib simulation component

<simulator>

<algorithms>

<algorithm id="anAlgorithm" class="...">

<addStoppingCondition class="stoppingcondition.MaximumIterations" iterations="1000"/>

(set all other algorithm properties here...)

</algorithm>

</algorithms>

<problems>

<problem id="aProblem" class="...">
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(set all problem properties here...)

</problem>

</problems>

<measurements id="fitness" ..." resolution="10" samples="1">

<addMeasurement class="..."/>

(add more measurements here...)

</measurements>

<simulations>

<simulation>

<algorithm idref="anAlgorithm"/>

<problem idref="aProblem"/>

<measurements idref="fitness" file="c:/cilibOutput/fitness.txt"/>

</simulation>

</simulations>

</simulator>

In the above XML document it is clear that a problem is specified as well as an

algorithm. Measurements are also defined using the appropriate tags, and stopping

conditions are defined and added to the algorithm. These three components are then

used to form a simulation. Multiple problems, algorithms and simulations can be defined

in one XML document, each representing a different experiment run. This makes it easy

to define for example an XML document that defines an algorithm, 15 problem cases,

a set of measurements and 15 different simulations that solve each problem case using

the same algorithm and measurements. The class layout of the simulation component is

shown in figure 4.7.

4.2 Summary

CILib is a framework that allows developers to develop new CI algorithms quickly and

efficiently. Flexibility, reusability and clear separation between components are max-

imised through the use of design patterns. Reliability is also ensured as the framework

is open source and thus having many people collaborate to ensure that the framework is

well designed and error free.

CILib defines an algorithm component that works on problems. By using an XML-

based simulation engine to define and configure experiments, it becomes possible to

use pre-defined stopping conditions and measurements to set up research experiments

quickly, efficiently and robustly. Rework is also minimised as developers don’t need
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to rewrite execution functionality. A common type system is also used to further aid

interoperability, robustness and efficiency.

The next chapter shows how CILib can be reused and extended to allow any neural

network algorithm to be implemented in a generic fashion.

 
 
 



Chapter 5

Neural Network Framework in

CILib

Computer Science is no more about computers than astronomy is about

telescopes.

— Edsger W. Dijkstra

A conceptual breakdown of neural networks was presented in chapter 2. In this chap-

ter, the aforementioned breakdown serves as the main requirement for the design and

implementation of a generic neural network framework in CILib. The aim of this frame-

work is to provide a base for developers to quickly and efficiently build implementations

of neural network algorithms by reusing CILib functionality.

Many levels of reuse exist in this framework as can be seen in figure 5.1. The Java

programming language serves as the base for CILib. The use of Java offers key benefits

such as easy multi-threading, Java’s famous ‘write once, run anywhere’ characteristic,

convenient memory management, introspection capability for realtime dynamic class

discovery, easy instantiation and invocation, and easy enabling of grid computing on an

existing code base. A very good source to learn about Java is [35], which also states

that Java is definitely not a bad language choice from a performance point of view

– Java’s performance used to be poor in earlier releases of the language compared to

languages such as C++, but this is no longer the case in recent versions. Refer to [85]
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Figure 5.1: Architecture of the generic neural network framework in CILib

for a comparison of various Java compilers and other languages that shows concretely

how Java provides adequate performance (and even outperforms GNU C++ by a fair

margin in many cases.). The advantages of using Java to allow for quick and easy

reuse of components far outweigh the potential minor loss of performance, especially

when considering the fact that hardware is improving continuously whilst also becoming

cheaper. One of the main goals that the University of Pretoria has for CILib is the

ability to run CI simulations on a grid of more than a 1000 computers. CILib makes this

goal very easy to achieve.

The CILib framework, as discussed in chapter 4, is built using Java and XML1 technol-

ogy as summarised in figure 5.1. CILib provides the base structure for all CI algorithms

and lays the foundation for easy integration and reuse of CI components.

The neural network foundation framework is built on top of CILib and Java as de-

picted in figure 5.1. The foundation framework consists mainly of Java interfaces, ab-

stract classes and a small number of predefined classes. These components serve as a

specification for any neural network implementation to be built using CILib. The main

characteristics of the foundation framework are:

• Ease of use: Enables the easy creation of custom neural network implementations

1See http://www.w3c.org/xml for an overview of the XML specification.

 
 
 



CHAPTER 5. NEURAL NETWORK FRAMEWORK IN CILIB 117

in CILib (that do not necessarily use the generic components discussed later in

section 5.2).

• Flexibility: Facilitates the reuse of existing components to easily create new

neural network algorithms.

• Extensibility and reuse: Allows existing neural network implementations to

be extended easily and concisely, as the foundation framework addresses the base

neural network relationships as defined in chapter 2.

• Easy access: Enables any application, whether internal or external to CILib,

to access neural network components seamlessly. This is possible because the

foundation framework supplies the required CILib interfaces to all neural network

implementations by default.

• Generic foundation: Provides the base specification for the implementation of

generic neural network components on top of the foundation framework, as dis-

cussed in section 5.2 to allow easy reuse.

The neural network generic components layer in figure 5.1 allows developers to de-

velop reusable components that can be reconfigured and extended to represent different

types of neural network models. A good example is a component that is capable of

representing arbitrary topologies of neuron and weight connections. Generic compo-

nents allow developers to quickly assemble new neural network implementations without

having to write everything from scratch.

Finally, the top layer in figure 5.1 represents neural network implementations. This

layer is required as the components of the neural network framework, as well as generic

components, are not executable in their own right – the various elements need to be

composed together to form any specific neural network model. In CILib, the main way of

accomplishing this is the simulator component as discussed in section 4.1.6. The outline

of the desired neural network implementation is described using XML notation and the

application is built dynamically at runtime. Another way of defining an application is

to define a Java class that instantiates all the required CILib objects and execute them.
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This approach is more direct and of course voids all the advantages of using the native

CILib simulator.

Neural network implementations can be built using a mixture of both custom foun-

dation framework implementations and generic components. Neural network implemen-

tations that are based solely on the neural network foundation framework are intended

to serve as ‘stand-alone’ custom neural network implementations. These applications

leverage the foundation framework and are merely custom written neural network im-

plementations that conform to the CILib specification as laid down by the foundation

framework. One may find that a specific application in the foundation framework allows

for the reconfiguration of parameters such as to reconfigure from two layers with five

neurons each (i.e. a 5-5 architecture) to three layers with a 3-10-1 architecture. This

is not considered to be a generic component, but a configurable custom application – a

generic topology component would be able to, for example, specify any neuron topology

that can be represented as a graph.

Applications can be implemented much faster through the reuse of generic com-

ponents. The main goal of this approach is to be able to define new neural network

topologies quickly and efficiently by using existing and well tested components. These

components can be substituted for other more specialised components at later stages of

development. An application that is built this way would consist of a mixture of various

generic components and custom written components. Detailed examples of how this

works are presented later in this chapter.

The rest of this chapter is divided into two parts, namely a discussion of the founda-

tion framework and a discussion of generic neural network components. A breakdown is

given on how the foundation framework extends CILib to facilitate neural network algo-

rithms and implementations. After that, the use of generic components is discussed and

how they compliment CILib to allow easy creation of neural network implementations

using pre-built components. Throughout the discussion, reference is made to design pat-

terns in chapter 3, how they aid in the solution and what advantages and consequences

they provide.
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5.1 The Foundation Framework

This section provides more detail on how the foundation framework stipulates the manner

in which neural network implementations can be built using CILib.

As discussed in chapter 4, CILib is a framework that assists developers to write CI

algorithms by stipulating the base infrastructure and relationships between components

that all CI implementations have in common. CILib provides the functionality that

every CI implementation needs, but that developers do not want to worry about every

time they write new applications. A good summary of CILib is:

CILib is a framework that allows researchers to design, implement and run

CI simulations that consist of algorithms that work on problems. Simula-

tions run until the algorithm completes as stipulated by stopping conditions.

Simulations also allow measurements to be taken periodically.

However, CILib is a framework – it provides the base interfaces, abstract classes and

pre-defined classes to allow algorithms, problems, measures, data types and stopping

conditions to be defined. For each field in CI such as swarm intelligence, evolutionary

computation, neural networks and fuzzy systems, the CILib framework needs to be

extended to provide the required environment. The purpose of the foundation framework

is to lay the groundwork for developers to implement neural network components that

in turn can be used in neural network implementations. The foundation framework

stipulates the base relationships between the building blocks of neural networks as found

in chapter 2.

These include:

1. A topology component that serves as a container for neurons and weight connec-

tions. This component is responsible for providing an environment to represent

specific neural network architectures.

2. A data component that encapsulates all aspects related to the use and manipulation

of data sets and patterns.

3. A training component that is responsible for all neural learning that is considered
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to be specific to the neural network system – other CI algorithms such as PSO

access the system differently as discussed in section 6.2.

4. A mediation component is present to orchestrate the logical order of actions be-

tween the topology, data and training components for each type of neural network

in a loosely coupled fashion. It also acts as a facade object to sub-systems, allowing

access to lower level components of a neural network implementation via a single

interface.

More detail about each component is given in the following sections. An example

of a simple neural network implementation that is implemented using the foundation

framework is also shown in section 5.1.5.

5.1.1 The Topology Component

As discussed in chapter 2, the topology of a neural network model consists of one or more

layers of neurons and the weight connections that link these neurons together. Specifi-

cally, the neuron needs to support functions such as handling input weight connections,

net input signals and activation functions (collectively called the transfer function), scal-

ing and limiting of output values, and competition as discussed in section 2.1.1. The

weight connection framework, as covered in section 2.1.2, must support multiple layers

of neurons (either input, hidden or output layers), where inter-, intra-, supra- and self-

connections are possible. Symmetrical and asymmetrical connections must also be taken

into account, as well as the possibility of having higher-order connections. Depending on

the type of network topology, some or all of these different concepts need be implemented

in different manners to form specific neural network topology implementations, such as

a Hopfield network, a SOM, a FFNN, a RBFN, an ensemble network, or a modular

network. There are literally hundreds of known neural network topologies that need to

be supported.

Furthermore, applications that utilise the topology component (such as the CILib

simulator or a custom Java application) as well as other CILib components (such as a

learning component) must have easy access to any relevant information of the topology

without duplicating the structure. All aspects of the network topology should thus be
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encapsulated in the topology component, yet be available to other components. Any

changes to details inside the topology also has to be transparent to outside components.

For example, if all the hidden layer neurons in a FFNN have their sigmoid activation

functions changed to hyperbolic tangent functions (as discussed in section 2.1.1), this

change should not require code changes in the mediation component or the data compo-

nent. Of course, if the new configuration is invalid for some reason, a suitable exception

must be thrown to highlight this. As a further expansion on the example above, if a

particular learning component uses adaptive activation functions [27], the component

may not work with hyperbolic tangent activation functions.

The NeuralNetworkTopology interface, as illustrated in figure 5.2, represents the

concept of a topology in the foundation framework and uses the strategy design pattern

to implement all the requirements listed above. As NeuralNetworkTopology is a Java

interface, any class that implements NeuralNetworkTopology correctly can be regarded

as a neural network topology. The implementing class may use any datastructure to

represent the neurons and weights, based on the requirements of the required neural

network model.

By implementing neural network topologies using the strategy design pattern, a num-

ber of architectural benefits are obtained:

• Encapsulation: Neural network topologies are encapsulated, meaning all the

logic related to a specific implementation is contained in one place. This includes

the types of neurons, weight interconnection schemes, the types of weights, and

neuron functions. It also encapsulates the implementation details, such as the

datastructures used to implement the topology. This cleanly separates the logic as

well as the implementation from the rest of the application. It also becomes easier

to define ensembles and MNN topologies by reusing existing implementations.

• Client simplicity: Components that use the NeuralNetworkTopology need not

know the intricate details of how it is implemented – the client merely has to

know how to call and use the component via its interface. Classes that implement

NeuralNetworkTopology may provide more methods to further aid this.

• Client extensibility: Clients can easily exchange one topology for another one.
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Consider an example where there is more than one implementation of the same

type of topology, say a SOM – one implementation might be implemented using an

extremely accurate (but slow) data type, while another implementation might only

be accurate to the eighth decimal point, but executes fast. This flexibility allows

developers to easily provide different implementations of the same topology model

(perhaps using different programming models or data structures). Note that this

may not make sense in all cases, such as exchanging a SOM topology for a Hopfield

network in the same learning algorithm.

• Dynamic variation: If any future neural network implementation would ever

require that a topology object be exchanged for another, or that a topology gets

recreated dynamically at runtime, the strategy pattern makes it possible. This

might, for instance, be useful in modular network environments where more net-

work modules can be added dynamically, as is done with NNTrees in [125] (also

see section 2.4.4).

The NeuralNetworkTopology interface specifies three methods that an implementing

class should implement, namely evaluate(), getWeights() and setWeights().

The evaluate() method must provide a mechanism to evaluate any given input

pattern to produce a network output value. This mechanism must also be able to handle

network types that do not produce explicit output values, for instance a SOM. The

evaluate() method takes an NNPattern object as parameter and returns the output

of the neural network (assuming the network model has output, otherwise a null value

should be returned), where NNPattern is an interface that represents an input pattern.

See section 5.1.2 for more information on the NNPattern interface.

As a topology is a container of neurons and weights, the base interface specifies

the getWeights() and setWeights() methods that extract and insert weight values

respectively, which allows any external component to access these weights. This can be

used to train neural networks using external components such as PSO or an EA. The

getWeights() and setWeights() methods also allow the network state to be saved to

file and restored at a later stage.

It is important to note that NeuralNetworkTopology is only an interface and the

class that implements NeuralNetworkTopology is responsible for providing the exact
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Figure 5.2: The NeuralNetworkTopology implementation

functionality of the specific topology it represents. Section 5.2.1 discusses the design

and implementation of a generic topology implementation that has the capability of

representing any topology that can be expressed as a graph.

5.1.2 The Data Component

Neural networks typically accept data in the form of input patterns that are presented

to the network to generate some form of output (either an output pattern or a state

change). As seen in section 2.2, a pattern can be defined as a single unit of data that is

presented to a neural network. A data set D can be regarded as a set of patterns such

thatD = {dp = (zp, tp)|p = 1, · · · , P} where zp is an input vector (with dimension I) and

tp is its associated target vector (with dimension K) for pattern dp. Depending on the

network type, the target value is not always needed. Supervised networks typically accept
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patterns with input and target values while unsupervised networks typically require input

values only. As seen in section 2.1.2, the type of data in a pattern may vary, including

types such as real, binary, complex, and discrete values. As data and weight values are

merely inputs to net input signal and activation functions, any type that is supported

by these functions may be present in data patterns (as well as weight values).

Data Patterns

A single pattern instance is represented by the NNPattern interface (see figure 5.3) which

stipulates all the operations needed to access a pattern’s information. These operations

are the ability to enter or extract both input or target data values, cloning the pattern,

and other housekeeping tasks. The reason why NNPattern is a Java interface is to allow

multiple types of patterns to be defined. This approach allows researchers to easily cre-

ate new types of pattern implementations, for instance the definition of a pattern with

certain input and output values that are static, while other values are calculated dynam-

ically. For example, consider a neural network in a financial application that accepts

the Euro/Dollar exchange rate as one of the inputs. A subclass of NNPattern can look

up the latest exchange rate, perhaps every five minutes, and update the relevant input

value with the updated exchange rate. The complexity of this behaviour is completely

masked from the rest of the neural network implementation.

The NNPattern interface encapsulates all aspects of a pattern, which means that

the rest of CILib does not need to be aware of the complexity of the pattern’s target

– it may be static or calculated using a specific algorithm. StandardPattern in fig-

ure 5.3 implements NNPattern and supplies both input and target member variables of

type MixedVector (Recall that MixedVector extends Type as discussed in section 4.1.5).

Target values may be null, so StandardPattern may be used in cases where there is no

target value (such as unsupervised learning). MixedVector allows any data type such as

real, binary, complex, and discrete values among others to be used in StandardPattern

instances, which means that StandardPattern should satisfy most neural network re-

quirements in general.

One challenge with using MixedVector as data type for the input and output values

of NNPattern is the construction of pattern copies. Examples of components that may
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need to make copies of patterns are numerous. The learning component may need to

make copies of a pattern to avoid accidentally changing the original pattern values.2 A

selective learning component (see section 2.2.3) may have to make copies of patterns for

each new training subset as opposed to moving references around (or perhaps a history

list of past training sets needs to be kept). A particular data component implementation

may need to make copies of patterns to add noise to the copies as stipulated in section

2.2.1.5 and so doing increase the number of available patterns. These are just some

examples of why patterns may need to be copied.

If, in the context of making copies of patterns, the constructor of the subclass of

NNPattern is used along with the setInput() and setOutput() methods, the exact in-

stances of MixedVector need to be provided to setInput() and setOutput() everytime

a pattern needs to be copied. The code for instantiating the copy then also resides in

the component that wants to make the copy. This code is also responsible for perform-

ing the copy process ‘correctly,’ as a deep copy needs to be made of the MixedVector

objects inside the pattern object (as opposed to an object reference copy). Furthermore,

as NNPattern is an interface, any implementing class may have any number of other

member variables that also need to be copied correctly. Leaving the logic to make copies

of patterns in external component code will overly complicate these components, as each

type of pattern object needs to be catered for. Addition of new types of patterns will

also require a code change in all components that have to make copies of patterns (to

cater for the new type of NNPattern implementation).

The prototype design pattern, discussed in section 3.1.2, is used to create copies of

NNPattern objects. The advantage of using the prototype pattern is that other CILib

components do not need to know what type of pattern they are creating or how to make

copies of it, merely that the pattern is a subclass of NNPattern. To copy a pattern,

a component merely has to call the existing pattern object’s clone() method, which

returns a full copy of the pattern. The prototype pattern greatly simplifies the CILib

design and reduces the need to modify existing component code when new types of

NNPattern subclasses are added. Types are also assigned dynamically, meaning that the

2Some developers may even implement the getInput() and getOutput() methods of their respective

classes that implement NNPattern to always make a copy upon request.
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Figure 5.3: Architecture of the NeuralNetworkData component

specific subclass of NNPattern may be decided based on a runtime condition.

Pattern Organisation and Data Sets

Classes that implement NNPattern represent single instances of data patterns. A way

is needed to organise patterns into collections of data sets containing patterns. With

reference to section 2.2.1.6, patterns need to be organised into the data sets DT , DG,

DV and DC . This organisation can occur using any distribution scheme as discussed in

section 2.2.1.6. Pattern data also needs to be read in from data sources. Sources may

include flat text files, XML files, relational databases, data from a network location such

as a web service, data streams from other applications, dynamically generated function
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output, or any other source of data.

The order in which patterns are presented to the network also needs to be defined.

Various schemes exist (see section 2.2.1.6), such as selective presentation [83], increased

complexity training [10], and random ordering. Furthermore, active learning approaches

also need to be supported, which use complex algorithms to determine which patterns

should be included in DT (as discussed in section 2.2.3).

Components that use data sets and patterns should be shielded from the implemen-

tation complexity of data set manipulation, reading in data from sources, organising and

distributing patterns into data sets, the algorithmic details of active learning, pattern

ordering schemes and any other tasks related to the management of data. A component

that wishes to use data should merely be able to obtain patterns upon request.

The NeuralNetworkData interface, illustrated in figure 5.3, lists the methods needed

to implement a class that can provide patterns to the neural network system and act

as a container for data sets of patterns. In particular, this class will need to read data

from the source and distribute patterns to the DT , DG, DV and DC data sets. The

NeuralNetworkData interface defines four access methods for the four data sets DT ,

DG, DV and DC . Developers are free to implement the details of the data component

in any way, including how to perform reading patterns from data sources, distributing

patterns among data sets, pattern ordering algorithms, and active learning algorithms

(if any). The only requirement is that the return type of the four access methods is

ArrayList<NNPattern>, which represents a standard way to represent a data set as a

list of NNPattern objects.

Client components need to be shielded from the complexity of the NeuralNetworkData

implementation. Probably the most often used functionality of the data component is the

iteration over patterns in a data set. Client components merely want to obtain the next

pattern upon request, without having to be concerned with the details of the chosen data

structures and other implementation details. Clients may also want to iterate over more

than one data set simultaneously (such as over DT and DV ), and may even request multi-

ple iteration counters on the same data set. The iterator design pattern from section 3.2.2

is utilised to allow client components to traverse data sets. The NeuralNetworkData in-

terface provides methods to obtain a NeuralNetworkDataIterator for each of the data
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sets DT , DG, DV and DC .

The advantages of using the iterator pattern on neural network data sets are:

• Variation: Different types of traversals can be implemented for any particular

data set, such as a linear traversal, random traversal, or any other specific order

based on a heuristic. The complexity of the traversal logic is hidden from the

client, as well as the class that implements the NeuralNetworkData interface.

• Multiplicity: Many traversals may be active at any given moment as the state of

each traversal is kept in the iterator. This is useful if many components of a neural

network want to access data independently.

• Encapsulation and abstraction: Other components do not need to know how

the data source is implemented to be able to traverse it. This means that if a data

source implementation changes from, for instance, basic arrays to another data

structure, the code of the other components does not need to be modified.

• Conformity: Other components can use a single interface to obtain a traversal

over a specific data set. This interface is well-defined by the NeuralNetworkData

interface. This consistency allows NeuralNetworkData to be implemented and

used as a strategy very easily.

Components may use the functionality provided by NeuralNetworkData without

knowing any implementation details. Many different implementations may be specified,

with little or no change to other components if a different data component needs to be

used. This means, for example, that whether fixed set learning or active learning is used,

components such as the topology or learning components that use the data component

should be completely unaffected. The strategy design pattern is used to encapsulate

all aspects of a data source. Using the strategy pattern enables data components to be

presented to other components in a consistent way. Components can also utilise different

implementations of NeuralNetworkData with ease.

The NeuralNetworkData interface also directly supports active learning as discussed

in section 2.2.3 via the activeLearningUpdate() method. Classes that implement
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NeuralNetworkData have the option to provide the necessary functionality to facili-

tate active learning. The relevant mediator component is responsible for determining

when to invoke this method, based on which active learning algorithm is used. Section

6.1 provides a more detailed look at the implementations of fixed set learning and two

active learning algorithms as subclasses of NeuralNetworkData.

The final artifact of note is the shuffleTrainingSet() method. As the shuffling

of training data sets is a very common action in most neural network models, the

shuffleTrainingSet() method is included in the NeuralNetworkData interface for eas-

ier access by client components without the need for type casting. Section 2.2.1.6 lists

a number of pattern ordering methods used to govern the order of training set patterns.

These include the increased complexity training approach [10], selective presentation [83],

ordering training patterns based on a distance metric such as Hamming or Euclidean

distance [11], and random pattern ordering, among others. The shuffleTrainingSet()

method allows subclasses of NeuralNetworkData to implement pattern ordering, using

the strategy pattern, to effectively provide a new implementation for each type of or-

dering scheme. An alternative approach is to shift the logic for pattern ordering to an

iterator. The iterator always works on the same ordered list, but performs ordering ‘on

the fly.’ Performing ordering in an iterator effectively enables these ordering schemes to

be reused across multiple data component implementations (at the expense of runtime

performance as the iterator needs to continuously perform ordering calculations).

In section 5.2.2, a generic implementation of NeuralNetworkData is discussed.

5.1.3 The Learning Component

As discussed in section 2.3, the main purpose of neural learning is to train a neural

network in such a way that the neural network is capable of approximating a defined

problem to an acceptable level of accuracy. This entails changing the network topology

such as changing one or more of the network’s weights, but also other aspects such as

changing neuron parameters (i.e. adaptive activation functions), pruning the network

by removing weights and/or neurons, or growing the network by adding weights and/or

neurons (as discussed in section 2.3.5).

In trying to implement neural learning in CILib, it soon becomes apparent that there
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are two separate learning cases:

1. The desired optimisation algorithm is a stand-alone implementation in CILib, such

as PSO or an EA.

2. The optimisation algorithm is a neural network specific algorithm and is not a

stand-alone implementation in CILib. Examples include random search, non-

generic gradient descent3, as well as the training of a Hopfield network or a SOM.

This observation means that both approaches need to be supported – it is unreasonable

to assume that every learning approach for every possible neural network model can be

implemented as a CILib Algorithm subclass. Both approaches are discussed below.

Stand-alone CILib Algorithms

To support neural learning in cases where the desired optimisation technique is imple-

mented as a stand-alone CILib component, it is necessary for the particular learning

component to interact with the neural network system. This needs to be done in a de-

fined manner, as there is no guarantee that the neural network system and the external

algorithm both use the same data types. In particular, the external component will

have to be able to map any information it needs from the neural network system to its

own interface and vice versa, as well as handle the conversion of different data types if

it is the case. This logic should ideally not be located in either the neural network or

the external component, as it limits flexibility and adds unnecessary complexity to both

components.

The adapter design pattern discussed in section 3.3.2 can be used to good effect to

provide the glue between the neural network system and any external CILib component.

An adapter has to be written for each type of neural learning goal, as the approach

for neural network models such as SOM, Hopfield networks, feedforward networks or

adaptive resonance theory [43] will vary. Different types of adapters have to be defined,

as each of these networks has its own learning goal. For example, a possible goal for

feedforward neural network training is to minimise the MSE objective function. This

3It is, however, possible to write a stand-alone implementation for gradient descent that extends the

Algorithm class.
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goal makes no sense for a SOM, and a different adapter will have to be written if an

external learning component needs to train a SOM. A more detailed discussion on the

use of PSO or an EA to train a feedforward neural network using the MSE objective

function and an adapter is given in section 6.2.

The use of stand-alone algorithms entails that the neural network system is merely

used to house the network topology (i.e. neuron layers and weight connections and how

to compute pattern output), as well as the data source (i.e. the collection of patterns,

how to read the patterns in from the data source, how to iterate over data sets). The

manner in which the topology and data components are orchestrated to work together

is handled by the mediation component by using the mediator design pattern, which is

discussed in more detail in section 5.1.4.

Neural Network Specific Algorithms

There are cases where the learning algorithm is specific to neural networks and is thus

not implemented as a generic optimisation algorithm in CILib (i.e. is not a subclass

of Algorithm). Consider the training of a Hopfield network (see section 2.4.2) or the

batch training of a SOM (see algorithm 2.6) as examples. Yet the CILib specification

stipulates that an Algorithm class must be present, as it is the main component that is

invoked during runtime. At first glance, the implementation of neural network specific

algorithms seems straightforward – merely implement each learning algorithm as a new

Algorithm subclass. This approach will technically work, but may prove inflexible in

terms of reuse and composition of existing components.

Consider an example where several learning algorithms to train a FFNN are already

implemented as subclasses of Algorithm. If a new architecture selection algorithm for

a FFNN needs to be implemented that can be used alongside all the existing FFNN

learning approaches, an immediate problem surfaces: how can the architecture selection

algorithm be used in conjunction with the existing learning algorithms? An intuitive

method is to write a new Algorithm implementation for each of the existing algorithms

and have it include the architecture selection functionality. This is not a very clean

approach at all, as copies of all the existing Algorithm implementations need to be made

and modified to support the new functionality. When yet another learning algorithm (say
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adaptive activation functions [27]) needs to be combined with all the existing algorithms,

the number of components will be staggering (to support each combination of the three

learning algorithms). This approach clearly does not scale well.

A better approach is to implement the new architecture selection and adaptive acti-

vation function components as separate Algorithm implementations. Secondly, an ‘algo-

rithm of algorithms’ can be written that allows more than one of the existing algorithms

to be combined, thus forming a collating top-level Algorithm class. This approach avoids

the exponential explosion of implementing classes, but may become complex to manage

as each of the existing algorithms must now be able to work on their own and as part of

a composite algorithm mixture. Recall from the start of this subsection that the CILib

specification stipulates that an application must have an Algorithm that works on a

Problem. To manage the problem and algorithm hierarchies can become very tedious if

this approach is followed. Lastly, many of these approaches, such as adaptive learning

functions and architecture selection may be used alongside stand-alone CILib algorithms

such as PSO or an EA. These existing CILib components need to be used as is, and it

cannot be expected for these algorithms to be reimplemented as neural network specific

versions of themselves.

The approach taken in this framework is to decouple the actual neural network spe-

cific learning algorithms from the CILib Algorithm class. The TrainingStrategy in-

terface represents learning components that are not implemented as stand-alone CILib

algorithms, and provides the core methods and relationships needed to build such learn-

ing components as described above. Using TrainingStrategy immediately solves the

problem of integrating more than one Algorithm implementation. A predefined imple-

mentation of Algorithm called NeuralNetworkController is provided by the framework

along with a single predefined problem component called NeuralNetworkProblem. These

components are provided as part of the framework and never need to be changed, and

their usage allows any combination of TrainingStrategy to be used together. More

details about these two classes are given later in this section.

TrainingStrategy follows the strategy design pattern which allows developers to

easily change learning algorithms by simply replacing one component for another in a

neural network implementation. The advantages of using the strategy are:
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Figure 5.4: Training components specific to neural networks.

• Encapsulation: Learning algorithms are fully encapsulated in one component,

which makes it easy to exchange implementations or other types of algorithms.

• Extensibility: More learning algorithm implementations can be added quickly

and easily and may be used by the rest of the system immediately.

• Abstraction: Clients such as the mediation component are not concerned with

how the neural network is trained – it merely informs the learning algorithm when

to perform its role.

• Concurrent usage: If the functionality of two or more existing learning algo-

rithms are needed by the same neural network implementation, it is easy for clients

to use two or more simultaneously. An example is using gradient descent along

with an architecture selection algorithm on the same topology. Another example
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is if another Algorithm such as PSO is used, an architecture selection or adap-

tive activation function learning algorithm may still be used (and PSO is still the

controlling Algorithm as CILib requires).

• Dynamic modularity: If a new type of neural network implementation requires

that the type of learning algorithm needs to be changed dynamically at runtime

based on certain conditions, the strategy pattern will allow this. A simple example

of such an application is to use LeapFrog (see section 2.3.1) to train a neural net-

work up to a certain point, and then to switch over to gradient descent for the final

training stage. Another example is to use a metric to decide dynamically whether

an architecture selection algorithm is needed, as well as dynamically deciding on

which specific architecture selection algorithm to instantiate and use.

The invokeTrainer() method of TrainingStrategy provides the ability to invoke

a single iteration of the particular learning algorithm. The invokeTrainer() method

takes a parameter of type Object, which allows developers to be flexible in how they

want to pass information to the training algorithm. A null value should be passed if this

parameter is not used. The preEpochActions() and postEpochActions() methods are

used to implement any actions that need to happen before or after a training iteration

– preEpochActions() is meant to be called before the invokeTrainer() method be-

gins and postEpochActions() is meant to be called after the invokeTrainer() method

has been called. These methods are for learning algorithm specific actions, such as re-

setting variables, updating learning rates, or increasing counters. As they are part of

the TrainingStrategy interface, these methods need to be implemented by the imple-

mentation developer – an empty implementation is the default if no action needs to be

taken. The responsibility to orchestrate exactly how and when these three methods are

invoked falls on the mediation component (which may use other design patterns such as

the template method to outline training steps).

The invokeTrainer() method is responsible for obtaining any training related infor-

mation from topology components, as well as modifying any topology information (such

as weight values, neuron parameters, or architecture selection). As TrainingStrategy

is a Java interface, developers are given full freedom in how they want to implement

invokeTrainer(). With reference to figure 5.4, an object reference to a specific topol-
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ogy implementation is included in each TrainingStrategy implementation. This means

that these particular TrainingStrategy implementations are directly linked to partic-

ular topology implementations. This has the advantage of speedy execution, as well as

ensuring that incorrect configurations do not occur (as Java will highlight the error).

However, the learning algorithm is not generic anymore – it is tied to a specific topology

implementation.

It is also sometimes possible to perform training via the TrainingStrategy interface

only, in which case no direct link between a TrainingStrategy implementation and

a specific topology exists – the training component is thus truly generic. A possible

candidate for such an interface-only implementation is gradient descent. The neural

network weight vector could be passed to the invokeTrainer() method via its Object

parameter, perhaps as a list of layers. The resulting changed vector can then be returned

and reinserted into the network topology without the TrainingStrategy implementation

ever directly accessing the weight values inside the topology. Classes that implement

TrainingStrategy are free to use only interfaces to obtain and update information,

thus making the training strategies reusable across topology implementations.

The approach followed in this framework design is to allow all of the above implemen-

tation options. Developers have the option to build topology specific as well as generic

‘topology independent’ learning algorithm implementations. A possible concern is that

a direct reference is made to a topology object, which means that there is a possible

explosion of classes if learning algorithms have to be reimplemented for each topology

implementation. This is addressed by the fact that most applications in CILib would use

the generic GenericTopology implementation discussed in section 5.2.1, thus limiting

the number of topologies substantially.

The TrainingStrategy interface adds a lot of flexibility when dealing with neural

network specific algorithms. Recall from the start of this subsection that the CILib speci-

fication stipulates that an application must have an Algorithm that works on a Problem.

In order to use the TrainingStrategy interface, a dedicated subclass of Algorithm,

called NeuralNetworkController, is used that works on NeuralNetworkProblem classes.

The NeuralNetworkController class is needed only when the neural network framework

itself incorporates an optimisation algorithm and there is no other Algorithm implemen-
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tation (say PSO) present.

The NeuralNetworkProblem class implements the OptimisationProblem interface

to conform to the Problem interface of CILib. The NeuralNetworkProblem class is an

example of the facade design pattern, which allows the NeuralNetworkController to

access a neural network via the Problem interface. The NeuralNetworkController class

is not needed if an external stand-alone algorithm (such as PSO) is to be used, as these

algorithms will have their own Problem implementations. The NeuralNetworkProblem

is only used with the NeuralNetworkController class. This is not a hard rule – if an

application will benefit from using the NeuralNetworkProblem definition as a facade, it

may of course do so. Apart from certain small housekeeping tasks related to Problem,

the class acts as a wrapper for the mediation component it aggregates.

5.1.4 The Mediation Component

Sections 5.1.1, 5.1.2 and 5.1.3 respectively discussed the implementation of the neural

network topology, data and learning components. These sections alluded to the fact

that a mediation component is required to consolidate the various parts to form a viable

neural network implementation. In particular, the mediation component has these design

requirements:

• The neural network topology, data and learning components are all separate com-

ponents. On their own, these components do not provide a full working neural

network implementation, but merely provide the algorithms, data structures and

approaches that together form the building blocks of a neural network implemen-

tation. Recall that the neural network topology, data and learning components

all use the strategy design pattern. A mediation component is needed to combine

the neural network topology, data and learning components into a coherent neural

network implementation.

• The neural network topology, data and learning components need to be unaware

of each other (i.e. they need to be loosely coupled). As many different types

and implementations of each of these components are possible, their interactions
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should not be controlled from within each component. This would lead to a many-

to-many relationship between components which would limit flexibility, increase

the likelihood of errors and severely increase code complexity. Performance will

also suffer, as the code to manage interaction among objects will start to become

more than the functional code. A way is needed to manage all object interactions

centrally using one-to-many relationships.

• In addition to centralising object interactions using one-to-many relationships, the

logic and order in which these interactions need to occur needs to be defined. For

example, when using a FFNN and gradient descent training, a pattern from DT

is first presented to the network and the output is returned, which is then used

to calculate the error, given the target value from the pattern. This error is then

passed to the training component to perform weight changes. Another example is

the order and location of the logic that determines when an active learning update

should occur.

• There exists a need to capture and manipulate measurements and information that

fall above and beyond the functionality provided by the neural network topology,

data and learning components. These measurements and information need to be

captured at specific times using specific inputs and outputs to the three mentioned

components. Other information may also be used, such as total execution time or

total pattern evaluations. All this information needs to be collated, manipulated

and stored in a central location. Examples include the error the network made on

a particular pattern, the total MSE metric over an epoch, variables and counters

for active learning, and the total number of evaluations performed over all epochs

(a useful measure when considering algorithm complexity), among other measures.

This information must also be made available to external components such as CILib

measurements (see section 4.1.4).

• If different neural network behaviour is needed, only the mediation component

needs to be modified, and not all the components such as the topology, data or

learning components. If the same neural network topology, data and learning

component implementations are required (i.e. without any change to component
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logic), but with totally different application behaviour, the mediation component

must simply be exchanged for another mediation implementation. Alternatively,

the mediation component itself must be flexible enough to be customisable. An

example of this is mediator a that provides a FFNN that uses only theDT set during

training, and a mediator b that uses DT and DV for overfitting analysis, as well as

DG for generalisation performance analysis. Both a and b use the same components,

but different logic is used in each mediator to provide different implementations.

• Similar to the previous point, there may be cases where the mediation component

needs to remain unchanged, but one or more components in the mediator need

to be exchanged for different implementations. For example, one data component

may have to be exchanged for another data component implementation without

having to change the mediator code. The central mediator component must allow

loose coupling of components, i.e. support the strategy design pattern as used by

the topology, data, and learning components.

• A neural network system still needs to be mediated after training is complete. A

component is required that performs mediation between components such as the

topology and data component, so that the trained neural network may be used in

user applications, or as a fitness function in other CI algorithms. This needs to be

decoupled from the CILib Problem interface, which is used for training only.

• External applications need to access the neural network framework as a single

coherent system and not as a set of loose components. A component is needed

that uses the facade design pattern (see section 3.3.1) to hide the complexity of the

neural network framework and present any external system with a single interface

that can provide all required functionality. In reality, the component still comprises

of multiple components.

A single abstract class called EvaluationMediator is defined that uses the mediator,

prototype, strategy, and facade design patterns to meet the requirements listed above.

The EvaluationMediator class, illustrated in figure 5.5, lays the foundation for the

implementation of subclasses that are responsible for composing working neural network

implementations.
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Figure 5.5: Neural network architecture using a mediator.

By using the mediator design pattern, a lot of flexibility is gained. Advantages of

using the mediator pattern are the following:

• Loose coupling is achieved between the neural network topology, data and learning

components by not letting these components refer to each other directly. Instead,

subclasses of EvaluationMediator can implement any type of interaction between

the components and act as a broker between the neural network topology, data

and learning components by passing information between these components. In

this way, many-to-many relationships between components are replaced with one-
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to-many relationships, with the mediator sitting in the middle.

The topology, data, and learning components are not concerned about where they

obtain input from, or where their output goes to. The mediator is responsible

for providing each component with its needed information, and managing any

output. For example, the topology component is not concerned about where it

obtains NNPattern objects from, or what to do with the MixedVector network

output. The data component provides NNPattern instances via an iterator and is

not concerned about which component is asking for patterns. Learning components

merely need to be invoked at the correct time, with any information that it might

require (which is implementation specific). Using the mediator pattern decouples

all components and turns interactions into one-to-many relationships.

• The logic and order of interactions between components can be defined using the

mediator pattern. This means that for any particular mediator implementation

(i.e. subclass of EvaluationMediator), information can ‘flow’ between the neural

network topology, data and learning components in a particularly defined manner.

The mediator is responsible for handling the interactions between components.

Broadly speaking, the algorithms listed in chapter 2 give the outline of the flow of

a neural network model – the logic, order and any variables such as counters are

defined in the mediator, while the steps are delegated to components such as the

topology, data or learning components.

As an example, a FFNN that is trained using gradient descent needs to iterate

over DT , evaluate each pattern and obtain its output, calculate the error that the

network made using the pattern target, use this error to change network weights,

and finally report the MSE for each epoch. The mediator pattern provides the

logic and ordered flow of information between components.

• Limitted subclassing is achieved as only the mediator needs to be extended to

support new functionality, as opposed to each of the other components having to

be extended otherwise. Each subclass of EvaluationMediator represents a new

combination of neural network components to form a new type of neural network.

Using different mediator implementations allows developers to leave existing neu-
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ral network topology, data and learning components unchanged, yet achieve new

functionality by merely replacing the mediator component. Without a mediator,

the entire system would be a monolithic structure that would have to support all

possible configurations.

As an example, consider a FFNN that is trained using gradient descent and fixed

set learning. If a mediator is not used, and active learning should replace fixed set

learning, it would cause code changes in the topology component, as the logic to

evaluate a pattern would probably be implemented directly in the topology. The

learning component code would also have to be changed, as aspects such as the

number of patterns presented per epoch are now variable (due to active learning),

which influences the MSE calculation in the learning component. Using the me-

diator pattern requires no changes in the topology, no changes in the learning

component, and a new (but simpler) data component4.

• After a neural network is trained, the mediator pattern can be used to integrate

the various separate components of the network (such as the topology and data

components) to form a usable application. In this way, the role of the media-

tion component is extended beyond neural learning scenarios and can aid in using

trained neural networks in other CI algorithms. The use of a mediation component

decouples the definition of a neural network model from any specific Problem com-

ponent, which allows external learning algorithms such as PSO to reuse existing

implementations of Problem.

The mediator pattern acts as a client for the strategy design pattern, which means

that for each mediator implementation, any neural network topology, data and learn-

ing components (which all support the strategy pattern) can be exchanged without

changing the mediator code. This is done by changing the mediator’s references to

NeuralNetworkTopology, TrainingStrategy, as well as NeuralNetworkData objects.

This capability gives a lot of flexibility to the neural network framework:

4A small change in the mediator implementation may be needed if the mediator does not support

active learning. The activeLearningUpdate() method of the data component needs to be invoked at

the correct time.
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• Data implementations may be exchanged easily, allowing details in the data com-

ponent such as the data source, pattern distribution, and pattern ordering to be

changed without having to change any code in the mediator. Active learning can

also be supported in this way – merely replace a fixed set learning data component

with a component that uses an active learning approach. This however requires

that the mediator supports active learning (i.e. the mediator must know how

and when to invoke the activeLearningUpdate() method of the data component

which triggers active learning).

• Topology implementations are easy to exchange, as the evaluate(), getWeights()

and setWeights() methods of the topology component merely get invoked on a

different topology implementation. This gives great flexibility in allowing devel-

opers to exchange, say, a slow but accurate (to the 30th decimal point) FFNN

topology with a faster implementation that is only accurate up to 8 decimal points.

Other examples include exchanging topologies that use different types of activation

functions, using SOM topologies that implement different neighbourhood functions

(rectangular vs. hexagonal for instance), exchanging an Elman recurrent topology

for a Jordan (see section 2.4.3) topology, or exchanging a singular topology for a

modular or ensemble topology (see section 6.3.1).

• Different learning components may be used with the mediator. From the per-

spective of neural network specific learning algorithms, the strategy pattern allows

learning components to be exchanged with ease. More than one component may be

used simultaneously as well, for example using an architecture selection component

as well as a weight adjusting component. Note that the strategy is not used to

support CILib stand-alone algorithms such as PSO – there is a cleaner and simpler

solution for this via the use of adapters, as discussed in section 6.2. The main

difference between learning components that use the strategy and those that do

not, is that the learning component is no longer invoked from within the mediator,

as the external algorithm is directly responsible for neural network learning. Both

approaches require interaction with the mediation component.
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The abstract learningEpoch() method can be considered the main method for con-

trolling the flow of a neural network model. The learningEpoch() method is imple-

mented in subclasses to facilitate all learning-related aspects of a particular neural net-

work model. The learningEpoch() has to control the iteration over the desired data

sources, make sure patterns are presented to the network and output retained (if ap-

plicable), invoke the TrainingStrategy class at the right time and pass it the correct

information, make sure error metrics are computed correctly and at the right location,

invoke active learning at the appropriate time, and any other actions that need media-

tion. In short, all the logic and interactions for brokering the various components of a

neural network model is defined here.

The learningEpoch() method is flexible enough to fulfil neural network training re-

quirements. If the NeuralNetworkController is used, the performIteration() method

of NeuralNetworkController calls the performLearning() method in the mediator via

the reference in NeuralNetworkProblem, which calls the performLearning() method

in the mediator. The performLearning() method in the mediator performs a number

of household tasks (such as incrementing counters) before calling the learningEpoch()

method, and the template method design pattern (see section 3.2.5) is used to achieve

this. The learningEpoch() method is abstract and subclasses of EvaluationMediator

provide the exact functionality. In the case where the training component is another

Algorithm such as PSO or EA, the learningEpoch() method still defines the outline

of the logic for calculating the required error metric over a data source, as discussed in

section 6.2.

Subclasses of EvaluationMediator inherit functionality as discussed in detail be-

low. Subclasses merely need to make use of this functionality at the appropriate times.

Subclasses only need to implement two abstract methods, namely evaluate() and

learningEpoch() as seen in figure 5.5.

The evaluate() method takes an NNPattern object as input and returns the output

of the neural network as type MixedVector (recall from section 4.1.5 that MixedVector is

a CILib Type). It does so by forwarding the request to a topology object. A MixedVector

object is returned, as the output of a neural network is an array in most instances, and

MixedVector is the standard data type used in CILib. Using MixedVector makes it
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easier for other CI algorithms to access neural network functionality. If no output is

returned (as is the case with SOM), a null value is returned.

The abstract EvaluationMediator class provides the base implementation for error

reporting metrics, which are represented by the NNError interface (as seen in figure

5.5). These may be used by the application for training purposes, or may be extracted

as measurements using the CILib measurement system discussed in section 4.1.4. The

NNError interface provides methods to allow the metric value to be set directly to a

particular value using setValue(), as well as to allow the metric to be computed over

an epoch by using the computeIteration() and finaliseError() methods. The final

metric value is obtained by using the getValue() method. Three arrays of type NNError

are provided to keep track of errors on DT , DG and DV respectively. These arrays are

errorDt, errorDg, and errorDv and are all of type NNError[]. Arrays are used so that

more than one error metric may be specified per data source at the same time, such

as having the MSE and classification accuracy metrics be associated with the algorithm

simultaneously.

A challenge with using an array to house error metrics is that the arrays for DT , DG

and DV have to be kept in sync (i.e. they must all house the same type of metrics in the

same order). Each metric in each array must be reset/recreated by the mediator before

an epoch commences. The mediator cannot use the error metric class constructors to

create the objects, as these metrics are assigned dynamically based on the XML setup

document provided to the CILib simulator (see section 4.1.6). Furthermore, each array

needs to be treated and manipulated as a whole. This means that all the metrics in the

array need to be created, updated and finalised (i.e. the finaliseError() method) as

a single unit. An example of finalising a metric is obtaining the MSE by dividing the

accumulated error total (or SSE) for an epoch by the number of patterns and output

units (see equation 2.19).

To solve the problems of dynamic selection and creation of error metrics, the pro-

totype design pattern discussed in section 3.1.2 is used to define the prototype array

prototypeError for the three error arrays. Each time a metric has to be constructed

in a mediator, the prototypical instances are used to make copies of pre-configured error

metrics. The prototype pattern decouples the logic of creating the error metric from
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the implementation of the mediator, allowing error metrics to be assigned dynamically

without having to explicitly use constructors. Any metrics may now be used with a

mediator, and not only those that have their constructors supported.

The EvaluationMediator class also provides helper methods to perform common

actions on each error metric in an entire array at the same time. If the helper meth-

ods are not used, developers would have to manually iterate over each error array

and manually call operations of the NNError interface on each metric in the array.

Helper methods take care of the iteration and merely forward method calls to each

metric in an array. Any of the errorDt, errorDg, and errorDv arrays may be passed

as parameter to these helper methods. Example methods include the resetError()

method used to recreate each error metric in the array using the prototypical instance

prototypeError (which is a NNError[]), the computeErrorIteration() method that

invokes the computeIteration() method of each of the metrics in a particular array, the

finaliseErrors() method which invokes the finaliseError() method of each metric

in a particular array, and various getter and setter methods (for each error array) that

respectively exports or imports an entire error array.

Lastly, the EvaluationMediator abstract class acts as a facade to the rest of CILib,

allowing any external components to access a neural network using a simplified interface.

The evaluate() and performLearning() methods are good examples, as these meth-

ods hide the details of network pattern presentation and network learning respectively.

External applications merely need a reference to an EvaluationMediator implementa-

tion and invoke a required method. Furthermore, easy access via a single interface is

granted to all the subcomponents of the neural network system, including error met-

rics, the neural network topology, data, and learning components. The getTopology()

and setTopology() methods provide access to the NeuralNetworkTopology implemen-

tation, which in turn allows elements of the network topology such as weights and/or

neurons to be accessed. Similarly, the getData() and setData() methods access the

data component and the setTrainer() and getTrainer() methods provide access to

the learning component.
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Figure 5.6: FFNN implementation in the foundation framework

5.1.5 An Example implementation

Figure 5.6 shows the layout of a stand-alone implementation that is developed using the

foundation framework. In this example, a simple feedforward neural network (as depicted

in figure 2.11) is implemented that uses gradient descent as the weight optimisation
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algorithm. The main design goals of this neural network are simplicity and speed. The

FFNNTopology class extends NeuralNetworkTopology and acts as the main container

for weights and neuron functionality. The characteristics of the neural network model

are hard-coded in very efficient code to ensure speedy processing. The characteristics of

the implementation include:

• A 3-layer architecture, with linear activations for input units and sigmoid activation

functions (see equation 2.5) for hidden and output units.

• The number of neurons in each layer can be configured.

• Weight values can be extracted and inserted via the class interface.

• Java basic types are used as much as possible to ensure fast processing. Arrays that

store the weights are optimised to be one long flat array, rather than supporting

more types of network topologies (which would increase complexity and probably

decrease performance and simplicity).

• A generic data implementation called GenericData is used, which is discussed in

more detail in section 5.2.2.

To setup this neural network using the CILib simulator (see section 4.1.6), the fol-
lowing complete XML setup document must be created:

<simulator>

<algorithms>

<algorithm id="NNalgo" class="neuralnetwork.foundation.NeuralNetworkController">

<addStoppingCondition class="stoppingcondition.MaximumIterations" iterations="1000"/>

</algorithm>

</algorithms>

<problems>

<problem id="NNProblemFSL" class="neuralnetwork.foundation.NeuralNetworkProblem">

<evaluationMediator class="neuralnetwork.generic.evaluationstrategies.FFNNEvaluationMediator">

<topology id="NNtopo" class="neuralnetwork.basicFFNN.FFNNTopology">

<nrInputBiased value="5"/>

<nrHiddenBiased value="4"/>

<nrOutput value="3"/>

<learnRateEta value="0.5"/>

<momentumAlpha value="1.0"/>

</topology>

<data id="dat" class="neuralnetwork.generic.datacontainers.GenericData">
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<distributor class="neuralnetwork.generic.datacontainers.RandomDistributionStrategy">

<file value="c:/data/IrisScaled.txt"/>

<noInputs value="4"/>

<percentTrain value="80"/>

<percentGen value="5"/>

<percentVal value="15"/>

<percentCan value="0"/>

</distributor>

</data>

<addPrototypError class="neuralnetwork.generic.errorfunctions.MSEErrorFunction" noOutputs="3"/>

<addPrototypError class="neuralnetwork.generic.errorfunctions.ClassificationErrorReal"/>

<trainer class="neuralnetwork.basicFFNN.FFNNTrainingStrategy">

<topology idref="NNtopo"/>

</trainer>

</evaluationMediator>

</problem>

</problems>

<measurements id="fitness" class="simulator.MeasurementSuite" resolution="10" samples="30">

<addMeasurement class="neuralnetwork.foundation.measurements.ErrorDt"/>

<addMeasurement class="neuralnetwork.foundation.measurements.ErrorDv"/>

<addMeasurement class="neuralnetwork.foundation.measurements.RobelOverfittingRho"/>

</measurements>

<simulations>

<simulation>

<algorithm idref="NNalgo"/>

<problem idref="NNProblemFSL"/>

<measurements idref="fitness" file="c:/metrics/nnfitness.txt"/>

</simulation>

</simulations>

</simulator>

The XML document above follows the template given in section 4.1.6 to set up a

CILib experiment with an algorithm (with stopping conditions), problem and measure-

ments to facilitate the training of a FFNN. The algorithm component is set up using

the <algorithms> tag and specifies that NeuralNetworkController is to be used, as

a neural network specific training algorithm is used. The algorithm is set to only stop

after 1000 epochs. The problem is set up using the <problems> tag, which is set up

to use NeuralNetworkProblem in conjunction with NeuralNetworkController as dis-

cussed in section 5.1.3. The problem is configured to use a mediator component (via the

<evaluationMediator> tag) called FFNNEvaluationMediator. This mediator in turn

requires that the <topology>, <data> and <trainer> tags be set (along with anyparticu-
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lar parameters), as can be seen in the XML above. Two error metrics are also added, one

MSE and another ‘percent correctly classified.’ Lastly, three measurements are added via

the CILib <measurements> tag, namely errorDt, errorDv and RobelOverfittingRho.

The training component uses gradient decent optimisation and is implemented by

the FFNNTrainingStrategy class, which implements the TrainingStrategy interface.

Invocation calls to the FFNNTrainingStrategy class’s invokeTrainer() method are for-

warded to the train() method in FFNNTopology. The FFNNTopology class can access

and modify its own members directly, which is much quicker than via the class inter-

face. Note that, while this increases speed and enhances simplicity, it may appear as

if the specific training algorithm is defined statically and is thus not flexible. Yet this

behaviour is easy to change. By merely replacing the FFNNTrainingStrategy class with

another subclass of TrainingStrategy, or using the NeuralNetworkFunctionAdapter

as discussed in section 6.2, other training algorithms may also be used. These compo-

nents do not have to use the train() method in FFNNTopology at all – they are free to

use any means necessary to train the network. These may include other types of training

algorithms such as Leapfrog, PSO or an EA (through the use of the getWeights() and

setWeights() methods of the topology component), or any other training method.

An important point to note is that TrainingStrategy is an interface, which means

that FFNNTopology might as well have implemented TrainingStrategy directly, having

the invokeTrainer() method invoke the train() method locally, or even just renaming

the train() method itself to invokeTrainer(). With this approach, developers could

still use any other training strategy as discussed above – the mediator component just

needs to be aware of which training component is the desired one.

The FFNNEvaluationMediator class outlines the logical structure of the feedforward

neural network. The learningEpoch() method iterates over the DT and DV data sets

and presents all training patterns, with training being invoked after every pattern eval-

uation (i.e. stochastic learning as discussed in section 2.3). The training set is shuffled

after every epoch. The evaluate() method takes an NNPattern object and returns the

network output. The mediator then passes the output to the list of error metrics (along

with the associated NNPattern object). The error value is also coordinated by the media-

tor and is passed to the training components (as gradient descent is used, which requires
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an error metric for learning). Figure 5.6 does not show the error metrics, but they are

added dynamically using the inherited functionality from EvaluationMediator.

The GenericData class represents a standard data set of NNPattern objects and is

discussed in more detail in section 5.2.2. The distribution of patterns into the sets DT ,

DV and DG is done when the data is read in from a file. For interest, more advanced

NeuralNetworkData implementations are discussed in chapter 6 and any of these may

of course also be used here.

In summary, this is a very simple example of a custom neural network implementation

that gives a better view on how the foundation framework operates. By using the

foundation framework, even a simple system such as this has a high degree of flexibility

and reuse:

• Integration with the rest of CILib’s algorithm, problem, type system, measure-

ments, stopping conditions, and simulation capabilities is provided automatically.

The CILib framework is merely extended to provide a specific FFNN implementa-

tion.

• It is easy to change the neural learning algorithm, either in a static way before

execution or dynamically during execution.

• The management of data is made easier. It is easy to vary data sources, use dif-

ferent data presentation schemes such as fixed set learning, active learning such

as the sensitivity analysis incremental learning algorithm (see section 6.1.2) or dy-

namic pattern selection (see section 6.1.3), or to use differrent ways of distributing

patterns across DT , DV and DG.

• EvaluationMediator objects can be changed easily to completely change the na-

ture of the neural network implementation. A basic feedforward training scheme

that uses fixed set learning and no overfitting measures, for example, can be re-

configured to use active learning with one or more overfitting measures. This is

done using the same topology, data and learning components in both configura-

tions – the components are merely mediated differently by a new mediator object

to produce a new type of implementation.
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• The topology can be easily exchanged for another topology implementation instead

of changing topology code everytime different functionality is required. An example

is that if a different transfer function for neurons is needed, no code changes need

to be performed – a different topology object merely has to be specified. If this

new topology object has already been developed before, it means that object reuse

is achieved as opposed to code changes.

• If a different training strategy is needed, the TrainingStrategy object merely has

to be replaced. It is also possible to remove it completely and use a PSO or EA

implementation to train the network. Once again, this requires no code changes.

See section 6.2 for a full discussion of using PSO or an EA to train a neural network.

Many of the points listed above illustrate the need to use generic components. For

example, it is easy to change the data or topology components for the application,

assuming that other implementations have already been written. It would be easier and

more efficient to reuse an existing data or topology component and merely reconfigure

it, rather than writing a new implementation.

The next section illustrates the concept of generic components, such as a generic data

component that is able to provide four data sets, namely DT , DG, DV and DC that have

been populated using any defined distribution algorithm (such as a fixed distribution

as dictated in a specific list, random pattern distribution, or K-fold cross-validation)

with data patterns coming from any source such as a file, XML files, network service,

database, function output, or any other source.

5.2 Generic Components

This section discusses generic components that developers can reconfigure to represent

different aspects of neural network models – with minimal or no coding. A good example

of such a component is the GenericTopology class which is capable of representing any

neural network topology that can be expressed as a graph. The GenericTopology class

is discussed in more detail in section 5.2.1.

Another good example of a generic component is the GenericData class. This com-

ponent allows developers to read data from any source and distribute patterns among
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four distinct data sets, namely DT , DG, DV and (if needed) DC as discussed in section

2.2. A discussion of the GenericData class is given in section 5.2.2.

Architecturally, all neural network generic components are built on top of the foun-

dation framework, as is illustrated in figure 5.1. Generic components offer developers

a set of predefined implementations of common neural network functionality (such as

generic topology or data components) that give benefits such as:

• Generic implementations save time: Researchers can develop generic imple-

mentations of components that are used regularly by many neural network appli-

cations. By developing these components in a flexible way, developers save time as

they do not need to rewrite existing functionality when writing new applications.

• Component quality assurance: By reusing a generic component, application

integrity is improved and testing time is reduced. By using a proven, reliable

generic component, developers are assured that this specific part of the neural

network implementation is working as designed.

• Flexible design with minimal coding: The generic components framework

provides base implementations for components that are needed by most typical

neural networks. Developers can easily build new types of neural network imple-

mentations by configuring existing generic components and merely adding custom

components to complete the application.

• Modularity: Developers have the ability to use a generic component initially and

swap it out for a specific custom component at a later stage in conjunction with

the mediation component as discussed in section 5.1.4, without affecting the rest of

the application. This concept of modularity and interoperability is key to making

neural network implementations simple, quick and easy to develop.

• Efficiency: If the design of a particular component is done well, it is very effi-

cient to reuse that same component rather than spending more time and effort to

‘reinvent the wheel.’

In short, generic components are a collection of well-tested implementations in the

foundation framework that allow developers to easily reuse or extend them. It is clear
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that generic components are implementations of the foundation framework rather than

an extention to the framework. Of course one of the main objectives of generic compo-

nents is that they are generic, i.e flexible, configurable, extensible, and reusable. Thus

there are Java interfaces that need to be implemented before a component will be able

to support new functionality. An example (which will be discussed in more detail below)

is a generic topology builder object that needs to be defined for a particular type of

topology (such as a SOM) before that topology can be constructed.

The rest of this section discusses the GenericTopology and GenericData classes,

how these components are implemented, and how they can be used to solve complex

design problems.

5.2.1 A Generic Topology Implementation

The GenericTopology class implements the NeuralNetworkTopology interface from the

foundation framework. As mentioned in chapter 2 and in [34], a neural network topology

can be implemented as a mathematical graph using a matrix representation5. Figure 5.7

shows a neural network topology viewed as a graph along with the matching connectivity

matrix that represents the weight connections between neurons. The rows and columns

in the matrix both contain all the neurons in the network, with weights from the same

layer ordered together. The tuple (l, n) should be interpreted as neuron n in layer l.

The graph in figure 5.7 is read as follows: the neuron in column c has as its input

all the connections to the neurons in the rows where the entries contain a • (i.e. is not

empty), where 1 ≤ c ≤ N and N is the total number of neurons in the network. For

example, the column of neuron (3, 2) has as its inputs all the outputs of neurons (2, 1),

(2, 2) and (3, 1), as these rows all have non-null entries.

The graph in figure 5.7 can express all four types of weight connections as discussed

in section 2.1.2. Entries on the diagonal indicate self-connections (a weight connection’s

start and end neuron is the same) and any entries below the diagonal are either inter,

intra (if they fall in the same layer) or supra layer connections that originate from later

layers. An example is the neuron (2, 1) that has a connection from neuron (4, 1) in its

5See [29] for a full discussion on using matrices to implement mathematical graphs.
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Figure 5.7: Weights connections represented as a graph

input. Entries above the diagonal are either inter, intra or supra layer connections that

originate from earlier layers. Note that the weight connections are directional – entries

from a neuron in column (a, b) that has a neuron in row (x, y) as input are not the same

as the connection from a neuron in column (x, y) to a neuron in row (a, b), except on

the diagonal where (a, b) = (x, y). This allows for full asymmetric and symmetric weight

connections in neural network models as discussed in section 2.1.2.

As can be seen in figure 5.7, each layer of neurons is cleanly separated into bands when

taking the column number into consideration. Each of these bands have a number of

neurons in it, for example, in figure 5.7 there is a band consisting of two columns (2, 1)

and (2, 2) which together represent the second layer in the figure. Grouping neurons

using these bands is very useful to be able to implement the weight matrix efficiently.

By replacing the • symbols in the matrix with weight values, it becomes possible to
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calculate the output of a neuron in a column c by merely using the non-null entries in

the column as the weight vector in the activation function of c. The immediate problem

with this approach is that a typical weight matrix is very sparsely populated, which

impacts on the efficiency of calculating the activation value programmatically.

Figure 5.8: The generic neural network topology system

The way in which the GenericTopology class implements neurons and weights is to

use the connectivity matrix approach on a logical level, but to avoid the sparse matrix

problem by implementing the graph in an efficient way using ArrayList<NeuronConfig>

objects. Each column in figure 5.7 is represented by a NeuronConfig object (see figure

5.9) which is used to hold all information a neuron needs to compute its output value.

At this point, a way of representing a weight connection matrix in Java has been

shown, but the problem of dealing with a sparse matrix in an efficient way still needs to

be addressed. The solution used is that the NeuronConfig class merely ignores empty

entries – only non-null weight values and neuron links are stored. Doing this of course

prohibits the network from using matrix coordinates to determine the inputs of a neuron
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in column c by using row indices (as described earlier). For this reason, the NeuronConfig

object also keeps a list of references to other NeuronConfig objects that indicate the

source neuron for each input weight of c. This object holds information such as

• currentOutput of type Type, used to store the output of the neuron;

• input of type NeuronConfig[] which is a list of all input neurons;

• inputWeights of type Weight[] which is the corresponding weight values for

input;

• patternInputPos of type int, used to indicate which location in the pattern is

used by this neuron;

• patternWeight of type Weight, the corresponding weight for patternInputPos;

• timeStepMap of type boolean[], used to indicate whether to use input[i]’s current

output (a value of zero) or timestep t-1 output (a value of one)(this is used mostly

in recurrent architectures with self connections);

• Tminus1Output of type Type which is used to keep track of the neurons’s previous

output. This is needed in cases where limiting (also known as clamping) is used

to revert to the neuron’s previous output value as opposed to using the newly

computed value (see section 2.1.1); and

• isOutputNeuron of type boolean which is used to indicate to the topology if this

is an output neuron.

The list above shows that NeuronConfig uses a fan-in centric approach, which

means that each neuron is responsible for knowing where all its inputs come from and

what the weight values are – all information about the neuron is contained in a single

NeuronConfig object.

Note that every neuron in the topology has to separately keep track of ‘internal’

weight connections (connections from other neurons) and ‘external’ weight connections

(input from a pattern). Logically, there is no difference between an input from a pattern

and an input from another neuron, but on a programmatic level these inputs have to
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be treated differently. It is important to make this distinction when considering mod-

ular network topologies, where the pattern weights specifically need to be set by the

encapsulating network. More detail on this is given in chapter 6.

Weight values for each weight is stored in a Weight class. The value stored in Weight

is an instance of CILib’s Type component as laid out in section 4.1.5, which effectively

allows any type of weight to be used (i.e. real, complex, binary, vector, among others),

as discussed in section 2.1.2. The Weight class is needed to store more information such

as past values of the weight, and may be extended to store other information that any

particular neural network model may require. Gradient descent is a good example of an

algorithm that requires past weight changes to be remembered. If Type were to be used

directly instead of Weight, other components would have to keep track of the old weight

values, effectively copying the topology structure. This in turn is error prone, tedious to

construct and maintain, and is also inefficient.

Topology builders (discussed below) cannot possibly check for each possible type of

Weight object configuration (as weights can contain any Type object), which presents a

challenge as the builder is responsible for setting up the weight framework itself. The

prototype design pattern is used by the Weight class, which allows topology builders

to create new instances of Weight without knowing any implementation details about

the Weight. Using the prototype pattern simplifies the builder class dramatically and

allows it to be expanded with more Weight implementations without having to change

the builder code. If the prototype pattern is not used, all instances of Weight would have

to be instantiated using the Weight class’s constructor. As the class type of Type is only

set at runtime via a CILib XML document, the prototype pattern makes it possible to

avoid using the constructor of Weight and simplify the builder code.

All the columns located in the same band in figure 5.7 are grouped together into a sin-

gle ArrayList<NeuronConfig> object, where each column represents one neuron by us-

ing a NeuronConfig object. A variable of type ArrayList<ArrayList<NeuronConfig>>

called layerList contains each of these layers to give the desired matrix structure. A

LayerIterator interface is also provided and is used by GenericTopology, its subclasses

and other classes to iterate over neurons in a layer. The iterator design pattern is used

here to make it easier for components external to GenericTopology to gain access to
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and modify the neuron structure in an efficient manner.

Figure 5.9: layout of NeuronConfig and its sub-components.

With reference to the class NeuronConfig in figure 5.9, notice that the abstract meth-

ods start with ‘compute’ . The class member variables merely provide the information

needed to compute the output of a neuron as opposed to the type of neuron that is rep-

resented (i.e. the transfer function details). Depending on the choice of net input signal

and activation function as discussed in section 2.1.1, the mentioned abstract methods

have to be implemented differently. Subclasses of NeuronConfig can implement these

methods in any way to represent neuron types such as bias units, summation units,

product units, SOM units, Hopfield units, or any other type of neuron.

The GenericTopology class uses the visitor design pattern discussed in section 3.2.3

to allow more actions to be added to the topology. Typical actions include the ability
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Figure 5.10: Various GenericTopologyVisitors used by GenericTopology.

to extract or set weight values using a MixedVector, initialising weights randomly using

range and offset, initialising weight values using the inverse fan-in rule (i.e. to the range

[−1√
n
, 1√

n
]) as discussed in section 2.1.2, extracting weights from the topology in a certain

order, and counting the number of weights. Using a visitor decouples the operations on

the topology from the representation of the topology, allowing more visitors to be added

with ease and without complicating the GenericTopology class. The rest of the class

can also use visitors to good effect, such as the initialise() method using a specified

visitor to initialise weights and the getWeights() and setWeights() methods using

visitors to perform their work.

Lastly, the GenericTopology class makes provision for the use of the observer design

pattern, as discussed in section 3.2.4. The observer pattern allows any component that

is interested in knowing when an event in GenericTopology occurs to be notified and

to take action. An example of when the observer pattern needs to be used is when a

growing/pruning component is used. When the growing/pruning component changes the

topology size by adding or removing neurons or weights, other registered components can

be notified that the topology layout has changed. Relevant components in this example

are the training component and the data component, as they typically have dependencies
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on the topology size. These components in turn have to decide if they can compensate

for the change and continue execution, or throw an exception. For example, if PSO

is used as the learning algorithm, then the size of the topology directly influences the

PSO particle size. Similarly, the data component needs to be able to decide if execution

can continue if the input or output vector size has changed (such as when input or

output neurons have been removed or added). Any number of observers can be added

or removed dynamically at runtime, and the code to define more observers is decoupled

from the GenericTopology class, making it simpler and more robust.

The GenericTopologyBuilder Class

The first significant inhibitor of using the GenericTopology class is the complexity of

constructing the layers of NeuronConfig objects, the Weight object connections be-

tween neurons, and setting up the type of each neuron correctly (net input signal, ac-

tivation function, initial output value, whether it is an output neuron or not, linking

patterns to the neuron and setting it to be a self-connection or not). Fortunately, all

neural networks can be interpreted as having at least one layer of neurons and thus the

layerList variable of type ArrayList<ArrayList<NeuronConfig>> is always valid.6

The GenericTopologyBuilder abstract class allows developers to define their own sub-

classes that are responsible for setting up the connectivity matrix for each different type

of neural network model.

The GenericTopologyBuilder utilises the builder design pattern to build neuron

topologies. The parts that need to be constructed are the layers of NeuronConfig objects

and their Weight objects. By varying the builder object used, the same GenericTopology

class can represent any neural network topology (that can be expressed as a graph of

course).

The main advantages of using the builder design pattern in this context are:

• Easy component construction: The logic of how to construct each type of

neural network topology is encapsulated in one component. This logic includes

6See section 2.1.1 as well as [34] for a discussion on why all networks can be seen as having at least

one layer of neurons.
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setting up the network’s net input signals and activation functions for each neuron

in each layer, the weight connections between neurons, the number of layers, the

relationship of neurons to input patterns, which neurons are output neurons and

initial output values for each neuron. Using a builder object for each type of

network cleanly separates each type of topology into separate components, making

it easy to maintain or extend the system.

• Flexibility: A high degree of flexibility is achieved as it is easy to switch between

different existing builder subclasses. This flexibility allows different types of topolo-

gies to be represented, without the need to change any topology code. The same

GenericTopology class can be used to represent diverse network architectures as

laid out in chapter 2 such as SOM networks, feedforward networks, Hopfield net-

works, Elman recurrent networks, functional link networks, LVQ networks, radial

basis function networks, among others. Each type of topology is built using a dif-

ferent builder class specific to the type of network, that only needs to be defined

once. Figure 5.8 shows examples of three builder objects for a SOM, feedforward

network and Hopfield network respectively.

• Separability: Maintaining each topology is very easy, as different builder objects

are used for each topology type – changes in one builder do not affect the others.

• Dynamic construction: The type of topology can be configured dynamically at

runtime by providing the respective builder. This type of behaviour might be useful

in scenarios involving growing or pruning of a network topology, or in ensembles.

• Reuse: A builder for a type of topology can be defined once and reused in many

applications. This means that developers never have to ‘reinvent the wheel’ with

respect to datastructures for neurons and weights each time they want to construct

a new neural network implementation.

A segment of an XML setup document for the CILib simulator is shown below that

utilises GenericTopology, GenericTopologyBuilder and FanInWeightInitialiser to

setup a FFNN topology. More variables may be added of course, such as a list of observers

that may be added to GenericTopology. The FFNNgenericTopologyBuilder class is a
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specific implementation of a FFNN with sigmoid activation functions and defines exactly

what types of neurons are to be created in each layer. A more generic implementation

of a topology builder may of course be written that is capable of being configured to any

degree.

<topology id="NNtopo" class="neuralnetwork.generic.LayeredGenericTopology">

<topologyBuilder class="neuralnetwork.generic.topologybuilders.FFNNgenericTopologyBuilder">

<prototypeWeight class="neuralnetwork.generic.Weight">

<weightValue class="type.types.Real" real="0.5"/>

<previousChange class="type.types.Real" real="0.0"/>

</prototypeWeight>

<addLayer value="5"/>

<addLayer value="10"/>

<addLayer value="3"/>

</topologyBuilder>

<weightInitialiser class="neuralnetwork.generic.topologyvisitors.FanInWeightInitialiser"/>

</topology>

5.2.2 A Generic Data Implementation

Another good example of a generic component is the GenericData class, as illustrated

in figure 5.11. This class implements the NeuralNetworkData interface to provide a

generic data source for neural network implementations. The main characteristic of

GenericData is that it provides the four different data sets as discussed in section 2.2,

namely a training set DT , a generalisation set DG, a validation set DV , and a candidate

set DC . The class uses ArrayList<NNPattern> objects to represent patterns in each of

these data sets. Using NNPattern allows any type of data pattern to be represented, as

discussed in section 5.1.2.

GenericData allows patterns to be read in from any source such as flat text files,

XML files, relational databases, data from a network location such as a web service, data

streams from other applications, dynamically generated data, or any other source of data.

The task of reading in and populating these data sets is not done in the GenericData

class itself, but is delegated to a DataDistributionStrategy class (illustrated in fig-

ure 5.11). Classes that implement this interface read in patterns using the java.io

package’s BufferedReader object, allowing any data source that is implemented as a

Reader to be used. Notice that DataDistributionStrategy does not specify that the
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BufferedReader class must be used – developers are free to use any means necessary in

the implementing classes. See [35] for more information on java.io and input streams.

Figure 5.11: Generic data classes for neural networks

The DataDistributionStrategy interface uses the strategy design pattern to exter-
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nalise and encapsulate the process of reading and populating data sets, allowing devel-

opers to be flexible in how they want to populate the four data sets in GenericData.

Classes that implement DataDistributionStrategy need to provide a populateData()

method that distributes data among DT , DG, DV and DC using a specific approach,

such as static pattern distribution (i.e. the first 500 patterns to DT , the next 200

to DG and the last 200 to DV ), random pattern sampling based on percentages per

data set, K-fold crossvalidation as discussed in section 2.2.1.6, or any other conceivable

method of pattern distribution. Figure 5.11 illustrates RandomDistributionStrategy

and CrossValidationStrategy as two examples of DataDistributionStrategy sub-

classes. As discussed in section 5.1.2, the prototype design pattern is used to allow

distribution strategies to create new NNPattern instances without knowing the exact

type of pattern used.

The DataDistributionStrategy allows developers to reuse the GenericData imple-

mentation by decoupling it from the data source type and the manner in which data sets

are populated. An example of how to use this component in an XML simulator setup

document is given as part of the XML in section 5.1.5.

5.3 Summary

This chapter outlined how the CILib framework in chapter 4 can be extended to support

neural network implementations as outlined in chapter 2. This task is aided by design

patterns as discussed in chapter 3. Using a design pattern to solve a problem yields

advantages such as having a named problem/solution pair, a description on how to reuse

the pattern, the consequences of using the pattern, recommendation on other patterns

that complement the pattern, as well as advice and considerations on how to implement

the pattern. This information was used to good effect on many occasions to solve many

complex design challenges related to the development of a reusable generic neural network

framework. The main advantages of using design patterns in the generic neural network

framework are:

• Ease of use is dramatically enhanced as the framework gives developers exact guid-

ance on how to construct a neural network implementation inside the CILib frame-
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work.

• The system is extensible as more components can be added to the framework,

allowing many different types of neural network components to be constructed and

used inside the same framework.

• Flexibility is increased as any component can be replaced with a different compo-

nent with ease, in most cases without code changes. This enables reuse of existing

components to be very simple.

• Neural network information such as weights, neuron function parameters, learning

algorithm parameters, data set information, and any metrics defined on a network

can be easily accessed by external applications in a defined way.

The topology of a neural network includes neurons, the layers they are organised

in, as well as the weight connections between them. It was shown that neural network

topologies can be represented using the strategy design pattern which gives advantages

such as encapsulation, simpler and more extensible mediation components and dynam-

icity. Furthermore, a generic topology implementation is discussed that is capable of

representing any topology that can be expressed as a mathematical graph. This makes

it easy for developers to use a well tested, existing topology implementation to easily and

quickly define a neural network model. This implementation uses patterns such as the

strategy which allows implementation to be switched easily, builder which allows multiple

topology types to be defined once and reused, iterator to allow external components to

access the individual neurons and weights of a topology, visitor to add more operations

to the class dynamically, observer to notify all interested parties when events occur, and

the prototype to create new Weight objects without knowing their type.

The data component is responsible for providing patterns to train a neural network

model. Patterns are represented by the NNPattern interface, which allows any type of

pattern to be defined. The strategy design pattern is used again to allow implementations

to be varied. The iterator pattern is used to iterate over any of the mentioned data sets,

allowing more than one iteration to be active at the same time and many types of iter-

ations to be defined. Active learning is also supported. A generic data implementation

is also developed that is capable of reading any patterns from any source and distribute
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patterns among DT , DG, DV and DC using any distribution method. The prototype

design pattern is used to allow patterns to be created without clients knowing its exact

type.

The learning component is supported for both stand-alone and neural network specific

optimisation techniques. Specialised algorithms that are specific to neural networks (such

as Hopfield or SOM), and are not implemented as stand-alone algorithms, are catered

for by the TrainingStrategy interface as well as the NeuralNetworkController and

NeuralNetworkProblem classes. The chain of responsibility pattern is used to carry

initialisation requests from Algorithm through the object structure to lower levels.

Mediation is required between the topology, data and learning components as these

are not applications in their own right. Neural network models also have variables

and concepts that stretch across these components and need to be represented. The

EvaluationMediator abstract class provides the basic infrastructure that subclasses can

use to implement mediator classes to represent specific neural network implementations.

The next chapter focuses on the implementation details of various components that

facilitate active learning, using external learning algorithms to train neural networks, the

provision of support for ensemble and modular networks, as well as an advanced metric

for classification algorithm performance analysis.

 
 
 



Chapter 6

Advanced Neural Network

Implementations

Nothing is a waste of time if you use the experience wisely.

— Auguste Rodin

The main objective of the generic neural network framework discussed in chapter 5 is

to enable developers to rapidly create new neural network implementations in CILib. The

emphasis is on reconfiguring and extending existing components to implement a desired

neural network implementation quickly and efficiently. Ideally, developers only need to

write code for components that do not exist yet rather than continuously rewriting the

same logic for each new application.

The aim of this chapter is to show how easy the generic neural network framework

is to use and extend. Various different types of neural network implementations and

components are discussed, including

• active learning approaches such as the sensitivity analysis incremental learning

algorithm (SAILA) and dynamic pattern selection (DPS);

• neural learning with other CI algorithms such as PSO or EC;

• ensemble network implementations;

167
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• modular neural network topologies and how various parts of the topology can be

trained with different algorithms;

• network pruning and growing algorithms; and

• a measure of classification performance, namely receiver operating characteristics

(ROC) analysis, is implemented generically and used.

For each of the above, it is shown how most of the neural network implementation

functionality is already defined in CILib. The new functionality that is required reuses

and extends the existing components to build an entirely new neural network model. In

addition, the new components are built in a generic way so that they in turn may be

reused in future implementations as well.

The rest of this chapter discusses the details and implementation of the various

components and algorithms outlined above.

6.1 Extending The Data Component

This section discusses the working and implementation of two active learning algorithms,

namely the sensitivity analysis incremental learning algorithm (SAILA) by Engelbrecht

[23] and dynamic pattern selection (DPS) by Röbel [91]. These two algorithms have the

same goal of growing the training set to only include those patterns that the network can

learn the most from. However, the algorithms achieve this goal in completely different

ways – SAILA uses sensitivity information of a pattern’s output with respect to its inputs

to measure its informativeness, while DPS searches for the pattern with the largest error.

Yet even with this drastically different behaviour, it is very simple to implement in the

neural network framework in CILib using the same base components.

Fixed set learning is also mentioned briefly for comparison with the two active learn-

ing algorithms.

6.1.1 Fixed Set Learning

Fixed set learning (FSL), also known as Passive learning, was discussed in detail in

section 2.2.2. In FSL, there is no pattern selection mechanism other than presenting the
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Initialise weights and training parameters.

Construct DT , DV and DG using sampling techniques from section 2.2.1.6.

repeat:

Train the NN on DT

Shuffle training set DT (optional).

until NN convergence is reached.

Algorithm 6.1: Outline of the FSL algorithm.

entire training set DT to the neural network every epoch. In most FSL implementations

the patterns in DT are shuffled after every epoch to prevent bias. A pseudocode outline

of the basic FSL algorithm is given in algorithm 6.1 – this serves as a base of comparison

against SAILA in section 6.1.2 and DPS in section 6.1.3.

FSL uses the GenericData implementation as outlined in section 5.2.2 with no mod-

ification. Data is read into DT once during initialisation and this set is used for the

duration of neural learning.

6.1.2 Sensitivity Analysis Incremental Learning Algorithm

The sensitivity analysis incremental learning algorithm (SAILA) was developed by En-

gelbrecht [23] as a method to facilitate active learning. Typical supervised learning

algorithms for multilayer neural networks involve training on a fixed set of patterns.

FSL has a very interesting dilemma. On the one hand the data set needs to contain

enough information (i.e. an adequate distribution across the search space) to solve the

specific problem (such as a function approximation or classification problem). On the

other hand, training time will be adversely affected if there are too many patterns in

the training set. Uninteresting or duplicate patterns may also affect generalisation per-

formance and lengthen training time [72], [122]. Worse, these redundant patterns might

not be sampled uniformly across the space, thus over-emphasising areas in the search

space, and thus biasing the learner.

Active learning tries to address these problems by using the network’s current knowl-

edge of the problem to select patterns from the available data that will yield the highest
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decrease in training and generalisation error. As stated in section 2.2.3, Atlas et al define

active learning as any form of learning in which the learning algorithm has some control

over what part of the input space it receives information from. The learner uses current

attained knowledge to select patterns from the candidate set, DC , that are most likely

to lead to a maximum decrease in error and adds these patterns to the training set, DT .

SAILA conforms to the definition of active learning by using pattern sensitivity infor-

mation to select those patterns in DC that are most likely to solve the learning problem.

The first-order derivatives of a pattern’s output with respect to its input is indicative of

the influence that pattern has on the approximated function’s output – patterns with the

highest influence or informativeness cause the largest weight changes during training,

which in turn leads to faster conversion to a good solution.

The rest of this chapter illustrates how pattern informativeness is calculated for any

given pattern, followed by a discussion of the SAILA algorithm.

Pattern Informativeness

Pattern informativeness is defined as follows [23]

Pattern Informativeness: Define the informativeness of a pattern as the sensitivity

of the NN output vector to small perturbations in the input vector. Let Φ(p) denote

the informativeness of pattern dp. Then,

Φ(p) .= ‖ S(p)
o ‖ (6.1)

where S
(p)
o is the output sensitivity matrix for pattern dp, and ‖ • ‖ is any suitable

norm.

Engelbrecht [23] suggests the max norm,

Φ(p) .=‖ S
(p)
O ‖∞= max

k=1,··· ,K
{| S(p)

o,k |} (6.2)

where S
(p)
o,k is the sensitivity of a single output unit ok to small perturbations in the input

vector z, with K being the total number of output units. The output sensitivity vector

in equation 6.1 and equation 6.2 is defined as

S(p)
o =‖ S(p)

oz ‖ (6.3)
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where S
(p)
oz is the output-input layer sensitivity matrix for pattern z(p). Assuming differ-

entiable activation functions, each element S
(p)
oz,ki of this matrix is computed as

S
(p)
oz,ki =

∂ok

∂z
(p)
i

(6.4)

For sigmoid activation functions (see equation 2.5), equation 6.4 (for a single pattern dp)

can be simplified to

Soz,ki =
∂ok

∂zi

=
∂ok

∂netok

∂netok

∂zi

= f ′ok

J∑
j=1

wkjf
′
yj
vji

= (1− ok)ok

J∑
j=1

wkj(1− yj)yjvji (6.5)

Each element S
(p)
o,k of the output sensitivity vector S

(p)
o can be calculated by using one

of the following suitable norms suggested in [23], namely the sum-norm,

S
(p)
o,k = ‖ S(p)

oz ‖1 =
I∑

i=1

| S(p)
oz,ki | (6.6)

or the Euclidean-norm,

S
(p)
o,k = ‖ S(p)

oz ‖2 =

√√√√ I∑
i=1

(S
(p)
oz,ki)

2 (6.7)

where I is the number of input units.

To summarise, a pattern z(p) is considered informative if any number of output units

are sensitive to perturbations in the input values of z(p). Thus the larger Φ(p) is, the

more informative z(p) is. Φ(p) is computed by calculating the output-input sensitivity

matrix Soz of z(p) for each input zi and each output ok. The sensitivity matrix Soz is

then used to calculate the sensitivity vector So. The element of the vector So with the

highest absolute value is set as Φ(p).
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The SAILA Algorithm

As an active learning algorithm, SAILA uses pattern informativeness as the measure to

decide which patterns to include in the training set DT . At specific selection intervals

the pattern informativeness of all the patterns in the candidate set DC is calculated.

The pattern(s) with the highest informativeness are then removed from DC and added

to DT by using the A+
SAILA operator defined as

A+
SAILA = {p ∈ DC | Φ(p)

∞ = max
q=1,...,PC

{Φ(q)
∞ };∀q ∈ DC , not yet selected} (6.8)

where PC is the size of DC at the current selection interval and Φ
(p)
∞ is defined in equation

6.1. Algorithm 6.2 gives a pseudo-code outline of the SAILA algorithm.

There are four design parameters that need to be considered when setting up SAILA,

as discussed in [23]:

• Initial training set size: The initial training set consists of only one pattern,

selected from theDC using equation 6.8. This is to study SAILA under conservative

conditions – more than one pattern may be selected if the researcher wishes to do

so.

• Subset selection criteria: The SAILA operator in equation 6.8 chooses the most

informative pattern.

• Subset size: The number of patterns to include in DT after each selection interval

is set to be one, thus being very conservative. More than one pattern can be

included in the subset and the number of patterns to be selected may even be

varied over time.

• Interval termination criteria: SAILA attempts to train on the current DT until

maximum gain is achieved before adding more patterns from DC . Four termination

criteria are used to prevent the learner from spending too much time training

without sufficient gain or overfitting the current DT . These are [23]:

1. The number of epochs that the neural network is trained on a particular

training subset is limited to 100. This ensures that the network does not

train on the current DT indefinitely.
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Initialise weights and training parameters.

Set subset increase size = 1 (default value).

Construct initial DT from DC using equation 6.8.

repeat:

repeat:

Train the NN on DT

until a termination criterion is triggered.

Compute the subset DS to add to DT :

For each z(p) ∈ DC , compute Soz using equation 6.5.

Compute S
(p)
o for z(p) ∈ DC using equation 6.3

Compute Φ(p) for each z(p) ∈ DC using equation 6.1.

Let DS = A+
SAILA (equation 6.8).

DT ← DT ∪DS, DC ← DC −DS

until NN convergence is reached.

Algorithm 6.2: Outline of the SAILA algorithm.

2. If there has been sufficient gain on the current DT , a new subset is selected

and added to DT . A selection interval is triggered when the error on either

DT or the validation set DV decreases by more than 80% (this number is

configurable).

3. If the average decrease in error on either DT or DV is too small, a selection

interval is triggered. This prevents the learner from training on a set DT with

too little gain. The threshold is set to 0.001 initially, and is divided by 10 as

the order of magnitude of the error on DT or DV decreases. This threshold is

configurable and other approaches may be taken to update it.

4. If the error εG on DG increases too much, it is a sign that overfitting on the

current DT might be occurring. A selection interval is triggered as soon as

εG > εG + σεG, where εG is the average error on DG over all epochs and σεG

is the standard deviation. Other overfitting measures may be used as well.
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Initialise weights and training parameters. Set subset increase size = 1.

Construct DT from DC , using the pattern with the largest error to start.

repeat:

repeat:

• Train the NN on DT

until ρ > 1.0

Compute the subset DS to add to DT :

For each dp ∈ DC , compute the error on Dp.

Let dp+ be the pattern with the largest error.

Let DS ← DS ∪ dp+ , DT ← DT ∪DS, DC ← DC −DS

until NN convergence is reached.

Algorithm 6.3: Outline of the DPS algorithm.

6.1.3 Dynamic Pattern Selection

The dynamic pattern selection algorithm (DPS) was developed by Röbel [91]. Röbel

states that the aim of DPS is to effectively select the training set DT during training by

continually validating the generalisation properties of the neural network.

Formally, the aim of DPS is to incrementally grow the training set DT ⊂ DC in such

a way that the training error εT is minimised to allow the network to converge faster to

FD within a specified level of accuracy, in other words ‖FNN − FD‖ < τ . The two main

questions that DPS need to address are: when should new patterns be added to DT and

which patterns should be chosen?

Röbel’s answer to deciding when new patterns should be added is to increase the

training set by a single pattern when the generalisation properties of the network becomes

poor. In other words when the validation error εV of the network is worse than the

training error εT , the training set should be increased. For example, when using the

MSE metric, this requirement can be measured easily by using the generalisation factor,

ρ, defined as

ρ =
εV

εT

(6.9)

For good generalisation performance, it is required that ρ ≤ 1.0.
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The process of selecting a pattern fromDC to add toDT should have as little overhead

as possible. Röbel suggests adding that pattern from DC that gives the highest error

when evaluated by the network. Algorithm 6.3 gives an outline of how DPS works.

6.1.4 Implementation

SAILA and DPS are implemented by a combination of data source and mediator con-

structs. Both the SAILARealData and DynamicPatternSelectionData classes extend

the GenericData class, as can be seen in figure 5.11. These classes provide all the func-

tionality of the respective algorithms. The activeLearningUpdate() method is used by

client classes such as mediators to extract a pattern from DC and insert it into DT . The

prioritisePattern() method is invoked by activeLearningUpdate() to determine

which pattern to include in DT . In SAILARealData this method proceeds to calculate

the pattern informativeness of all patterns in DC as an ArrayList<Double> array ac-

cording to the algorithm and approach in section 6.1.2. The most informative pattern is

then selected to move from DC to DT . For DynamicPatternSelectionData, the method

calculates the error (specified as a prototype, so any error metric may be used) on all

patterns in DC , stores it in a member of type ArrayList<NNError> and chooses the

highest one, as outlined in section 6.1.3.

The use of GenericData has many advantages. All the basic functionality from

GenericData is reused and extended to facilitate the two new algorithms. It allows

any implementation of NNPattern to be reused, as this is the type that GenericData

uses. SAILA and DPS data sources are also decoupled from any specific target, as

DataDistributionStrategy can be reused to read in data from any source. It also allows

SAILA and DPS to be used by any neural network implementation that is configured to

work with NeuralNetworkData.

Both SAILARealData and DynamicPatternSelectionData respectively implement

all the logic of how to do an active learning update, but not when to perform it. These

mediators need to determine the context in which to call activeLearningUpdate(),

taking many different aspects regarding the state of epoch execution into consideration,

as based on the respective algorithm. SAILA has four interval termination criteria as dis-

cussed in section 6.1.2, while DPS has only one, namely the generalisation factor ρ. This
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information needs to be stored in each mediator and is calculated while the network is be-

ing trained. The two different mediator implementations need to be implemented (one for

SAILA and one for DPS) that loosely follow the same structure, but use vastly different

algorithmic approaches. Of course, it seems that the mediator component itself is a prime

candidate for the template method design pattern, which stipulates that only one media-

tor implementation, say ActiveLearningTemplateMediator, is defined. The respective

algorithmic steps in algorithms 6.2 for SAILA and 6.3 for DPS respectively that coincide

logically (i.e. termination criteria, subset selection, and training of the network) are

then delegated to subclasses of the template ActiveLearningTemplateMediator class.

While this approach seems to be a cleaner approach, each type of active learning algo-

rithm is still a subclass of a mediator abstract class (ActiveLearningTemplateMediator

in this example), so little benefit is gained by using the template method pattern for

just SAILA and DPS. If many different active learning algorithms reuse the proposed

ActiveLearningTemplateMediator class, it may be worthwhile adding the complexity

of the template method design pattern to reduce the rework in having a separate mediator

for each active learning algorithm.

6.2 Extending The Learning Component

This section provides more detail on how other stand-alone CI algorithms such as a PSO

or an EA can be used to train neural networks. Recall from section 2.3.1 that a PSO

and an EA both use a similar approach to train a neural network.

When using PSO to train neural networks, the position vector xi(t) of each PSO

particle i represents the weight vector Wi(t) of a neural network i at time t. When

using an EA, each chromosome i in the population represents the neural network weight

vector Wi(t) at time t. The performance measure, F , for both PSO and EA comprises

of the chosen objective function for the neural network. During the fitness evaluation

of each particle or chromosome, this weight vector W(t) needs to be obtained from the

particle or chromosome and inserted into a network topology to be able to calculate the

fitness of the specific network. The fitness calculation itself can take many forms and

is dependant on the type of network that is to be trained. In the case of a feedforward
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Figure 6.1: Using an adapter with CILib Algorithm implementations.

neural network, the fitness value may be the MSE of all patterns in DT , but a fitness

value is not restricted to the MSE alone (see section 2.3.1). The fitness function may

also be a combination of error metrics over DT , DG and DV for example.

In the case of PSO, the weights of all neural networks are then updated simultaneously

by adjusting the positions of all particles using equation 2.25 (as is the case when using

standard PSO – different PSO approaches may use different update strategies). An

EA approach may use various selection, cross-over, and mutation operators to create or

change individuals in the population (as dictated by a specific EA algorithm).

In order to use a PSO or an EA to train a neural network, some integration needs

to be performed to allow the PSO or EA to interpret a neural network error metric

as a performance measure, F . In particular, the neural network mediator needs to be
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instructed to compute a desired error metric over one or more data sets. This result

must then be returned to the PSO or EA as the fitness of the particle or chromosome

respectively. The PSO or EA system provides the Algorithm implementation that CILib

requires, which needs the neural network error metric to be translated into a function

that can be used as a performance measure F by a PSO or an EA. Both PSO and

EA use subclasses of Function to represent performance measures, which means that

NNError metrics need to be interpreted as Function interpretations. The Function class

is illustrated in figure 6.1.

The adapter design pattern is well suited to act as a broker between the PSO or

EA system and the neural network system. By using the adapter design pattern, a

NeuralNetworkFunctionAdapter class that implements the CILib Function interface

can obtain NNError metrics from a neural network mediator and convert it to a format

that a PSO or EA algorithm can understand. The NeuralNetworkFunctionAdapter

class is illustrated in figure 6.1. The NeuralNetworkFunctionAdapter class’s evaluate()

method maps the inbound parameter in (which represents the information in a PSO

particle or EA chromosome) to the neural network topology’s weight vector via the

NeuralNetworkTopology class’s setWeights() method. The topology reference needs

to be obtained by using the mediator interface. The code for this is shown below.

public Double evaluate(Object in) {

mediator.getTopology().setWeights((MixedVector)in);

mediator.performLearning();

return mediator.getErrorDt()[0].getValue();

}

As the NeuralNetworkFunctionAdapter class extends the Function interface, any

FunctionMinimizationProblem can now accept the NeuralNetworkFunctionAdapter

class as the function to be minimised. This entails that any subclass of Algorithm that

has the capability to work on FunctionMinimizationProblem objects (of which PSO

and EA are examples), can now be used to perform neural learning. Any ‘suitable’ neural

network mediator may be used. Suitable mediators include mediators that can return

valid NNError metrics and that do not explicitly invoke other training methods such as

gradient descent. After the weight vector is set by the NeuralNetworkFunctionAdapter
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class, the mediator class’s performLearning() method is called, which in turn invokes

the learningEpoch() method (using the template method pattern as discussed in section

5.1.4). The learningEpoch() method of the mediator class iterates over various data

sets such asDT , DG orDV , obtains the output of each pattern, and calculates the relevant

NNError metrics that have been set up in the mediator. Recall from section 5.1.4 that

the mediator component uses the prototype pattern to allow any number of NNError

metrics to be dynamically assigned to a mediator. At the end of the epoch, the error

is finalised as explained in section 2.3.1. The code below shows the learningEpoch()

method of a mediator that returns the error over DT only.

protected void learningEpoch() {

//recreate metrics using prototype pattern

resetError(errorDt);

setErrorNoPatterns(errorDt, data.getTrainingSetSize());

iteratorDt = data.getTrainingSetIterator();

//iterate over each pattern in training data set

while(iteratorDt.hasMore()){

MixedVector output = topology.evaluate(iteratorDt.value());

this.nrEvaluationsPerEpoch++;

computeErrorIteration(errorDt, output, iteratorDt.value());

iteratorDt.next();

}

finaliseErrors(errorDt);

}

An example of an XML setup document for the CILib simulator that can be used to

set up a PSO that trains neural networks using the NeuralNetworkFunctionAdapter is

shown below. The <algorithm> tag is used to specify the PSO as training algorithm and

all its related parameters. The <problem> tag is where the neural network is declared as

a function to be minimised by being interpreted as a FunctionMinimisationProblem.

This allows the NeuralNetworkFunctionAdapter to be used as the Function parameter

for the CILib problem.
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<simulator>

<algorithm id="msa-pso" class="pso.PSO" particles="30">

<topology class="entity.topologies.VonNeumannTopology"/>

<prototypeParticle class="pso.particle.StandardParticle">

<velocityUpdateStrategy class="pso.velocityupdatestrategies.StandardVelocityUpdate" />

<inertiaComponent class="PSO.StandardInertia">

<inertia value="0.6" />

</inertiaComponent>

<socialComponent class="PSO.StandardAcceleration">

<acceleration value="1.4" />

</socialComponent>

<cognitiveComponent class="PSO.StandardAcceleration">

<acceleration value="1.4" />

</cognitiveComponent>

</prototypeParticle>

<addStoppingCondition class="stoppingcondition.MaximumIterations" iterations="150" />

</algorithm>

<problem class="problem.FunctionMinimisationProblem">

<function class="functions.NeuralNetworkFunctionAdapter" />

<evaluationMediator class="neuralnetwork.generic.evaluationstrategies.FFNNEvaluationMediator">

<topology id="NNtopo" class="neuralnetwork.generic.LayeredGenericTopology">

<topologyBuilder class="neuralnetwork.generic.topologybuilders.FFNNgenericTopologyBuilder">

<prototypeWeight class="neuralnetwork.generic.Weight">

<weightValue class="type.types.Real" real="0.5"/>

<previousChange class="type.types.Real" real="0.0"/>

</prototypeWeight>

<addLayer value="5"/>

<addLayer value="10"/>

<addLayer value="3"/>

</topologyBuilder>

<weightInitialiser class="neuralnetwork.generic.topologyvisitors.FanInWeightInitialiser"/>

</topology>

<data id="dat" class="neuralnetwork.generic.datacontainers.GenericData">

<distributor class="neuralnetwork.generic.datacontainers.RandomDistributionStrategy">

<file value="c:/data/IrisScaled.txt"/>

<noInputs value="4"/>

<percentTrain value="80"/>

<percentGen value="5"/>

<percentVal value="15"/>

<percentCan value="0"/>

</distributor>

</data>

<addPrototypError class="neuralnetwork.generic.errorfunctions.MSEErrorFunction" noOutputs="3"/>

</evaluationMediator>

</problem>
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<measurements id="measurements" class="simulator.MeasurementSuite" samples="1" resolution="25">

<addMeasurement class="measurement.single.Fitness" />

<addMeasurement class="measurement.single.Solution" />

<addMeasurement class="measurement.single.FitnessEvaluations" />

</measurements>

<simulation>

<algorithm idref="msa-pso" />

<problem idref="msa" />

<measurements idref="measurements" file="test5-results-msa-pso-with-gaps.txt" />

</simulation>

</simulator>

6.3 Extending The Topology Component

This section looks at some advanced configurations and operations in the topology com-

ponent of a neural network implementation. Modular and ensemble network implemen-

tations are discussed, followed by a brief look at how growing and pruning of neurons

and weights in topologies can be achieved.

6.3.1 Modular and Ensemble Networks

Modular neural networks (MNN) and ensembles of networks were discussed in section

2.4.4. It was shown that an ensemble network can be treated as a special kind of MNN

in which no allocator is present. Bearing this in mind, there are design decisions that

need to be addressed when implementing MNN topologies using CILib:

• A MNN is a set of network modules that are in turn connected to form a larger

network structure. This network may also be seen as a module in yet another

MNN, so recursive composition has to be defined for more than two levels. This

entails that recursion needs to be supported on the neuron level.

• Modules need to communicate with other modules by receiving input and pro-

viding output. Both inputs and outputs can be multidimensional and need to be

addressed when interpreting modules as neurons in the top-level network. Some

transformation will need to take place to convert neuron inputs from the top-level
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network to network inputs that the module can understand. Weight values between

modules also need to be mapped to the correct level inside the modules.

• As each module is a neural network in its own right, each module needs to be

constructed using a builder object. All the modules in turn need to be composed

into the top-level network.

• Training may need to be performed on modules in the MNN. The framework needs

to support this in an easy to use and efficient manner.

The GenericTopology discussed in section 5.2.1 is designed to directly support the

construction and use of MNN topologies. Recall that the GenericTopology uses the

NeuronConfig class to represent processing elements in a network. In typical neural

network topologies, these are neurons such as the bias unit, summation units, product

units, SOM units, or any other type of neuron. The NeuronConfig class provides various

abstract methods of which computeOutput() is one, as can be seen in figure 5.9. Sub-

classes need to implement these methods to provide the behaviour of the desired neuron

type. Weights are represented by the Weight class which uses the CILib Type package

to represent weight values.

As alluded to above, MNN implementations have at least two logical layers in the

network topology consisting of the various modules and the top-level MNN topology. The

implementation of the individual modules is directly supported by the GenericTopology

class as these are merely standard neural network topologies. The entire topology is

contained in a single GenericTopology object instance. The top-level MNN topology

also needs to be implemented as a topology with ‘neurons’ that are in fact neural networks

themselves (see figures 2.16 and 2.17). The GenericTopology class can implement this

type of topology directly if an implementation of NeuronConfig, say NeuronConfigMNN,

is able to represent an entire network topology (i.e. a module) as a neuron (see figure

6.2).

Each NeuronConfigMNN object in the top-level MNN topology needs to act as a wrap-

per for a module, where each module is an independent instance of GenericTopology.

The computeOutput() method of NeuronConfigMNN has the task of converting a pat-

tern evaluation request from the top-level MNN topology to a call to the wrapped
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Figure 6.2: NeuronConfigMNN wrapping GenericTopology instances in a MNN topology.

GenericTopology instance’s evaluate() method. Bear in mind that a module may

receive inputs from multiple other modules. An example is the coordinator as discussed

in section 2.4.4 which has to combine the outputs of all the other modules in the MNN.

A module may also receive only part of the output of another module as input, such as

an allocator that has, say, a outputs and a module that needs b inputs from the allocator,

where a > b. The computeOutput() method of NeuronConfigMNN has the responsibility

to integrate and transform these various inputs and weight values to be usable by the

encapsulated GenericTopology.

The adapter pattern is used to integrate NeuronConfigMNN and GenericTopology.

The NeuronConfig class provides a number of member variables that implement a pro-

cessing unit such as a neuron. The full list can be seen in the UML in figure 5.9. The

ones that are applicable to the desired wrapper are:

• input of type NeuronConfig[] which is the list of other NeuronConfig processing

units that provides input to this unit,

• inputWeights of type Weight[] which is the corresponding weight values for the
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input variable,

• currentOutput of type Type which is the output of this processing unit, and

• patternInputPos and patternWeight are also needed if input to the module is

directly from a pattern.

Firstly, it should be noticed that the NeuronConfigMNN object’s currentOutput may

be multi-dimensional, as the wrapped topology’s output is not restricted to being one-

dimensional. Similarly, each Weight object in the inputWeights list may be multi-

dimensional, depending on the topology.

The top-level MNN topology neurons use input as well as inputWeights, and possi-

bly patternInputPos and patternWeight (if input is received directly from the pattern)

as variables, but the wrapped GenericTopology object’s evaluate() method expects a

NNPattern object. This conversion needs to be done in the neuron’s computeOutput()

method. To do this, the output of each module listed in the input variable needs to be

consolidated into a single MixedVector object called inputMNN, which will in turn be

used to create a NNPattern object.

The top-level MNN weights also need to be taken into account by the topology that

is wrapped by each NeuronConfigMNN object. The inputWeights variable (and possibly

patternWeight if it is used) also needs to be consolidated into a single MixedVector

object called weightsMNN which represents the weight connections between modules.

This weightsMNN variable is then used to set the weights inside the topology accordingly.

An example of the computeOutput() method of NeuronConfigMNN is given below.

The code iterates over all the NeuronConfigMNN objects in the input variable, as these

represent other modules in the MNN. Not all of the outputs are relevant though (i.e. only

a subset of the outputs of another module are needed), so only those with non-null weight

connections need to be included in the inputMNN vector. The PatternWeightSetVisitor

extends GenericTopologyVisitor and has the responsibility to set the weights (specif-

ically the patternWeight objects in each NeuronConfig in the wrapped topology) cor-

rectly and throw an exception if there are any problems such as a dimension mismatch.

Once the inputMNN vector is finalised, an instance of NNPattern needs to be created

that acts as the vessel for the inputMNN vector to be presented to the topology. Once
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this is done, the evaluate() method of the wrapped GenericTopology is invoked and

the output is returned as the output of the module. This output can be used by other

NeuronConfigMNN modules. The final output of the MNN itself is also a CILib Type ob-

ject. By setting the boolean isOutputNeuron to true in the relevant modules, the output

of the MNN is collated in the top-level GenericTopology class in the same manner as

for any other topology.

public Type computeOutput(NeuronConfig n, NNPattern p) {

MixedVector inputMNN = new MixedVector();

MixedVector weightsMNN = new MixedVector();

for (int i = 0; i < this.input.length; i++){

MixedVector tmpInput = ((MixedVector)input[i].getCurrentOutput());

MixedVector tmpWeight = ((MixedVector)inputWeights[i].getWeightValue());

//copy only relevant weights and inputs to vector

for (int j = 0; j < tmpInput.size(); j ++){

if (tmpWeight.get(j) != null){

inputMNN.add(tmpInput.get(j));

weightsMNN.add(tmpWeight.get(j));

}

}

}

PatternWeightSetVisitor v = new PatternWeightSetVisitor(weightsMNN);

topology.acceptVisitor(v);

NNPattern pat = new StandardPattern();

pat.setInput(inputMNN);

return topology.evaluate(pat);

}

From a performance point of view, note that the code above essentially only copies

references into the new variables inputMNN and weightsMNN. If the topologies are static

(i.e. no neurons or weights are added or removed), these variables may be configured
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beforehand during an initialisation step. This may improve performance in networks

with a large number of weights on the MNN level network.

As for any implementation that uses the GenericTopology class, the entire MNN

structure needs to be built using the builder design pattern. There are 2 levels of

construction:

• build the top-level MNN topology using an appropriate builder, and

• build each module using an appropriate builder.

The latter case is very easy – each module is a ‘typical’ neural network topology

such as a FFNN. The existing GenericTopologyBuilder builders such as those in fig-

ure 5.8 can be reused as they are. No modification is needed as the fully constructed

GenericTopology instance is merely wrapped in an appropriate NeuronConfigMNN ob-

ject, as shown in figure 6.2.

The MNN topology itself is a new kind of topology and thus requires a new builder

implementation that extends GenericTopologyBuilder, say MNNTopologyBuilder. The

layout of the NeuronConfigMNN objects has to follow the appropriate architecture layout,

such as the structures in section 2.4.4. The wrapped GenericTopology member variable

of each NeuronConfigMNN object is then initialised by invoking an appropriate builder as

explained above. A list of builder objects has to be provided to the MNNTopologyBuilder

when it is constructed, which can be done using the CILib XML interface. Note that

weights for each module can be set using the GenericTopologyVisitor functionality

provided by GenericTopology such as random weights or a specific weight vector, as

illustrated in figure 5.10.

6.3.2 Architecture Selection

This section briefly discusses how architecture selection operators such as growing and

pruning of neurons and weight connections can be used with the GenericTopology class.

Growing and pruning of network elements form part of the ontogenic function which is

part of the neural learning paradigm, as discussed in section 2.3.5.

Recall from section 5.2.1 that GenericTopology uses a graph-like approach to imple-

ment neurons using the NeuronConfig class. Every column in the graph’s connectivity
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matrix in figure 5.7 constitutes a single neuron that is represented by a NeuronConfig

object. A fan-in centric view of the neuron is taken, meaning that a NeuronConfig ob-

ject is responsible for obtaining the information it needs to calculate its own output. All

the non-null entries in the connectivity matrix indicate the input neurons for the object.

The GenericTopology class also provides a LayerIterator interface which can be used

to gain access to and modify the neuron and weight connections structure.

Recall from figure 5.9 that each NeuronConfig object holds information such as

• currentOutput of type Type, used to store the output of the neuron;

• input of type NeuronConfig[], which is a list of all input neurons;

• inputWeights of type Weight[], which is the corresponding weight values for

input;

• patternInputPos of type int, used to indicate which location in the pattern is

used by this neuron;

• patternWeight of type Weight, the corresponding weight for patternInputPos;

• timeStepMap of type boolean[], used to indicate whether to use input[i]’s current

output (a value of zero) or timestep t-1 output (a value of one)(this is used mostly

in recurrent architectures with self connections);

• Tminus1Output of type Type, used to keep track of the neurons’s previous output.

This is needed in cases where limiting (also known as clamping) is used to revert to

the neuron’s previous output value as opposed to using the newly computed value

(see section 2.1.1); and

• isOutputNeuron of type boolean, used to indicate to the topology if this is an

output neuron.

The above variables are not always used and default values can be used when con-

structing new objects. The prototype pattern (which is supported by NeuronConfig)

will be very useful to allow any growing component to create copies of configured neu-

rons. Using the prototype means that any particular architecture selection algorithm is
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independent of the type of weights, activation functions, and other neuron details – a

pre-configured prototypical instance is used to create more copies without the algorithm

having to know how to create neuron objects.

In order for the GenericTopology class to support growing and pruning functionality,

the following needs to be taken into account:

• it must be possible to add or remove NeuronConfig objects in any layer in a

seamless fashion without invalidating the topology model, and

• it must be possible to add or remove Weight objects from specific NeuronConfig

objects without invalidating the topology model.

The LayerIterator interface makes it extremely easy to navigate to any point in

the GenericTopology network structure. Since the layerList variable and each layer

in GenericTopology is implemented as a Java ArrayList, it is extremely easy to add or

remove elements in any location. NeuronConfig uses a fan-in centric approach, which

means that each neuron is responsible for knowing where all its inputs come from and

what the weight values are – all information about the neuron is contained in a single

NeuronConfig object.

To add or remove a weight is a simple operation. The relevant NeuronConfig object

must first be located in the layer. Note that Java arrays are used for the input and

inputWeights variables for performance reasons as the functionality to calculate a neu-

ron’s output is used very frequently – object dereferences (such as those in the ArrayList

class) are kept to a minimum by using first class Java variables. A manual resizing of

the arrays will be needed before an addition or after the removal of a weight. To remove

a weight, the relevant Weight object must be found in the inputWeights array of the

neuron object and removed, along with the matching NeuronConfig object in the input

array (i.e. the associated input from another neuron for the specific weight). Similarly,

to add a weight, a new Weight object must be added to the inputWeights array and

a reference to the correct NeuronConfig object must be added to input at the same

index.

To add a new neuron to a layer, a NeuronConfig object needs to be constructed to

represent the new neuron. As mentioned above, the prototype pattern is very useful here

 
 
 



CHAPTER 6. ADVANCED NEURAL NETWORK IMPLEMENTATIONS 189

to avoid manual instantiation of neurons each time. Using the prototype pattern also

makes it possible to reuse a particular growing algorithm with any type of neuron. The

new object is then added at any location in the desired layer (which is an ArrayList

object). The final step is to update any other NeuronConfig objects in the topology

that need to have the new neuron as part of their input by adding relevant weights.

To remove a neuron follows a similar approach. The relevant NeuronConfig object

needs to be located in the layer, a reference must be kept, all the other NeuronConfig

objects in the topology that refer to it must be updated by having the reference and

weight removed from input and inputWeights variables, and finally the NeuronConfig

object itself must be removed using the ArrayList interface.

When a structural change is made to a GenericTopology object, it may possibly

invalidate other components in the application. Examples include NeuralNetworkData

implementations that need to be modified if input neurons are removed, neural learning

components that need to be notified if structural changes occur, NNError objects that

need to be informed if more or fewer output units are present, and PSO particles’ lengths

will change if any weights are removed. The observer pattern is very important in this

situation. It allows components such as those mentioned above to register themselves

with the GenericTopology as observers. Whenever a change in the topology occurs, the

components on this list are notified. They may in turn inspect the topology and decide

whether to continue or raise an exception.

The paragraphs above highlight how to perform the operations related to growing and

pruning a network, but not where. As growing and pruning falls under the neural learning

paradigm, the functionality may be implemented as a subclass of TrainingStrategy as

discussed in section 5.1.3. Different approaches should each have their own subclass of

TrainingStrategy for their implementations. Subclasses of EvaluationMediator need

to orchestrate how and when architecture selection algorithms need to be invoked, as well

as provide any required information via the Object parameter of the training strategy’s

invokeTrainer() method.
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6.4 Extending CILib Functionality

This section looks at extending the CILib framework with the receiver operating char-

acteristics (ROC) measurement, which is aimed at measuring classifier performance. Its

outcome is a simple result but its derivation involves complex algorithmic calculations.

It is shown how easily a measure such as ROC can be implemented and reused by any

CILib implementation.

6.4.1 Receiver Operating Characteristics (ROC)

ROC is a measure of how well a classifier performs given a classification problem. ROC

analysis has been used as early as 1989 to compare machine learning algorithms [106].

ROC analysis has a number of advantages as a classification performance measure:

• It has been shown that ROC is not biased by skewed class distributions or unequal

classification costs [31].

• ROC analysis makes it easy to visualise classifier performance.

• An inherent characteristic of the ROC surface is that it can show whether a classifier

performs better or worse than random guessing (something that an accuracy metric

alone cannot show conclusively).

• ROC curves give researchers a method to assess continuous classifier performance

across all chosen threshold values at once (as a specific threshold or boundary needs

to be set for a continuous classifier, such as viewing all values above 0.5 as 1 and

all values below 0.5 as 0)1. The same classifier system (such as a trained neural

network for instance) can have radically different conservative or liberal behaviour

depending on the selected threshold value.

• The performance of different classifiers can be compared at different threshold

values.

1The concept and effect of a threshold is discussed in subsection 6.4.1.3
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Figure 6.3: An example of how a confusion matrix is determined.

6.4.1.1 Classifier Performance

As discussed in section 2.2, the aim of a classifier is to map an input vector zp to a

particular class, where there are at least 2 or more classes. Once a classifier is associated

with a data set, there are four possible outcomes from any single pattern classification

(based on two classes): a positive pattern that is classified as positive is called a true

positive (TP); a negative pattern that is classified as positive is called a false positive

(FP); if a negative pattern is classified as a negative it is called a true negative (TN); if
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a positive pattern is classified as a negative it is called a false negative (FN). The TP

and TN together indicate all correct decisions, while the FP and FN together represent

the errors made.

The relationship between TP, FP, TN and FN is illustrated in figure 6.3 in a confusion

matrix. In each of the graphs, the right bell curve is the distribution of positive patterns,

while the left curve is that for negative patterns. The dark vertical line in each graph

denotes the classification threshold value – all values to the left of this line is associated

with the negative class and all values to the right of this line is associated with the positive

class. For discrete classifiers (i.e. classifiers that give a categorical class output such as

0 or 1, or ’positive’ and ’negative’) the threshold value can be fixed, but for continuous

classifiers (classifiers such as neural networks that produce output that falls in a range,

say [0, 1]), the threshold value can be changed. For example, if the threshold value is set

to 0.6, all classifier output greater than 0.6 are regarded as positive classifications and

all output below 0.6 as negative.

There are a number of metrics that can be calculated from these TP, FP, TN and

FN, such as:

TPrate =
Positives classified correctly

Total positives

=
TP

P
(6.10)

FPrate =
Negatives classified incorrectly

Total negatives

=
FP

N
(6.11)

Accuracy =
TP + TN

P +N
(6.12)

precision =
TP

TP + FP
(6.13)

where P is the total positive patterns and N is the total negative patterns in the data

set as in figure 6.3.

 
 
 



CHAPTER 6. ADVANCED NEURAL NETWORK IMPLEMENTATIONS 193

Figure 6.4: An example of an ROC graph

6.4.1.2 ROC Graphs

An ROC graph plots the TPrate in equation 6.10 against the FPrate in equation 6.11 to

give a visual representation of benefits (a high TPrate) and costs (a high FPrate). Every

classifier2 produces a (TPrate, FPrate) pair that can be plotted on the ROC surface. An

example of an ROC surface is shown in figure 6.4.

There are some interesting points in figure 6.4. Point A represents the strategy of

never classifying a pattern as belonging to the positive class – all negative patterns are

mapped correctly and no positives are correct. This is the most ‘conservative’ part of

the ROC surface. The opposite (or ‘liberal’) end is located at point C, which represents

the strategy of always issuing a positive classification. This approach never classifies

a positive pattern incorrectly, but always classifies all negative patterns wrong. The

dashed line from (0,0) to (1,1) represents random guessing – the TPrate and FPrate are

always the same. Any classifier that falls on this line is no better than random guessing,

2This is for a given threshold value, say 0.5. More detail on this is provided in section 6.4.1.3.
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and any classifier that falls below this line performs worse than random guessing.

Point B represents perfect classification – all positive patterns are classified as positive

and all negatives are mapped to the negative class. Informally, the ‘closer’ a point is

to point B, the better it performs. Point D is the opposite of B and illustrates the

strategy of mapping all positive patterns to the negative class and all negatives to the

positive class – this is the ‘worst’ possible classifier. Note however, that if the class

labels were reversed, the classifier would be relocated to point B. Thus the ROC surface

is symmetrical around the dashed line. This means that, although point F performs

worse than random guessing, it can be transformed to have the same performance as

point E, as E and F are symmetrical points around the dashed line.

It is important to note that the concept of ‘best’ classification is relative to the

scenario that the classifier has to solve. Certain applications require more conservative

classifiers that only map instances to the positive class if there is very strong evidence,

while other applications need more liberal classifiers that issue positive classifications

with very little evidence. Interestingly, a classifier that issues continuous output (such

as a neural network) can provide both a liberal or a conservative classifier, depending on

the chosen threshold value. The required threshold value is determined by using ROC

curves and is discussed in the next section.

6.4.1.3 ROC Curves

Discrete classifiers issue discrete outputs – a pattern is mapped to one of two classes

with a certainty of either 1.0 or 0.0. This in turn produces a single confusion matrix and

thus a single (TPrate, FPrate) pair that gives a single ROC point. Yet certain classifiers

such as neural networks produce continuous output, where a pattern’s classification is

expressed in a certain range, say (0.0, 1.0), with 0.0 being a negative classification and

1.0 being a positive classification. The problem is to decide where the boundary (or

threshold) lies where all output below the threshold is considered to be negative and all

those above considered positive.

Each choice of threshold produces a different point in ROC space (i.e. a different

(TPrate, FPrate) pair), implying (rather intuitively) that each choice of threshold changes

how the same classifier algorithm maps patterns to classes. As an example, the extreme
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Inputs: DT = training set,

f(i) = classifier output, min and max is the range of f(i),

increment = the value to increase the threshold t by each iteration.

for t = min to max by increment do

FP = 0

TP = 0

for i ∈ DT do

if f(i) ≥ t then

if i is a positive example then

TP = TP + 1

else FP = FP + 1

end if

end if

end for i

Add (FP
n
, TP

p
) to ROC curve

end for t

Algorithm 6.4: A Conceptual method for drawing an ROC curve.

threshold of 1.0 with an output range of [0.0, 1.0] will ensure that all patterns are clas-

sified as negative (i.e. below the threshold). This maps to point A in figure 6.4. A

threshold of 0.0 in the same system will have all patterns mapped to the positive class,

which will result in point C in figure 6.4. By varying the threshold from the minimum

to the maximum of the range of the classifier and computing the confusion matrix for

each threshold, a curve can be drawn in ROC space. This is called an ROC Curve. A

pseudo code algorithm, given in [30], is listed in algorithm 6.4 that shows the logic of

how to generate an ROC curve.

The optimal classifier threshold corresponds to the point (0,1) on the ROC surface

which makes no false positives and no false negatives. The question is what threshold

value comes closest to this optimum point? By drawing a ROC curve of various possible

threshold values, it is easy to see visually which point is ‘closest’ to the point (0,1), as is
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Figure 6.5: The effect of moving the threshold on TPrate and FPrate.

shown in figure 6.7. The solid line represents a curve that is arguably the best, as it comes

the closest to point (0,1). The curve illustrated by the fine dots shows a poor performing

classifier, as its average performance is only slightly better than random guessing (the

line in the figure). The ROC curve illustrated by the broken line performs worse in the

‘conservative’ area of the ROC surface than the solid line curve, but performs better in

the ‘liberal’ part of the graph. While ROC curves are good to visually inspect which

classifiers give the best performance at certain points on the graph, it is difficult to

compare classifiers accurately for the entire curve. A solution to this is the area under

curve (AUC) metric that is discussed next.
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Figure 6.6: The ROC curve generated in figure 6.5.

Figure 6.7: Various ROC curves and the AUC of the solid curve.

6.4.1.4 Area Under Curve (AUC)

ROC curves give a good visual overview of how a classifier performs given different

threshold values. It becomes very difficult to compare different classifiers against each

other, as curves need to be compared against other curves. Fortunately, the ROC surface
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is unit sized (its length and breadth is always 1.0), which implies that its total surface

always lies in the range [0.0, 1.0]. The area under curve (AUC) metric takes this fact

into account and provides a way to compare the performance of classifier using a single

scalar value.

ROC curves are monotonically increasing functions that start at point [0, 1] and end

at [1, 1] [60]. Thus, if classifier A has a larger AUC than classifier B, it implies that,

on average, the ROC curve of A must lie closer to the point (0,1) than the curve of

B. Note that random guessing is illustrated by the line from [0, 1] to [1, 1], which gives

an AUC of 0.5. Thus no realistic classifier should ever yield an AUC less than 0.5.

The AUC of a classifier is equivalent to the probability that a randomly chosen positive

pattern will be ranked higher than a randomly chosen negative instance, which is the

same as the statistical Wilcoxon test of ranks [30]. An example of an ROC curve and its

corresponding AUC is given is figure 6.7.

6.4.1.5 ROC and AUC for Multi-class Problems

Up to this point in the discussion, only problems with two classes were considered. For

problems with two classes, the confusion matrix is 2 × 2 as illustrated in figure 6.3.

For problems with K class labels, the confusion matrix becomes a K × K matrix, with

the diagonal representing K benefits and the K2 − K off-diagonal entries showing the

errors made. This makes ROC curves a bit more complex for multi-class classification.

Fortunately the AUC can still be regarded as a scalar value in multi-class problems,

which makes the AUC an especially valuable metric.

Various ways to calculate AUC from multiple ROC curves are discussed in [30]. A

very intuitive method to calculate AUC, called the class reference formulation, produces

K different ROC graphs using 2×2 confusion matrices. For each class ci, an ROC graph

is plotted using ci as the positive class Pi, and all other classes as the negative class Ni:

Pi = ci (6.14)

Ni =
⋃

∀j,j 6=i

cj ∈ C (6.15)
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where C is the set of all classes. The corresponding AUC calculation is given by

AUCtotal =
∑
ci∈C

AUC(ci) · p(ci) (6.16)

While this is an easy way to extrapolate ROC analysis to multiple dimensions, it

violates the desirable ROC property of being insensitive to skew class distribution [30].

Hand and Till [46] take a different approach by drawing all combinations of ROC curves

for all the classes in set C. The AUC is then derived based on the fact that the AUC is

equivalent to the Wilcoxon test of ranks:

AUCtotal =
2

|C|(|C| − 1)

∑
{ci,cj}∈C

AUC(ci, cj) (6.17)

where AUC(ci, cj) is the AUC of the 2-class ROC curve of classes ci and cj as discussed

in previous sections. There are |C|(|C|−1)
2

such pairs. This formulation is insensitive to

class distribution and is thus a more desirable calculation for multi-class AUC.

6.4.2 Implementation

The CILib implementation of the ROC measure is extremely simple and has already

been illustrated in figure 4.4. Recall from section 4.1.4 that CILib provides a built-

in measurement system that can be used by the CILib simulator or developers’ own

applications. Specific implementations should extend the Measurement interface.

The AreaUnderROC class follows these guidelines to implement ROC analysis. The

getValue() method invokes the calculateAUC() method, which proceeds to calculate

various ROC points based on separate confusion matrices, plots a ROC curve based on

these points, and finally calculates the area under curve (AUC) metric using equation

6.17. A single scalar value is returned as the performance measure of the classifier. Any

component that is required to act as a classifier is regarded as a Function, either directly

(as a subclass of Function) or via the adapter design pattern.

Notice in figure 4.4 that the threshold member variable is of type double[], meaning

that any number of threshold values may be set. This is required as each threshold value

generates a new ROC point, and all of these ROC points in turn are used to plot the ROC

curve. The number of classes must also be set in the classCount variable, as equation
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6.17 requires this. Any reasonable number of classes and threshold values may be set,

taking into consideration that a too fine granularity will severely impact execution time

due to the complexity of ROC analysis.

6.5 Summary

This chapter investigated various advanced use cases that a generic neural network frame-

work should be able to support. While a complete overview was not given in each case,

enough information on what such an implementation might entail was given. The discus-

sions also focus on how existing components are reused and how the new functionality

may in turn be reused by other components.

 
 
 



Chapter 7

Conclusion

The future is called “perhaps,” which is the only possible thing to call the

future. And the only important thing is not to allow that to scare you.

— Tennessee Williams, Orpheus Descending, 1957

This chapter provides a summary of this dissertation in section 7.1, and provides

ideas for future work and research in section 7.2

7.1 Summary

This aim of this dissertation was to discus the design and implementation of a generic

neural network framework in CILib that allows users to design, implement and use

any possible neural network architectures and algorithms in such a way that they can

reuse and be reused by any other CI algorithm in the rest of CILib (or any external

application). This was achieved by using object-oriented design patterns in the design

of the framework which maximises its reusability and extensibility.

It was discussed that developers that need neural network implementations could

either write their own implementations, or reuse other implementations. Typical design

dilemmas that neural network developers face were discussed. It was shown that neural

network requirements are very tightly coupled – a change in one component tends to

have severe effects in other components, making the change impossible or inefficient.
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Often this situation leads to a major redesign of the neural network system and in many

cases a completely rewritten application.

Challenges that were highlighted included the net input signal and activation func-

tions of neurons, recurrent neuron functionality, neuron and weight topologies, types of

weight values, architecture selection, neural learning, data sets, data sources, pattern

presentation and ordering, simulation measurements and stopping conditions, parallel

computing considerations, integration integrity, as well as use cases that do not involve

training (i.e. applications of neural networks). It was shown why components in a neural

network are functionally very tightly coupled and that great case and a good background

study is needed in order to decide how to separate functionality into separate modules.

A few well-known neural network packages and libraries were listed, their main capa-

bilities were expressed, and challenges and shortcomings that these packages have were

highlighted. The main shortcoming was shown to be that most neural network libraries

and packages tend to be designed and constructed with merely neural networks as a field

of computational intelligence in mind. While some libraries allow interactions with other

CI algorithms, these algorithms typically reside outside of the neural network library.

This creates the need for integration and results in inefficiencies and extended develop-

ment times. It was argued that integrating such specialised neural network libraries with

other areas of CI such as particle swarm optimisation and evolutionary computation was

in most cases very difficult or inefficient to do.

A conceptual breakdown of neural networks was given in chapter 2, which showed

that a neural network model essentially consists of a topology model, a data model

and a learning model. The topology describes the neuron as a single computation unit

that comprises of a pipeline of processes and phases. These neurons are connected

together via a multitude of possible interconnection schemes to form a network with one

or more layers. It was shown that neuron topologies can be regarded as a graph, which

greatly aided in the design of a generic neural network topology implementation. The

data component provides information about a problem that the neural network needs

to approximate. Various considerations such as pattern sampling, pattern ordering and

sources of data needed to be taken into account. It was shown that neural learning

involves changing a network’s weight vector so that the neural network approximates
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the problem to a desired accuracy. Various learning paradigms were discussed such

as supervised, unsupervised, reinforcement and hybrid learning. Network architecture

selection, ensemble and modular networks were also briefly discussed.

‘Designing object-oriented software is hard, and designing reusable object-oriented

software is even harder’ as quoted by the GoF [39] summarised the aim of using design

patterns in application design. Design patterns allow developers to solve complex prob-

lems by using reusable solutions in a well-proven and predictable manner with known

outcomes and advice on how to use the pattern in new scenarios. Design patterns offer

advantages such as flexibility, reusability, extensibility, speed, reliability, separability,

maintainability and dynamicity. An overview of the design patterns that were used in

the neural network framework was given in chapter 3.

CILib is a framework that allows developers to develop new CI implementations

quickly and efficiently. Flexibility, reusability and clear separation between components

are maximised through the use of design patterns. Reliability is also ensured as the

framework is open source and many people collaborate to ensure that the framework

is well designed and error free. CILib allows researchers to design, implement and run

CI simulations that consist of algorithms that work on problems. Simulations run until

the process completes as stipulated by stopping conditions and also allow measurements

to be taken periodically. Furthermore, simulations can be set up dynamically using an

XML interface. A brief overview of the CILib framework was given in chapter 4.

A layout of how the CILib framework could be extended to support neural network

implementations was given. This task was aided by the use of design patterns in chapter

3 and the conceptual breakdown of neural networks in chapter 2. It was shown that

neural network topologies can be represented using the strategy design pattern which

gave advantages such as encapsulation, simpler and extensible clients, and dynamicity.

The data component is responsible for providing a source of data to train a neural

network model. It was shown how any type of data pattern could be supported. It was

discussed how the learning component is supported for both stand-alone and specialised

optimisation techniques, making it easy for external algorithms to train neural network

models. This was done using the strategy and adapter design patterns respectively.

Mediation is required between the topology, data and learning components as these are
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not applications in their own right. Neural network models also have variables and

concepts that stretch across these components and need to be represented. It was shown

how the mediator pattern can be used to good effect when integrating various neural

network components into a coherent system.

Furthermore, a generic topology implementation was discussed that is capable of

representing any topology that can be expressed as a mathematical graph. This generic

implementation makes it easy for developers to use a well tested, existing solution to

easily and quickly define new neural network models. The generic implementation uses

a whole host of design patterns to aid in flexibility, efficiency and extensibility. A generic

data implementation is also developed that is capable of reading any patterns from any

source and distribute them among DT , DG, DV and DC using any distribution method.

Both these implementations are fully extensible and can be configured (without code

changes) to provide different topology or data implementations respectively.

Some advanced implementations in the neural network framework were shown, in-

cluding active learning approaches such as the sensitivity analysis incremental learning

algorithm (SAILA) and dynamic pattern selection (DPS), neural learning with other CI

algorithms such as a PSO or an EA, ensemble network applications, modular neural net-

work topologies, network pruning and growing algorithms and a measure of classification

performance, namely receiver operating characteristics (ROC) analysis. The emphasis

is on reconfiguring and extending existing components to implement a desired neural

network application quickly and efficiently. Ideally, developers only need to write code

for components that do not exist yet rather than continuously rewriting the same logic

for each new application.

7.2 Future Work

Some ideas for future work and research include:

• XML builder for GenericTopology. Everytime a new topology type has to

be represented using GenericTopology, a new builder class has to be defined to

construct it correctly using building blocks like NeuronConfig and Weight. It is

possible to define neural network topologies as XML structures [93], similar to the
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way they are represented using objects in GenericTopology. A generic XML-based

builder implementation can be defined that can build any type of topology that

can be represented in XML.

Following this line of thought, it seems feasible that a builder class can be defined

that is capable of building topologies as stated using a formal language for neural

network specifications. Kazmierczak, Senyard and Sterling [61] show that the Z

language1 can be used to specify neural network topologies (as well as other aspects

of neural network development). Fiesler [33] also defines a formal mathematical

language for neural network definition.

• Graphical neural network models. As a neural network topology can be de-

fined using XML, it is possible to design the topology graphically and save the

output in the desired XML format for the XML builder. This will greatly aid the

previous point as well, as topology definition can be done using a graphical user

interface, which avoids the user having to manually edit XML definition files.

• Reusable subcomponents of EvaluationMediator. Currently, a new mediator

implementation has to be written for every new type neural network implementa-

tion. Yet many aspects of each application are rewritten, such as the logic for an

epoch over DT vs. an epoch over DG. Conceptually, these operations are the same

but different data sets are used. A taxonomy of reusable and composable subcom-

ponents of EvaluationMediator can be built that makes it easy to reuse pockets

of application logic effectively. The decorator design pattern (not discussed, but

see [39]) may well prove useful here.

• More implemented neural network models. This dissertation looked at the

framework for neural network application construction. Yet the framework is de-

signed to reuse and extend existing implementations. More base implementations

need to be added, making it easy for developers to build neural network models by

configuring them as opposed to coding them.

1Refer to http://www.comlab.ox.ac.uk/archive/z.html for information on the Z standard.
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• Tighter CILib integration. It is starting to emerge that more and more CILib

implementations would like to reuse the functionality provided by classes such as

NeuralNetworkData and its generic implementation GenericData. There are plans

to refactor this functionality to be part of the base framework instead of being part

of the neural network framework only.
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Approach to Communications Routing. Neural Computation, vol. 10, 1998.

[46] D.J. Hand and R.J. Till. A Simple Generalization of the Area Under the ROC

Curve to Multiple Class Classification Problems. Machine Learning, vol. 45:171–

186, 2001.

[47] D.O. Hebb. The Organisation of Behaviour. Wiley, 1949.

[48] Y. Hirose, K. Yamashita, and S. Hijiya. Back Propagation Algorithm Which Varies

the Number of Hidden Units. Neural Networks, vol. 4:61–66, 1991.

[49] J.H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan

Press, 1975.

[50] J.J. Hopfield. Neural Networks and Physical Systems With Emergent Collective

Behaviour. Proceedings of the National Academy of Science USA, vol. 79:2554–

2558, 1982.

[51] P.J. Huber. Robust Statistics. John Wiley and Sons, 1981.

[52] W.S. Humphrey. Managing the Software Process. Addison-Wesley, 1989.

[53] D.R. Hush, J.M. Salas, and B. Horne. Error Surfaces for Multi-Layer Perceptrons.

In International Joint Conference on Neural Networks, volume vol. 1, pages 759–

764, 1991.

[54] A. Hussain, J.J. Soraghan, and T.S. Durbani. A New Neural Network for Nonlinear

Time-Series Modelling. Neuro Vest Journal, pages 16–26, 1997.

 
 
 



BIBLIOGRAPHY 212

[55] J.P. Ignizio. An Introduction to Expert Systems: The Development and Implemen-

tation of Rule-based Expert Systems. McGraw-Hill, 1991.

[56] A. Ismail and A.P. Engelbrecht. Training Product Unit Neural Networks With

Particle Swarm Optimizers. Technical report, Department of Computer Science,

University of the Western Cape, South Africa; Department of Computer Science,

University of Pretoria, South Africa, 1999.

[57] J. Janson and J.F. Frenzel. Training Product Unit Neural Networks With Genetic

Algorithms. IEEE Expert, pages 26–33, 1993.
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Appendix A

Acronyms And Symbols

A.1 Acronyms

ACO Ant Colony Optimisation

AI Artificial Intelligence

AUC Area Under Curve

BMU Best Matching Unit

CI Computational Intelligence

CILib Computational Intelligence Library

DPS Dynamic Pattern Selection

EA Evolutionary Algorithm

EC Evolutionary Computation

FFNN Feedforward Neural Network

FN False Negative

FP False Positive

GD Gradient Descent

LVQ Learning Vector Quantiser

MSE Mean Squared Error

MNN Modular Neural Network

NEAT Neuro Evolution of Augmenting Topologies

NN Neural Network
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PCA Principle Component Analysis

PSO Particle Swarm Optimisation

PU Product Unit

RBFN Radial Basis Function Network

ROC Receiver Operating Characteristics

SAILA Sensitivity Analysis Incremental Learning Algorithm

SOM Self-Organising Map

SSE Sum Squared Error

TN True Negative

TP True Positive

XML Extensible Markup Language

 
 
 



APPENDIX A. ACRONYMS AND SYMBOLS 221

A.2 Symbols

θ Bias

W Weight vector for the entire neural network

wn Weight vector for the neuron n

I Number of inputs in the input layer

J Number of hidden units in the hidden layer

K Number of outputs in the output layer

zi i-th input unit

yj j-th hidden unit

ok k-th output unit

dp Denotes a single pattern

zp Input vector for pattern dp, dimension I

tp Target vector for pattern dp, dimension O

vji Hidden weight connection to neuron j from neuron i

wkj Weight connection to neuron k from neuron j

fok
Activation function for output neuron ok

fyj
Activation function for hidden unit yj

FNN Neural network output function

FD Function described by data in data set D

DT Training set

DG Generalisation set

DV Validation set

DC Candidate set

εT Error on DT

εG Error on DG

εV Error on DV

α Momentum

αi Weights for ensemble network coordinator

η Learning rate

Φ(p) Informativeness of pattern dp

 
 
 



Appendix B

Unified Modeling Language

B.1 UML Notation

The aim of this chapter is to brief the reader on the UML notation used in this thesis.

Figure B.1 is a typical UML diagram as found in the rest of this thesis and will be used

for the discussion. Based on the figure, the UML constructs used include:

• Abstract and Concrete Classes. Classes are represented as boxes with 3 fields

namely the name, member variables and class methods. EvaluationMediator is

an abstract class as can be seen on the diagram by its names being written in

italics. NeuralNetworkController is an example of a concrete class as its name

is not in italics. All classes have a circle with a ‘C’ before the name.

• Class Methods and Members. Member variables of a class are represented in

the area beneath the class name, while methods are listed beneath the member

variables. Method names in italics indicate abstract methods and thus can be

found in abstract classes only. For notational convenience the members section,

methods section or both sections can be collapsed, thus reducing the area used

on diagrams (see EvaluationMediator). The colour of the icon of an element

indicates member visibility – green means a member is public, yellow indicates

protected while red indicates private. Blue triangles indicate inherited members

and methods.
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Figure B.1: FFNN application in the foundation framework

• Interfaces. Similar to classes, interfaces consist of boxes with the interface name

and interface methods. There are no member variables for an interface. Interfaces

have a circle with an ‘I’ before their name. The methods section can also be

collapsed for notational convenience as is the case with classes.
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• Object References. Object references are represented as dotted lines ending in

an arrow leading from a class to another class or interface.

• Class Inheritance and Interface Implementation. Class inheritance is rep-

resented by a solid line leading from the superclass to the subclass. On the line

there is also a triangle that forms an arrow pointing in the direction of the super-

class. An example of inheritance can be seen between EvaluationMediator and

FFNNEvaluationMediator.

Interface implementation follows the exact structure of class inheritance, but the

lines are dotted rather than solid. The triangle on the line points to the interface.

An example can be seen in figure B.1 where GenericData class implements the

NeuralNetworkData interface.

• Other Notation.

Any reference to Java source code throughout the thesis is written in typewriter

font. This allows the reader to easily distinguish between names of concepts and

the actual code implementations.
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