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AbstractAbstractAbstractAbstract    

Condition monitoring of epicyclic gearboxes through vibration signature 
analysis, with particular focus on time domain methods and the use of 
adaptive filtering techniques for the purpose of signal enhancement, is the 
central theme of this work. Time domain filtering methods for the purpose of 
removal of random noise components from periodic, but not necessarily 
stationary or cyclostationary, signals are developed. Damage identification is 
accomplished through vibration signature analysis by nonstationary time-
frequency methods, belonging to Cohen’s general class of time-frequency 
distributions, strictly based in the time domain. 
 
Although a powerful and commonly used noise reduction technique, 
synchronous averaging requires alternate sensors in addition to the vibration 
pickup. For this reason the use of time domain techniques that employ only 
the vibration data is investigated. Adaptive filters may be used to remove 
random noise from the nonstationary signals considered. The well-known 
Least Mean Squares algorithm is employed in an adaptive line enhancer 
configuration. To counter the much discussed convergence difficulties that are 
often experienced when the least mean squares algorithm is applied, a new 
unconditionally convergent algorithm based on the spherical quadratic 
steepest descent method is presented. The spherical quadratic steepest descent 
method has been shown to be unconditionally convergent when applied to a 
quadratic objective function. 
 
Time-frequency methods are succinctly employed to analyse the vibration 
signals simultaneously in the time and frequency domains. Transients 
covering a wide frequency range are a clear and definite indication of 
impacting events as gear teeth mate, and observation of such events on a time-
frequency distribution are used to indicate damage to the transmission. The 
pseudo Wigner-Ville distribution and the Spectrogram, both belonging to 
Cohen’s general class of time-frequency distributions are comparatively used 
to the end of damage identification. 
 
It is shown that an unconditionally convergent adaptive filtering technique 
used in conjunction with time-frequency methods can indicate a damaged 
condition in an epicyclic gearbox, where the non-adaptively filtered data did 
not present clear indications of damage. 
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NomenclatureNomenclatureNomenclatureNomenclature    

A : maximum step size for adaptive algorithm 
Γ : adaptive demodulation convergence parameter matrix 
∆ : delay 
α : exponential decay constant 

αm,l : initial phase angle of amplitude modulation function 
βm,l : initial phase angle of phase modulation function 
γ : adaptive demodulation convergence parameter 
εg : gradient tolerance 
εn : error signal at time n 
εw : LMS step size convergence tolerance 
εx : SQSD step size convergence tolerance 
θ : frequency shift variable 
λ : convergence or iterative step size parameter 
σ : exponential decay constant for Gaussian window function 
τ : time shift variable 

φ(θ,τ) : time-frequency distribution kernel 
φk,m(t) : phase modulation law at iteration k 

φm : original or initial phase angle of m-th harmonic 
A(θ,τ) : symmetrical ambiguity function 
∆B : separation between discrete frequency components 

C(f) : Fourier transform of c(t) 
E : total energy of a signal 

E(t) : instantaneous energy density of signal 

E{⋅} : expected value 

G(q) : digital filter 
H(ω) : Fourier transform of window function h(t) 

H{⋅} : Hilbert transform 

L : number of significant harmonics in amplitude or phase 
modulation functions / adaptive filter length 

M : number of significant harmonics in x(t) 
P(t,ω) : time-frequency distribution 

Pi : phase angle of planet gear i 
PS(t,ω) : Spectrogram time-frequency distribution 

Qmr : phasor sum of different planet gear phase spectra 
R : input autocorrelation matrix 

S(ω) : Fourier transform of time signal s(t) 
|S(ω)|2 : energy density spectrum 

Tg : number of gear teeth 
Ts : sampling period 
W : filter bandwidth 

W(t,ω) : Wigner-Ville time-frequency distribution 
XA(t) : Fourier series representation of xA(t) 
Xk(t) : time domain amplitude and phase modulated gear meshing 

vibration at iteration k 
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Xm : amplitude of m-th harmonic 
Y(f) : Fourier transform of y(t) 

Za : number of teeth on annular gear 
Zp : number of teeth on the planetary gear 
Zs : number of teeth on sun gear 

ak,m(t) : amplitude modulation law at iteration k 
am : amplitude modulation function of m-th harmonic 
bm : phase modulation function of m-th harmonic 

c(t) : train of ideal impulses 
ck : SQSD curvature at iteration k 
d : SQSD step size parameter 
ek : exact error signal at instant k 

ek,m(t) : additive noise at iteration k 
fa : planet to annulus gear corresponding tooth mesh frequency 
fc : carrier rotation frequency 

fm : gear mesh frequency 
fp : planet gear rotation frequency 
fr : shaft rotation frequency 

fr(n) : shaft rotation frequency as function of discrete time variable 
fs : sampling frequency 

fsg : sun gear rotation frequency 
h(k) : transfer function 
h(t) : window function (spectra and time-frequency distributions) 

k : iteration number; summation index 
l : index of harmonic number in amplitude or phase modulation 

functions 
m : index of harmonic number 
n : discrete time variable 
p : summation limit – number of elements in weight vector 
p : cross correlation vector between desired response and input 

components 
q : shift operator - qu(t)=u(t+1) 
r : sideband number 

s(t) : time signal 
|s(t)|2 : instantaneous energy 

t : continuous time variable 
u(t) : input sequence 
w0 : starting filter weight vector 
wk : filter weight vector at instant k 

x(n) : discrete time domain amplitude and phase modulated gear 
meshing vibration 

x(t) : continuous time domain amplitude and phase modulated 
gear meshing vibration 

xA(t) : complex analytical signal associated with x(t) 
xi(t) : imaginary part of complex analytical signal xA(t) 
xk(t) : time domain amplitude and phase modulated gear meshing 
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vibration at iteration k 
xr(t) : real part of complex analytical signal xA(t) 

ya(n) : averaged signal, computed from x(n) 
yF(n) : discrete time filtered signal 

yk : measured data point at sampling instant k 
yn : measured signal sample at time n 
z-∆ : delay of ∆ samples 
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1111 IntroductionIntroductionIntroductionIntroduction    

Condition monitoring of an epicyclic gearbox through vibration signature 
analysis is the central theme of this work. A particular focus will be 
maintained on strictly time domain methods: time-frequency methods for 
signature interpretation and the use of adaptive filtering techniques for the 
purpose of signal enhancement. 
 
This work arises from a need experienced by the South African Air Force 
maintenance function: Effective condition based maintenance techniques are 
required for the ageing fleet of C-130 Hercules aircraft operated by the air 
force. Of particular interest for the purpose of this work is the monitoring of 
the main engine gearbox driving the airscrew, and driven by a gas-turbine 
engine. 
 
Systems used in the production of goods and delivery of services constitute 
the vast majority of most industry’s capital (Wang, 2002). Physical equipment 
is susceptible to failure through breakdown, deterioration in performance 
through age and use and to obsolescence due to improvements in technology 
(Jonsson, 2000). Jonsson further states that the rising importance of 
streamlining processes and achieving process control and flexibility raises 
the cost of disturbances. Wang (2002) points out that for certain systems, 
including military and transportation systems, it is extremely important to 
avoid failure during actual operation because such failure can be dangerous 
or disastrous. 
 
Condition-based maintenance techniques provide assessments of a system’s 
condition, based on data collected on the system through continuous 
monitoring or inspection, with the aim of determining maintenance 
requirements prior to the occurrence of failure. Grall, Bérenguer and Dieulle 
(2002) point out that many structures and mechanical systems suffer 
increasing wear with age and usage, and are subject to random failures 
resulting from this deterioration. Deterioration and failures of such systems 
might incur high costs due to losses resulting from delays, unplanned 
interventions on the systems and safety hazards. 
 
In-service costs for aircraft are mainly those for (i) the fuel consumed and (ii) 
the replacement of the system’s components (Naeem, Singh & Probert, 2001). 
Any rise in life expectancy of an aircraft’s gas-turbine engines directly lowers 
the life-cycle cost. Life-cycle cost depends upon the class of mission 
undertaken, operating conditions therein experienced and the rate of in-
service engine deterioration. Naeem, Singh and Probert (2001) observed that 
the extent to which the in-service deterioration of an aircraft’s engines 
adversely affects: (i) the rate of fuel usage (ii) the aircraft’s effectiveness and 
(iii) its operational life is not clearly established and is subjective to the 
observer. 
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High-performance military aero engines are complex in design and have to 
operate under severe mechanical stresses and at high temperatures. 
Designers and users of aircraft incorporating these engines continually seek 
greater reliability, increased availability, enhanced performance and 
improved safety as well as low life-cycle costs. 
 
Effective condition based maintenance therefore has an important role to 
play in the effective management of production or service delivery systems. 
The aircraft under consideration fit into the class of service delivery systems, 
providing a transportation service. Current reliability safeguards such as 
damage tolerant or fail-safe designs, redundancy and safe-life determination 
techniques (Samuel & Pines, Article in Press) do not provide for optimized 
maintenance expenditure. 
 
There are currently three approaches to the detection of faults in geared 
systems: acoustic signal analysis, debris monitoring and vibration analysis 
(Wang, Ismail & Golnaraghi, 2001). Vibration-based diagnostic monitoring 
techniques have been the most popular due to the relative ease of 
instrumentation and measurement. When vibration features of a component 
are obtained, its health condition can be determined by comparing these 
patterns with those corresponding to its normal and failure conditions, either 
by visual inspection or by inference approaches. 

1.11.11.11.1 Problem DiscussionProblem DiscussionProblem DiscussionProblem Discussion    

The gearbox under consideration is a dual-stage epicyclic gearbox that drives 
the airscrew, as well as several auxiliary devices. The gearbox is a complex 
machine with a large reduction ratio of 13.54:1. The gearboxes thus play a 
critical role in the propulsion system of the aircraft. A generally applicable 
methodology of dealing with the vibration signatures of these gearboxes is 
sought, rather than a specific application of a particular method to a specific 
gearbox. 
 
Vibration limits as specified by the engine manufacturer have become 
inapplicable and insufficient for the purpose of condition monitoring on the 
engines employed on South African Air Force aircraft. This is due to 
extensive modification programs conducted during the years of socio-
political isolation of South Africa. A specific concern of the air force is the 
problem of distinguishing between vibration signatures of engines being run 
simultaneously. 
 
Engines are preferably not to be run unsymmetrical, as the airframe may 
incur damage in this way. It is further preferred to run all four engines 
simultaneously, rather than just running two engines at a time. The 
complexity of the structure of the airframe causes complex attenuation of the 
respective vibration signatures, complicating identification of the exact 
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source of a particular signature. A degree of uncertainty is thus present when 
examining data recorded at a specific engine as to the origin of all 
contributions to the measurement; a problem experienced by the South 
African Air Force’s maintenance function on the C-130 aircraft. 
 
Transmission path effects on the vibration signals are unknown: the effects of 
the aircraft structure on the signals are highly dependant on the 
measurement point. Furthermore, knowledge of the exact nature of the 
signals is absent as the exact defect being experienced by the system may be 
unknown. Also, different defects may be simultaneously present. 
 
The working conditions of the aero-engine gearbox under consideration 
introduce additional complications into the analysis. The gearbox functions 
under fluctuating load conditions, due to the variable pitch airscrew and 
flow-induced effects. The fact that the gearbox is driven by a gas turbine 
engine further complicates the situation by the introduction of stochastic and 
deterministic vibrations to the system. 
 
Accurate analysis of vibration spectra and wave forms can provide useful 
information pertinent to the source of the vibration. When the vibrations 
being studied result from physical interactions in a mechanical system, the 
vibration wave carries in it useful information regarding the system 
condition and operation. The condition of the system may therefore be 
inferred from deciphering of the useful information encoded in the vibration 
signal. 
 
Various attempts have been made at developing methods to accommodate 
complex epicyclic gearboxes for the purpose of condition monitoring. Many 
of the works in this field have helicopter main drive gearboxes as subject 
(Randall, 2001; Antoni & Randall, 2004; McFadden 1988). Numerous 
attempts at condition monitoring of planetary gearboxes have also been 
made elsewhere, the articles of Meltzer and Ivanov (2001, parts I and II) 
addressing in particular the scenario of operation under varying speed 
conditions using time-frequency methods. 
 
A review of vibration-based techniques for helicopter transmission 
diagnostics is provided by Samuel and Pines (Article in Press). Helicopter 
main rotor drive gearboxes are more often than not of the epicyclic kind. It is 
stated by the authors that condition based maintenance has yet to be 
completely realized. They observe that rotorcraft safety and reliability is 
presently sought by manufacturers through conservative safety factors on 
design and component safe-life estimates, and recommended frequent 
scheduled maintenance. Three techniques are specified by Samuel and Pines 
as currently in use: damage tolerant or fail-safe designs, redundancy and 
safe-life determination techniques. Statistical techniques, spectral analysis, 
time-frequency methods, mathematical modelling and adaptive signal 
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processing techniques are among the vibration analysis techniques discussed 
by Samuel and Pines (Article in Press). 
 
Dalpiaz, Rivola and Rubini (2000) provide a survey and assessment of the 
sensitivity of several gearbox diagnostic techniques. Their review in 
particular compares time-frequency and cyclostationary analysis based 
techniques to more established cepstrum analysis and time-synchronous 
averaging techniques. Among the time-synchronous averaging techniques 
considered are included amplitude and phase demodulation techniques. 
 
Wang, Ismail and Golnaraghi (2001) focus on time-frequency techniques, 
specifically the wavelet transform, statistical measures and amplitude and 
phase demodulation. Time-synchronous averaging and the residual signal 
analysis technique are grouped under filtering conditions by these authors. 
 
From the reviews provided by Samuel and Pines (Article in Press), Dalpiaz et 
al. (2000) and Wang et al. (2001) it is clear that no technique can be singled 
out as the mantra of gearbox vibration signature analysis. The performance 
of a specific analysis technique in a specific situation depends on the 
conditions of the analysis, and on the vibration data itself. A multi-pronged 
approach should thus be considered prudent if accurate and reliable 
diagnoses are to be made. Choice of the most appropriate techniques will 
certainly be guided by prior knowledge of the data to be analyzed. 
 
Considering the selection of a set of most appropriate techniques, the analyst 
should draw on his or her knowledge of the particular scenario under 
consideration. Data characteristics such as spectral content and stationarity, 
or cyclostationarity, should be considered in the selection process. Machine 
characteristics are therefore equally important, as these influences in their 
turn the nature of the vibration signature recorded. Additionally the 
characteristics of the analysis techniques govern their effectiveness and 
applicability to certain scenarios. 
 
To this end a literature review is presented as the remainder of this chapter. 
Prominent vibration analysis techniques will be briefly discussed, and their 
applicability to the present application considered. 

1.21.21.21.2 Characterising GeaCharacterising GeaCharacterising GeaCharacterising Gearbox Vibrationsrbox Vibrationsrbox Vibrationsrbox Vibrations    

Fundamental to, and characteristic of, gear vibration is a periodic amplitude 
and phase modulated signal at the tooth-meshing frequency, and harmonics 
of the tooth-meshing frequency (Randall, 1982). Periodic signals at the tooth 
mesh frequency are due to deviations from the perfect involute gear tooth 
profile, and may be observed from seemingly perfect newly manufactured 
gearboxes. Sources of such deviations from the tooth profile are tooth 
deflection under load and geometrical errors from the manufacturing 
process. These deviations from the perfect involute profile cause amplitude 
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and frequency modulations of the carrier frequency, i.e. gear mesh 
frequency. Harmonics of the base tooth-meshing frequency are generated 
due to periodically varying compliance as the load is shared between 
different numbers of teeth. 
 
Any deviation from the ideal tooth profile will result in precession of the 
contact point around the ideal pitch circle. This in turn implies that contact 
between points on the circumference of the teeth will not occur at the 
expected times, thus influencing the time domain vibration signature. 
Deviations from the ideal tooth profile may result from manufacturing 
errors, load effects, damage to gear teeth or assembly errors such as 
eccentricity. Amplitude and phase modulation of the carrier gear mesh signal 
will result from deviations from the ideal tooth profile (Randall, 1982). 
 
Amplitude modulation effects result from sensitivity of the vibration 
amplitude to tooth loading. Fluctuation of the load will cause a 
corresponding variation in the amplitude of the vibration signal. The 
modulating frequency for gear vibrations will generally be related to the 
shaft frequency of the gear, for effects related to gear rotation. Randall (1982) 
reports that a highly localized fault, e.g. on one tooth, will tend to give a 
modulation by a short pulse of the order of the tooth-mesh period, and 
repeated every revolution. Notably it is explained by Randall that a more 
distributed fault that is wider in the time domain will make the 
corresponding envelope in the frequency domain narrower and higher. 
 
Frequency modulations may result from non-constant rotational speed or 
non-uniform tooth spacing. Randall (1982) argues that the same fluctuations 
in tooth contact pressure which give rise to amplitude modulation must 
simultaneously apply a fluctuating torque to the gears, and result in angular 
velocity fluctuations at the same frequency. These fluctuations may be 
modelled in mathematical gear models as phase modulations, as in 
McFadden (1986), or as frequency modulations, as in Bonnardot, El Badaoui, 
Randall, Daniere and Guillet (Article in Press). 
 
Apart from the causes of modulation discussed previously, fluctuation of the 
external load will also cause amplitude and frequency, or phase, modulation, 
without having anything to do with the gearbox’s condition. The frequency 
of the modulation may however be used in some cases to distinguish 
external load related modulations from modulations caused by internal 
defects. 
 
Planet gears in epicyclic gearboxes are not stationary: they rotate about the 
sun gear, between the sun gear and the ring or annular gear. This implies 
that there is relative motion between some of the gear components and a 
stationary measurement location on the gear case. This relative motion 
causes an apparent amplitude modulation of the meshing signals originating 
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from the planet gears: a phenomenon termed planet pass modulation by 
Forrester and Blunt (2003). McFadden and Smith (1985) noted that epicyclic 
gearbox vibration may be modulated by the motion of the planet gears with 
the rotation of the gear cage. 
 
McFadden and Smith (1985) explained the asymmetry often observed in the 
spectra of epicyclic gear system’s vibration at the hand of an argument 
involving the planetary gear layout geometry and the resulting phase of the 
vibration of the different planetary gears relative to each other. McFadden 
and Smith show that the phase angle of any component in the vibration 
spectrum of an epicyclic gear is determined solely by the initial position of 
the planet gear relative to the transducer, by the number of teeth on the 
annulus and by the meshing harmonic and sideband order, assuming that 
the time delay caused by the propagation of the vibration around the 
annulus is small. 
 
Dowling (1993) highlights several characteristics regarding the nature of 
machine signals. He points out that a fault signal often originates in a 
moving component and is transmitted to stationary components through a 
complicated path, as is the case with gears. This transmission path may result 
in a complicated transfer function, or even a time varying transfer function. 
Dowling also points to the impulsive nature of vibration phenomena that 
generate wide-band spectral content signals which in turn interact with the 
system natural frequencies and mode shapes. Vibration signals associated 
with transient events may further not be repetitive in the earliest stages of 
development. 
 
Stationarity of vibration signals may be employed in a constructive manner 
in the analysis of vibration signatures. Capdessus, Sidahmed and Lacoume 
(2000) defines a random signal x(t) as n-th order stationary if its time-domain 
n-th order moment does not depend on time t. A random signal x(t) is 
considered by these authors to show cyclostationarity at the n-th order if its 
time domain n-th order moment is a periodical function of time t. Elsewhere, 
Antoni, Bonnardot, Raad and El Badaoui (2004) define a cyclostationary 
process as a stochastic process that exhibits some hidden periodicities in its 
structure. 
 
Kinematical variables in rotating machinery are periodic with respect to 
some of the rotation angles. This implies that the signals emanating from 
such machinery are intrinsically angle-cyclostationary rather than time-
cyclostationary, as reported by Antoni, Bonnardot, Raad and El Badaoui 
(2004). Proposition 2 presented by Antoni et al. (2004) states that a wide-
sense angle-cyclostationary process sampled by a bijective mapping will be 
wide-sense time-cyclostationary if, and only if, the speed fluctuation of the 
system is itself a wide-sense cyclostationary process. For randomly 
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fluctuating angular speed, this implies that the time sampled signal will not 
be cyclostationary. 
 
For the purpose of machinery diagnostic monitoring, stationary analysis is 
most frequently employed. This may be due to the fact that before 
catastrophic failure occurs, the fault signal appears in a repetitive manner. 
Dowling (1993) argues that non-stationary analysis is required for optimum 
incipient failure detection because failure signals: a) are non-stationary; b) 
are not repetitive in the earliest stages; c) consist of several active frequency 
components; and d) often occur over several time scales. 

1.31.31.31.3 Filtering of Vibration SignalsFiltering of Vibration SignalsFiltering of Vibration SignalsFiltering of Vibration Signals    

As a preparatory step before vibration signal analysis, various filtering 
operations can be performed on the measured signal with the purpose of 
signal enhancement, for instance noise reduction or narrow-band filtering as 
required by certain narrow-band techniques. Separation of periodic signal 
components from random components may be used to distinguish between 
different vibration signatures: separating gear and bearing signals as in 
Antoni and Randall (2001). 
 
Conventional digital filtering techniques may be applied to remove energy 
from frequency bands that contain no useful or unwanted information. For 
the preservation of signal phase, the technique of forward-backward filtering 
may be employed (Gustafsson, 1996). This technique can be used with finite 
impulse response as well as infinite impulse response digital filters to great 
effect. 
 
Adaptive signal processing encompasses signal processing algorithms which 
are adjustable in such a way that their performance, according to some 
criterion, improves through contact with their operating environment. 
Adaptive systems are therefore time varying and nonlinear, and the principle 
of superposition does not hold for these systems. Adaptive systems’ 
adjustments usually depend on finite-time average signal characteristics, 
rather than on instantaneous values of signals (Widrow & Stearns, 1985). 
 
A common element in many of the applications of adaptive signal processing 
is that some element of a problem is unknown and must be learned, or some 
system component is changing in an unknown manner and therefore must 
be tracked (Alexander, 1986). Adaptive filters are commonly used in the 
following circumstances: when filter characteristics are required to be 
variable; when there is spectral overlap between signal and noise; or if the 
band occupied by noise is unknown or time varying. Conventional filters 
applied to the above cases would lead to unacceptable distortion of the 
desired signal (Ifeachor & Jervis, 2002). 
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Filtering nonstationary signals is a major area of application for adaptive 
filters (Widrow & Kamenetsky, 2003). Widrow and Kamenetsky further state 
that when the statistical character of an input signal changes gradually, 
randomly and unpredictably, a filtering system that can automatically 
optimize its input-output response in accord with the requirements of the 
input signal could yield superior performance relative to that of a non-
adaptive system. 
 
An adaptive filter has the property that its frequency response function is 
adjustable to improve its performance in accordance with some performance 
function, allowing the filter to adapt to changes in the input signal. Adaptive 
filters are capable of tracking the statistics of nonstationary signals, provided 
that the changes in signal statistics occur slowly relative to the convergence 
time of the adaptive filter (Elliott, 2001). 
 
Adaptive systems under consideration here all make use of performance 
functions that determine the system output. This performance function has 
to be chosen such that it will lead to a measurable improvement in the 
system output characteristics. Closed loop adaptive systems will be 
considered. The closed loop adaptive system involves automated 
experimentation with adjustments of the system characteristics, in an 
ordered manner. Knowledge of the resulting outcomes of the adjustments is 
then used to make further adjustments to the adaptive system, in order to 
improve its performance relative to the performance function. 
 
Synchronous averaging is an ensemble averaging technique where 
knowledge of the repetition frequency of a desired signal, or a second 
synchronous noise free signal is used to compute a synchronised ensemble 
average of the desired signal. McFadden (1987) proposes a revised model for 
the time domain averaging process that is more complicated than the 
previously used comb filter model, proposed by Braun (1975). The model 
proposed applies a rectangular window to the signal in the time domain, and 
samples the Fourier transform of the signal in the frequency domain. 
 
Generally a key phasor reference signal is required when performing 
synchronous averaging (Fyfe & Munck, 1997). Although it is possible to use 
knowledge of the frequency of the signal, this approach requires little or no 
variation in the rotational velocity of the component and is therefore limited 
in its application. 
 
This work will focus on signal processing techniques that do not require 
additional information, other than that contained in the vibration signal. Due 
to requirements surrounding the certification of sensors for operation in an 
aerospace environment, the use of additional sensors is highly unattractive. 
Diagnostic techniques capable of reliable diagnosis with minimal hardware 
requirements are preferred. Conventional order tracking techniques use an 
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additional sensor to provide the key phasor reference. Conventional order 
tracking techniques are therefore unattractive from the perspective adopted 
in this work. 

1.41.41.41.4 TimeTimeTimeTime----Frequency MethodsFrequency MethodsFrequency MethodsFrequency Methods    

Many of the conventional signal analysis techniques employed require 
periodicity of the fault signal. Dowling (1993) points out that in contrast, 
most if not all faults are non-periodic in the earliest stages of development. 
For some cases, by the time the fault exhibits an identifiable periodic 
structure, it is already well developed. Conventional techniques do not 
adequately track non-stationary signals, and don’t adequately describe the 
internal fine structure of transients. 
 
Time frequency analysis aims to describe the evolution of the frequency or 
spectral content of a signal over time. What makes a particular representation 
of a signal significant is that the characteristics of the signal are understood 
better in that representation because the representation is characterised by a 
physical quantity that is important in nature or for the situation at hand. 
 
Considering a simple time varying signal, incorporating amplitude and 
phase modulation, it should be noted that there exists an infinite number of 
ways of choosing different pairs of amplitudes and phases that generate the 
same signal (Cohen, 1995). By utilising a complex mathematical description 
of the signal, and fixing the imaginary part, the amplitude and phase of a 
signal can however be specified in an unambiguous manner. 
 
Time energy density and the frequency energy density are insufficient to 
describe the physical signal because they do not fully describe what is 
occurring. From the frequency energy density, or spectrum, it is clear which 
frequencies were present, but it is not clear when those frequencies existed. 
Hence the need to describe the temporal variation of the energy spectral 
content. 
 
As gear faults develop, the frequency spectrum will develop with the fault. 
Time-frequency analyses can then be used to monitor the progression of the 
fault, as it develops. Localised faults may also be obscured by averaging 
techniques, which makes time-frequency analysis more attractive from a 
diagnostic point of view.  
 
Vibration data from gearboxes can exhibit various non-linear and transient 
events, and analysing such events require techniques that go beyond the 
classical Fourier spectral analysis approach as noted by Staszewski, Worden 
and Tomlinson (1997). Oehlmann, Brie, Tomczak and Richard (1997) argue 
that vibration signals, representative of physical processes in a gearbox, are 
nonstationary multi-component signals that include tooth meshing, fault 
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transients, gearbox resonance vibrations and system and sensor transmission 
characteristics. 

1.51.51.51.5 Gear Condition MonitoringGear Condition MonitoringGear Condition MonitoringGear Condition Monitoring    

Modern techniques for gear diagnostics are based on the analysis of vibration 
signals measured on a gearbox’s casing. The aim is to detect the presence and 
the type of a fault at an early stage of development. The evolution of a fault 
condition is monitored in order to estimate the machine's residual life and 
choose an adequate maintenance strategy. Vibration-based monitoring 
techniques currently available for the detection of gear faults can be classified 
according to the analysis domain as follows: frequency/cepstrum analysis, 
time/statistical analysis and time - frequency analysis (Wang, Ismail & 
Golnaraghi, 2001). 
 
Spectral analysis may be unsuitable to detection of gear failures at an early 
stage, especially in the case of local faults, which primarily affect sidebands 
in the spectrum. Several gear pairs and other mechanical components usually 
contribute to the overall vibration. Hence it may be very difficult to evaluate 
the spacing and evolution of sideband families in a spectrum. For this reason, 
many researchers have proposed the application of other vibration analysis 
techniques, such as cepstrum, time-synchronous average and related 
techniques, time-frequency distribution techniques, cyclostationary analysis, 
signal modelling techniques, high-resolution spectral analysis techniques 
and advanced statistical methods (Dalpiaz, Rivola & Rubini, 2000). 
 
Techniques currently used for gear condition monitoring, as well as 
techniques for noise reduction will be discussed in the form of a brief 
literature review. Filtering techniques will cover the topics of synchronous 
averaging and adaptive filtering. Damage identification techniques will be 
divided under subsections of spectral or cepstral analysis, amplitude and 
phase demodulation techniques, time-frequency techniques and an energy 
technique used in conjunction with time-frequency distributions. 

1.5.11.5.11.5.11.5.1 Adaptive Signal ProcessingAdaptive Signal ProcessingAdaptive Signal ProcessingAdaptive Signal Processing Applications Applications Applications Applications    

Impulsive signals originating from machinery were studied by Lee & White 
(1998). The presence of a fault in machinery may be indicated by the presence 
of, or increase in, impulsive signal elements. Impulsive signal elements result 
from a change of stiffness or a change in mass of the system. The emphasis of 
Lee and White’s effort was on the pre-processing of measured signals to 
permit more accurate characterization of fault related impulsive components. 
 
Lee and White employed an enhancement scheme based on a two-stage 
Adaptive Line Enhancer, as opposed to for instance a synchronous averaging 
scheme. The filtered signals were represented in the time-frequency domain 
to obtain simultaneous spectral and temporal information. 
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Accelerometer signals were augmented by Hernandez (2001) using a 
Recursive Least Squares algorithm. A single accelerometer was mounted in a 
bus for the purpose of taking acceleration measurements during a 
performance test. Noise present in the signals studied by Hernandez 
occupied a frequency band very close to the band of the acceleration signal. 
 
Hernandez (2001) addressed the optimization of various filter parameters, 
including the number of taps and the so called forgetting factor of the 
Recursive Least Squares algorithm. Application of Hernandez’s 
methodology delivered an increase in signal to noise ratio of 20dB, from 
13.23dB before the filter to 33.64dB after the filter. 
 
Guidelines for the choice of parameters of the least mean squares algorithm 
were proposed by Antoni and Randall (2001). Their application of choice is 
vibration data obtained from helicopter gearboxes, which are in general 
epicyclic gearboxes. The guidelines proposed by the authors stem from 
thorough examination of the properties of the signal to be filtered, and the 
desired result of the filtering process. 
 
Specific guidelines are offered by Antoni and Randall (2001) for setting of the 
filter length, or number of coefficients employed, the forgetting factor and 
the choice of initial weight vector. Introduction of an exponentially 
decreasing forgetting factor is further proposed in order to enhance the 
accuracy of the filtered signal, while maintaining an acceptable convergence 
rate. It is additionally shown that reliable estimates of the forgetting factor 
may be made from an autocorrelation matrix of the input signal, having 
moderate size, much smaller than the length of the filter. 
 
Improvements in the signal-to-noise ratio of a signal obtained from a variable 
reluctance type wheel speed sensor are presented by Hernandez (2003). The 
wheel speed sensor is a common component of many of the modern 
Automatic Braking Systems (ABS) installed in modern motorcars. The author 
desired to improve the low speed response obtained from the sensor, for 
improved performance at slow vehicle speeds. 
 
Considerations of speed of convergence led Hernandez (2003) to using a 
Frequency Domain Least Mean Squares (FDLMS) adaptive filtering 
algorithm. The author concluded that satisfactory gains in signal-to-noise 
ratio were obtained by comparing the power spectral densities of filtered and 
unfiltered signals. The adaptive algorithm was employed in the adaptive line 
enhancer configuration. 

1.5.21.5.21.5.21.5.2 Synchronous AveragingSynchronous AveragingSynchronous AveragingSynchronous Averaging    

By synchronizing the sampling of the vibration data with the rotation of a 
particular gear of interest and calculating the ensemble average of the 
vibration over numerous revolutions, a signal is obtained which is 
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determined solely by the vibration produced by the gears on the particular 
shaft, or identically in phase with that shaft. In the time domain, the signal 
average will show the pattern of the tooth meshing vibration including 
amplitude and phase modulations, over one revolution, while the frequency 
domain gives the tooth meshing components and all the modulation 
sidebands at the shaft rotation frequency (McFadden, 1986). This technique, 
discussed by McFadden and Smith (1985) is known as time-synchronous 
averaging, and has been used extensively in condition monitoring of 
gearboxes. 
 
For the purpose of condition monitoring on rotating machines, the cyclic 
nature of the vibration signals can be employed. Methods have been 
developed that utilise the cyclostationarity of rotating machine vibration 
phenomena. Order tracking is such a method, and uses multiples of the 
running speed as frequency base, in stead of absolute frequencies. Computed 
order tracking makes use of constant sampling per time basis, and then uses 
software algorithms to resample the data at constant angular increments. 
Fyfe and Munck (1997) reported that computed order tracking is however 
extremely sensitive to the timing accuracy of the key phasor pulses. 
Accordingly, it is desirable to employ a shaft encoder with high resolution 
for this purpose. Order tracking is nothing more than angular domain 
resampling of the time domain vibration signal, and is used as precursory 
step, before performing synchronous averaging. 
 
Synchronous averaging, though prevalent in conventional gearbox condition 
monitoring, produces considerable difficulties when applied to epicyclic 
gearboxes. Multiplicity of contact regions between gears combined with the 
motion of the planet gears are significant contributors to these difficulties. 
McFadden (1991) proposed a technique, based on the proximity of a specific 
planet gear to the transducer, to calculate the time domain average of 
individual planetary gears as well as that of the sun gear. 
 
Proximity of a specific planetary gear to the measurement location on the 
annulus, in tandem with the variations in the amplitude of the transfer 
function between planet gear and transducer implies that the contribution 
made by that gear to the total vibration signal will be most significant. 
Transmission of the vibration signal through the structural transfer function, 
sampling, and appropriate selection of a windowing function produces a 
signal dominated by vibration from a specific planetary gear. Subsequent 
mapping of the windows, with respect to angular position on the gear, into 
their correct positions in the time domain average produces a signal from 
which the time domain average may be computed. A detailed analysis is 
presented in order to clearly establish the conditions under which the 
technique developed by McFadden (1991) is applicable. 
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Patents have arisen from development of techniques to deal with the planet 
pass modulation – the observation that the gear vibration signal of a 
planetary gear is modulated by a periodic function with period synchronised 
to the planet carrier rotation (Forrester & Blunt, 2003). A technique is 
presented by Forrester and Blunt (2003) that alleviates the discontinuities 
present in techniques that employ a principle similar to that of McFadden 
(1991), and performs averaging over shorter total time. The technique 
performs separation of the total measured signal into contributions from 
each planet gear, using all of the available vibration data. 
 
Representative signal averages are produced for each planet gear by 
employing a selective continuous time filter into the averaging process. The 
time filter proportionally divides the total vibration signal into contributions 
from each planet, using a window function. With careful selection of the 
window function’s characteristics and the signal averaging parameters, 
separation is performed with minimum leakage of vibration from other 
planetary gears. 
 
Forrester and Blunt (2003) present an application of their technique to a small 
planetary gearbox with 3 planet gears. They successfully indicate a small 
fault condition on one of the teeth of a planetary gear, using the kurtosis 
value of the averaged signal. Flank wear was simulated by removal of a 
small amount of material from one of the planetary gear teeth. 

1.5.31.5.31.5.31.5.3 Spectral and Cepstral AnalysisSpectral and Cepstral AnalysisSpectral and Cepstral AnalysisSpectral and Cepstral Analysis    

The most significant components in gear vibration spectra are the tooth-
meshing frequencies and their harmonics, together with sidebands, which 
are due to modulation phenomena. Sidebands of the mesh frequency occur 
as a result of a modulating rotational motion, caused by a failure of mating 
teeth to impact one another at the proper time, as discussed by Goldman 
(1999). Incrementation in the number and amplitude of the sidebands may 
indicate a fault condition. Randall (1982) reports that the spacing of the 
sidebands is related to the particular source. Faults localised on one tooth, or 
over a few teeth, such as cracks and spalls, produce modulation effects 
during the engagement of the faulted teeth, and are repeated once each 
revolution of the gear. The spectrum presents a large number of sidebands of 
the tooth-meshing frequency and its harmonics, spread over a wide 
frequency range, spaced by the rotation frequency of the faulted gear and 
characterised by low amplitude. Transient additive impulses may be 
produced, giving rise to low-frequency components.  
 
In most gear systems the tooth meshing frequency and its harmonics 
dominate the spectrum. For epicyclic gearboxes, McFadden and Smith (1985) 
proposed a simple model to explain why the principal component of the 
spectrum is slightly removed from the gear meshing frequency. A theoretical 
development is presented that clearly shows that while the motion of a single 
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planet gear past an observer location on the annular gear produces 
symmetrical sidebands about the tooth meshing frequency, the phase angle 
of planet gears relative to one another may cause destructive interference, 
obscuring certain components of the spectrum. 
 
Three test cases are used by McFadden and Smith (1985) to illuminate the 
validity of their technique: a compressor drive gearbox, a Sea King helicopter 
gearbox and a turbine engine reduction gearbox. The suppression, or lack 
thereof, of gear mesh harmonics, or sidebands of the harmonics, is indicated 
to be a function of the geometric layout of the planetary gears. It is 
importantly noted by the authors that the asymmetry is strictly an artefact of 
the measurement of the vibration at a fixed location, and not a feature of 
epicyclic gear vibration itself. 
 
A particular difficulty when monitoring epicyclic gearboxes is the constantly 
varying transmission path for at least the planet gears. A further practical 
issue is the infeasibility of mounting a shaft encoder in order to successfully 
perform rotation sampling in the angular domain, or synchronous averaging. 
This problem may not exist for industrial applications, but becomes an issue 
when gearboxes on aero engines are considered. Multiple gears running at 
the same meshing frequency are also present – i.e. planetary gears. 
 
Oppenheim and Shafer (1989) define the real cepstrum as the inverse Fourier 
transform of the logarithm of the magnitude of a signal’s Fourier transform. 
Randall (1982) points out that the cepstrum is thus useful for detecting any 
periodic structure in the spectrum, in the case of gear vibration signals the 
families of sidebands resulting from amplitude and frequency modulation of 
the gear mesh carrier signal. 
 
Articles by Dalpiaz, Rivola and Rubini (2000) as well as El Badaoui, Guillet 
and Daniere (2004) report that the cepstrum is less sensitive to transducer 
location when synchronous averaging is employed. Both sets of authors 
however also indicate that synchronous averaging, although advantageous, 
is not essential in all cases. Results presented by Dalpiaz et al. reinforce this 
statement. 
 
Modulation phenomena, of which several may simultaneously be present in 
the vibration signal, each produce a different family of sidebands 
characterised by the spacing of the sidebands in the spectrum. The spacing 
between sidebands is determined by the modulation frequency. Changes in 
the number and amplitude of the sidebands may indicate deterioration in 
condition. Each family of sidebands produces a peak in the cepstrum at a 
quefrency corresponding to the reciprocal of the spacing of the spectrum 
components, as well as rahmonics at multiples of the base quefrencies. As 
noted by Dalpiaz et al. (2000), the fundamental cepstrum component 
represents the average sideband level over the whole spectrum. 
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1.5.41.5.41.5.41.5.4 Demodulation TechniquesDemodulation TechniquesDemodulation TechniquesDemodulation Techniques    

Spectral analysis, though a sufficient technique for simpler gearboxes, is 
inadequate for analysis of more complex epicyclic gearboxes. For simple 
gearboxes, modulation sidebands (Randall, 1982) are identifiable in the 
spectrum. When a more complex epicyclic gearbox is considered, 
identification of modulation sidebands becomes difficult due to the increased 
complexity of the spectrum: more frequency components are present 
(McFadden, 1986). Further complexity is introduced for epicyclic gearboxes 
by obscuring of possibly the gear mesh frequency itself, and some of the 
sidebands, due to interference between signal components as proposed by 
McFadden and Smith (1985). 
 
Phase modulation’s importance in gear vibration analysis was first noted by 
McFadden and Smith (1985). In the year following, McFadden (1986) 
presented a signal model by means of which the amplitude and phase 
modulation could be extracted from the time domain average of a gear 
vibration signal as the instantaneous phase and amplitude of the analytical 
signal, computed by means of the Hilbert transform. The author applied the 
demodulation technique to a data set obtained from helicopter main rotor 
gearboxes, successfully indicating the presence and growth of a fatigue crack 
in the spiral bevel pinion. 
 
Hilbert transform based demodulation was further extended by McFadden 
(1988) to the detection of the location of a fatigue crack in a gear, by 
analysing the phase of the change in the meshing vibration. An identical 
model to McFadden’s earlier publication in 1986 was used unmodified to 
calculate an analytical signal. Rotation of the analytical signal vector was 
removed, initial phase cancelled and the difference between modulated and 
un-modulated vectors was calculated. 
 
Frequency domain techniques were used for band pass filtering, obtaining 
the analytical function, removing the uniform rotation of the analytical 
function vector, removal of the initial phase and computing the difference 
between modulated and un-modulated signals. Conversion by the inverse 
complex Fourier transform produces the complex difference signal. 
Examination of the locus of the difference signal in the complex plane 
indicated damage to the gear under consideration. An irregularity in this 
locus at a certain angle was then used to predict the position of the fatigue 
crack present in the gear. McFadden (1986) points out that the technique is 
applicable only to gears with spiral or helical tooth forms. 
 
Adaptive demodulation applied to gear vibration signals was presented by 
(Brie, Tomczak, Oehlmann and Richard (1996). An abrupt change detection 
algorithm was coupled to the adaptive demodulation algorithms. Normal 
amplitude and phase modulations present in healthy gear vibration signals 
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are slowly time variant, while defects introduce abrupt variations in the 
vibration signal. 
 
Superiority of the adaptive demodulation approaches over the conventional 
Hilbert transform approach is shown from considerations of signal 
bandwidth. Mathematical proof is presented of the spectral bandwidth of 
random amplitude and phase modulations, and it is pointed out that the 
Hilbert transform approach makes use of only a single filter, while the 
adaptive approaches use multiple filters. 
 
Algorithms based on the recursive least squares, as well as least mean 
squares architectures are presented by Brie, Tomczak, Oehlmann and 
Richard (1996). An important advantage of the LMS algorithm presented is 
found therein that access is provided to individual amplitude and phase 
parameters of the various harmonics. 
 
Application of the techniques presented by Brie, Tomczak, Oehlmann and 
Richard (1996) to an automotive gearbox demonstrated the success of the 
RLS adaptive demodulation scheme, as well as that of the change detection 
algorithm. Synchronous averaging was performed on the data measured 
from the test rig, followed by adaptive demodulation. 

1.5.51.5.51.5.51.5.5 TimeTimeTimeTime----Frequency MethodsFrequency MethodsFrequency MethodsFrequency Methods    

The Wigner-Ville distribution is a well known time-frequency distribution, 
and has been applied to widely divergent fields and problems. It fits into 
Cohen’s general class of time-frequency distributions (Cohen, 1989). 
Staszewski, Worden and Tomlinson (1997) applied the Wigner-Ville 
distribution to the gearbox diagnostics problem, in conjunction with pattern 
recognition techniques. Importantly the authors note that the Wigner-Ville 
distribution results in two-dimensional patterns exhibiting fault features that 
are difficult to interpret. Statistical and neural network based pattern 
recognition techniques are used by the authors to detect spur gear fault 
conditions. 
 
Staszewski et al.(1997) show that gearbox fault detection using the Wigner-
Ville distribution is achievable and feasible. Moreover, it is explicitly stated 
that local fault detection on spur gears is possible. It is remarked that the 
removal of background meshing vibration from the signal improves the 
visibility of impulsive features caused by certain types of faults. The 
weighted form of the Wigner-Ville distribution attenuates interference terms 
in the time-frequency domain, but also results in a reduction in the frequency 
resolution and a loss of sensitivity regarding fault detection. 
 
Acoustic and vibration signal analysis by means of the Wigner-Ville 
distribution was compared by Baydar and Ball (2001). Three local fault 
conditions – broken tooth, cracked tooth and localised wear – on helical gears 
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were considered. Synchronously averaged data was analysed using the 
smoothed pseudo-Wigner-Ville distribution. Detection of faults rested on the 
observation of patterns indicative of impulsive transients in the time-
frequency distribution, resulting from impacts due to the fault local 
conditions. 
 
Faults were monitored in a progressive manner by Baydar and Ball (2001). 
Several progressive stages of each fault were considered. The time-frequency 
distributions of both the vibration and acoustic signals permit the successful 
identification of the various types of gear failures considered by the authors. 
The choice of the Wigner-Ville distribution is motivated by considering that 
the properties and theoretical background, as well as computational aspects 
of the numerical evaluation of the distribution are well established in 
literature. 
 
Gearbox vibrations, including gear and bearing signals, were analyzed by 
Oehlmann, Brie, Tomczak and Richard (1997). The authors point out that 
shocks induced by faults in gears and bearings cause an increase of 
mechanical system energy, which in turn leads to rising frequency and 
amplitude of the vibration signal. They choose the optimal kernel method, 
belonging to Cohen’s general class of time-frequency distributions, to 
generate time-frequency distributions of the measured vibration signals. Brie 
et al. sought a low-pass kernel function which covers maximum energy in 
the ambiguity plane. To this end the kernel volume was kept smaller than 
some lower bound, determined experimentally. 
 
Two structures in the time frequency distributions were identified by Brie et 
al: firstly amplitude modulations of the gear mesh carrier signal and 
secondly time-frequency components with approximately linear frequency 
variations, i.e. chirp signals. It is noted by the authors that the sensor location 
influences the time-frequency representation. The structures identified 
remain observable, but the amplitude is modified. 
 
Unsteady speed in a planetary gear system was considered by Meltzer and 
Ivanov (2003). The Choi-Williams distribution was preferred by these 
authors as a result of examining the kernels of the Wigner-Ville, spectrogram 
and Choi-Williams distributions in the ambiguity plane. The basis of their 
choice is formed by arguments relating to the resolution of the transforms in 
time and frequency, as well as the suppression of terms in certain regions of 
the ambiguity plane. 
 
Experimental verification was carried out by Meltzer and Ivanov (2003) on a 
three stage epicyclic gearbox intended for use in a passenger vehicle. Angle-
equidistant and time-equidistant sampling scenarios were investigated. For 
the time-equidistant sampling scenario, the kernel of the Choi-Williams 
distribution was modified to account for the variation in speed that occurred 
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during the tests. This modification to the kernel was successfully applied to 
the diagnosis of fault conditions in the gear drive by the authors. 
 
Application of another energy distribution belonging to Cohen’s (1989) 
general class, the spectrogram, was published by Wang and McFadden 
(1993) in a 2-article series. While the first article deals with the time-
frequency method, the second one concerns mainly image identification 
techniques applied to the damage detection problem. McFadden and Wang 
used synchronously averaged data, with components at the meshing 
frequency removed to enhance the synchronously averaged signal. The 
authors successfully indicate a fault condition in the gearbox under 
consideration by indicating a spreading out of energy on the frequency axis 
at the order of a spall damaged tooth. 
 
Wang and McFadden (1993) describe the Wigner-Ville distribution as 
inappropriate for the analysis of gear vibration signals. The spectrogram is 
preferred by these authors as a result of the inherent non-linearity of the 
Wigner-Ville distribution, taking into account the subtlety of gear fault 
signatures. Recommendations are further made by the authors regarding the 
choice of a suitable window function, and setting the parameters governing 
such a function. 

1.5.61.5.61.5.61.5.6 Instantaneous EnInstantaneous EnInstantaneous EnInstantaneous Energy Densityergy Densityergy Densityergy Density    

The marginal conditions of time-frequency distributions state that ideally 
summing up the energy distribution for all frequencies at a particular time 
should give the instantaneous energy, and summing up over all times at a 
particular frequency should give the energy density spectrum (Cohen, 1989). 
Loutridis (Article in press) argues that faults are by their nature transient 
events, and cause a parcelling of the energy of the vibration signal. 
Significant change is hence to be expected in the energy density the moment 
damaged teeth are engaged. 
 
Loutridis calculates the instantaneous energy density as the integral of the 
absolute value of the Wigner-Ville distribution in the frequency domain, at a 
particular time instant. This is equivalent to satisfying the time marginal for 
strictly positive distributions, where the absolute value has no effect. The 
Wigner-Ville distribution is not strictly positive, but a good approximation is 
still obtained according to Loutridis (Article in Press). Continuous wavelet 
transforms and the empirical mode decomposition technique are also 
considered by Loutridis, and similar energy densities are derived. 
 
For the Wigner-Ville distribution, the wavelet transform based scalogram 
and the empirical mode decomposition technique, Loutridis demonstrates 
effectiveness of the instantaneous energy density technique. The author does 
however point out that the sensitivity of the energy feature based on the 
Wigner-Ville distribution is slightly better than for the continuous wavelet 
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transform and empirical mode decomposition technique. Further advantages 
of the Wigner-Ville distribution mentioned by Loutridis is its relative 
simplicity and fast computation time. Reliable predictions were obtained by 
the author for all three methods, for gear tooth cracks ranging from 15% up 
to 75% of the gear tooth root. 

1.61.61.61.6 Scope of WorkScope of WorkScope of WorkScope of Work    

Condition monitoring of epicyclic gearboxes through analysis of vibration 
data based in the time domain will form the centrepiece of this work. Time 
domain filtering techniques will be developed for the purpose of removing 
random noise from the periodic, or possibly pseudo periodic, vibration 
signal. In this sense, pseudo periodic is meant to imply a periodic signal of 
which the period is subject to seemingly random perturbations in the time 
domain, on a scale smaller than the total periodic signal length. The signals 
studied will not be identically stationary, nor cyclostationary. 
 
It has been shown by Antoni, Bonnardot, Raad and El Badaoui (2004) that 
sampling of these same signals in the angular, or order domain does produce 
cyclostationary signals. Order tracking requires the use of a reference signal, 
and will be excluded from this work due to this fact. 
 
Bonnardot, El Badaoui, Randall, Daniere and Guillet (Article in Press) 
presents a technique where only the vibration signature is used to perform 
order tracking. Their technique is limited by the speed fluctuation that can 
successfully be accommodated. The effect of the structural transfer function 
on the vibration signal is further implicitly assumed to be negligible, and 
indeed appears to be for the data considered by the authors. Further research 
and development work is required on the technique of Bonnardot et al. 
(Article in Press). 
 
Adaptive signal processing techniques will be employed for the purpose of 
noise reduction in this work. The vibration signatures from the epicyclic 
gearbox considered are expected to be nonstationary in the time domain. 
Nonstationarity of the signals being processed makes the use of adaptive 
filtering techniques attractive, as noted by Widrow and Kamenetsky (2003). 
 
Time domain based damage identification techniques that do not require 
stationarity of the signal, will be considered. The time domain has an 
important advantage in that rotational speed variations are preserved in time 
domain data. Synchronous averaging removes the effect of shaft speed 
variations from rotating machine vibration data. 
 
Nonstationarity of the expected vibration data once more will influence the 
choice of damage identification techniques, as for the filtering techniques 
before. Dowling (1993) provides several arguments that may be used to 
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strengthen the choice of nonstationary analysis techniques for data based in 
the time domain, as discussed under section 1.2. 
 
Time-frequency methods are an obvious choice for the purpose of signal 
analysis and defect identification or diagnosis. Periodicity of the signals 
processed by time-frequency methods is not required. Time frequency 
methods have been applied to vibration analysis by several authors, as 
discussed under sections 1.4 and 1.5.5. Time-frequency distributions for 
which the properties are well known and documented will be considered in 
this work. The instantaneous energy density criterion, proposed by Loutridis 
(Article in Press) will be considered in conjunction with the selected time-
frequency distributions. 
 
From considering the effects that gear defects may have on the phase or 
instantaneous frequency, and amplitude of the vibration signal generated, 
the use of amplitude and phase demodulation makes intuitive sense. 
McFadden presented two cases where damage to a gear tooth could 
successfully be indicated by demodulated data from the synchronous 
average of vibration data (Mcfadden, 1986 and McFadden, 1988). It is 
expected that the synchronous averaging process will enhance the diagnostic 
ability of demodulation techniques. Amplitude and phase demodulation will 
not be applied to the time domain data considered in this work. 
 
Implications of using exclusively time domain techniques to perform gear 
damage identification have not been commented on to date. Synchronous 
averaging, which is widely used to reduce the noise in vibration signals, is in 
this case not applicable due to the lack of a rotational reference. The time 
domain filtering and signal analysis techniques discussed will be assessed in 
terms of their usefulness for the purpose of damage diagnosis. The effect of 
the adaptive filtering methods on the noise represented in especially the 
Wigner-Ville distribution will be considered. 
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2222 FilterFilterFilterFiltering of Gear Vibration Signalsing of Gear Vibration Signalsing of Gear Vibration Signalsing of Gear Vibration Signals    

Filters are defined, in the signal processing context, by Ifeachor and Jervis 
(2002) as systems that selectively change the wave shape, amplitude-
frequency and/or phase-frequency characteristics of a signal in a desired 
manner. For the purpose of signature based diagnostics, waveform features 
are used to relate to some state of the system emitting the wave. Filters may 
be usefully employed to enhance or suppress certain waveform 
characteristics, as an aid to diagnostic techniques. 
 
Reduction of noise in a measured signal is an eminent application area of 
filters. Specific applications in signal processing for mechanical diagnosis 
include enhancement of periodic or deterministic signal components (Braun, 
1975), separation of periodic and random components (Randall, 2001), and 
selection of frequency bands of interest (Braun & Seth, 1979). 
 
Discussions in this work will restrict themselves to digital filtering, or 
discrete time filtering techniques. Ordinary digital filtering, primarily by 
finite impulse response implementations, was employed for the purpose of 
frequency band selection in some cases. Adaptive filtering techniques were 
further employed for the purpose of random noise reduction. 
 
Adaptive filtering of machine vibration signals was a primary consideration 
at the initiation of this work. Much of this current chapter is therefore 
devoted to adaptive filtering techniques. For the sake of completeness, 
certain pertinent digital filtering topics will be briefly discussed, as well as 
the synchronous averaging technique. 

2.12.12.12.1 Digital Filtering TechniquesDigital Filtering TechniquesDigital Filtering TechniquesDigital Filtering Techniques    

Finite Impulse Response (FIR) filters, as opposed to infinite impulse response 
(IIR) implementations, have an impulse response of finite duration. The finite 
impulse response filter’s input and output signals are related by the 
convolution sum of equation 2.1: 
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where: yF(n) : discrete time filtered signal 
 h(k) : transfer function 
 x(n) : discrete time signal 
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Although FIR filters have no physical equivalent, they do posses a number of 
attractive properties. In this work the FIR structure was exclusively utilised. 
Ifeachor and Jervis (2002:321) present a list of attractive properties of FIR 
filters that will be briefly discussed in the following paragraphs. 
 
Linear phase response is realizable with a suitable FIR structure. Four types 
of linear phase response FIR filters are classifiable, depending on whether the 
filter length N is even or odd, and whether the impulse response exhibits 
positive or negative symmetry.  
 
Type 1 linear phase FIR filters have positive symmetry of the impulse 
response, and an odd number of coefficients. Type 2 linear phase FIR filters 
have positive symmetry and even number of coefficients, but its frequency 
response is zero at half the sampling frequency’s value. Type 2 is thus not 
suited for high pass filtering applications. 
 
Types 3 and 4 linear phase response FIR filters both exhibit negative impulse 
response symmetry, with odd and even numbers of coefficients, respectively. 
The frequency response of both types is zero at the frequency of zero, 
making them unsuitable as low pass filters. Additionally type 3 filters have 
zero frequency response at half the sampling frequency, making it also 
unsuitable as a high pass filter. Both types 3 and 4 introduce 90° phase shift, 
making them useful in the design of differentiators and Hilbert transformers. 
 
Finite impulse response filters are realized non-recursively, by direct 
evaluation of equation 2.1. Stability of IIR filters can not always be 
guaranteed. FIR filters suffer less from the effects of using a limited number 
of bits used in the implementation, such as roundoff noise and coefficient 
quantization errors, than IIR filters. FIR filters do however require a larger 
number of coefficients for sharp cut-off characteristics than IIR filters. 
 
McFadden’s (1986 & 1988) technique for damage identification by phase 
demodulation uses the vibrations signal’s phase to identify damaged gear 
teeth. Ordinary digital filtering by FIR implementation may cause an 
unacceptable distortion of the phase characteristics at the frequency of 
interest. Zero phase distortion filtering for FIR as well as IIR digital filters is 
achievable using the forward-backward filtering technique, discussed by 
Gustafsson (1996). 
 
Gustafsson (1996) describes the procedure as applying a filter G(q) forward 
(obtaining yFf(t) in equation 2.2) and then backward on the reversed filtered 
signal, and then reversing the output again: 
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where: G(q) : digital filter 
 u(t) : input sequence 
 q : shift operator - qu(t)=u(t+1) 
 
The superscript R denotes reversed sequences while subscripts f for forward 
and b for backward are used. The total effect is a zero phase filter with 
transfer function |G(eiω)|2; in effect the order of the filter is thus doubled. 
 
Without employing the initial conditions as per Gustafsson’s method, 
transients are expected at the start and end of the forward-backward filtered 
sequence. These portions of the waveform may however be discarded if 
ample data is available for analysis. 

2.22.22.22.2 Synchronous AveragingSynchronous AveragingSynchronous AveragingSynchronous Averaging    

Distinction is made between time domain averaging and synchronous 
averaging in this work. Although related, time domain averaging is in the 
strict sense an ensemble averaging process that takes place in the time 
domain. Synchronous averaging on the other hand, in as far as its application 
to rotating machine signals go, is an ensemble average computed in the 
angular or rotation domain. 

2.2.12.2.12.2.12.2.1 Time Domain AveragingTime Domain AveragingTime Domain AveragingTime Domain Averaging    

Time domain averaging of a function x(t), digitized at a sampling interval nT, 
is described by (Braun, 1975): 
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where: x(nT) : digitized function x(t) 
 ya(nT) : averaged x(nT) 
 N : number of averages computed 
 mT : averaged period 
 
Time domain averaging is a method well suited to the extraction of periodic 
waveforms from a noisy signal. Noise components tend to cancel in the 
ensemble average computed, leaving an improved estimate of the periodic 
signal (McFadden, 1986). It is further remarked in both McFadden (1986) and 
Braun (1975) that increasing the number of averages N, narrows the teeth of 
the comb filter and reduces the amplitude of the side lobes between the teeth. 
 
Braun (1975) discusses a comb filter model for the time domain averaging 
process. McFadden (1986) points out two problems with the comb filter 
model: a) the model assumes knowledge of the noisy signal over an infinite 
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time interval; b) though the time domain average approximates a desired 
periodic signal, it is not exactly periodic and can thus only be represented by 
a signal which is defined over an infinite time. 
 
Assuming that the signal is known for all time t implies that the time domain 
average is defined for all time. Examining the signal over a finite time in 
effect applies a window to the signal, which has to be taken into 
consideration when examining the properties of the time domain average. 
 
To explain the non-exact periodicity of the comb filter model, consider a train 
of N ideal impulses c(t), of amplitude 1/N and spaced at mT. The time 
domain average can now be computed as the convolution of the train of ideal 
impulses c(t) and the signal x(t). The convolution theorem is further handy to 
compute the Fourier transform Y(f) of the time domain average as a product 
(McFadden, 1986): 
 

( ) ( )
( ) ( ) ( )fXfCfY

txtcty

⋅=
∗= )(

 (2.4) 

 
C(f) is however continuous in f, and hence for general X(f) the Fourier 
transform of the time domain average Y(f) will be continuous in f. This 
implies that the time domain average can not be periodic in mT. Noise 
components which are not harmonically related to the repetition frequency 
1/mT may thus be passed by the comb filter, albeit at reduced amplitude. 
The estimate of the time domain average will therefore not be exactly 
periodic, and can only be represented completely by a signal which extends 
over infinite time. 
 
Applying a rectangular window to the time domain signal removes the need 
for knowledge of the signal for infinite time. The resulting windowed 
signal’s time domain average is however still not exactly periodic. McFadden 
(1986) describes further a procedure for sampling the Fourier transform of 
the signal in the frequency domain. This sampling procedure may be 
conveniently realized by computation of the Fourier transform of the 
windowed time domain average. This Fourier transform is then multiplied 
by the Fourier transform of the sampling function, and the inverse Fourier 
transform is computed to obtain the time domain average back in the time 
domain. 

2.2.22.2.22.2.22.2.2 Synchronous AveragingSynchronous AveragingSynchronous AveragingSynchronous Averaging    

Order domain analysis relates a rotating machine vibration signal to the 
rotational speed of a shaft. The sampling base is hence in the angular 
domain, as opposed to conventional time domain sampling. Order tracking 
requires sampling of the signal at constant angular increments, as opposed to 
the conventional time domain sampling method that employs constant time 
increments. Sampling, when performing order tracking, takes place at a rate 
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proportional to the shaft’s angular velocity, and is hence ideally invariant to 
shaft speed fluctuations. 
 
Digital resampling of a time domain signal into the angular domain by 
numerical techniques is known as computed order tracking. Fyfe and Munck 
(1997) discus several important factors surrounding the implementation of 
computed order tracking. Sketch outlines of the hardware and algorithms 
required for such implementations are also provided. 
 
In addition to the hardware required for conventional temporal sampling, 
order tracking requires a phase reference signal connected to a rotational 
reference on the rotating machine. A key-phasor signal from some form of 
shaft encoder is generally used. This signal is used to extract signal 
amplitudes at constant angular increments, providing a signal sampled in 
the angular or order domain. 
 
Fyfe and Munck (1997) point out two distinct estimation processes that occur 
during order tracking: the correct placement of angular sample points on the 
independent time axis, and the estimation of the resampled points on the 
dependant amplitude axis. Estimation of the correct placement of angular 
sample points on the time axis is highly dependant on the accuracy of the 
synchronous reference signal. Once the appropriate positions of the angular 
sampling points on the independent time axis have been computed, the 
appropriate amplitude of the resampled signal can be computed, generally 
using an interpolation method. The order of the interpolation employed also 
plays an important role with regard to the accuracy of the final resampled 
signal. 
 
Fyfe and Munck (1997) conclude from their study that the single most 
important factor influencing the spectral accuracy is the precision with which 
the key-phasor arrival times can be determined. Use of higher order 
interpolation schemes is also noted to improve accuracy. It is noted by the 
authors that due to delays inherent in the electronic circuitry surrounding 
the key-phasor, the accuracy of the method decreases as the shaft speed 
increases. Bossley, McKendrick, Harris and Mercer (1999) note that for 
periods of fast acceleration and deceleration, the accuracy of order tracking is 
similarly reduced. 
 
Synchronous averaging of epicyclic gearbox vibration data was addressed by 
McFadden (1991). Based on the distinction made in this work between time 
domain averaging and synchronous averaging, what McFadden refers to as 
time domain averaging is here referred to as synchronous averaging. 
Computing a synchronous average from an epicyclic gearbox’s vibration 
signal is complicated by the motion of the planet gears, and the multiplicity 
of contact regions between the planet gears and the sun and annular gears. 
The motion of the planetary gears relative to the stationary measurement 
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point further implies that the signals generated by the planetary gears are 
modulated at the carrier rotation frequency; a phenomenon termed planet 
pass modulation by Forrester and Blunt (2003). 
 
McFadden’s technique for calculating the synchronous averages of the 
vibration signals of the different gears rest thereon that the planet gear 
closest to the transducer will make the most significant contribution to the 
signal measured by the transducer. McFadden considers a total vibration 
signal sensed by the transducer, but windowed by application of a 
rectangular window when the gear moves past the transducer. The signal 
recorded in such a manner is then considered to be representative mainly of 
the particular gear, and the specific teeth that were engaged at this particular 
time. 
 
By taking into consideration the relative angular velocities of the gears, it is 
possible to determine which teeth were in mesh at specific times. If adequate 
measurements are made, a synchronous average may now be computed by 
suitably arranging the small windowed portions of the total signal recorded, 
and computing an ensemble average. This average will be considered a 
synchronous average, assuming that the signal is recorded using constant 
angular sampling. 

2.32.32.32.3 Adaptive FilteringAdaptive FilteringAdaptive FilteringAdaptive Filtering    

An adaptive filter is essentially a digital filter with self adjusting 
characteristics. The Least Mean Squares (LMS) and Recursive Least Squares 
(RLS) algorithms are two of the most widely used algorithms in adaptive 
signal processing, according to Ifeachor and Jervis (2002:645). An adaptive 
filter has the property that its frequency response is automatically adjusted to 
improve its performance in accordance with some criterion, allowing the 
filter to adapt to changes in the input signal characteristics. The adaptive 
filter is thus capable of tracking the statistics of nonstationary signals, 
provided the changes in signal statistics occur slowly compared with the 
convergence time of the adaptive filter (Elliott, 2001). The convergence time 
of the adaptive filter thus has bearing on the characteristics of the signal 
being filtered. An algorithm that converges too fast may be as undesirable as 
an algorithm with excessively slow convergence properties. 
 
With statistically stationary inputs, the quadratic performance surface of an 
adaptive filter algorithm is fixed, and the optimal Wiener solution is fixed 
(Widrow & Kamenetsky, 2003). With non-stationary inputs, this performance 
surface changes randomly, and the optimal Wiener solution is not fixed but 
is a randomly moving target. 
 
A common property of the applications of adaptive signal processing is that 
some element of the problem is unknown and must be learned, or some 
component of a possibly unknown system is changing in an unknown 
manner and must be tracked. Hence the physical processes encountered may 
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be either time varying or unknown, or both. Stochastic methods, based upon 
derivations using the statistical properties of the data signals are commonly 
employed in adaptive algorithms. The primary statistical measure used is the 
ensemble average, or mean, of a squared prediction error function 
(Alexander, 1986). 
 
An adaptive process may be regarded as a method for moving generally 
“downhill” on a performance surface, defined by an appropriate criterion. 
Widrow and Stearns (1985) describe an adaptive filter as a filter of which the 
structure is adjustable in such a way that its behaviour improves through 
contact with its signal environment. 

2.3.12.3.12.3.12.3.1 Adaptive Algorithms for Filter ApplicationsAdaptive Algorithms for Filter ApplicationsAdaptive Algorithms for Filter ApplicationsAdaptive Algorithms for Filter Applications    

Adaptive algorithms are applied to a very broad range of applications. 
Among this plethora is counted search algorithms, control algorithms, signal 
processing applications and neural networks. Numerous algorithms, and 
variants of these algorithms, have been developed by different researchers. 
Some algorithms are tailored to specific applications, while others have 
retained a more general scope of applicability. 
 
The Least Mean Squares algorithm is widely employed for adaptive filtering, 
and is the basis of most adaptive filters used in practice (Lee & White, 1998; 
Ifeachor & Jervis, 2002; Elliott, 2001; Widrow & Kamenetsky, 2003). 

2.3.22.3.22.3.22.3.2 Adaptive Noise CancellationAdaptive Noise CancellationAdaptive Noise CancellationAdaptive Noise Cancellation    

From a digital signal processing perspective, Ifeachor and Jervis (2002) 
considers an adaptive filter to consist of two distinct parts: a digital filter 
with adjustable coefficients; and an adaptive algorithm which is used to 
adjust the coefficients of the filter. The basic component of most adaptive 
filtering systems is the adaptive linear combiner (Widrow & Walach, 1984; 
Widrow & Stearns, 1985), which forms an output signal from the weighted 
sum of a set of input signals: 
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where: yk : filter output at sampling instant k 
 wk : filter weight vector at sampling instant k 
 xk : filter input vector at sampling instant k 
 
Superscript T indicates the vector transpose, while subscript k indicates the 
sampling instant and p is the number of elements in vectors x or w. The first 
and second lines of equation 2.5 are equivalent: the first line makes use of the 
vector notation form, while the second uses the summation notation form. A 
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schematic representation of the adaptive linear combiner is shown below, in 
figure 2.1. 
 
In the case of the adaptive filter, it is common that the input vector x is 
formed from the last p data samples at the k’th sampling instant, as opposed 
to p distinct data points occurring simultaneously. 
 
The mathematical realisation as in equation 2.5 uses a transversal or finite 
impulse response structure. Although other forms are available, notably the 
infinite impulse response or lattice structures, the finite impulse response 
structure is most widely used for reasons of simplicity and numerical 
stability (Ifeachor & Jervis, 2002). 
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Figure 2.1: Adaptive Linear Combiner 

Most noteworthy among the noise cancelling applications of adaptive filters 
are the adaptive noise canceller and the adaptive line enhancer. While the 
adaptive noise canceller uses a contaminated input, as well as a reference 
input correlated with the buried signal, the adaptive line enhancer uses a 
single input signal. A delayed version of the single input signal is used to 
decorrelate the noise component and remove it from the device’s output. The 
adaptive line enhancer is the primary configuration used in this work. A 
schematic diagram is shown in figure 2.2. 
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Figure 2.2: LMS Adaptive Line Enhancer 

The filter uses a single input, denoted in figure 2.2 as yk. This input 
simultaneously takes two paths: it goes directly to a summing node, and it 
branches of into a delay, denoted z-∆. After having passed through the delay 
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it enters the digital filter operation; in this case an FIR configuration. The 
filter output is then passed to the summing node, where it is subtracted from 
the sample yk to form the error term. The error term is fed back to the 
adaptive algorithm, which in turn adjusts the coefficients of the digital filter. 

2.3.32.3.32.3.32.3.3 Adaptive Filters as an Optimization ProblemAdaptive Filters as an Optimization ProblemAdaptive Filters as an Optimization ProblemAdaptive Filters as an Optimization Problem    

An adaptive filter may be viewed as an in-line optimization problem. The 
filter weights become the design variables, and the filter error becomes the 
objective function that is to be minimized. From this perspective, the general 
adaptive filtering problem may be formally stated as an optimization 
problem: 
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During the execution of the adaptive filter algorithm, a key step is the 
updating of coefficients from one iteration to the next. Gradient based 
algorithms require the calculation or estimation of the performance surface 
gradient for this step. From the definition of the LMS criterion: 
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The gradient expression E{εk∇ε(wk)} is commonly estimated by an 

instantaneous value. Statistical expected value is denoted as E{⋅}. Updating of 
coefficients for steepest descent based adaptive schemes then takes the 
following general form: 
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where λ in this case represents a generalized convergence, or iterative step 
size, parameter. Equation 2.8 expresses the updating of the current weight 
vector, wk, in terms of the previous weight vector wk-1. In figure 2.2, the next 
weight vector, wk+1, is updated in terms of the present weight vector wk – a 
form found to be more convenient for computational implementation. The 
two forms are considered equivalent, in spite of the difference in notation. 

2.3.42.3.42.3.42.3.4 Formulating Adaptive AlgorithmsFormulating Adaptive AlgorithmsFormulating Adaptive AlgorithmsFormulating Adaptive Algorithms    

Stochastic and deterministic methods have been used to formulate adaptive 
algorithms (Alexander, 1986). Statistical concepts such as Wiener (Ifeachor & 
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Jervis, 2002) and Kalman filter theory, as well as deterministic approaches 
such as the method of least squares have been used (Haykin, 1986). Different 
formulations hold advantages of particular insights that may be gained into 
the operation of the algorithm as a result of choosing that specific 
formulation. 
 
Wiener formulations use a transversal finite impulse response filter, defined 
by a set of tap weights, as the structural basis for an adaptive filter 
implementation. For stationary inputs the mean-squared error is shown by 
Widrow and Stearns (1985) to be precisely a second order function of the tap 
weights in the transversal filter. The error surface is thus a multidimensional 
hyper-paraboloid. The optimum Wiener solution is defined by the tap 
weights corresponding to the minimum point on the error surface. 
 
A matrix equation, known as the normal equation, defining the optimum 
Wiener solution is modified, classically by use of the method of steepest 
descent. This modification employs a gradient vector whose value depends 
on the correlation matrix of the tap inputs in the transversal filter and on the 
cross-correlation vector between the desired response and the tap inputs. 
Instantaneous values are used for the correlations so as to estimate the 
gradient vector. 
 
Kalman filtering problems are stated in terms of a plant equation that 
describes the system dynamics in terms of a state vector, and a measurement 
equation that describes the measurement errors incurred. The Kalman 
approach in adaptive filtering as applied to vibration data has been 
investigated by among others Vold, Mains and Blough (1997) and Herlufsen, 
Gade, Konstantin-Hansen and Vold (1999) in a range of publications on the 
Vold-Kalman order tracking filter. Kalman formulations will not be 
employed in this work. 
 
Formulations based on the classical method of least squares differs from the 
Wiener and Kalman approaches in that it uses deterministic measures from 
the start. A performance index consisting of a sum of weighted error squares 
is minimized. The error or residual is defined as the difference between some 
desired response and the output of the filter. A prominent algorithm that 
makes use of this formulation is the recursive least-squares algorithm. 

2.3.52.3.52.3.52.3.5 Adaptive Algorithms as PredictorsAdaptive Algorithms as PredictorsAdaptive Algorithms as PredictorsAdaptive Algorithms as Predictors    

There lies a philosophical advantage in considering an adaptive algorithm 
from the viewpoint of a linear predictor.  Consider again equation 2.8 for 
updating of coefficients: 
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It is clear from equation 2.9 that parameters from the previous step, k-1, are 
used to estimate, or predict, the values of the current step, k. The “past” is 
therefore used in predicting the “present”, using a performance function to 
adjust the coefficients. 
 
In the linear form, adaptive prediction may be formulated as follows: 
 

( ) ( )∑
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i
i itxwty
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 (2.10) 

 
where ∆ denotes a delay in number of sample points. 

2.3.62.3.62.3.62.3.6 Least MLeast MLeast MLeast Mean Squares Adaptive Filterean Squares Adaptive Filterean Squares Adaptive Filterean Squares Adaptive Filter    

Classically, the least mean squares adaptive algorithm has been developed 
from the basis of the steepest descent general optimization algorithm. The 
basic steepest descent method is however modified to use a fixed step size, as 
opposed to performing a line search at each iteration to find a local minimum 
along the search direction. The progression from the classical method of 
steepest descent to the LMS algorithm is shown here as a basis for the 
derivation of an adaptive algorithm that utilises the Spherical Quadratic 
Steepest Descent (SQSD) method of Snyman and Hay (2001). 

2.3.6.1 Method of Steepest Descent 

When using a conventional steepest descent implementation, a gradient 
tolerance εg - a small number close to zero – is defined and used to stop the 
algorithm when the gradient is sufficiently close to zero, and hence near 
enough to the optimum value sought. For this constant step size formulation, 
the gradient tolerance becomes redundant as it is desired that the algorithm 
should maintain a tracking capability.  
 
Normally a “step size” limit εw would be defined to stop the algorithm once 
the steps between iterations becomes so small that adequate proximity to the 
sought optimum has been obtained. For the constant step size algorithm, 
using a step size denoted as λ, this limit becomes inappropriate. A starting 
point w0 for the parameter variable, denoted w is required, and let the 
iteration number be denoted as k. 
 
Test for proximity to the sought optimum by comparing the computed 
gradient to the gradient tolerance εg: 
 

( ) 1
*

1 , −− =〈∇ kgkf www ε  (2.11) 

 
For an algorithm employing explicit line searches, a line search would be 
performed at this point to determine the optimal step size λ. This line search 
in the direction defined by the gradient expression of equation 2.11 may 
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involve function evaluations. For this formulation, using a constant step size, 
this step becomes redundant. 
 
Parameter vector w is updated according to the steepest descent equation: 
 

( )11 −− ∇−= kkk f www λ  (2.12) 

 
Although the last step in the conventional algorithm becomes redundant in 
the constant step size formulation, it is stated for the sake of completeness. 
Test for proximity to the sought optimum by comparing the new point on 
the performance surface, xm, to the previous point  xm-1: 
 

kwkk wwww =〈− −
*

1 ,ε  (2.13) 

 
The exclusion of the step that terminates the optimization process by limiting 
the minimum step size results therein that the algorithm will continue to 
“oscillate” about the sought minimum. It is necessary to exclude this step if 
the algorithm is to maintain a tracking capability. 

2.3.6.2 Steepest Descent to LMS 

The least mean squares algorithm is based on the steepest descent algorithm. 
The most prominent difference between the two algorithms is the way in 
which the gradient of the performance surface is obtained. From Alexander 
(1986): 
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From the formula for the prediction error εk, equation 2.6, it follows: 
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where yk represents the measured data point at sampling instant k (figure 2.2 
refers). From equation 2.15 follows: 
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From equation 2.16, a possible instantaneous estimate of the error surface 
gradient is evident. Substituting into the steepest descent equation 2.12: 
 

kkkk xww λε21 +=+  (2.17) 

 
Equation 2.17 is the mathematical kernel of the least mean squares algorithm. 
It uses an instantaneous estimate of the gradient function in the adaptation of 
the weight vector. The algorithm has become widely used in many adaptive 
applications as a result of its simplicity and stability, in spite of weaknesses 
that it may have. 

2.3.72.3.72.3.72.3.7 Setting LMS PSetting LMS PSetting LMS PSetting LMS Parametersarametersarametersarameters    

Consider the LMS equation governing the updating of the filter weights, 
stated from a linear prediction viewpoint: 
 

∆−−− += kkkk xww 11 λε  (2.18) 

 
It is clear from equation 2.18 that given a weight vector wk-1 the convergence 
of the algorithm will be affected by 3 parameters: 
 

1. Time delay ∆ 
2. Filter length L 
3. Gradient search forgetting factor λ 

 
Gradient search forgetting factor λ is also known as the prediction depth. 
Guidelines for setting the gradient search forgetting factor, or prediction 
depth λ, as extracted from available literature will be discussed here. Section 
2.4 provides guidelines for setting the filter length and time delay, as these 
parameters are common to both adaptive implementations discussed in this 
work. 

2.3.7.1 Forgetting Factor λ 
Geometrical properties of the error performance surface of the LMS 
algorithm dictate that the algorithm will be convergent only if: 
 

0
1

max

〉〉λ
λ

 (2.19) 

 
where λmax is the largest eigenvalue of the input correlation matrix R 
(Widrow & Stearns, 1985). Within these bounds, the forgetting factor λ 
determines the speed of adaptation as well as the noise in the weight vector 
solution. A further more restrictive bound is imposed on λmax: λmax cannot be 
greater than the trace of R, denoted tr[R]. In general then: 
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Both prediction error and the noise estimate in the coefficients of the LMS 
algorithm remain proportional to λ as the adaptation time goes to infinity. 
 
Use of the autocorrelation matrix to determine bounds for λ, as proposed by 
Antoni and Randall (2001), provides a method of using an autocorrelation 
matrix of decreased size, compared to the full autocorrelation matrix. The 
method specifies the computation of an autocorrelation matrix R of size 
dim(R), and computing the largest eigenvalue λ of this autocorrelation 
matrix. Plotting the λ / dim(R) curve then provides a guide as to the point 
where enlarging the autocorrelation matrix size does not result in a 
significantly larger eigenvalue. It is noted by the authors that the maximum 
eigenvalue may be estimated from a moderately sized autocorrelation 
matrix, smaller than the length L of the adaptive filter. 

2.3.82.3.82.3.82.3.8 Spherical Quadratic Steepest DescentSpherical Quadratic Steepest DescentSpherical Quadratic Steepest DescentSpherical Quadratic Steepest Descent    

The spherical quadratic steepest descent method was developed by Snyman 
and Hay (2001) at the University of Pretoria. This method effectively applies 
the steepest descent method to successive simple spherical quadratic 
approximations of the objective function in such a way that no explicit line 
searches are performed in solving the minimization problem. 
 
This development of the spherical quadratic steepest descent adaptive 
algorithm follows the algorithmic development presented by Snyman and 
Hay (2001). Convergence tolerances for the gradient and step size, εg and εx 
respectively, as well as a step limit d>0 are usually chosen. For reasons 
similar to those used in the steepest descent formulation above, the gradient 
and step size tolerances are not used. The step limit d will however be 
defined. 
 
Selection of a starting point w0 also determines the initial curvature c0. In the 

calculation of the gradient ∇f(w) the same instantaneous approximation, 
equation 2.16, as was used for the LMS algorithm will be used: 
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Where the error signal e0 is being calculated in analogous fashion to the LMS 
algorithm: 
 

Tye 0000 xw−=  (2.22) 

 
It is to be noted that ek denotes the exact error at iteration k, while εk denotes 
the expected value of the approximate error, as is later defined. Filter weights 
are updated according to: 
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Step size is limited at this point to be smaller than the step limit d: 
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During successive steps, curvature ck is chosen such that the approximation 
to f(x) interpolates f(x) at both xk and xk-1. 
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It is ensured that the approximate objective function remains positive-
definite by preventing curvature ck from becoming smaller than zero: 
 

010 60 〈∀= −
kk cc  (2.26) 

 
The error signal ek is calculated from the same equation used by the LMS 
algorithm: 
 

T
kkkk ye xw−=  (2.27) 

 
Importantly, it is remarked by Snyman and Hay (2001) that for quadratic 
functions, no step limit d is required. Numerous proofs by different authors 
have been presented that the error surface of an adaptive filter is a quadratic 
function of the weight vector. For the sake of reference, Widrow and Stearns 
(1985) is sited in this regard and discussed in the following section. 
Unconditional convergence, stability and economy are importantly pointed 
out by Snyman and Hay (2001) as being advantages of the SQSD method. 

2.3.92.3.92.3.92.3.9 Convergence of the SQSD based Adaptive AlgorithmConvergence of the SQSD based Adaptive AlgorithmConvergence of the SQSD based Adaptive AlgorithmConvergence of the SQSD based Adaptive Algorithm    

Proof of the quadratic nature of the error surface is provided by Widrow and 
Stearns (1985) as follows: Consider once more equation 2.27, the error signal: 
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Obtain the instantaneous squared error: 
 

k
T
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Assuming ek, yk and xk to be statistically stationary, and taking the statistical 
expected value over k: 
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where E{⋅} denotes the expected value. An input correlation matrix R and a 
cross correlation vector between the desired response and the input 
components p is defined respectively as: 
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The elements of both R and p are constant second order statistics when xk 
and yk are stationary. Designating the expected value of the mean-square 
error by ε: 
 

{ } wpRww T
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T
kkyE 22 −+=ε  (2.32) 

 
Clearly ε is a quadratic function of the components of w, when the input 
components and the desired response are stationary stochastic variables. 
Below in figure 2.3 is shown a sample mean square error surface for a two-
weight system. 
 
In their publication, Snyman and Hay (2001) prove convergence for the 
SQSD method in the general quadratic case. The following theorem is 
presented: 
 
Theorem: The SQSD algorithm (without step size control) is convergent when 
applied to the general quadratic function of the form f(x) = (1/2)xTAx + bTx, 
where A is an n-by-n positive definite matrix and b Є En. 
 
Having presented the quadratic form of the objective function, or error 
signal, of the general adaptive filtering problem, and combining this with the 
theorem above, one may induce that the SQSD adaptive algorithm will be 
convergent in the general case. Herein lies a distinct advantage of the 
spherical quadratic steepest descent implementation: it is expected to be less 
sensitive to the step size parameter than the more conventional LMS 
algorithm. 
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Figure 2.3: Sample MSE surface for two-weight system 

2.3.102.3.102.3.102.3.10 Setting SQSD ParametersSetting SQSD ParametersSetting SQSD ParametersSetting SQSD Parameters    

Spherical quadratic steepest descent updates the filter weights from iteration 
to iteration according to: 
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The curvature ck-1 is computed from the weight vectors w and error signal e 

of the current and previous iterations, as well as the gradient estimate ∇f(w) 
of the current iteration, according to equation 2.25. Its value is prevented 
from turning negative. 
 
Step size is however limited by the parameter d: 
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From the proof of convergence presented by Snyman and Hay (2001), 
convergence should be guaranteed without the use of the step size parameter 
d. Considering the continuous adaptation of the weights, it is evident that d 
will have considerable influence on the speed of adaptation and the amount 
of noise present in the weight vector solution. An interesting paradox is thus 
presented to the user of the algorithm: in spite of guaranteed convergence of 
the algorithm, the solution quality will be adversely affected by too large a 
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step size. Conversely, a high quality solution may be possible by setting d to 
a small value, but at the cost of slow convergence. 
 
Upon considering the possibility of using the exponentially varying step size 
as suggested by Antoni and Randall (2001), a most promising possibility is 
realised: Start off with a large step size for speedy convergence while using a 
small step size to obtain a high quality solution later on. The fact that the 
SQSD method will converge with possibly much larger initial step size than 
LMS may in this way be utilised to obtain full advantage of the exponential 
decrease of the step size as suggested by Antoni and Randall (2001). 
 
Computation of an autocorrelation matrix is a necessary step with the normal 
LMS method, in order to establish bounds for the forgetting factor λ. With 
the spherical quadratic steepest descent approach, this step may be discarded 
as convergence is almost guaranteed. It is expected that the SQSD method 
would be convergent with a step size d much larger than that of the LMS 
forgetting factor λ – possibly orders of magnitude larger. 

2.42.42.42.4 Setting Adaptive Filter ParametersSetting Adaptive Filter ParametersSetting Adaptive Filter ParametersSetting Adaptive Filter Parameters    

For both implementations discussed, the filter length, or number of 
coefficients, and the time delay will influence the convergence behaviour and 
quality of the filtered signal. A brief discussion of guidelines for choosing 
these parameters, obtained from literature, follows. 

2.4.12.4.12.4.12.4.1 Filter Length LFilter Length LFilter Length LFilter Length L    

Choosing the filter length, L, equal to the number of coefficients used in the 
FIR realisation employed in the adaptive algorithm, necessitates a trade-off 
between the resolution in the frequency domain, and the amount of noise 
present in the filter coefficients.  
 
A good approximation to the frequency response of a steady-state adaptive 
line enhancer operating on N sinusoids in white noise is proved by Zeidler, 
Satorius, Chabries and Wexler (1978) to be: 
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where: ∆ : delay 
 L : filter length 
 fn : frequency of n’th sinusoid 
 
Equation 2.35 is valid only for long L, where the linear equations resulting 
from the Wiener-Hopf matrix equation tend to uncouple. 
 
Widrow and Stearns (1985) have shown that noise in the weight vector 
increases proportionally to the length of the weight vector. By virtue of 
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assumptions made, Alexander (1986) arrives at simplified expression for the 
total noise in the weight vector. A similar conclusion is thus reached, albeit 
by a different route and under the restrictions of various assumptions. 
 
By starting from the frequency response equation 2.35,  as provided by 
Zeidler et al. (1978), whom also noted the increase in weight vector noise 
with increasing L, Antoni and Randall (2001) proposed that for two sinusoids 
separated by ∆B [Hz] and sampled at fs [Hz], the filter length L should be: 
 

B

f
L s

∆
=  (2.36) 

 
As mentioned by the authors, the formula above depends on L to be quite 
large, in the order of a few hundreds, and at least L≥2N. 

2.4.22.4.22.4.22.4.2 Time DelayTime DelayTime DelayTime Delay    ∆∆∆∆    

Time delay used in the adaptive line enhancer is intended to cause 
decorrelation between the noise components, while causing a simple phase 
difference between the sinusoidal components. By forming a transfer 
function equivalent to that of narrow-band filters centred at the frequencies 
of the sinusoidal components, the noise component should accordingly be 
rejected, while the phase difference of the sinusoidal components is 
readjusted to cancel at the summing junction. The minimum error signal 
should thus be composed of only the noise component of the input data. 
 
Prediction depth, or time delay ∆, should be chosen long enough so as to 
exceed the correlation length of the noise in the input signal, but not so long 
that it exceeds the correlation length of the periodic components. For pseudo-
periodic signals, having a small distribution in periodicity, possibly 
encountered in vibration signals, this may place a limit on the maximum 
usable delay (Antoni & Randall, 2004). When off-line processing is carried 
out, available data is of finite length and excessive delay may limit the 
amount of data that may be processed. 

2.4.32.4.32.4.32.4.3 Exponentially Decaying Step SizeExponentially Decaying Step SizeExponentially Decaying Step SizeExponentially Decaying Step Size    

Exponentially decaying the prediction depth λ and the step size d of the LMS 
and SQSD algorithms will be jointly discussed here. Similar cautionary 
remarks are applicable to both cases. 
 
Statistical efficiency of a learning algorithm is defined by Widrow and 
Kamenetsky (2003) as the ratio of the quality of the converged solution to the 
amount of data used in training the weights. An efficient algorithm will 
minimize the usage of data while maximizing the quality of the solution. It is 
remarked by Widrow and Kamenetsky that minimizing data usage and 
maximizing the quality of the solution are generally antagonistic. 
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Fast convergence is desirable, and dictates a larger value for the step size or 
forgetting factor, within the limits as appropriate for the algorithm. High 
solution quality is equally desirable, but requires that the step size or 
forgetting factor be smaller. A good compromise is therefore to allow a 
decrease in the step size or forgetting factor. In this way faster convergence 
behaviour could be maintained in the transient adaptation phase, while a 
higher quality solution may be obtained in the steady state phase than may 
be possible with a single constant step size or forgetting factor. 
 
Antoni and Randall (2001) suggested exponentially decreasing the forgetting 
factor λ of the LMS algorithm. Prediction error of the adaptive algorithm 
remains proportional to the forgetting factor λ as adaptation time goes to 
infinity. The amount of noise present in the weight vector solution is also 
proportional to λ (Widrow & Stearns, 1985). Similar arguments hold for the 
step size d of the SQSD algorithm. 
 
Exponential decay fits the purpose of a fast initial decay in the coefficient, 
with asymptotic behaviour in the steady state phase. Antoni and Randall 
(2001) suggested a decay curve with signal dependant parameters A and α 
for the LMS algorithm: 
 

( ) tAet αλ −=  (2.37) 

 
Choosing α is left to the good judgement of the user. This parameter 
determines the rate of decay, and has a pronounced effect on the shape of the 
decay curve. 
 
Widrow and Stearns (1985) provide an upper bound for A by specifying the 
following necessary conditions for convergence of the LMS algorithm: 
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Hence A may at best be as large as the reciprocal of the largest eigenvalue of 
the autocorrelation matrix R. More restrictively A may not exceed the 
reciprocal of the trace of the autocorrelation matrix. 
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3333 Damage Damage Damage Damage DetectionDetectionDetectionDetection Techniques Techniques Techniques Techniques    

Vibration-based damage detection techniques have the goal of enhancing 
changes in a vibration signal caused by damage to gears while remaining 
invariant in the presence of changes caused by normal variations in the 
operating condition of the gears. Ultimately the goal of damage detection 
systems is toward the implementation of condition based maintenance 
strategies. Condition based maintenance requires that component 
replacement should only occur when there is objective evidence of an 
impending failure or fault condition, and as such is classified as a preventive 
maintenance strategy. 
 
Dynamic machinery systems may constantly be exposed to dynamic loads; 
sustained vibratory and impulsive loads. Scheduled maintenance requires 
maintenance inspections, overhauls and part replacement to be frequently 
performed – an expensive and time consuming task. Performing 
maintenance on-condition reduces the frequency of maintenance inspections, 
and keeps healthy components in service until signs of failure or 
unacceptable deterioration in condition are detected. 
 
Initial research in the area of transmission damage detection focussed on 
vibration signal analysis using various signal processing tools available. 
Statistical characteristics of vibration signals in the time domain were 
primarily used initially. The field has expanded to incorporate spectral 
analysis, time-frequency methods and wavelet analysis, and is continually 
expanding at present. A recent survey by Samuel and Pines (Article in press) 
gives an overview of techniques applicable to helicopter transmission 
diagnostics. Helicopter transmissions are often of the epicyclic kind, and are 
thus similar to the epicyclic transmissions studied in this work. 

3.13.13.13.1 Gear Vibration ModelsGear Vibration ModelsGear Vibration ModelsGear Vibration Models    

McFadden (1986) proposed a demodulation technique to obtain amplitude 
and phase modulation functions from a vibration signal. He proposed an 
analytical expression for the total vibration signal of the following form, 
assuming the shaft frequency fr to be constant: 
 

( ) ( )( ) ( )( )∑
=

+++=
M

m
mmrgmm tbtfmTtaXtx

0

2cos1 φπ  (3.1) 

 
The amplitude and phase modulation functions have the following analytical 
form: 
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where: x(t) : continuous time domain amplitude and phase 

modulated gear meshing vibration 
 t : continuous time variable 
 m : index of harmonic number 
 M : number of significant harmonics in x(t) 
 Xm : amplitude of m-th harmonic 
 am : amplitude modulation function of m-th harmonic 
 bm : phase modulation function of m-th harmonic 
 αm,l : initial phase angle of amplitude modulation function 
 βm,l : initial phase angle of phase modulation function 
 fr : shaft rotation frequency 
 Tg : number of gear teeth 
 φm : original or initial phase angle of m-th harmonic 
 l : index of harmonic number in amplitude or phase 

modulation functions 
 L : number of significant harmonics in amplitude or phase 

modulation functions 
 
In the general case, the shaft frequency fr and modulation functions am and 
bm are all functions of time. Equation 3.1 may be re-stated in the discrete 
domain, incorporating temporal variation of the shaft frequency (Bonnardot, 
El Badaoui, Randall, Daniere & Guillet, Article in Press): 
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Consider also equations 3.2 in the discrete domain: 
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where: x(n) : discrete time domain amplitude and phase modulated gear 

meshing vibration 
 fr(n) : shaft rotation frequency as function of discrete time 

variable 
 n : discrete time variable 
 
Since the phase modulation function, bm from equations 3.1 and 3.2, varies 
with time it is interpreted as a speed, or frequency fluctuation, and may be 
included in fr(n). Other variables remain as for equations 3.1 and 3.2. 
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Meshing error will also produce phase modulation of the gear mesh carrier 
signal, due to precession of the contact point about the perfect theoretical 
position. The frequency modulation produced by such errors will however 
be largely deterministic in the rotation domain, as the same meshing errors 
will be reproduced for each revolution of each gear. Meshing error is then 
also contained in the discrete time shaft rotation frequency fr(n).  
 
Two primary contributors to the phase or frequency modulation of a gear 
mesh carrier signal are therefore identified: speed fluctuation and meshing 
error. The meshing error component will occur synchronous with the 
damaged gear’s rotation frequency. Although the speed variation component 
of the modulation may also be synchronous with the rotation of some 
rotating component, possibly the damaged component, it may also be 
asynchronous to the rotation or even completely random in nature. 
 
Brie, Tomczak, Oehlmann and Richard (1997) proposes the following signal 
model for amplitude and phase modulated signals, after modification for 
consistency of notation: 
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where: xk(t) : time domain amplitude and phase modulated gear 

meshing vibration at iteration k 
 ak,m(t) : amplitude modulation law at iteration k 
 φk,m(t) : phase modulation law at iteration k 
 ek,m(t) : additive noise at iteration k 
 k : iteration number 
 
Variables not listed above remain as for equations 3.1 and 3.2. As the model 
employed by Brie, Tomczak, Oehlmann and Richard (1997) is used in an 
adaptive scheme, the iteration number k is introduced in equation 3.5. 
 
Common to all three of the models presented is a periodic sinusoid, an 
amplitude modulation law and a phase or frequency modulation law. The 
phase or frequency modulation is included in the argument of the sinusoid, 
while the amplitude modulation requires a multiplication in the time domain 
of the sinusoid by the modulation law. Relating the different phase and 
frequency modulation laws to one another is a matter of algebraic 
manipulation of the argument of the sinusoid. Similarly, the amplitude 
modulations may be related by algebraic manipulation. 

3.23.23.23.2 TimeTimeTimeTime----Frequency MethodsFrequency MethodsFrequency MethodsFrequency Methods    

Transmission vibration signatures in general consist of three significant 
components: a periodic component due to varying tooth load, a broad-band 
impulsive component due to local impact, and random noise. For 
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undamaged transmissions, the periodic components generally dominate. 
Although not generally strictly sinusoidal, the periodic portion of the 
vibration signal may be approximated to a good degree of accuracy by a 
sinusoid, is in equation 3.1. 
 
With the progression of damage, sinusoidal components exhibit modulation 
phenomena and possibly changes in amplitude. Additionally both broad 
band impulsive components and random noise become more prevalent. 
Trends exhibited by the sinusoidal components are more visible in the 
frequency domain, while the trends exhibited by broad band impulsive 
components are more visible in the time domain (Samuel & Pines, 2004). 
 
In the time-frequency domain, all components of non-stationary signals in 
the frequency range of interest, their sequences, causality and changes with 
time can be examined. Describing the energy density of a signal 
simultaneously in time and frequency is the basic objective of time-frequency 
analysis. Time-frequency analysis provides for better understanding of the 
transient signal components associated with damage (Dowling, 1993). 
 
Fundamentally a joint function of time and frequency, P(t,ω), is sought that 
represents the energy or intensity per unit time per unit frequency of a 
signal, s(t) (Cohen, 1995). Ideally summing up the energy distribution for all 
frequencies at a particular time would give the instantaneous energy, and 
summing up over all times at a particular frequency would give the energy 
density spectrum. Marginals are derived from the joint distribution by 
integrating out the other variables. The instantaneous energy |s(t)|2 and 
energy density spectrum |S(ω)|2 states the marginals of P(t,ω): 
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Provided that the distribution satisfies the marginals of equation 3.6, the total 
energy in terms of the distribution will be equal to the total energy of the 
signal: 
 

( )∫= dtdtPE ωω,  (3.7) 

 
Cohen (1989) proposes a general form of time-frequency distributions: 
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where φ(θ,τ) is a two dimensional function called the kernel. Variables τ and 
θ denote the time and frequency shifts, respectively, used in the calculation 
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of the distribution. Cohen (1995) further states that all time-frequency 
distributions may be obtained from this general class of distribution. The 
kernel determines the distribution and its properties. In terms of the 
spectrum the general class may be stated as: 
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An alternate form of this formulation may be obtained by denoting the 
symmetrical ambiguity function A(θ,τ) as: 
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This formulation is known as the characteristic function formulation. 

3.2.13.2.13.2.13.2.1 SpectrogramSpectrogramSpectrogramSpectrogram    

The spectrogram has been widely used in different fields for the analysis of 
time-varying spectra. A portion of a signal, centred on a particular point in 
time, is used to calculate an energy spectrum attributed to the time point, 
and the computation is repeated for each point in time (Cohen, 1989). In 
terms of the general class of equation 3.8, the kernel φ(θ,τ) of the spectrogram 
is: 
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where h(t) is a suitable window function. This kernel may be expressed in 
the frequency domain in terms of the Fourier transform of the window: 
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Cohen (1989) states that individual intensities of time and frequency are to be 
satisfied for the distribution to be a joint distribution for the intensity. This 
implies that when the frequency variable is integrated out, we should obtain 
the instantaneous power |s(t)|2, and when the time variable is integrated out 
we should obtain the energy density spectrum |S(ω)|2. This in turn 
translates to the following constraints on the kernel: 
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 Considering the preservation of energy, we examine the kernel at θ,τ = 0: 
 

( ) ( )∫= dtth
2

0,0φ   (3.14) 

 
φ(0,0) should be equal to 1 if total energy is to be preserved, which implies 
that the window should be normalised to 1. This condition is known as the 
normalisation condition. It is weaker than the preceding two conditions of 
equation 3.6 in the sense that it is possible to have a joint distribution whose 
total energy is the same as that of the signal, but whose marginals are not 
identically satisfied. The spectrogram is an example of such a distribution.  
 
Consider a window function h(t) centred at t, and calculate the spectrum 
St(ω) of the signal s(τ) multiplied by the window function: 
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In terms of the Fourier transforms of the signal S(ω) and window H(ω), the 
spectrogram may be expressed as: 
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An energy density spectrum, that may be considered as the energy density at 
points t and ω, or the spectrogram is: 
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Different parts of the signal s(τ) are weighted according to the window 
function, h(τ-t). 
 
By examining the equations of the spectrogram in the time and frequency 
domains, respectively, the following conclusions may be reached: The more 
peaked a window is made in the time or frequency domain respectively, the 
better the resolution obtained in the time or frequency domain. Considering 
the uncertainty principle (Cohen, 1994), both h(t) and H(ω) cannot be made 
arbitrarily narrow, and a compromise is made between time and frequency 
resolution in the spectrogram for a particular window. 
 
Wang and McFadden (1993) remark in their publication that too narrow a 
peak suppresses part of the signal due to damage, and broadens the 
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spectrogram in the frequency domain, with consequent loss of resolution. At 
the other extreme, too wide a peak reduces sensitivity to the fault. Plotting 
the kernel of the spectrogram in the ambiguity plane illustrates this: 
narrower windows on the time axis broadens the window on the frequency 
axis. Figures 3.1 and 3.2 illustrate this for a narrow and a wider window, 
respectively, with respect to the time axis. The Gaussian window suggested 
by Wang and McFadden (1993) was used in generating these figures: 
 

( ) 22tceth σ−=  (3.18) 

 
The value of c from equation 3.18 for the figures 3.1 and 3.2 was set to 1, 
while σ was set to 90 for the narrow window and 70 for the wider window. A 
relatively small difference in σ thus delivers a marked change in resolution. 
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Figure 3.1: Narrow Gaussian window spectrogram kernel in ambiguity plane 

3.2.23.2.23.2.23.2.2 WignerWignerWignerWigner----Ville DistributionVille DistributionVille DistributionVille Distribution    

According to Cohen (1989) the Wigner distribution was the first to be 
proposed, and is the most widely studied and applied. The Wigner-Ville 
distribution, as it is also known when the computation is performed using 
the complex analytical signal, is obtained from Cohen’s general class by 
setting the kernel equal to one: φ(θ,τ) = 1. Significant properties of the 
distribution is that it satisfies the marginals of equation 3.6, it is real and time 
and frequency shifts in the signal produce corresponding time and frequency 
shifts in the distribution. 
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Figure 3.2: Wider Gaussian window spectrogram kernel in ambiguity plane 

The Wigner distribution may be expressed in terms of the signal s(t) as 
(Cohen, 1989): 
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In terms of the spectrum, the Wigner distribution becomes: 
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Narayanan and Prabhu (1989) provide an expression convenient for the 
implementation of the discrete Wigner-Ville distribution: 
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This discrete form of the Wigner-Ville distribution employs a window 
function, h(t). The windowed version of the Wigner-Ville distribution is also 
referred to as the pseudo-Wigner-Ville distribution. 
 
Using the analytic form of the signal, conveniently computed by Hilbert 
transform, overcomes the well known issue surrounding the sampling 
frequency when using the Wigner distribution: a sampling frequency of four 
times the bandwidth is required if equation 3.21 is to be applied to real 
sampled data directly (Narayanan & Prabhu, 1989). The Wigner distribution 
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computed using the analytical form of the signal is known as the Wigner-
Ville distribution. 
 
Considering the range of the Wigner distribution in the time and frequency 
domains provides interesting insights into the occurrence of the so-called 
cross terms found in the distribution. A key point to remember in this regard 
is the fact that the Wigner distribution is computed as a sum of products of 
portions of a signal at past and future times, the time into the past being 
equal to the time into the future. For signals of infinite duration, the Wigner 
distribution will therefore be nonzero for all time. Finite support properties 
are satisfied by the Wigner distribution in time and frequency: W(t,ω) = 0 for 
t outside (t1, t2) or for ω outside (ω1, ω2) if s(t) is zero outside (t1, t2) or S(ω) is 
zero outside (ω1, ω2), respectively (Cohen, 1989). 
 
Next consider the Wigner distribution for a portion of a signal in which there 
exists an interval over which the signal is zero. When computing the Wigner 
distribution on a focus point falling inside this zero interval, the distribution 
may not compute to zero even though the signal is equal to zero, due to the 
computation of the distribution as a sum of products of portions of the 
signal. Generally the Wigner distribution is not necessarily zero at times 
when the signal is zero and is not necessarily zero for frequencies that do not 
exist in the spectrum (Cohen, 1995). Manifestations of this phenomenon are 
often popularly referred to as cross terms or interference terms. 
 
Discrete forms of the Wigner distribution often employ a window function, 
such as in equation 3.21. Window functions may be chosen such that local 
signal content surrounding the focus point is emphasized, and the locality of 
the distribution is hence improved. This is accomplished by specifying a 
window function that is peaked around the zero point of the lag variable, τ in 
equation 3.19. The Wigner distribution is highly nonlocal (Cohen, 1995). 
Application of the window function to obtain the pseudo-Wigner 
distribution makes the distribution less so. Cross terms are suppressed to a 
certain extent by the windowing of the Wigner distribution to obtain the 
pseudo-Wigner distribution. 
 
Smoothing of the Wigner distribution in order to suppress some of the cross 
terms has been proposed and applied in various fields of time-frequency 
analysis. The smoothing process is a two dimensional convolution of the 
Wigner distribution with an appropriately chosen smoothing function G(t, 
ω). Smoothing functions may be chosen such that strictly positive Wigner 
distributions are obtained. Cohen (1989) warns that if the smoothing function 
G(t, ω) is taken independent of the signal, the only way to obtain a positive 
distribution is by sacrificing the time and frequency marginals of the 
distribution. 
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Garudadri, Beddoes, Benguerel and Gilbert (1987) provide a simple proof of 
the positivity of a smoothed Wigner distribution. Garudadri et al. further 
show that smoothing the Wigner distribution results in a Wigner distribution 
identical to a spectrogram computed using a Gaussian window. It is further 
shown that smoothing of the Wigner distribution causes a loss of the signal’s 
phase information. It is argued that smoothing for positivity of the Wigner 
distribution eliminates all the phase information from the Wigner 
distribution. Partial smoothing may however be used to suppress negative 
regions and cross terms of the Wigner distribution, and retain the fine 
resolution in both time and frequency. 
 
Both smoothing of the Wigner distribution and the application of a window 
function to obtain the pseudo Wigner-Ville distribution possibly causes the 
loss of time and/or frequency resolution. Though such deterioration in the 
quality of the distribution may be avoided by judicious choice of smoothing 
parameters, experimentation is likely to be required in order to obtain the 
best results. The application of the smoothing procedure further complicates 
the computations necessary to obtain the distribution, and makes the 
application of smoothing procedures less attractive from a computational 
viewpoint. 

3.2.33.2.33.2.33.2.3 Instantaneous Energy DensityInstantaneous Energy DensityInstantaneous Energy DensityInstantaneous Energy Density    

Consider the time marginal of a time-frequency distribution from equation 
3.6: 
 

( ) ( )∫ = 2
, tsdtP ωω  (3.22) 

 
This integration over all frequencies present in the time-frequency 
distribution represents the instantaneous energy of the signal (Cohen, 1995). 
Loutridis (Article in Press) used this marginal condition to compute the 
instantaneous energy from the Wigner-Ville distribution, and applied his 
method to the gearbox diagnostic problem with success. He concludes that 
the energy feature based on Wigner-Ville distribution is a reliable means of 
detecting gearbox failure. 
 
Generally the time marginal condition of equation 3.22 should hold for many 
of the members of Cohen’s general class of time-frequency distributions. The 
possibility therefore exists of applying Loutridis’ method to other members 
of the Cohen general class. For the Wigner-Ville distribution, Loutridis 
suggested computing the time marginal by taking the absolute value of the 
Wigner-Ville distribution: 
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In the discrete domain, Loutridis (Article in Press) suggests computing the 
instantaneous energy by summation over all frequency bins and dividing the 
result by the number of bins for normalisation. 
 
For the spectrogram, which is a positive distribution, the instantaneous 
energy may be expressed in continuous form as: 
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A similar approach to that of the Wigner-Ville distribution may be followed 
in the discrete domain: summation over all frequency bins and dividing the 
result by the number of bins. 
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4444 Experimental WorkExperimental WorkExperimental WorkExperimental Work    

Algorithm development involved testing by numerical simulation, as well as 
experimental testing. Numerical test cases were tailored to each algorithm’s 
requirements. Three experimental test benches were used in the process of 
developing and testing the algorithms discussed: a simple cantilever beam 
experiment, an existing conventional gearbox test bench, and an epicyclic 
gearbox test bench that was developed for this work. 

4.14.14.14.1 Experimental Test BenchesExperimental Test BenchesExperimental Test BenchesExperimental Test Benches    

Three experimental test benches were used in development and verification 
of the algorithms discussed: 
1. Cantilever Beam Simulator 
2. Conventional Helical Gearbox Test Bench 
3. Epicyclic Gearbox Test Bench 
 
Each of the test benches were developed and used with particular purposes 
in mind. 

4.24.24.24.2 Cantilever BeamCantilever BeamCantilever BeamCantilever Beam Simulator Simulator Simulator Simulator    

Structure borne noise and structural response to vibration signals may in 
certain cases drastically alter a vibration signal as it propagates through the 
structure, from its origin to the observation point. Observation point in this 
context is meant to imply the measurement position, i.e. the point where the 
transducer or sensor is applied to take its measurement from the structure. 
 
Testing in an actual experimental environment is thus required to qualify the 
adaptive filter algorithms. With this goal in mind, and in absence of the 
larger gearbox test benches, it was deemed appropriate to carry out tests on a 
simple experimental bench that could be constructed quickly and 
inexpensively. A controlled environment that had some measure of 
structural response that would affect the vibration signals was required. 
Experience in the behaviour of the adaptive algorithms in a measured signal 
environment was required, before progressing to the more complex gear 
vibration signals. 
 
Cantilever beam experiments that used electro-dynamic actuators to excite 
the beams were available in the laboratory. It was decided to modify one of 
these experiments to include a second source of excitation. This would 
provide a test bench that included a degree of structural response to the 
vibration signals, and would provide more than one source of vibration. The 
structural transfer function would modify the vibration signals as the signals 
propagated through the structure. The behaviour of the adaptive filter 
algorithms in a structurally-modified vibration environment with multiple 
sources of excitation could be studied and confirmed experimentally using 
this test bench. 
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4.2.14.2.14.2.14.2.1 Experimental GoalExperimental GoalExperimental GoalExperimental Goal    

After having tested the adaptive filters on numerical test cases, testing in an 
actual experimental environment was required. The behaviour of the filter 
algorithms when exposed to a signal originating from multiple sources and 
modified by a structural transfer function is of importance, considering the 
multi-machine environment on the aircraft from which this work is 
motivated. An environment containing at least 2 sources of vibration, and a 
structural transfer function was required. 
 
Convergence behaviour of the algorithms needed to be studied. Various 
parameters of each algorithm, in a direct or indirect fashion, contribute to the 
convergence behaviour of the algorithm. The quality of the filtered solution 
obtained is of paramount importance. The purpose of this simple phase of 
experimental testing was principally to gain experience with the adjustment 
of convergence parameters for each algorithm. Secondly, a convenient 
platform with sufficient control over the input signals used was required to 
evaluate the convergence behaviour of the adaptive algorithms under 
various conditions. Thirdly, the effect of exponentially decreasing the step 
size parameter of the adaptive algorithms was investigated. 

4.2.24.2.24.2.24.2.2 Experimental SetupExperimental SetupExperimental SetupExperimental Setup    

The cantilever beam simulator is shown in schematically in figure 4.1. Figure 
4.2 displays a photograph of the cantilever beam simulator experiment, and 
the measurement hardware used. The measurement hardware consisted of 
two accelerometers, two load cells, a four-channel ICP amplifier for the 
accelerometers and load cells, a four-channel data acquisition unit and a 
personal computer. The Siglab® data acquisition unit incorporated anti-
aliasing filters, and performed the analogue-to-digital conversion function. 
ICP accelerometers were used with sensitivities of 100 mV/g. 
 
Electro-dynamic actuators provided excitation to the structure. The actuators 
were provided with control signals using the same Siglab® analyzer as with 
which the measurements were taken. The excitation signals consisted of 
various combinations of sinusoids, and in certain cases additive white noise. 
Starting with a single source of excitation, the experiments grew in 
complexity to dual source excitation with additive noise. 
 
During each experiment, it was attempted to separate the deterministic parts 
from the noise. The experiments also provided the opportunity to become 
familiar with the reaction of the algorithms to changes in input parameters. 
Valuable experience was gained from these experiments with the adaptive 
filters’ input parameters. 
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Figure 4.1: Cantilever Beam Simulator Schematic 

 
 

 

Figure 4.2: Cantilever Beam Simulator Experiment 

 



  Chapter 4 
__________________________________________________________________________________________ 

 

  55 

4.2.34.2.34.2.34.2.3 Experimental ProcedureExperimental ProcedureExperimental ProcedureExperimental Procedure    

Experiments with the cantilever beam simulator involved various tests run at 
different excitation frequencies. The measured acceleration signal was found 
to be different from the pure sinusoidal input signals. This is attributed to the 
structure’s response to the excitation, and some random measurement noise. 
It is assumed here that the noise is white in nature, with a Gaussian 
distribution. The source of this random noise is partly attributed to the 
structural response to the excitation, and partly to electric measurement 
equipment noise. 
 
Different excitation frequencies and different sampling rates were used to 
record a number of signals from the accelerometers and load cells. Table 4.1 
details the significant excitation parameters used. In each case the sinusoidal 
components were dominant in signals, in spite of the white noise that was 
added. It was expected that the structure and measurement hardware would 
contribute to the noise in the measured signals. 

Table 4.1: Cantilever Beam Excitation 

Channel 
1 

Channel 
2 

Channel 2 
phase 

40 Hz 40 Hz 0 
40 Hz 40 Hz random offset 
45 Hz 45 Hz 30 deg 
45 Hz 47 Hz 0 

 
The recorded signals were then filtered using the adaptive line enhancer 
algorithms – the LMS and the SQSD based filters. Different step size 
parameters, λ for LMS and d for SQSD, were used to determine the effect of 
the step size parameter on the convergence of the algorithms. The feasibility 
of exponentially decreasing the step size was investigated by considering 
convergence with a constant step size as opposed to the convergence of 
exponentially decreasing step size.  
 
Data presented are from the second accelerometer. The filter length N was 
determined from equation 2.36, with ∆B=2 Hz. Table 4.2 provides pertinent 
signal parameters for the data set under consideration. 

Table 4.2: Cantilever Beam Signal Parameters 

Description Variable Value Units 
Sampling frequency fs 2560 Hz 
Excitation frequency 1   45.0 Hz 
Excitation frequency 2   47.0 Hz 
Frequency separation ∆B 2.0 Hz 
Filter Coefficients   1280   
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4.2.44.2.44.2.44.2.4 Experimental FindingsExperimental FindingsExperimental FindingsExperimental Findings    

Towards achieving the goal of gauging the sensitivity of the adaptive 
algorithms to changes in the step size parameters, data was filtered using 
different constant, as well as exponentially decreasing step sizes. The 
squared prediction error and Power Spectral Densities of the prediction error 
and filtered signals are presented. Figure 4.3 shows a power spectral density 
of the original data, in a frequency range from 30 Hz to 60 Hz where most of 
the activity was centred, plot on a decibel scale. 
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Figure 4.3: PSD of Original Acceleration 

4.2.4.1 Least Mean Squares based Adaptive Line Enhancer 
To gain an understanding of the convergence behaviour of the adaptive 
algorithms employed, the squared prediction error, the PSDs of the 
prediction error, as well as PSDs of the filtered signal will be considered. 
When computing the PSD of filtered data and squared prediction error, care 
has to be exercised that data points from the transient adaptation phase do 
not introduce spurious content into the computations’ results. To this end, 
the transient parts of the signals were excluded from the PSD computations. 
 
Figure 4.4 shows the squared prediction error of the LMS implementation for 
step sizes of a) λ=0.1, b) λ=0.01, c) λ=0.001 and d) λ=0.0001 respectively. The 
squared prediction error is the square of the difference between the 
prediction made by the filter algorithm, and the actual data point measured. 
Convergence of the filter algorithm, or prediction algorithm, is therefore 
indicated by a decrease in the squared prediction error. Fluctuation of the 
prediction error is to be expected as the signal is not identically stationary, 
due to its own properties and the properties of additive noise. 
 
 Note the faster convergence achieved for the larger step sizes during the 
transient initial phase. The smaller step size leads to slower convergence, but 
the fluctuation of the weight vector solution about the optimal solution in the 
steady state phase is also smaller. A higher quality solution is thus eventually 
obtained by the smaller step sizes, at the price of slower convergence. 
 
Observe from figure 4.4 a) the activity over the first 8000 data points: the 
transient adaptation phase for λ=0.1. The bulk of the transient activity occurs 
over the first 5000 data points. Subsequent to this transient phase, there is 
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still some fluctuation over the rest of the data. These fluctuations in the 
steady phase are attributed to additive noise, and to the fact that the data 
may not be identically stationary. 
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Figure 4.4: LMS Squared Prediction Error 

For the step size parameter λ=0.01, the transient adaptation phase is still 
limited to the first 8000 points of data in figure 4.4 b). Transient activity is 
however more spread out over these 8000 data points than for the larger step 
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size of figure 4.4 a). Fluctuations in prediction error are still present over the 
rest of the data, as is to be expected. 
 
In order to obtain a solution of higher quality, the step size was further 
reduced to λ=0.001, the squared prediction error of which is shown in figure 
4.4 c). The transient adaptation phase still extends over the first 8000 data 
points. There is however a marked change during this phase when compared 
to figures 4.4 a) and 4.4 b): The squared prediction error decreases 
remarkably more smoothly over the transient adaptation phase. As before, 
variations in squared prediction error are still present over the rest of the 
data. 
 
Slow convergence of the LMS algorithm is often mentioned in the literature 
as a complaint against the algorithm. Figure 4.4 d), where λ=0.0001, provides 
an example of such a case. The transient adaptation phase extends almost 
over the entire data record. Even though the squared prediction error seems 
more stable after 25 000 data points, there is still a decrease visible between 
the 25 000’th data point and the end of the record. Very little data would thus 
be available for further processing using a step size λ=0.0001. When 
generating the spectra presented here, data from sample point 20 000 
onwards was used to eliminate the transient behaviour over the first 20 000 
points. 
 
Using the autocorrelation matrix to determine bounds for λ, as proposed by 
Antoni and Randall (2001) and discussed under section 2.5.3.1, could prevent 
the excessively slow convergence observed in figure 4.4 d). Examining the λ 
/ dim(R) curve in figure 4.5 shows that the λ / dim(R) ratio stabilises for an 
autocorrelation matrix dimension, dim(R), of 200. The value of λ 
corresponding to this is around 0.05 – two orders of magnitude larger than 
λ=0.0001 used when figure 4.4 d) was generated. 
 
Although it is remarked by Antoni and Randall (2001) that the 
autocorrelation matrix method is not infallible, it does in this case prove to 
provide a guide for choosing the step size parameter λ. Throughout 
processing the data recorded during the cantilever beam experiments, the 
autocorrelation matrix method was used to determine an initial step size 
parameter λ. Although this method does not in any way guarantee 
convergence of the LMS based adaptive filter, it proved to be a valuable 
means of selecting a starting point in as far as the step size parameter is 
concerned. 
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Figure 4.5: Step Size vs. Autocorrelation Matrix Dimension 

Considering the squared prediction error in isolation neglects the quality of 
the weight vector solution obtained. A measure of the conformance of the 
filtered signal to the requirement set for the adaptive algorithm should also 
be considered. In this work, energy and its distribution at certain frequencies 
are of interest. Hence spectra generated by FFT, PSD or time-frequency 
methods will be used in order to assess the quality of the solution obtained 
from the adaptive filtering operations. 
 
From table 4.2 the excitation frequencies of 45 Hz and 47 Hz may be 
extracted. Observe also the peaks at 45 Hz and 47 Hz on the PSD of the 
original unfiltered acceleration signal, figure 4.3. Ideally the prediction error 
will not include components of the deterministic excitation signal, i.e. 
significant activity at the excitation frequencies of 45 Hz and 47 Hz. It is 
desirable for the filtered signal to not only contain peaks at the excitation 
frequencies, but also that the level of these elements should be enhanced 
when compared to the unfiltered signal. 
 
Power spectral densities of the prediction error are shown in figure 4.6 for 
step sizes of a) λ=0.1, b) λ=0.01, c) λ=0.001 and d) λ=0.0001 respectively. 
There is present in the power spectral density of the prediction error peaks at 
47 Hz for all four of the step size parameters λ, in figure 4.6. The level of this 
peak rises from approximately -20 dB to +10 dB as the step size parameter 
decreases from λ=0.1 to λ=0.0001. Peaks at 45 Hz only become prominently 
visible for step sizes smaller than λ=0.001. 
 
Filtered signals’ power spectral densities are shown in figure 4.7 for step 
sizes of a) λ=0.1, b) λ=0.01, c) λ=0.001 and d) λ=0.0001 respectively. 
Prominent peaks are present at the excitation frequencies for all four of the 
step size parameters employed. 
 
Prominent peaks at 45 Hz and 47 Hz are present on the PSD of figure 4.7 a) 
for λ=0.1. Surrounding peaks attributable to noise are however more 
prominent than for the unfiltered case of figure 4.3. Although the level of the 
excitation related peaks are unaltered, the levels of the surrounding peaks 
have increased, and it may be concluded that the effect of the filtering 
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operation has been limited to the introduction of additional noise. Clearly, 
although it may be argued that the filter successfully converged to a stable 
solution, the quality of this solution is not as high as desired. The large step 
size of λ=0.1 does however converge, in spite of being larger than λ=0.05 as 
suggested by the method of Antoni and Randall (2001). 
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Figure 4.6: PSD of LMS Prediction Error 
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Figure 4.7: PSD of LMS Filtered Signal 

Using λ=0.01 does not improve the situation: The peaks at 45 Hz and 47 Hz 
on figure 4.7 b) stays at the same level as for the unfiltered case, while the 
surrounding peaks are emphasised even more than for the larger step size 
parameter λ=0.1. Note that λ=0.01 is smaller than the step size recommended 
from the method of Antoni and Randall (2001) of λ=0.05, and it would 
therefore be expected that a superior solution would be obtained in this case. 
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Again convergence to a stable solution has been attained. The prediction 
error seems to contain mostly data from sources other than the excitation, 
from consideration of the PSD of the prediction error, figure 4.6 b). The 
quality of the solution is however still less than desired, because of the 
additional peaks present in the PSD of the filtered data, figure 4.7 b). 
 
Although the PSD of the prediction error for a step size parameter λ=0.001 
does contain a prominent peak at 47 Hz on figure 4.6 c) , the peaks associated 
with the excitation at 45 Hz and 47 Hz are more prominent on the PSD of the 
filtered signal of figure 4.7 c). Peaks not stemming from the excitation 
frequencies are present in the PSD of the filtered signal presented in figure 
4.7 c), but are smaller relative to the peaks associated with the excitation, 
than for the larger step sizes. A solution of better quality has thus been 
obtained, with an acceptable rate of convergence. Comparing this solution to 
the PSD of the unfiltered signal, figure 4.3, the unfiltered signal still makes a 
clearer case for the purpose of identification of the driving excitation 
frequencies. 
 
Peaks attributable to the excitation, at 45 Hz and 47 Hz, are clearly the most 
significant features of the PSDs of the prediction error and filtered signal, 
figures 4.6 d) and 4.7 d), respectively. A substantial component of the error is 
thus made up of deterministic signal components which do not belong to the 
error category. This, together with the excessively slow convergence may 
lead to the rejection of the filtered data when λ=0.0001. It has to be noted that 
the most significant features of the filtered signal’s PSD are the peaks 
associated with the excitation frequencies. 
 
These results are in agreement with existing adaptive filter literature. A 
conclusion that may be reached from these constant step size parameter 
experiments is that the prediction error may be used as a measure or 
indication of convergence for the algorithms. In cases where convergence or 
lack thereof, needs to be confirmed, the squared prediction error may be 
used as an indication. The converged case shows a decrease in prediction 
error when convergence is achieved. Considering prediction error in 
isolation may however lead to unexpected results. It is pointed out that the 
filtered signal, or some of its properties or characteristics, should also be 
considered to gauge the quality of the solution obtained and ensure 
satisfaction. 

4.2.4.2 Spherical Quadratic Steepest Descent based Adaptive Line Enhancer 
As for the LMS algorithm’s case, the squared prediction error, the PSDs of 
the prediction error, as well as PSDs of the filtered signal will be considered 
in order to asses the SQSD algorithm’s behaviour. When computing the PSDs 
of filtered data and squared prediction error, the transient parts of the signals 
were excluded from the PSD computations in order to prevent the transient 
parts from influencing the computations. 
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Figure 4.8 shows the squared prediction error of the SQSD based adaptive 
line enhancer implementation for step sizes of a) d=0.1, b) d=0.01, c) d=0.001 
and d) d=0.0001 respectively. The squared prediction error is the square of 
the difference between the prediction made by the filter algorithm, and the 
actual data point measured, and a decrease in the squared prediction error 
may indicate convergence of the algorithm. As for the LMS filter, fluctuation 
of the prediction error is to be expected due to non-stationarity of the signal. 
 
Larger step sizes still achieve faster convergence during the transient initial 
phase. As for the LMS algorithm, the smaller step size leads to slower 
convergence, but the fluctuation of the weight vector solution about the 
optimal solution in the steady state phase is also smaller. Based on the 
squared prediction error it may therefore be concluded that a higher quality 
prediction is eventually obtained by the smaller step sizes, at the price of 
slower convergence. 
 
Using a step size parameter d=0.1 resulted in the squared prediction error 
graph of figure 4.8 a). The transient adaptation phase is harder to distinguish 
than was the case with the LMS based filter using the same step size. It 
appears that most of the adaptation occurred over the first 8000 data points. 
The fluctuation in the prediction error is much larger than that of the LMS 
case of figure 4.4 a). From considering the squared prediction error only, it 
would thus appear that the SQSD based algorithm has not fared as well as 
the LMS algorithm for the same step size parameter of 0.1. 
 
Proceeding to attempt to enhance the effect of the adaptive filter, a smaller 
step size of d=0.01 was applied, the squared prediction error of which is 
shown in figure 4.8 b). There is much similarity between figures 4.8 b) and 
4.4 b). It is noteworthy that the fluctuation present in the prediction error is 
slightly larger for the SQSD case than for the LMS case. Transient adaptation 
behaviour occurs over the first 8000 points, while the expected fluctuation in 
the mean square error persists over the remainder of the data. 
 
Using yet smaller step size parameter, d=0.001, yields slower adaptation over 
the first 8000 data points, but marginally better fluctuation in prediction error 
in the steady state phase over the rest of the data record as shown in figure 
4.8 c).  Fluctuation in the prediction error after the transient adaptation phase 
compares well with that of the LMS case. 
 
For the new SQSD adaptive filter, it is also possible to demonstrate a case of 
slow convergence by selecting a small step size parameter d=0.0001. 
Convergence has not strictly been attained over the entire data record: figure 
4.8 d). As for the LMS case, although convergence seems likely, very little 
useable filtered data will result from using such a small step size. 
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Figure 4.8: SQSD Squared Prediction Error 

 
Excitation frequencies as listed in table 4.2 still apply, as does the PSD of the 
unfiltered signal from figure 4.3. It is desirable that the prediction error will 
not include components of the deterministic excitation signal, and for the 
filtered signal to not only contain peaks at the excitation frequencies, but also 
that the level of these elements should be enhanced when compared to the 
unfiltered signal. 
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Power spectral densities of the prediction error are shown in figure 4.9 for 
step sizes of a) d=0.1, b) d=0.01, c) d=0.001 and d) d=0.0001 respectively. 
Peaks at the excitation frequencies are identifiable for the smaller two step 
sizes, d=0.001 and d=0.0001, but not for the larger step sizes.  
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Figure 4.9: PSD of SQSD Prediction Error 
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SQSD based filtered signals’ power spectral densities are shown in figure 
4.10 for step sizes of a) d=0.1, b) d=0.01, c) d=0.001 and d) d=0.0001 
respectively. Peaks are present at the excitation frequencies for all four of the 
step size parameters employed, although the peak at 47 Hz for the largest 
step size parameter of d=0.1 is small. 
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Figure 4.10: PSD of SQSD Filtered Signal 
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No peaks are discernable at 45 Hz or 47 Hz on the PSD of the squared 
prediction error for the largest step size, d=0.1 of figure 4.9 a). As the squared 
prediction error, shown in figure 4.8 a), in this case does not provide clear 
and concise evidence of convergence, little may be concluded from these 
figures, apart from the apparent lack of proper convergence. The PSD of the 
filtered signal, shown in figure 4.10 a), contains a clear peak at 45 Hz, but 
only a small peak at 47 Hz. This compares poorly with the PSD of the 
unfiltered signal of figure 4.3. Although the PSD of the filtered signal of 
figure 4.10 a) contains fewer peaks, the noise floor around the 45Hz peak has 
been raised. The prediction error of the SQSD based filter in figure 4.8 a) is 
also much noisier than with the LMS case of figure 4.4 a), although no 
distinct peaks are observable on the PSD of the squared prediction error at 
the 45Hz and 47Hz excitation frequencies – figure 4.9 a). 
 
Prediction error frequency content on the PSD of figure 4.9 b) appears devoid 
of significant content at the excitation frequencies of 45 and 47 Hz. A small 
artefact does exist at 47Hz though. The filtered signal exhibits peaks at 45 Hz 
and 47 Hz, although the peak at 47 Hz is not as significant as one would like. 
The decreasing squared prediction error indicates convergence for this case 
of d=0.01. It is clear that the filter is converging to an acceptable solution for 
enhancement of the deterministic signal components. It is however desirable 
to achieve a solution with less noise present in the filtered signal. 
 
For the step size parameter d=0.001, the PSD of the prediction error, shown 
in figure 4.9 c), exhibits peaks at 45 Hz and 47 Hz – the excitation 
frequencies. Corresponding peaks at 45 Hz and 47 Hz are however more 
prominent than for the larger step sizes on the PSD of the filtered signal in 
figure 4.10 c). Especially the peak at 47 Hz has been enhanced. Although the 
prediction error does contain elements from the excitation, there has been 
clear improvement in the filtered signal’s PSD. 
 
Prominent peaks are visible at 45 Hz and 47 Hz in both the PSD graphs of the 
prediction error and the filtered signal, figures 4.9 d) and 4.10 d), for the step 
size parameter d=0.0001. The prediction error hence contains a significant 
part of the deterministic signal. Such results are not useful for the purpose of 
signal enhancement. During the calculation of the PSDs, only the second part 
of the data record from the 20 000th sample point was used in an attempt to 
minimise the effect of the transient adaptation phase. The slow adaptation 
rate exhibited by the squared prediction error of figure 4.8 d) clearly implies 
that adequate convergence has not been attained with this small step size 
parameter. 

4.2.4.3 Exponential Decrease of the Step Size Parameter 

Exponentially decreasing the step size parameter of the adaptive algorithm 
offers the fast convergence advantage of larger step sizes, as well as the 
higher solution quality obtained from a smaller step size parameter, as 
discussed under 2.7.3. The step size parameters λ and d were decreased 
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exponentially from 0.01 to 0.001 and from 0.005 to 0.0005, respectively, in 
order to asses the feasibility of this approach. Figure 4.11 a) shows the 
squared prediction error for the LMS case, while figure 4.11 b) shows the 
squared prediction error for the SQSD based algorithm.  
 
From the squared prediction error depicted in figure 4.11 a) it can be seen 
that the transient adaptation phase occurs over the first 8000 points, 
approximately. A much lower prediction error is attained quicker than for 
the case of a constant λ=0.001 though: compare figures 4.4 c) and 4.11 a). The 
prediction error in the steady state phase compares well with that of the case 
λ=0.001, figure 4.4 c). 
 
The step size parameter d was decrease exponentially from 0.005 to 0.0005 to 
investigate the feasibility of this technique, considering the SQSD method. 
Figure 4.11 b) shows the squared prediction error obtained. The transient 
adaptation phase extends approximately over the first 8000 points. The low 
fluctuation of prediction error in the steady state portion indicates high 
prediction accuracy. 
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Figure 4.11: Squared Prediction Errors, Exponentially Decaying Step Size 

In both cases, judging only from the squared prediction error, it seems that 
the fast rate of convergence of the larger factor is indeed maintained, as is the 
higher solution quality of the smaller forgetting factor. The exponential 
decrease curve was chosen such that most of the decay would occur over the 
first 10 percent of the data. Figure 4.12 shows the decay curve of λ – the LMS 
forgetting factor. The SQSD algorithm’s decay curve looks similar to that of 
the LMS algorithm. 
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Figure 4.12: Exponentially Decaying Forgetting Factor, λ=0.01 to 0.001 

PSDs of the squared prediction errors for the LMS and SQSD cases, and PSDs 
of the signals filtered by the LMS and SQSD based adaptive line enhancers 
are shown as figure 4.13 a) and b), and c) and d), respectively. Both the PSDs 
of the prediction errors, figures 4.13 a) and b), exhibit peaks at 45 Hz and 47 
Hz: peaks stemming from the impending structural excitation. The peaks at 
45 Hz are poorly defined, and not clearly distinguishable from the 
surrounding activity. It is therefore concluded that the prediction error, in 
both cases, contains at least some of the deterministic signal content. 
 
PSDs generated from the filtered signals contain significant peaks at 45 Hz 
and 47 Hz. In both the case of the LMS adaptive line enhancer, figure 4.13 c), 
and that of the SQSD adaptive line enhancer, figure 4.13 d), the peaks at 45 
Hz and 47 Hz are the most prominent components of the spectrum. 
Considering the dominance of the peaks concurrently with the spectral 
symmetry about 45 Hz, a diagnosis can be made as to the driving excitation 
frequencies impending on the structure. As in the preceding cases, the 
transient adaptation phase was not included in the calculations of the PSDs. 
 
Use of the exponentially decreasing step size has in this case provided for 
fast convergence while maintaining good solution quality. The SQSD filtered 
signals PSD of figure 4.13 d) appears spikier than that of the LMS case of 
figure 4.13 c). The peaks in the SQSD case are however slightly better 
defined, as the surrounding noise has been suppressed. There is still a lot of 
noise present on the PSDs in both cases though. In both cases however, the 
use of the exponentially decreasing step size parameters has resulted in PSDs 
that present the signal frequency content more clearly than for the constant 
step sizes: compare figures 4.7, 4.10 and 4.13. 
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Figure 4.13: Exponentially Decreasing Step Size Parameter PSDs 
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4.34.34.34.3 Conventional Gearbox Test BenchConventional Gearbox Test BenchConventional Gearbox Test BenchConventional Gearbox Test Bench    

Gear vibration signals are generally not pure sinusoids (Randall, 1982). 
Amplitude and phase modulations, that give rise to the occurrence of side 
bands in the signal spectrum, are present in these signals. Though theoretical 
models exist that simulate the measured gear vibration signals, actual 
measured signals are preferable from an application point of view. 

4.3.14.3.14.3.14.3.1 Expected Conventional Gear VibrationExpected Conventional Gear VibrationExpected Conventional Gear VibrationExpected Conventional Gear Vibration    

Gear vibration signals are characterized by a periodic signal at the tooth 
meshing rate which is due to deviations from the ideal tooth profile, either 
from tooth deflection under load or geometrical profile errors. The following 
discussion draws on Randall (1982). 
 
Tooth deflection under load tends to give a sinusoidal waveform of stepped 
nature because of periodically varying compliance as the load is shared 
between different numbers of teeth. The signal hence includes several 
harmonics of basic tooth meshing frequency. Tooth deflection is however 
largely dependant on load. Tooth deflection will fluctuate with load, and 
cause amplitude modulation of the resulting vibration signal. A possible 
source of load variation, in spite of constant system load, is eccentricity of 
one of the gears. Amplitude modulation of a signal gives rise to symmetric 
sidebands about that signal’s carrier frequency, spaced on either side of the 
carrier frequency by the modulation frequency. 
 
Localized tooth faults result in modulation by a short pulse of length of the 
order of the tooth meshing period, repeated every revolution, and giving rise 
to a large number of side bands of almost uniform low level. For more 
distributed faults, as the fault envelope in the time domain widens, the 
corresponding envelope in the frequency domain becomes narrower and 
higher, and the resulting modulation products become more prominently 
grouped around the tooth meshing harmonics. 
 
Frequency modulation will occur when the rotational speed of the gear is not 
constant or the tooth spacing is not perfectly uniform. Fluctuations in the 
tooth contact pressure which give rise to amplitude modulation must 
simultaneously result in fluctuating torque applied to the gears, and hence 
result in angular velocity fluctuations at the same frequency. Frequency 
modulation of a carrier signal, even by a pure tone, gives rise to a whole 
family of sidebands with spacing equal to the modulation frequency. 
 
Amplitude or phase modulation, in isolation, produces symmetrical families 
of sidebands about the carrier frequency. The phase relationships on either 
side of the carrier frequency are different though, and the combination can 
give reinforcement on one side and cancellation on the other side of the 
carrier frequency. The manner in which this happens is very sensitive to the 
initial phase relationships of the amplitude and frequency modulations. 
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4.3.24.3.24.3.24.3.2 Experimental GoalExperimental GoalExperimental GoalExperimental Goal    

Having confirmed the convergence behaviour of the adaptive algorithms in a 
simplified vibration signal environment, exposure to gear vibration signals 
was required. This phase of testing was meant to be a transitory testing 
ground: it would provide conventional gear vibration signals that were less 
complex than those from epicyclic gearboxes. 
 
Damage was already present on the test setup: a tooth had been removed 
from the input gear. As testing on the conventional gearbox test bench was 
regarded as a transition from the very simple cantilever beam to the more 
complicated epicyclic gear vibration signals, it was not considered worth 
while to generate undamaged condition data on this test bench.  

4.3.34.3.34.3.34.3.3 Experimental SetupExperimental SetupExperimental SetupExperimental Setup    

An existing conventional gearbox test bench provided the opportunity to 
study the behaviour and applicability of the adaptive algorithms in a 
measured gear vibration environment. A conventional single stage helical 
gearbox is used on the test bench, mounted between two larger gearboxes. 
Vibration was measured on the casing of the gearbox by means of stud 
mounted accelerometers. The test bench was driven by a synchronous motor 
controlled by a frequency drive, and load was provided by a generator 
combined with a resistance bench. Figure 4.14 shows the experimental setup. 
 

 

Figure 4.14: Conventional Helical Gearbox Test Bench 

Measurement hardware consisted of three accelerometers, a four-channel 
ICP amplifier for the accelerometers, a four-channel data acquisition unit and 
a personal computer. As before the Siglab® data acquisition unit incorporated 
anti-aliasing filters, and performed the analogue-to-digital conversion 
function. 
 
Accelerometers with nominal sensitivities of 500mV/g were used. The 
primary accelerometer was mounted in the vertical plane on the central 
gearbox. A second accelerometer was mounted in the horizontal plane, also 
on the central gearbox. The third accelerometer was mounted on the third 
gearbox, in the vertical plane, and was intended as a redundant reference. 
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Damage was seeded on the central smallest gearbox by removal of one of the 
teeth from the driving gear. Figure 4.15 shows a photograph of the damaged 
drive gear mounted in the gearbox, with one of the teeth removed towards 
the top of the gear. Data was recorded at various sampling frequencies and 
running speeds. In each case the gear mesh frequency and its harmonics 
were the dominant elements of the spectrum in the appropriate frequency 
band. 
 

 

Figure 4.15: Damaged Drive Gear 

4.3.44.3.44.3.44.3.4 Experimental ProcedureExperimental ProcedureExperimental ProcedureExperimental Procedure    

Damage detection techniques were combined with the adaptive filters to 
process the data for enhanced diagnostic capability during the experiment. 
Both the spherical quadratic steepest descent and the steepest descent based 
LMS filter algorithms were used. Spectral analyses, as well as time-frequency 
methods (spectrogram and Wigner-Ville distribution) were used to judge the 
effectiveness of the filtering algorithms. Although it is possible to attempt 
diagnosis of damage, judged by the prominence of the sidebands 
surrounding the meshing frequency, this was not attempted during the 
course of these experiments; the reason for this simply being the absence of 
data from the undamaged condition to form a basis for objective judgement. 
Evidence of damage is however pointed out on the time-frequency diagrams. 
 
Data was recorded from the three accelerometers mounted on the test bench. 
The primary vibration data source was the accelerometer mounted in the 
vertical plane on the central gearbox, and assigned to channel 1 on the 
analyzer. No additional filtering was performed, apart from the built-in anti-
aliasing filters incorporated in the analyzer. As for the cantilever beam 
experiment, different sampling frequencies were used for different batches of 
test runs. 
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DC offsets from zero mean was removed by computing a least-square fit of a 
straight line to the data, and subtracting the resulting function from the data. 
Band-pass filtering of the signals about the meshing harmonics of interest 
was carried out in an attempt to narrow the spectral content of the signal, 
and “focus” the diagnostic methods on a particular portion of the spectra. 
Digital FIR filters were used, and the non-causal filtering approach discussed 
by Gustafsson (1996) was implemented to produce filtered signals with 
minimal phase distortion. 
 
Succeeding the initial preparation of the signals – digitization, de-trending 
and band-pass filtering – adaptive filtering algorithms were applied. The 
purpose of the adaptive filtering phase was to remove some of the random 
noise present in the signals. Effectiveness of the adaptive filtering is best 
judged by examining the spectra or time-frequency graphs of the signals. 
Convergence of the adaptive algorithms may be assessed by examining the 
squared prediction error. 

4.3.54.3.54.3.54.3.5 Experimental FindingsExperimental FindingsExperimental FindingsExperimental Findings    

Experimentally measured gear vibration signals were found to be in excellent 
agreement with models such as those published by Randall (1982) and 
McFadden (1986). Though noise and interfering elements were present in the 
spectra observed, the gear vibration signatures were clearly observable. 
Various strong periodic interference terms may however be observed in the 
spectra. These are caused by all the other machines and components on the 
test bench, each a source of its own vibration signature. 
 
Data discussed hereunder was sampled at 2560 Hz. For the input shaft speed 
of 280 rpm, the gear mesh frequency is expected at 200.7 Hz. Table 4.3 
summarises the properties of the gear set under consideration, denoted as 
the test gearbox, as well as the other two gearboxes used on the test bench. 
 
Although not apparent when examining the time domain data, any possible 
DC offset was removed by computing a least-square fit of a straight line to 
the data, and subtracting the resulting function from the data. This 
procedure ensures that the data is spread about a mean value of zero. 
 
Band-pass filtering about the gear mesh frequency between 150 Hz and 250 
Hz removed frequency content too far away from the gear mesh frequency to 
be of interest to gear fault diagnostics. A finite impulse response filter with 
140 coefficients was used, designed to have -60dB attenuation in the stop 
bands, less than 0.1dB ripple in the pass band and 50 Hz roll-off bands. Phase 
distortion of the filtering process was reduced by using the non-causal 
forward-backward filtering approach described by Gustafsson (1996). 
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Table 4.3: Gear Set Parameters 

  Description Variable Value Units 
Input Shaft Speed   280.0 rpm 
Input Shaft Frequency   4.67 Hz 
Input Gear Teeth   43   
Output Gear Teeth   22   
Gear Ratio   1.95   

Test 
Gearbox 

Gear Mesh Frequency   200.67 Hz 
Motor Shaft Frequency   22.04 Hz 
Input Gear Teeth   18   
Output Gear Teeth   85   
Gear Ratio   0.21   

First 
Gearbox 

Gear Mesh Frequency   396.67 Hz 
Test Gearbox Output Shaft 
Frequency   9.12 Hz 
Input Gear Teeth   85   
Output Gear Teeth   18   
Gear Ratio   4.72   

Third 
Gearbox 

Gear Mesh Frequency   775.30 Hz 
Sampling Frequency fs 2560   
Frequency Separation ∆B 2 Hz 
Filter Coefficients   1280   

  Filter Delay ∆ 256   
 

Band-pass filtering resulted in most of the activity above 290 Hz and below 
110 Hz being suppressed in the filtered signal. Figure 4.16 shows the power 
spectral density of the band-pass filtered signal in the vicinity of the first 
harmonic. Note that in spite of the symmetry of the filter about 200 Hz, the 
upper roll-off region, between 250 Hz and 300 Hz, contained a lot of activity 
before filtering, and hence the filtered signals’ PSD may appear 
unsymmetrical. 
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Figure 4.16: PSD of Band-Pass Filtered Signal 

Examining the frequencies where sidebands would be expected around the 
first harmonic, displayed in figure 4.17 as dashed lines, reveals that although 
the gear mesh frequency at 200.7 Hz is the dominant element in the 
spectrum, the sidebands are not necessarily dominant in their respective 
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areas. Reliable diagnostics from this graph will hence be problematic, and an 
alternative method to pure spectral analysis may be appropriate. 
 
Other peak pairs, symmetric about the gear mesh frequency, are visible 
around the gear mesh frequency in figure 4.17. Table 4.4 summarises the 
frequencies of these peak pairs, as picked manually from the graph. Figure 
4.18 presents these symmetric peak pairs, indicated as short dashed lines, as 
graphically picked from the graph. Lack of precision in the frequencies of the 
peaks may be explained by considering the manual methodology employed 
in picking the peaks from the graphs. 
 

150 160 170 180 190 200 210 220 230 240 250
-60

-50

-40

-30

-20

-10

0

P
S

D
 [

dB
]

frequency [Hz]  

Figure 4.17: GMF and Sidebands, First Harmonic Band-Pass Filtered Signal 

 

Table 4.4: Symmetric Peak Pairs 

Lower 
freq. 

higher 
freq. 

lower 
spacing 

higher 
spacing 

multiple 
of 9.1 

191.6 209.9 9.2 9.1 1 
182.6 219.0 18.2 18.2 2 
173.4 228.1 27.4 27.3 3 

 

Comparing the spacing above and below the gear mesh frequency on figure 
4.18 reveals that all are divisible by 9.1 Hz, from which we may conclude that 
the signal is being modulated at a rate of 9.1 Hz in addition to the 
modulation at the damaged gear’s shaft frequency. The rotation frequency of 
the driven gear is 9.1 Hz, as indicated in table 4.3 as “Test Gearbox Output 
Shaft Frequency”. Modulation of the gear mesh carrier signal at frequencies 
of both gears making up the gear pair is to be expected from gear vibration 
signals, and is hence considered as normal. 
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Figure 4.18: Symmetric Peak Pairs, First Harmonic 

Using the autocorrelation matrix method suggested by Antoni and Randall 
(2001) to compute an upper bound for the LMS forgetting factor λ, figure 4.19 
may be generated for the band-pass filtered signal about the first harmonic of 
the gear mesh frequency.  
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Figure 4.19: λ / dim(R), First Harmonic Band-Pass Filtered Signal 

 
From figure 4.19, λ is chosen as 0.003, corresponding to an autocorrelation 
matrix dimension of 600. Although the λ / dim(R) curve has not clearly 
reached a plateau at this point, an autocorrelation matrix with dimension of 
600 x 600 was the largest that could conveniently be calculated. To choose the 
adaptive filters’ length, with ∆B=2Hz and fs the sampling frequency of 2560 
Hz, use the formula provided by Antoni and Randall (2001): 
 

B

f
L s

∆
=  (4.1) 

 
Using the parameters as specified, the filter length works out to 1280 
coefficients. It was decided to use a filter length of 1024 coefficients. The time 
delay ∆ is chosen so as to decorrelate the noise component of the signal, but 
not so long as to decorrelate the deterministic component. In this case a delay 
of 100 sample points was chosen. 
 
First, adaptive filtering was attempted using the steepest descent based LMS 
adaptive line enhancer. In addition to the filter length and delay, an initial 
weight value of one and exponentially decreasing forgetting factor of 

 



  Chapter 4 
__________________________________________________________________________________________ 

 

  78 

µ0=0.003 were used. For these parameters the squared prediction error of 
figure 4.20 a) does not indicate appreciable decrease with convergence of the 
algorithm. Various smaller and larger values of the forgetting factor were 
experimented with, but convergence could not clearly be judged from the 
squared prediction error in any of the cases. 
 
Having failed to achieve convergence convincingly with the LMS algorithm, 
the SQSD based adaptive filter is used with similar parameters. In this case 
the convergence behaviour of the SQSD based adaptive algorithm, as judged 
from the squared prediction error, appears superior to that of the LMS based 
algorithm. Figure 4.20 b) shows the squared prediction error for step size 
parameter d=0.003. It was found during experimentation with the value of d 
that when d is set to too large a value, the coefficients would tend toward 
unity, and the signal would pass through the filter largely unaffected. 
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Figure 4.20: LMS and SQSD Squared Prediction Errors 

 
It is thus considered necessary by this researcher to examine not only the 
squared prediction error, but also the filtered signal, and possibly the filter 
coefficients from the weight vector. Figures 4.21 a), b) and c) present, 
respectively, the PSD of the band-pass filtered signal, the PSD of the LMS 
adaptively filtered signal and the PSD of the SQSD based adaptively filtered 
signal, all between 150 Hz and 250 Hz and 0 dB to -60 dB. 
 
LMS based adaptive filtering seems to have raised the level of some of the 
most prominent peaks in the spectrum. It is however also clear that the noise 
floor between prominent peaks has been raised. Taking into account the lack 
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of evidence of convergence in the squared prediction error, no clear 
diagnosis of gear damage can be made from examining the PSD of the LMS 
filtered signal. It would appear that the LMS filtering operation did indeed 
fail to converge satisfactorily. 
 
Spherical quadratic steepest descent based adaptive filtering has left the most 
prominent peaks in the PSD of figure 4.21 c) largely unaffected; specifically 
the peaks immediately surrounding the gear mesh frequency of 200.7 Hz. It 
has to be noted that the overall noise floor has however been slightly raised, 
comparing the band-pass filtered only signal of figure 4.21 a) to the SQSD 
filtered signal of figure 4.21 c). Certain components surrounding the gear 
mesh frequency have been emphasized. The noise floor in the immediate 
vicinity of the gear mesh frequency has been lowered somewhat or left 
unchanged at worst. The change in the PSD is however small, and 
inconclusive. Clear damage identification from this PSD may still be 
considered hazardous. 
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Figure 4.21: PSD of Band-Pass Filtered Signal, 150 Hz – 250Hz, 0 – 60dB 
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Time frequency methods, and the associated energy method of Loutridis 
(Article in Press), may still provide a viable alternative to spectrum analysis 
for the purpose of damage identification. As the data analysed here has not 
been order tracked or averaged in any way, evidence of speed and load 
variations should be observable when examining the data in the time 
domain. 
 

 

Figure 4.22: Pseudo Wigner-Ville Distribution, SQSD Filtered signal 

End effects may be present in the signal as a result of the conventional and 
adaptive filtering operations undertaken. To overcome this difficulty, a 
portion of data in the middle of the total record will first be examined. This 
will ensure that possible end effects, associated with the filtering operations, 
are eliminated from the portion of data under consideration. Figure 4.22 a) 
displays the pseudo Wigner-Ville distribution computed from the band-pass 
filtered data, between 7.8 s and 15.6 s. This time interval is contained within 
the interval between the 20 000th and 40 000th sample points, which is the 
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interval that was used for computing all the PSDs previously presented. 
Figure 4.22 b) and c) display respectively the instantaneous energy density 
and the results of a frequency analysis performed along the time axis of each 
frequency of the Wigner-Ville distribution. 
 
In the portion of the Wigner-Ville distribution between 11 and 12 seconds 
there seems to be evidence of wide-band transient frequency content, 
possibly associated with the transient events characteristic of gear failure 
phenomena. In the case under consideration, a gear tooth was removed from 
one of the gear wheels, and one would expect to see evidence of a shock as 
this tooth moves through the meshing region. Although evidence of wide-
band frequency transients is present at other time intervals as well, 
specifically the 11 to 12 second interval will be considered here. 
 

 

Figure 4.23: Pseudo Wigner-Ville Distribution, SQSD Filtered Signal 
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Figure 4.23 a) presents the pseudo Wigner-Ville distribution surrounding the 
11 to 12 second interval identified. Evidence of transient events are 
observable at time of 10.95 s, 11.38 s and 11.7 s. From the input shaft 
frequency of 4.7 Hz (table 4.3), the period expected between successive 
events associated with damage to a single gear tooth can be computed as the 
reciprocal of the shaft frequency, equal to 0.213 s.  
 
The separation between the two events at 10.95 s and 11.38 s is equal to twice 
the shaft rotation period, while the separation between 10.95 and 11.7 s is 
approximately equal to four times the shaft rotation period of 0.213 s. 
Considering also the speed variation over this period, evident on the pseudo 
Wigner-Ville distribution as the variation of the high energy band with time 
around 200 Hz, it seems feasible that the transients identified are indeed 
related to damage to one of the gear teeth. 
 
Frequency analysis of the pseudo Wigner-Ville distribution along the time 
axis reveals that in the meshing frequency range there is indeed activity 
around the shaft rotation frequency of 4.67 Hz (approximately 4.7Hz). The 
frequency analysis results are shown in figure 4.23 c). The analysis entails 
FFT analysis of each frequency band, over the time axis, to resulting in the 
graph showing frequency on both axes.  
 
Considering the instantaneous energy density criterion suggested by 
Loutridis (Article in Press), shown in figure 4.23 b), peaks are observed at 
11.38 s and 11.7 s. It is however hard to clearly distinguish a prominent peak 
at 10.95 s. In this case it is then evident that the energy criterion in isolation 
will not provide a firm basis for reliable fault diagnosis. 
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4.44.44.44.4 Epicyclic Gearbox Test BenchEpicyclic Gearbox Test BenchEpicyclic Gearbox Test BenchEpicyclic Gearbox Test Bench    
In addition to the amplitude and phase modulations found in conventional 
gear spectra, epicyclic gearboxes exhibit modulations of the carrier wave 
related to the motion of the planetary gears relative to the stationary observer 
location, termed planet-pass modulation by Forrester and Blunt (2003). 
Complex, multi-stage epicyclic gearboxes are common in the aerospace 
industry, in both aeroplane and helicopter transmissions. In order to develop 
a strategy for the monitoring of time domain gear vibration data of epicyclic 
gearboxes, an experimental bench was designed and constructed for the 
purpose of this work. 

4.4.14.4.14.4.14.4.1 Expected Vibration from Epicyclic GearboxesExpected Vibration from Epicyclic GearboxesExpected Vibration from Epicyclic GearboxesExpected Vibration from Epicyclic Gearboxes    
Numerous publications detail vibration measurements obtained from 
epicyclic gearboxes. Notable contributions were made by McFadden and 
Smith (1985) and McFadden (1991). 
 
McFadden and Smith (1985) propose an explanation for the asymmetry of 
the modulation sidebands about the tooth meshing frequency of epicyclic 
gearbox vibration signals. The principal component of the observed 
spectrum of the epicyclic gearbox vibration may be somewhat removed from 
the meshing frequency. Complete suppression of the vibration component at 
the tooth meshing frequency has been observed. Different planet gears in the 
same system result in different phase angles relative to the first planet gear. 
The relationships between the different phases produced by the planets were 
shown to account for the asymmetry of the observed spectrum. 
 
The phasor sum of the different phase spectra is given by: 
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where: Pi : phase angle of planet gear i 
 m : harmonic number 
 r : sideband number 
 Za : number of teeth on annular gear 
 
The frequency at which the sidebands may be observed is given by: 
 

( )

( ) sg
as

s
amn

sg
as

s
c

camn

f
ZZ

Z
nmZf

f
ZZ

Z
f

fnmZf

+
+=∴

+
=

+=

Q  (4.3) 

 

 



  Chapter 4 
__________________________________________________________________________________________ 

 

  84 

where: fc : carrier rotation frequency 
 fsg : sun gear rotation frequency 
 Zs : number of teeth on sun gear 
 Za : number of teeth on annular gear 
 
Sidebands hence occur at some multiple of the planet carrier rotation 
frequency away from the tooth meshing frequency. 
 
Modulation of the signal from a single planet gear occurs as a result of the 
motion of the planet gear relative to the measurement position. This 
occurrence is purely a result of the motion of the planetary gears relative to 
the measurement position, and is not a characteristic of the pure meshing 
signal of the planetary gears. As the planet gear moves toward the vibration 
transducer the signal increases, reaches a peak when the gear is closest to the 
transducer position and then decreases as the planet recedes. Modulation of 
the individual planet gear signal hence occurs at the frequency of the carrier 
rotation (McFadden, 1991). When examining a vibration signal obtained from 
a planetary gearbox, modulation of the carrier signal will thus appear at the 
planet pass frequency, equal to the product of the planet carrier rotation 
frequency and the number of planetary gears, assuming equal spacing of the 
planetary gears. 
 
Defects on a single tooth will show up at a fault frequency equal to the rate at 
which the faulted tooth contacts the annular gear, or sun gear. Transmission 
path effects are however more likely to mask the fault showing up from 
contact with the sun gear, assuming that the measurement position is on the 
annular gear. The rate at which a faulted tooth will contact the annular gear 
can be computed as the product of the carrier rotation frequency and the 
ratio of planet gear teeth to annular gear teeth, or as the sum of the planet 
gear rotation frequency and the planet carrier rotation frequency (McFadden 
1991; Forrester & Blunt 2003): 
 











⋅

+
=

+=

=

p

a

sa

sg

pc

c
p

a
a

Z

Z

ZZ

f

ff

f
Z

Z
f

1

 (4.4) 

 
where: fa : planet to annulus gear corresponding tooth mesh frequency
 fc : carrier rotation frequency 
 fsg : sun gear rotation frequency 
 Zs : number of teeth on sun gear 
 Za : number of teeth on annular gear 
 Zp : number of teeth on planetary gear 
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The meshing frequency fm can be computed as follows: 
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Mechanical unbalance, misalignment and other defects show up in the 
vibration spectrum at the shaft frequency of rotating components. Shaft 
frequencies in an epicyclic gearbox are related to the input shaft, the output 
shaft – usually connected to the planet carrier, and the planetary gear 
rotation frequency. 
 
In summary, for an epicyclic gearbox one expects to see a vibration signal 
centred about the meshing frequency, amplitude and phase modulated by 
functions synchronised to the planet gear rotation frequency. As a result of 
the fixed observer position, the measured signal will be further modulated at 
the planet pass frequency. 

4.4.24.4.24.4.24.4.2 Experimental GoalExperimental GoalExperimental GoalExperimental Goal    
Damage detection on epicyclic gearboxes is the ultimate goal of the 
algorithms developed during the course of this work. Exposure to an 
epicyclic gear vibration environment is thus essential. A multi-machine 
environment is further required in order to more closely simulate the 
application environment on aircraft. 
 
Both undamaged and damaged condition data were generated during these 
tests. Undamaged condition testing established a base for the identification 
of damage later on. The damaged condition tests were run at comparable 
load and shaft frequency to the undamaged condition’s tests. 
 
Only the constant load and constant speed cases were considered. Although 
different speed and load combinations were considered, the load was always 
applied such that it would produce significant vibration signals. 
 
Time frequency methods, specifically the spectrogram and Wigner-Ville 
distribution, as well as the instantaneous energy density computed from the 
time-frequency methods, were used in attempts to identify damage. The 
effect of the adaptive filtering algorithms on the effectiveness of the damage 
identification methods was investigated. 

4.4.34.4.34.4.34.4.3 Experimental SetupExperimental SetupExperimental SetupExperimental Setup    
A new Epicyclic Gearbox Test Bench was designed and built for the purpose 
of the experimental portion of this work. A multi-gearbox, epicyclic gearbox 
test facility, with load and speed control was constructed. Speed control is 
achieved through a 3kW DC motor with control circuitry. Load is provided 
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on the system by a hydraulic gear pump, combined with an electro-hydraulic 
pressure control valve. 
 
The system was designed using a modular approach, since it would be 
necessary to remove components from the system to seed damage, or 
monitor wear. The design allows for the easy removal and re-insertion of any 
system component, with features that simplify mechanical alignment of the 
system modules. Alignment in the vertical plane is obtained by the use of 
pre-cut shims. In the horizontal plane, a mechanism was designed which 
allows the components to be securely oriented by means of set screws. 
 
The motor and gearboxes are mounted on a horizontal surface, parallel to the 
axes of the shafts. The gear pump’s design intends mounting on a vertical 
surface, perpendicular to the axis of the input shaft. The mounting fixture of 
the gear pump is designed such that horizontal and vertical translation of the 
pump is achieved by adjustment of set screws, to simplify and speed up the 
alignment process. Torque transmission between each system module is 
achieved through rigid spider couplings. 
 
During the design process, various conceptual designs were evaluated. The 
best design was chosen using criteria of versatility, simplicity and cost. 
Manufacturing of components and assembly all took place in house, except 
for the hydraulic sub-system. In-house manufacturing included the 
mounting fixtures of the gearboxes, motor and hydraulic pump, and the 
vibration isolation table on which the test bench is secured. The hydraulic 
sub-system was conceptually designed by the author, but detail design and 
manufacturing were contracted out to a regular and trusted supplier. 
 
Assembly of the 3kW DC machine and associated control circuitry was 
entrusted to an external supplier. The machine is equipped with a forced 
ventilation system. Control circuitry consists of a sophisticated 
reconfigurable feedback control drive system, capable of using a shaft 
encoder mounted on the motor for feedback. 
 
Load and speed control were required for the test bench. Although it was 
intended that load and speed would remain constant for the purpose of this 
work, future work will focus on variable speed and variable load scenarios. 
Speed control is achieved by the DC machine and associated drive system. 
By varying the pressure in the hydraulic system, the torque required to turn 
the hydraulic gear pump is varied and load control is achieved. Pressure 
variation in the hydraulic system is achieved by a proportional pressure 
relief control valve, with integrated control electronics. Both motor and gear 
pump are capable of accepting external control signals, so that load and 
speed control can be actuated from an external control source. 
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The working surface was defined by the motor’s power surface, and the 
hydraulic components’ operational ranges. The valve activation pressure was 
a limiting factor on the one hand, while the maximum system pressure 
limited operation at the opposite end. Figure 4.24 displays the working 
surface of the test rig, ignoring individual component efficiencies. 

 

Figure 4.24: Hydraulic Performance Surface 

 

 

Figure 4.25: Hydraulic Power-Pack Module 

Hydraulic components, with exception of the hydraulic gear pump, were 
assembled in a hydraulic power-pack module. The proportional pressure 
relief control valve was included in this module. The module includes a 
forced draught cooling system, capable of dissipating 3 kW by cooling the 
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hydraulic fluid. Connection between the power-pack and the gear pump is 
by quick-connect flexible high pressure hydraulic hosing. The power-pack 
module is shown in figure 4.25. 
 
The test bench was constructed on an inverted T-slot base, suspended on 
springs to isolate it from ambient vibrations. Figure 4.26 shows a photograph 
of the test bench set up in the Sasol laboratory, at the University of Pretoria. 
The T-slot base allows for quick approximate alignment of the system 
modules. Thereafter, precise alignment is achieved by using the various 
mechanisms designed into each module. The T-slot tables were mounted on 
a newly constructed table, purpose designed. 
 

 

Figure 4.26: Epicyclic Gearbox Test Bench 

 
Figure 4.27 displays a schematic representation of the test system, along with 
measurement equipment. Notably in this case analogue low-pass filters were 
employed before digitization took place. It was intended that over sampling 
of data would be undertaken, and hence it was necessary to eliminate 
unwanted frequency content from the vibration signals by low-pass filtering. 
 
Measurement hardware consisted of three accelerometers, a four-channel 
ICP amplifier for the accelerometers, a four-channel data acquisition unit and 
a personal computer. The accelerometers used were of the piezo-electric 
type, with a nominal sensitivity of 500mV/g. As before the Siglab® data 
acquisition unit incorporated anti-aliasing filters, and performed the 
analogue-to-digital conversion function. Higher frequency content was 
removed from the accelerometer signals by using eighth order Butterworth 
analogue low-pass filters with cut-off frequency of 300Hz – well below that 
of the anti-aliasing filters employed in the data acquisition hardware. 
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Figure 4.27: Epicyclic Gearbox Test Bench Schematic 

The primary accelerometer was mounted in the vertical plane on the second 
gearbox, and connected to channel 3 on the analyzer. A second 
accelerometer, connected to channel 2 on the analyzer, was mounted in the 
horizontal plane, also on the second gearbox. Data from this accelerometer 
was not used. The third accelerometer was mounted on the first gearbox, in 
the vertical plane, and connected to channel 1 on the analyzer. 
 
Damage was seeded on a single tooth of one of the planetary gears. A small 
amount of material was removed from both sides of the tooth by filing away 
the flank of the tooth. Figure 4.28 shows the damaged gear tooth. A small 
notch was inserted on the edge of this tooth to ensure ease of identification. 
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Figure 4.28: Damaged Planetary Gear 

4.4.44.4.44.4.44.4.4 Experimental ProcedureExperimental ProcedureExperimental ProcedureExperimental Procedure    
Damage identification on epicyclic gearboxes is the main aim of this 
experimental phase. Adaptive algorithms are used to de-noise the vibration 
data. Time-frequency techniques form the basis of the damage identification 
methodology applied. 
 
Data was recorded from 3 accelerometers, as discussed under section 4.4.3. 
Data from the primary data channel – accelerometer mounted in the vertical 
plane on the second gearbox, was sampled at different sampling frequencies. 
Irrespective of the sampling frequency, analogue filters were employed to 
remove higher frequency content from the data. The eighth order 
Butterworth analogue filters used had cut-off frequencies of 300Hz, well 
below the cut-off frequency of the built-in anti-aliasing filters of the Siglab® 
analyzer. 
 
DC offset from zero mean was removed as before by computing a least-
square fit of a straight line to the data, and subtracting the resulting function 
from the data. In an attempt to narrow the spectral content of the signals and 
“focus” the diagnostic methods on relevant portions of the spectra, band-
pass filtering of the signals about the meshing harmonics of interest was 
carried out. Phase distortion resulting from the digital filtering operations 
was once again minimized by employing the forward-backward filtering 
technique of Gustafsson (1996). 
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After digitization, de-trending and band-pass filtering, adaptive filtering 
algorithms were applied in order to remove some of the random noise 
present in the signals. Effectiveness of the adaptive filtering is best judged by 
examining the time-frequency distributions of the signals. The time-
frequency distributions may also at this point be used for the purpose of 
damage identification. 

4.4.54.4.54.4.54.4.5 Experimental FindingsExperimental FindingsExperimental FindingsExperimental Findings    
Vibration data was collected at different sampling frequencies, and different 
shaft speed combinations for an undamaged gearbox, as well as a gearbox on 
which damage had been seeded. The discussion here follows specific data 
records from the undamaged and damaged conditions, which were judged 
to be representative of the findings after having examined and processed an 
ensemble of several data records. Similarity of operating parameters such as 
load and speed were further considered. 
 
Accelerometer signals were sampled at 5120 Hz, after having been low-pass 
filtered through an eighth order Butter filter with cutoff frequency of 300Hz. 
To remove phase distortion introduced by the analogue filter, an LMS based 
adaptive system identification algorithm was developed. Random data 
sampled at 5120 Hz and with bandwidth of 2 kHz was used to characterize 
the filter. A suitable frequency response was obtained from an FIR filter with 
4096 coefficients. 
 
Figure 4.29 displays a one second portion of a random signal filtered with the 
analogue Butter filter, as well as the 4096 coefficient FIR implementation. The 
curves are not appreciably discernible from each other. In figure 4.30 is 
shown the first tenth of a second of the same signal. The two signals overlie 
each other almost exactly. 
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Figure 4.29: Filtered Random Data, 1 s 
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Figure 4.30: Filtered Random Data, 0.1 s 

Using the FIR filter obtained, it is possible to employ the forward-backward 
filtering process described by Gustafsson (1996) in an attempt to remove 
some of the phase distortion introduced by the analogue filtering operation. 
The analogue filtered sequence has to be reversed, filtered by the FIR digital 
filter, and reversed again to complete the non-causal filtering operation. 
 
For the input shaft speeds of 1040 rpm and 1037 rpm for the undamaged and 
the damaged conditions, the gear mesh frequencies are expected at 186.3 Hz 
and 185.7 Hz, respectively. Table 4.5 summarizes relevant parameters. 

Table 4.5: Epicyclic Gearbox Parameters 

 Description Variable Value Units

Sun Gear Teeth Ns 13  

Planetary Gear Teeth Np 24  Gear Set 

Annular Gear Teeth Nr 62  

Sun Gear Shaft Speed  1040 rpm 

Sun Gear Shaft Frequency fsg 17.33 Hz 

Gear Meshing Frequency fm 186.28 Hz 

Planet Carrier Rotation Frequency fc 3.00 Hz 

Planet Gear Corresponding Tooth 
Mesh Frequency with Annulus 

fa 7.76 Hz 

Undamaged 
Condition 

Planet Pass Modulation Frequency fppm 9.01 Hz 

Sun Gear Shaft Speed  1037 rpm 

Sun Gear Shaft Frequency fsg 17.28 Hz 

Gear Meshing Frequency fm 185.74 Hz 

Planet Carrier Rotation Frequency fc 3.00 Hz 

Planet Gear Corresponding Tooth 
Mesh Frequency with Annulus 

fa 7.74 Hz 

Damaged 
Condition 

Planet Pass Modulation Frequency fppm 8.99 Hz 

 
The raw data was found to contain a DC offset. This may be due to leakage 
currents resulting from induced currents on the test bench, or as a result of 
imperfections in the driving circuitry of the accelerometer. A further 
plausible explanation may be the lack of a common electrical earth point 
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between the measurement equipment. The offset was removed by de-
trending the data by computing a least-square fit of a straight line to the data, 
and subtracting the resulting function from the data. The piezo-electric type 
accelerometers used are incapable of measuring down to zero frequency 
associated with direct current operation. 
 
At this point the signals contained data in the frequency range from 0 Hz to 
just above the cutoff frequency of the analogue low-pass filter at 300 Hz. The 
data was band-pass filtered about the gear mesh frequency between 150 Hz 
and 250 Hz. An FIR filter with 280 coefficients was used, designed to have -
60dB attenuation in the stop bands, less than 0.1dB ripple in the pass band 
and 50 Hz roll-off bands. The forward-backward filtering implementation 
discussed by Gustafsson (1996) was employed to minimize phase distortion 
resulting from the filtering operation. 
 
The band-pass filtered signals’ power spectral densities, shown in figure 4.31, 
show that frequency content in the signal above 290 Hz and below 110 Hz 
have largely been attenuated by the filtering process. The spectra are 
however still relatively noisy and reliable diagnosis of possible fault 
conditions seems unlikely. Figure 4.31 a) shows the undamaged condition’s 
data, while figure 4.31 b) shows the damaged condition’s data. 
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Figure 4.31: PSD of Band-Pass Filtered Signals 

Examining the power spectral densities of the band-pass filtered signal 
computed over the entire signal length for spectral components associated 
with gear meshing confirms that diagnosis will be difficult. Figure 4.32 
shows the PSDs of the signal, with the frequency ranges selected around the 
first harmonic of the gear mesh frequency to aid interpretation. Solid lines 
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from -60 dB to -20 dB indicate positions on the frequency axis where activity 
would be expected, considering arguments laid by McFadden and Smith 
(1985). The long-short dashed line indicates the epicyclic gear meshing 
frequency, which is not expected to be visible. Short dashed lines show 
sideband frequencies where no activity is expected. The solid line from -60 
dB to 0 dB indicates the gear meshing frequency of the gear pump used to 
apply load to the system, and the long dashed lines indicate the positions of 
its expected sidebands. 
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Figure 4.32: PSD of Band-Pass Filtered Signals, First Harmonic 

Table 4.6 lists the gear mesh frequencies of the epicyclic gearbox and the gear 
pump, as well as the frequencies of the sidebands that are expected. The 
most prominent peak in both cases is that associated with the meshing 
frequency of the hydraulic gear pump. Activity at the gear pump’s sideband 
frequencies is clearly discernible in the undamaged case of figure 4.32a), but 
less so in the damaged case of figure 4.32 b). 
 
For the purpose of adaptive filtering, the value of the step size parameter of 
the LMS algorithm, known also as the forgetting factor λ, may be determined 
from an autocorrelation matrix of the data. Considering graphs of the step 
size, denoted as λ in the figures, divided by the autocorrelation matrix 
dimension dim(R), shown in figure 4.33, indicated that step sizes λ may be 
estimated from moderately sized autocorrelation matrices R. The step size 
was selected as λ=0.005 at dim(R) = 500 for the undamaged case, and λ=0.05 
at dim(R) = 500 for the damaged case.  
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Table 4.6: Gear Mesh and Sideband Frequencies 

  Epicyclic 
Conventional Gear 

Pump   
  Undamaged Damaged Undamaged Damaged Units 
Gear Mesh 
Frequency 186.3 185.7 208.0 207.4 Hz 

162.2 161.7 156.0 155.6 Hz 
171.3 170.8 173.3 172.8 Hz 
180.3 179.7 190.7 190.1 Hz 
189.3 188.7 225.3 224.7 Hz 
198.3 197.7     Hz 
207.3 206.7    Hz 

Visible Sidebands 

216.3 215.7     Hz 
 
Even though the ratios of λ / dim(R) had not clearly stabilized at these 
points, the computational burden of enlarging the dimension of the 
autocorrelation matrix becomes excessive for dim(R)>500. It was also 
observed that the size of the largest eigenvalues of the autocorrelation matrix 
tended to increase with the dimension of the autocorrelation matrix. 
Choosing the step size parameter from a smaller autocorrelation matrix 
would thus tend to err on the conservative side. 
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Figure 4.33: Forgetting Factor λ vs. Autocorrelation Matrix Dimension 

Using the chosen values for the step size parameters, an LMS based adaptive 
line enhancer was used in attempts to remove the noise component from the 
measured data. Examining the squared prediction errors depicted in figures 

 



  Chapter 4 
__________________________________________________________________________________________ 

 

  96 

4.34 a) and c) for the undamaged and damaged cases respectively, it is not 
clearly evident that the LMS algorithm converged in either case.  
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Figure 4.34: Squared Prediction Errors 

Although there appears to be a slight decrease in prediction errors over the 
signal lengths, this is not convincing evidence of convergence. This may 
indicate excessively slow convergence however; where the step size 
parameter was chosen so small that appreciable convergence will take a very 
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long time to manifest. To disprove this notion, forgetting factors of a single 
order of magnitude larger for both the damaged and undamaged case, as 
well as two orders of magnitude larger for the undamaged case were used. 
The algorithm persisted in showing no appreciable decrease in prediction 
error.  
 
As an alternative to the LMS based adaptive line enhancer, a Spherical-
Quadratic Steepest Descent based algorithm was used for the same purpose 
of de-noising the data. The squared prediction errors for the step size 
parameter d=0.05 is shown in figures 4.34 b) and d) for the undamaged and 
damaged conditions, respectively. With d=0.05 there is a very clear decrease 
in the prediction error of the algorithm in both cases. Using the squared 
prediction error, it can be concluded from figure 4.34 that the SQSD based 
ALE did indeed converge in both cases. As before however, convergence 
should be confirmed by alternative methods, i.e. examination of spectra or 
time-frequency distributions. 
 
Once more it seems that the SQSD based algorithm has outperformed the 
LMS based algorithm. The SQSD based algorithm has been found to 
converge much easier than its LMS counterpart. Some discretion is however 
still required when choosing the algorithm’s parameters. For none of the 
results presented in this work did the first choice of the step size parameter d 
yield the best results. Although convergence is easy to attain, a good solution 
quality is not. Experimentation is still required to fine tune the parameters 
and obtain a solution of acceptable quality. 
 
From examination of the PSDs of the prediction errors it seems that the LMS 
algorithm’s prediction error contains much of the periodic gear vibration 
signals from both the epicyclic gearboxes, as well as the gear pump. Figure 
4.35 shows the PSDs of: a) the undamaged condition LMS filtered prediction 
error; b) the undamaged condition SQSD filtered prediction error; c) the 
damaged condition LMS filtered prediction error and d) the damaged 
condition SQSD filtered prediction error. The long-short dashed line 
indicates the meshing harmonic which should be unobservable, the short 
dashed lines indicate sidebands which should be unobservable and the solid 
lines from -60 dB to -20 dB indicate sidebands which should be observable, 
according to McFadden and Smith (1985). The solid line from -60 dB to 0 dB 
indicates the gear meshing frequency of the gear pump used to apply load to 
the system, and the long dashed lines indicate the positions of its expected 
sidebands. 
 
Although the PSDs of the SQSD prediction errors, figures 4.35 b) and d), do 
in places contain peaks at gear mesh or sideband frequencies, these peaks are 
smaller than in the case of the LMS algorithm. Less energy from the gear 
vibration components of interest are therefore present in the SQSD filter’s 
error signal than in that of the LMS filter algorithm. 
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Figure 4.35: ALE Prediction Error PSDs 

Comparing the PSD of the LMS filtered undamaged condition signal in 
figure 4.36 a), with the band-pass filtered signal’s PSD from figure 4.32 a), it 
is evident that the level of the entire signal’s PSD has been raised. Although 
peaks coinciding with gear mesh and sideband frequencies have been raised, 
the noise floor between prominent peaks has also been raised relative to the 
peaks. Even though sidebands are observable at some of the frequencies 
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where they were expected, diagnosis of the gearbox’s condition may be 
hazardous from figure 4.36 a). Many other peaks are visible between the 
frequencies where sidebands were expected, and strong peaks are visible at 
frequencies associated with the gear pump gear mesh and sidebands. 
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Figure 4.36: ALE Filtered Signal PSDs 

LMS based filtering of the damaged condition’s signal has similarly resulted 
in a rise over the entire bandwidth presented in figure 4.36 c), when 
comparing with figure 4.32 b). The effect is especially evident in the portion 
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of the PSD below 180 Hz. The gain in signal level has however occurred to 
the detriment of the diagnostic capacity. Many of the frequencies where 
activity would be expected show no such activity. Diagnosis of the gearbox’s 
condition from the PSD of figure 4.36 c) would therefore be hazardous. The 
poor quality of the PSD enforces the conclusion reached from examining the 
squared prediction error: the LMS adaptive line enhancer has failed to 
converge. 
 
From a comparison between the PSD of the undamaged condition SQSD 
adaptive line enhancer filtered signal, displayed as figure 4.36 b), and the 
undamaged condition band-pass filtered signal’s PSD in figure 4.32 a), once 
again it appears that the level of the entire signal has been raised. In contrast 
to the LMS filtered case of figure 4.36 a) though, the noise floor has not been 
raised as substantially, relative to prominent peaks on the PSD associated 
with meshing phenomena. Although overall there has been a lift in the level 
of the noise floor, around the meshing frequency of 186.3 Hz the noise floor 
has stayed low, compared to the peak at the gear mesh frequency. Sidebands 
of the epicyclic gear mesh frequency at 180.3 Hz and 189.3 Hz have been 
emphasized somewhat, and are larger relative to the gear pump meshing 
peak at 208 Hz. The changes are however subtle. 
 
In the lower half of the frequency band shown in figure 4.36 b), peaks 
associated with sideband frequencies have been emphasized slightly. 
Considering the sidebands expected around the first harmonic, these are 
clearly visible at some of the expected frequencies indicated on figure 4.36 b), 
more so than on the band-pass filtered signal’s PSD of figure 4.32 a). In this 
particular case, judged from the spectra presented here, the SQSD based 
adaptive line enhancer seems to have delivered superior performance to the 
conventional LMS based adaptive line enhancer. 
 
SQSD based filtering of the damaged condition’s data also indicates a slight 
advantage. Peaks associated with gear meshing phenomena have been 
slightly emphasised on the PSD of figure 4.36 d) relative to the band-pass 
filtered signal of figure 4.32 b). The noise floor has however also been raised 
slightly. Comparison between the graphs of figure 4.32 and 4.36 once more 
emphasises the difficulty that would result from attempting to diagnose the 
gearbox’s condition by methods of spectral analysis only. The differences in 
the spectra are too small to provide any appreciable indication that the 
machine has experienced damage or deterioration of its condition. 
 
Time-frequency representations, like the spectrogram and Wigner-Ville 
distribution, are useful when studying time varying spectra. Figure 4.37 
shows spectrograms of the band-pass filtered undamaged and damaged 
condition’s signals as a) and c), respectively Figure 4.37 e) shows the 
instantaneous energy density, as suggested by Loutridis (Article in press). 
Frequency analyses were performed on the time-frequency representation, 
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by taking the Fourier transform along the time axis for each discrete 
frequency. The results are displayed in figure 4.37 b) and d) for undamaged 
and damaged cases, respectively. 
 

 

Figure 4.37: Spectrograms of Band-Pass Filtered Signals 

The energy band most prominent on the spectrograms is that between the 
fourth and the tenth sideband of the first harmonic of the epicyclic meshing 
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frequency, the centre of which lies on the seventh sideband of the epicyclic 
meshing frequency and on the meshing frequency of the hydraulic gear 
pump. McFadden and Smith (1985) provide an explanation for the 
asymmetric spectra often observed from epicyclic gearboxes. In this 
particular case however, it is the meshing frequency of the hydraulic gear 
pump that dominates the spectrum. 
 
Darker patches are visible between the first sideband above and second 
sideband below the epicyclic gear mesh frequency, fm, on figure 4.37 a) and 
c), although more clearly in the case of figure 4.37 a). These patches coincide 
with the planet carrier rotation frequency (table 4.5), and show up in the 
frequency analyses of the spectrograms, figures 4.37 b) and 4.37 d), at 3 Hz. 
Darker patches are visible in the band between the first sideband above and 
second sideband below the epicyclic meshing frequency, as well as on the 
gear pump mesh frequency of figure 4.37 b) and d). 
 
Meshing of a particular tooth on one of the planetary gears with the annular 
gear takes place at the “planet to annular gear corresponding tooth mesh 
frequency”, fa=7.6 Hz. Small darker regions are visible at this frequency 
between the fourth and seventh sidebands above the epicyclic meshing 
frequency on the frequency analyses of figure 4.37 b) and d), being slightly 
more prominent in the damaged case of figure 4.37 d). 
 
The damaged condition’s spectrogram, figure 4.37 c), does show evidence of 
frequency transients, as indicated. These events are however not as clear as is 
desirable, and damage identification based on their existence can not be 
performed with confidence. The events are best reflected in the 3 Hz darker 
region of the frequency analysis of figure 4.37 d). 
 
Though the spectrogram clearly indicates the frequencies and times where 
the energy in the frequency band under consideration occurs, the resolution 
is fairly poor. Higher frequency resolution, as well as higher time resolution 
is desirable. The Wigner-Ville distribution provides for better resolution, 
albeit at the price of interference in the form of so called cross terms. The 
spectrograms presented in figure 4.37 do not provide a clear indication of 
damage to the transmission under consideration. 
 
Pseudo Wigner-Ville distributions of the same undamaged and damaged 
condition signal portions of the band-pass filtered signals are presented in 
figure 4.38 a) and c), respectively. The instantaneous energy density is 
presented as figure 4.38 e) (Loutridis, Article in Press). The frequency 
resolution as well as the time resolution of the Wigner-Ville distribution is 
much better than that of the spectrogram. The underlying structures of the 
events on the graphs are clearer in the Wigner-Ville distributions of figure 
4.38 than on the spectrograms of figure 4.37. The first meshing harmonic of 
the hydraulic gear pump shows up as a horizontal dark line at 208 Hz, and 
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the small speed fluctuations to which the system was subjected are visible as 
fluctuations in this dark band. 
 

 

Figure 4.38: Pseudo Wigner-Ville Distributions, Band-Pass Filtered Signals 

Modulation synchronous with the planet carrier rotation (table 4.5) are 
visible as darker patches are between the first sideband above and second 
sideband below the epicyclic gear mesh frequency, fm, on figure 4.38 a) and 
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c). Again, as for the spectrograms of figure 4.37, these modulations are more 
clearly visible for the undamaged case of figure 4.38 a) than for the damaged 
case of figure 4.38 c). Corresponding indications show up in the frequency 
analyses of the Wigner-Ville distribution, figures 4.38 b) and 4.38 d), at 3 Hz. 
Peaks are visible in the band between the first sideband above and second 
sideband below the epicyclic meshing frequency, as well as on the gear 
pump mesh frequency of figure 4.38 b) and d). 
 
Peaks are visible at fa=7.6 Hz, the “planet to annular gear corresponding 
tooth mesh frequency”, between the fourth and seventh sidebands above the 
epicyclic meshing frequency on the frequency analyses of figure 4.38 b) and 
d). As before this indicates a slight modulation of the gear mesh carrier 
signal at this frequency. 
 
Wide-band transient events are more apparent on the pseudo Wigner-Ville 
distribution of figure 4.38 c) than on the spectrogram of figure 4.37 c). These 
spectral phenomena are possibly associated with damage to the epicyclic 
transmission. To determine whether these phenomena are associated with 
damage to the transmission, it needs to be confirmed that the spacing 
between the artefacts are multiples of the planet rotation period of 0.13 
seconds. From the figure it does indeed seem that the spacing between the 
events is wholly divisible by 0.13. Planet rotation period here does not refer 
to the period associated with the absolute planet rotation frequency, but 
rather to the period with which a single tooth contacts the annulus. This 
frequency may be computed by equation 4.4, and the inverse taken to obtain 
the period. Using values as per table 4.5 this computes to approximately 0.13 
seconds in both damaged and undamaged cases. 
 
Adaptive filtering by the LMS based adaptive line enhancer has not 
enhanced the pseudo Wigner-Ville distributions displayed in figures 4.39 a) 
and b), when comparing to figures 4.38 a) and c). The structure associated 
with the hydraulic gear pump’s first meshing harmonic at approximately 208 
Hz that extended across the time record has largely been obliterated, without 
any perceivable gain around the epicyclic meshing frequencies of 
approximately 186 Hz. No enhancement is observed at any of the expected 
epicyclic meshing sidebands either. The energy criterion has also been 
affected detrimentally. It is pointed out however that this is due to the lack of 
convergence of the LMS algorithm, and is not an intrinsic effect resulting 
from the use of the LMS based adaptive line enhancer. 
 
Figures 4.40 and 4.41 show the spectrograms and pseudo Wigner-Ville 
distributions for SQSD filtered signals. Comparing the SQSD filtered signal 
to the plain band-pass filtered signal leads to the conclusion that the SQSD 
based filtering process has made a small contribution to the clarity of the 
time-frequency distributions. It is to be noted that adaptive filtering is known 
to introduce noise into a signal, especially as the filter length increases 

 



  Chapter 4 
__________________________________________________________________________________________ 

 

  105 

(Widrow & Stearns, 1985). Care has to be taken that cross terms resulting 
from noise introduced in such a manner does not influence the Wigner-Ville 
distribution detrimentally. 
 

 

Figure 4.39: Pseudo Wigner-Ville Distributions, LMS Filtered Signals 

Features of the spectrogram are slightly better defined with respect to time 
resolution. Frequency transients identified in figure 4.37 c) are also present in 
figure 4.40 c), and have slightly enhanced resolution in the latter case. 
Frequency resolution appears better in the case of the filtered data. This can 
be attributed to the effect of the adaptive filtering, as the same parameters 
were used to generate the figures. Irrespective of these improvements, the 
Wigner-Ville distribution still provides substantially better resolution on 
both the time and frequency axes. Figure 4.40 a) presents the SQSD filtered 
undamaged condition’s spectrogram data, figure 4.40 c) the SQSD filtered 
damaged condition’s data, and figure 4.40 e) the instantaneous energy 
densities computed from the spectrograms of the two damage scenarios. 
Figure 4.40 b) and d) represent frequency analyses performed along the time 
axis of the time-frequency distributions. As before activity at frequencies of 3 
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Hz and 6.7 Hz are evident, but with marginally improved resolution and 
clarity. 
 

 

Figure 4.40: Spectrograms, SQSD Filtered Signals 

Artefacts related to the structure of the events on the Wigner-Ville 
distribution of figure 4.41 do seem to have been enhanced, when comparing 
to figure 4.38. It is stressed that the change is by no means phenomenal. A 
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small improvement is nevertheless recognised. The most significant 
improvement is the enhancement of the vertical features, occurring across 
the frequency axis. These wide-band features may be indicative of damage to 
the epicyclic transmission. 
 

 

Figure 4.41: Pseudo Wigner-Ville Distributions, SQSD Filtered Signals 
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Transients associated with shock events are visible as vertical smudges on 
the time-frequency distribution of figure 4.41 c): the pseudo Wigner-Ville 
distributions computed over 2 seconds of the adaptively filtered signals. It is 
expected that these will increase only very slightly when compared to the 
undamaged case’s data, due to the nature of the damage seeded on the gears: 
only a small amount of the flank was filed away from one of the teeth of one 
of the planetary gears, as shown in figure 4.28. 
 
When comparing the damaged case of figure 4.41 c) to the undamaged case 
of figure 4.41 a), the frequency axis transients are indeed perceived to be 
slightly longer along the frequency axis. This indicates that more of the total 
signal energy is contained in these transient events: an observation further 
borne out by observing the level of the instantaneous energy densities also 
shown on the graphs. In the damaged cases the instantaneous energy density 
was consistently found to maintain a higher level than for the undamaged 
case, in spite of the similarity in load and speed conditions. 
 
It should be noted that the transducers used to record the signals had to be 
moved between the experiments. System components had to be removed 
from the test bench in order to seed the damage to the gears, and were 
subsequently reinserted and realigned. Although reasonable precautions 
have been taken to ensure similar experimental conditions, strictly identical 
conditions are not practically achievable. These differences in the 
experimental setups will also contribute to the differences in the measured 
data. Especially the mounting of the transducers could have a marked effect 
on the signal levels, and hence the instantaneous energy density. 
 
Adaptive filtering by the SQSD method has emphasized these transient 
phenomena on the pseudo Wigner-Ville distributions of figure 4.41. The 
underlying structure of the frequency content is more clearly observable on 
the graphs. The presence of cross-term interference is however also noted. As 
before, the frequency analyses of figure 4.41 b) and c) show activity at 3 Hz 
and 7.6 Hz, as expected. 
 
Loutridis’ (Article in Press) energy criterion also proves to be a useful aid in 
damage identification using time-domain data. Computing the instantaneous 
energy density from data filtered by adaptive methods provides for a spikier 
curve though. The enhancement of the time-frequency distribution itself has 
to be weighed against the deterioration in the cleanliness of the energy 
density. 
 
From the cases presented in this current and the preceding section it is 
concluded that adaptive filtering may be used as an aid to damage 
identification from time-domain data for epicyclic gearboxes, especially 
when used in conjunction with time-frequency methods. Differences in the 
signals before and after adaptive filtering were more pronounced on the 
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time-frequency graphs than was the case for the PSDs. Although 
convergence is easier to attain with the newly proposed SQSD based 
adaptive line enhancer, the price to be paid is often a noisier weight vector 
solution. In the cases where convergence is hard to obtain by the LMS based 
filter, there is however a clear advantage in using the SQSD based filter. 
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5555 ConclusionConclusionConclusionConclusion    

Strictly time domain based diagnostic techniques operating on mechanical 
vibration signatures forms the central theme of this work. Filtering of the 
time domain data was performed using adaptive filtering methods. Damage 
identification was performed via signal analysis by time-frequency methods 
belonging to Cohen’s general class. 
 
Adaptive time domain filtering techniques for the removal of random noise 
from periodic or pseudo-periodic vibration signals were presented. The well 
known least mean squares algorithm was used in an adaptive line enhancer 
configuration in this context. A new unconditionally convergent adaptive 
filtering algorithm, based on the spherical quadratic steepest descent method 
was applied to the vibration signatures recorded from an epicyclic gearbox. 
 
Damage identification was performed by examination of the vibration 
signatures using the spectrogram and pseudo Wigner-Ville distributions. 
Wide-band transient events were sought on the time-frequency distributions 
to identify the presence of damage. The instantaneous energy density as 
defined by Loutridis (Article in Press) was applied to the spectrogram and 
pseudo Wigner-Ville distributions. 

5.15.15.15.1 Summary of FindingsSummary of FindingsSummary of FindingsSummary of Findings    

5.1.15.1.15.1.15.1.1 Cantilever Beam ExperimentCantilever Beam ExperimentCantilever Beam ExperimentCantilever Beam Experimentssss    

From the squared prediction errors it can be seen that the spherical quadratic 
steepest descent based filter and the least mean squares filter exhibit similar 
convergence behavior. Although the squared prediction error may indicate 
convergence, solution quality needs to be considered also.  
 
Choosing an excessively small step size parameter will lead to excessively 
slow convergence, and a loss of tracking ability for non-stationary signals for 
both algorithms. Larger step size parameters may converge more quickly, 
but offers a poorer quality solution in terms of the severity of the random 
fluctuations of the weight vector about the optimal solution. It is noted that 
for the spherical quadratic steepest descent algorithm with constant step size 
parameter, the filtered signal tends to be slightly noisier than for the 
corresponding least mean square case. It was found, as expected, that the 
step size parameter has a pronounced effect on the convergence behavior, as 
well as the solution quality of the filtered signal. Squared prediction error 
may be used to good effect as an indicator of convergence for the algorithms 
presented. It is advisable however to also consider the solution in terms of 
the filtered signal and filter coefficients to ensure a satisfactory solution. 
 
Exponential decrease of the step size offered the fast initial convergence of 
using a larger step size parameter, combined with the higher quality solution 
associated with smaller step size parameters. It was found during 
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experimentation with exponentially decreasing step size that a decrease in 
prediction error may be indicated as a result of forcing the exponential decay 
of the step size parameter, while the algorithm has not successfully 
converged to an acceptable stable solution. Care thus has to be exercised 
when applying a forcing function to the step size parameter. 

5.1.25.1.25.1.25.1.2 Conventional Helical Gearbox ExperimentsConventional Helical Gearbox ExperimentsConventional Helical Gearbox ExperimentsConventional Helical Gearbox Experiments    

When applied to quadratic objective functions, the spherical quadratic 
steepest descent algorithm has demonstrated a distinct advantage of 
unconditional convergence over the conventional least mean squares 
algorithm. Instances where the least mean squares algorithm failed to 
converge, while the spherical quadratic steepest descent algorithm 
converged successfully have been demonstrated for both the conventional 
helical and the epicyclic gear vibration data.  In addition the data filtered by 
the spherical quadratic steepest descent based filter provided signals with 
emphasized periodic content. Less experimentation was required with the 
spherical quadratic steepest descent algorithm to obtain a suitable step size 
parameter than with the least mean squares algorithm. 
 
Both the least mean squares algorithm and the spherical quadratic steepest 
descent algorithm have been shown to have useful application to time 
domain gear vibration data. The time domain amplitude and phase 
modulated vibration signatures recorded from conventional gearboxes may 
be filtered successfully for random noise reduction using the algorithms. 
More experimentation may however be required to find suitable parameters 
for the least mean squares algorithm than for the spherical quadratic steepest 
descent algorithm. 
 
A case where clear evidence of damage was absent from the time-frequency 
representation of a time domain vibration signature from a conventional 
helical gearbox has been demonstrated. On the spherical quadratic steepest 
descent based adaptively filtered signal’s pseudo-Wigner-Ville distribution, 
the damage could clearly be identified from the wide-band transient events 
observed, spaced at multiples of the gear rotation period. Time-frequency 
methods and the associated instantaneous energy density (Loutridis, Article 
in Press) have been shown to provide a viable alternative damage 
identification methodology to conventional spectral analysis, using strictly 
time domain data. 
 
Time-frequency methods, and in particular the pseudo Wigner-Ville 
distribution, combined with adaptive time domain filtering has been shown 
to aid in damage identification from strictly time domain data. The adaptive 
filtering has successfully enhanced the time domain signals such that 
damage features could be more easily identified on the time-frequency 
graphs produced by the pseudo Wigner-Ville distribution. 
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5.1.35.1.35.1.35.1.3 Epicyclic Gearbox ExperimentsEpicyclic Gearbox ExperimentsEpicyclic Gearbox ExperimentsEpicyclic Gearbox Experiments    

Traditional spectral analysis may not be suitable for epicyclic gearbox 
vibration diagnosis in general. Differences in traditional spectra may be too 
small to indicate appreciable damage to the transmission, as was the case in 
the epicyclic gearbox data presented. 
 
Adaptive filtering by the least mean squares algorithm failed to converge to 
an acceptable solution with the time domain data presented here. In contrast, 
the spherical quadratic steepest descent adaptive filter converged and 
successfully emphasized transients on the pseudo Wigner-Ville distribution, 
enabling the clear identification of damage to the transmission. These 
transient events were less clear on the band-pass filtered only signal. 
Adaptive time domain filtering has thus been shown to be useful as an aid to 
damage identification from time domain vibration data for epicyclic 
gearboxes, especially when used in combination with sensitive time-
frequency techniques. As for the conventional gear vibration case, the 
epicyclic case has demonstrated that adaptive time domain filtering can be 
used to enhance artefacts associated with damage to the transmission, visible 
on the time-frequency plane. 
 
Spherical quadratic steepest descent based adaptive filtering has been shown 
to outperform the conventional least mean squares algorithm in the cases 
presented. Clearly the spherical quadratic steepest descent based filter has 
been demonstrated to deal satisfactorily with amplitude and phase 
modulated epicyclic gear vibration data, which includes modulation at the 
planet carrier rotation frequency. 
 
Instantaneous energy density (Loutridis, Article in Press), computed from 
time-frequency representations has proven itself to be useful in epicyclic 
gearbox diagnostics from time-domain vibration data. 

5.25.25.25.2 General Additional ConclusionsGeneral Additional ConclusionsGeneral Additional ConclusionsGeneral Additional Conclusions    

Antoni and Randall’s (2001) method to determine number of filter 
coefficients has proved useful. In all experiments the method was used with 
success to determine the filter length for the least mean squares filter as well 
as the spherical quadratic steepest descent based filter. 
 
It was found that the instantaneous energy density criterion in isolation 
presents some difficulty when used with the spherical quadratic steepest 
descent filtered data’s pseudo Wigner-Ville distributions. The instantaneous 
energy density generally appears more active when computed from the 
Wigner-Ville distributions presented. Used in parallel with observations 
from the pseudo Wigner-Ville distributions, it is however a valuable aid to 
determining whether damage is in deed present. The instantaneous energy 
density was generally smoother when computed from spectrograms. 
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The spectrogram, although successfully used by other researchers, has a 
distinct disadvantage of poorer time- and frequency resolution. The Wigner-
Ville distribution exhibited better resolution, and was found to paint a 
clearer picture of the underlying structure of the time-frequency 
representation. Wide-band transients were clearer on pseudo-Wigner-Ville 
distributions than on spectrograms. 
 
In spite of unconditional convergence, discretion is still required when 
choosing parameters of the spherical quadratic steepest descent algorithm. 
The algorithm was found to be generally more stable than the least mean 
squares counterpart. In spite of this, care has to be taken to ensure that the 
algorithm converges to an acceptable solution. It was found that when the 
step size parameter was set too large, the filter weights would in some cases 
tend to unity and allow the signal to pass through the filter largely 
unaffected. 
 
Although convergence was found to be easier to attain with the newly 
proposed spherical quadratic steepest descent based adaptive line enhancer, 
the price to be paid is often a noisier weight vector solution. In the cases 
where convergence is hard to obtain by the least mean squares based filter, 
there is however a clear advantage in using the spherical quadratic steepest 
descent based filter in spite of the possibility of a noisy weight vector 
solution. 

5.35.35.35.3 RecommendationsRecommendationsRecommendationsRecommendations    

Synchronous averaging is widely used by practitioners of gearbox vibration 
analysis. The technique performs well when used to reduce the random or 
asynchronous noise present in gear vibration signals. A disadvantage of the 
technique is that it requires data sampled in the angular domain, i.e. order 
tracked data. Order tracking removes the evidence of speed variation from 
time domain data. 
 
Should the variation of shaft speed be important for some or other reason, 
synchronous averaging will be unattractive. The additional hardware 
required to perform the order tracking operation is another downside of the 
technique. In such cases, the analyst may be forced to make use of strictly 
time domain data. 
 
It has been demonstrated here that incipient faults may be recognised from 
the time-frequency distributions computed from strictly time domain data. 
The adaptive filtering algorithms used have been shown to aid in this 
process. The preservation of shaft speed information may point to issues 
other than those associated with a damaged gearbox, such as misuse or 
inappropriate operation. Time domain data offers a maximised amount of 
possible information regarding the operation of a gearbox. 
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5.45.45.45.4 Future WorkFuture WorkFuture WorkFuture Work    

Time-frequency methods applied to vibration data have been shown to be 
effective in the field of gearbox condition monitoring. Further work is 
required to make full use of the diagnostic information carried in time 
domain data and associated time-frequency techniques. 
 
Adaptive filter techniques have also been shown to be of good use when 
applied to strictly time domain data. Periodically occurring damage 
signatures may be emphasised by judicious adaptive filtering. The newly 
presented spherical quadratic steepest descent based algorithm may yet 
prove to be of greater use in the field of vibration signature analysis. Further 
developmental work is hence required. Investigations into the convergence 
behaviour and the optimization of the algorithm’s parameters are suggested. 
 
As yet, no clear connection has been made between vibration signature 
analysis and residual life estimates. The penultimate goal of a condition 
monitoring technique is a prediction of the residual safe operating time of a 
machine. Residual life estimation based on current vibration signature 
analysis techniques needs to be addressed. 
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