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Abstract

In this study, the regular expressions forming abstract states in Brzozowski’s
algorithm are not remapped to sequential state transition table addresses as would
be the case in the classical approach, but are hashed to integers. Two regular
expressions that are hashed to the same hash code are assigned the same integer
address in the state transition table, reducing the number of states in the automaton.

This reduction does not necessarily lead to the construction of a minimal automa-
ton: no restrictions are placed on the hash function hashing two regular expressions
to the same code. Depending on the quality of the hash function, a super-automaton,
previously referred to as an approximate automaton, or an exact automaton can be
constructed. When two regular expressions are hashed to the same state, and they
do not represent the same regular language, a super-automaton is constructed.

A super-automaton accepts the regular language of the input regular expression,
in addition to some extra strings. If the hash function is bad, many regular ex-
pressions that do not represent the same regular language will be hashed together,
resulting in a smaller automaton that accepts extra strings. In the ideal case, two
regular expressions will only be hashed together when they represent the same reg-
ular language. In this case, an exact minimal automaton will be constructed. It
is shown that, using the hashing approach, an exact or super-automaton is always
constructed.

Another outcome of the hashing approach is that a non-deterministic automaton
may be constructed. A new version of the hashing version of Brzozowski’s algorithm
is put forward which constructs a deterministic automaton.

A method is also put forward for measuring the difference between an exact
and a super-automaton: this takes the form of the k-equivalence measure: the k-
equivalence measure measures the number of characters up to which the strings of
two regular expressions are equal. The better the hash function, the higher the value
of k, up to the point where the hash function results in regular expressions being
hashed together if and only if they have the same regular language.

Using the k-equivalence measure, eight generated hash functions and one hand
coded hash function are evaluated for a large number of short regular expressions,
which are generated using Gödel numbers. The k-equivalence concept is extended
to the average k-equivalence value in order to evaluate the hash functions for longer
regular expressions. The hand coded hash function is found to produce good results.
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Chapter 1

Introduction

This chapter provides a broad overview of the research presented in this dissertation.
First the problem statement is given, and then informally discussed. This is followed
by a related work section which places the work in context. Finally, the structure
of the dissertation is given.

1.1 Problem statement

The aim of this dissertation is to reduce the memory requirements of finite state
automata, also referred to as exact automata, by turning them into smaller non-
deterministic finite state automata, possibly accepting additional strings. This au-
tomaton accepting additional strings is called a super-automaton, previously referred
to as an approximate automaton in [23], and is constructed from a regular expres-
sion denoting the language of an exact automaton. Based on this basic problem
statement, the following research questions can be formulated:

• How can the quality of a super-automaton be measured, relative to the exact
automaton?

• By what theoretical framework can the process of constructing a super-automaton
be interpreted?

These questions are investigated based on a modified version of Brzozowski’s algo-
rithm for constructing a finite state automaton from a regular expression, given in
[23]1.

One of the main problems addressed in this dissertation is how to measure the
relative quality of an exact and a super-automaton. The contribution of the research

1Brzozowski’s original algorithm can be found in [1].
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is mainly based around this, since no such measure could be found in literature,
though related work provided a basis for this.

The problem of measuring the relative quality of a super-automaton versus an exact
automaton is addressed in Chapter 7, starting from k-equivalence classes.

Having identified a performance measure, the process of reducing the automaton size
is addressed. The reduction process proceeds by assigning integers to abstract states
in a finite state automaton, which is represented by regular expressions. This process
takes the form of a hash function: when two states are assigned the same integer
they become merged, and in the process the automaton is reduced. Therefore, the
quality of the reduced automaton is solely dependent on the hash function.

1.2 Related work

The work presented here is based on an article that appeared recently in [23]. In
this article, the process of finite state automaton minimization through regular ex-
pression hashing is put forward. It is pointed out that a super-automaton would
be constructed through the hashing process. Even though no literature has been
found that is directly related to this work, there are other processes that result in
super-automata. Work related to the research presented in this dissertation includes:

• An approach is given in [14] for creating a super-automaton from an automa-
ton that accepts the same language, with k errors or mismatches, based on
the Levenshtein or Hamming distance. It duplicates the given automaton, and
then updates transitions between the copies of the automaton to take the mis-
matches into account. This work differs from the approach in this dissertation
in the sense that the resulting automaton is bigger than the original. This
work is similar to the work presented in this dissertation in the sense that the
resulting automaton accepts more strings than the original automaton.

• In [2], a process is given to construct a smaller cover automaton from an
exact automaton. A cover automaton is an automaton that accepts at least
the language of the exact automaton, in addition to strings longer than the
longest string. This work is similar in the sense that the resulting automaton
is smaller. It differs in the sense that the additional strings in the language
are longer. The process in this dissertation results in an automaton that may
accept additional shorter or longer strings.

• A factor oracle is a super-automaton, constructed from an input string, that
accepts at least the factors of that string. The factors of a string are all
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substrings of the string. Factor oracles have been introduced in [5]. The
properties of factor oracles have been explored in [3].

• This dissertation focuses on the construction of a finite state automaton, using
Brzozowski’s algorithm. The reader is referred to [22] for a taxonomy of finite
state automaton construction and minimization algorithms.

• Brzozowski’s algorithm is based on the derivatives of regular expressions that
were presented in [1]. The derivative of a regular expression, with respect to an
alphabet symbol, represents all the strings in the regular language represented
by that regular expression, with the first symbols removed. Brzozowski’s al-
gorithm is presented in Chapter 4.

• A concurrent version of Brzozowski’s algorithm can be found in [19] which
uses the CSP (Concurrent Sequential Processes) notation.

• An axiomatization of the regular languages can be found in [17].

1.3 Dissertation structure

The dissertation consists of five parts:

• Definitions and notation : Chapters 2 and 3 present the basic definitions
of this dissertation, building definitions from set theory up to the properties
of strings and regular expressions.

• Theory : Chapters 4 to 7 present the underlying theories of this dissertation.
This starts with Brzozowski’s algorithm. In Chapter 7 a theory is developed for
measuring the quality of a super-automaton, relative to an exact automaton.

• Implementation and Results : In Chapter 8 and 9, nine hash functions are
used to illustrate how the concepts in this dissertation are brought together.

• Code Overview of the implementation : This dissertation comes with a
compact disk containing the implementation. A short overview of the imple-
mentation is given in Appendix A.

• Test cases : Appendix B gives the long regular expressions used to generate
statistics.

The convention followed is to present definitions and notation as they are needed,
with only the basic definitions being placed in the second and third chapters.
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1.4 Presentation and publication

All new work in the form of definitions and theorems not taken from literature is
marked with an asterisk “*” in order to simplify the referencing process.

Some aspects of this work were also presented at the Prague Stringology Confer-
ence, 2008, and can be found in the proceedings [4]. Research conducted after the
conference will be published in a special issue of the International Journal of the
Foundations of Computer Science.
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Chapter 2

Basic definitions

This chapter contains some basic definitions and notation used in this dissertation.
The assumption is made that the reader is familiar with first order logic and set
theory. Most of the definitions and notations can be found in [16] and [6].

The notation of a power set is used in Chapter 3 to distinguish between a determin-
istic and a non-deterministic finite state automaton.

Notation 2.1 (Power set)
The power set of a set A is written as P(A). ¤

The notation for a partial function is used in the definition of an automaton:

Notation 2.2 (Partial and Total Functions)
A partial function uses the 9 symbol instead of the → symbol, which is used for
total functions. f : X 9 Y denotes a partial function from X to Y . Functions can
also be written as f(x) = y, with x ∈ X and y ∈ Y . ¤

Functions are also explicitly written as a set of mappings from X to Y with the 7→
symbol. For example, if X = {a, b} and Y = {1, 2} then the function f , for which
f(a) = 1 and f(b) = 2, can be written as f = {a 7→ 1, b 7→ 2}.

Definition 2.3 (Onto function)
A function f is onto if and only if ∀y : Y, ∃x : X • f(x) = y. This is also referred to
as a surjection. ¤

Definition 2.4 (One-to-one function)
A function f is one-to-one if and only if ∀x1, x2 : X • [f(x1) = f(x2)] ⇒ [x1 = x2]
with f(x1), f(x2) ∈ Y . This is also referred to as an injection. ¤
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Definition 2.5 (Bijection)
A bijection is one-to-one and onto, and is also referred to as a one-to-one corre-
spondence. ¤

The following notation is used in connection with equivalence relations. Equivalence
relations are important to this dissertation because they form the bases of the
k-equivalence classes that are used in later chapters in order to measure the difference
between an exact and a super-automaton.

Definition 2.6 (Equivalence classes of a relation)
If R ⊆ (Q×Q) is a relation such that

• R is symmetric: ∀x, y : Q • x R y ⇒ y R x;

• R is transitive: ∀x, y, z : Q • x R y ∧ y R z ⇒ x R z; and

• R is reflexive: ∀x : Q • x R x.

then R is an equivalence relation on Q. An equivalence relation on Q partitions Q
into mutually disjoint subsets. The set of equivalence classes for the relation R on
the set Q is written as [Q]R. ¤

Notation 2.7 (The number of equivalence classes in an equivalence rela-
tion)
The number of classes in an equivalence relation R on a set Q is written |[Q]R|. ¤

The following definitions are used in connection with hash functions and axiomatic
semantics. They are used in a later chapter to construct “good” hash functions
which are used in the implementation and results chapters.

Definition 2.8 (Commutativity)
A function is commutative if ∀x, y • f(x, y) = f(y, x). ¤

Definition 2.9 (Associativity)
A function is associative if ∀x, y, z • f(f(x, y), z) = f(x, f(y, z)). ¤

Definition 2.10 (Idempotence)
A function is idempotent if ∀x • f(x, x) = x. ¤
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Chapter 3

Strings and regular languages

This chapter contain definitions and notation for strings, finite state automata and
regular expressions. Properties of regular expressions relevant to Brzozowski’s algo-
rithm are also given.

3.1 Strings

Notation 3.1 (Alphabet)
The alphabet of a string is a non-empty finite set denoted by Σ. ¤

Notation 3.2 (String)
A string s is written as a sequence of characters c0 . . . cn−1. The empty string is
written ε. Therefore ci ∈ Σ. ¤

Notation 3.3 (String length)
The length of string s is written as |s|. The length of ε is 0. ¤

Notation 3.4 (All strings over an alphabet)
The set of all strings from an alphabet Σ is written as Σ∗. Note that ε ∈ Σ∗ and
that Σ+ = Σ∗\{ε}. ¤

Notation 3.5 (Language)
d can be an automaton, a regular expression or an automaton state, defined in the
following sections. L(d) denotes a language whose description is d. The language
L(d) is always a subset of all possible strings over the alphabet of d, i.e. L(d) ⊆ Σ∗.
¤
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3.2 Finite state automata

The definition for a deterministic finite state automaton is based on the one in [10]:

Definition 3.6 (Deterministic finite state automaton)
A deterministic finite state automaton (abbreviated DFA) is a 5-tuple 〈Q, Σ, δ, s, F 〉
where

• Q is the set of states;

• Σ is the alphabet;

• δ : Q× Σ 9 Q is the state transition function;

• s ∈ Q is the start state; and

• F ⊆ Q is the set of final states.

¤

Definition 3.7 (Non-deterministic finite state automaton)
A nondeterministic finite state automaton (abbreviated NFA) is a 5-tuple 〈Q, Σ, δ, s, F 〉
where

• Q is the set of states;

• Σ is the alphabet;

• δ : Q× Σ 9 P(Q) is the state transition function;

• s ∈ Q is the start state; and

• F ⊆ Q is the set of final states.

¤

Note that the state transition function in Definition 3.6 is changed in Definition
3.7: it now goes to a power set of Q. Based on this change, a combination of
a state and a transition symbol can have multiple next states. In the modified
version of Brzozowski’s algorithm, which is presented in a later chapter, a non-
deterministic finite state automaton is constructed: its non-determinism does not
follow from empty transition symbols, but from multiple next states. Therefore,
the empty symbol has been omitted from Definition 3.7: it is not applicable to this
dissertation.

In order to define the language of an automaton, an extended transition function is
used as was done in [10]:

13

 
 
 



Definition 3.8 (Extended transition function)
The extended transition function is written as δ∗(q, w) where q is the current state,
and w is an input string. δ∗(q, w) is defined recursively in [10]: if w = ab with a ∈ Σ
and b ∈ Σ∗ then

• δ∗(q, ε) = q

• δ∗(q, ab) = δ∗(δ(q, a), b)

¤

When δ∗(q, w) is undefined for input string w, w is not in the language of the
automaton. Formally:

Definition 3.9 (Language of an automaton)
The set of strings representing the language of an automaton FA = 〈Q, Σ, δ, s, F 〉 is
denoted L(FA), and is given by L(FA) = {w|δ∗(s, w) ∈ F ∧ w ∈ Σ∗} ¤

In later chapters, the concepts of the left and the right languages of a state in an
automaton are used. Informally, the left language of a state q is the set of all strings
accepted by the automaton, where the last state reached in traversing the automaton
is q. The set of strings accepted in this manner is equivalent to the language of an
automaton, where q is the only final state. Therefore the left language is defined as:

Definition 3.10 (Left language of a state)
The left language of q is the language of the automaton 〈Q, Σ, δ, s, {q}〉. The left

language of a state q is written
←−
L (q). ¤

Similarly, the right language of state q is the set of all strings accepted by the finite
automaton, starting from state q. For this reason, the right language is defined as:

Definition 3.11 (Right language of a state)
The right language of q is the language of the automaton 〈Q, Σ, δ, q, F 〉. The right

language of a state q is written
−→
L (q). ¤

3.3 Regular expressions

Regular expressions and finite state automata are related to each other in the sense
that they both represent regular languages. The definition of a regular language,
given below, is taken from [13] [10]:

Definition 3.12 (Regular language)
A language is regular if and only if it is accepted by a finite state automaton. ¤
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Definition 3.13 (Regular expression)
A regular expression over an alphabet Σ is defined recursively as follows, with L
giving the semantics of the regular expression representation:

• Empty String: ε is a regular expression, and L(ε) = {ε}
• Empty Language: The empty language, denoted by ∅, is a regular expres-

sion, and L(∅) = ∅. Note that L(∅) 6= L(ε).

• Alphabet Symbols: An alphabet symbol s ∈ Σ is a regular expression, and
L(s) = {s}. Note that such a symbol also represents a string of length 1.

• Concatenation: If A and B are regular expressions then their concatenation,
written as A ·B, is also a regular expression, and
L(A ·B) = {vw|v ∈ L(A) ∧ w ∈ L(B)}.
• Union: The union of two regular languages A and B is a regular expression

and is written as A ∪B. L(A ∪B) = L(A) ∪ L(B).

• Star Closure: The star closure of a regular expression A, written as A∗, is
a regular expression, and L(A∗) = L(ε)∪L(A)∪L(A ·A)∪L(A ·A ·A)∪ . . ..

¤

In some contexts, it is convenient to rely on the notion of extend regular expressions.
The following extensions of regular expressions are encountered:

• Optional: If A is a regular expression then A? is also a regular expression,
and L(A?) = L(A) ∪ {ε}.
• Plus Closure: The plus closure of a regular expression, A, written as A+ is

the regular expression A · A∗. Thus L(A+) = L(A · A∗).

In this dissertation, it is necessary to refer to the set of all regular languages and the
set of all regular expressions. Therefore, the following notation needs to be defined:

Notation 3.14 (The set of regular languages)
The set of all regular languages is written Rl. ¤

Notation 3.15 (The set of regular expressions)
The set of all regular expressions is written Re. ¤
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3.4 Super-automata and exact automata

It is now possible to define what is meant by a super-automaton. Super-automata
have previously informally been described in [23], where they were called approxi-
mate automata. The following definitions are given formally due to their importance
to this dissertation. r ∈ Rl denotes an intended regular language, which can be de-
scribed in any regular language notation. These definitions are not taken from
literature but were defined for the purpose of this dissertation.

Definition 3.16 (Exact automaton*)
If r is a regular language and FA is an automaton with L(FA) = r, then FA is an
exact automaton of r. ¤

Definition 3.17 (Super-automaton*)
If r is a regular language and FA is an automaton with L(FA) ⊇ r, then FA is a
super-automaton of r. ¤

Definition 3.18 (Sub-automaton*)
If r is a regular language and FA is an automaton with L(FA) ⊆ r, then FA is a
sub-automaton of r. ¤

Note that a super-automaton is also a finite state automaton. Therefore it still
represents a regular language, and not (for example) a context-free language [10].

3.5 Properties of regular expressions

The properties of regular languages in this section relate to Brzozowski’s algorithm
in the next chapter. The nullability of regular languages, left derivatives and first
symbol sets are all involved in the algorithm and are presented in Definitions 3.19,
3.20 and 3.21.

Definition 3.19 (Nullable Regular Languages)
For a regular expression RE, nullable(RE) = (ε ∈ L(RE)). nullable is defined [7]
in terms of regular expressions as:

• nullable(∅) = false

• nullable(ε) = true

• nullable(s) = false, if s ∈ Σ

• nullable(A ·B) = nullable(A) ∧ nullable(B)
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• nullable(A ∪B) = nullable(A) ∨ nullable(B)

• nullable(A∗) = true

• nullable(A+) = nullable(A)

• nullable(A?) = true

¤

Definition 3.20 (First Symbol Sets of Regular Expressions)
The first symbol set first(RE) of a regular expression RE is the set of first symbols
of all the strings in L(RE), and is given in [7] as:

• first(∅) = ∅
• first(ε) = ∅
• first(s) = {s}

• first(A ·B) = first(A) ∪
{

first(B) if nullable(A)
∅ otherwise

• first(A ∪B) = first(A) ∪ first(B)

• first(A∗) = first(A)

• first(A+) = first(A)

• first(A?) = first(A)

¤

Definition 3.21 (Left Derivatives of Regular Expressions)
The left derivative of a regular expression RE with respect to a symbol s ∈ first(RE)
represents all the strings in L(RE), starting with the first symbol s, but with the
first symbol removed. The left derivative is recursively defined by these rules [1]:

• s−1∅ = ∅
• s−1ε = ∅
• s−1s = ε

• s−1(A ·B) = (s−1A) ·B ∪
{

(s−1B) if nullable(A)
∅ otherwise
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• s−1(A ∪B) = (s−1A) ∪ (s−1B)

• s−1A∗ = (s−1A) · A∗

• s−1A+ = (s−1A) · A∗

• s−1A? = s−1A

¤

3.6 Summary

In this chapter, definitions and notation were given for strings, regular expressions
and finite state automata. This concludes the basic definitions needed in the rest
of the dissertation. In the next chapter, the left derivatives, first symbol sets and
nullability tests are used in the presentation of Brzozowski’s algorithm.
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Chapter 4

Brzozowski’s algorithm

Brzozowski’s algorithm for constructing a deterministic finite state automaton from
a regular expression forms the basis of this dissertation. In this chapter, Brzozowski’s
algorithm is presented.

4.1 Basic definitions for Brzozowski’s algorithm

Notation 4.1 (Initial regular expression and Brzozowski’s algorithm)
The initial regular expression REinit is the expression from which an automaton is
derived using Brzozowski’s algorithm. ¤

Notation 4.2 (The state of a regular expression)
The abstract state s represented by a regular expression RE in Brzozowski’s algo-
rithm is written as state(RE) ∈ Q. ¤

The definition of the left and right language of a regular expression follows the same
line of reasoning as the definition for the left and right language of a state:

Notation 4.3 (Left language of regular expressions)
If Brz(REinit) = 〈Q, Σ, δ, state(REinit), F 〉 and REs is a regular expression such

that state(REs) ∈ Q then the left language of REs is written as
←−
L (REs) and is

equal to
←−
L (state(REs)). ¤

Notation 4.4 (Right language of regular expressions)
If Brz(REinit) = 〈Q, Σ, δ, state(REinit), F 〉 and REs is a regular expression such

that state(REs) ∈ Q then the right language of REs is written as
−→
L (REs) and is

equal to
−→
L (state(REs)). ¤
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Figure 4.1: Brzozowski’s algorithm without state merging

Note that the left language of a regular expression exists relative to REinit: in
order to have a left language, the regular expression RE must be in a finite state
automaton. This language gives a set of strings from the start state that forms the
left language of state(RE).

The right language of the regular expression RE is equal to the language of the
automaton Brz(RE), which in turn has the same language as the input regular

expression. For this reason, L(RE) and
−→
L (RE) can be used interchangeably.

4.2 General algorithm overview

Broadly speaking Brzozowski’s algorithm proceeds as follows. Given a regular ex-
pression REinit, the start state of the deterministic finite automaton to be built is
state(REinit). The first symbol set first(REinit) is then found. For each symbol s
in first(REinit), the left derivative s−1REinit is calculated. s then becomes a label
for an out-transition for state(REinit), and state(s−1REinit) forms the next state for
this out-transition. These steps are repeated for each derived regular expression in
a recursive fashion.

In each case, each regular expression REj is subjected to the nullability test
nullable(REj). If nullable(REj) = true, then ε ∈ L(REj) and state(REj) is a final
state. The input regular expression forms the start state in the resulting automaton.
This process is depicted in Figure 4.1, with RE representing the initial regular
expression.

After expanding s−1RE for the first symbol set first(RE), the algorithm is repeated
for s−1RE. Note that cycles may form in the resulting automaton. This occurs
when the left derivative corresponds to a regular expression that has previously
been associated with a state. Such a regular expression is not further expanded, in
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order to avoid non-termination.

4.3 Rewrite rules for algorithm termination

In order for Brzozowski’s algorithm to terminate, equality must take commutativity,
associativity and idempotence of the union operator into account. The following
rewrite rules may also be applied to eliminate the empty set and the empty string:

• RE ∪ ∅ = RE

• RE · ∅ = ∅
• ∅ ·RE = ∅
• RE · ε = RE

• ε ·RE = RE

4.4 Remapping version of the algorithm

Algorithm 4.1 comes from [23] with slight modifications. It uses remapping (the
remap function call) to determine a unique integer to represent the state of each
regular expression. In the implementation, the initial regular expression REinit is
represented by 0, and all further assignments are incremented by one. These integers
can be used as addresses in a state transition table, as will be shown in Section 4.5.

Note that the destination state for a given symbol is uniquely determined, due to
the remap function. As a consequence, a deterministic finite state automaton is
constructed. Note, also, that the test in the algorithm for membership of regular
expression sets (e.g. destination 6∈ (done∪todo)) takes commutativity, idempotence
and the rewrite rules for the empty string and the empty set into account.

In the remap function, the test for equality must also take commutativity, idem-
potence and the rewrite rules into account, as is done in the set membership test.
This keeps the remapped regular expressions, representing states, consistent with
the done and the todo sets. This also influences the formation of cycles in the con-
structed automaton: when a regular expression is encountered more than once, it
must be remapped to the same integer in order to form a cycle in the automaton.
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Algorithm 4.1 (Brzozowski’s algorithm with Remapping)

func Brz(REinit)
next, δ, F, remap := 0, ∅, ∅, ∅;
remap[REinit], next := next, next + 1;
done, todo := ∅, {REinit};
do todo 6= ∅ →

let REj be some regular expression such that REj ∈ todo;
done, todo := done ∪ {REj}, todo\{REj};
{ Only expand out-transitions for symbols in the first symbol set ofREj }
for s : first(REj)→
{ Use the left derivatives to calculate the next state }
destination := s−1REj;
if destination 6∈ (done ∪ todo)→
{ Update the todo set in order to expand the automaton for destination }
todo := todo ∪ {destination};
remap[destination], next := next, next + 1

8 destination ∈ (done ∪ todo)→ skip
fi;
δ(remap[REj], s) := remap[destination]

rof ;
if nullable(REj)→
{ A state is final if and only if it accepts the empty string }
F := F ∪ {remap[REj]}

8 ¬nullable(REj)→ skip
fi

od;
return 〈{0, . . . , next− 1}, δ, 0, F 〉

cnuf
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4.5 Example of algorithm execution

In order to clarify the way the algorithm works, and to expose several finer points in
its implementation, an example of the construction of an automaton from a regular
expression is now presented, using REinit = (a · b ∪ b · c)∗.

In Algorithm 4.1, the remap variable associates a regular expression with an integer,
as discussed in the above sections. The next variable stores the next value that will
be mapped to a regular expression. The done set stores the regular expressions that
have been processed by the algorithm’s for- and do-loops. The todo set stores the
regular expressions that must still be processed.

In order to initialize these variables, remap is set to 0, and todo is set to
{(a · b ∪ b · c)∗}. The other sets are set to ∅.

In each iteration of the algorithm’s do-loop, a regular expression is removed from
the todo set, and moved to the done set. This regular expression will from this point
forward be referred to as the current regular expression. In this first iteration of the
algorithm, the current regular expression is (a · b ∪ b · c)∗. In order to expand this
into a finite state automaton, the first symbol set is calculated. The calculation of
the first symbol set, based on Definition 3.20, is:

first((a · b ∪ b · c)∗) = first(a · b ∪ b · c)
= first(a · b) ∪ first(b · c)
= first(a) ∪ first(b)

= {a, b}

The for-loop iterates over all the symbols in the first symbol set, taking their left
derivative. These left derivatives represent the next states in the finite state au-
tomaton. The guard of the if -statement in the for-loop of the algorithm prevents
non-termination: when a regular expression have already been expanded in the al-
gorithm, it must not be expanded again. This is prevented by the
destination 6∈ (done ∪ todo) check. If this check was not present, the todo 6= ∅ test
of the do-loop would never return false.

The set membership test must take idempotence, commutativity and associativity
into account: in an object oriented programming language such as C#, this mod-
ifies the definition of equality. This alters the design of an implementation of the
algorithm. A method used to handle equality in the implementation is discussed in
Appendix A.
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The do-loop iterates over the first symbol set, calculating the left derivatives. First
the left derivative with respect to a is calculated:

a−1((a · b ∪ b · c)∗) = a−1((a · b ∪ b · c) · (a · b ∪ b · c)∗)
= (b ∪ ∅) · (a · b ∪ b · c)∗
= b · (a · b ∪ b · c)∗

Note that the rewrite rule b ∪ ∅ = b has been applied. Now the left derivative with
respect to b is calculated:

b−1((a · b ∪ b · c)∗) = b−1((a · b ∪ b · c) · (a · b ∪ b · c)∗)
= (∅ ∪ c) · (a · b ∪ b · c)∗
= c · (a · b ∪ b · c)∗

This time the rewrite rule has been applied as ∅ ∪ c = c. When implementing these
rules in a programming language, the commutativity, associativity and idempotence
of the regular expression operators must be taken into account.

The left derivatives are remapped to integers, as discussed in previous sections.
The remapping of all the regular expressions generated for the resulting automaton
is given in the Table 4.1. When remapping the regular expressions, the modified
definition of equality must be taken into account. This is important for updating
the set of final states: the set of final states contains integers. In order to maintain
consistency with the other sets (i.e. done and todo), the remap function must also
take idempotence, commutativity and associativity into account.

Regular Expression Remap Value
(a · b ∪ b · c)∗ 0
b · (a · b ∪ b · c)∗ 1
c · (a · b ∪ b · c)∗ 2

Table 4.1: Remapped values for regular expressions in Algorithm 4.1

After calculating a−1((a · b ∪ b · c)∗) and b−1((a · b ∪ b · c)∗), and calculating the
remap values, the state transition function is updated. Then the last guard in the
do-loop marks states as final states. This is done by using Definition 3.19:
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Figure 4.2: Partially constructed automaton for (a · b ∪ b · c)∗

nullable((a · b ∪ b · c)∗) = true

The calculation does not traverse the entire regular expression due to the star clo-
sure rule in Definition 3.19. The nullable values for all regular expressions in the
automaton is given in Table 4.2.

Regular Expression Nullable
(a · b ∪ b · c)∗ true
b · (a · b ∪ b · c)∗ false
c · (a · b ∪ b · c)∗ false

Table 4.2: Nullable values for regular expressions in Algorithm 4.1

This concludes the first iteration of the do-loop. The automaton after the first
iteration is depicted in Figure 4.2. The start state is also the final state and has
been marked with a double circle.

The second iteration of the do-loop is the final iteration. In this iteration,
done = {(a · b ∪ b · c)∗} and todo = {b · (a · b ∪ b · c)∗, c · (a · b ∪ b · c)∗}. When
the current regular expression is c · (a · b ∪ b · c)∗, the left derivative is

c−1(c · (a · b ∪ b · c)∗) = (a · b ∪ b · c)∗

When the result of this derivative is remapped, the remapping algorithm must take
into account that this regular expression has been processed before. For this reason,
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(a · b ∪ b · c)∗ is mapped to 0, as it was before. This causes a cycle to form in the
finite state automaton, representing the *-closure operator. It is also the case that

b−1(b · (a · b ∪ b · c)∗) = (a · b ∪ b · c)∗

Therefore, another cycle forms from remap(b · (a · b ∪ b · c)∗) = 1 to
remap((a · b ∪ b · c)∗) = 0. The final state transition table is shown in Table 4.3.
The final automaton is shown in Figure 4.3.

Remapped Value (state) a b c
0 1 2
1 0
2 0

Table 4.3: The state transition table constructed for (a · b ∪ b · c)∗

Figure 4.3: Complete automaton for (a · b ∪ b · c)∗

4.6 Example of non-termination

In order to see how the non-application of the rewrite rules in Section 4.3 can lead to
non-termination, consider the algorithm run for the regular expression a∗. Initially,
a∗ would be placed in the todo set, and then processed when it is selected in the
let-statement.

When the left derivative is taken in the first iteration, we have
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a−1(a∗) = a−1a · a∗
= ε · a∗

Consider what happens if the rewrite rules are not applied as they should be. As a
consequence, a∗ and ε · a∗ will not be remapped to the same integer, even though
they represent the same language. On the second iteration, we would have

a−1(ε · a∗) = (a−1(ε) · a∗) ∪ (a−1(a∗))

= ∅ · a∗ ∪ a−1a · a∗
= ∅ · a∗ ∪ ε · a∗

As can be seen on the right hand side of the derivation, ε ·a∗ re-appears. It was also
the input regular expression. After an arbitrary number of iterations, the regular
expression would be expanded to

∅ · a∗ ∪ . . . ∪ ∅ · a∗ ∪ ε · a∗

Applying the rewrite rule ∅ ·RE = ∅ at this stage would result in:

∅ ∪ ∅ ∪ . . . ∪ ∅ ∪ ε · a∗

If the RE ∪ ∅ = RE rule, and then the ε · RE = RE rule were now to be applied,
the resulting regular expression would be a∗. Placing this regular expression in the
done set would prevent further expansion.

4.7 Summary

In this chapter, Brzozowski’s algorithm is presented. An example run of the al-
gorithm and an example of non-termination resulting from the non-application of
the rewrite rules with regards to the empty set and the empty string is given. In
the next chapters, modified versions of the algorithm are given which construct
super-automata.
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Chapter 5

Brzozowski’s algorithm with state
merging

In this chapter, modifications to the algorithm in the previous chapter are discussed
that allows the construction of a super-automaton. These modifications were orig-
inally published in [23]. The effects of using the hashing approach is investigated.
The hashing approach results in the construction of a super-automaton that is non-
deterministic. In the next chapter, a modified version of the algorithm in this chapter
will be given, which constructs a deterministic automaton.

5.1 General algorithm overview

In the hashing version of Brzozowski’s algorithm (Algorithm 5.1), the remapping
function is replaced with a hash function. The result might be that the resulting
automaton is smaller. This happens when two regular expressions with the same
hash code represent the same state, and states are merged. This algorithm was first
presented in [23].
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Algorithm 5.1 (Brzozowski’s algorithm with Hashing — NFA version)

func Brz hash NFA(REinit)
Q, δ, F := ∅, ∅, ∅;
done, todo := ∅, {REinit};
do todo 6= ∅ →

let REj be some regular expression such that REj ∈ todo;
done, todo, h := done ∪REj, todo\REj, hash(REj);
Q := Q ∪ {h};
{ Only expand out-transitions for symbols in the first symbol set ofREj }
for s : first(REj)→
{ Use the left derivatives to calculate the next state }
destination := s−1REj;
if destination 6∈ (done ∪ todo)→
{ Update the todo set in order to expand the automaton for destination }
todo := todo ∪ {destination}

8 destination ∈ (done ∪ todo)→ skip
fi;
δ(h, s) := δ(h, s) ∪ {hash(destination)}

rof ;
if nullable(REj)→
{ A state is final if and only if it accepts the empty string }
F := F ∪ {h}

8 ¬nullable(REj)→ skip
fi

od;
return 〈Q, δ, hash(REinit), F 〉

cnuf

29

 
 
 



When comparing Algorithm 4.1 and 5.1, the following general remarks can be made:

• In Algorithm 5.1, the state transition function δ goes to a set of integers,
rather than to a single integer. Therefore the resulting automaton is non-
deterministic1.

• When updating the state transition function, the hash function is used instead
of the remap function. This change also affects the start state and final states.
The done and todo sets still contain regular expressions, where equality takes
rewrite rules, idempotence, associativity and commutativity into account. The
set of final states F contains integers from the hashed regular expressions.

• Because destination is added to the todo set, its out-transitions will be ex-
panded in a later iteration. Note that an out-transition can originate not only
from destination but also from the state with which it is merged.

• As a consequence of the possible merging of states, the automaton constructed
in Algorithm 5.1 is a super-automaton of the automaton constructed in Algo-
rithm 4.1.

These observations will be further explained below.

In Algorithm 4.1, 5.1 and 6.1 the alphabet of the automaton is implied by the
alphabet of the input regular expression REinit. Therefore it has been omitted in
order to simplify the notation. The following notation is introduced for indicating
that two states have been merged. It will be used in later sections.

Notation 5.1 (Merged states)
merge(s1, s2) denotes the state that is constructed when merging states s1 and s2.
The state merge(s1, s2) replaces the states s1 and s2. The in- and out-transitions of
state s1 and s2 become the in- and out-transitions of merge(s1, s2). ¤

5.2 Example of the algorithm execution

In order to clarify the workings of Algorithm 5.1, it is now shown how an automaton
is derived from a regular expression. The same regular expression from Section 4.5
is used: (a · b ∪ b · c)∗. This simplifies the comparisons with Algorithm 4.1.

The main difference between algorithm 4.1 and 5.1 is that the remap function has
been replaced by the hash function. Most of the data structures remain the same.

1A new deterministic version (Algorithm 6.1) is presented in the next chapter.
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The done and the todo sets still store regular expressions, with the done set storing
regular expressions that have already been processed, and the todo set still storing
regular expressions that must still be processed.

The same considerations must still be taken into account with respect to the rewrite
rules for the empty set and the empty string. Equality tests in an implementation
must still take idempotence, associativity and commutativity of regular language
operators into account.

When processing the regular expression (a · b ∪ b · c)∗, it is loaded into the todo set.
It is subsequently selected in the let-statement, and the first symbol set is calculated
as is done in Section 4.5. The left derivatives of (a · b ∪ b · c)∗ are also calculated,
with respect to the first symbol set, as is done in Section 4.5, and subsequently
added to the todo set.

Regular expression Hash code
(a · b ∪ b · c)∗ 5
b · (a · b ∪ b · c)∗ 5
c · (a · b ∪ b · c)∗ 7

Table 5.1: Hash codes for example run of Algorithm 5.1

Next, the state transition function is updated. This is where the real difference be-
tween Algorithm 4.1 and 5.1 lies: the resulting automaton can be non-deterministic,
as will be shown in a later section. For this reason the state transition function
update takes the form

δ(h, s) := δ(h, s) ∪ {hash(destination)}
There is no restriction placed on the hash function, accept that it must map a regular
expression to an integer. For illustrative purposes, let the hash function generate
the mappings given in Table 5.1. This hash function is chosen to show how certain
hash functions can generate non-deterministic automata. Algorithm 6.1 is designed
to construct a deterministic automaton, and will be discussed in the next chapter.

During the first iteration of the do-loop, the current regular expression is set to
(a · b ∪ b · c)∗. When the state transition function is updated with the hash
function, the difference between the automata produced by Algorithm 4.1 and 5.1
becomes apparent: compare Figure 4.2 and Figure 5.1. Initially, (a · b ∪ b · c)∗ and
b · (a · b ∪ b · c)∗ remapped to different values. Here they are hashed to the same
integer, 5. This causes state((a · b ∪ b · c)∗) and state(b · (a · b ∪ b · c)∗) to become
merged.
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Figure 5.1: Partial automaton constructed using Algorithm 5.1

In the second iteration of the do-loop:

todo = {b · (a · b ∪ b · c)∗, c · (a · b ∪ b · c)∗}
Algorithm 4.1 and 5.1 proceed in the same way at this point, expanding the automa-
ton for each of the elements of the todo set. When the left derivative of b·(a·b ∪ b·c)∗
is calculated with respect to b, the next state is (a · b ∪ b · c)∗. The state for which
the hash code is 5 already has an out-transition on the b symbol: the state transition
function is updated in the following manner:

δ(5, b) := δ(5, b) ∪ {hash((a · b ∪ b · c)∗) = 5}
= {7, 5}

For this reason the automaton becomes non-deterministic. The complete automaton
is shown in Figure 5.2.

The final state transition table for the automaton in Figure 5.2 is given in Table 5.2.

Hash code (State) a b c
5 {5} {5, 7} ∅
7 ∅ ∅ {5}

Table 5.2: State transition table for example run of Algorithm 5.1
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Figure 5.2: Complete automaton constructed using Algorithm 5.1

5.3 Algorithm 5.1 constructs a super-automaton

In Chapter 3, the notion of a super-automaton FAs, constructed from regular ex-
pression RE is defined as a finite automaton having the following property:

L(FAs) ⊇ L(RE)

It must be proven that the automaton constructed in the hash version of Brzo-
zowski’s algorithm satisfies this property. This will be done by first providing an
informal illustration and then a proof.

Figure 5.3: Before state merging

Consider the finite automaton depicted in Figure 5.3. Suppose that this automaton
is generated by Algorithm 4.1 and that RE1 and RE2 are regular expressions such
that s1 = state(RE1) and s2 = state(RE2). The language of the automaton is
L(FA) = {ab, cd}. Now suppose that Algorithm 5.1 is used to generate an automa-
ton, based on the same regular expression that gave rise to Figure 5.3. Suppose too,
that there was a collision between the hash values of RE1 and RE2. Then states
s1 and s2 would be merged by Algorithm 5.1, producing an automaton depicted in
Figure 5.4.
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Figure 5.4: After state merging

The language of the new automaton with merge(s1, s2) is:

L(FAs) = {ab, ad, cb, cd} ⊇ L(FA)

Note that, a, the in-transition of s1, has been connected to the out-transition of s2,
namely d. Similarly, the in-transition of s2, namely c, has been connected to the
out-transition of s1, namely b. As a consequence the language of FAs is a superset
of the language of FA — new strings are added to the original language and none
of the old strings in the language are removed. We now present a new proof that a
super-automaton is constructed.

Theorem 5.1 The automaton FAs, produced by Algorithm 5.1 with input regular
expression REinit, is a super-automaton of L(REinit), i.e. L(FAs) ⊇ L(REinit).
Proof Consider any two states s1 and s2 of Brz(REinit). The full language of s1 is←→
L (s1) =

←−
L (s1) · −→L (s1) and similarly, the language of s2 is

←→
L (s2) =

←−
L (s2) · −→L (s2).

If Algorithm 5.1 merges these states into one called merge(s1, s2), then its language
is: ←→

L (merge(s1, s2)) = (
←−
L (s1) ∪←−L (s2)) · (−→L (s1) ∪ −→L (s2))

Distributing · over ∪ gives

←−
L (s1) · −→L (s1) ∪←−L (s1) · −→L (s2) ∪←−L (s2) · −→L (s1) ∪←−L (s2) · −→L (s2)

⊇ ←−
L (s1) · −→L (s1) ∪←−L (s2) · −→L (s2)

=
←→
L (s1) ∪←→L (s2)

Since
←→
L (merge(s1, s2)) ⊇ ←→L (s1) ∪ ←→L (s2) for any two states s1 and s2 that are

merged by Algorithm 5.1, it follows that L(FAs) ⊇ L(REinit). ¤

Note that Theorem 5.1 does not exclude the possibility of producing an automaton
FAs with the same language as the initial regular expression REinit.

This happens when
−→
L (s1) =

−→
L (s2). Let

−→
L (s1) =

−→
L (s2) =

−→
L (sx), then:
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←−
L (s1) · −→L (s1) ∪←−L (s2) · −→L (s2)

= (
←−
L (s1) ∪←−L (s2)) · −→L (sx)

=
←→
L (merge(s1, s2))

5.4 Summary

In this chapter, the original hashing version of Brzozowski’s algorithm is presented.
An example is given of an execution run of the algorithm resulting in the construction
of a non-deterministic automaton. It is also proven that, in general, the algorithm
constructs a super-automaton. In the next chapter, a new algorithm is proposed
that will construct a deterministic automaton.
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Chapter 6

Brzozowski’s algorithm with state
merging — the DFA version

In previous chapters, it was shown that the algorithm proposed in [23] has to be
designed to construct a non-deterministic super-automaton of the input regular ex-
pression. In this chapter, the algorithm is modified to construct a deterministic
automaton, which is still a super-automaton. Note that the language of the two
super-automata need not be the same.

6.1 The source of non-determinism

Algorithm 5.1 deliberately constructed a non-deterministic finite state automaton.
This is manifested in the fact that its transition function was designed to map to
a set of states, rather than to a single state. This was done in anticipation of the
possibility that the algorithm generates a transition on a given symbol from a given
state to more than one state.

Algorithm 5.1 places no restrictions on the properties of states that are merged.
Merging is simply the consequence of unforeseen hash collisions. Furthermore, the
algorithm computes the out-transitions on all symbols of states involved in the
merging, and combines them as out-transitions of the single merged state. The
source of the non-determinism is when symbols of the out-transitions of two or more
merged states coincide, and these symbols go to different next states.

This is expressed in formal terms in the following theorem:

Theorem 6.1 Suppose that two states of the automaton produced in Algorithm
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4.1, state(REi) and state(REj), are merged in Algorithm 5.1, into a state1

h = merge(state(REi), state(REj)). Then |δ(h, a)| > 1 if and only if

a ∈ (first(REj) ∩ first(REi)) ∧ (hash(a−1REi) 6= hash(a−1REj))

Proof The theorem follows from the following observations regarding left deriva-
tives and first symbol sets of regular expressions:

• The first symbol sets of REi and REj provide the out-transition labels for
state(REi) and state(REj) respectively.

• The intersection (first(REi)∩first(REj)) contains the out-transition symbols
shared by state(REj) and state(REi).

• The left derivatives of REi and REj with respect to a provide the respective
destination states if a transition on a is made. If these destination states differ
in Algorithm 5.1, then the assignment in Algorithm 5.1:

δ(h, a) := δ(h, a) ∪ hash(destination)

will insert two different values into δ(h, a), resulting in |δ(h, a)| > 1.

¤

The foregoing theorem clearly points to the source of the non-determinism in Algo-
rithm 5.1. It is generally recognised that it is more practical to rely on a determinis-
tic automaton for string recognition, both in terms of simplified data structures for
storage (the NFA cannot be represented as a two dimensional state transition table)
and in terms of greater efficiency in the associated recognition algorithm. For this
reason it would be desirable to have a deterministic version of Algorithm 5.1.

One route would be to simply deploy the classical determinising algorithm on the
output of Algorithm 5.1, thus obtaining an equivalent deterministic finite state au-
tomaton. (See for example [13] and [10].) However this kind of algorithm is not only
rather inefficient, but also increases the number of states (i.e. the size) of the re-
sulting input automaton. Since much of this dissertation is concerned with deriving
automata that are smaller than those from the conventional Brzozowski Algorithm,
such an approach to determinising is self-defeating. An alternative to Algorithm 5.1
has therefore been derived. It generates directly a deterministic super-automaton
of the language of the input regular expression, and thus, by implication, complies
with the objective of limiting the size of the generated automata.

1Note that h denotes a state here. In the Section 5.2, states are represented by hash codes.
Therefore h was used.
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6.2 General algorithm overview

Note that an alternate notation for the state transition function is used in Algorithm
6.1:

Notation 6.1 (The function δ as a set of pairs)
The state transition function can be seen as a set of nested pairs. Thus, if the pair
consisting of input state h and state transition symbol a and destination state d (i.e.
if δ(h, a) = d), then an element of the set of nested pairs can be viewed as 〈〈h, a〉, d〉.
¤
This convenient notation allows the manipulation of the state transition function
with set operators, such as the relative set difference.

It will be seen that the automaton derived by Algorithm 6.1 is identical to that
derived by Algorithm 5.1, provided that no opportunities for non-determinism as
described in Theorem 6.1 arise. It will also be seen that under certain circumstances,
the language of the super-automaton derived by Algorithm 6.1 is identical to that
derived by Algorithm 5.1. However, even when these conditions do not arise, Al-
gorithm 6.1 will produce a super-automaton of the language of its input regular
expression.

Figure 6.1 illustrates the scenario that can arise in Algorithm 5.1 — i.e. the kind of
scenario which Algorithm 6.1 has to overcome. The figure assumes several iterations
of Algorithm 5.1’s do-loop has been performed, and that the following sequence of
events occurred:

1. At some stage of the computation, REi has been identified as the left derivative
with respect to some symbol of some regular expression. Its hash function
value is determined as a state of the automaton. Subsequently REi is placed
in the todo list for further handling.

2. At some later stage, REj too is identified as the left derivative with respect
to some symbol of some regular expression. Its hash code is also determined,
but found to collide with that of REi. Thus state merging occurs as explained
before. Therefore a single merged state has been created, as shown on the
left side of the figure. Also, at this point, REj is placed on the todo list for
subsequent processing.

3. Later, the regular expression selected for processing from the todo list is REi.
As part of the inner for-loop of Algorithm 6.1, s was identified as an element of
first(REi) and the next sate for this symbol was generated. This is indicated
in the figure as the state marked hash(s−1REi), which has an inbound arc
labelled s.
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4. Some time thereafter, the regular expression selected for processing from the
todo list is REj. Again, in the for-loop, s was identified as an element of
first(REj) and consequently, the state marked hash(s−1REj) was defined,
with the inbound arc s. This state, too is shown in the figure.

Figure 6.1: Non-determinism resulting from Algorithm 5.1

Algorithm 6.1 effectively carries out the following steps to avoid this kind of situation
arising.

1. At step 3 above, a check is carried out to identify whether an s-transition from
the merged state already exists. If not, computation proceeds as normal.

2. If, however, such a transition already exists, then the following sequence of
actions takes place:

(a) The transition function is provisionally modified so that it no longer indi-
cates the previously derived s-transition from merged state to successor
state. This corresponds to removing the top arc labelled s in Figure 6.1.

(b) The regular expression for generating a destination node is revised from
s−1REi to (s−1REi ∪ s−1REj)

(c) This regular expression is inserted into the todo list so that it will subse-
quently be used to create a state from its hash value.

(d) The transition function is updated so that it indicates an s-transition from
the merged state to the new state identified by hash(s−1REi ∪ s−1REj)

3. Thereafter, computation proceeds as normal. However, note that this means
that at some stage, the regular expression (s−1REi ∪ s−1REj) will be found
in the todo list, and its successors will be determined in the normal manner.
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Note also, that because of the union operator, the first symbol set of this
regular expression will correspond to the union of the first symbol sets of its
constituents. As a result, there will be a transition from this new state for
each symbol for which there would have been a transition in Algorithm 5.1.

Figure 6.2 is now changed to represent a deterministic finite state automaton, con-
structed using the above changes, starting from Figure 6.1.

Figure 6.2: Determinised results from Algorithm 6.1

In order for the automata produced by Algorithm 5.1 and 6.1 to represent the same
super language of the automaton from Algorithm 4.1, the following constraint must
be met:

h(s−1REi) = h(s−1REj) = h(s−1REj ∪ s−1REi)

This will be the case when the hash function is an injection from the regular lan-
guages to the natural numbers. This will be further discussed in the next chapter.
Even if this condition is not satisfied, a super-automaton of the input regular ex-
pression for Algorithm 6.1 is still constructed, because of state merging, as shown
in Theorem 5.1.

6.3 Example of the algorithm execution

An example run of the algorithm is now presented, in order to make comparisons
between Algorithm 6.1 and 5.1. The same regular expression that was used to
illustrate the other algorithms (Section 4.5 and 5.2) is used here: (a · b ∪ b · c)∗.

For the first iteration of the do-loop, the same automaton is constructed that is
constructed in Section 5.2, using the same hash function: the same derivatives and
first symbols are calculated. The automaton at the end of the first iteration of the
do-loop is depicted in Figure 6.3. At this point, done = {(a · b ∪ b · c)∗} and

todo = {b · (a · b ∪ b · c)∗, c · (a · b ∪ b · c)∗}
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Figure 6.3: Partially constructed automaton constructed using Algorithm 6.1

The key to understanding this algorithm is that a NFA is never constructed. Even
in a partially complete state, the automaton is always deterministic. In the second
iteration of the do-loop, suppose that the current regular expression selected by the
let-statement, is b · (a · b ∪ b · c)∗. Note that first(b · (a ·b ∪ b ·c)∗) = b. When this
regular expression’s left derivative with respect to b is calculated, the next state is

hash(b−1(b · (a · b ∪ b · c)∗)) = hash((a · b ∪ b · c)∗) = 5

At this point, the state transition function has not been updated yet. Therefore the
current state transition table is the one in Table 6.1.

Remapped Value (state) a b c
5 5 7
7

Table 6.1: Partially constructed transition table for Algorithm 6.1

If the transformations from Section 6.2 are not applied a NFA is constructed. The
update of the state transition table would be:

δ(5, b) := δ(5, b) ∪ {hash((a · b ∪ b · c)∗)} = {5, 7}
This is as it is in Algorithm 5.1. In order to prevent this, the transformations from
Section 6.2 are applied: first the condition of the first guard of the first if -statement
in the for-loop of Algorithm 6.1 is satisfied:

(∃d : 〈〈h, s〉, d〉 ∈ δ) = true

This is because there is already a transition from state
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h = hash(b · (a · b ∪ b · c)∗)) = 5

on symbol s = b to the destination state

d = hash(c · (a · b ∪ b · c)∗) = 7

With the guard satisfied, the state transition function is rewritten:

δ := δ \ {〈〈h, s〉, d〉}
= δ \ {〈〈5, b〉, 7〉}
= {〈〈5, b〉, 5〉}

The automaton now has an unconnected state d = 7. In the implementation dis-
cussed in Appendix A, this state is not removed from the automaton, because there
may be other states that still point to it. In a system implementing garbage collec-
tion, such a state could be cleaned up automatically when garbage is collected in
order to free memory, if there are no pointers pointing to it.

A new regular expression is now constructed from the current regular expression’s
left derivative with respect to b, and the destination state for which the transition
have been removed:

destination := destination ∪ regex(d)

= ((a · b ∪ b · c)∗) ∪ (c · (a · b ∪ b · c)∗)

Note that the ∪ operator is overloaded here: ∪ refers to the regular expression
operator and not the set union operator. This new regular expression represents
the new destination state of the automaton that is determinised. Next the done
and todo sets are updated. Note that the todo set now contains the new destination
state, which allows for further expansion of the automaton. The state transition
function is updated next. For this purpose, a new hash value for the destination
state is given in Table 6.2.

The updated automaton is given in Figure 6.4, which also includes the part of the
automaton constructed when the current regular expression is c · (a · b ∪ b · c)∗: this
represents the rest of the automaton constructed in the do-loop. Bear in mind that
c · (a · b ∪ b · c)∗ is now not reachable from the rest of the automaton, but that it
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Regular expression Hash code
(a · b ∪ b · c)∗) ∪ (c · (a · b ∪ b · c)∗) 3
(a · b ∪ b · c)∗ 5
b · (a · b ∪ b · c)∗ 5
c · (a · b ∪ b · c)∗ 7

Table 6.2: Hash codes for example run of Algorithm 6.1

will still be expanded because it is in the todo set. In other scenarios, it may be the
case that there are other states pointing to state(c · (a · b ∪ b · c)∗). Therefore this
expansion is still necessary. It is possible to clean up the automaton, but this is not
shown here.

Figure 6.4: Determinised automaton for example run of Algorithm 6.1

The rest of the automaton construction process is not shown in this example.

6.4 Summary

In this chapter, a new version Brzozowski’s algorithm is presented that constructs
a deterministic automaton, where the version in the previous chapter constructed
a non-deterministic automaton. In the next chapter, the question of how this au-
tomaton differs from the exact automaton will be addressed.
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Algorithm 6.1 (Brzozowski’s algorithm with Hashing — DFA version)

func Brz hash DFA(REinit)
Q, δ, F := ∅, ∅, ∅;
done, todo, := ∅, {REinit};
do todo 6= ∅ →

let REj be some regular expression such that REj ∈ todo;
done, todo := done ∪ {REj}, todo\{REj};
h := hash(REj);
Q := Q ∪ {h};
{ Expand out-transitions for symbols in the first symbol set of REj }
for s : first(REj)→
{ Compute the left derivative of REj with respect to s }
destination := s−1REj;
if (∃d : 〈〈h, s〉, d〉 ∈ δ)→

δ := δ \ {〈〈h, s〉, d〉};
destination := destination ∪ regex(d)

8 (@d : 〈〈h, s〉, d〉 ∈ δ)→ skip
fi;
if destination 6∈ (done ∪ todo)→

todo := todo ∪ {destination}
8 destination ∈ (done ∪ todo)→ skip
fi;
δ := δ ∪ {〈〈h, s〉, hash(destination)〉}

rof ;
if nullable(REj)→
{ A state is final if and only if it accepts the empty string }
F := F ∪ {h}

8 ¬nullable(REj)→ skip
fi

od;
return 〈Q, δ, hash(REinit), F 〉

cnuf
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Chapter 7

Equivalence classes of regular
languages

In previous chapters, regular expressions and their properties were constructed from
basic definitions. Following these definitions, Brzozowski’s algorithm was presented,
along with an existing variant constructing a non-deterministic super-automaton,
and a new variant constructing a deterministic super-automaton. The question
now naturally arises: how does the super-automaton of an input regular expression
constructed by the hashing versions of the algorithm differ from an exact automaton
of the same input regular expression? How can the difference be measured? These
questions are adressed in this chapter.

7.1 k-equivalence classes

Equivalence classes of states of finite state automata are generally used in automaton
minimization algorithms [21]: states are divided into these classes to determine
which states are equivalent.

One approach to test whether two states are in the same equivalence class, is to
iterate through all strings accepted by the two states. If these strings form the same
regular language, the two states can be combined in the minimized automaton. This
can be done recursively, using the following definition [6]:

Definition 7.1 (k-equivalence classes for states in a finite state automa-
ton)
Two states t1 and t2 in a finite state automaton are:

• 0-equivalent if and only if both t1 and t2 are either accepting or rejecting states.
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• k-equivalent if, for each transition symbol s from the states t1 and t2, the next
states δ(t1, s) and δ(t2, s) are (k − 1)-equivalent.

The predicate equiv(t1, t2, k) asserts that t1 and t2 are k-equivalent. ¤

The value of k gives the length for up to which the strings accepted by two states
are equal. When two states are equivalent for all values of k, they are *-equivalent.

In Brzozowski’s algorithm, an automaton is constructed from regular expressions
which are associated with states. Therefore it is convenient to extend the notation
of equivalence to regular expressions, as follows:

Definition 7.2 (k-equivalence classes for regular expressions)
Two regular expressions REi and REj are:

• 0-equivalent if and only if nullable(REi) = nullable(REj)

• k-equivalent if and only if first(REi) = first(REj) and for all s ∈ first(REi),
s−1REi and s−1REj are (k − 1)-equivalent.

The predicate equiv(REi, REj, k) tests whether REi and REj are equivalent. ¤

Definition 7.2 giving k-equivalence classes on regular expressions, is derived from
Definition 7.1 giving k-equivalence on the states of finite state automata. In order
to illustrate the connection between these two definitions, consider Figure 7.1 and
7.2.

Figure 7.1: k-equivalence and finite state automata

When comparing Figure 7.1 and 7.2, it can be seen how regular expressions are
substituted for states. In order to address the case where k = 0, it should be
taken into account that when two states are either accepting or rejecting states,
their right languages either accept or reject the empty string. nullable (see Section
3.19) provides a method for testing whether a regular expression represents a regular
language that contains the empty string.
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Figure 7.2: k-equivalence and regular expressions

7.2 Exact versus super-automaton minimization

The k-equivalence concept can be used to distinguish between a conventional min-
imization algorithm, not admitting extra strings into the regular language, and a
reduction approach constructing a super-automaton.

In the exact automaton minimization scenario, all strings that are accepted by two
states, which are candidates to be merged in the minimization process, are generated.
The length of these strings must be limited in order to prevent the generation of an
infinite number of strings. This is done by factoring in a result from [21]: when the
string length is equal to max(|Q|−2, 0), with Q representing the number of states in
the exact automaton, enough strings have been compared to conclude whether two
states accept the same language for strings of all length. The max function is used
to prevent comparisons with negative string lengths: when the length is less than
or equal to 2, the test only tests whether the two states accept the empty string. In
this case, the states must be both accepting or rejecting states in order to be equal.

The string length in the exact automaton minimization scenario corresponds with
the k variable from Definitions 7.1 and 7.2. Therefore, for exact automaton mini-
mization, it must be the case that k ≥max(|Q| − 2, 0).

In the super-automaton scenario, it is acceptable that k < max(|Q| − 2, 0): any
two states can be merged together. The value of k is determined by the languages
of the states being merged together, rather than being prescribed to a value of
max(|Q| − 2, 0): k is a measure of the length up to which the strings of the two
regular expressions are equal.

In order to formalize this relation between exact and super-automata, a Boolean
expression that indicates whether two regular expressions are k-equivalent or not
can be formulated. This bears a relation to existing work in [21]: reference is made
to the equivalence relation defined in Definition 7.1 and 7.2 with E ⊆ Q×Q and
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〈p, q〉 : E ≡ [
−→
L (p) =

−→
L (q)]

In Brzozowski’s algorithm, two regular expressions REi and REj represent state(REi)
and state(REj). In the case of super-automata, let p = state(REi) and q =
state(REj), then the above equivalence relation is changed to

〈p, q〉 : E ≡ equiv(REi, REj, k)

The usage of regular expressions avoids the need to take the differences between a
NFA and a DFA into account: they both represent regular languages.

7.3 Categories of hash functions

The k-equivalence notion provides an opportunity to divide hash functions into three
categories, in order to judge hash function quality:

• Worst Case: The merged states are not even 0-equivalent;

• Intermediate Case: Some merged states are 0 ≤ k < max(|Q| − 2, 0)
equivalent and some are ∗-equivalent; and

• Best Case: For all merged states, k ≥max(|Q| − 2, 0).

In the worst case, the automaton accepts all strings in the regular language over the
alphabet. However, this is not the measure for the worst case: it might be the case
that the automaton being constructed must accept the language Σ∗. The
k-equivalence measure defined in Definition 7.2 offers an alternative means of as-
sessing deviation from the exact automaton.

7.4 Ideal hash functions

The foregoing raises the question: what are the characteristics of an ideal hash
function? To give such a characterisation, note that the signature of hash functions
in Algorithm 5.1 and 6.1 is of the form hash : Re → N, where Re is the set of regular
expressions.

Let R` be the set of regular languages, and L : Re → R`, and let L(RE) be
the regular language associated with regular expression RE. Finally, let f denote a
function f : R` → N. An ideal hash function may now be defined as the composition
of the latter two functions as follows:
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Definition 7.3 (The ideal hash function*)
hash is an ideal hash function for Re if and only if hash = f ·L and f is an injection.
¤

This means an ideal hash function maps all regular expressions that have the same
language (and only those expressions) to the same natural number. Put differently,
an ideal hash function maps regular expressions to the same value if and only if they
are *-equivalent. Thus, if it were possible to find an ideal hash function for use in
Algorithm 6.1, then the algorithm would be guaranteed to produce the minimum
exact DFA for the input regular expression.

7.5 There is no ideal hash function modulo n

Generally, when a hash function is used to hash a data structure in a programming
language, the hash code is calculated, and then modulo n is taken. This maps the
hash code to a small address space in the range [0, n), which is used in an array data
structure.

In Brzozowski’s algorithm, the state transition function can be represented by a
state transition table. A state transition table is a two dimensional array, where one
dimension represents a state address, and the other represents alphabet symbols.
An entry in the state transition table is the next state for a given symbol and a
current state.

This array representation creates an opportunity to “project” the regular expres-
sion’s automaton being constructed into a predetermined number of states, using
the DFA version of Brzozowski’s algorithm with hashing, presented in this disserta-
tion. The DFA version has to be used, because a NFA cannot be represented by a
state transition table in the form of a two dimensional array.

The projection is performed by taking modulo n of the hash code generated in
the algorithm. This limits the number of states in the resulting automaton to a
maximum of n. Due to Theorem 5.1, a super-automaton will still be constructed.

From the point of view of k-equivalence classes, this creates an additional constraint
on the hash function: the modulo n function reduces the number of states from
Algorithm 5.1 and 6.1 to a maximum of n. In finite state automaton reduction,
each equivalence class represents an abstract state. Therefore there is now an upper
bound on the number of equivalence classes |[Q]equiv(REi,REj ,k)| induced by the equiv-
alence relation 〈p, q〉 : E ≡ equiv(REi, REj, k). This gives the following inequality
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that must be satisfied if the merged together states must be at least k-equivalent,
for a given hash function:

|[Q]equiv(REi,REj ,k)| ≤ n

As long as this inequality is satisfied, the number of equivalence classes is potentially
less than the number of available addresses: it is therefore up to the hash function
to hash together regular expressions that are equivalent up to the value k.

It is however possible that the hash function will produce more values than the value
of n. In this case the modulo function will force together hash values representing
different regular expressions that are not k-equivalent. When the maximum value
of k is calculated for the case where the hash values have been forced together,
the resulting value of k will be lower than in the case where the values have not
been forced together. This results in a super-automaton that has more additional
strings, in addition to those of the regular language represented by the input regular
expression.

When n < |[Q]equiv(REi,REj ,k)| for the case where the states in the equivalence classes
are *-equivalent, non-equivalent states will become merged due to the pigeon hole
principle [15]. For this reason there is no ideal hash function for any n.

7.6 Summary

In this chapter, finite state automaton reduction through state merging has been
related back to traditional finite state automaton minimization through the concept
of k-equivalence classes. This serves as a measure of the difference between exact
and super-automata. The number of equivalence classes gives a way of interpreting
the effects of taking modulo n in the hash function: when n is less than the number
of equivalence classes, no ideal hash function exists.
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Chapter 8

Implementation

This chapter brings together concepts from all preceding chapters in an implemen-
tation. Nine hash functions were tested on a large set of small regular expressions,
and a small set of large regular expressions. This chapter provides the basis for the
next chapter, which will focus on the results.

8.1 General implementation outline

Figure 8.1 gives a high level overview of the process followed in the implementation.
This process is designed to test the k-equivalence of regular expressions generated
with the algorithms in this dissertation.

In this process, there is a main loop iterating over a Gödel Numbering from 0
to 50 000 000. Gödel numbers are briefly discussed in Section 8.2. Each number
is converted into a string using Algorithm 8.1. This string is parsed as a prefix
notation string representing a regular expression.

Some of the strings generated from the Gödel numbers do not parse and have to
be discarded. The parsed regular expressions are rewritten based on the rewrite
rules under in Section 4.2. As an example of this, consider the following regular
expression:

(ε · b)∗ ∪ c · d ∪ ∅
This is rewritten to:

b∗ ∪ c · d
which may already have occurred in the input. Duplicate input strings are eliminated
at this point in order to guarantee that the same test regular expressions are not
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Figure 8.1: The procedure for testing hash functions and *-equivalence

used twice. The outcome of this process was the generation of 272 850 regular
expressions.

Using the test regular expressions as input, the super-automata are build based on
the handpicked hash functions in Section 8.5 and 8.6. These hash functions were
converted into C# source code, and compiled into the implementation.

The k-equivalence of all merged states are measured as outlined in Section 7.1.
The number of automata where all merged states are *-equivalent is reported as a
percentage of the number of test expressions, along with statistics on size reductions.
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8.2 Gödel numbering and regular expression gen-

eration

A Gödel numbering is a method for assigning a unique integer to each string over
an alphabet. There are two definitions for a Gödel numbering in literature. The
first is [11]:

Definition 8.1 (Gödel numbering with prime numbers)
Given a string w = w0 . . . wn−1 with alphabet Σ and a mapping i : Σ → N with i
assigning a uniquely increasing number in increments of 1 to each alphabet symbol,
with the first symbol labelled 1, the Gödel number of w is

gnprime(w) = p
i(w0)
0 × p

i(w1)
1 × . . .× p

i(wn−1)
n−1

where pk represents the kth prime number and p0 = 2. ¤

The following definition [9] was preferred over Definition 8.1. This is for two reasons.
The first is that the inverse mapping from numbers to strings can easily be calculated
using Algorithm 8.1. The second is that the sizes of the numbers involved are smaller:

Definition 8.2 (Gödel numbering without prime numbers)
Given a string w = w0 . . . wn−1 with alphabet Σ and a mapping i : Σ → N with
i assigning a uniquely increasing number to each alphabet symbol, with the first
symbol labelled 1, and β = |Σ|+ 1, the Gödel number gn for string w is

gn(w) = βn−1i(wn−1) + βn−2i(wn−2) + . . . + β1i(w2) + β0i(w0)

¤

It should be noted that in the numbering scheme above, 0 is not assigned by the
mapping i. The function gn does not generate the number 0. 0 forms a null charac-
ter. If 0 was recognized some numbers would be assigned to multiple strings because
any integer m prefixed by any number of zeros remains equal to m. This is taken
into account in Algorithm 8.1, which converts an integer into a string.

In Algorithm 8.1, numChar(n) is the inverse of the function i in Definition 8.2.

In this dissertation, the alphabet is set to {0, 1, 2, 3, ·,∪, ∗, +, ?, ε, ∅} = Σ for the
purpose of generating regular expressions from Gödel numbers. Therefore, the al-
phabet of the automata constructed is {0, 1, 2, 3}. The strings generated from the
numbers are parsed as prefix notation strings. When a string does not parse into a
regular expression, it is discarded. When this happens, Algorithm 8.1 returns the
empty set, rather than a string. This empty set it different from the empty set
character, which forms part of the input alphabet.
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Algorithm 8.1 (Converting a Gödel number into a string)

func gnToString(gNum)
retStr := ε;
β := |Σ|+ 1;
do gNum > 0→

d := gNummod β;
gNum := gNumdiv β;
if d = 0→

retStr := ∅;
gNum := 0

8 d 6= 0→
retStr := retStr · numChar(d)

fi
od;
return retStr

cnuf

8.3 Short versus long regular expressions

The process for measuring the hash function quality exhaustively enumerates all
short regular expressions up to a length of 6 characters, and some regular expressions
of 7 characters. These lengths are the result of choosing the upper bound value of
50 000 000 when iterating over the Gödel numbers to generate test data. This
process yielded only 272 850 regular expressions.

Even though the sample is representative of all short regular expressions, and there-
fore presents a good measure of the performance of the hash functions with respect
to other regular expressions, it is not so simple to choose a representative sample
of long regular expressions. Some regular expressions, especially those with a lot of
plus operators, causes Brzozowski’s algorithm to execute over a long period of time,
making it unfeasible to test the hash function for these regular expressions.

Another problem with long regular expressions is that it takes very long to measure
k-equivalence of these regular expressions. In effect the process of measuring k-
equivalence generates all strings in the regular language of an automaton up to
length k. The number of these strings is potentially exponential, depending on the
first symbol sets of the input regular expressions.

It might be possible to argue that the Gödel numbers used in the short regular
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expressions should be used again: first generate a very large random number and
convert it into a regular expressions. The problem with this process is that the prefix
notation representation of the regular expressions causes the generated numbers to
have a very low probability of parsing into a valid regular expressions. This can be
seen in the 50 000 000 numbers that were reduced to 272 850 regular expressions.

For this reason, the large regular expressions are generated by randomly select-
ing short regular expressions from the exhaustively enumerated set of short regular
expressions, and then connecting these regular expressions using regular language
operators. The regular expression operators used to connect the short regular ex-
pressions are chosen randomly. The long regular expressions are given in Appendix
B.

8.4 Choosing hash functions operators

In order to select the mappings from the regular expressions to the natural numbers,
the recommendations from [23] were adopted, as follows:

• ε and ∅ are mapped to 000 . . . 00016 or FFF . . . FFF16 respectively;

• unary and binary regular expression operators are mapped to unary and binary
bit string operators;

• commutative idempotent regular expression operators are mapped to commu-
tative idempotent bit string operators; and

• the alphabet is mapped to 1 . . . |Σ|.

The operators used to select hash functions are given in Tables 8.1 and 8.2. Their
basic algebraic properties are also given.

Operator Commutativity Associativity Idempotence
x1 ∨ (1 << (n− 1)) No No Yes
x1 ∧ x2 Yes Yes Yes
x1 ∨ x2 Yes Yes Yes
x1 → x2 ≡ ¬x1 ∨ x2 No Yes No

Table 8.1: Bit string operator properties

The first operator was found in [23]. n is the number of bits used to represent an
integer in a machine register, << represents the left shift operation.
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Operator Commutativity Associativity Idempotence
RE∗

1 No No Yes
RE1 ∪RE2 Yes Yes Yes
RE1 ·RE2 No Yes No

Table 8.2: Regular expression operator properties

All the operators in Table 8.2 are non-extended regular expression operators. The
extended operators are constructed from non-extended operators and then hashed,
using the method illustrated in the next section.

8.5 Applying operator mappings

The operator mappings used to gather the test results in Tables 9.1 and 9.2 are given
in Tables 8.3 and 8.4. Each set of operator mappings represents a hash function.
Hash functions in Tables 8.3 and 8.4 are numbered to correspond with results in
Tables 9.1 and 9.2.

An example of calculating the hash code using mapping 6 is now given, using the
following regular expression:

(ε · b)∗ ∪ c · d ∪ ∅
Alphabet symbols are mapped to increasing integers starting from 1 (because ∅
already uses the number 0). This substitution can be seen in this intermediate step:

((FFF . . . FFF16) · (000 . . . 00116))
∗ ∪ (000 . . . 00216) · (000 . . . 00316)∪ (000 . . . 00016)

Substituting the operator mappings for the concatenation, union and star closure
operators gives the final expression that can be evaluated in order to get the hash
code:

(((¬(FFF . . . FFF16) ∨ (000 . . . 00116))) ∨ (1 << (n− 1)))

∨ (¬(000 . . . 00216) ∨ (000 . . . 00316))

∨ (000 . . . 00016)

In the implementation, this substitution is done by recursively moving over the
regular expression using the hash function. This is indicated by the h in Tables 8.3
and 8.4. Extended operators are handled as a separate case: this can be seen by
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comparing the optional regular expression operator E? for mapping 5 and 6. From
Section 3.3, RE? = ε ∪RE. Applying the substitutions in mapping 6 gives:

RE? 7→ FFF . . . FFF16 ∨ h(RE)

but applying the substitutions in mapping 5 gives:

RE? 7→ FFF . . . FFF16 ∧ h(RE)

The main difference lies in the mapping for the union regular expression operator:
for mapping 5, RE1 ∪RE2 7→ h(RE1) ∧ h(RE2), but for mapping 6, RE1 ∪RE2 7→
h(RE1) ∨ h(RE2).

8.6 An alternative hash function

An alternative hash function was also tested, that guarantees that all merged states
are at least 1-equivalent. It uses the following definitions and notation:

Definition 8.3 (Longest substring length)
The longest substring length is inductively defined by the following rules:

• len subseq(∅) = 0

• len subseq(ε) = 0

• len subseq(s) = 1

• len subseq(A ·B) = len subseq(A) + len subseq(B)

• len subseq(A ∪B) =

{
len subseq(A) if len subseq(A) ≥ len subseq(B)
len subseq(B) otherwise

• len subseq(A∗) = len subseq(A)

• len subseq(A+) = len subseq(A)

• len subseq(A?) = len subseq(A)

The longest substring indicates the length of the longest string in the regular ex-
pression, ignoring *-closure. ¤
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Definition 8.4 (First symbol set bit string of a regular expression)
The first symbol set bit string first b(RE) of a regular expression RE is a bit string
b such that

b[i(s)] =

{
1 if s ∈ first(RE)
0 otherwise

where i is a function assigning an array index for a symbol s. This array index
references a position in bit string b. ¤

The hash code itself it denoted by hΣ:

Definition 8.5 (The hash function hΣ (*))
The function hΣ is a concatenation of three bit strings b1 · b2 · b3 with

• b1 = first b(RE);

• b2 =

{
1 if nullable(RE)
0 otherwise

; and

• b3 = len subseq(RE)

where b3 is a binary representation of the value of len subseq(RE). ¤

The reasoning behind the construction of this hash code is that, in order to guarantee
1-equivalence of the regular expressions being hashed together, they must at least
accept the empty string, in addition to the same first symbol sets. This is guaranteed
by the first two parts of the hash code hΣ = b1 · b2 · b3.

This concept has been extended to at least 1-equivalence by appending the longest
substring length b3 to b1 · b2: consider the regular expression a · b∪ b · a: because the
first symbol set is {a, b} and the regular expression is not nullable, and the longest
substring has a length of 2:

hΣ(a · b ∪ b · a) = b1 · b2 · b3

= 11 · 0 · 10

= 11010

Now consider the regular expression a ∪ b: this regular expression also has the first
symbol set {a, b}. If hashing only took the first symbol set into account,

hΣ(a · b ∪ b · a) = hΣ(a ∪ b)

This is undesirable, since the regular expressions have different regular languages.
The difference is in the b3 value: for hΣ(a ∪ b), len subseq(a ∪ b) = 1.
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This inclusion of the length generates better hash codes, but is not sufficient to
guarantee *-equivalence. The regular expressions a∗ ·a ·a and (a∗ ·a ·a)∪a generate
the same hash codes, even though they are not *-equivalent.

8.7 Summary

In this chapter, a method is put forward for measuring and comparing hash functions
in the hashing versions of Brzozowski’s algorithm. Gödel numbers are used to gen-
erate short test regular expressions. Long test regular expressions are constructed
from the short test regular expressions. The hash functions that are tested in the
implementation are presented. In the next chapter, the results of this experiment is
presented.
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Mapping 1
∅ 7→ 000 . . . 00016

ε 7→ 000 . . . 00016

RE? 7→ 000 . . . 00016 ∧ h(RE)
RE+ 7→ ¬h(RE) ∨ (h(RE) ∨ (1 << (n− 1)))
RE∗ 7→ h(RE) ∨ (1 << (n− 1))
RE1 ∪RE2 7→ h(RE1) ∧ h(RE2)
RE1 ·RE2 7→ ¬h(RE1) ∨ h(RE2)
Mapping 2
∅ 7→ 000 . . . 00016

ε 7→ 000 . . . 00016

RE? 7→ 000 . . . 00016 ∨ h(RE)
RE+ 7→ ¬h(RE) ∨ (h(RE) ∨ (1 << (n− 1)))
RE∗ 7→ h(RE) ∨ (1 << (n− 1))
RE1 ∪RE2 7→ h(RE1) ∨ h(RE2)
RE1 ·RE2 7→ ¬h(RE1) ∨ h(RE2)
Mapping 3
∅ 7→ FFF . . . FFF16

ε 7→ 000 . . . 00016

RE? 7→ 000 . . . 00016 ∧ h(RE)
RE+ 7→ ¬h(RE) ∨ (h(RE) ∨ (1 << (n− 1)))
RE∗ 7→ h(RE) ∨ (1 << (n− 1))
RE1 ∪RE2 7→ h(RE1) ∧ h(RE2)
RE1 ·RE2 7→ ¬h(RE1) ∨ h(RE2)
Mapping 4
∅ 7→ FFF . . . FFF16

ε 7→ 000 . . . 00016

RE? 7→ 000 . . . 00016 ∨ h(RE)
RE+ 7→ ¬h(RE) ∨ (h(RE) ∨ (1 << (n− 1)))
RE∗ 7→ h(RE) ∨ (1 << (n− 1))
RE1 ∪RE2 7→ h(RE1) ∨ h(RE2)
RE1 ·RE2 7→ ¬h(RE1) ∨ h(RE2)

Table 8.3: Hash function operator mappings
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Mapping 5
∅ 7→ 000 . . . 00016

ε 7→ FFF . . . FFF16

RE? 7→ FFF . . . FFF16 ∧ h(RE)
RE+ 7→ ¬h(RE) ∨ (h(RE) ∨ (1 << (n− 1)))
RE∗ 7→ h(RE) ∨ (1 << (n− 1))
RE1 ∪RE2 7→ h(RE1) ∧ h(RE2)
RE1 ·RE2 7→ ¬h(RE1) ∨ h(RE2)
Mapping 6
∅ 7→ 000 . . . 00016

ε 7→ FFF . . . FFF16

RE? 7→ FFF . . . FFF16 ∨ h(RE)
RE+ 7→ ¬h(RE) ∨ (h(RE) ∨ (1 << (n− 1)))
RE∗ 7→ h(RE) ∨ (1 << (n− 1))
RE1 ∪RE2 7→ h(RE1) ∨ h(RE2)
RE1 ·RE2 7→ ¬h(RE1) ∨ h(RE2)
Mapping 7
∅ 7→ FFF . . . FFF16

ε 7→ FFF . . . FFF16

RE? 7→ FFF . . . FFF16 ∧ h(RE)
RE+ 7→ ¬h(RE) ∨ (h(RE) ∨ (1 << (n− 1)))
RE∗ 7→ h(RE) ∨ (1 << (n− 1))
RE1 ∪RE2 7→ h(RE1) ∧ h(RE2)
RE1 ·RE2 7→ ¬h(RE1) ∨ h(RE2)
Mapping 8
∅ 7→ FFF . . . FFF16

ε 7→ FFF . . . FFF16

RE? 7→ FFF . . . FFF16 ∨ h(RE)
RE+ 7→ ¬h(RE) ∨ (h(RE) ∨ (1 << (n− 1)))
RE∗ 7→ h(RE) ∨ (1 << (n− 1))
RE1 ∪RE2 7→ h(RE1) ∨ h(RE2)
RE1 ·RE2 7→ ¬h(RE1) ∨ h(RE2)

Table 8.4: Hash function operator mappings, continued
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Chapter 9

Empirical results

In the previous chapter, a high level overview is given of the implementation, in
addition to hash functions that are tested with the k-equivalence measure. In this
chapter, the results of this experiment are given.

9.1 Measured results for short regular expressions

Table 9.1 gives the following information:

• The Hash Function column corresponds to the hash functions which were
presented in Tables 8.3 and 8.4.

• The Exact Automaton column gives the percentage of exact automata con-
structed from the 272850 short regular expressions.

• The Size Reduction column gives the percentages of test cases where the con-
structed automaton had less states than the remap case (Algorithm 4.1).

• The Both column gives the percentage of exact automata constructed that
also had a reduced size.

The table rows were ordered by the Exact Automaton column.

Both the NFA and DFA hashing versions of Brzozowski’s algorithm were tested:
both algorithms produced practically identical results. Table 9.1 reflects data for
both algorithms. The difference in the algorithms lies in the memory used: the NFA
version used less memory than the DFA version. This is to be expected, as the
DFA version involves rewriting the destination state’s regular expression when the
conditions are satisfied that would cause a NFA to be constructed.
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The similarity between the algorithms’ results is attributed to the small size of the
input regular expressions: when the regular expressions are small, there is a good
chance that the DFA version’s reconstructed target regular expression will hash to
the same state as the state the original destination regular expression would have
hashed to, in the NFA case. This is not the case where the long regular expressions
are tested. This will be discussed in the next section.

The following general observations can be made from Table 9.1:

• The data in the Size Reduction column increases consistently as the Exact Au-
tomata column decreases. This can be explained in terms of the k-equivalence
measure: for good hash functions, a large number of states are hashed together
that represent the same regular language. This means less states are wrongly
combined, resulting in larger automata. When the hash functions perform
badly in terms of percentage exact automata, the number of states that are
merged that do not represent equal right languages increases and the size of
the constructed automata decreases.

• The values under the Both column header decreases and then increases, rel-
ative to the Exact Automaton column. When the number of exact automata
constructed decreases, the chances of reducing the size of the output automa-
ton increases.

• The hash function hΣ had the best results. Only in 1 % of the cases did it
produce super-automata — almost all automata were exact.

• The performance of a hash function seems to be related to the relation between
the choice of bit string operator for the ∪ regular expression operator, and the
associated choice of bit string operators for the empty set and the empty string.

The last point under the observations is made with respect to the behaviour of the
∨ and ∧ bit string operators, and the choice of operator for ∅ and ε. When the ∨
operator is used in conjunction with FFF . . . FFF16, generated hash codes tend to
favour the generation of 1’s instead of 0’s: taking bitwise or, for any value and 1,
will be equal to 1.

The hash function recursively traverses the regular expression’s expression tree.
Therefore results from hashing sub-expressions in the recursive step will be de-
stroyed by the ∨ operator, when a 1 is encountered. This is also true for the ∧
operator and 000 . . . 00016.

Bad operator mappings cause the same hash value to be generated repeatedly. When
this happens, many regular expressions are hashed to the same value, causing states
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Hash Function Exact Automaton Size Reduction Both
hΣ 99 21 20
2 70 52 22
4 69 54 23
5 68 54 22
7 67 55 22
3 58 55 13
1 58 55 13
6 44 79 23
8 43 80 23

Table 9.1: Statistics for short regular expressions

to be merged that do not represent the same regular language. This causes a low
score for a hash function in terms of percentage exact automata constructed, as can
be seen for hash function 8. In hash function 2, better results are achieved because
the operator mappings preserve results.

9.2 Measured results for long regular expressions

The hash functions were also tested on longer regular expressions resulting in larger
automata, as pointed out in Section 8.3. The difficulties associated with generating
a representative set of large regular expressions makes it unclear how to define a
statistically sound input sample. Nevertheless it seemed relevant to gain some idea
of how the respective algorithms performed on larger regular expressions.

The main gain from the large regular expressions is that they prove that the NFA
and DFA versions of Brzozowski’s algorithm with hashing do not always produce
identical results, as seemed to be the case with the short regular expressions.

The statistics for the long regular expressions are presented in Table 9.2. No exact
automaton were constructed for the bit string operator based hash functions. As a
result the tests for automaton quality in comparison to the exact automaton case
could not be re-used. The average k-equivalence value was defined in order to deal
with this problem:

Definition 9.1 (Average k-equivalence level*)
The average k-equivalence level value per state in Algorithm 5.1 and 6.1 is calculated
in the following manner:

• When no collision occurred for the state, the average k-equivalence value of
the state is taken as max(|Q− 2|, 0).
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• When the state represents a collection of regular expressions that are merged
together by the hash function, the k-equivalence value of each pair of these
regular expressions is found. These k values are added up, and divided by the
number of regular expression pairs. When a pair of regular expressions is not
even 0-equivalent, their equivalence level is taken to be 0. This happens when
one regular expression accepts the empty string, and another does not.

¤

Definition 9.2 (k-equivalence potential of an FA*)
The k-equivalence potential of an FA generated by Algorithm 5.1 or 6.1 is calcu-
lated by finding the average k-equivalence level of every state in the FA, and then
computing the average of those averages. ¤

The 31 long regular expressions that were tested resulted in automata with a min-
imum of 6 and a maximum of 17 states in the remap case. In order to make these
values comparable to each other, the k-equivalence potential value are divided by
|Q−2|, for each automaton. As discussed in Chapter 7, the |Q−2| value represents
the value of k used to construct a minimum automaton. This give 31 normalized
k-equivalence potential values between 0 and 1, where 1 represents the case where
an exact automaton is constructed.

Table 9.2 represents the minimum, lower quartile, median, upper quartile and max-
imum [12] of the normalized values. The hΣ hash function had by far the best
performance: it had a median normalized k-equivalence potential value of 1. There-
fore, at least half the automata constructed were exact automata.

The bit string operator based hash functions perform badly for long regular expres-
sions: no exact automata are constructed, and the maximum score never exceeds
0.55 or 0.71 of the |Q − 2| value for each automaton tested, for the DFA and NFA
cases respectively. The medial values is always between 0.2 and 0.3, regardless of
whether a NFA or DFA is constructed.

The choice of commutative operators may be the main influencing factor: when
the regular expression union is taken repeatedly, the substitution on the bitwise or
operator results in values getting “stuck” on 1 when a 1 is generated by the hash
function. This is also true for the bitwise and operator and 0.

In order to improve these results, operator mappings to the integer arithmetic opera-
tors may be considered. The problem with this alternative approach is idempotence:
integer addition is not idempotent, where bitwise or is. This will cause regular ex-
pressions that are equal to be hashed to different hash codes if these operators are
mapped to the regular expression union operator.
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9.3 Summary

In this chapter, the results are presented that were generated in the implementation
that is described in the previous chapter. Statistics were taken for short and long
regular expressions. The short regular expressions yielded the same results in the
NFA and the DFA case of the hashing version of Brzozowski’s algorithm. Exact
automata were constructed for the short regular expressions, but not for the long
regular expressions in the case of the bit string operator based hash functions. In
order to compare automata for the long regular expressions, average k-equivalence
was defined. Where the short regular expressions had the same results in the DFA
and the NFA case, the long regular expressions had different results. The hΣ function
outperformed the bit string operator hash functions.
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Chapter 10

Conclusion and future directions

In this chapter the results obtained in this dissertation are summarised, and future
directions that may yield interesting results are discussed.

10.1 Results

The following new results are presented in this dissertation:

• A definition of a super-, exact and sub-automaton is put forward.

• A method for measuring the difference between an exact and a super-automaton
is put forward. This is the k-equivalence measure.

• A new algorithm is presented that is based on the hashing version of Brzo-
zowski’s algorithm that first appeared in [23]. Where the original algorithm
constructed a NFA, this algorithm constructs a DFA.

• A proof is put forward that, following the hashing approach, an exact or super-
automaton is always constructed.

• Hash functions based on bit string operator mappings have been proposed.

• A hash function that guarantees the construction of an automaton with states
that are at least 1-equivalent was proposed.

In terms of statistical results, the following conclusions are drawn:

• The bit string operator mapping based hash functions constructed a large
number of small exact automata for the input 272 850 short test regular ex-
pressions. Between 43% and 71% of these regular expressions resulted in exact
automata being constructed.
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• The hash function guaranteeing at least 1 equivalence out-performed the bit
string operator based hash functions. 99% of the automata constructed were
exact automata.

• In terms the long regular expressions, the bit string operator based hash func-
tions did not perform well: no exact automata were constructed and the max-
imum median for the k-equivalence potential value was 0.29 for the DFA case,
and 0.24 in the NFA case.

• The hash function guaranteeing at least 1-equivalence performs very well for
the long regular expressions. The hΣ hash function produced exact automata
in at least 50% of the test cases.

• It is difficult to draw meaningful statistical conclusions from the long regu-
lar expressions, because it is not clear how to select a representative sample.
Another obstacle is performance limitations in terms of the k-equivalence mea-
sure. Despite these drawbacks, experimenting with longer regular expressions
has shown that hash function performance can be differentiated using the
normalised k-equivalence potential measure. It has also confirmed hΣ as an
effective approach to hashing.

10.2 Future directions

The following areas can be further researched and may yield results:

• A theory should be created that explains why the hΣ function out-performed
the bit string operator based hash functions.

• The performance of the algorithms presented in this dissertation can be com-
pared and analyzed.

• The performance of the hash functions should be measured for a wide range
of alphabet sizes.

• The prefix notation encoding of regular expressions resulting from Gödel num-
bers caused a large number of numbers to be wasted: iterating through
50 000 000 numbers only yielded 272 850 useful regular expressions. A more
efficient encoding should be found that generates 50 000 000 useful regular
expressions from 50 000 000 numbers. If such an encoding was to be found, it
will also simplify the selection of a random large regular expression: firstly one
would select a large random number, and then turn it into a regular expression
in the encoding.
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• Find a process that takes the hash space size n (i.e. number of states) and
then produces the best possible hash function.

• Experiment with hash function operator substitutions for the regular expres-
sions other than the bit string operators.

• Create a theory that explains the performance of hash functions based on
axiomatic semantics. The axiomatization of the regular languages found in
[17] and Peano’s axioms of the integers found in [18] and in [8] can form a
basis of such a theory.

• The ideal hash function can be sought, at first ignoring the effects of the
application of the modulo function in hashing, or the limitations imposed by
the bit string representation. Term rewriting systems [20] may present a viable
avenue of exploration, starting from the axiomatization presented in [17]. The
rewritten regular expression can be converted into a Gödel number that will
serve as a hash code.
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Appendix A

Code overview

This dissertation comes with a compact disc containing the implementation used
to generate the statistics and test the ideas that are presented. In order to make
it possible for future researchers to validate, and potentially falsify the findings in
this dissertation, a code overview documenting design decisions in the implemen-
tation is presented in this appendix. It may also happen in the future that the
compact disk format becomes unavailable and outdated, and that this will be the
only record of this research. Placing some code in the dissertation also makes it
database searchable.

The C# .NET version 3.5 programming language is used in the implementation.

A.1 High level design overview

The general design is presented in the class diagram depicted in Figure A.1. The
most important artefact in the system is the generic IRegex〈T 〉 interface, which
presents a contract to the rest of the regular expression classes in the system. In the
implementation each regular expression operator from Section 3.3 is represented as
a class.

Note that some data type and visibility information with regards to the class mem-
bers have been omitted. This is done to make the diagram more readable.

The IRegex〈T 〉 interface is generic, allowing an automaton constructed from the
regular expression to parse a sequence of data of any type. In the .NET framework,
all types inherit from the Object class. Therefore these types can overload the
equality methods, making objects of these types distinguishable, as would be the
case with characters in a character stream.
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Figure A.1: Class diagram of the regular expression classes

A.2 Rewriting regular expressions

As pointed out in Section 4.3 and 4.6, it is necessary to take idempotence, asso-
ciativity and commutativity of regular expression operators into account during the
application of Brzozowski’s algorithm to a regular expression. For this purpose, the
expression trees representing regular expressions must be flattened for the union
operator, which is implemented by the Union〈T 〉 class. This can be seen in the
following algorithm:

private static IRegex<T> GetFlattened<T>(this IRegex<T> regexIn)
{

if (regexIn is Union<T> || regexIn is Intersection<T>
|| regexIn is FlattenedUnion<T> || regexIn is FlattenedIntersection<T>)

{
Stack<IRegex<T>> evalStack = new Stack<IRegex<T>>();
evalStack.Push(regexIn);
HashSet<IRegex<T>> flattenedChildren = new HashSet<IRegex<T>>();
while (evalStack.Count > 0)
{

foreach (var childNode in evalStack.Pop().SequentialChildNodes)
if (childNode is AlphabetSymbol<T>) flattenedChildren.Add(childNode);
else if (OperatorsIsFlattenCompatible(regexIn,childNode))
evalStack.Push(childNode);

else flattenedChildren.Add(childNode);
}
if (regexIn is Union<T>) return new FlattenedUnion<T>()
{ ChildNodes = flattenedChildren };
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else if (regexIn is Intersection<T>) return new FlattenedIntersection<T>()
{ ChildNodes = flattenedChildren };

else if (regexIn is FlattenedIntersection<T>) return new FlattenedIntersection<T>()
{ ChildNodes = flattenedChildren };

else if (regexIn is FlattenedUnion<T>) return new FlattenedUnion<T>()
{ ChildNodes = flattenedChildren };

else throw new NotImplementedException();
}
else return regexIn;

}

In the GetF lattened function, all Union〈T 〉 nodes in the expression tree are con-
verted to FlattenedUnion〈T 〉 nodes.

A.3 Equality and hashing

The GetF lattened function takes associativity into account by placing all union
child nodes in the expression tree on the same level. This leaves idempotence and
commutativity.

In order to take idempotence into account, the child nodes of the flattened union
operator is stored in a HashSet〈T 〉 member:

public HashSet<IRegex<T>> ChildNodes { get; set; }

The HashSet〈T 〉 class represents a set as a hash table, by hashing the set members
as keys, and storing the set members as values. This allows for fast insertion and
lookup of set members. All set members are unique: this takes idempotence into
account.

In order to take commutativity into account, the Equals and GetHashCode mem-
bers inherited from the Object class are overridden in the FlattenedUnion〈T 〉 class:

public override bool Equals(object obj)
{

FlattenedUnion<T> other = obj as FlattenedUnion<T>;
if (other != null)
{
HashSet<IRegex<T>> compareSet = new HashSet<IRegex<T>>();
foreach (var member in this.ChildNodes.Concat(other.ChildNodes))

compareSet.Add(member);
return this.ChildNodes.Count == compareSet.Count

75

 
 
 



&& compareSet.Count == other.ChildNodes.Count;
}
else return false;

}

It is important to maintain the relation between hashing and equality when over-
riding these members:

• Equal objects must have equal hash codes.

• It is not the case that equal hash codes always imply equal objects.

For this reason, the hash code for FlattendUnion〈T 〉 respects equality, in terms of
commutativity, idempotense and associativity and is given as:

public override int GetHashCode()
{

long code = 0;
foreach (var node in ChildNodes) code += node.GetHashCode();
return Convert.ToInt32(code % ChildNodes.Count)
^ this.GetType().Name.GetHashCode();

}

Note that it is only necessary to implement equality with associativity, commutativ-
ity and idempotece in order to avoid non-termination in the Brzozowski’s algorithm,
with respect to the done and todo sets in Algorithm 4.1, 5.1 and 6.1. Therefore,
equality was not implemented in terms of *-equivalence classes on regular expres-
sions.

A.4 Rewrite rules for the empty set and the empty

string

In order for Brzozowski’s algorithm to terminate (see for example Section 4.6), input
regular expressions must be rewritten with respect to the empty string and the empty
set. This is done with the GetRewritten function.

private static IRegex<T> GetRewritten<T>(this IRegex<T> regexIn)
{

// Rewrite this
IRegex<T> retVal = null;
if (regexIn is Union<T>)
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{
Union<T> current = regexIn as Union<T>;
if (current.LHS is EmptySet<T>) retVal = current.RHS;
else if (current.RHS is EmptySet<T>) retVal = current.LHS;
else retVal = regexIn;

}
else if (regexIn is FlattenedUnion<T>)
{
FlattenedUnion<T> current = regexIn as FlattenedUnion<T>;
// Get everything accept the empty set: if nothing: get the empty set only
HashSet<IRegex<T>> newChildNodes = new HashSet<IRegex<T>>();
foreach (IRegex<T> childNode in current.ChildNodes)

if (!(childNode is EmptySet<T>)) newChildNodes.Add(childNode);
if (newChildNodes.Count == 0) retVal = new EmptySet<T>();
else if (newChildNodes.Count == 1) retVal = newChildNodes.First();
else retVal = new FlattenedUnion<T>() { ChildNodes = newChildNodes };

}
else if (regexIn is Concatenation<T>)
{
Concatenation<T> current = regexIn as Concatenation<T>;
if (current.Head is EmptyString<T>) retVal = current.Tail;
else if (current.Tail is EmptyString<T>) retVal = current.Head;
else if (current.Head is EmptySet<T>) retVal = new EmptySet<T>();
else if (current.Tail is EmptySet<T>) retVal = new EmptySet<T>();
else retVal = regexIn;

}
else retVal = regexIn;
return retVal;

}

A.5 Brzozowski’s algorithm with remapping

The original remapping version of Brzozowski’s algorithm is given as (See also Al-
gorithm 4.1):

public static FiniteStateAutomaton<IRegex<T>, T>
GetExactAutomaton<T>(this IRegex<T> regexIn)
{

IEqualityComparer<IRegex<T>> stateComparer = new RemapEqualityComparer<T>();
HashSet<IRegex<T>> todo = new HashSet<IRegex<T>>(stateComparer) { regexIn };
HashSet<IRegex<T>> done = new HashSet<IRegex<T>>(stateComparer);
FiniteStateAutomaton<IRegex<T>, T> dfa =
new FiniteStateAutomaton<IRegex<T>, T>(stateComparer,EqualityComparer<T>.Default);

dfa.StartStates.Add(regexIn);
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while (todo.Count > 0)
{
IRegex<T> current = todo.First();
todo.Remove(current);
done.Add(current);
foreach (var firstSymbol in current.FirstSymbolSet)
{

IRegex<T> derivative = current.GetLeftDerivative(firstSymbol);
if (!todo.Contains(derivative) && !done.Contains(derivative))
{

todo.Add(derivative);
}
dfa.AddTransition(current,firstSymbol,derivative);

}
if (current.IsNullable) dfa.EndStates.Add(current);

}
return dfa;

}

A question that may be asked when looking at the implementation of Algorithm
4.1 is: where is the remap variable? Remapping is implicit in the use of the
RemapEqualityComparer〈T 〉 equality comparer. It utilizes the overloaded Equals
and GetHashCode methods on the implementations of the IRegex〈T 〉 interface.

A.6 Brzozowski’s algorithm with hashing

The original hashing version of Brzozowski’s algorithm (see also Algorithm 5.1) is
implemented as:

public static FiniteStateAutomaton<IRegex<T>, T>
GetNonDeterministicSuperAutomaton<T>(this IRegex<T> regex,
IEqualityComparer<IRegex<T>> hashFunction)
{

IRegex<T> regexIn = regex.GetRewriteFlattened();
HashSet<IRegex<T>> todo = new HashSet<IRegex<T>>(new RemapEqualityComparer<T>())
{ regexIn };

HashSet<IRegex<T>> done = new HashSet<IRegex<T>>(new RemapEqualityComparer<T>());
FiniteStateAutomaton<IRegex<T>, T> nfa =
new FiniteStateAutomaton<IRegex<T>, T>(hashFunction, EqualityComparer<T>.Default);

nfa.StartStates.Add(regexIn);
while (todo.Count > 0)
{
IRegex<T> current = todo.First();
todo.Remove(current);
done.Add(current);
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foreach (var firstSymbol in current.FirstSymbolSet)
{

IRegex<T> derivative = current.GetLeftDerivative(firstSymbol);
if (!todo.Contains(derivative) && !done.Contains(derivative))
{

todo.Add(derivative);
}
nfa.AddTransition(current, firstSymbol, derivative);

}
if (current.IsNullable) nfa.EndStates.Add(current);

}
return nfa;

}

The hash function being used was passed in as an implementation of the
IEqualityComparer〈IRegex〈T 〉〉 interface.

A.7 Brzozowski’s algorithm with hashing, the DFA

version

The new deterministic version of Brzozowski’s algorithm with hashing proposed in
this dissertation is implemented as (see also Algorithm 6.1):

public static FiniteStateAutomaton<IRegex<T>, T>
GetDeterministicSuperAutomaton<T>(this IRegex<T> regex,
IEqualityComparer<IRegex<T>> hashFunction)
{

IRegex<T> regexIn = regex.GetRewriteFlattened();
Dictionary<int, IRegex<T>> inverseHashMappings = new Dictionary<int, IRegex<T>>();
HashSet<IRegex<T>> todo = new HashSet<IRegex<T>>(new RemapEqualityComparer<T>())
{ regexIn };

HashSet<IRegex<T>> done = new HashSet<IRegex<T>>(new RemapEqualityComparer<T>());
FiniteStateAutomaton<IRegex<T>, T> dfa =
new FiniteStateAutomaton<IRegex<T>, T>(hashFunction, EqualityComparer<T>.Default);

dfa.StartStates.Add(regexIn);
while (todo.Count > 0)
{
IRegex<T> current = todo.First();
todo.Remove(current);
done.Add(current);
foreach (var firstSymbol in current.FirstSymbolSet)
{

IRegex<T> derivative = current.GetLeftDerivative(firstSymbol);
IEnumerable<IRegex<T>> nextStates = dfa.GetNextStates(current, firstSymbol);
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if (nextStates.Count() == 1)
{

IRegex<T> existingNextState = nextStates.First();
dfa.RemoveTransition(current,firstSymbol,derivative);
derivative = new Union<T>()
{ LHS = derivative, RHS = existingNextState}.GetRewriteFlattened();

}
if (!todo.Contains(derivative) && !done.Contains(derivative))
{

todo.Add(derivative);
}
dfa.AddTransition(current, firstSymbol, derivative);

}
if (current.IsNullable) dfa.EndStates.Add(current);

}
return dfa;

}

The main point of interest in this code is the first if -statement in the foreach-loop:

IRegex<T> derivative = current.GetLeftDerivative(firstSymbol);
IEnumerable<IRegex<T>> nextStates = dfa.GetNextStates(current, firstSymbol);
if (nextStates.Count() == 1)
{

IRegex<T> existingNextState = nextStates.First();
dfa.RemoveTransition(current,firstSymbol,derivative);
derivative = new Union<T>()
{ LHS = derivative, RHS = existingNextState}.GetRewriteFlattened();

}

Note that the destination state, which is in the derivative variable, is rewritten
to prevent non-determinism in the resulting automaton. It is also important that
this new constructed next state (which is also a regular expression) is flattened and
rewritten in order to avoid non-termination.
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Appendix B

Long regular expression test cases

The test sample of long regular expressions are small: it consist of 31 test expressions.
The sample is kept small due to the limitations discussed in Section 8.3. Operators
are given in Table B.1.

Operator Symbol
Concatenation .
Union |
Plus Closure +
Star Closure *
Optional ?

Table B.1: Prefix notation operators

The empty set and the empty string have been removed from the test cases using
the rewrite rules from Section 4.3. The long regular expressions are written in prefix
notation. Therefore, taking Table B.1 into account, the prefix string

|0*1

represents the regular expression 0 ∪ 1∗. The long regular expression test cases are:

.*.+0.00|+*+.0+0+++.1+1

|.**+.+33+.0.0?0*..?000

|+.3.3?3|+.1.+11+*+.0+0

||*+*.+33***.0+0+..11+1

|*+*.0+0.+.2.+22+++.1+1

|*..?222.*..?222*.?2.22

.+.0.0?0|*..2+22+.3.3+3

|+.+1.11.*..+333**+.3+3
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..+.|0+11+.1.1?1*..0+00

|.*+*+.+00*..0+00*.?0.00

.*.?0.00|*.3.3?3*.3.3?3

..+..?000*+*.0+0+..?222

|*..+000|+*+.+11+..33?3

|*.2.2+2.*.0.?00*..33+3

|+..00?0|++*.+22+.2.2+2

|+.|1+33.+..+000+.?1.11

.+.|+323|*..2?22*++.+11

..*.0.+00++*.2+2*+*.3+3

||***.0+0*+*.+00*..00+0

.***.+11|+.3.?33*.1.1+1

|*.0.0?0.*..?222*.1.1?1

|+.|+131*.+..+000*..?000

.*..11+1.***.+33*+*.3+3

.*..3?33.***.0+0+++.3+3

|.+.|0+22**.?1.11***.+33

.|*++.+00+.3.3?3+..+333

||+.|+020+.|0+33+.2.2?2

..*..?111+..?111*..+111

||+++.2+2+.2.2?2+.|1+22

..*.0.0+0+..+111**+.1+1

..++*.1+1+*+.2+2*..?000
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