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Abstract

Mixture experiments are widely applied. The Sche�é quadratic polynomial is the most

popular mixture model in industry due to its simplicity, but it fails to accurately describe

the behaviour of response variables that deviate greatly from linear blending. Higher-

order Sche�é polynomials do possess the ability to predict such behaviour but become

increasingly more complex to use and the number of estimable parameters grow exponen-

tially [15]. A parameter-parsimonious mixture model, developed from the linear blending

rule with weighted power means and Wohl's Q-fractions, is introduced. Bootstrap is

employed to analyse the model statistically. The model is proved to be �exible enough

to model non-linear deviations from linear blending without losing the simplicity of the

linear blending rule.

Keywords:

Mixture experiments; Mixture models; Experimental design; Sche�é quadratic polyno-

mial; Bootstrap; Wohl's Q-fractions; Weighted power mean
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Introduction

Mixture models are everywhere. Chemical engineers employ mixture models to predict

excess thermodynamic properties such as Gibbs free energy and the enthalpy of polar

and non-polar mixtures [30, 44]. Materials science uses them to predict the physical

properties of metal alloys and the behaviour of porous media. The physical properties of

cement mixtures, such as compressive strength, are modelled using mixture experiments

[2, 21, 52, 61]. The food industry is greatly dependent on mixture experiments as all its

formulations depend on the proportions of the ingredients [10, 19]. Mixture models have

been applied in product quality improvement by identifying the optimal blend [7, 56].

A corporation in France has even employed mixture designs to blend a table wine from

various other wines [64]. Other examples for which mixture experiments are used; tensile

strength, physical properties of metal alloys, even cake formulations and tobacco blends

[15, 35, 57].

A mixture experiment is de�ned as an experiment in which the response variable is not

dependent on the total amount of the mixture but on the relative amounts of the mixture

components. The proportions of the components can be expressed by volume, weight,

mole, etc., as long as the proportion values are greater than zero and sum to one. Under

these constraints the factor space for the measured responses is a (q − 1)-dimensional

simplex, where q is the number of components in the mixture. Mixture experiments

are employed either to predict a response variable (such as the �u�ness of a cake), to
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screen the components of a mixture to simplify the problem, to measure the e�ects of

the components on the response variable, or to optimise the response variable over the

experimental region [3, 15]. An interesting application of mixture experiments was a

plant diversity experiment where the response variable was known and used to predict

the elementary components [59]. If the focus of a mixture experiment is to optimise

a particular response variable, Response Surface Methodology (RSM) is employed. A

response surface is generated by plotting the measured response perpendicularly above the

corresponding coordinate of component proportions. The shape of the response surface

provides insight into the properties of the response variable. An aid in visualising the

shape of response surfaces is contour plots. Each contour corresponds to a particular

height of the response surface [15]. These concepts will be illustrated in Chapter 1. To

analyse a response surface successfully, three key areas need to be addressed: (i) a proper

model needs to be developed to approximate the response surface over the experimental

region;(ii) a suitable experimental design needs to be implemented during data collection;

and (iii) model adequacy has to be tested [43]. These three areas form the foundation of

a successful mixture experiment.

Mixture Models : The fundamental purpose of a mixture experiment is to develop a

mathematical model that can accurately describe the dependence of the response variable

on the mixture components. Various mixture models for di�erent experimental setups

have been developed over the years and a selection of these will be addressed in Chapter

2. In 1958, Henry Sche�é published his pioneering article Experiments with mixtures

and became the �rst to develop a model for a mixture experiment [57]. Despite an

abundance of very sophisticated models in the literature today, it is still Sche�é canonical

polynomials that are most commonly used [51]. Their popularity can be ascribed to

their simplicity. They are often of low degree, which implies that fewer observations are

required to estimate the parameters and there are fewer terms to interpret, making them

easier to understand and handle [15]. It is most expedient to keep these properties in mind

when developing a mixture model as an alternative for Sche�é canonical polynomials. The

proposed parameter-parsimonious mixture models will be introduced in Chapter 3.

Experimental Design: The results and conclusions that can be drawn from an experi-

ment are directly in�uenced by the manner in which the data are collected. The principle
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is simple: an informative statistical analysis of an experiment is dependent on informa-

tive data. Informative data are ensured when statistical principles are applied during

data collection. Poorly planned experiments often leave important questions unanswered

due to a lack of informative data. A properly planned mixture experiment allows more

than one, if not all, of the above experimental ideologies to be addressed [64]. Various

experimental designs have been developed for mixture experiments. Chapter 1 addresses

some of the most popular experimental designs such as the simplex lattice design and the

simplex centroid design.

Statistical Analysis : Statistical analysis of experimental data serves various purposes in

mixture experiments. It provides a means for model simpli�cation by identifying the most

dominant components in the mixture, but it is applied foremost to parameter estimation

and model validation. Various mixture models may be appropriate for a given experiment

and it is crucial to pick the best model for the system in order to gain proper understanding

of the mixture experiment. It is common to use computer-based methods for model

selection and the literature cites the use of stepwise regression, backward elimination

regression and the "RSQUARE-procedure" from SAS and subset selection methods [3].

This study employs bootstrap for parameter estimation and model validation and this is

explained in Chapter 4.

One of the greatest challenges in mixture experiments is to develop a model that can

predict the octane number of a fuel blend. Octane number is one of the most important

properties of fuel since it provides a measure of the anti-knock property of the fuel blend.

It is measured as either the Research Octane Number (RON), which represents low-speed

city driving, or as the Motor Octane Number (MON), which represents high-speed freeway

driving [4]. It has always been a goal of re�ners to accurately predict the octane number

and the literature is rich in proposed empirical models [4, 34, 45, 67]. The standard

deviation of the prediction error of these models is generally less than 0.8 RON/MON

values. Most of these models were developed from a narrow range of gasoline components

which hampers their extrapolation capabilities. Another setback is that for many of the

proposed models the required input data are cumbersome and expensive to obtain. The

models are often di�cult to apply and interpret, and therefore less than ideal for practical

application [4, 45]. The octane number is dependent on composition and it is well known
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that the octane number does not blend linearly [4]. Gasoline consists of hundreds, if

not thousands, of compounds, rendering it impossible to account for each compound's

contribution to the octane number.

The holistic aim of this project is to develop parameter-parsimonious mixture models

that can predict the octane number of fuel blends by incorporating the physical properties

of each individual fuel stream that can be measured quickly and cost-e�ectively into the

model. Every single component of gasoline is then indirectly taken into account.

The project is split into two phases. Phase 1 is the subject of this dissertation with the

primary objective of constructing a parameter-parsimonious model that is �exible enough

to model deviation from linear blending. It focuses on the theory of experiments with

mixtures; introduces a new mixture model and applies the statistical method, bootstrap,

to verify the model. Phase 2 is intended to include a literature review of the history of

octane number as a measure of expressing the anti-knock property of fuel and a review

of previously developed octane-prediction models. The purpose of phase 2 is to subject

the models to further vigorous testing under more stringent conditions, with the ultimate

aim of predicting the octane number of fuel blends.
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Chapter 1

Experiments with Mixtures

The �rst mixture experiment was described by Claringbold in 1955 [11]. He introduced

the simplex design as an easier experimental design for studying the joint action of related

hormones. Joint action is a term used in toxicological studies to refer to the simultaneous

action of substances that were administered separately in an organism [11]. In 1958,

Henry Sche�é published what is today considered as the pioneering article in mixture

experiment research [57]. He expanded and generalised Claringbold's simplex design to

all mixtures where the response variable is only dependent on component proportions

and not on the total amount of the mixture [57]. This de�nition for mixture experiments

introduces the following constraints:

q∑
i=1

xi = 1 xi ≥ 0 i = 1, 2, ...q (1.1)

where q is the number of components in the mixture.

The most important research conducted in the �rst 50 years of mixture experiment

research has been concisely summarised by Gregory Piepel [47]. It provides a glimpse into

the vast research �eld that mixture experiments have developed into. There are three

main areas in mixture experiments that arise from the literature: the mixture model,
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the experimental design and statistical analysis. Each of these areas will be separately

addressed and explained on the basis of an example. The data in Table 1.1 were taken

from a mixture experiment in the pharmaceutical sciences1 [33].

Piepel and Cornell (1994) summarise the typical steps of a mixture experiment as

follows [50]:

1. De�ne the objectives of the experiment.

2. Select the mixture components.

3. Identify any constraints on the mixture components.

4. Specify the responses to be measured.

5. Propose an appropriate model from the response data as functions of the mixture

components.

6. Select an experimental design that is su�cient for �tting the model and testing its

adequacy.

In the pharmaceutical example, the objective of the experiment is to measure the

in�uence that non-ionic surfactants have on the size of the nanospheres in a pseudola-

tex. A three-component mixture consisting of poloxamer 188 NF, polyoxyethylene 40

monostearate NF and polyoxyethylene sorbitan fatty acid ester NF is selected for the

study. For simplicity, the components will be referred to as A, B and C respectively in

the remaining text. The components are not subjected to any constraints and can assume

any proportion between 0 and 1. The size of the nanospheres of the pseudolatex is mea-

sured in nanometres (Table 1.1). With the objective of the experiment decided and the

response to be measured speci�ed, a suitable model needs to be suggested that describes

the relationship between the response variable and the components [50].

1.1 The Mixture Model

Composition variables A, B and C adhere to the restrictions de�ned in (1.1). Therefore all

the possible proportions assumed by the components can be graphically illustrated by a

1The data from the publication were adapted and altered for illustrative purposes.
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Table 1.1: Observed nanosphere size in nm for 11 di�erent blends

Blend Composition Variables Observed Responses

# A (X1) B (X2) C (X3) Run 1 Run 2 Run 3

1 1.000 0.000 0.000 250.1 250.4 250.2

2 0.000 1.000 0.000 274.2 274.2 274.3

3 0.000 0.000 1.000 533.5 533.2 533.3

4 0.500 0.500 0.000 255.2 255.9 253.8

5 0.500 0.000 0.500 267.3 267.5 267.4

6 0.000 0.500 0.500 294.3 294.5 294.5

triangle with pure-components on the vertices, as illustrated in Figure 1.1. The complete

set of all possible proportions is referred to as the factor space.

A= 100%

B= 100% C= 100%

A= 50%

B= 50%
A= 50%

C= 50%

B= 50%

C= 50%

Figure 1.1: Triangular factor space for components A, B and C

The response variable (nanosphere size) measured at various mixture blends, generates

a response surface perpendicular above the factor space (Figure 1.2). The height of the

response above the factor space indicates the value of the response. The proposed mixture

model should describe the behaviour of the response variable over the factor space; in other

words, it should describe the shape of the response surface.

In theory, polynomials can represent continuous response surfaces with great accuracy

if enough terms are included [35]. The general form of a regression polynomial of degree

n with q variables is:
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X1(100)

220

270

320

370

420

470

520

Size

X2(100)

X3(100)

Figure 1.2: Response surface perpendicular above the factor space

y =β0 +
∑
1≤i≤q

βixi +
∑∑
1≤i≤j≤q

βijxixj (1.2)

+
∑∑∑
1≤i≤j≤k≤q

βijkxixjxk + · · ·+
∑∑

· · ·
∑

1≤i1≤i2≤···≤in≤q

βi1i2...inxi1xi2 . . . xin

The interpretations of the
(
q+n
n

)
number of parameters in the above polynomial are

subject to the restriction that the sum of the components must equal one (1.1). Un-

der these restrictions there exists a high collinearity among the xi's which implies that

the parameters, βi, βij, . . . , βi1i2...in are not unique [15, 57]. It is possible to remove the

dependency of the xi variable by substituting

xq = 1−
q−1∑
i=1

xi (1.3)

into (1.2). This reduces the number of parameters to
(
q+n−1

n

)
but does not a�ect the degree

of the polynomial. This is not an ideal approach in mixture experiments as the in�uence

that component q has on the response variable is now removed from the model. Sche�é

proposed that the polynomials be rewritten in what he called their canonical form [57].

The canonical polynomials still have only
(
q+n−1

n

)
parameters with the additional bene�t

that the coe�cients, β, have simple interpretations [57]. The deduction of only a second-
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order canonical polynomial will be considered in this dissertation. For the deduction of a

higher order canonical polynomial, refer to Appendix A.

The second-order canonical polynomial is obtained by multiplying the constant term

in (1.2) by the identity x1 + x2 + x3 + · · ·+ xq = 1 and by replacing all the square terms

with the identity

x2i = xi(1−
q∑

j=1
j ̸=i

xj)

The constant term, β0, in (1.2) is now absorbed into the βi coe�cients and the quadratic

parameters βii are absorbed into the βi and βij parameters [20].

These principles can be applied to a regression polynomial of any degree to deduce the

mathematically equivalent canonical form. The resulting �rst-, second- and third-order

canonical polynomials are [57]:

Linear blending: y =

q∑
i=1

βixi (1.4)

Quadratic model: y =

q∑
i=1

βixi +
∑∑
1<i<j<q

βijxixj (1.5)

Cubic model: y =

q∑
i=1

βixi +
∑∑
1<i<j<q

βijxixj +
∑∑
1<i<j

δijxi(xi − xj)

+
∑∑∑

1<i<j<k

βijkxixjxk (1.6)

Special cubic model: y =

q∑
i=1

βixi +
∑∑
1<i<j<q

βijxixj +
∑∑∑

1<i<j<k

βijkxixjxk (1.7)

The special cubic model is an extension of the quadratic model and is obtained by

adding the term βijkxixjxk [35]. The models are known as the Sche�é canonical poly-

nomials and are widely used in mixture experiment applications due to their simplicity

of use and ease of interpretation. They are typically of low degree since increasing the

degree of the function increases the number of parameters to be estimated and interpreted

exponentially. The accuracy of these polynomials depends on the number of terms in-

cluded in the polynomial, as mentioned earlier. This shortcoming of Sche�é polynomials

creates the need for models that are high in accuracy but with few estimable parameters.

Various other models have been introduced since Sche�é �rst introduced the canonical
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polynomials either as improvements or for other experimental requirements. Some of the

most noteworthy models will be addressed in Chapter 2.

Quadratic polynomials are in most applications su�cient to model the response sur-

face. They are also preferred for the small number of parameters that need to be estimated

and interpreted. For these reasons they are still one of the most popular mixture models

in industry. Therefore a quadratic polynomial will be used to model the pharmaceutical

data. The response (dependent) variable, y, is the nanosphere size in nanometres, with

the composition variables xi being the respective proportions of components A, B and C.

Mixture experiments are employed either to predict a response variable, to screen

components of a mixture to simplify the problem, to measure the e�ects of the components

on the response variable, or to optimise the response variable over the experimental region

[3, 15]. If the experiment is properly planned, more than one, if not all, of these goals can

be met. The experimental design speci�es the minimum number of data points needed to

describe the relationship between the response variable and the components, to estimate

the parameters and to assess model accuracy [50].

1.2 Experimental Design

The experimental region or factor space of any mixture experiment is de�ned by the

constraints in (1.1) and can be represented by a (q − 1)-dimensional simplex. For our

three-component example, the factor space is a triangle. For a four-component mixture,

it will be a tetrahedron, as illustrated in Figure 1.3. The pure components are positioned

at the vertices.

In most mixture experiments the behaviour of the response variable over the whole

factor space is of interest. Uniformly distributed points covering the whole factor space

need to be selected. Sche�é labelled this uniform distribution of points as a {q,m}-simplex

lattice, where q is the number of components and corresponds to the corners of the simplex

and m is an integer that depicts the spacing of the lattice points.

The number of points, or experimental blends, required for any lattice is:

Number of lattice points (l) =

(
q +m− 1

m

)
=

(q +m− 1)!

m!(q − 1)!
(1.8)
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x1 = 1

x2 = 1 x3 = 1

(a) Triangular design for three components

x1 = 1

x2 = 1
x4 = 1

x3 = 1

(b) Tetrahedral design for four components

Figure 1.3: Simplex lattice design for three and four components respectively

The lattice consists of mixture composition points and therefore m is associated with

the proportions each component can assume. The m + 1 di�erent proportion values for

each component are 0, 1
m
, 2
m
, . . . , 1.

The convenience of the simplex lattice design is that if the integerm depicts the degree

of the model, the number of lattice points in the design corresponds to the number of

parameters that must be estimated.

Consider our example. We have a three-component mixture (q = 3) and we want

to employ a second-order Sche�é polynomial (m = 2) to model the response variable.

From the previous section we know that the number of parameters to be estimated is(
3+2−1

2

)
= 6. Our 2D-simplex is a triangle and since m = 2, the number of lattice points

required is six (1.8). The proportions each of the components must assume are 0, 1
2
, 1.

The six lattice points are depicted in Figure 1.4.

The simplex lattice design is one of the most common experimental designs used in

mixture experiments. It provides an equally spaced distribution of points which covers the

whole factor space and has just enough data points to �t a canonical polynomial of degree

m uniquely. The simplex lattice design is applied for the prediction of response variables

of mixtures with q, q − 1, q − 2 . . . components. A drawback of this design is that the

prediction is based on mixtures of, at most, m components. It is always desirable to �t a

polynomial with the lowest possible degree. This implies that a second-order polynomial

�tted to a {q, 2}-simplex lattice entails only binary and pure-component mixture data,
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A

B C

(

1
2 ,

1
2 , 0

)

(

1
2 , 0,

1
2

)

(

0,
1
2 ,

1
2

)

(1, 0, 0)

(0, 1, 0) (0, 0, 1)

Figure 1.4: The six lattice points for the pharmaceutical experiment

regardless of the number of components [58]. To address this drawback of the simplex

lattice design, Sche�é introduced the simplex centroid design in 1963 [58].

The simplex centroid design consists of 2q − 1 data points. These observations are

taken at each of the following lattice points: q pure components,
(
q
2

)
binary mixtures,(

q
3

)
ternary mixtures, up to the mixture (1

q
, 1
q
, . . . , 1

q
). This design contains all possible

subsets of the q-components where the mixtures have equal proportions. In essence, the

simplex centroid lattice consists of the centroid of the design and the centroid of every

sub-dimensional simplex it contains [58]. Consider a {3, 2}-simplex centroid design. The

lattice will consist of seven observations taken at the following blends (Figure 1.5):

A

B C

(

1

2
,

1

2
, 0
)

(

1

2
, 0,

1

2

)

(

0,
1

2
,

1

2

)

(1, 0, 0)

(0, 1, 0) (0, 0, 1)

(
1

3
,

1

3
,

1

3
)

Figure 1.5: The simplex centroid design

A polynomial that has the same number of estimable parameters as lattice points in

the simplex centroid design is [15, 58]:
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y =

q∑
i=1

βixi +
∑ q∑

i<j

βijxixj +
∑∑ q∑

i<j<k

βijkxixjxk + · · ·+ β12...qx1x2 . . . xq (1.9)

Both the simplex lattice design and the simplex centroid design are boundary designs.

This means that, with the exception of the centroid, all the design points lie on the edges,

faces and vertices of the simplex [15]. These designs are not ideal for mixture experiments

where it is known beforehand that the blends must contain all the components present,

for example, when the aim is to measure the e�ects that the components have on the

response variable or when the behaviour of components relative to other components

are investigated. Cornell introduced the axial design in 1975 to address these types of

experiments [13]. In the axial design, the experimental points lie on the component axes.

Component axes are imaginary lines that extend from the vertex, xi = 1 to the base point

xi = 0, xj =
1

(q−1)
for all j ̸= i as shown in Figure 1.6.

x1 = 1

x2 = 1

x3 = 0

x3 = 1

x2 = 0

x1 = 0

x1-axis

x2-axis x3-axis

Figure 1.6: The axial design

The length of an axis is considered to be one unit in the simplex coordinate system.

The simplest example of an axial design is one where the points are equidistant from the

centroid of the simplex. The distance from the centroid is denoted ∆ and has a maximum

value of (q−1)
q

(Figure 1.7).

All the above-mentioned designs are applicable to experiments where the whole factor

space is under consideration. Conversely, there are experiments where the component

proportions are subject to constraints, which results in a smaller region within the factor

space being applicable. Mclean and Anderson [41] proposed the extreme vertices design

for constrained components:
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x1 = 1

x2 = 1 x3 = 1

∆

∆ ∆

Figure 1.7: Design points equidistant from the axial design centroid

q∑
i=1

xi = 1 0 ≤ lbi ≤ xi ≤ ubi ≤ 1 (1.10)

where lbi is the lower bound and ubi is the upper bound of component xi. Constraints on

the components imply that a smaller region of the original factor space de�ned by (1.1)

is considered. The chosen experimental design should only allow for data points from the

appropriate region. This smaller region contained within the factor space is referred to as

an irregular hyper-polyhedron [41]. This approach requires that all of the vertices of the

hyper-polyhedron needs to be calculated. Once the vertices are known, the centroids of

each face, as well as the centroid of the hyper-polyhedron, are determined. Experimental

mixtures are then blended at these composition points and an appropriate model is �tted.

This design is discussed in more detail by way of an example in Mclean and Anderson

[41].

1.3 Statistical Analysis

In this example it was decided to consider the Sche�é quadratic polynomial to describe the

relationship between the response variable and the components. This choice was based

on the simplicity of the model. The model is of low degree, which implies that there are

few parameters to be estimated. The parameters are simple to interpret and it is one of

the most common models applied in the literature. Although we can justify the decision,

it is not guaranteed that the model will accurately describe the responses.

Even though parameters can be estimated by the click of a button today, there are a

few statistical principles and assumptions that one needs to be aware of.
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Consider a mixture experiment that was repeated N times. The observed response, yu,

of the u′th (u = 1, 2, . . . N) experimental run varies around a mean, ηu, with a constant

variance of σ2 for all u = 1, 2, . . . N . The deviation from the mean, ηu, can be expressed

as the experimental error, εu. Therefore

yu = ηu + εu 1 ≤ u ≤ N (1.11)

It is assumed that the experimental errors are uncorrelated and identically distributed

around zero with a variance of σ2. This assumption de�nes the following properties of

the experimental error:

E(εu) = 0 (1.12)

E(ε2u) = σ2 (1.13)

E(εuεu′) = 0 (1.14)

u ̸= u′, u,u′ = 1, 2, . . . ,N

Based on these properties, it can be shown that the expected value of the observed

response, yu, is equal to the mean around which it varies.

E(yu) = ηu u = 1, 2, . . . ,N (1.15)

This can be graphically represented as Figure 1.8:

η12 η13

η23

η1

η2 η3

Figure 1.8: The response variables at the corresponding lattice points

The one-to-one relationship between the number of parameters and the number of
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design points, allows the parameters to be expressed as functions of the expected response

variables. To be consistent with our example, consider a {3, 2}-canonical polynomial:

η = β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3 + β23x2x3 (1.16)

The experimental design consists of six lattice points (l = 6), (1.8), as shown in

Figure 1.8. Substituting the design points into the polynomial yields the desired expres-

sions. For the pure-component blends (1, 0, 0), (0, 1, 0) and (0, 0, 1), the βi coe�cient

simply takes the value of the corresponding pure-component expected response:

β1 = η1 β2 = η2 β3 = η3 (1.17)

The coe�cients for the binary interactions at lattice points
(
1
2
, 1
2
, 0
)
;
(
1
2
, 0, 1

2

)
and(

0, 1
2
, 1
2

)
are determined as follows:

ηij = βixi + βjxj + βijxixj (1.18)

=
1

2
(βi + βj) +

1

4
βij (1.19)

βij = 4ηij − 2ηi − 2ηj (1.20)

Note the changes in notation in the above equations. The expected response vari-

ables measured for pure components are denoted ηi, where i = 1, 2, 3, and the expected

responses for binary blends are denoted ηij where i, j = 1, 2, 3 for i ̸= j.

The interpretation of the coe�cients is straightforward. Mixtures exhibit three di�er-

ent types of behaviour in the response. Components either blend linearly or they exhibit

antagonism or synergism when blending.

Consider a two-component mixture. Linear blending occurs when the response vari-

able of all possible blends of the two components can be plotted on a straight line between

pure-component A and pure-component B. Synergism occurs when blending the two com-

ponents has an additive e�ect on the response variable and a positive deviation from linear

blending is observed. Antagonism occurs when mixing the two components has a sub-

tractive e�ect on the response variable and a negative deviation from linear blending is

observed. Synergism and antagonism are illustrated in Figure 1.9.
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x1 x2

0 0

1 1

(a) Positive deviation

from the linear blending

rule

x1 x2

0 0

1 1

(b) Negative deviation

from the linear blending

rule

Figure 1.9: Synergism and antagonism

βi is the contribution made by pure-component i to the response surface. βi is the

height of the response surface above the vertex xi = 1 and has the largest contribution

at this lattice point. The term βijxixj contributes to the response surface everywhere

where xi and xj are not zero, but it makes its maximum contribution with the binary

blend when xi =
1
2
and xj = 1

2
. βij accounts for the synergism or antagonism that is

observed in the response surface. If βij is positive, it depicts synergistic behaviour and

if βij is negative, it accounts for antagonistic behaviour in the response surface. If the

response surface is most accurately represented by the cubic model, the binary mixture

has an additional term to describe the response behaviour δijxixj(xi − xj). This term

allows synergism and antagonism to be observed along the i− j edge [15, 57].

The parameters of the Sche�é polynomial have now been expressed as simple functions

of the expected response variables. The parameter estimates, β̂i and β̂ij, can be written

in terms of the observed response variables, yi and yij.

β̂1 = y1 β̂2 = y2 β̂3 = y3 (1.21)

β̂ij = 4yij − 2yi − 2yj i, j = 1, 2, . . . q, i ≤ j (1.22)

The number of responses measured at each pure-component is denoted ri = 1, 2, . . . n,

i = 1, 2, . . . q. The number of observed responses at the binary blends is rij = 1, 2, . . . n,

with i, j = 1, 2, . . . q for i ̸= j. It is advisable to take more than one observation at every

lattice point (rl > 1). This improves the accuracy of the parameter estimates, as shown

later.

17

 
 
 



β̂1 = ȳ1 β̂2 = ȳ2 β̂3 = ȳ3 (1.23)

β̂ij = 4ȳij − 2ȳi − 2ȳj where (1.24)

ȳi =

∑ri
l=1 yil
ri

(1.25)

ȳij =

∑rij
l=1 yijl
rij

(1.26)

These equations, (1.23) to (1.26), are the least-squares calculations for the parameter

estimates. Note that the scalar quantities, 4, 2 and 2, in the formula for β̂ij come from

the proportions xi =
1
2
and xj = 1

2
that were used in the design and are not dependent

on the ri,rj and rij [15].

Revisit equation (1.11). In the relationship yu = ηu+εu, ηu is replaced by the proposed

model. In this case, the Sche�é quadratic model becomes

yu = (

q∑
i=1

βixi +
∑∑
1<i<j<q

βijxixj)u + εu u = 1, 2 . . . N (1.27)

The estimated response model is:

ŷu = (

q∑
i=1

β̂ixi +
∑∑
1<i<j<q

β̂ijxixj)u + εu u = 1, 2 . . . N (1.28)

where q indicates the number of components in the mixture and ŷu is the estimated

response variable at the u′th experimental trial. The parameters of the model, βi and βij,

are estimated by the method of least-squaress.

The least-squares estimators of the parameters are the estimated values that minimise

the sum of the squared of errors [42]:

L =
N∑

u=1

ε2u (1.29)

=
N∑

u=1

(yu − ŷu)
2 (1.30)

Di�erentiating L with respect to the parameters in question, equating it to zero and

simplifying the equations yields the least-squares normal equations as expressed in (1.23)
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[15, 42]. Refer to Cornell (2002) for an explanation of normal equations in matrix notation

[15].

The properties of the parameter estimates are determined by the properties of the

random errors, εu. If the errors are assumed to be normally distributed with a mean of

zero and a variance of σ2, then from (1.11) it is clear that yu also has a normal distribution

with a variance of σ2 but with a mean of ηu. The parameters are linear functions of the

observations and are therefore also normally distributed [42]. If the observations used to

estimate the parameters were collected only at the lattice points, the means and variances

of the parameter distributions are [15]:

E(β̂i) = E(ȳi) = βi (1.31)

var(β̂i) = var(ȳi) =
σ2

ri
(1.32)

E(β̂ij) = E[4ȳij − 2(ȳi + ȳj)] = βij (1.33)

var(β̂ij) = var[4ȳij − 2(ȳi + ȳj)] =
16σ2

rij
+

4σ2

ri
+

4σ2

rj
(1.34)

cov(β̂i, β̂j) = 0 i ̸= j (1.35)

cov(β̂i, β̂ij) = −2σ2

ri
(1.36)

cov(β̂ij, β̂ik) =
4σ2

ri
, j ̸= k (1.37)

Parameters β̂i are therefore distributed as N ∼ (βi,
σ2

ri
) and parameters β̂ij have N ∼

(βij,
16σ2

rij
+ 4σ2

ri
+ 4σ2

rj
) distributions. Here N indicates the normal distribution [15]. These

properties provide insight in determining whether the parameter values are signi�cantly

di�erent from zero during hypothesis testing. The positive square root of the estimated

variances of the parameters is known as the standard error se(β̂i) =

√
var(β̂i) and

se(β̂ij) =
√
var(β̂ij). The standard error is used to calculate 100(1 − α)% con�dence

intervals for the estimated parameter, where typically α = 5%. If the estimated value of

the parameter falls withing the boundaries of the interval, then the estimated parameter

is acceptable. The narrower the con�dence intervals, the more accurate the estimation:
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β̂i − tn−p,α
2
se(β̂i) ≤βi ≤ β̂i + tn−p,α

2
se(β̂i) (1.38)

β̂ij − tn−p,α
2
se(β̂ij) ≤βij ≤ β̂ij + tn−p,α

2
se(β̂ij) (1.39)

In these equations n denotes the total amount of observations in the experiment and p

is the number of estimable parameters. The quantity n−p is the degrees of freedom. The

value tα
2
,n−p is the tabulated value for the t-distribution, with n− p degrees of freedom at

a level of signi�cance of α
2
.

In typical regression it might be possible to reduce the models by omitting the non-

signi�cant terms, but it is seldom justi�able to remove parameters from a mixture model

[19]. Snee and Marquardt (1976) introduced screening techniques for mixture experiments

to identify the most important components [62]. This is mostly applicable to mixtures

with more than six components where the aim is not to model a response surface for

predictive purposes, but rather to identify compounds with the greatest e�ects in order

to reduce the overall experiment [14, 62]. The variances and covariances of the parameters

are all dependent on the precision of the experimental observations via σ2. The value for

σ2 is often unknown but it can be replaced by its estimate σ̂2, which is calculated as:

σ̂2 =
l∑

k=1

rl∑
u=1

(yku − ȳk)
2∑l

k=1(rk − 1)
(1.40)

From (1.40) it is clear that the accuracy of the parameter estimates can be improved

by improving the experimental precision and/or increasing the number of observations at

every lattice point.

It is desirable to estimate the responses within a certain level of accuracy. This can

be done by calculating the (1 − α)100% con�dence interval for η , the expected value of

the response (1.15).

ŷ(x)−∆ < η < ŷ(x) + ∆ (1.41)

∆ = [tf ,α
2
]
√
v̂ar[ŷ(x)] (1.42)

where f is the degree of freedom associated with σ̂2 and tf ,α
2
is the tabled t-value with f

degrees of freedom at the α
2
level of signi�cance. A typical value for α is 5%. As long as

ŷ(x) falls within the limits of the con�dence interval, the required level of accuracy is met.
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To calculate the con�dence intervals, the estimated variance of the estimated response,

v̂ar[ŷ(x)], needs to be determined. The variance of the estimates response, var[ŷ(x)], is

calculated by substituting the parameter estimates into the model:

ŷ(x) =

q∑
i=1

β̂ixi +
∑ q∑

i<j

β̂ijxixj (1.43)

=

q∑
i=1

ȳixi +
∑ q∑

i<j

(4ȳij − 2ȳi − 2ȳj)xixj (1.44)

This can be simpli�ed to:

ŷ(x) =

q∑
i=1

aiȳi +
∑ q∑

i<j

aij ȳij (1.45)

where ai = xi(2xi − 1) and aij = 4xixj i, j = 1, 2, . . . , q, i < j. The values of ai and aij

are speci�ed by the composition point x and are therefore �xed without error [15]. The

variance of the estimated response can be written as:

var[ŷ(x)] = σ2

{
q∑

i=1

a2i
ri

+
∑ q∑

i<j

a2ij
rij

}
(1.46)

An estimate for var[ŷ(x)] is calculated when σ2 is replaced by its estimate σ̂2. The

variance of the predicted response ŷ(x) can be written in terms of the variances and

covariances of β̂i and β̂ij, implying that the variance of the predicted response at a given

composition is directly in�uenced by the properties of the parameter estimates. A smaller

var[ŷ(x)] results in a narrower con�dence interval and a more accurate predicted response.

It is necessary to understand the variation between the measured response variables

in mixture experiments. The overall variation among measured responses can be divided

into two sources: variation among the average responses between blends and variation

between measured responses at any given blend.

Sche�é {q,m}-canonical polynomials have the same number of terms as experimental

design points. The variation explained by the �tted model is the variation between the

observed responses at the various design points. This variation is referred to as the sum

of squares of regression (SSR) and is calculated as:
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SSR =
N∑

u=1

(ŷu − ȳ)2 (1.47)

ȳ =
y1 + y2 + · · ·+ yN

N
(1.48)

where ŷu is the estimated value of the u′th response and ȳ is the overall average of the

observations. The SSR has p − 1 degrees of freedom, where p is the total number of

di�erent blends or the number of terms in the model.

The variation among the replicate observations at the respective design points is ac-

counted for separately from the variation among the blends and is known as the sum of

squared errors (SSE):

SSE =
N∑

u=1

(yu − ŷu)
2 (1.49)

The SSE has N − p degrees of freedom.

The total sum of squares (SST) is the total amount of variation for the complete data

set of N blends and is the sum of the SSE and SSR, which implies N − 1 degrees of

freedom.

SST =
N∑

u=1

(yu − ȳ)2 (1.50)

SST = SSE + SSR (1.51)

This breakdown of the variance is known as the analysis of variance (ANOVA) and

can be summarised as in table Table 1.2:

Table 1.2: Analysis of variance table

Source of Variation Degrees of Freedom Sum of Squares Mean Square

Regression (�tted model) p− 1 SSR =
∑N

u=1(ŷu − ȳ)2 SSR/(p− 1)

Residual N − p SSE =
∑N

u=1(yu − ŷu)
2 SSE/(N − p)

Total N − 1 SST =
∑N

u=1(yu − ȳ)2 SST/(N − 1)

The model �t needs to be assessed to determine whether it appropriately describes

the data. Typical model �t criteria are the F-test, the correlation coe�cient, R2, and
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the adjusted correlation coe�cient, R2
A. These criteria are calculated from the above-

mentioned ANOVA statistics.

The F-ratio is de�ned as:

F =
Mean Square of Regression

Mean Square of Errors
(1.52)

=
SSR/(p− 1)

SSE/(N − p)

The correlation coe�cient, R2, is de�ned as

R2 =
SSR

SST
(1.53)

and can be interpreted as the proportion of the variability in the data that is accounted

for by the ANOVA model [42]. The adjusted correlation coe�cient, R2
A, measures the

reduction in the estimate of the error variance due to �tting the model relative to the

estimate of the error variance when the simple model y = β0 + ε is �tted [15]:

R2
A = 1− SSE/(N − p)

SST/(N − 1)
(1.54)

These test statistics can be calculated by appropriate statistical software. It is impor-

tant to ensure that the software used to assess model �t supports mixture experiments.

The constraints (1.1) that de�ne a mixture experiment result in high colinearity among

the parameters, which renders t-tests unstable. The lack of an intercept variable in mix-

ture models also tends to in�ated values for R2 and R2
A, which does not re�ect true model

�t [15, 19, 40]. If a normal regression through an intercept is applied to �t a mixture

model, there are two possible ways of addressing the statistics. The test statistics can

be calculated separately using the correct formula. Alternatively, the mixture model, as

well as its mathematical equivalent intercept model, can be �tted. The mixture model

provides the correct parameter estimates and the intercept equivalent provides the correct

statistics [19, 40].

1.4 An Example

Now that the statistical groundwork has been laid, let's return to the pharmaceutical

example. The e�ects that various blends of a three-component mixture have on the size
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of pseudolatex nanospheres are measured. The Sche�é quadratic polynomial was chosen

to model the data and the simplex lattice design was used to collect the data. The data

are summarised in Table 1.1.

The model to �t is:

y = β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3 + β23x2x3 (1.55)

From (1.23) the estimated parameters are:

β1 = 250.23 β2 = 274.23 β3 = 533.33

β12 = 4(254.90)− 2(250.23)− 2(274.23) = −29.07

β13 = 4(267.40)− 2(250.23)− 2(533.33) = −497.53

β23 = 4(294.43)− 2(274.23)− 2(533.32) = −437.40

From the parameter values we can draw the following conclusions:

β̂1 < β̂2 < β̂3 (1.56)

|β̂12| < |β̂23| < |β̂13| (1.57)

implying that pure-component C has the greatest in�uence on the nanosphere size and

component A the smallest in�uence. The binary coe�cients indicate overall antagonistic

deviation from linear blending, as depicted in Figure 1.2. Binary blends that include com-

ponent C have the greatest in�uence on the response. Therefore, if larger nanosphere sizes

are required, the proportion of component C should be increased. If small nanospheres

are desired, component C should be as small as possible.

Substitute the parameter values into (1.55) to obtain the model that will to be used

to estimate the response variable:

ŷ = 250.23x1 + 274.23x2 + 533.33x3 − 29.07x1x2 − 497.53x1x3 − 437.40x2x3 (1.58)

The error variance σ2 was estimated from equation (1.40) to be σ̂2 = 0.2028. Estimates

for properties of the parameters (1.31) are calculated by simply replacing σ2 with its

estimate σ̂2:
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v̂ar(β̂i) =
σ̂2

ri
=

0.2028

3
= 0.06759 i = 1, 2, 3 since ri = 3 for all i (1.59)

v̂ar(β̂ij) =
24σ̂2

r
= 1.622 since rij = ri = rj = 3 (1.60)

ĉov(β̂i, β̂ij) = −2σ̂2

ri
=

2(0.2028)

3
= −0.1352 for all i = 1, 2, 3 since ri = rj = 3 (1.61)

ĉov(β̂ij, β̂ik) =
4σ̂2

ri
= −4(0.20278)

3
= −0.2704 j ̸= k (1.62)

Table 1.3: The 95% con�dence intervals for the estimated parameters

Parameter df Lower Limit β̂ Upper Limit se(β̂)

β1 1 249.67 250.23 250.80 0.26

β2 1 273.67 274.23 274.80 0.26

β3 1 532.77 533.33 533.90 0.26

β12 1 -31.84 -29.07 -26.29 1.27

β13 1 -500.31 -497.53 494.76 1.27

β23 1 -440.18 -437.40 -434.62 1.27

All the parameters fall within the limits of their calculated con�dence intervals as

calculated from (1.38). We can infer that all parameters are signi�cant. As expected, the

covariance between parameters β̂i and β̂ij is negative. This will always be the case for

Sche�é quadratic polynomials and it follows from the expression of βi and βij in (1.21):

ĉov(β̂i, β̂ij) = E[(β̂i − βi)(β̂ij − βij)] (1.63)

= E[(ȳi − βi)(4ȳij − 2ȳi − 2ȳj − βij)] (1.64)

= 4E(ȳiȳij)− 2E(ȳ2i )− 2E(ȳiȳj) (1.65)

=
−2σ̂2

ri
(1.66)

The model's adequacy can be tested at various composition points within the design

space. For six di�erent composition points, an estimated response is calculated and the

con�dence interval determined (1.41):
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Table 1.4: Calculated values for ŷ(x) and 95% con�dence limits for the true nanosphere

size for six arbitrary blends

x Lower Upper

Blend x1 x2 x3 Limit ŷ(x) Limit (v̂ar[ŷ(x)])
1
2

1 0.31 0.67 0.012 257.66 258.17 258.67 0.5058

2 0.25 0.24 0.51 282.48 282.92 283.35 0.4924

3 0.18 0.30 0.53 289.39 289.83 290.27 0.4934

4 0.30 0.51 0.19 240.56 241.01 241.45 0.4938

5 0.36 0.012 0.63 312.05 312.57 313.09 0.5104

6 0.13 0.061 0.81 406.21 406.60 407.00 0.4849

The model seems adequate since all the estimated responses fall within the limits of

their respective con�dence intervals at a 95% level of certainty (Table 1.4).

The next step is an ANOVA analysis to assess the model �t. The composition vectors

of the six design points are substituted into (1.58) to calculate the estimated responses for

the measured responses on which the model was developed. The SSE, SSR and SST can

now be calculated with equations (1.47), (1.49),(1.50). Refer to Table 1.5 for a summary

of the calculations.

The model was analysed with Design Expert Version 8.0.4 and Table 1.6 provides a

summary of the ANOVA statistics. The p-value < 0.0001 indicates that the model is

signi�cant at a 5% level of signi�cance. The R2 and R2
A are both calculated as 1.000 and

indicate that the model is a good �t to the data. To illustrate the �t graphically, the pre-

dicted response variable is plotted against the measured response variable (Figure 1.10).

The highly linear relationship con�rms the good �t.

Another e�ective method for gaining insight into the �tted model is contour plots.

The response surface generated by the model can be projected onto a contour plot. Con-

tour plots are a common and e�ective method for visually studying the behaviour of the

estimated response surface. They are particularly useful for systems with two or three

components [21, 39, 61]. For mixtures where q > 3, dissections of the response surfaces

can be studied [15]. Examining contour plots can indicate equal coe�cients to help with

model reduction [62]. This indicates the region of the response surface where the optimal
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Figure 1.10: Predicted vs. actual response variables

values for response can be located. It can be used to compare di�erent mixture models

where more than one model was �tted to the data [19, 35]

A=1

B=1 C=1

C=0 B=0

A=0

222.33

231.27

238.45

248.28

258.50

400.00

300.00

273.26 343.62

Figure 1.11: Contour plot of the estimated responses from our �tted model

Figure 1.11 depicts the contour plot for our example. It con�rms the conclusions

drawn from the parameters: the greater the proportion of component C, the greater

the nanosphere size. The smaller nanosphere sizes are obtained in the vicinity of pure-

component A, where C and B have small proportions.

This chapter has focused on the Sche�é quadratic polynomial and the simplex lattice

design as an introduction to mixture experiments. Various other mixture models have

been developed over the years to address other experimental conditions which the Sche�é

polynomials cannot model adequately. Some of these models are addressed in Chapter 2.
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Table 1.5: Sum of squared deviations for nanosphere data

Observed Predicted Residuals Deviations Regression

Values (yu) Values (ŷu) (yu − ŷu) (yu − ȳ) Deviations (ŷu − ȳ)

250.1 250.23 -0.13 -62.33 -62.20

274.2 274.23 -0.03 -38.23 -38.20

533.5 533.33 0.17 221.07 220.90

255.2 254.97 0.23 -57.23 -57.47

267.3 267.40 -0.10 -45.13 -45.03

294.3 294.43 -0.13 -18.13 -18.00

250.4 250.23 0.17 -62.03 -62.20

274.2 274.23 -0.03 -38.23 -38.20

533.2 533.33 -0.13 220.77 220.90

255.9 254.97 0.93 -56.53 -57.47

267.5 267.40 0.10 -44.93 -45.03

294.5 294.43 0.07 -17.93 -18.00

250.2 250.23 -0.03 -62.23 -62.20

274.3 274.23 0.07 -38.13 -38.20

533.3 533.33 -0.03 220.87 220.90

253.8 254.97 -1.17 -58.63 -57.47

267.4 267.40 0.00 -45.03 -45.03

294.5 294.43 0.07 -17.93 -18.00

ȳ=312.43 SSE=2.43 SST=179340.36 SSR=179337.93

Table 1.6: Analysis of variance table for the nanosphere data

Source of Degrees of Sum of Mean F-value p-value

Variation Freedom Squares Square |Prop| > F

Regression (�tted model) 5 179337.93 35867.59 1.769E+05 < 0.0001

Residual 12 2.43 0.2

Total 17 179340.36 10549.43
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Chapter 2

Mixture Models

Di�erent experimental conditions call for di�erent types of mixture models. Sche�é's

polynomials are only applicable to experimental situations where the whole factor space

is under consideration and where the boundaries of the design are included. These exper-

imental conditions are less than ideal for experiments that, for example, are designed to

screen components or measure the interaction e�ects of the components [15, 12].

Regardless of why the mixture model was developed, there are mathematical axioms

that these models must obey to be consistent in their application. Some of these con-

sistency rules follow naturally from the de�nition of a mixture experiment [36]. Some of

the axioms are preferred properties of the models. The consistency rules that we deemed

important for the model we developed are [28]:

� The mixing property, y, reduces to the pure component value when any fraction

approaches unity.

� The relation for a q-component mixture reduces to the corresponding (q − 1)-

component form in the limit of in�nite dilution of one of the component proportions.

� Symmetry: The predicted property values are independent of the way in which
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component indices are assigned. All of the models considered in this dissertation

comply with this requirement.

� Reflexivity: If all the parameter values are equal, the function reduces to a pure

component mixture: f(β, β, . . . , β;x1,x2, . . . , xq) = β

� Decomposability: The model should be invariant if one component is divided

into two or more identical subcomponents. Or, in other terms, if two components

are identical, the q-component model should reduce to a (q− 1)- component model.

� Homogeneity: A mixture model is homogenous of degree one if

f(λβ1,λβ2, . . . ,λβn; x1, x2, . . . ,xq) = λf(β1, β2, . . . , βq; x1, x2, . . . ,xq)

This ensures dimensional homogeneity.

In addition to the consistency rules, another property our mixture model should ad-

here to is that parameter values remain constant when new components are introduced to

the mixture [28]. In reality, adding a component to a mixture introduces new interactions

and a�ects the current interactions among components. The aim is to incorporate these

e�ects into the new parameters introduced to the model and keep the previous parameter

estimates constant. This simpli�es model application in industry where it is often expen-

sive and/or time-consuming to re-estimate model parameters every time a new component

is introduced to a mixture.

Many of the models introduced as improvements or expansions of the Sche�é polynomi-

als do not adhere to these consistency rules. It is our belief that a model that does adhere

to these consistency rules is more �exible in application and can be applied to a broader

range of problems. The models considered in this text are Sche�é (1958) [57], Becker

(1968) [6], Cox (1971) [17], Piepel (2007) [49], Draper and John (1977) [22], Aitchison

and Bacon-Shone (1984) [1], Darroch and Waller (1984) [18] and Draper and Pukelsheim

(1998) [23].

Sche�é polynomials adhere to all the above-mentioned consistency rules. To prove this,

consider the {3, 2}-canonical polynomial that was �tted to the pharmaceutical example
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in Chapter 1:

y =
3∑

i=1

βixi +
∑ 3∑

i<j

βijxixj (2.1)

y = β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3 + β23x2x3 (2.2)

It is easier to prove the consistency if the polynomial is written in its quadratic form.

Using the relation
∑q

i=1 xi = 1 we get:

y = (β1x1 + β2x2 + β3x3)(x1 + x2 + x3) + β12x1x2 + β13x1x3 + β23x2x3

y = β1x
2
1 + β2x

2
2 + β3x

2
3 + β∗

12x1x2 + β∗
13x1x3 + β∗

23x2x3

where β∗
ij = βi + βij + βj (2.3)

To prove that Sche�é quadratic polynomials reduce to pure component properties if

any component approaches unity, let x1 = 1, x2 = x3 = 0

y = β1x
2
1 + β2x

2
2 + β3x

2
3 + β∗

12x1x2 + β∗
13x1x3 + β∗

23x2x3 (2.4)

y = β1 (2.5)

These polynomials also reduce to (q − 1)-component form if one of the components

tends to zero. Let x3 = 0:

y = β1x
2
1 + β2x

2
2 + β3x

2
3 + β∗

12x1x2 + β∗
13x1x3 + β∗

23x2x3

y = β1x
2
1 + β2x

2
2 + β∗

12x1x2 (2.6)

Reflexivity: Let βi =
β∗
ij

2
= β i, j = 1, 2, 3

y = βx21 + βx22 + βx23 + 2βx1x2 + 2βx1x3 + 2βx2x3

y = β(x21 + x22 + x23 + 2x1x2 + 2x1x3 + 2x2x3)

= β(x1 + x2 + x3)
2 but

3∑
i=1

xi = 1

y = β
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Decomposability: Let x2 + x3 = x5 since q2 = q3 = q5 therefore β2 = β3 = β5

y = β1x
2
1 + β2x

2
2 + β3x

2
3 + β∗

12x1x2 + β∗
13x1x3 + β∗

23x2x3

= (β1x1 + β2x2 + β3x3)
2

= (β1x1 + β5x5)
2

= β1x1 + β5x5 + 2β15x1x5

= β1x1 + β5x5 + β∗
15x1x5

Homogeneity:

y =
3∑

i=1

(λβi)xi +
∑ 3∑

i<j

(λβij)xixj

= λ(
3∑

i=1

βixi +
∑ 3∑

i<j

βijxixj)

After Sche�é published his models in 1958, he and Quenouille debated the interpreta-

tion of his coe�cients. Quenouille pointed out that Sche�é's interpretation of coe�cients

did not allow for models where one component is inert or has an additive e�ect. Sche�é

did not accept Quenouille's criticism. He claimed that his coe�cients should be inter-

preted in terms of antagonism and synergism, and not as interactions in the strictest

sense [6, 54]. However, the presence of an inert component or one with an additive e�ect

renders Sche�é polynomials inadequate regarding �t and interpretation of coe�cients [6].

In 1968 Becker introduced three models homogeneous of degree one that can account for

the inert or additive e�ects of components in mixtures [6].
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H1 y =

q∑
i=1

βixi +
∑∑
1≤i<j≤q

βijmin(xixj) (2.7)

y =

q∑
i=1

βixi +
∑∑
1≤i<j≤q

βijmin(xixj) + · · ·+
∑∑

· · ·
∑

1≤i1<i2<...in≤q

βi1,i2,...inmin(xi1xi2 . . . xin)

H2 y =

q∑
i=1

βixi +
∑∑
1≤i<j≤q

βijxixj
xi + xj

(2.8)

y =

q∑
i=1

βixi +
∑∑
1≤i<j≤q

βijxixj
xi + xj

+ · · ·+
∑∑

· · ·
∑

1≤i1<i2<...in≤q

βi1,i2,...in
xi1xi2 . . . xin

(xi1 + xi2 + · · ·+ xin)
n−1

H3 y =

q∑
i=1

βixi +
∑∑
1≤i<j≤q

βij(xixj)
1
2 (2.9)

y =

q∑
i=1

βixi +
∑∑
1≤i<j≤q

βij(xixj)
1
2 + · · ·+

∑∑
· · ·
∑

1≤i1<i2<...in≤q

βi1,i2,...in(xi1xi2 . . . xin)
1
n

The �rst model, H1, is completely additive and should be applied in deciding the

signi�cance of joint e�ects. A drawback of H1 is that it requires a maximum or minimum

at the centroid of the factor space under consideration. H2 and H3 should be applied for

smoothing the response. H2 can be regarded as a special version of Sche�é polynomials

since setting the denominators equal to one reduces H2 to a Sche�é polynomial. This

allows the coe�cients in the H2 model to be estimated by using similar simple linear

forms as coe�cients in Sche�é polynomials. From inspection it is clear that none of the

three models complies with the requirement of decomposability.

In 1971 Cox introduced mixture models with the aim of addressing three drawbacks

of the Sche�é polynomials [17]:

1. Sche�é polynomials give di�erent parameters, βi, for replicate experiments on ex-

actly the same system, where the responses di�er by a constant between the repli-

cates.

2. The absence of squared terms in Sche�é polynomials of order two and higher does

not provide any information on the direction or magnitude of the curvature of the

response.
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3. The parameter interpretations are in terms of very simple mixtures.

Cox's approach to mixture models requires a starting formulation s = (s1, s2, . . . sq).

Depending on the application, s might be either a convenient starting reference mixture,

which could be quite arbitrary, or it might be the centroid or in the vicinity of the centroid

of the region of interest. The latter is preferred. Piepel (1983) proposed di�erent methods

of calculating centroids for experiments where the region of interest is not the entire

simplex [46]. Cox introduced �rst- and second-order polynomials of the form [13, 17]:

First-degree model: y = β0 +

q∑
i=1

βixi (2.10)

Second-degree model: y = β0 +

q∑
i=1

βixi +

q∑
i=1

q∑
j=1

βijxixj (2.11)

with βij = βji

Cox's approach entails an increase in one of the components of s from xi to xi +∆i.

All other components are adjusted accordingly, which implies that xj, j ̸= i, changes to

xj−∆isi
(1−si)

. The expected responses for the respective Cox polynomials are:

∆y =
βi∆i

1− si
− ∆i

1− si

q∑
j=1

j ̸=i

βjsj (2.12)

∆y = βi
∆i

1− si
+ βii

(
∆i

1− si

)2

(2.13)

Imposing the constraints

q∑
j=1

βjsj = 0 (2.14)

q∑
k=1

βjksk = 0 j = 1, 2, . . . q (2.15)

on the two models implies that

y = β0. (2.16)

Equation (2.14) gives the change in the expected response at any composition point.

It is interpreted as the slope of the standard mixture at a given composition. Constant

replicates among experiments are absorbed by β0. βi is the slope of the response surface for
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changes in the i′th component if the other component proportions are adjusted accordingly

and βij is the linear-linear interaction of components i and j [17]. These parameter

interpretations are closer to those of ordinary polynomial parameters. The factor 1/(1−si)

can be absorbed into the variables by rede�ning them as

zj =
xj

(1− sj)
(2.17)

This implies that the expected response is

∆y =

q∑
i=1

βi∆zi +
∑∑
1≤i,j≤q

βij∆zi∆zj (2.18)

Cornell introduced the axial design, discussed in the previous chapter, speci�cally for

Cox's polynomials. These polynomials measure the e�ect that changes in components

have on the expected response, which makes them ideal for experiments where the aim is

to measure component e�ects [13]. A possible disadvantage to this application of Cox's

polynomial is the interpretation of the coe�cients. The pure components coe�cient, βi,

depends on 1− si which can vary greatly between di�erent components. This a�ects the

comparison of the e�ects of di�erent components. Piepel (2007) addressed this setback by

proposing component slope linear models as an alternative to �rst-order Cox polynomials

[49]:

Version 1: y = γ0 +

q∑
i=1

γi(1− si)xi = γ0 +

q∑
i=1

γix
′

i (2.19)

where x
′

i = (1− si)xi and the coe�cients γi are subject to the constraint

q∑
j=1

γj(1− sj)sj = 0 (2.20)

Version 2: y = γ0 +

q∑
i=1

γi100(1− si)xi = γ0 +

q∑
i=1

γix
∗
i (2.21)

where x∗i = 100(1− si)xi and the coe�cients γi are subject to the constraint

q∑
j=1

γj(1− sj)sj = 0 (2.22)

In these models the coe�cients are the rate of change in the response rather than

the amount of change. The component slope models do not provide higher prediction

accuracy, nor do they �t data better. They merely provide parameter interpretations
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that are more applicable to practice. The component e�ects can be assessed directly from

the coe�cients [49]. For a comparison between the Sche�é linear model, Cox �rst-order

model and component slope models, refer to Piepel (2006) and Piepel (2007) [48, 49].

The similarity between these models and Sche�é's models implies that these models

also adhere to the consistency rules but they are limited in their application. They are typ-

ically not applied to the whole factor space but only to a region surrounding the starting

formulation. Cox stated that these polynomials are not the best choice for experimental

situations where the response variable depicts extreme behaviour as components' propor-

tions tend to zero [17]. This kind of behaviour was addressed by Draper and John (1977)

[22]. They introduced augmented Sche�é polynomials speci�cally for these situations.

The experimental region they considered does not include the boundaries where xi = 0.

Experimental runs are allowed close to the boundary but not actually on it. They merely

extended Sche�é polynomials with an additional term,
∑q

i=1 βix
−1
i , as shown in (2.23)

[22]:

Linear Blending: y =

q∑
i=1

βixi +

q∑
i=1

β−ix
−1
i (2.23)

Quadratic model: y =

q∑
i=1

βixi +
∑∑
1<i<j<q

βijxixj +

q∑
i=1

β−ix
−1
i (2.24)

Cubic model: y =

q∑
i=1

βixi +
∑∑
1<i<j<q

βijxixj +
∑∑
1<i<j

δijxi(xi − xj)

+
∑∑∑

1<i<j<k

βijkxixjxk +

q∑
i=1

β−ix
−1
i (2.25)

Special Cubic model: y =

q∑
i=1

βixi +
∑∑
1<i<j<q

βijxixj +
∑∑∑

1<i<j<k

βijkxixjxk +

q∑
i=1

β−ix
−1
i

(2.26)

The x−1
i allows for the extreme changes in the response behaviour as any component

proportion approaches zero. The coe�cients of these terms are considered edge e�ects.

These models are mostly applied to predict the response variable and it is advised that

no speci�c meaning should be placed on any of the coe�cients [22].

Aitchison and Bacon-Shone (1984) also introduced a model for this kind of experimen-

tal situation. In their log-contrast model, the composition x of the mixture is transformed
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into a log-ratio composition z by

zi = log(
xi
xq

) i = 1, 2, . . . , q − 1 (2.27)

The proposed models are:

y = β0 +

q−1∑
i=1

βilog

(
xi
xq

)
(2.28)

y = β0 +

q−1∑
i=1

βilog

(
xi
xq

)
+

q−1∑
i=1

q∑
j=i+1

βijlog

(
xi
xq

)
log

(
xj
xq

)
(2.29)

Since it is not possible to take the logarithm of zero, this also models extreme behaviour

where components tend to zero and serves as an alternative to the models of Draper and

John [1].

Since neither Draper and John (1977) nor Aitchison and Bacon-Shone (1984) include

the boundaries of the experimental region, their models cannot reduce to the pure com-

ponent if the composition of (q − 1) components tends to zero. These models therefore

do not obey the desired consistency rules.

In 1985 Darroch and Waller introduced another form of additive model in which the

response variable is the sum of separate functions of every proportion [18]. For a three-

component mixture, the model is de�ned as:

y = β1x1 + β2x2 + β3x3 + f(x1) + g(x2) + h(x3) (2.30)

under the condition

f(0) = f(1) = g(0) = g(1) = h(0) = h(1) = 0 (2.31)

The condition (2.31) allows the constants, β1, β2, β3, and the functions, f(x1), g(x2),h(x3),

to be uniquely de�ned. The functions of the pure components are interpreted as the

"non-blandness" of the component. A component is bland if it lacks distinctive charac-

ter in the mixture. Deviation from linear blending for synergistic behaviour is given by

f(x1) + g(x2) + h(x3), the sum of the non-blandness [18]. For this model, interaction is

de�ned as non-additivity, i.e. if the additive model cannot describe the response, there

is non-additivity in the response and therefore interaction exists among the components.
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Darroch and Waller's additive model is closely related to Sche�é's canonical polynomials.

Sche�é replaced the squared terms in a quadratic regression model to favour product terms

as shown in Chapter 1, whereas Darroch and Waller's additive model favoured the squared

terms. When the relation 2xixj = (1 − xk)
2 − x2i − x2j is applied to a three-component

mixture, xi, xj, xk, the additive form of the quadratic regression model is [18]:

y = β1x1 + β2x2 + β3x3 + θx1(1− x1) + ϕx2(1− x2) + ψx3(1− x3) (2.32)

From the close relation between the Darroch and Waller and Sche�é polynomials

it follows that Darroch and Waller's model adheres to all the consistency requirements.

Unfortunately, it also shares the same setback as Sche�é's models, i.e. that as the number

of components in the mixture increases, the number of parameters that must be estimated

increases signi�cantly as well.

Draper and Pukelsheim (1998) introduced replacements for Sche�é canonical polyno-

mials that are based on Kronecker algebra and vector and matrices [23]. These models

are referred to as K-models or K-polynomials. The models introduced to replace �rst-,

second- and third-order Sche�é polynomials respectively are:

y = x
′
θ =

q∑
i=1

θixi (2.33)

y = (x� x)
′
θ =

q∑
i=1

q∑
j=1

θijxixj =

q∑
i=1

θix
2
i + 2

∑∑
1≤i<j≤q

θijxixj (2.34)

y = (x� x� x)
′
θ =

q∑
i=1

q∑
j=1

q∑
k=1

θijkxixjxk (2.35)

Consider the second-order K-polynomial. It is fully homogeneous in second-order

terms. It is assumed that θij = θji, which means that in comparison with the Sche�é

polynomial, the multiplicity of mixed terms xixj has been doubled. This may seem

disadvantageous, but the gain in symmetry more than compensates for these duplications.

The K-polynomial is simply obtained from second-order Sche�é models by replacing all the

xi terms with x
2
i . Sche�é polynomials and K-models have the same number of parameters,

i.e.
(
q+1
3

)
for the second-order functions. Sche�é models and K-models are closely related.

Consider the second-order Sche�é model. In order to relate it to the K-model, it must
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�rst be converted to being homogenous of the second degree.

y =

q∑
i=1

βixi +
∑∑
1≤i<j≤q

βijxixj (2.36)

q∑
i=1

βixi

q∑
i=1

xi =

q∑
i=1

βix
2
i +

∑∑
1≤i<j≤q

(βi + βj)xixj where

q∑
i=1

xi = 1 (2.37)

The di�erence between the Sche�é polynomials and the K-models is:∑
1≤i,j≤q

θijxixj −
q∑

i=1

βixi −
∑∑
1≤i<j≤q

βijxixj

=
∑
1≤i≤q

(θii − βi)x
2
i +

∑∑
1≤i<j≤q

(2θij − βi − βj − βij)xixj (2.38)

This di�erence disappears for all x if and only if

βi = θii and βij = 2θij − θii− θjj (2.39)

A similar approach can be followed to show the relationship between higher-order

Sche�é polynomials and K-models. Since K-models can be seen as a re-parametrisation

of Sche�é's models, they adhere to all the consistency requirements. K-models provide

an advantage in experiments where the model is dependent on the total amount of the

mixture. Unlike Sche�é polynomials, they remain homogeneous as the total amount of

component proportions exceeds one [23].

K-polynomials are especially advantageous for experimental designs where additional

constraints are imposed on the components [53]:

0 < lbi < xi < ubi < 1 (2.40)

where lbi and ubi are the lower and upper bounds respectively imposed on component xi.

To explain the advantages that K-polynomials present under these additional constraints,

consider the matrix notation of a mixture model. A general mixture model is expressed

in matrix terms as:

Y = Xβ + ε or (2.41)

E[Y] = Xβ (2.42)

The normal equations for the least-squares parameter estimates, β̂, is expressed as:

β̂ = (X
′
X)−1X

′
y (2.43)
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The X
′
X matrix is known as the information matrix for estimating β̂. The vector of

�tted values is given by

ŷ = Xβ̂ (2.44)

If columns of the X matrix are linearly dependent on each other, the X
′
X matrix is

singular, implying that (X
′
X)−1 does not exist and the parameter estimates as expressed

in (2.43) cannot be calculated [24]. This is often the case in mixture experiments where

the variables are subjected to additional constraints. Their linear dependence increases,

which results in linearly dependent columns of the X matrix [53]. However, regression

programs have become so accurate that if the columns of X are not exactly linearly

dependent, the X
′
X matrix can still be calculated. The X

′
X is then referred to as being

ill-conditioned. Even though this is, in general terms, a computational improvement, it

does raise concerns regarding the stability of the parameter estimates of the �tted model

[53]. If X
′
X is a severely ill-conditioned matrix, a change as small as 0.001 in a single

design point can result in a completely di�erent model, to the extent that parameters

initially estimated to be large and positive alter to become negative [53].

An ill-conditioned X
′
X matrix therefore results in least-squares estimators with large

standard errors that are highly correlated and highly dependent on the precise position

of the design points. This creates di�culties in models where the parameters have indi-

vidual interpretations [53]. In Chapter 1 it was mentioned that there is more than one

parametrisation for a model but that all parametrisations lead to the same predictions

and the same prediction intervals. Di�erent parametrisations, however, lead to di�er-

ent degrees of ill-conditioning of the X
′
X matrix. It is therefore important to �nd the

best-conditioned model. Generally, improving the conditioning of the information matrix

reduces the variances of the estimated coe�cients and their correlations, which in turn

makes the model less dependent on the position of the design points [53].

The conditioning of the X
′
X matrix can be assessed by a condition number :

cond(X
′
X) =

√
λmax

λmin

(2.45)

where λmax and λmin are the largest and smallest eigenvalues calculated from the deter-

minant equation

|X′
X− λI| = 0 (2.46)
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If X
′
X is close to singular, λmin will be close to zero and the condition number will

be very large. Smaller condition numbers imply greater stability in the least-squares

estimates [53].

The quadratic K-polynomials always provide the smallest maximum eigenvalue, λmax,

of the information matrix and therefore these models are always the best conditioned [53].

Many of the models developed in the literature were developed for speci�c experimen-

tal situations [1, 22]. Although these models may have met with great success within the

boundaries of their application, they cannot be applied to di�erent experimental situa-

tions. Sche�é quadratic polynomials are very popular for experiments with two to four

components. However, complex mixtures that give rise to complex response surfaces are

seldom accurately estimated by Sche�é polynomials of such low degree. Even though suc-

cess may be achieved by simply increasing the degree of the polynomial, this signi�cantly

increases the number of parameters that need to be estimated and interpreted. This in

turn requires more design points, which implies a more time-consuming and costly experi-

ment. The ultimate goal is to develop a mixture model that has few estimable parameters

but is still �exible enough to be applied to a variety of experimental situations.
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Chapter 3

A New Model

There are various mixture models available in the literature, as shown in Chapter 2,

but few that meet the requirements that we desire in a model. These models are often

e�ective for the di�erent experimental designs to which they are applicable, but not

�exible enough to model beyond the limitations and restrictions they were developed

on [1, 22]. Many models are mere re-parametrisations of Sche�é models with the aim

of extending the application of the Sche�é models, but they also share the setbacks [18].

Sche�é polynomials are convenient for mixtures with few components where the responses

can be accurately described by low-order models. Most popular is the Sche�é quadratic

model.

The composition dependence of many mixture properties shows non-linear deviations

from predictions made by the quadratic Sche�é polynomial. The conventional approach

is to use higher-order Sche�é polynomials [5, 9]. However, this signi�cantly increases the

experimental e�ort required to �t the additional model parameters.

Global models that are able to correlate mixture behaviour over the entire factor space

are desirable. Empirical models are the norm since predictive mechanistic theories are sel-

dom available. The mathematical form of the empirical model should be �exible enough

to correlate the underlying information with no unnecessary restrictions; it should be
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consistent with available physical theory; the parameters should be easy to interpret and

estimable with common multivariate estimation techniques, and it should be parameter

parsimonious. Ideally, the coe�cients should be obtainable from pure component proper-

ties or, at most, from binary mixture data. The model should then be predictive for the

general multivariate case.

A new parameter-sparse mixture model is introduced in this chapter. The model is

an expansion of the simple linear blending rule. Wohl's Q-fractions and power means are

employed as a means to this end.

3.1 Composition Descriptors

Consider a mixture composed of q di�erent components. The mixture composition is

quanti�ed by the vector x ∈ R
n
+ where x is some measure of concentration of the species

in the mixture that adheres to the restrictions

0 ≤ xi ≤ 1

q∑
i=1

xi = 1 (3.1)

Various composition descriptors can be used. In thermodynamics, mole fractions, zi,

are commonplace since they have theoretical signi�cance. Mass fractions have been used

as composition variables to correlate experimental data for liquid thermal conductivity

[63]. Mass fractions are de�ned by:

wi =
Mixi∑q
j=1Mjxj

(3.2)

where Mi is the molar mass of component i. Gasoline octane numbers are usually corre-

lated using volume fractions which are given by:

vi =
Vixi∑q
j=1 Vjxj

(3.3)

where the molar volume is calculated from the ratio of molar mass to density by Vi =
Mi

ρi

[34].

In 1946 Wohl introduced generalised composition variables by de�ning unique Q-

fractions as follows [68]:

Qi =
ai∑q

j=1 ajxj
(3.4)
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where ai is a suitably chosen parameter characteristic of component i. Note that the ai

are not all independent. Owing to the scaling property of the Q-fractions, one value must

be predetermined (it may be set to unity) in order to �x unique values for the others.

Alternatively, the ai values may be normalised by forcing their sum to equal unity.

3.2 Modifications of the Linear Blending Rule

The simplest model that can describe mixture properties is the linear blending rule [18]

y =

q∑
i=1

βixi (3.5)

where βi represents the physical property value for pure component i and xi is a con-

centration descriptor in fractional units. The advantages of this model are that it has

no adjustable parameters and that knowledge of only pure components su�ces to predict

multicomponent behaviour. This model provides a reasonable estimate for the variation

of molar volume of a liquid whose composition is expressed in terms of mole fractions.

From this it follows that the density of the liquid also obeys the linear blending rule with

composition expressed in volume fractions:

ρ =

q∑
i=1

ρivi (3.6)

The linear blending rule with composition de�ned by volume fractions has been applied

in predicting fuel octane numbers [38]. As for many other physical properties of mixtures,

the octane number deviates from the linear blending rule in practice. Adjusting to the

linear blending rule to account for the deviations might increase its predictive ability,

while the advantages of such a simple model remain.

The linear blending rule represents a weighted arithmetic mean over the pure com-

ponent property values. Other, more general means can be used, such as the weighted

power mean. The weighted power mean is especially signi�cant since many other means

are simply special cases, as shown in Table 3.1. The precise de�nition of the weighted

power mean is:

yr(β,x) = lim
t�r+

(
q∑

i=1

xiβ
t
i

) 1
t

(r ∈ R) (3.7)
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Table 3.1: Special forms of weighted power means

r De�ntion Weighted Mean

-1 y = [
∑q

i=1
xi

ai
]−1 Harmonic mean

0 y =
∏q

i=1 a
xi
i Geometric mean

1 y =
∑q

i=1 aixi Arithmetic mean; Linear blending rule

2 y =
√∑q

i=1 xia
2
i Quadratic weighted root mean square

This allows for the special case where r = 0.

Suppose r, s ∈ R with r > s. Then the following fundamental inequality holds for the

weighted power mean for any given vector of positive numbers β = (β1, β2, . . . , βn) and

�xed normalised weights x = (x1,x2, . . . ,xn):

yr(x, β) ≥ ys(x, β) (3.8)

In layman's terms, this means that the bias increases towards the higher pure compo-

nent property values as r increases. Values for r > 1 describe synergistic deviations from

the linear blending rule where values of r < 1 describe antagonistic deviations. This is

illustrated in Figure 3.1. A disadvantage of the weighted power mean model is that all

binaries in a given mixture must exhibit either synergism or antagonism. Mixture data

where the binary data exhibit both synergism and antagonism cannot be modelled by

power mean models.

Another approach to constructing �exible mixture models is rational approximations

[31]. The simplest is the ratio of two linear forms:

y =

∑q
i=1 aiβixi∑q
j=1 ajxj

(3.9)

where ai are pure component adjustable parameters. In essence, this proposal replaces the

mole, volume and mass fractions, as de�ned by (3.2) and (3.3), with Wohl's Q-fractions

(3.4). Equation (3.9) still represents the linear blending rule but with the composition

variables substituted by Wohl's Q-fractions:

y =

q∑
i=1

βiQi (3.10)
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Figure 3.1: The e�ect of r on the composition trends for an arbitrary blend modelled

by the power mean mixture model in (3.7)

where

Qi =
aixi∑q
j=1 ajxj

(3.11)

This model has q − 1 adjustable parameters. Figure 3.2 illustrates the range of be-

haviours that can be predicted by this simple Q-fraction model.

To avoid discontinuities it is necessary that ai > 0 for all i. This model will reduce

to the linear blending rule if all the a′is assume the same value. If all the βi values

are identical, it will be unable to predict deviation from the linear blending rule. This

implies that (3.9) relies on amplifying di�erences in pure component property values. The

model also cannot predict values that are either greater than the greatest or smaller than

the smallest pure component property value. The observed trends shown in Figure 3.2

resemble those of the power mean mixture model. The Q-fraction model, on the other

hand, can handle binary data that exhibit both synergistic and antagonistic behaviour.

Two approaches to adjusting the linear blending rule were considered. The �rst was to

employ weighted power means and the second was to replace the composition descriptor

with Wohl's Q-fractions. A natural expansion of these concepts is to combine them. This

yields a model with q adjustable parameters:
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Figure 3.2: Trends predicted by the Q-fraction model de�ned by (3.9): The e�ect of a1

on the response variable y in a binary blend with β1 = 1.2; β2 = 1.0 and a2 = 1

y =

(
q∑

i=1

aixiβ
r
i∑q

j=1 ajxj

) 1
r

(3.12)

Equation (3.12) still describes a linear mixture model. If the equation is rewritten in

the form:

yr =

q∑
i=1

aixiβ
r
i∑q

j=1 ajxj
=

q∑
i=1

Qiβ
r
i (3.13)

then the response variable, yr, follows the linear blending rule with composition quan-

ti�ed by Q-fractions. Equation (3.13) has the ability to model binary data that exhibit

both synergism and antagonism but it is still limited to modelling only values that fall

within the boundaries of the smallest and largest pure component values. To address this,

consider the denominator of (3.9). This denominator corresponds to an arithmetic mean

over the ai values. A revised model is obtained by changing the denominator to a power

mean of order s. The following model is obtained:

y =

∑q
i=1 aixiβ

r
i(∑q

j=1 a
s
jxj

) 1
s

(3.14)
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and it proves a signi�cant step forward, as shown in Figure 3.3.
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Figure 3.3: Trends predicted by the Q-fraction model de�ned by (3.14): The e�ect of

exponent s on the response variable, y, in a binary blend with β1 = 1.2; β2 = 1; a1 = 1

and a2 = 3

Equation (3.14) is able to model the physical properties of mixtures where their values

are larger than the largest and smaller than the smallest pure component values, even

when two or more pure component values (βi) are identical. We label the non-linear group-

ings, aixi/
(∑q

j=i a
s
jxj

) 1
s
, as generalised Q-fractions but note that they do not represent

normalised composition descriptors anymore.

A generalised Q-fraction model is obtained by modifying equation (3.12) in a similar

way. This yields a rational expression compromising two weighted power means:

y =

 ∑q
i=1 aixiβ

r
i(∑q

j=1 a
s
jxj

) 1
s


1
r

(3.15)

This equation includes all the models discussed above. For example, setting r = s = 1

yields equation (3.9) and setting ai = 1 for all the values of i reduces the model to equation

(3.7) with mole fractions as composition descriptors.

With an appropriate mixture model having been identi�ed, it was necessary to decide

on a �tting experimental design. However, due to the availability of large, accurate data
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sets, we did not develop an experimental design. Instead we used the physical property

data reported by Ridgeway and Butler (1967) for the three-component mixture of benzene,

cyclohexane and hexane [55].
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Chapter 4

Bootstrap Analysis

Consider the illustration in Figure 4.1 comparing parameter estimation in the real world

with parameter estimation in the bootstrap world [26]. The real-world estimation pro-

cedure was explained in Chapter 1. Observations, x, are drawn from a population with

an unknown distribution, F , and estimates, θ̂, for the parameter of interest, θ are calcu-

lated. In Chapter 1, we assumed F to be a normal distribution. This assumption directly

in�uenced the properties of the estimates. If the underlying assumption of normality is

wrong, we cannot be sure of the accuracy of the estimates or the validity of the model.

Bootstrap is a statistical method employed to estimate variances, con�dence intervals

and various other properties of statistics without any knowledge of the distribution of the

data set [25]. It only assumes that the observations are from an independent identically

distributed population. The estimates and con�dence intervals are obtained from an

approximating distribution, F̂ , that is constructed by resampling the sample [25].

The bootstrap world is concerned with determining a point estimate, F̂ , for the un-

known distribution F . The estimate F̂ yields bootstrap data vectors x∗. For each boot-

strap data vector, a bootstrap replication of the parameter estimate, θ̂∗ = s(x∗), is cal-

culated. Since F̂ is known, as many as needed replications of θ̂∗ can be calculated. The

observed variability in θ̂∗ can then be used to assess the accuracy of θ̂ [26].
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Real World Bootstrap World

F x

θ̂

F̂ x
∗

θ̂
∗

Figure 4.1: Typical bootstrap application

The double arrow in Figure 4.1 represents the estimation of F from x. The jump from

the real word to the bootstrap world is done with the plug-in-principal. This is the only

inference step in bootstrap [26] and is discussed in detail in the following section.

4.1 Non-parametric Bootstrap Methodology

Consider a data set ofm independent data points denoted by the matrixW = (w1,w2, . . . ,wm)
T

where wi is the pair; wi = (xi, yi). Here xi denotes the composition descriptor and yi is the

response variable or observed experimental result, e.g. the viscosity or surface tension of

the mixture. The distribution of the data set, F (W ), is unknown. The aim is to estimate

a set of parameters θ = t(F ) for a mixture model, e.g. βi and βij for the quadratic Sche�é

model. The parameter set θ = (θ1, θ2, . . . , θp) is a function of the unknown distribution F .

The results for θ therefore depend on the data drawn from F . The estimate of θ, denoted

as θ̂ = s(W ), is a function of the data set W . It is determined by minimising the sum of

square errors:

SSE =
m∑
i=1

(yi − ŷi)
2 (4.1)

where ŷi denotes the predicted value of the response variable yi. The precision of the

estimate θ̂ is determined by estimating its standard error, seF (θ̂), as explained in Chapter

1. This corresponds to the standard deviation of the estimated values of θ.

The bootstrap approach is a computer-based method for estimating standard errors

[27]. The advantage of non-parametric bootstrap is that no information about F is re-

quired. Bootstrap substitutes the unknown distribution F with an empirical distribution

F̂ which yields a so-called plug-in estimate of the standard error. The ideal bootstrap

estimate of the standard error seF (θ̂) is denoted as seF̂ (θ̂
∗). No elegant formula exists to
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calculate the exact numerical value of the ideal estimator. However, bootstrap utilises a

computational procedure to obtain a good approximation for seF̂ (θ̂
∗). In short, the boot-

strap approach is to draw B independent bootstrap samples. For each of these B bootstrap

replicates, an estimate of θ̂, denoted by θ̂∗b , b = 1, 2, . . . ,B, is determined by minimising the

SSE (4.1). The standard deviation of the bootstrap replications θ̂∗b provides an estimate

for the standard error of θ̂.

A bootstrap sample is generated by resampling m times with replacement from the

sample W = (w1,w2, . . . ,wm)
T and is denoted by W ∗ = (w∗

1,w
∗
2, . . . ,w

∗
m)

T . Each wi in

the sample has the same probability, 1/m, to be sampled and it can therefore be sampled

more than once. The empirical distribution F̂ is then de�ned as the vector of observed

frequencies of the sampled wi:

F̂ =
(
f̂1, f̂2, . . . , f̂m

)
with f̂i =

#(wi = j)

m
, i = 1, 2, . . . ,m (4.2)

F̂ is only one possible realisation of the true probability distribution F . The number

of bootstrap samples, B, must be su�ciently large for F̂ to empirically represent the true

underlying distribution F [25]. The magnitude of B generally depends on the type of

study but Efron and Tibshirani state two general rules [27]: a small number of bootstrap

replications such as B = 25, is usually informative and even as few as 50 replications

can be enough to give a good estimate of the standard error. A bootstrap sample size

greater than B = 200 is seldom necessary to determine the standard error estimate. In

the present study, B =1 000 was used in order to calculate accurate bootstrap con�dence

intervals.

Bootstrap con�dence intervals are calculated to quantify parameter accuracy further.

The bootstrap con�dence intervals reported in this study are the BCa-con�dence inter-

vals. BCa-con�dence intervals are second-order accurate and transformation respecting

[27]. Second-order accuracy implies that the error in the calculated interval endpoint

approaches zero at a rate inversely proportional to m, the sample size. This is an or-

der of magnitude faster than the rate of �rst-order accurate methods where the rate is

proportional to 1/
√
m [25]. This property is of particular value when m is small [25].

The approximations of the interval endpoints of BCa-con�dence intervals are therefore

much more accurate than for other reported con�dence intervals, such as the percentile

52

 
 
 



bootstrap con�dence intervals [27]. Transformation respecting implies that the interval

endpoints transform correctly when a parameter θ is replaced by some function of θ.

A drawback of BCa con�dence intervals is the large number of bootstrap replications

required for accurate predictions [27].

Bootstrap does not only provide measures of parameter accuracy, but can also be

employed to identify the best-�tted model. The prediction error of a model is de�ned as

the expected squared di�erence between the response variable, yi, and its estimated value,

ŷi, but thus it tends to be too optimistic. Bootstrap provides a measure that adjusts the

model prediction error for its downward bias to yield a more accurate prediction error

to indicate the model best �tted to the data. Efron and Tibshirani (1993) distinguish

between two di�erent bootstrap approaches [27]: the bootstrap method can be applied

either to the data set or to the residuals after the SSE has been optimised. A random

sample consists of elements from a larger population that had an equal probability of

being selected. This implies that every time the experiment is repeated, a di�erent result

is obtained. A deterministic sample is the opposite in that it provides a single outcome

given a speci�c input. Residual bootstrapping is more appropriate when the explanatory

variables are deterministic in nature. The observed physical property, surface tension or

viscosity depends on the mixture composition. Thus the explanatory variables are the

mole fractions which must sum to unity. Similar values should be observed for repeated

measurements on a given sample with due allowance for measurement error. Residual

bootstrapping is implemented under the very strong assumption that the error between

yi and its mean ui is not dependent on xi, i.e. it has the same distribution F regardless

of the value of xi. We are therefore assuming that no heteroscedascity exists among the

errors. In step 2 of the residual bootstrap algorithm it is shown that in the bootstrap

data set, W ∗, the composition descriptor, xi, is exactly the same as for the actual data

set. This is because they are treated as �xed and not as random variables, even though

they were generated randomly. The standard error obtained by treating them as �xed

constants re�ects the precision associated with the sample of xi actually observed [27].

It was therefore decided to apply residual bootstrapping in this study as the data set

W is more deterministic than random in nature.
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4.2 Residual bootstrapping Algorithm

The procedure for residual bootstrapping is as follows:

1. Estimate the parameter set, θ̂ = s(W ) by minimising the sum of least squares,

SSE (4.1). The residuals are the di�erence between the estimated response variable

ŷi = f(θ̂,wi) and the actual response variable, yi:

εi = yi − ŷi, i = 1, 2, . . . ,m (4.3)

2. Generate a bootstrap sample of the residuals, ε∗, by sampling m times with replace-

ment from the residuals calculated in step 1. Each residual has an equal probability

(1/m) of being selected and may be selected more than once. The empirical distri-

bution, F̂ , is de�ned as the vector of observed frequencies of the residuals. Next,

the bootstrap sample of residuals is added to the estimated response variable:

y∗i = ŷi + ε∗i , i = 1, 2, . . . ,m (4.4)

This generates the bootstrap response variable, y∗i , which, when combined with

the corresponding mole fraction vector xi, results in a bootstrap data set of the

form W ∗ = ((x1, y
∗
1), (x2, y

∗
2), . . . , (xm, y

∗
m))

T = (w∗
1,w

∗
2, . . . ,w

∗
m)

T . Now repeat the

procedure B times to generate B replications of W ∗.

3. For each bootstrap data set, W ∗
b , b = 1, 2, . . . ,B, estimate the parameter set θ̂∗b =

(θ̂∗1, θ̂
∗
2, . . . , θ̂

∗
p) by minimising the SSE (4.1):

θ̂∗b = s(W ∗
b ), b = 1, 2, . . . ,B (4.5)

Note that the bootstrap is independent of the underlying probability distribution

and the nature of s(W ).

4. Obtain the bootstrap estimates for the set of parameters by calculating θ̂∗b =

(θ̂∗1, θ̂
∗
2, . . . , θ̂

∗
p) which is the mean of the B bootstrap replications of the parame-

ters that were generated in step 3:

θ̄∗j =
1

B

B∑
b=1

θ̂∗b,j j = 1, 2, . . . , p (4.6)

54

 
 
 



This provides a set of bootstrap estimates for the parameters:

θ̄∗ = (θ̄∗1, θ̄
∗
2, . . . , θ̄

∗
p) (4.7)

The median can also be used as a more robust estimator of location.

5. For each estimation in step 4, calculate:

σ̂∗
j =

(
1

B − 1

B∑
b=1

[θ̂∗b,j − θ̄∗j ]
2

) 1
2

j = 1, 2, . . . , p (4.8)

This provides p bootstrap estimates of the standard error of the parameters:

σ̂∗ = (σ∗
1, σ

∗
2, . . . ,σ

∗
p) (4.9)

6. The joint con�dence interval between θ̂i and θ̂j can be mapped by plotting θ̂∗b,i

against θ̂∗b,j for b = 1, 2, . . . ,B.

7. Calculate the bootstrap Bias Corrected and accelerated (BCa) intervals. BCa-

con�dence intervals are given by:

BCa : (θ̂Lo, θ̂Up) = (θ̂∗(α1), θ̂∗(α2)) (4.10)

where

α1 = Φ

(
ẑ0 +

ẑ0 + z(α)

1− â (ẑ0 + z(1−α))

)
(4.11)

α2 = Φ

(
ẑ0 +

ẑ0 + z(1−α)

1− â (ẑ0 + z(1−α))

)
(4.12)

with

ẑ0 = Φ−1

(
#{θ̂∗b < θ̂}

B

)
(4.13)

â =

∑m
i=1(θ̄ − θ̂i)

3

6
(∑m

i=1(θ̄ − θ̂i)2
) 3

2

(4.14)

Here Φ is the standard normal cumulative distribution function and z(α) is the

100αth percentile point of a standard normal distribution. The quantity ẑ0 adjusts
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for bias in the estimate by measuring the discrepancy of θ̂∗ and θ̂ in normal units.

If exactly half of the θ̂∗b values are less than θ̂, then ẑ0 = 0. The quantity â is

known as acceleration because it estimates the rate of change of the standard error

(standard deviation) of θ̂ with respect to the true parameter value θ. It corrects for

the often unrealistic assumption that θ̂ ∼ N(θ, se2) , i.e. has a normal distribution

yielding symmetrical con�dence intervals. If ẑ0 and â were both zero, the equations

would simplify to 1 − 2α percentile intervals de�ned by the α and the 1 − α per-

centiles of Ĝ, the cumulative distribution function of θ̂∗ [27]. In layman's terms, the

BCa-con�dence intervals improve the performance of percentile con�dence intervals

by accounting for transformations, bias corrections and acceleration improvements

[25].

8. The apparent prediction error for data set W = ((x1, y1), (x2, y2), . . . , (xm, ym))
T is

[60]:

σ̂2
AE =

1

m

m∑
i=1

(yi − ŷi)
2 (4.15)

As mentioned previously, the σ̂2
AE measure of prediction error is not su�cient on its

own as it tends to underestimate the true prediction error. This is due to the fact

that the same data set, on which the parameters were developed, is used to assess

the �t of the model.

9. Calculate an estimate of the prediction error using the estimated bootstrap param-

eters:

PE2
b =

1

m

m∑
i=1

(yi − ŷ∗b,i)
2 (4.16)

Here yi is the response variable of the data set W and ŷ∗b,i is the predicted value of

yi using the model and the bth set of bootstrap-�tted parameters. The B bootstrap

repetitions provide B error estimates and the bootstrap estimate of prediction error

is the overall average of the error estimates [60]:

σ̂2
BE =

1

B

B∑
b=1

PE2
b (4.17)
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10. Estimate the downward bias, or optimism, in (4.15) with bootstrap as follows:

φBE = σ̂2
BE − 1

Bm

B∑
b=1

m∑
i=1

(ŷi − ŷ∗b,i)
2 (4.18)

The �nal estimate of prediction error is the apparent error (4.15) plus the optimism

(4.18)

σ̂2
FE = σ̂2

AE + φBE (4.19)

The data points, wi, that are omitted in each bootstrap sample are, in e�ect, used

as a validation data set to determine the predictive capability of the model [60].

The parameter θ̂ as determined on the full data set will always produce a smaller

prediction error than the parameters estimated on the bootstrap data θ̂∗b :

σ̂2
AE < PE2

b b = 1, 2, . . . ,B (4.20)

If the bootstrap parameters, θ̂∗b , are consistently worse than the best �t, then the

model's predictive power is poor and the optimism will be large [60].
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Chapter 5

Model Analysis

In Chapter 3 a new model was introduced. This model was developed systematically from

the linear blending rule by introducing weighted power means and Q-fractions. Weighted

power means allowed for either synergistic or antagonistic deviation from the linear blend-

ing rule without compromising the linearity of the model. Unfortunately, binary blends

that exhibit both synergism and antagonism cannot be modelled by weighted power

means. The next option explored was replacing the composition variable with Wohl's

Q-fractions. This model can handle binaries with opposite behaviour but can only model

physical properties within the limits of the physical property values set by the largest and

smallest pure component values. The two concepts were combined in the following model:

y =

 ∑q
i=1 aixiβ

r
i(∑q

j=1 a
s
jxj

) 1
s


1
r

(5.1)

This model can describe synergistic and antagonistic behaviour simultaneously; it can

predict physical properties larger than the largest and smaller than the smallest pure

component physical properties and it retains its linear simplicity:
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y =

 ∑q
i=1 aixiβ

r
i(∑q

j=1 a
s
jxj

) 1
s


1
r

yr =

∑q
i=1 aixiβ

r
i(∑q

j=1 a
s
jxj

) 1
s

=

q∑
i=1

Q∗
iβ

r
i where (5.2)

Q∗
i =

aixi
(
∑q

j=1 a
s
jxj)

1/s

Q∗
i is known as the generalised Q-fraction; βi represents the physical property of every

pure component and ai are adjustable parameters associated with every pure component.

5.1 Consistency Requirements

In Chapter 2 a set of consistency requirements was introduced that we believe a truly

�exible mixture should adhere to. It will now be shown that the proposed model complies

with all these requirements. Consider a three-component mixture:

yr =

∑3
i=1 aixiβ

r
i(∑3

j=1 a
s
jxj

) 1
s

=
a1x1β

r
1 + a2x2β

r
2 + a3x3β

r
3

(as1x1 + as2x2 + as3x3)
1
s

Let x1 = 1,x2 = x3 = 0, then:

yr =
a1β

r
1

(as1)
1
s

= βr
1

y = β1

The model reduces to (q − 1) components if one the components tends to zero. Let

x3 = 0.
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yr =
a1x1β

r
1 + a2x2β

r
2 + a3x3β

r
3

(as1x1 + as2x2 + as3x3)
1
s

yr =
a1x1β

r
1 + a2x2β

r
2

(as1x1 + as2x2)
1
s

=

∑2
i=1 aixiβ

r
i(∑2

j=1 a
s
jxj

) 1
s

Reflexivity: If all the pure component property parameters are equal, β1 = β2 =

β3 = β, it is safe to assume that the adjustable property parameters, ai, are also equal

since they are associated with a speci�c pure component. Therefore, let β1 = β2 = β3 = β

and a1 = a2 = a3 = a:

yr =
a1x1β

r
1 + a2x2β

r
2 + a3x3β

r
3

(as1x1 + as2x2 + as3x3)
1
s

=
ax1β

r + ax2β
r + ax3β

r

(asx1 + asx2 + asx3)
1
s

=
aβr(x1 + x2 + x3)

a(x1 + x2 + x3)
1
s

since
3∑

i=1

xi = 1

y = β

Decomposability: Let x2 + x3 = x5 then β2 = β3 = β5 and a2 = a3 = a5:

yr =
a1x1β

r
1 + a2x2β

r
2 + a3x3β

r
3

(as1x1 + as2x2 + as3x3)
1
s

=
a1x1β

r
1 + a5β

r
5(x2 + x3)

(as1x1 + as5(x2 + x3))
1
s

=
a1x1β

r
1 + a5β

r
5x5

(as1x1 + as5x5)
1
s
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Homogeneity:

yr =
a1x1(λβ1)

r + a2x2(λβ2)
r + a3x3(λβ3)

r

(as1x1 + as2x2 + as3x3)
1
s

=
λr(a1x1β

r
1 + a2x2β

r
2 + a3x3β

r
3)

(as1x1 + as2x2 + as3x3)
1
s

y = λ

 ∑3
i=1 aixiβ

r
i(∑3

j=1 a
s
jxj

) 1
s


1
r

It is not necessary to con�rm homogeneity in the adjustable parameters, ai, since the

constant multiple will simply cancel out in a similar fashion to that in re�exivity.

5.2 Experimental Data and Model Testing

The physical property data for viscosity and surface tension of a three-component sys-

tem, benzene+cyclohexane+n-hexane, as reported by Ridgeway and Butler (1967), were

utilised for parameter estimation and model testing [55]. These are extensive data sets

consisting of pure component, binary and ternary interaction data that negate the need

for an experimental design.

Every step of the model development was statistically analysed using the bootstrap

method as set out in Chapter 4, and implemented in the statistical program R [66].

Table 5.1 is a summary of the models and their parameters analysed in this study. These

models represent the di�erent steps of model development followed. The analysis of every

step provided an indication of whether the adjustments to the linear blending rule were

serving the purpose they were intended for. Figure 5.1 and Figure 5.2 show that with

every adjustment, an improvement was made to the linear blending rule.

The mean square error (MSE) and the bootstrap prediction error (BPE) are reported

for every model tested. The best-�t model was chosen on the basis of the BPE. Fig-

ure 5.1 and Figure 5.2 compare the MSE and BPE obtained for the various models for

surface tension and viscosity respectively. Our new model, labelled Q-fraction (r, s) (5.1),

unmistakably outperformed the other models.
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Table 5.1: The Q-fraction and power mean mixture models

Model [Parameters] De�nition

Linear blending rule [none] y =
∑q

i=1 βixi (5.3)

Power mean [r] y = (
∑q

i=1 xiβ
r
i )

1
r (r ̸= 0) (5.4)

Q-fractions [ai] y =
∑q

i=1 aiβixi/
∑q

j=1 ajxj (5.5)

Q-fractions(s) [ai, s] y =
∑q

i=1 aiβixi/
(∑q

j=1 a
s
ixj

) 1
s
(s ̸= 0) (5.6)

Q-fractions(r, s) [ai, r, s] y =

(∑q
i=1 aiβ

r
i xi/

(∑q
j=1 a

s
ixj

) 1
s

) 1
r

(r, s ̸= 0) (5.7)

Sche�é quadratic polynomial [βij] y =
∑q

i=1 βixi +
∑∑
1≤i<j≤q

βijxixj (5.8)

0 0.05 0.1 0.15

Scheffé

Powermean

Q-fraction

Q-fraction( s )

Q-fraction( r, s ) MSE

BPE

Figure 5.1: MSE and BPE of the mixture models for surface tension

The Sche�é quadratic model was e�ective for viscosity but performed surprisingly

poorly for surface tension. Even the power mean, with only one adjustable parameter,

fared better. Further statistical analysis was focused only on the Q-fraction (r, s) model

due to its outstanding data-correlating performance for both viscosity and surface tension.

A summary of the results is given in Table 5.2 and Table 5.3. The optimised least-squares

and bootstrap-determined model parameters, together with the bootstrap bias-corrected

and accelerated (BCa) 95% con�dence intervals, are reported.

The ample width of the 95% con�dence intervals listed in Table 5.2 and Table 5.3

reveals that the r and s parameters are not precisely estimated and neither are the ai

parameters for surface tension. However, the ai parameters for viscosity have quite narrow
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Powermean

Q-fraction

Q-fraction( s )

Q-fraction( r, s )

Scheffé MSE

BPE

Figure 5.2: MSE and BPE of the mixture models for viscosity

con�dence intervals and are therefore estimated with greater precision. Joint con�dence

intervals, visualised by plotting θ̂∗j versus θ̂∗i for all i, j = 1, 2, . . . , p, i ̸= j, expose the

extent of the correlations between the model parameters. This information is readily

available from the bootstrap. Figure 5.3 shows the results for the parameters of (5.1)

obtained for the viscosity data set.

Strong linear parameter correlations are revealed for the combinations r & s, and

a1 & a2. This is con�rmed by the fact that in both cases the correlation coe�cients

exceed R2 > 0.8. The other parameters' combinations are uncorrelated, as indicated by

the very low absolute values of the correlation coe�cients. Figure 5.4 shows the results

for the surface tension data.

In this instance all the �tted parameters are highly correlated, albeit non-linearly.

From Table 5.3, the wide 95% con�dence intervals indicate that all the parameters of the

Q-fractions (r, s)model are weakly estimated for surface tension data. Large uncertainties

in the parameter values can be caused by de�ciencies in the model or by considerable

scatter in the data, especially when the deviations from the linear blending rule are minor.

On the model side there may be a true lack of �t or of signi�cant parameter correlation as

a consequence of a model structure that is too �exible [27]. The wide con�dence intervals

reported in Table 5.2 and Table 5.3, illustrated in Figure 5.4 and Figure 5.3, are attributed

to the latter explanation. The physical property data for the present binary mixtures all
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Table 5.2: Parameter values and con�dence intervals for surface tension determined for

the Q-fraction (r, s) model from the full data set and the binary data only. The MSE and

BPE are for the full data set only

Full Data Set (Binaries only) BCa Con�dence Intervals

Direct

Parameters Optimised Bootstrap Full Set Binaries Only

r -7.585 (-6.590) -8.606 (-7.264) (-17.26,-4.432) (13.72,-4.583)

s -0.878 (-1.392) -1.104 (-1.636) (-3.612,-0.269) (-5.043,-0.407)

a1 0.366 (0.353) 0.389 (0.369) (0.304,0.586) (0.310,0.510)

a2 0.517 (0.486) 0.491 (0.478) (0.460,0.556) (0.422,0.529)

a3 0.117 (0.161) 0.119 (0.153) (0.052,0.275) (0.017,0.273)

MSE 0.027 0.028

BPE 0.027 0.057

AAD,% 0.54 (0.56) 0.88 (0.82)

MAD,% 1.86 (2.12) 3.34 (3.08)

show similar antagonistic trends, with the experimental values being lower than expected

from the linear blending rule. This presents a problem as both the power indices r and

s, as well as the ai values, can generate this type of concave composition dependence, as

explained in Chapter 3. Thus the strong parameter correlation observed here, is attributed

to reciprocal parameter compensation. Such severe parameter correlation is less likely to

occur for data sets with binaries showing mixed behaviour, i.e. some showing antagonism

and others synergism.

The �exibility of the model a�ects the accuracy of the estimates of the surface tension

data set more than that of the viscosity data set. This can be attributed to the fact that

viscosity presents greater deviation from linear blending than surface tension, as depicted

in Figure 5.5 and Figure 5.6. The viscosity data therefore require a more �exible model.

One way of addressing the high parameter correlation and the wide con�dence inter-

vals is to reduce the dimension of the model. The most advantageous approach would be

to replace all the ai parameters with other measurable physical properties (or property
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Table 5.3: Parameter values and con�dence intervals for viscosity determined for the

Q-fraction (r, s) model from the full data set and the binary data only. The MSE and

BPE are for the full data set only

Full Data Set (Binaries only) BCa Con�dence Intervals

Direct

Parameters Optimisation Bootstrap Full Set Binaries Only

r -1.701 (-1.448) -1.701 (-1.458) (-1.870,-1.518) (-1.565,-1.314)

s -1.287 (-2.013) -1.287 (-2.018) (-1.637,-1.010) (-2.416,-1.623)

a1 0.564 (0.520) 0.564 (0.522) (0.536,0.588) (0.499,0.540)

a2 0.277 (0.281) 0.277 (0.281) (0.274,0.282) (0.278,0.285)

a3 0.159 (0.199) 0.159 (0.198) (0.135,0.187) (0.178,0.217)

MSE 2.4E10−5 2.6E10−5

BPE 3.5E10−5 3.7E10−5

AAD,% 0.82 (0.97) 0.82 (0.98)

MAD,% 2.13 (3.11) 2.13 (3.25)

combinations) of pure component i in the mixture. In the case of surface tension, inspec-

tion revealed that the refractive index provides a reasonable replacement. The refractive

index does not deviate greatly from the linear blending rule, implying that a model such

as the one proposed in (5.1) is excessive. The refractive index is more than su�ciently

modelled by the power mean model with r = −10.89 (5.6), as illustrated in Figure 5.7.

The denominator of equation (5.1) now corresponds to the power mean model for the

refractive index, implying that the index s in equation (5.1) must correspond to r in the

power mean model. Therefore s = −10.89, which results in only one adjustable parameter,

r, in (5.1) to be estimated. Figure 5.8 shows that a reasonably good �t is obtained if

r = −4.42. The average absolute deviation (AAD) between predicted and measured values

is just 0.85% with a maximum absolute deviation (MAD) of 3.2%. The means that the

surface tension of a mixture can be predicted fairly well, within 1 mJ/m2, when refractive

index data are available for the pure components of the mixture. More importantly, the

95% con�dence interval for r has narrowed considerably to (−4.77,−4.40).
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Joint confidence interval

R = −0.805
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Figure 5.3: Joint con�dence intervals and correlation coe�cients for the param-

eters of the Q-fraction (r, s) model for the viscosity of the ternary system ben-

zene+cyclohexane+hexane

An approach similar to that above was employed for the binary data. In this case the

bootstrap samples were drawn from the binary data alone. The Q-fractions (r, s) model

also provided the best �t for the binary data. The predictive qualities of the model, with

the parameters estimated from regression of the binary data only, were checked using

the full data set, including the ternary data. The calculated prediction errors are shown

in Table 5.2 and Table 5.3. The parameters determined from the binary data alone do

di�er numerically from those determined from the full data set. However, Table 5.2 and

Table 5.3 show that acceptable property predictions are achieved for the completed data

set. Predictions for both viscosity and surface tension are, on average, accurate to within

1% (AAD), with a maximum deviation of 3.3% (MAD). This supports the contention

66

 
 
 



that multi-component behaviour can be predicted using the Q-fraction model parameters

determined from binary mixture data.

Joint confidence interval
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Figure 5.4: Joint con�dence intervals and correlation coe�cients for the parame-

ters of the Q-fraction (r, s) model for the surface tension of the ternary system ben-

zene+cyclohexane+hexane
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Figure 5.6: Deviation from linear blending for the surface tension data set
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Figure 5.8: Surface tension modelled with (5.1) where s = −10.89 and r = − 4.42,

and the ai parameters correspond to refractive index values for pure components
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5.3 Parameter Estimation Procedure

The objective was to determine the set of parameter estimates with the highest proba-

bility of being correct. These parameter estimates are known as the maximum likelihood

estimates. We employed the method of least squares to calculate the parameter estimates

[37].

For linear models the maximum likelihood estimates are the least square parameter

estimates if certain assumptions are met [8, 37]:

1. Assume that all the experimental uncertainty can be attributed to the dependent

variable.

2. The measurement errors can be described by a Gaussian distribution.

3. Assume that no systematic error exists in the data.

4. The functional form is correct.

5. There are enough data points to represent the experimental uncertainties accurately.

6. All the observations are independent.

The least square estimates of a linear model can be calculated in a single step with the

normal equations. Even though the proposed model can be expressed as a linear model

(5.2), it is not linear in the parameters. This implies that the parameter estimation cannot

occur in one step, as shown in Chapter 1, but that an iterative process is necessary [8].

The iterative procedure of the nonlinear least square analysis employs an algorithm

that uses an initial estimation of the parameter set to generate a better approximation.

This improved approximation is then used to generate an even better approximation. The

process repeats until a stable set of parameter estimates is obtained. A better approxima-

tion is one where the weighted sum of squares of the di�erences between the �tted model

and the experimental data decreases. The iterative process repeats until the weighted

least squares function reaches a minimum. The weighting factors represent the relative

precision of each data point [37].
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An optimal set of least square parameter estimates for a nonlinear model yields the

minimum variance of �t but that does not necessarily imply maximum likelihood param-

eter estimates were obtained [37]. Nonlinear models introduce the possibility that more

than one set of parameters, each yielding a minimum in the sum of squares of residu-

als, exists. Once the optimisation procedure reaches a minimum, there is no guaranteed

method of ensuring that this is the global minimum [37].

All the parameter estimates given in this chapter, are estimates that yielded the lowest

bootstrap prediction error (BPE). The initial estimates for the bootstrap optimisation

procedure was obtained from a direct optimisation of the model. Various initial parameter

values over a wide range were explored for the direct optimisation. The initial values

that yielded optimised values with the smallest mean square error was then fed into the

bootstrap algorithm. The �nal results obtained in this experiment were independent

from the initial values which is a good indication that the set of least square parameter

estimates determined by the bootstrap is the global optimal estimates.
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Chapter 6

Conclusion and Future work

Physical property data sometimes show severe deviations from linear blending. Although

complex models exist to model such data, they typically involve estimation of a large

number of parameters estimates [29, 32]. The primary objective of this study was to con-

struct a relatively simple mixture model that would be parameter parsimonious but still

�exible enough to model synergistic and antagonistic non-linear deviation simultaneously.

A Q-fraction (r, s) model was developed that embodies several mixture rules as special

cases. The simplest of these is the linear blending rule. It assumes that a mixture prop-

erty is the composition-weighted arithmetic mean over pure component properties. The

linear blending rule is desirable since it requires only pure component data for mixture

property prediction.

Excellent data �ts were obtained with the Q-fractions (r, s) model for surface tension

and viscosity. Despite the excellent �t, surface tension presented with wide con�dence

intervals and strong parameter correlations. There are three possible reasons for this:

� Data for these properties do not deviate enough from the linear blending rule.

� The binary mixtures show rather similar property trends with respect to their vari-

ation with composition.
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� The model structure is too �exible, allowing good correlations to be obtained with

every di�erent parameter value.

The high correlation between the parameters indicates that the model is over-parameterised.

To address these problems the pure component descriptors were set to a measurable phys-

ical property of the mixture. For the surface tension data set, the descriptors was set to

the refractive index property. This reduced the estimable parameters to only one, r, and

removed the parameter dependence. The con�dence interval for r narrowed signi�cantly.

Experimenters should be cautious when selecting a mixture model for an experimen-

tal design. The Sche�é quadratic model is considered the standard model for mixture

experiments but showed poor correlating power for surface tension. The single-parameter

weighted power mean model proved superior. The Q-fraction (r, s) model proved �exible

enough to accurately model data with strong non-linear tendencies, e.g. viscosity, but

proved too �exible for data that still retain linear behaviour, e.g. surface tension. The

model may not be suited to deal with most highly non-linear data.

Nevertheless, the model's �exibility and potential to model multicomponent data that

feature non-linear composition dependence was amply demonstrated. The refractive in-

dex, a physical property of the mixture, was successfully incorporated into the model to

predict surface tension more accurately. These models also have the advantage of being

able to predict multicomponent behaviour from knowledge of binary behaviour.

Future Work

The research was commenced with the aim of developing a parameter-parsimonious mix-

ture model that could ultimately model the octane number of fuel blends. Current octane-

prediction models are often di�cult to apply and interpret, and the required input data are

cumbersome and expensive to obtain [4, 34]. The Q-fraction (r, s) model is a parameter-

sparse model that proved itself able to model non-linear deviation accurately from com-

position dependence. The number of estimable parameters in the model can be further

reduced by setting the pure component descriptors to a measurable physical property of

the mixture.

The Q-fraction (r, s) should now be tested on modelling the octane number, either
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RON or MON, for a fuel blend. The pure component descriptors should be set to physical

properties of the components, preferably properties that can be measured on line during

blending, in an attempt to improve prediction accuracy.

Fuel consists of hundreds of thousands of compounds and it is impossible to account

for every single compound in a mixture model. It is common practise to lump components

with similar traits and/or physical properties together in categories, e.g. aromatics and

oxygenates, for such large mixtures, and then develop the mixture model not on the pure

components, but on the categories. The relative proportion of each category should then

sum to one. Each category is represented in the mixture by one or more of its member

components [16].

The ability of the Q-fraction (r, s) model to handle categorised components should

be analysed extensively. Fuels are often blended from di�erent fuel streams. The aim is

to predict the octane number of the �nal blend from the physical property data of each

stream without any knowledge of the composition of the streams. The di�erent streams

will serve as the respective categories.

Fuel is also subject to stringent constraints on various categories [65]. The Q-fraction

(r, s) model should therefore also be tested on mixtures where constraints are imposed

on the components. These constraints imply that a smaller region of the factor space is

under consideration and therefore an appropriate experimental design should be selected

to model this region.

The Q-fraction (r, s) model proved to be promising. Its behaviour with regard to

the viscosity and surface tension data sets justi�es further research into its ability to

model more complex mixtures. The decision of initial values for the estimation procedure

requires a closer look as well. The procedure followed as set out in Chapter 5 was su�cient

for model validation but for model application the decision of initial values is crucial in

ensuring that the maximum likelihood estimators for the parameters are calculated.
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Appendix A

Deduction of a third-order Scheffé Polynomial

y = β0 +

q∑
i=1

βixi +
∑∑
1≤i≤j≤q

βijxixj +
∑∑∑
1≤i≤j≤k≤q

βijkxixjxk

= β0

q∑
i=1

xi +

q∑
i=1

βixi +

q∑
i=1

βiix
2
i +

∑∑
1≤i<j≤q

βijxixj +

q∑
i=1

βiiix
3
i

+
∑∑
1≤i<j<≤q

βiijx
2
ixj +

∑∑
1≤i<j≤q

βijjxix
2
j +

∑∑∑
1≤i<j<k≤q

βijkxixjxk (6.1)

The following relations hold:

x2i = xi −
q∑

j=1

i̸=j

xixj

x3i = xi =
1

2

q∑
j=1

i̸=j

[3xixj + xixj(xi − xj)−
q∑

k=1
k ̸=j,j

xixjxk]

x2ixj + xix
2
j =

1

2
[xixj + xixj(xi − xj)−

q∑
k=1
k ̸=i,j

xixjxk]

Substituting these relations into (6.1) and simplifying yields:
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y =

q∑
i=1

β∗
i xi +

∑∑
1≤i<j≤q

β∗
ijxixj +

∑∑
1≤i<j≤q

δijxixj(xi − xj)

+
∑∑∑
1≤i<j<k≤1

β∗
ijkxixjxk (6.2)

Where

β∗
i = β0 + βi + βii + βiii

β∗
ij = βij − βii −

3

2
βiii +

1

2
βiij

δij =
1

2
(βiij − βiii)

β∗
iii = βiii − βiij + βijk

If the terms δijxixj(xi − xj) are not considered, (6.2) reduces to the special cubic

polynomial [15].
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