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Chapter 1 
 

Introduction 

Advances in science and technology have hit a peak never before seen in human history. 

On all fronts of the natural sciences human knowledge about the world is quickly 

expanding and nowhere is this fact more visible than in the various disciplines of 

biological science. In a few short decades humans have discovered antibiotics [1], 

determined the makeup of the blueprint of life [2], cloned a mammal (Turner, 1997) and 

obtained the genomic sequences of various organisms on the planet, including human 

beings (Lander et al. 2001), to highlight but a few events. 

 

The constant desire for cleaner energy, cures for diseases and alternative manufacturing 

methods continues to drive biological research to new heights. Public and private funding 

related to biological research is on the increase related to biological research spending, 

and the industry is worth well over $40 billion dollars [3] world wide today. The results 

of all the abovementioned factors tend to be complex. Biological research is based on 

experimentation and analysis, either taking a certain hypothesis and trying to 

prove/disprove it by way of experimentation or taking a specific organism and analysing 

it by way of scientific techniques (biological system analysis). Both these approaches 

have in common that they provide valuable insight (knowledge) into, and knowledge of 

the system being analysed, which is locked up in the results of these experiments. These 

results are the biological data. 

 

Data generated in biological experiments worldwide reaches vast volumes, and are in the 

terabyte range weekly [4]. A fitting example of an organisation responsible for the huge 

volumes of data is the Whitehead Institute affiliated with MIT in the USA. This is one of 

the leading biomedical research facilities in the world, producing huge amounts of 

biological data (Whitehead Institute for Biomedical Research [21]). The Whitehead 

Institute was involved in the Human Genome Project as part of a large international 

consortium (Lander et al. 2001).  The project officially started in 1990, and the final 
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sequencing was completed in 2003. The human genome is 3x109 base pairs in length, 

with the latest estimate putting the number of actual genes at between 20000 and 25000 

(Lander et al. 2004). The sequencing of the genome was a huge undertaking, spanning 13 

years. The amount of data generated by this experiment was truly phenomenal, as was the 

rate at which the data was obtained.  The Whitehead Institute, where a third of the 

sequencing of the genome was done, has a factory sized sequencing facility with an 

automated robotic sequencing pipeline (Figure 1.1). 

 

 

 

 

 

 

 
 

 

 

 

Figure 1.1: The robotic automated sequencing facility at the Whitehead Institute (Langer et al. 2001).  
 

When looking at the infrastructure at the Whitehead Institute (Figure 1.1), it is 

understandable that the capabilities exist to produce huge volumes of genetic data in 

reasonably short periods of time, but genetic sequence data is not the only biological data 

being produced.  

 

Biological data by its very definitions includes a wide variety of different data types 

(Cheong, 2005). These include sequence data (as described above), graph type data 

(metabolic pathways), multi-dimensional data types (microarray data), model data 

(HMMs describing systems) and many other different types. When coupling this wide 

variety of data types to the volumes of data generated, the complexity of the effective 

utilization of the data becomes evident. 
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A large amount of money is being spent on the creation of this data, with the return on 

investment not being the data, but the information and knowledge the data contains. For 

the efficient extraction of information and ultimately the knowledge from the data, the 

data must be managed effectively. 

 

1.1 Biological Data Management 
Biological data management, for the sake of this discussion, is the storage of biological 

data in such a manner that it may be easily queried and that the history of the biological 

data can be easily established (for the sake of validating the results). This may seem 

simple, but given the nature of biological data, it is often not the case. To continue this 

discussion, the question “Why is management of biological data required?” must be 

addressed. It has already been established that there are large volumes of biological data 

being generated, and that these volumes of data consists of various different types of data.  

 

To deal with the challenge of managing the large volumes of data generated by their 

experiments, the solution chosen by biologists was to start using information technology 

and informatics techniques to effectively store and query the data. From these efforts 

emerged a new scientific field, bioinformatics, as the complexities and challenges of 

managing biological data increased (the field also arose from the usefulness of using 

computers for the analysis of biological data to solve certain problems (Luscombe et al. 

2001)). The important question remains as to why it would be necessary for biologists to 

manage biological data, and why pure Information Technology specialists cannot 

perform the task.  

 

The reason for this is the nature of biological data. For biological data to be managed and 

stored in the correct context, a very good understanding of the origin, i.e. the biology 

behind the data, is required. For the data to serve the intended purpose of providing 

relevant biological information and knowledge, it must be presented in the biologically 

correct way (say something about why biologists should program computers). There are 

three main functions Bioinformaticists fulfil in terms of data management:  
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• Collecting and accurately storing the data in databases in biologically relevant 

ways. 

• Creating interfaces to the databases that make the retrieval of the data easy and 

efficient 

• Providing tools for the analysis of the retrieved data so that useful information 

and knowledge may be extracted from the databases. 

 

These facts confirm that biological data management is more than just storing data in 

databases. The way in which the data is stored, retrieved and analysed all impacts on the 

efficient and effective management of the biological data. 

 

Biological data today exists in several locations. The scientific community maintains and 

manages the data at these various levels, creating databases, interfaces and tools. These 

various levels range from the experiment-specific information associated with individual 

experiments in laboratories, to the huge public repositories of biological data that exist on 

the World Wide Web. When looking at Figure 1.2, these various levels at which 

biological data exist is quite clear: 

a) First there is biological data in the public domain. This data reside in huge public 

repositories such as GenBank (Benson et al. 2005), Ensembl [20] and SwissProt 

[50] created and maintained by scientist for sharing the data with the scientific 

community. The whole scientific community can contribute (submit data) to these 

databases. 

b) The next level at which biological data exists is at the laboratory level. Individual 

laboratories or organisations manage biological data “in-house” for various 

reasons including data privacy local data analysis. The data in all laboratories 

(public research laboratories for the most part) collectively is what feeds into the 

large public repositories found in the previous level. At this level of biological 

data management the need for standardisation of management standards become 

clear, since laboratory data from all over the world are submitted to single 

locations in the public domain to facilitate effective sharing of scientific data. 
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c) In these laboratories, many individual experiments are conducted, each generating 

biological data that must be managed. This is done for modern laboratories by 

using Laboratory Information Management Systems (LIMS). These software 

programs allow experimental data to be stored in a biologically valid and 

scientifically valid and correct fashion. The validity and correctness of these 

storage methods usually come from within the scientific community, where many 

individuals agree on storage methods, put them forth as standards and encourage 

their use by involving as many different role players as possible (Brazma, 2001). 

 

 
Figure 1.2: A conceptual presentation of the levels at which biological data is found, starting at 
public domain biological data, proceeding to laboratory data and then experimental data. One such 
type of experiment for which data management is required is microarray experiments.  
 

It is vitally important that the biological data is managed correctly at each of these 

described levels. Only then will the scientific community be able to get the optimal use 

from the data for the expansion of knowledge about biological systems. 
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1.2. Microarray data management 

One very important experimental approach that requires data management is microarray 

experimentation. Microarray is a revolutionary technology that became prominent in the 

mid 1990’s [8] and it is being used more and more with scientists wanting to assay gene 

transcription levels at a genomic scale. This high throughput technology generates 

massive amounts of data and computers are needed for the management thereof. 

 

1.2.1 Microarray Experiments: New approaches to Experimental Data Management 

The huge volumes of microarray data may include up to 45,000 different data points per 

microarray slide, for each of which transcription data must be stored. Furthermore, the 

data must be normalised and analysed to give researchers insight into the gene expression 

information they are studying. Given the complexities of these experiments, it is not 

difficult to imagine the challenges that exist when this type of data is managed.  

 

There are several public repositories for microarray data. The biggest and most used are 

ArrayExpress (Parkinson et al. 2005) [16] housed at the European Bioinformatics 

Institute (EBI), the Gene Expression Omnibus (GEO) (Barrett et al. 2005) [17] housed at 

the National Centre for Biotechnology Information (NCBI) and the new Centre for 

Information Biology gene EXpression (CIBEX) database (Ikeo et al. 2003) hosted at the 

DNA Data Bank of Japan (DDBJ). These repositories house data submitted by scientists 

from all over the world, and it is then possible for any scientists to query the data in the 

database. Once the data is retrieved using the search interface provided, the data must be 

which interpreted, and that can be difficult if the experimental data is not absolutely 

complete. 

 

What is Experimental Data in a Microarray Experiment? 

Obtaining 45,000 individual readings of gene transcription levels is not enough to 

usefully interpret the results for a microarray experiment. A brief paragraph describing 

how the experiment was performed is also insufficient. Numerous questions still remain 

unanswered, even with a short description of the type of experiment that was done. 

Examples Include: What was the exact experimental design? Which samples (tissues) 
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were used for the experiment and exactly how were they treated? Which treatment 

protocol was followed? How was the array designed? Which array platform was used? 

Which conditions existed during hybridisation? Which scanner was used to obtain the 

image of the microarray experiment? Which software packages were used for the 

normalisation of the experimental results, and what were the settings and algorithms used 

within these packages?  

 

Given the complexities associated with microarray experiments, the Microarray Gene 

Expression Data (MGED) [9] society assembled a working group, tasked with 

establishing a standard for the publication of gene transcription (microarray) data. These 

guidelines are called Minimum Information About Microarray Experiments (MIAME) 

(Brazma et al. 2001). These guidelines state that complete data and information should 

accompany microarray results, so that anybody looking at the results can interpret the 

results unambiguously and potentially reproduce the experiment.  These standards are 

now often “enforced”, with journals (e.g. Nature [6]) and data repositories (e.g. 

ArrayExpress, GEO, CIBEX) not accepting microarray experiments for publication or 

storage unless the data is completely MIAME compliant. 

 

The challenges for the management of microarray data do not end with its storage in the 

correct format. If the experimental data is to be downloaded and interpreted for whatever 

reason, the data must also be easily transportable from the database to a user desktop.  

 

1.2.2. MAGE-OM and MAGE-ML 

The MGED society assembled another working group to solve the problem of a working 

data model for the transfer of microarray gene expression data. This working group 

consisted of several major stakeholders in the microarray industry including Rosetta [12], 

Affymetrix [10], IBM [13] and Agilent Technologies [11]. Using the Unified Modelling 

Language (UML) [14], the group created the Microarray Gene Expression Object Model 

(MAGE-OM). This model describes all the information and data required for the transfer 

of complete microarray experiments from one system to another. The vessel chosen to 

carry these data and information, was the platform independent eXtensible Markup 
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Language (XML) [15]. MAGE-ML, a XML implementation of the MAGE-OM was 

created, and using this as transport medium, it was now possible to transfer microarray 

gene expression information seamlessly between different systems.  

 

MAGE-ML is a very successful method for the transportation of microarray gene 

expression data, and because of this standardisation, it is now possible to easily design 

new repositories and tools since the input and output for these pieces of software could 

now be a based on a standardised way of handling data and information.  

 

1.2.3. Practical Microarray Data Management 

Throughout this discussion, it has become clear that huge volumes of data are generated 

by microarray experiments. This means that advanced information technology is required 

for the efficient management of the data. To achieve optimal management, there are three 

basic requirements: 

 

Creating a database for data storage 

A database must be created in which all data related to a microarray experiment can be 

stored. Given the argument for standardisation of microarray gene expression data, it is 

advisable to create a database that can store all information and data requirements to 

adhere to the standards set forth (in this case MIAME) are met. 

 

Creating an interface and method for data submission  

Some method for the submission of microarray data must be created, facilitating the 

insertion of microarray gene expression data into the created database. Since the 

information will be in a specific format, it is important for the interface to reflect the 

underlying structure of the database, and to ensure that all data required to meet the 

standards set forth (in this case MIAME) are met. 

 

Create an interface and method for data retrieval 

Once the data is inserted into the database, it is important that other people can extract 

that data. The interface should ideally provide a facility with which users can search the 
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database using various different categories, and then retrieve desired data. In the case of 

microarray data, the best methods for retrieving microarray gene expression data would 

be using the MAGE-ML language to encode and export data from the database to the 

user.  

 

These three steps should ideally be implemented in a way that maximises user 

accessibility and efficiency. For large public repositories [16, 17], the favoured solution 

has been using web-based interfaces to databases. This ensured ease of user access, for 

submitting and retrieving data. It also made the repositories available to the rest of the 

world, adding potential data generators and users to the pool.  

 

1.3 Functional Genomics Data Management 
Functional genomics studies can be enhanced by efficient integration of available 

resources, in terms of experimental techniques that are available, as well as the various 

data types that result from these experimental techniques. It is only by the successful 

integration of these data from various experimental techniques that a true system wide 

view of the function of the cell (or organism, depending on what is being studied) can 

ultimately be formed. The best way to do this efficiently is to capture and manage the 

data as it is generated in the laboratory.  

 

1.3.1 FunGIMS 

Various types of Laboratory Information Management Systems exist (as previously 

mentioned). Most of these however, are geared towards the management of analytical and 

not research data, meaning that these systems do not necessarily lend themselves to 

integrative approaches when looking at the data. The Functional Genomics Information 

Management System (FunGIMS) is an extensive project in the Bioinformatics and 

Computational Biology Unit, University of Pretoria. It is geared towards providing a 

laboratory information management system integrating various data types related to 

functional genomics type questions, and providing the ability to interact with the data in 

an integrated way. It promises to be a very important tool for the scientific community, 
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both at institutional level and nationally as experiments generating huge volumes of data 

for Functional Genomics experiments become more numerous.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3:  A presentation of the FunGIMS conceptual design. 

 

FunGIMS design 

The project was designed around several data-specific modules (Figure 1.3). These will 

all be interlinked via a core module, containing functionality for system administration, 

database access, user authentication and project administration. The most important 

design characteristics of the architecture were that it should be: 

• Extensible: New modules and capabilities should be easy to add. 

• Scaleable: The system should be able to handle large numbers of users and huge 

volumes of data. 

• Open: Source code should be made available to developers and provide adequate 

documentation provided. 

The system outline provides basic layout and functionalities that was decided upon. 

(Numbers refer to numbering in Figure 1.3) 

1. It was decided to use a relational PostgreSQL database for the storage of data in 

the system. This is a mature open source database that is scalable, and can be 

accessed easily from various programming languages and tools. This database 

will be housed on a Unix platform. The database will store data and information 

1 

2 

3 

4 
5 
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on researchers, projects, experiments and primary experimental results 

(microarray, proteomic data, sequence data etc.) as well as data and information 

as a result of experimental data analysis and annotation. Related data such as 

publications and protocols will also be stored in the system as separate files. 

2. The business logic layer will be built around a central administration module. 

This module will contain all the functionality for creating and managing users, 

groups and projects. The other functional genomic data-specific modules will then 

be linked to it in a way that allows additional modules to be added at a later stage. 

In effect the modules in this layer will be linked directly to the database, and will 

serve as the interface through which data is inserted into and retrieved from the 

database. 

3. The presentation of the system to clients/users will be done via a web-based 

interface, created in the JAVA/Struts environment, running on a Tomcat server. 

This allows centralisation of all business logic (advantageous for performance and 

system administration) and allows users/clients to access the system from any 

remote location with an Internet connection.     

4. In an effort to increase scalability and modularity, the integrated interfaces will be 

separated from tools used to analyse data. This means that new tools can be added 

to the system without the need for changing source code in the core modules. This 

link is done via a web services interface, which is communicated with via XML.  

5. Access to existing public tools and resources will be provided. This includes 

access to web services at institutions such as the NCBI or EBI. The access will be 

provided by methods such as SOAP or CORBA, and allow local users to access 

external tools with data in the local database as input.  

The development of this system was initiated due to an explicit need expressed by 

researchers. Many research groups are generating vast amounts of data, and are in need of 

better ways to manage and analyse the data. The FunGIMS system will provide a 

platform for the management of data, but also a portal to analysis tools and methods in a 

way that would allow even novice users to perform some more advanced types of 

bioinformatics analyses.  
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FunGIMS Microarray Module 

The understanding of gene expression levels under different environmental conditions or 

at different life stages of organisms are essential in functional genomics studies, and 

microarrays play a vital role in this understanding. As previously mentioned, microarray 

data is often more complex than other types of biological data such as sequence data, and 

special care must be taken when the experimental data is stored (especially in terms of 

adhering to the MIAME standard). These requirements necessitated the inclusion of a 

dedicated module in FunGIMS.  

 

Even though there are several systems that can perform some of the subtasks as the 

proposed module, its inclusion the integrated environment is critical. The FunGIMS 

system will be developed as an open source product, since available systems [24] that 

could perform some of the same tasks as the proposed system are proprietary and often 

prohibitively expensive.  

 

This approach allows planning and implementation of integrative measures for the 

various data types that will be managed by the system. This goal can also be achieved by 

working on data stored in different existing systems, but the unique abilities of the 

integrated environment will be lost even though similar amounts of work will be 

required. The integrative approach to data management will assist any research project in 

the field of functional genomics, since the integration of various data types is very 

important in the establishment of the functions of genes and gene products (Myers et al. 

2005) and the ultimate realization of true system biology investigations. The integration 

of all available data about a studied topic will leverage even small contributions into 

something beneficial to all. 

 

1.4 Background and Related Research 
Microarray as a research technology has not been around very long, but it is already used 

extensively for the study of gene expression profiles. With the large amounts of data that 

are generated the only way the data can be managed efficiently is to use advanced 
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computer software. Selected examples of systems for the analysis of microarray data will 

be discussed: 

 

Local Microarray Data Management Systems 

These systems are created as distributable software packages. They can be downloaded 

from various locations on the Internet and installed to local machines for use in 

microarray data management as well as the analysis of microarray data. Tools such as the 

TIGR TM4 software suite (Saeed et al. 2003) can be downloaded from the TIGR web site 

and installed locally on any machine with the required specifications. The software is 

completely free and open source, making it very attractive for people wanting to 

customise existing software for unique requirements. 

 

TIGR MADAM (Saeed et al. 2003) is the software package used for the management of 

microarray data. It is a java application that uses a MySQL [44] database for the storage 

of data. The system is MIAME compliant and the latest versions can export data in the 

MAGE-ML format, making it easy to upload data stored in this system to public 

microarray data repositories. Another system that can be downloaded and set up locally is 

the Longhorn Array Database (LAD) (Killion et al. 2003). This is an open-source 

implementation of the Stanford Microarray Database system (Ball et al. 2005). It is 

MIAME compliant and has data-export capabilities (Killion et al. 2003). LAD is 

accessed via a web-interface, making it a good system to use for microarray data 

management where organisation wide submissions can be expected from different 

workstations. The system uses a PostgreSQL database for the storage of microarray data 

(Killion et al. 2003) instead of the ORACLE [45] database system implemented with the 

Stanford Microarray Database.  

 

Another system is the BioArray Software Environment (BASE) (Lao et al. 2002). The 

BASE system utilises a MySQL database, and is accessible via a web-based interface. 

The system is open-source and has built-in features that allow the extension of 

functionalities via custom plug-in modules (Lao et al. 2002). 
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Public Microarray Data Management Systems 

There are several database systems in the public domain, designed to manage huge 

volumes of microarray data submitted by the microarray research community. The three 

biggest databases are the ArrayExpress (Parkinson et al. 2005) database at the EBI, the 

GEO (Barrett et al. 2005) database at the NCBI and the CIBEX (Ikeo et al. 2003) 

database at the DDBJ. The function of these databases all necessitate a basic design 

pattern that must be followed, so that the databases can be made easily accessible for both 

submitters of data and researchers wanting to explore the available data. 

 

These systems all have web-based interfaces which allow both submission and retrieval 

actions to take place. The systems also have dedicated databases for the management of 

the experimental microarray data. The fact that the organisations hosting these databases 

also host many other big public repositories has the added advantage that the data in the 

microarray databases can be combined with other data types. This integration of different 

data types can allow different information to be obtained than when the data is isolated 

(Troyanskaya et al. 2003). 

 

Proven System Requirements 

Both the above types of systems have one thing in common, and that is the data they 

store. With calls coming out of the microarray community that standardisation of 

microarray data should take place (Brazma, 2001), more and more of newly created 

systems adhere to these standards, and new versions of existing systems have 

technologies built in to accommodate the data standards that are commonly used. S-

BEAMS Microarray (Marzolf et al. 2006), MiMiR (Navarange et al. 2005), MicroGen 

(Burgarella et al. 2005) and MARS (Maurer et al. 2006) are all recently published 

software packages for the management of microarray data. All these packages list 

explicitly that they comply with MIAME standards and all packages except one 

(MicroGen) are capable of exporting data in the MAGE-ML data format. These features 

make all of these new microarray data management systems useful for the effective 

storage and sharing of microarray data. 
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Another common feature of these systems is that they all have web-based interfaces. This 

approach means that the systems can be implemented locally and clients from anywhere 

in the organisation (e.g. a university) can access the system and use its functionality. This 

has an advantage over distributed stand-alone systems (such as TIGR MADAM) since all 

data are centrally stored and maintained and everyone may obtain efficient data access.  

 

Implementation of an existing system 

Many of the existing microarray data management systems in the public domain are open 

source and downloadable for local implementation. This makes the use of the software an 

attractive proposition for managing locally produced microarray experimental data. 

Given the storage requirements for microarray experimental data and the fact that 

experimental comparison is a valuable research tool, it is also desirable to have 

microarray experimental data stored in a centralised repository. This means that a model 

where a web-interface is available for centrally created management structures is the 

desirable model to follow.  

 

At the time of project conception, not many of the systems discussed were in existence 

that met the stated requirements. Systems that could have been considered would include 

the LAD system and the BASE (Lao et al. 2002) system. Both these systems can be set 

up in a centralised location and offers access via a web-based interface.  

 

Creation of a custom Microarray Data Management Module for FunGIMS 

As standalone systems for microarray data management, some existing systems would be 

adequate for the requirements of centralised data management, but the fact that the 

system needed would form part of a bigger Functional Genomics data management 

environment made the use of existing systems impractical. Given the design criteria for 

the FunGIMS system (section 1.3.1) no existing systems would be compatible with the 

rest of the FunGIMS modules. The LAD system is implemented using Perl [46] and an 

Apache Web Server [47], while the BASE system is written in PHP [48] and C++ [49] 

and also makes use of the Apache Web Server.   
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These incompatibility issues would make it very difficult to integrate existing systems 

with the rest of the FunGIMS environment, necessitating the development of an 

integrated microarray data management module for FunGIMS. 

 

1.5 Goals 
Microarray at the University of Pretoria is a fast growing area of study, with numerous 

projects being conducted [22]. These projects all generate vast amounts of data, and the 

data must be managed in an efficient manner. Not only is data generated at the University 

of Pretoria, but microarray data is generated all over the world, in greater quantities and 

scope that can be done at any single institution. This data has value when kept locally, 

since it provides local researchers with the ability to compare results and have access to 

research methodologies and protocols used by the international community. With locally 

stored data, the microarray experimental data can also be integrated with other data types 

to be managed in the FunGIMS system, greatly increasing the value of all integrated data 

types. With this these goals in mind, several objectives were decided upon during the 

design of the FunGIMS module for the management of microarray data.  

 

These included: 

• Providing a local database for the management of 2-colour cDNA microarray 

data. 

• Storing and managing all data so that experiments comply to the MIAME 

standards of microarray experimental data availability. 

• Providing a web-based user interface for the submission and extraction of data to 

and from the database. 

• Developing the system in such a way that it may be integrated with the other 

modules in the FunGIMS system as they are completed. 

• Advancing towards efficient integration of microarray data with other function 

genomics data types, ultimately allowing the achievement of true system biology. 
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With the completion of these design goals, a truly useful system would be available for 

researchers in which microarray data can be stored and efficiently integrated with other 

biological data, giving the research community a valuable tool for the study of functional 

genomics and related fields. In the following chapter, the design and architecture 

followed prior to and during the development of the system will be discussed.  
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Chapter 2 
 

Design and Architecture 

2.1 Research Approach 
Research in the field of bioinformatics is in many aspects different from classical 

biological research. Given the fact that some areas of research in bioinformatics is more 

closely related to computer science and informatics, than to classical hypothesis driven 

biological experimentation, alternative approaches may be required. Approaches to 

bioinformatics research may be divided into three broad categories: 

 

• Mathematically approached research, where algorithm development for solving 

biological problems is the focus. 

• Hypothesis driven research where proving or disproving a hypothesis about a 

specific biological problem by the application of information technology.  

• Software engineering research, where software is created to perform a certain task 

that either did not exist before, or where software is improved for optimal use by 

biologists. This is the approach followed during this study. 

 

Several microarray data management software packages exist, but the existing systems 

are inadequate or unsuitable for the requirements of the FunGIMS microarray module. 

The research focus is on the creation of an interface for the management of microarray 

data using a MIAME compliant data structure inside an integrated functional genomics 

data environment.  It is proposed that the integration of microarray data with other 

functional genomics types, will allow automation of many aspects of microarray data 

annotation, leading to data mining approaches not currently possible. 

 

Similar research approaches by other groups 

Five Masters dissertations were inspected, in which related research approaches and 

methodologies were followed (Olmstead 2001, Hornsby 2004, Bernard 2004, Pi 2004, 
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Lehtipalo 1999). These dissertations all entailed software development-based approaches 

to bioinformatics research and biological problem solving. The studies were performed at 

four different learning institutions from across the world, with two institutions being in 

the USA (Oregon Health Sciences University, and University of Louisville) and two 

institutions in Europe (University of Edinburgh, and Uppsala University School of 

Engineering).  

 

With the focus being software engineering, the approaches were all similar in style. 

Requirements were laid out, the methods followed described and the final product 

described. Evaluation of the final products was done in all cases except one (Hornsby, 

2004), with the evaluation consisting of use of the final product by the developer, and the 

provision of written comments on the performance of the system. Only one of the 

dissertations discussed the evaluation of the product by other users (Pi, 2004), 

demonstrating that “self-evaluation” is an acceptable form of appraisal in software 

design. 

 

All dissertations included comments on future work to be carried out, with conclusions 

drawn as to how the future developments would improve/affect the system performance. 

The FunGIMS microarray module project approach is similar in approach to all the 

dissertations mentioned above, which confirmed the suitability of the approach followed 

for research, development, and reporting followed in this project. 

 

2.2 Requirements 
2.2.1 User Requirements 

The main users of bioinformatics software are the biological scientists conducting 

biological experiments. These users do not always have high levels of computer skills. 

This means that many of these users will not even attempt to use software that is difficult 

to set up and run. User-friendly interfaces to software packages can be considered vital 

for maximising productivity. The easier a software package is to use, the quicker people 

can learn how to use it and the probability that they will continue using it is increased. 

 

 
 
 



 20 

Not only is it important that the software be easy to use, but maintaining the software is 

also critical. Newer versions with sometimes-drastic changes to interface and usage 

methods can be a serious hindrance to users. To overcome these issues, the model chosen 

for this system is web-based. Most users are familiar and comfortable with web browsers, 

and in the case of FunGIMS, this serves the dual purpose of having a user-friendly 

interface and removing the need for the user to maintain the core software on his/her own 

machine. The system also greatly benefits from the fact that it will be closely integrated 

with other functional genomics data types, which would be close to impossible in a stand-

alone environment. 

 

2.2.2. Data Structure Requirements 

Creating a user-friendly web-interface is not the only consideration when trying to reach 

the design goals. The system must also functionally adhere to standards to maximise its 

value. The most important consideration when designing a microarray data management 

system is to ensure it meets international standards. Ensuring that the data stored in the 

system adheres to the MIAME standards for microarray data is one of the most important 

design criteria. Descriptions of the standards are freely available [26] and the database 

structure was designed to meet these requirements.  

 

When designing the database there were also several points to take into consideration. 

The MGED (Microarray Gene Expression data) society published data structures for the 

management of microarray data in the form of the MAGE object model (MAGE-OM). 

This data structure is also freely available [23]. The MAGE object model was designed to 

accommodate data from all types of gene expression experiments, and the level of 

abstraction seen in the model as well as its size (132 classes) reflects just that [24].  

 

The MAGE-OM is not required for a database to meet MIAME requirements. The 

MAGE-OM is based on the MIAME principles and is but one way of ensuring data 

collection that adheres to these principles. The scope of the FunGIMS microarray module 

stated that the underlying data structure should include the ability to collect cDNA 2-
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colour microarray data. This means that the implemented data structure could be much 

simpler than MAGE-OM and still adhere to the MIAME principles.  

 

A simple data structure can have implications when it comes to the capturing of 

microarray data. The complicated MAGE-OM leaves nothing to the imagination. It 

captures all data in an unambiguous way. When simplification of this data model occurs, 

the risk that ambiguity in data capturing may occur increases.  A simple example of this 

is the difference between including a “Channel” class for the capturing of the wavelength 

at which the scanned microarray image was captured, and not including a separate data 

type for it, but rather assisting the user in including the distinction in the user interface. 

This results in the onus of submitting the correct channel files shifting to the user from 

the developer. If rigorous curation of the database is taking place, this is not a serious 

problem, with the inverse being true if no curation is done at all.  

 
2.3. Design Principles 
The main design principles included: 

• The creation of an adequate data structure adhering to the MIAME standards, 

which is compatible with the greater FunGIMS data structure. 

• The creation of a user-friendly web-based interface as part of the FunGIMS 

system for submitting and viewing data. 

• The development of the system in an extensible fashion to enable the future 

addition of new functionalities. 

• The provision of basic diagnostic tools to users as a proof of concept for the 

addition of future analysis capability. 

 

2.3.1 Data Structure 

MIAME is not a data structure, but a data content standard. This leaves room for 

designing a data structure for storing microarray data that might differ from any existing 

software and yet still comply with the MIAME standard. In this case, the data standard 

and the structure of the underlying database is virtually the same, with uploaded files 
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being the one exception. This makes understanding the way data is inserted into the 

system relatively easy. Many complaints in the biological research community about 

bioinformatics software relate to usability, and with this system, effort was made to 

produce an interface that users with knowledge of microarray will find intuitive and easy 

to understand. The interface of the system was designed to represent the intuitive 

workflow steps of a microarray experiment, which should results in highly effective user 

orientation when using the system. 

 

2.3.2 User Interface 

The system was designed to be web-based. This means that the database and code 

performing the various different functions (business logic) are on a central server, and 

that the user will only need a standard web browser to utilise the system. Thus, users will 

not have to install any local software in order to user the system, and the software 

package and database can be localised on the same server, allowing easy integration of 

data and information in the database, as well as easy maintenance of the system. 

 

Maintenance of such a system entails much more than fixing bugs or replacing packages 

and classes with updates, but also includes the extension of the system. The system has a 

modular design, making it relatively simple to add functionality. The functionality of the 

system is also an important consideration. The core function of the system is the 

management of microarray experimental data, but with the raw data inside the system, a 

good argument can be made to provide analysis and visualisation tools for the data in the 

system. Time and energy put into these procedures must be well thought through, 

however, as so many different free tools exist for the analysis and visualisation of 

microarray data. These include packages such as the TM4 suite of tools from TIGR 

(Saeed et al. 2003). With these tools being well-documented and relatively easy to set up 

and use, implementing extensive visualisation and analysis tools in this phase of the 

FunGIMS microarray module was regarded as relatively low priority, but to receive 

future attention. 
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2.3.3. Software Components and Technology 

The software and technology components for this project include the database, the 

development platform and all the components of the Model-View-Controller design 

model.  

 

Database 

The PostgreSQL [25] database system was chosen to implement the data structure for the 

storage of the microarray data. This is a mature open source database, affecting no costs 

for the purchase of database software. The database system has been used in many large 

projects such as data management at the Shannon Medical Centre [26] indicating that the 

system scales well, which is a necessary requirement for the extensive FunGIMS project. 

 

The PostgreSQL system has been developed over the past 15 years, and has a proven 

track record for reliability, data integrity and data security [27]. The system is updated 

regularly, and interfaces from all major programming languages and environments exist 

for this database system. JDBC (Java Database Connectivity) serves as an interface from 

the Java [28] programming language. The Java programming language was selected for 

the creation of the FunGIMS project, since it is a powerful development language, simple 

to use, has a large support structure and encourages object oriented programming 

(important for a system that will be updated and changed regularly). In order to make the 

interface to the database as simple as possible, one database connection class was 

designed to handle all requests from the rest of the FunGIMS system to connect to the 

database for either inserting data into the database or extracting data from the database 

(Figure 2.1).  
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Figure 2.1: The database is linked to the FunGIMS code via one database connection class connecting 
to the database using JDBC. 
 

Development Tools 

The development environment selected for the system was the Java/Struts web 

development framework [29]. The Struts environment is an open source framework for 

the development web-applications. It has been developed by industry experts, is a stable 

mature platform and has a manageable learning curve. The Eclipse Integrated 

Development Environment (IDE) [30] was be used for the development, with the Exadel 

Struts Studio plug-in [31] as the main development platform (Figure 2.2). The graphical 

user interface provides the user with a visual handle on the way in which the MVC 

components are related to one another in the project.  

 

An additional feature is that this system gives the user the ability to make new links or 

associations between components using the graphical user interface. Again, this assists 

new developers to easier understand how the project’s components interact, and are 

related to one another. When coding individual classes, easy access to all the libraries are 

provided by the system’s ‘auto-complete’ functionality and access to documentation 

directly from the code the developer is editing is available. All of these factors contribute 

towards making the learning curve of the Struts Framework and the Java programming 

language as a whole much less steep, speeding up development time. 
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Figure 2.2: A screenshot of the Eclipse IDE with the Struts Studio plugin activated. 
 
The project was deployed inside a Tomcat web container, integrated into the 

development package [32]. In using the struts framework, there are several technologies 

that must be known in order to understand the control and information flow of a system 

inside this framework: 

 

JSP (Java Server Pages) – JSPs allow developers to dynamically generate HTML output. 

This output is then interpreted by a web-browser and provide the user interface for a 

Struts-based system. The Struts framework contains a rich library of JSP tags. These tags 

include various different functionalities, such as tags for the inclusion of traditional 

HTML form entities (text boxes, text areas etc.) and logic entities. These tags can be used 

to provide various different types of functionalities to the JSP, e.g. including ‘HTML 

Forms’ for user input. 

JavaBeans (Form Beans) – Java Beans are java classes that adhere to certain conventions 

pertaining to method naming, construction and behaviour [33]. When adhering to these 

conventions, these classes can fulfil various important roles within the Struts framework. 

One of these functions is the form bean function. This bean has the function of 

‘collecting’ information from a JSP form entered by a user, and making it available to the 

rest of the system.  
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Action classes – These java classes control the information flow within the Struts 

framework, and can be seen as a bridge between the user input and the business logic. 

These classes have access to the form beans, and can retrieve the information inside these 

beans for either processing the information, or passing the information on to the business 

logic layer for processing. These classes also ‘decide’ which actions to take, given the 

user input.  

Struts-config.xml – This is a XML file that defines the rules for the current Struts 

environment. Each project developed in a Struts framework has such a file, which is 

loaded into memory. These files define various different rules, e.g. which bean gathers 

information from which form, which bean communicates with which action, which JSP’s 

are linked to which action class, etc. These rules are very important for the functioning of 

the struts environment. 

The above-mentioned components of the Struts framework are by no means the only 

components at work in a Struts-based project, but for the sake of this discussion knowing 

about the above mentioned components will be enough for the understanding of the 

developed system. 

 
Figure 2.3: The MVC categories along with the components of the Struts environment that fits into 
these categories. 
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Struts projects are created following a MVC [34] design (separation of the data model, 

user interface and control logic), allowing modifications to be made to one component 

without serious impact on the other two. This is particularly useful when projects are to 

be expanded or adapted in any way. Figure 2.3 gives a schematic representation of the 

MVC organisation of a struts project. Notice the inclusion of the business logic module in 

Figure 2.3. For this schematic representation to represent a project such as the one being 

discussed, Figure 2.3 would not be complete without the inclusion of this module.  

 

2.4 Architecture 
2.4.1. The Model-View-Controller Approach and Business Logic Layer 

The FunGIMS microarray module was implemented in the Struts framework, meaning 

that the basic backbone of the project follows the MVC design pattern [29]. This project 

provides much other functionality than just presenting users with a View in a browser, 

and therefore as shown in Figure 2.3, a business logic category needs to be added to the 

MVC pattern in order to make the representation more accurate.  

 

View 

In this oversimplified description of the Struts framework, the view of the project is 

represented by the JSPs (Java Server Pages). The JSPs present the user with the interface 

to the system. This interface is dynamic, and can change if users perform a query, submit 

data, update data, delete data, etc. One way in which the dynamic page was used was by 

employing the tag library included in the Struts framework. These tags provide various 

functionalities that may be added to the page [35]. 

 

Among these functionalities is the ‘<jsp:include>’ tag. This allows content from other 

JSPs to be included at the specific point the tag is located (the output would include the 

output generated from the other JSP specified in the ‘<jsp:include>’ tag). This gives the 

developer the ability to further separate code on different JSPs, making extension of any 

given module’s JSPs simpler (to add functionality, simply add a JSP and another JSP 

include tag to the main JSP page). The separation of the code also has the benefit of 
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making the code easier to read, especially in JSPs where there would otherwise be over 

1,000 lines of code. 

 

In this system, the View components, or JSPs were used as follows. For each module, a 

main JSP was created. This JSP would be called by either a Display Action class or a 

Controller Action class. These classes would communicate a ‘step value’ to the main JSP, 

indicating which JSP include tag to use. The correct JSP include would be invoked, and 

the correct view would be returned to the user. This view can be changed either by direct 

user input, by pre-set paths being triggered in the model via the controller, or in the 

controller alone (Figure 2.4). 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Example of the path the view typically goes through when it is changed, including the 
method of using the ‘<jsp:include>’ tag for the inclusion of content from other JSPs as a result of a 
user request. 
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include some syntactical conventions on the naming of methods, which must be specific 

depending on which JSP form information must be captured. 

 
 

So-called getter and setter methods for each entity of the form are created, with the 

naming convention being as follows: if the form entity has the name of ‘name’, it’s getter 

and setter methods are called ‘getName()’ and ‘setName()’ respectively. These required 

methods along with their naming conventions make it possible for linked Action classes 

to have access to the information submitted by a user via a JSP form. This is the only 

function given to the Java Beans in this project, even though many other functions can be 

fulfilled by these classes. 

 

Controller 

The controller layer in this project is represented by several Action classes. These classes 

have the function of ‘deciding’ what actions to take when certain information and data is 

submitted to the system. As described in Figure 2.5 above, the classes use the beans to 

retrieve user-inserted values, and then perform specific tasks using these values. 

 

The controller layer provides the access to the business logic. The business logic contains 

the various java classes that perform the tasks of inserting data into the database, 

Web container  

JSP 
<html:form> 
<html:text property=”name”/> 
</html:form> 

Bean 
getName() 
setName() 

Action class 
String name = Bean.getName() 
 
/* value of ‘name’ entered in 
form now available to Action 
class to use*/ 

Figure 2.5: The role of the form bean is to 
collect the information submitted by the user 
via the JSP html form. In this case it is a 
textbox variable with the name ‘name’. The 
bean collects the information entered by the 
user on request of the Action class, which 
can then use the information for which ever 
purpose. 

1. Request: 
Retrieve value of 
form variable 
‘name’ 

2. Retrieve value of 
variable ‘name’ from 
http information 
submitted 

3. Return retrieved 
value 
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uploading and deleting files, etc. (these functionalities are described in the following 

chapter). 

 

Business Logic 

The business logic of the project includes all the java classes that do the data handling 

outside of the classic MVC framework. The interface to this layer for the system is 

through the Action classes, which collect the required data and then pass it on to the 

business layer for processing.  

 
Figure 2.6: The conceptual layout of the different packages in the business logic layer. 

The business layer is conceptually laid out as shown in Figure 2.6 above.  

 

Database Manager (1) – This is a one-class package containing the methods required for 

the insertion, updating and deletetion of data in or from the database. This class is the 

only way any other classes in the system can connect to the database. 

 

Add New (2) – This package contains all the classes required to add new information to 

the database. The information flow to these packages are from the action classes in the 

control layer, which would accept the user input and then pass it to the classes contained 

within this module.  

 
Add New 

Edit 
Current 

Delete 
Current 

 
Utilities 

View 
Current 
Entries 
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Database 
Manager 1 
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Edit current (3) – This package contains classes required for the editing of data that is 

already inserted into the database, by updating existing entries in the database with new 

data users inserted.  

 

Delete current (4) – This package contains classes responsible for deleting user data that 

is located in the database. Several dependencies are built into these classes, since some 

data types cannot be deleted while related and inter-dependant data types remain in the 

database (the dependencies will be highlighted in later chapters). 

 

Utilities (5) – These are classes that perform functions other than the manipulation of data 

in the database. Among these classes are the file handling capabilities, along with classes 

responsible for value added steps for the data. These include the implementation of R 

[36] functionalities for quality analyses of microarray data (Dudoit et al. 2003) (these 

functionalities will be described in more detail in later chapters). 

 

View current data (6) – This package contains classes responsible for the retrieval of data 

from the database and the display of that data to users. This includes data from all 

“public” experiments that is store in the database (more on the details of this feature in 

later chapters) 

 

This is a brief description of the conceptual layout of the business logic module of the 

system. This module is accessed via the controller class, and more on the functionalities 

attributed to the mentioned features will be discussed in later chapters. The 

implementation of this design and architecture for the FunGIMS Microarray Module will 

be addressed in Chapter 3. 
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Chapter 3 
 

Implementation 
3.1. Implementation of the Data Model 
Using the Struts development framework and various incorporated components, a 

working approach for the FunGIMS microarray module was designed. This design was 

based on the basic workflow a typical microarray experiment would follow, coupled with 

some constraints and requirements brought on by the MIAME data model. Several stages 

in the microarray experiment workflow were identified, and dedicated modules for each 

of these stages were designed. The stages identified for a typical cDNA 2-colour 

microarray experiment were as follows (Figure 3.1): 

 

 
Figure 3.1: The modules making up the FunGIMS microarray module. The modules denoted in 
yellow are used for capturing data to make the experiments MIAME compliant, while the modules 
shown in blue are used for value added features of the system. 
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3.1.1 Experimental Design Data 

The Experimental Design Data module needed to provide the functionalities for 

submitting, editing and deleting Experimental Design data for any specific experiment. 

There are three basic sections in which experimental design related information are 

accepted and inserted into the database: 

 

Experimental Design information 

The data types that can be submitted here include all data and information related to the 

planning and design of the experiment for which the data is submitted, e.g. protocols, 

experimental design documentation, quality control description etc. These data must be 

uploaded before any of the other data types in the modules can be uploaded. 

 

Link Information 

Often when experimental design information is submitted, the laboratories or institutions 

conducting the studies have more information on the particular subject available on a 

web-accessible resource. For this reason, a section exists for collecting information 

related to such web-links, where additional information of the experimental topic and 

perhaps on the experiment itself can be found. 

 

Publication Information 

With some experiments, it is conceivable that the individual experiment being described 

may be part of a larger continuing study. This means that there may be published 

references giving more information and context on the current experimental study. It is 

then very helpful for the completeness of the experimental description to include these 

references along with the design descriptions to add information critical to the contextual 

interpretation of the experiment. Even if the experiment is not part of a bigger study, 

references might exist which are critical towards a complete understanding of the topic of 

the experimental study. These references can also be added to the experimental design 

data.  
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3.1.2 Bio-Source/Material Data  

The Bio-Source data module needed to provide functionalities for submitting, editing, 

and deleting of all data to do with the biological samples being tested. This includes all 

the relevant data related to the origin of the test or reference sample, as well as the steps 

taken towards creating the test and reference conditions the samples would be subjected 

to. There are five main submission areas for the data: 

 

Sample Information 

This section collects information about the samples used in the experiment, e.g. the 

organism the sample was derived from, organism tissue type used (if applicable), 

organism gender (if applicable), whether or not the organism underwent genetic 

modifications, etc. 

 

Bio-Material Manipulation Information 

This section collects information on the types of manipulations the reference and test 

samples underwent during the experiment, e.g. growth conditions, in vivo, and in vitro 

treatments, etc. 

 

Hybridisation extract 

This section captures information related to the extract from the samples that will be used 

to hybridise on the array for the experiment. It captures data describing the material to be 

used for the hybridisation event from experimental samples. 

 

Labelling information 

This section captures information about the labelling protocol and procedures followed 

for the labelling of the genetic material that will be hybridised on the array. This genetic 

material will be the material extracted from the samples by procedures described in the 

hybridisation extract section of this module. 
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External Controls   

This section captures information related to any external controls used during the 

experimental procedure. This is used as extra qualifying information for an accurate 

description of the experimental procedures followed.  

 

The basic structure these of these sub-sections are also present in the deleting and editing 

functionalities.  

 

3.1.3 Array Design Data  

The Array Design module captures all the information related to the array designed to use 

during the experiment. This includes five different subsections to collect all the 

information associated with the arrays of the experiment: 

 

Array Layout Information 

This section collects the array layout information. The array layout in this system is 

described by giving the number of columns, the number of blocks in a column, the 

number of rows in a block, and the number of features, or spots in a row. This is a simple 

way to collect the array layout dimensions, but does have the drawback that it provides 

for only precisely symmetrical data.  

 

 

 

 

 

 

 

 

 

 

Figure 3.2: This figure demonstrates the way in which the layout information for an array is 
collected in the FunGIMS microarray module. 
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Array Design Information 

The array design information section collects information on the physical design of the 

array used, including the platform type used and the physical dimensions of the array and 

the features in the array. The protocol used for the design of the array may also be 

included in this section. 

 

Feature Type Information 

Features are the physical spots on the array and this section is used to capture the 

information related to the physical dimensions of the features, as well as the type of 

binding with which the reporter sequence on the arrays were added. 

 

Reporter Information 

Reporters are the pieces of DNA used during a microarray gene expression analysis 

experiment onto which the cDNA isolated from the bio-source will anneal [23]. 

Reporters are complementary to each of the cDNA’s in the experiment, but each reporter 

is unique for each cDNA (and then also the gene) in the experiment. The reporter 

information that will be inserted will be sequence related information. This means that 

unique identifiers (accession numbers for each sequence) will be required to uniquely 

identify each sequence. These sequences will also be unique for each organism (in most 

cases) and therefore the protocol followed for its construction must be included. Ideally, 

the sequence of each reporter will also be required.  

 

Composite Sequence Information 

The composite sequence is the cDNA or gene sequence from which the reporter sequence 

on the array was derived [23]. The system provides the user with methods to insert this 

sequence information into the system. The composite sequence entry will include the 

accession number and the sequence, and batch uploads are possible (more on this 

functionality in later chapters).   
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Reporter Association Information 

The reporter sequences on the arrays must be derived from the correct cDNA (genes) of 

the organism or cells (bio-source) being analysed. This system provides the functionality 

for the user to add the association between the reporter and the composite sequence it was 

derived from. By a simple interface providing the accession number of the reporter in one 

list and the accession number of the composite sequence in the other, associations 

between the reporters and composite sequences can be mapped. More than one reporter 

sequence can be mapped to a composite sequence, but the inverse is not true. The 

relationship between the reporter and composite sequences are shown in Figure 3.3 

below. 

 
Figure 3.3: The relationship between a composite- and reporter sequence. There can be more than 
one reporter associated with a composite sequence. Reporter spotted onto array and bio-source 
added to array for hybridisation. 

 
 

3.1.4. Hybridisation Information 

The hybridisation information section is designed to capture information related to the 

hybridisation procedure between the array (information submitted in the Array Design 

module) and the Bio-source (information submitted in the Bio-Source/Material Module). 

This hybridisation information includes two sub-sections: 

 

Array, Reference- and Test sample 

In this first section, the user is required to identify an array, on which the hybridisation 

will occur, as well as a reference and a test sample, which will be hybridised onto the 

array. For any experiment, a reference- and test sample may be identified for only one 

Composite sequence – cDNA or gene sequence (introns removed) 

Reporter Reporter 

FunGIMS 
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hybridisation event. An array may also be identified for only one hybridisation event. The 

only exception is when the experiment has been identified as a common reference 

experiment, in which case only one reference sample may be identified, and that 

reference sample may be used in all hybridisation in the experiment.  

 

Hybridisation Information 

The hybridisation information includes all protocols and procedures followed during the 

hybridisation event. This information must be inserted for each hybridisation event, 

regardless of whether or not a common reference design was followed. The information 

inserted here includes the instrument used for the hybridisation, the conditions of the 

hybridisation (temperature, time solution concentration etc.), the hybridisation washing 

protocol and the post-hybridisation washing protocol followed.  

 

3.1.5 Measurement and Data Analysis Information and Data 

Once a hybridised array exists, it may be scanned and analysed to obtain the experimental 

results. This module will be used to insert information about the data capture processes 

and analysis procedures followed, and is separated into three different sections: 

 

Raw Data and Information 

The raw data is the scanned microarray image of the hybridised array before any analysis 

has been conducted. The information includes the scanner used, the settings on the 

scanner and the scanning software used. The raw data for both the channels can be 

uploaded separately, along with the protocol followed. 

 

Image Analysis Data and Information 

Once the raw data have been analysed, the image analysis results (the segmentation of the 

image into background and spots, and the intensities of the spots) may be uploaded. This 

section captures the data (analysis results sheet with spot intensities) and the image 

analysis information including the software used for the analysis and the protocol 

followed for the analysis.  
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Normalised and Summarised Data and Information 

Systematic errors creep into all microarray experiments (Bilban et al. 2002) and 

normalisation of the image analysis data must be done before meaningful comparisons 

about the gene expression levels can be made. Various software packages exist to do this, 

and this section captures the data and information related to that process, including the 

software used, the protocols followed, and the normalised and summarised data itself.  

 

3.1.6 Additional Information 

Some times additional information not provided for in data management systems are 

required to accurately describe the data in the databases. These types of information may 

include various different descriptions or additional reference and explanatory literature. 

The Additional Information module is designed to accept any type of additional 

information, including text and files that may be uploaded (more on the file uploading 

capabilities in later sections). 

 

Once these data are collected, the results of the experiments are completely captured in a 

MIAME compliant fashion. These results must, however, be interpreted correctly before 

meaningful conclusions can be drawn from them. The system attempts to address this in 

two ways: by providing some limited analysis of the data from within the system, and by 

providing ways for the retrieval of the data in the system for later analysis in other 

software.   

 

3.1.7 Analysis 

Microarray data are difficult and labour intensive to analyse and interpret, with high 

levels of understanding of the procedures required. Before this analysis can begin 

however, it must be clear that the data to be analysed is of good quality. Quality analysis 

on the microarray data can be automatically done by the system if the data uploaded into 

the database is in the correct format, and all required data is uploaded. This module 

implements R/Bioconductor [37] packages to provide this functionality. These 

functionalities will be discussed in greater detail in later chapters.  
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3.1.8 View 

Providing an interface through which users can add data and information to a database is 

not the only task that must be accomplished to make a data management system useful. 

An interface to the data in the database must also be provided, so that users may view and 

if necessary edit the data in the database. These functionalities are provided in two ways 

in the system: 

 

View Module 

A dedicated module for the viewing (retrieval) of experimental data and information in 

the system exists, providing the user with an interface to view and extract the data and 

information in the database. This module displays all experimental data and information 

in the system to anyone with permissions to see it. If for some reason a user would like 

data and information to remain private (until after publication for example), the 

experiment may be classified as private, and other users will not be able to view the 

experimental data in this module. If an experiment is classified as being public, all data 

and information associated with that experiment would be available for other users to 

view.   

 

Edit/Delete functionalities 

Each of the modules described above has these functionalities. If data or information in 

certain modules has been uploaded, the ‘owner’ of that experimental data and 

information can edit the entries in the database, or delete some of the entries in the 

database. This is also a way in which the user can evaluate experimental data in the 

database and change it if necessary. More on these functionalities will follow later in this 

chapter. 

 

Given that the Struts framework results in a MVC design approach, the components of 

the MVC architecture were central to the way in which the structure of the project would 

be designed. The same information flow is followed when user input is received and 
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processed, meaning that a single basic module design could be created, and the rest of the 

system could be built around that basic design. 

 

3.2 Implementation of a Generic Module Design 
A basic development workflow, which each module would follow, was designed (Figure 

3.4). This modular design allowed for easy development, since the basic structure could 

be copied for each individual module and the content modified for handling specific 

workflow requirements of that module. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: The basic modular design of each module in the system. 

 

3.2.1 Global Forward 

A global forward is a way to make the start of a module process available for access 

throughout the entire system. The global forward is visible to any Action class, and can 

be used to call any action it is connected to. This is because the global forwards are 

registered in the struts-config.xml file, the content of which is distributed throughout the 

framework.  
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3.2.2 Display Action/Bean 

The display action/bean is the action class and its bean that is responsible for displaying 

the user interface to the user. This class mainly sets session and request variables for 

correct loading of interface values the user’s actions requested.  

 

3.2.3 User Interface/JSP 

The user interface is a web page generated from the JSPs (more details on the user 

interface to follow in later chapters). There is also limited communication between the 

JSP and the model layer. This is possible because of the ability to embed java code into 

the JSP seamlessly and use it to obtain information from the model layer. This 

communication is used for the generation of lists for use during data submission, which 

are based on ontologies (more on the ontologies in later chapters). 

 

3.2.4 Controlling Action/Bean 

The controlling action and its bean are responsible for acting upon user input. This can 

mean anything from passing data to the business logic or model layer for submission to 

the database, or navigating to other parts of the system is controlled for any particular 

module by its controlling Action/Bean combination. The controlling Action/Bean 

combination should not be confused with the controller described earlier in the MVC 

discussion. 

 

3.2.5 Business Logic 

This section is where the business code of the system is located. The action classes 

communicate with the business logic, and not the user interface. Each module has its own 

servicing classes in the business logic layer, with the exception of the utilities (Figure 

3.5) and the database manager (Figure 2.1) packages which are used by all the classes in 

the system. 

 

These five different areas are broadly how each of the modules in the system is 

organised.  
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3.3 Database 
The database implementation started out as an implementation of the MAGE-OM [23]. 

Given the project requirements however, and a need for future development by other 

developers, a suitable but much simplified data structure was developed during this study. 

This data structure still collects all data and information about a two-colour dye cDNA 

microarray experiment in a MIAME compliant fashion, but is much simpler to 

understand and implement, even for inexperienced developers.  

 

The implemented data structure resulted in a database with 34 permanent tables, into 

which most of the data and information regarding the experiments are inserted. Appendix 

A Table 1, contains a description of all the tables that are in the system. The tables in the 

general section will most likely be modified when the microarray module is integrated 

with the rest of the FunGIMS project at a later stage. These tables are included here, since 

the functionality of the current system is reliant on these tables being present in the data 

structure. In the ‘Array Design Information’ module, a table named ‘aray********’ is 

included. This table notes the structure of the name of a table containing the dimension 

information for an array. For every new array inserted into that system, a new table is 

created. This allows data storage for each array in a structure that is precise for that array, 

making the querying of each array simpler to code.  

 

3.3.1 Files 

There are three ways to insert information and data into the system. The first way is to 

insert information via the web-interface by typing in the required information in the 

various text boxes and text areas provided. Coupled to this first way of entering data are 

the ontology terms. Ontologies are sets of controlled vocabularies used to describe certain 

terms, and great emphasis is placed on its use in the microarray community (Fang et al. 

2005) (more on the use of ontologies in the system later in the chapter). Another way is to 

upload information via files. These files can be of various formats, and there are only a 

small number of places in the system were file types are verified.  

There are several instances where it would be more convenient for users to upload 

information via a file and not by text insertion alone: 

 
 
 



 44 

 

Bibliographic reference 

The experimental design module allows the insertion of reference articles as 

supplementary material to the descriptions of experimental design. The insertion of 

reference article information is a useful addition, but if the reference article itself were to 

be uploaded and available from the system, it would save interested users a much work 

searching for the article in literature databases. 

 

Protocols 

In all of the modules, users are prompted to insert descriptions of the protocols followed 

during the experimental procedures. Users might follow established protocols that might 

be quite detailed, and then the arduous task of inserting the protocol via a keyboard and a 

text area would not be adequate. For this reason, all protocols can be inserted via a file 

upload, although it is still possible to insert protocol information via text areas. These 

files can be in any format, and it is up to other users who would want to read the 

protocols to obtain the necessary viewing software, such as Adobe Acrobat or Microsoft 

Word.  

 

Sequence Information 

Some arrays in a microarray experiment may have up to 45,000 data points, each 

representing a single reporter sequence derived from a composite sequence. There is a 

module for the collection of this sequence data, which can be useful for other users to 

have. Entering a sequence in a text area is possible, but it would be much more 

convenient for users to insert large numbers of sequences in a batch. Sequences in the 

FASTA file format can be uploaded into the system, and these files are checked for the 

correctness of the format. The actual sequence files are not maintained inside the system, 

and once the validity of the file format has been established, the sequences are stored 

inside the database, and the files deleted. It is envisaged that this functionality would 

eventually be taken over by the FunGIMS Sequence module. 
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Experimental data 

The experimental data of a microarray experiment can only be inserted as files. These 

files can be uploaded into the system via the ‘Measurement and Data Analysis’ module 

and include the raw data images, the image analysis results and the normalised and 

summarised data. The procedures for uploading files and the path the data follows will be 

discussed in the ‘Data Loading’ section of this chapter. 

 

3.3.2 Other Data Structure Functionalities 

Several other factors also play a role in the functioning of the data structure: 

 

ID’s 

In any database system, there is a need for unique identifiers for various different data 

types. In this system with its wide variety of different data types, this proved to be a 

practical challenge. An identification system was developed to give unique ID’s to all the 

different data types, and this system is functional throughout the FunGIMS microarray 

module. 

 

An arbitrary ID length of 12 characters was decided on. Three letter codes were 

developed for each ID type that would have to be created, for example the three letter 

code used for the experiment is ‘EXP’. To this three letter code, a colon was added, e.g. 

‘EXP:’. To complete the ID a random number generator was used to randomly generate a 

number between 0 and 99999999. This number was then concatenated to the 4 character 

code, and an ID generated, e.g. ‘EXP:12345678’. Given the large number of possible 

random numbers that could be generated, the probability of generating the same number 

twice is very small, but this eventuality is provided for. Before an ID is accepted, the 

table into which that ID will be inserted is checked to ensure that that ID does not already 

exist. If it does, the generation process is repeated, and if the ID is new, it is accepted and 

is returned as the unique ID for that particular data type. Appendix A Table 2 provides all 

the three letter codes developed, as well as the data types that the ID describes. 
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Database Manager 

All communication with the database is handled by the database manager. This java class 

uses the JDBC driver, username, password and database name to connect to the database 

and handle any insertion, modification or delete actions. This is the only way the business 

logic and MVC components can communicate with the database, meaning that alterations 

to this manager will not affect the rest of the coding if the communication methods 

between the database manager and the system remain the same. This is important if the 

system needs to connect to a different database. Only the Database Manager variables 

need change, and the rest of the system will still function. 

 

The data structure and the way data is inserted and represented for this project is 

currently static. Alterations that could be made will be discussed in later chapters. 

 

3.4 Interface 
The interface to the system is provided via HTML interpreted by a web browser. The 

interface for this system has been designed using JSPs for generating dynamic output. 

These pages are divided into two sections, a ‘public’ section and a ‘secure’ section. As 

the names imply, the public section can be browsed by any user, while a username and 

password are required for the secure section. All modules previously described are in the 

secure section, except for the ‘Viewing’ module, since any user may view public 

experiments (more on the classification of the systems later). 

 

3.4.1 Secure Section 

After logging in, a user will be at the main welcome page, where he/she will be prompted 

to either add a new experiment, or to choose an experiment and add information or data 

to that experiment. No matter which path is chosen, the user will next be at the main 

menu page for uploading data into the system (Figure 3.6) 
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The main menu of the system is an image map, graphically displaying the different 

modules that are available into which data and information can be inserted. This menu is 

designed to resemble a workflow diagram of the common cDNA microarray experiment 

(Figure 3.5). 

 

Firstly [1], the experiment must be designed, and therefore the experimental design 

information should be inserted first. This includes any links or reference articles, which 

can add information valuable to the description of the experiment. In Figure 3.5, the Bio-

Source/Material module is numbered ‘2’, but the array design information can also be 

inserted after the experimental design information. The samples must be described [2] for 

the later processes to become available, but the protocols on the manipulations, 

hybridisation extract isolation, labelling and external controls may be added later. The 

array design information [3] must be entered before an array will be available onto which 

the biomaterial can be hybridised.  
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Once at least one test and one reference sample have been described, along with at least 

one array, a hybridisation event [4] can be described. Once the hybridisation event has 

been completed, at least one hybridised array will be available which can be analysed. 

The raw data, image analysis results and the normalised data can now be entered into the 

system [5]. Once all the required information is inserted, it may be possible for the user to 

want to insert additional information [6] about the experiment. The ‘Additional 

Information’ module may be used to insert additional information. Even while some of 

the other modules’ data and information are not yet inserted, additional information may 

be uploaded via this module. Once all relevant information about the microarray 

experiment has been uploaded, the data analysis [7] may begin. 

 

This logical workflow resembling the actual workflow in the laboratory will make the 

system user friendly, in both its use and the learning curve required to efficiently use it. 

 

The whole system is based on navigation-by-button. The buttons are all submit buttons 

for forms that forward various types of information to the controller classes. These 

information types controls where the user will navigate when clicking a specific button. 

As an example, the navigation to the ‘Experimental Design’ module will be used (Figure 

3.1). 

 

 

 

 

 

 

 

 

 

Figure 3.6: Example of navigation in the FunGIMS microarray module. 
 
Figure 3.6 above shows the view after a user has clicked on the image map to go to the 

‘Experiment Design Information’ module. In the image there are two buttons, ‘Update 
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Experimental Design Data’ and Submit/Update Link or Citation data. These two buttons 

are both ‘Submit’ buttons for HTML forms. These forms contain various hidden 

variables [38] that carry information, which will redirect the user to the appropriate view. 

When the user clicks on the ‘Update Experimental Design Data’ button, a hidden variable 

called “submissionStep” is submitted to the controller. The value of that variable informs 

the controller to redirect the user’s view to the form that will allow him/her to update 

experimental design data that has already been inserted into the system. Similarly, the 

other button will redirect the user to the sections for entering link- and citation article 

data. 

 

The ‘Done for now’ button is the button the user will click when he/she wishes to go to 

the previous menu. There are also two ‘Help’ links displayed on the left side of the two 

buttons in Figure 3.6. These are links to help files describing the object associated with 

the buttons. There are ‘Help’ links next to all the objects in the system, including the text 

boxes, text areas, file fields, check boxes, radio buttons, submit buttons, etc (Figure 3.8). 

In each case the link is to a help file describing the function and use of the object the 

‘Help’ link is located next to. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.7: This figure demonstrates the validation effect by using client-side Javascript. 
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User input must be validated as much as possible to prevent meaningless data being 

inserted, or the user forgetting to insert required data. The method chosen for this 

validation is client-side JavaScript [39], which evaluates the user input against sets of 

rules, and returns error and caution messages depending on the user input. In the example 

above (Figure 3.7), the user neglected to insert required information while submitting 

labelling protocol information in the Bio-Source/Material module. Submitting a labelling 

protocol description is required, since the labelling protocol information will not comply 

with MIAME standards if this description is omitted. The user has not specified a 

labelling protocol file to upload, and the JavaScript rules states that if a file is not 

uploaded, a full description of the protocol must be inserted into the provided text area. 

The process is stopped and the error is displayed in a warning box. The users can then go 

back and add the missing information. 

 

3.4.2 Ontology terms 

As mentioned previously, the use of ontology terms is one of the ways in which 

information can be entered into the system. These ontology terms are fixed inside the 

system by way of hard coding the ontology terms into a dedicated ‘ontology’ class. This 

is the one class in the system which JSP’s access (Figure 3.8) when they are loaded and it 

is done to obtain the ontology terms that must be displayed in the JSP to the user on that 

particular page. The only way users can enter ontology information is by selecting the 

appropriate ontology term from a dropdown list. There are exceptions however, for 

example in entering the journal name a citation article was published in (Figure 3.8). 
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Figure 3.8: An example of the ontology terms available in the system. This is an example of the 
ontology terms when submitting new publication information.  
 

The ontology terms in the dropdown list are hard-coded into the system, and it is possible 

that not all the journals in which scientists can publish will be available in that list. Users 

can choose the ‘other’ ontology term from the list, and in a text field provided insert the 

name of the journal that does not appear in the list. This term can then conceivably be 

added by an administrator of the system if deemed necessary. The reason for having the 

ontology terms in a class (file) rather than the database is that this makes the system more 

portable. If the terms were part of the database, the terms alone would have to be shipped 

in addition to the rest of the system, if the system was to be moved.  
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3.4.3 Public Section 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.9: The main menu in the ‘Viewing’ module where users can view public experimental data 
and information. 
 

The public section of the project consists mainly of the ‘Viewing’ module. This module 

is used by users to retrieve and view data and information related to all public 

experiments in the database. In the example shown in Figure 3.9, there are two 

experiments in the system, named ‘Test’ and ‘Test 2’, with two buttons which can be 

clicked to view the experimental data and information in the database. At the top, there is 

also another button labelled ‘View all Public Protocols’. When clicking on this button, 

the user will be transferred to a view where he/she can view all protocols in the system. 

The reason for this separate view is the usefulness of these data types.  

 

Protocols are often used and re-used by many different users in many different 

experiments. If certain protocols are mentioned in experimental design descriptions, other 

users may want to use these protocols as well. These protocols are then made accessible 

in lists that are separated by module, making it easy to find.  These protocols can also be 

accessed via the normal ‘View Data for Experiment’ path. 
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3.4.4 Data Loading 

The only way data and information can be loaded into the system is via the interface 

discussed above, and more specifically only in the secure section. The two difference 

data types that can be entered are the text data and the file data. 

 
Figure 3.10: An example of an input form. The text – and file data areas are clearly marked. 

 

Figure 3.10 shows a screenshot of a typical form used for the insertion of data into the 

database, and the areas where text and file data are inserted are clearly marked. Even 

though both data types are inserted via the same interface and the same form, the two 

data types follow different paths to its designated places in the data structure. 

 

 

 

 

 

 

Text Data 

File Data 
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3.4.5 Text Data 

The text data are both the text input the user provides, and the ontology terms chosen by 

the user (Figure 3.7). These data are submitted by the user via the interface in an HTML 

form, and is stored directly in the database.  

 
 

 

The path the text data follows is shown in Figure 3.11 above. The user inserts the text 

data via the various text boxes and text areas provided, and select the ‘Submit’ button at 

the bottom of the form (Figure 3.7). The data is then subjected to the JavaScript 

validation steps, and if the entered data is correctly entered, the data is forwarded to the 

controller Action Class (see Figure 3.4). After all the data was collected, it is forwarded 

to the Business Logic section, and specifically to the ‘Add New Data’ class for that 

specific module (each module has its own Add New Class to handle data to be inserted).  
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This class formulates SQL queries, incorporating the user data for insertion into the 

database. These SQL queries are sent to the Database Manager Class, which connects to 

the database, executes the SQL queries (inserting the data) and returning the status of the 

execution (returns true for success and false for failure). The status of the insertion is 

returned to the Add New Class, which formulates an appropriate message (depending on 

the success of the database insertion) and redirects the user to the appropriate view 

displaying the message. 

 

3.4.6 File Data 

The process of inserting file data into the system is slightly different. The files are not 

inserted into the PostgreSQL database itself, but are included in a directory structure set 

up within the system. The path the file data follows is described in Figure 3.12. The user 

selects a file to upload via a file field in the view and submits the file name along with the 

text data (Figure 3.10). From the view, the data is validated via JavaScript, and upon 

successful validation submitted to the controller Action Class.  

 

If a file is to be uploaded, all the file information is retrieved and the information is 

passed on to the Upload File class. A file input stream is also created, which is passed on 

to the Upload File class. This is a class used to process all file upload requests, with 

several different destinations for the files coded into the class (file destination depends on 

file type). Using the input stream, the file is uploaded into the directory, but the file name 

is changed. The reason for this is the possibility for identical naming to be used by 

different users, and errors arising from identical filenames in the same directory. The ID 

generation class is used to create unique filenames for each new file that is uploaded into 

the system. The old filename is retained, and is kept in the database to be displayed in the 

view, but it has no bearing when file handling inside the system is taking place. After the 

file is uploaded, the new filename, along with its old name and location is uploaded into 

the database via the Database Manager class. The status of this process is relayed to the 

Upload File class, and if the process was successful, ‘true’ is returned to the controller 
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Action Class, which then proceeds with uploading all the additional text data into the 

system. 

 

 
Figure 3.12: The data submission path a file follows. 
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3.4.7 Final Data Location 

Both the data types are incorporated into the data structure. Text data are stored solely in 

the PostgreSQL database. File data are stored in two different locations. Information 

regarding the file, e.g. the file ID, its type, the file location and the old and new file 

names are stored in the database, for the purpose of file retrieval. The file itself is located 

in one of six directories, depending on the type of file shown in Table 3.1. 

 

Table 3.1: The different file types stored within the system. 

Directory Name File Types 

CIT This directory will store citation article files uploaded in the 

Experimental Design Information module.  

PRTCL This directory will store all protocol files uploaded in the system. 

These include any protocol uploaded in any module.  

SEQ This directory will house temporary sequence files. The files are 

deleted as soon as the sequences they contain are successfully 

inserted into the database.  

IMG This directory will store image files from the ‘Raw Data’ section 

found in the ‘Measurement and Data Analysis Information’ module. 

IQT This directory will store Image Quantitation Tables that are created 

after image analysis (image analysis results). These files are typically 

GenePix [40] array files. 

GEDM This directory will store the Gene Expression Data Matrix files. 

These files are created post normalisation, and will be uploaded via 

the ‘Normalised and Summarised Data’ section in the ‘Measurement 

and Data Analysis’ module 

 

This data is then accessible through the ‘Viewing’ module. 
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3.5 Data Access 
The ‘Viewing’ module is the only way in which the data in the system can be accessed. 

This is not ideal, and other ways of data access must be implemented in future work. The 

Viewing module provides any user access to the public data inside the data structure. 

 

3.5.1 Public and Private Data 

When a new experiment is created, a user is prompted to choose the security status of this 

experiment. The used is asked to specify whether the experiment is ‘Public’ or ‘Private’. 

If the experiment is classified as ‘Private’, the experimental content will not be available 

to the viewing module. A user can classify the experiment as Private for various reasons, 

but the main anticipated reason would be that the data must be private prior to 

publication. If an experiment is classified as being public, all experimental data and 

information entered into the system will be available to the Viewing module, which 

means that any user will be able to look at the information and data in the database 

regarding the particular experiment. Inside this Viewing module, there are two ‘areas’ in 

which data can be viewed, namely the Experimental Data area and the Protocols area.  

 

3.5.2 View Experimental Data 

The user enters the ‘View Experimental Data’ area by clicking on the ‘View Data for 

Experiment’ button for the appropriate experiment (Figure 3.12). The user is then 

presented with the ‘View Experimental Data’ section, which is organised in the same 

modular fashion as the modules for data insertion. The user can then click on any of the 

view buttons to view the experimental data for that particular module (Figure 3.13). 
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Figure 3.13: The view for accessing experimental data in the database. Note the modular separation 
of the different data (Menu broken up to fit on page). 
 

If, for example, the user selects to view the Experimental Design Information by clicking 

on the ‘View Experimental Design Data’ button (Figure 3.13), the user will be presented 

with the experimental data, as shown in Figure 3.14 below. 

 
Figure 3.14: The ‘View Experimental Design Data’ view, displaying the user-inserted information in 
the database. 

 
This view (Figure 3.14) shows the user the information that is contained within the 

database for the specific topic requested.  

 

3.5.3 View all Protocols 

As mentioned in the ‘Public Section’ discussion, a separate area for the viewing of 

protocol data exists. This allows users to selectively view protocol data separate from the 

rest of the experimental data. All experimental protocols inserted into the database  

User-inserted 
information 
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belonging to ‘Public’ experiments will be available to all users, and these protocols are 

organised per module, the same way in which the submission modules are organised 

(Figure 3.15). 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 3.15: An Example of the ‘Protocol View’. Here only the protocols for the hybridisation event 
are displayed, but similar views exist for all the protocols in the system.  
 

If a protocol is selected for viewing, it is displayed in much the same way as the 

experimental data (Figure 3.9). An exception occurs here, due to the fact that whole 

protocols can be uploaded as files, not requiring any text input. If this is the case, only a 

link to the protocol file will be available, and the protocol file can then be downloaded. 
 

3.6. Basic Functionalities 

The core functionality of the FunGIMS microarray module is the management of 

microarray experimental data and this entails storing the microarray data in a MIAME 

compliant fashion in an easily accessible location. For effective management, the 

management platform should also allow the data to be edited, either to remove errors or 

to add data and information omitted during the original submitting of the data. Retrieval 

of the uploaded data and information must also be possible and the FunGIMS microarray 

module allows all these actions to take place.  

 

The basic functionalities of the system can be described as the essential functionalities 

the system needs to be able to fulfil its purpose as a microarray data management system. 

All the functionalities of the system are implemented in more-or-less the same way for all 
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the modules, with the exception of the ‘Array Design’ module, where the BioJava toolkit 

(Mangalam, 2002) is used in capturing sequence data. For this reason, it is necessary only 

to use one module as an example of the functionalities. The module will be the Bio-

Source/Material module, and more specifically the ‘Labelling Protocol’ section of the 

module. It is a relatively small module collecting relatively small amounts of data, but 

collects text (both text the user would insert and system ontology data) and file data 

making it an ideal model module. 

 
Insertion of data 

In the previous chapter, the ‘Data Loading’ was discussed, and the path of the two types 

of data inserted into the system described. The way in which the user will experience the 

data submission is very different to that description. The whole process has been 

modelled on the intuitive workflow of a microarray experiment. This makes it relatively 

simple for users with some knowledge about the experiments to use the system. 

The insertion process of data will always start after the experimental design data 

(excluding the ‘Link’ and ‘Publication’ data which is not required) have been entered. 

The rest of the experimental data may now be entered in the following way: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16: A screen 
shot of the main menu 
of the FunGIMS 
microarray module. 
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After a new experiment has been registered and experimental design data entered, the 

user is prompted with the main menu of the system (Figure 3.16). By now clicking on 

any one of the images, the user will go to that specific module for the insertion of the 

data. The data must be inserted in a correct sequence, meaning the hybridisation 

information can only be inserted once an array and samples that can be hybridised to the 

array have been described. Measurement and Data Analysis information can also only be 

inserted once a hybridised array has been described. It is also not possible to perform data 

analysis unless the correct files containing the required level of data processing have been 

submitted. These dependencies on ‘previous’ information keep the process as logical as 

possible, making the whole data submission process easier to do. Using the submission of 

the ‘Labelling Protocol’ information as an example, these are the exact steps that a user 

would follow to successfully submit the labelling protocol information (Figure 3.17). 
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Figure 3.17: The workflow for submitting the labelling protocol for a Sample. 

 

The user would select the Bio-Source/Material option from the main menu for submitting 

data into the system [1], then the user is presented with the sample selection menu [2]. 

Here the user can add new samples, rename existing samples, or even delete existing 

samples (more on this functionality later). The system has an automated naming system. 

When a new sample is added, it is automatically given a name, “Sample” followed by a 

space and the number of the sample. As an example, the first sample to be added will be 

called “Sample 1”, the second sample “Sample 2”, etc. This naming convention is only 
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data from the menu 
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for the initial sample creation, and the user can change the sample name to a more 

meaningful string. The sample name is changed in the next menu, where the sample 

information may be added and the sample name changed if desired. Once a sample is 

chosen, the user may add all the necessary information to describe the sample and the 

way in which it was manipulated for the experiment. In this example, the user will add 

the “Labelling Protocol” information, so the user would click on the “Submit Labelling 

Protocol” button to submit the information [3].  

 

The user is now presented with the form that will capture all the data required to describe 

the Labelling protocol followed for this particular sample. After all the required 

information has been entered, the user may submit the information to the database by 

clicking on the “Submit Labelling Protocol” button [4]. After the data have been 

submitted, the user will be returned to the main menu for the insertion of data for that 

particular sample. The system will now be “aware” that the labelling protocol 

information was entered, so the button in the menu related to the labelling protocol will 

look different. Since labelling protocol information has been entered, the only task a user 

can now perform with regards to that data is to edit/update the data. The button will now 

read “Update Labelling Protocol”, and no longer read “Submit Labelling Protocol” [5]. 

 

3.6.1 Editing Data 

Once the data has been inserted into the database, it is important that the exact content of 

that data may be changed and even removed if the owner of that data would wish. The 

functionality exists to allow users to update data or correct initial submission mistakes 

that may have occurred. Data can also be completely removed if the user so wishes, but 

there are specific ways in which data can be removed, since several inter-data 

dependencies exist. 

 

3.6.1.1 Updating of data 

Once data is inserted into the database, there might be several reasons for users to want to 

update and change that data. These may include errors during initial submission, or 

simply alterations to previous methods necessitating a change in database content. The 
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process of updating data is very similar to that of submitting data. The user is given the 

exact same form as the one used for submission of data, but the difference is that the 

values for the particular fields in the database are present in the various fields. Alterations 

to these values can be made, and the form submitted to the database, in the event of 

which all the values currently in the database will be updated to those in the new form 

(this will occur even if no changes were made to certain fields). 

 

For text and ontology data, the process of updating data is as straight forward as updating 

the data in the database, but for updating file information, the process is a more complex 

one.  

 

Updating file data 

Uploaded files (e.g. protocol files) are placed in directories on the host server of the 

system, and references made to those files are stored in the database. If these files are 

removed or replaced in the system for whichever reason, it is not simply enough to 

replace the database entries to reference the new files. The reasons for this are the I.D. 

assignment system and the control of the files that are maintained in the system. 

 

I.D. Assignment 

When a new file is uploaded, it is assigned a file ID by the ID generation system. This ID 

is also the new filename assigned to the file. The file ID is unique to each file in the 

system. When a file is replaced, it is assigned a new file ID, making all references to the 

old ID obsolete. New reference entries to the new file must be created, and for that reason 

all the old references must first be removed. 

 

File Control 

To keep the directories from becoming clogged with old files not serving a further 

purpose, files not being used in the system are deleted. If a file is replaced by a new file, 

the old file is deleted, since all reference to it in the database are also destroyed. These 

are the reasons that the updating of file information is a two step process. First, all old file 
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data and reference data are deleted, and then new file reference data is created when the 

new file is uploaded.  

 

In the case of protocol descriptions, the descriptions can be either text data (inserted via 

the text areas and text boxes of the web interface) or the descriptions can be submitted as 

files. When updating protocol descriptions, depending on the previous data format, 

certain procedures must be followed. 

 

From file to text data 

If a file is currently uploaded as the protocol description and it is to be replaced by a text 

description, the system must be instructed to delete the file and replace it with text data 

by checking the provided check box. (Figure 3.18) 

 
Figure 3.18: Replacing a file based protocol description with a text based protocol description. 
 
In Figure 3.18, the current file named “My_Labelling_Protocol.pdf” is to be replaced 

with a text description of the labelling protocol followed. To replace the file description, 

the text of the Protocol Name/ID must be given, along with the text description. 

Subsequently, the check box next to the text “Check to delete Protocol file” must be 

checked. This is a signal to the system that the file should be removed. If the check box is 

checked without inserting some text for the protocol description, the system will not 

accept the submission, since the labelling protocol description is compulsory for the 

MIAME compliance of the data in the system. A JavaScript error message will appear, 
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instructing the user on what the correct course of action would be, in this case either 

identifying a new file to replace the deleted one (using the Browse button), or entering 

text describing the labelling protocol. When the approach described in Figure 3.18 is 

followed, the result will be that the file will be removed, and the labelling protocol 

description will now be the text description given. 

 

From text to file data 

If a text entry is to be updated with a file, the procedure is simple. The file is simply 

identified in the “Browse…” box, and the submit button is chosen. The system will 

prompt the user and inform him/her that the current text entry will be replaced by a file 

(Figure 3.19). If the user hits the OK button, the current text entry is removed, and the 

file is uploaded. The labelling protocol description would then again be a file. 

 
Figure 3.19: Replacing the text protocol description with a file. 
 
3.6.1.2 Deleting of data 

There are some instances where the user may have submitted incorrect data, and then a 

deletion functionality would make more sense than going through all the wrong data and 

trying to fix it. The deletion functionality in the system allows users to delete any data 

type in the system, from sample data to array data, hybridisation data and Measurement 

and Data analysis Information. Several problems arise when deleting data however, the 

biggest one being data dependencies. Throughout the microarray experiment, several data 

dependencies develop as the experiment progresses. In the ‘early’ stages of an 
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experiment, individual samples and arrays are separately described, and these entities can 

be deleted separately. However, when a hybridisation event is described, when a 

reference- and test sample and an array are combined, the data types are now inter-

dependent. For the described hybridisation event to exist, all the individual described 

entities must exist in the database. If, for example, an array is deleted that is part of a 

described hybridisation event, that particular hybridisation event cannot continue to exist, 

as the array the two samples are hybridised on does not exist any longer. When that array 

is deleted, the hybridisation event information must also be deleted because of the 

dependencies involved.  In Figure 3.20 the dependencies are described at the various 

levels at which they occur.  

 

 
Figure 3.20: The different layers at which data-dependencies develop. 

 

The various layers of data dependencies are shown in Figure 3.20. The rule when deleting 

data from the layers is that when data is deleted from a certain layer, all the data in the 

layer bellow that layer must also be deleted. If, for example, hybridisation data in layer 3 

are deleted, all the Measurement and Data Analysis information as well as the Data 
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Analysis results for that hybridisation event must be deleted, since the data cannot be 

represented if the hybridisation event it is derived from no longer exists. Layer 2 is an 

exception. When deleting a sample, array design information will not be affected and the 

inverse is also true. Also, the Additional Information data captured is only affected when 

a whole experiment is deleted. When “Layer 1” information is deleted, the whole 

experiment is deleted, encompassing all the data and information from level one to level 

five. 

 

Labelling protocol data cannot be deleted on its own. This is also a feature of the whole 

system. Since the system captures the bare minimum data to make the experiment 

MIAME compliant, all data is required. There are two ways by which the labelling 

protocol data can be deleted. 

 

The first way is deleting the sample for which the labelling protocol information was 

submitted. This is done by clicking on the Bio-Source/Material image in the main menu 

of the system, selecting the correct sample from the list, and clicking the “Delete Sample” 

button. A JavaScript window appears (Figure 3.21), and upon confirmation, the sample 

and all data associated with that sample in levels three to five are deleted.  

  

 
Figure 3.21: The JavaScript confirmation validation for deleting a sample.  
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The second way is to delete the whole experiment for which the sample was described. 

This will result in the loss of all data and information associated with the experiment 

from level one to five. This can be done from the main welcome page, where the 

experiment can be selected and deleted by clicking the “Delete Experiment” button and 

confirming using the JavaScript button (Figure 3.22). 

 
Figure 3.22: The JavaScript confirmation for deleting an experiment. Choosing OK here will result 
in the deletion of all data and information associate with that particular experiment. 
 
3.7. Additional Functionalities 
Often, the most challenging part of a microarray experiment is the data analysis. There 

are so many different ways and means to deal with microarray data, that it can be a 

daunting task elucidating the results from the experiment. Before the analysis can start 

however, it must first be established whether the experimental data obtained are of 

sufficient quality to continue with further analysis.  Several tools exist for this purpose, 

and a very good tool to use is the marray [41] package of Bioconductor, which is 

implemented in the R statistical programming language [36]. For the purpose of this 

study, only diagnostic tools were implemented, and there exist several other tools that 

could be included in the system. 
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3.7.1 R-marray package, Quality Plots, Normalisation 

The R programming language is an Open Source development language specifically 

created for statistical computing. It is portable, extensible and provides facilities for 

interaction with other languages [42]. Its main strengths lie in the programming of 

statistical and numerical applications and it provides excellent functionalities for the 

visualisation and plotting of statistical results. The R programming language was also 

created for an object oriented approach to statistical programming, and it provides 

excellent tools for the creation of packages [36]. 

 

With all the strengths of the R system, the biomedical research community chose the 

programming language for the development of several packages specifically geared 

towards the analysis of biomedical and genomic data [37]. The Bioconductor project was 

started, which provided the research community with a hub for the development and 

distribution of packages written in R for the analysis of research data in the biomedical 

and genomics fields. From its inception in 2001, a whole community of users has 

provided many different packages for the analysis of various different types of data 

related to the above-mentioned research fields. 

 

One of these packages is the “marray” package. This package contains several different 

methods all written for R, specifically for the analysis of microarray data. The current 

marray package replaces four previous packages and brings all the different 

functionalities of the four previous packages together in one resource [41]. The marray 

package exists to allow users to perform quality analysis of their microarray data, as well 

as do some normalisation of the data [41]. The ways in which these functionalities have 

been implemented in the FunGIMS microarray module provide the user with the 

functionalities and tools to perform diagnostic plots and LOWESS normalisation (Smyth 

et al. 2003) of their microarray data. 

 

Diagnostic plots 

The diagnostic plots in the marray package give the user the ability to assess the quality 

of the microarray results he/she obtained. If these plots prove the data to be 
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unsatisfactory, the user can use this information to make decisions with regards to further 

actions pertaining to the data (for example re-doing some of the experiments). These 

diagnostic plots are all related to the quality of the array, both the overall array quality 

(related to the staining) and the printing quality. 

 

Normalisation 

Because of several inherent inconsistencies related to microarray experimental 

technologies, normalisation of the experimental results are required to ensure high quality 

results that accurately reflect the biology (Smyth et al. 2003). Two of the main types of 

inconsistencies observed are the variation in dye bias with relation to the position on the 

array, and the print-tip bias that often arises (Smyth et al. 2003). For both of these 

anomalies in the technology, methods have been devised to ensure that these anomalies 

do not result in a wrong reflection of the biology.    

 

Implementation in the FunGIMS microarray module  

Several of the functional plots provided by the marray package are implemented in the 

FunGIMS microarray module. These include diagnostic plots, as well as two types of 

normalisation plots, intended to serve as value added features to help the researcher better 

interpret the experimental data.  

 

The original design called for an interface between Java and R that would allow Java 

functions and methods to call R protocols. This design would have necessitated the use of 

packages such as SJava [42], which allows Java to interface with R. This approach was 

not followed due to time constraints, and as an interim measure, a system call-based 

approach was followed. This approach called for a system-Java connection to be made, 

and pre-constructed R commands to be passed via Java to the system.  

 

This approach has two major drawbacks. The first is that this approach is not secure, in 

that the integrity of the Java program is taken away by making it reliant on a system with 

the ability to interface with Java in this way. This also has consequences for the 

portability of the system, since it means the system is reliant on R to be installed with all 
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the correct packages. It can, of course, be argued that this is an inherit feature of using 

any such an external package.  

 

Another drawback is the fact that the read buffer between Java and the System has a 

limited size. This is a problem since many of the files used in microarray experiments 

tend to be quite large. This problem was encountered in the implementation in the 

FunGIMS microarray module, and as a result, two separate buffers had to be created for 

the implementation of all the desired functionalities. While this implementation is not 

optimal, it is functional and currently provides initial automated quality analysis 

capabilities for users of the system. 

 

Data Requirements 

For the creation of the diagnostic and normalisation plots, two very specific data files are 

currently required: 

 

GenePix Results file (*.gpr) 

The first file required is the GenePix array file. This file is the output generated by the 

commonly used GenePix microarray image analysis software used for image 

segmentation [40]. The *.gpr file contains general information about the image 

acquisition and analysis, as well as the data extracted from each individual feature or spot 

(spot fluorescent intensity [40]). The data contained in this file are used for the drawing 

of the various plots that are generated during the analysis process. 

 

GAL file (*.gal) 

The GenePix Array List (GAL) file contains the array layout information (number of 

blocks, features, feature identifiers, etc.) The file consists of two basic sections: 

 

Header 

The header of the GAL file contains all the structural and positional information about 

the blocks of the array (for visual description of a block, see Figure 3.2).  
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Data Records 

The data records contain the name and identifier information for all the features (spots). 

The block number and feature (spot) position along with the feature (spot) ID (name) is 

given. These data along with the data in the *.gpr file describes the microarray data 

obtained from the GenePix program. 

 

For the creation of the quality plots and normalisation data, both these files are required. 

These files are uploaded in the “Measurement and Data Analysis” module, which then 

make it available for the analysis (quality assessment and normalisation) in the “Data 

Analysis” module. 

 

Interface and Implementation 

When all the data requirements are met (a *.gpr and a GAL file uploaded), the user can 

choose to do the quality analysis of the data. This is done by clicking on the “Data 

Analysis” image link in the main menu and choosing the “Do Quality Analysis” option 

from the resulting menu. The next menu provides all the completely described 

hybridisation events. These are described hybridisation events for which all data 

requirements have been fulfilled in order for the analysis of the data to proceed.  

A check box is provided next to each described event, and when the box is checked and 

the “Do Quality Analysis” is chosen, the *.gpr and GAL files will be used to create 

several quality analysis plots, which the user can then use to assess the quality of the 

microarray experimental results prior to further analysis. The first group of plots are 

purely for assessing the quality of the current array image data without any normalisation 

taking place. These plots are: 
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Green foreground plot 

This plot is meant to show the fluorescent intensities of the Cy3 (in two colour cDNA 

microarray) signal within the areas defined as a spot (Figure 3.23).  

 
Figure 3.23: A green foreground image of a test slide. 

Green Background plot 

This plot shows the fluorescent intensities of the Cy3 (in two colour cDNA microarray) 

signal outside of the areas defined as spots. These intensities are used to normalise and 

correct localised errors that may have occurred due to e.g. dust accumulation or errors 

during the hybridisation procedure (Figure 3.24).  

 
Figure 3.24: A green background image of a test slide. 
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Red Foreground plot 

This plot shows the fluorescent intensities of the Cy5 (in two colour cDNA microarray) 

signal within the areas defined as a spot (Figure 3.25).  

 
Figure 3.25: A red foreground image of a test slide. 

 

Red Background plot 

This plot shows the fluorescent intensities of the Cy5 (in two colour cDNA microarray) 

signal outside of the areas defined as spots. These intensities are used to normalise and 

correct localised errors that may have occurred due to e.g. dust accumulation or errors 

during the hybridisation procedure (Figure 3.26).  

 
Figure 3.26: A red background image of a test slide. 
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Pseudo-colour Array Image 

The pseudo-colour array image combines the signals of both the Cy3- and Cy5 dye 

foreground and background images to provide the user with an image representing the 

colour intensities of the whole array (Figure 3.27). 

 
Figure 3.27: A Pseudo-colour image of a test slide. 

 

In addition to the plots above, two types of normalisation plots are provided, one 

pertaining to the print-tip, and the other pertaining to dye bias. 

 

MA plot 

The MA Plot is the plot of the log-intensity ratios (M) versus the log-intensity averages 

(A). It is a graphical way to represent the ratios and fluorescent intensities of the spots on 

the array at the same time [43]. This method gives the added benefit of being able to see 

systematic dependencies of the ratios on intensity values, allowing the user to decide 

more informatively whether or not to apply normalisation techniques.  

 

Post-LOWESS normalisation MA plot 

When using these kinds of diagnostic plots the most popular method for normalisation is 

LOWESS, or locally weighted linear regression normalisation of the data, to estimate and 

correct systematic bias in the data. LOWESS detects systematic variations in the MA plot 

and corrects it by performing a local weighted linear regression as a function of the log2 

(intensity) and subtracting the calculated best-fit average log2 (ratio) from the 
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experimentally observed ratio for each data point. LOWESS uses a weight function that 

deemphasises the contributions of data points that are far from the rest, i.e. outliers 

(Baxevanis et al. 2005). This has the eventual effect of better grouping all values around 

a log2 (intensity) ratio of zero (Figure 3.28). This technique can also be applied locally 

(normalisation based on some physical grouping) or globally (normalisation of the entire 

dataset). In this application, the technique is applied locally, and the Lowess 

normalisation takes place for each print tip. This has the advantage of removing 

systematic errors that may be associated with one print tip, and preventing it from 

affecting the remainder of the dataset.  

 

 

 

 

 

 

 

 

Pre-normalisation        Post-Normalisation 
Figure 3.28: MA-plots of test slide showing pre-and post normalisation plots. Localised normalisation 
per print tip was done. 

 

When this normalisation procedure has taken place, users can easily and with more 

confidence spot the outlier data-points, which would represent the up- or down regulated 

genes of the experiment. The normalisation of the data also removes the systematic errors 

in the data, and allows statistical procedures to identify differentially expressed genes to 

be carried out with more confidence. 

 

Print-tip Box Plot 

Another popular diagnostic plot is the print-tip box plot. This plot gives the log2 (ratio) 

(M) for each feature, grouped by print tip. These plots are simple graphical summaries of 

the distribution of a variable, in this case the distribution of the log2 (ratio) for each spot 

spotted by a specific print-tip [41]. The plot consists of the median, the upper and lower 
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quantiles, the range (represented by a line) and if present, outliers individually indicated 

(Figure 3.29).  

 
Figure 3.29: Pre-normalisation box plot for the test data set.  

 

Post-normalisation Print-tip Box Plot 

As can be seen from Figure 3.30, the Box Plot shows the need for some normalisation. 

The reason for this is that most of the median values for the individual print tips deviate 

from the expected zero, since biologically speaking, it is expected that most of the genes 

would not be differentially expressed. In this application, a normalisation is performed by 

default, and the normalisation is, as with the MA plot, a localised (per print tip) ‘Lowess’ 

normalisation. The result is a much more adequate spread of the print tip data, following 

the expected spread much more closely.  

 
Figure 3.30: Post print tip LOWESS normalisation of the test data set. Note the improvement in the 
median position for all the print tips. 
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All of these various diagnostic plots are generated automatically, and the user can use 

these plots to assess the quality of the array data. The plots are currently generated from 

input data in a specific format. Only when a hybridisation event has been described and a 

*.gpr and GAL file have been uploaded in the Measurement and Data Analysis module, 

can the generation of the diagnostic plots be performed successfully. This is not ideal, 

since there are many other formats in which microarray data can conceivably be inserted 

into the database. It would then be optimal if attention were paid to extending the Data 

Analysis module, ensuring that many other data types can be accommodated.  

 

3.8 Conclusion 
The implementation of the design of the FunGIMS microarray module seemingly met all 

the goals set for the development of the module. There is, however, much that can be 

improved. The user interface, although functional, can be made more helpful with the 

incorporation of links relevant to the topic being viewed currently. The help files can also 

be upgraded to be more valuable, with a greater amount of content than just a description 

of a specific field.  

 

The module for viewing data allows users to see data currently in the database, but it 

lacks search functionalities, and this is something that must be added in the continued 

development of the FunGIMS microarray module as a matter of urgency. The analysis 

module is the area in the project that could expand the most. Currently, it provides users 

with insight into the quality of their data, but it does not offer users tools for the detailed 

analysis of their data. These added functionalities will truly add value to the system, and 

only if advanced analysis is incorporated in to the system will FunGIMS microarray 

become a tool that can compete with desktop installed alternatives, such as the TIGR 

TM4 suite. 

 

Some systems with related functionality exist in the public domain, and the most 

commonly used is the EBI ArrayExpress (Parkinson et al. 2005) database. In the 

following chapter, the FunGIMS microarray module is validated using locally available 
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data, and a comparison between various aspects the FunGIMS microarray module and 

ArrayExpress database is made. 
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Chapter 4  

 

Testing and Validation 

4.1 Testing 
4.1.1 Introduction 

One of the most important pre-requisites of the FunGIMS microarray module was that it 

should be a MIAME compliant microarray experimental data management system. The 

fact that so many microarray studies are now being published [55] creates the need for 

standardisation in the way microarray data are captured. Given the huge amounts of data 

generated in such an experiment, as well as the experimental data not “classically 

viewed” as being experimental data (experimental design information, protocols, 

bibliographic references, etc.), computer based data management systems are required to 

adequately store and manage microarray data.  

 

If researchers use such data management systems, the systems must provide the 

framework for users to store data in a standardised way, and systems providing users with 

the framework for storing microarray data in a MIAME compliant way should be the 

norm (Brazma, 2001). It is almost pertinent to go so far as to say that any microarray data 

management system that will be used for the management of public microarray 

experimental data should be MIAME compliant. 

 

This was one of the core design features of the FunGIMS microarray module. Both the 

data structure and the user interface were designed to comply with MIAME guidelines 

version 1 as was published on 28-03-2001 [56]. The implementation was to the letter, and 

if all required fields are completed in the system, the experimental data for that particular 

microarray experiment will be MIAME compliant. 

 

Creating a system that is MIAME compliant for microarray experimental data 

management and deploying it for use is not enough. The system must be tested, or 
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validated to demonstrate that it can perform all the functions as stated in the proposed 

outcome. To prove this fact, the system must be able to accept, via the user interface, 

microarray experimental data and store it in the MIAME compliant database.  

 

The current system implemented for the management of microarray data at the University 

of Pretoria is the BASE (Lao et al. 2003) microarray data management system. Currently, 

the system has only two registered users submitting submit microarray experiments, but 

no complete set of MIAME compliant microarray experimental data. Given the fact that 

around 20 microarray experiments were done during the period 2003-2005, these facts 

are somewhat worrisome. Given the importance of the MIAME guidelines for the 

standardisation of microarray data sharing (Brazma, 2001) and the fact that the tools for 

the correct (MIAME compliant) storage of microarray data are available, the question 

occurs as to why there are no complete MIAME compliant microarray data sets in the 

BASE system. 

 

4.1.2 Aims 

An experiment was designed to address two questions. Firstly, is the FunGIMS 

microarray module (which is MIAME compliant) functional and practical for the 

management of actual microarray experimental data, and secondly are microarray 

experiments at the University of Pretoria in general MIAME compliant. Since the 

FunGIMS microarray module is MIAME compliant, the assessment of its functionality 

would be done based on the ease of use, and the practicality of the methods for capturing 

microarray data. The MIAME compliance of microarray experiments would be assessed 

based on a custom MIAME score.  

 

The FunGIMS microarray module was designed to only capture the minimum 

information (by way of pertinent prompting of the user to insert data) to make the 

experimental data MIAME compliant. It is therefore not possible for an experiment to be 

considered 100% MIAME compliant if one data field is not inserted into the system. The 

MIAME score calculated in this study is based on this fact. Each required field has a 

score of one. If the microarray experimental data provided for insertion into the system 
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included the required field’s information, that particular experiment’s MIAME score was 

incremented by one.  If the field’s information was missing, the score is not incremented. 

This process continued through all the different modules of the FunGIMS microarray 

module until the final data was inserted in the “Measurement and Data Analysis Data” 

module. The maximum possible score an experiment could have was 85, which would 

correlate to 100% MIAME compliance based on the design of the FunGIMS microarray 

module. 

 

4.1.3 Methods 

The system was implemented on a low end system in Eclipse 3.1 [30] with Struts Studio 

Pro 6.2.1 [31] and Tomcat 5.0 [32], PostgreSQL 8 [25], JAVA 1.4.2 (with biojava [51] 

installed) [28], R 2.3.0 [36] (with limma and the marray packages installed [37]) and 

using a Firefox [52] web-browser as the platform for the interface. The system was run 

with the browser and server on the same machine, and no data transfer took place across 

a network.  

 

Experimental data was obtained for two microarray experiments done at the University of 

Pretoria. This was done by verbally requesting experimental data to test a MIAME 

compliant microarray data management system. One experiment was a microarray 

experiment done on Arabidopsis thaliana (Experiment A) and the other was an 

experiment done on Pearl Millet (Experiment PM). It was requested from the researchers 

the all available experimental data should be provided. Researchers placed the data in a 

specified directory, thereby isolating the data to be used for the validation of the system 

from user-developer interaction.  

 

Using the interface provided by the FunGIMS microarray system, the data for experiment 

A and PM was inserted into the FunGIMS microarray database. The data consisted of 

both text data and files that were uploaded into the system. The insertion of the data for 

the two experiments was done separately. The system was designed in such a way that it 

would not allow incomplete experimental data of a particular type (e.g. hybridisation 

description data) to be inserted. To compensate for missing experimental data, it was 
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decided to give fields for which data was not provided one of two values. If the field 

required text data such as a protocol name or description and the data was not provided, 

the value was set to “Unknown” (Figure 4.1a). If the field required a numerical value 

such as temperature and the value was not provided in the data, the value was set to 0 

(Figure 4.1b). Both these values would constitute a MIAME score of 0 for that particular 

field. 

 

 

 

 

 

 

 

Figure 4.1: a) If text or ontology based information is not provided, the values are set to Unknown, 
and if b) numerical data is not provided, the value is set to zero. 
 

Experimental data were inserted and in several cases, assumptions were made and 

missing data was collected or values assigned based on logical deductions and directions 

from the researchers. An example of this was the protocols for some of the experimental 

procedures. The protocols were not provided, but a URL to where the protocols were 

available was given. This meant that the protocols could be retrieved or that the URL 

could simply be inserted instead of the protocol description, which technically could 

mean that the MIAME requirement for a protocol was fulfilled.  

 

The interface was evaluated based on its functionality, and MIAME scores for the two 

experiments were calculated based on the completeness of the data provided by the 

research groups. 

 

 

 

 

 

a) 

a) 

b) 
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4.1.4 Results and Discussion 

 

4.1.4.1 FunGIMS Microarray Module 

 

General Data Management 

The FunGIMS Microarray system generally performed its tasks as designed. All data 

insertion steps completed successfully, and it was confirmed that the data was correctly 

inserted into the corresponding database fields. Retrieval of the data was possible using 

the Viewing module or by viewing the data for editing. Only one problem was 

encountered with a single module, in which an incorrect variable was displayed, but this 

was a typing error during programming and could easily be corrected.  

 

The user interface for inserting data was found to be to user friendly and laid out in a 

logical fashion, making navigation intuitive for any person familiar with a microarray 

experiment workflow. This is one of the things that sets the system apart from tools such 

as BASE and ArrayExpress, where the user is presented with a much less intuitive 

interface for the insertion of data into the system.  

 

The system handled all the data inserted very well. An exception to this was with the 

submission of the array layout information. The arrays for Experiment A were all 30,000 

features in size, and when the dimensions were submitted it took the system around 30 

seconds for the creation of the table in the database for that particular array. With data 

sets as large as this, however the problem should not be apparent on a production server 

with more resources than the low end test system. 

 

Performance of Additional Functionalities 

The Data Analysis module of the FunGIMS microarray system was used for creating 

quality plots for the arrays that were uploaded in the form of the GPR files for the two 

experiments. Experiment A had a full complement of plots produced, and the plots 

showed arrays of high quality.  
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An example of this is apparent when inspecting the green- and red background images. 

These show very little interference from dyes in the background, meaning that the spot 

intensities can be accepted with a high degree of confidence (Figure 4.2)  

 

 

 

 

 

 

 

 

Figure 4.2: The red- and green background images of array 275 in Experiment A demonstrating the 
high quality of the slides. There is almost no signal picked up other that the signals in the spots 
according to these plots, meaning background interference in spot intensity values would be almost 
non-existent. 
 

The MA- and box plots generated also demonstrated the quality of the slides that were 

printed. The MA-plot showed the “standard” dye bias influences, but after normalisation, 

the data points were centred on zero.  

 

 

 

 

 

 

 

 

Figure 4.3: These figures demonstrate the quality of the slides, with the right-hand post-
normalisation MA plot demonstrating the value of the normalisation procedure followed (Print-tip 
LOWESS normalisation). 
 
The effects of the LOWESS normalisation are not as evident in the Box-plots generated 

as part of the quality plots. The reason for this may be the size of the dataset. It is very 

difficult to physically see from the box plots that there is an improvement in the centring 

of the log2 ratio around zero with all the print-tip values plotted, and much closer 
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inspection would be required. The effects of the normalisation of the entire dataset were 

much more evident when looking at the MA-plots pre- and post normalisation, although a 

shift in log2 ratios from more negative to positive can be seen in the box-plots. 

 

 

 

 

 

 

 

 

 

Figure 4.4: The pre- and post Print-tip LOWESS normalisation box plots of array 275 in Experiment 
A. It is difficult to view the actual improvement, but many more print-tip groups with a positive log2 
ratio are evident in the post-normalised box plot. 
 
The same analyses were done for Experiment PM. There is a distinct difference in the 

array quality, as can be seen by comparing the red- and green background images. In 

Experiment PM there was much more background noise, meaning the data was of lower 

quality than that of Experiment A (Figure 4.5). 

 

 

 

 

 

 

 

Figure 4.5: The quality of the two arrays can be compared. The array of Experiment PM is of lower 
quality than the array of Experiment A, since there is much more background dye “noise”. 
 

For Experiment PM there was a problem with the implementation of the quality plot 

generation after the back-and foreground images were created. Whenever any one array 

(GPR file) was submitted for the generation of the quality plots, there was an error during 

the normalisation of the dataset for the generation of the post-normalisation data plots as 
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well as the pre-normalisation box plot. The reasons for this were not apparent and 

appeared to be present in the R code. Due to time constraints, this was not investigated 

further. The pre-normalisation MA plot was created, and as can be seen the dataset must 

be normalised before any further comments can be made on the quality. 

 

 

 

 

 

 

 

 

Figure 4.6: The pre-normalisation MA plot of the Experiment PM array. Normalisation is definitely 
required since the dataset is clearly not centred on zero. 
 
 
Practicality 

The system in general was effective for inserting microarray experimental data. This was 

especially true with the feature for the insertion of files into the system. Some of the 

protocols obtained from the University of Pretoria microarray website [22] were in the 

PDF file format. These files could be uploaded and the content of the files did not need to 

be extracted for the protocol to be inserted into the system.  

 

There were several areas where the system did not manage to practically provide user-

friendly solutions to the data management challenges: 

 

System Errors and Shortcomings 

The FunGIMS microarray experimental data management system is by no means 

flawless. There were several areas were design flaws and system shortcomings were 

exposed when using real datasets under real submission conditions.  

 

• There are links to help files next to each clickable feature inside the FunGIMS 

microarray system, and although this should prove valuable, these files are only as 
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helpful as the text they contain. Some of the files proved useful in their description of 

terms that might seem unfamiliar or strange, but sometimes the one sentence inside 

the file was probably not enough to assist someone with limited knowledge on a 

particular topic. An example of this would be the help file concerning the image 

analysis results file that must be submitted. 

• Errors and misunderstandings also occurred during the development phase with the 

interpretation of the MIAME documentation. An example of this is the requirement 

that the amount of nucleic acid labelled of the Biomaterial sample be given. This can 

be interpreted as either being the total volume of the final labelled extract mixture, or 

the concentration of the labelled extract mixture (amount of nucleic acid per volume). 

This distinction was not clear from the MIAME documentation used during 

development, and so the value provided in the experimental data could not be inserted 

as-is into the system, since the unit ontology linked to the amount of nucleic acid 

labelled was wrong. This was the only place were this error in interpretation of the 

MIAME guidelines was evident, but given the incomplete nature of the test 

experiments, there might be more such errors.  

• The area where the system performed worst was in the collection of 

Reporter/Composite sequence information. Experiment A contained reporter names 

(gene IDs) for all 30,000 spots. At present, it is possible to submit batches of reporter-

/composite sequence data (via fasta files with the spot order being the same as the 

order in which the sequences occur in the fasta file), but no additional information 

such as the strandedness (single stranded or double stranded) or sequence type (e.g. 

synthetic nucleotide) information. This means that this information, which is 

technically a requirement for MIAME compliance, should be updated manually at a 

later stage. This is not practical for 30,000 sequences. It is also not yet possible to link 

certain spots on the array to particular gene names for composite sequences in an 

automated way, and this must be done manually. This is not practical for an array 

containing more than a few hundred spots.  

• The final real shortcoming of the system is the way in which users view the 

experimental data already inside the system. At present, the FunGIMS microarray 

module does not have a function for searching the database for current microarray 
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experiments with specific desired characteristics. The only way in which data is 

viewed at present is to scroll through every single experiment one at a time and 

search for experiments manually. When considering effective data management, this 

is the biggest single shortcoming in the system, considering the vast dimensions of a 

microarray experiment and the time it does take to manually scroll through each 

experiment and each data type for each experiment.  

 

4.4.2 Experimental data MIAME compliance 

(The detailed results for the scoring of the two experiments are shown in Appendix A, 

Table 3 and 4.) 

The request for all data of a particular microarray experiment to be provided did not 

result in complete data of an experiment being provided. Neither of the two experiments 

were completely MIAME compliant based on the MIAME score given. Experiment A 

was 73% MIAME compliant and Experiment PM was 56% MIAME compliant. 

 

Using the FunGIMS microarray module for the management of actual experimental 

microarray data proved to be a relatively easy task. The system has a logical and user-

friendly layout, and with the different stages of a microarray experiment broken up into 

distinct modules, the navigation and submission is done in a logical and familiar (for 

microarray scientists) way. 

 

The fact that the experimental data used in this study was not MIAME compliant was 

troublesome. In a scientific world where data sharing is becoming more important, it is 

essential that standards be adhered to which will ensure easy transfer of knowledge and 

ensure complete understanding of experiments done. MIAME is the biggest effort in this 

direction yet put forward regarding microarray experiments and will be strengthened by 

the participation of larger numbers of researchers. There are many tools and guidelines to 

assist scientists to keep their experiments MIAME compliant from the planning phase, 

meaning that there is little reason not to adhere to the standards.  
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With the two test experiments in this study, the experimental results (the spot intensity 

values) were always complete. Gene lists were also provided, but interpretation of the 

experimental results was still not possible. Even though Experiment A was more 

descriptive regarding the treatment of samples prior to sample extraction and labelling, 

neither set of experimental results contained information on which sample was labelled 

with which dye. This would have made interpretation of the results impossible even in 

experiment A, which had a reasonably complete description of the biomaterial treatment 

steps followed. Experiment PM did not even have this information in the experimental 

data provided.  

 

Protocol information was also not adequate. A URL to protocols used at the University of 

Pretoria microarray facility was provided, but several different protocols were available 

for each experimental step. It was not clear which protocol was used, and so assumptions 

had to be made in order to provide the system with a protocol.  

 

The two MIAME scores given to the experiments (73% for Experiment A and 56% for 

Experiment PM) are indicative to the lack of standards implementation in the data 

provided for this experiment. With the data provided for these experiments, neither of the 

experiments could be replicated without significant input from the scientists originally 

involved in the study. 

 

The minimum information about a microarray experiment is the minimum information 

required to interpret the microarray experiment and repeat the experiment without any 

input from people involved with the initial experiment. When looking at this definition 

and taking into account that the FunGIMS microarray system is only just MIAME 

compliant, a MIAME score based on provided data of 99% would not be enough in this 

instance. 

 

4.1.5 Conclusions 

Only with the FunGIMS microarray module used for the capturing of actual microarray 

data, the shortcomings and flaws in the system could be shown, and there are still several 
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improvements that must be made to the system to transform it from a good functional 

system into an excellent tool for the management of MIAME compliant microarray 

experimental data.  

 

4.1.5.1 Current System Status – The advantage of the FunGIMS Microarray 

Module 

The current system has its advantages and disadvantages and there are several areas at 

which the system as it is now excels.  

 

User Interface  

The user interface is not cluttered and is laid out in a user friendly and logical way. The 

system is MIAME compliant, but does not go “overboard” in trying to be correct. The 

system can be described as minimalistic yet functional in the way it captures data in a 

MIAME compliant fashion. Although the Help files are not yet perfect, there exists one 

for every object the user will be confronted with. This adds great value to the system and 

ensures that people can help themselves and that time need not be wasted by looking for 

help from system administrators if fields and terms are not fully understood. 

 

Developers “Point of View” 

From a developers point of view that might work with the system there are several areas 

which can be commented on. The whole system is built in a simple yet functional way, 

with easy maintenance possible. The system has a relatively simple data structure capable 

of storing MIAME compliant data that is not difficult to understand and use. The system 

is also relatively portable given the way in which it was set up, only 4 variable changes 

required for moving between a Linux based operating system and a Windows based 

operating system. The development environment used is also portable, and the 

development interfaces is the same for both environments.  

 

The use of R/Bioconductor and BioJava makes the system more difficult to move 

however, since these packages must be installed and correctly configured inside a 

particular system for the FunGIMS microarray module to function. When these packages 

 
 
 



 94 

are set up however, the system can be easily deployed, and with future improvements 

(see next section) can be a very useful tool for the management of microarray data.  

 

4.1.5.2 Future Work 

Though the system is functional there are several areas that will have to improve for the 

system to be useful and practical as a microarray data management system. 

 

a) Searchable 

With the development of the FunGIMS microarray module, only small volumes of 

microarray experimental data were used for testing and development purposes. It is 

envisaged however, that microarray experiments will increase in volume, and that the 

data would have to be managed. If the platform for the management of a large number of 

microarray experiments is to be the FM module, then the methods of data access will 

have to be improved.  

 

The basic functionality to view microarray experiments already exists in the form of the 

‘Viewing’ module. This module must be extended to make it possible for users to search 

the database for experiments or experimental data by specific parameters. These 

parameters will include searching several fields of data, and the way in which this will be 

done (users typing in search terms, drop down menus of ontologies, Boolean searches 

etc.) must be decided upon.  

 

b) MAGE-ML 

The MGED society [9] is truly giving the microarray community a standard with which 

to communicate, by promoting the use of MAGE-ML for microarray data sharing. The 

use of the XML standard can be found in most microarray data management tools, and its 

widespread use makes it very valuable. The implementation of the ability for users to 

download and upload microarray experimental data in MAGE-ML format should be 

viewed as a key requirement for making the FM system a truly useful and competitive 

system. Several tools exist for the creation of the MAGE-ML files, the most useful being 

the open source MAGE-stk [9] implementations. 
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These tools can be downloaded and used to assist in the implementation of the 

functionality. There also exist several tools for the validation of the format of MAGE-ML 

files. These tools can also be downloaded and implemented for validation purposes [9]. 

The addition of these functionalities will truly be a value adding exercise, and make the 

system more useful. 

 

c) Online Analysis 

Currently, only quality analysis of arrays can be done in the FM system. The analysis can 

also only be performed if specific types of data are uploaded in specific format. These 

issues make the system very inflexible, and several steps must be taken to expand and 

improve the online analysis capabilities of the system. 

• More analysis capabilities 

 At the moment only one type of analysis is possible, and that is the quality analysis of 

the microarray data uploaded into the system. While this is a value added feature, 

more different types of analysis are required to truly make the system competitive as 

a microarray data analysis platform. There are many different packages in the 

R/Bioconductor system that can perform every type of analysis that users may 

require. One such a package that is particularly useful is the limma [37] package. This 

package contains different classes specifically for the statistical analysis and 

clustering of microarray data. It will be possible to implement the same procedures 

followed for the marray deployment, and making the analysis features of the limma 

package available to users.  

 The main difference will be that an interactive web-front end must be created, since 

user input is required at several points in the analysis of microarray data when using 

the limma package. This will result in many hours of development time, but the 

completion of this functionality will result in a truly useful tool for users utilising the 

FM system for the management of their microarray experimental data. At present, the 

limmaGUI package [37] exists, which is a graphical user interface to the limma 

package functionalities, but no web-based interface to limma exists. An added benefit 
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if the creation of such a front end will be that the completed product could be 

uploaded to the Bioconductor project for use by others as well.  

• Accommodation of more data formats 

 At present, the only data formats that are accommodated in the FM system are those 

generated by the GenePix software package for the analysis of microarray images. 

There are however several other software packages that could be used for the same 

purpose that are freely available. On such and example is the use of TIGR Spotfinder 

(Saeed et al. 2003) for the analysis of scanned microarray images. These software 

create files similar to the *.gpr and GAL files, but with slight variations in structure. 

It is important to be able to accommodate these and other popular file types, making 

the system more useful. 

 Two colour cDNA microarray experiments are not the only type of microarray 

experiment, and another format of this type of experimentation that must be 

accommodated is the Affymetrix [53] format. The ease of use of these systems makes 

them very attractive, and for a microarray data management system to be truly 

competitive with other existing systems, attention must be paid to this format of the 

experiment.  

• Deploy existing, established, proven and well supported tools 

 ExpressionProfiler is a good example of an online analysis tool for microarray data. 

The tool is also freely available, and can be set up by any organisation provided some 

rules are adhered to (Kapushesky et al. 2004). Given the fact that this tool already 

incorporates all the required functionalities for the effective analysis of microarray 

data, it would be easy and effective to simply deploy the system as an integrated 

resource to the FM module. This would be much less effort than developing a web-

interface to limma as an example, and would leave developers free to work on other 

aspects while not compromising on product quality at all.  

 

d) Expansion of Current Functionalities 

Current functionalities of the system other than the data access and online analysis 

functionalities can also be upgraded to ensure better functionalities of the system.  
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• File loading 

 The FM system allows users to insert data into the system in the form of files. 

Presently, the user can insert any file he/she likes, and the system will accept that file 

and store it. This can be problematic however, and filters will have to be created to 

prevent the accidental or purposeful misuse of the functionality.  

o Check file format 

 The format of files to be submitted at various stages will have to be decided upon, 

and preventative measures put in place (validation) to ensure that correct files are 

uploaded to the system. The file format must be determined depending on the type 

of data the file will contain. 

� Protocols 

 When a user chooses to upload a protocol description as a file, the format of that 

description can not be just any format. Examples of formats that can be expected 

are *.txt, *.pdf, *.doc, *.sxi. These formats represent common text document 

formats, and should be allowed. If however files with formats such as *.jpg 

(image files) or *.exe (executable files) are submitted, the submission should be 

blocked, since text descriptions of protocols are not likely to be in either of the 

latter formats. These ‘wrong’ formats should be blocked, and error messages and 

help files should inform users of the correct file formats that may be uploaded into 

the system for this particular type of data. 

� Images 

 Scanned image files of microarray slides will be uploaded into the system in the 

‘Measurement and Data Analysis’ module. The common format for these images 

are the *.tiff format, and other image formats (*.jpg, *.png, *) although possible, 

should be excluded, along with any other file extension. This will ensure uniform 

data in the system, and will be useful if image viewing/analysis functionality is to 

be included in the online analysis features of the FM system. 

� Image Analysis results 

 Files uploaded here containing the feature (spot) intensities and feature (spot) ID 

data include the *.gpr and GAL files uploaded in the ‘Measurement and Data 

Analysis’ module. There are other data formats that may be generated by different 
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software that could be accommodated, and these formats must be identified and 

verified upon submission to ensure correct data uploaded.  

o Check file size 

 The accepting of file data into a system such as this could have major implications 

for data storage on any server that would host such a system. On scanned image file 

can be up to 30 Mb in size, and if 1000 different hybridisations (each with an 

image) is uploaded, the storage capacity needed will be enormous. Even text 

descriptions of protocols in RTF (Rich Text Format) can result in huge storage 

requirements. It is possible to manage this phenomenon by restricting the size of 

file that can be uploaded in different sections of the system. This will ensure and 

prevent unnecessarily large files uploaded, and ensure manageable storage 

requirements for hosting the FM system. 

• Help files 

 Throughout the system, links to help files ensure that users understand what each 

feature in the FM system is for, and how that feature must be used. These help files 

are a truly invaluable feature, since it will keep users informed about the 

functionalities of every part of the system. At present, these help files are helpful, but 

so much more information can be included, that an upgrade of all the help files in the 

system must be done. The help files should not only include information on a 

particular button or field in the system, but should include links to online resources 

further describing the topic, truly giving the user all the available help that can be 

provided.  

With these upgrades and changes the functionality of the system will be streamlined and 

the user friendliness improved, making the system more attractive to use.  

 

e) Documentation and Final “Tweaking” 

The value of having a user friendly system cannot be overstated. Functional systems with 

a high degree of difficulty for its use are often times not used just because it is not simple. 

Having useful user documentation is essential for making the system as usable as 

possible. This user documentation should include: 
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• Tutorials 

 In addition to all the help files that exist in the system, tutorials or worked examples 

on how to utilise the system must be created. This will allow users who are unfamiliar 

with the system to have an example of how the system functions, and make the whole 

process of using the system easier.  

• FAQ’s 

 When having a system such as this, many questions about the functioning of the 

system or purpose of some components can be anticipated, and a page answering 

these questions can be set up. Giving an email address of a systems administrator, or 

a “help desk” could also assist in generating more questions that can be answered and 

in so doing providing another resource for those wanting to use the system. 

• Programmers documentation  

 Help documentation is not only required for users, but for potential developers of the 

system as well. The creation of documentation describing the system from a 

developers’ point of view is essential for the future maintenance and upgrade of the 

system. Documentation here would include the in-code documentation describing the 

actual code itself, as well as other types of documentation e.g. UML diagrams 

describing the data structure.  

The creation of documentation is not the only final tasks that must be performed. Systems 

with so many different components are bound to have some bugs. This can be everything 

from coding errors to typing errors, and these must also be corrected for the system to be 

considered fully functional.  

 

4.1.5.3 Microarray Experimental Data Standards 

Making huge capital investments in experimental hardware is not the only thing required 

for that hardware to be used properly. There must also be training and protocol 

implementation and development to ensure that the instruments are used correctly and 

optimally. With experimental procedures such as microarray which generates huge 

volumes of data, software used to run the hardware correctly and handle and analyse the 

data correctly are as important as the spotting machine or scanner. The images must be 

analysed, the results stored and normalised etc. 
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MGED defines microarray experimental data not as just the images and analysis results 

however. It put forth a readily accessible standard in which is defined what microarray 

data is. In public microarray research where data are shared, standards for data sharing 

must be put forth, especially when experiments yield such huge amounts of diverse data. 

MIAME is such a standard and is the standard enjoying the largest support that exist 

today [9]. 

 

This raises the point then why microarray experiments done with public funding are not 

available for the public to share in a readily agreed upon format. With roughly 20 

microarray experiments done at the University of Pretoria and no MIAME compliant 

description of the experiment (including results) in the BASE system (system currently 

used for microarray data management) what is happening to the data? Why if the 

software is available is there not 20 microarray experiments fully described? 

 

There can be several reasons for this. The experiments may be part of a larger study and 

so the researcher feels reluctant to publish the data in public repositories until the data is 

published. This is not a valid reason however since software systems provide for data to 

remain private until the user wishes to publish. 

 

Perhaps there is a more fundamental mindset change that must occur. Experimental 

design must include and make provision for capturing all necessary data and inserting 

data into the databases or storing data for later insertion which conforms to acceptable 

standards. There seems to still be a lack of this type of planning done, especially when 

looking at the experiments used for this study. The experimental design was done, but the 

clinical separation of data into the modules prescribed by the MIAME standards was not 

evident. For microarray experimental data to be truly complete, perhaps what is required 

during experimental planning is a top down approach, in that the researcher looks at the 

requirements of the MIAME standards, and then write the proposal and plan the 

experiment so that each and every one of the experimental data requirements are met at 

the end of the normalisation of the spot intensity values. 

 
 
 



 101 

4.2 Validation 
4.2.1 Introduction 

The level of MIAME compliance of microarray experiments done at the University of 

Pretoria is very low, and from the more than 15 experiments done in the recent time 

period (2003-2005), not one MIAME compliant dataset exists in the BASE (Loa et al.) 

system. Having a MIAME compliant dataset is hard work, since there is a lot of data and 

information to be combined. Even if all the guidelines exist, such as the published 

MIAME checklist on the MGED society website [46], it seems that the amount of time 

and effort it would take to have microarray experimental data in this format is often 

intimidating. 

 

The reason for designing microarray data management tools that are MIAME compliant 

is to make the task of having MIAME compliant experimental data as easy as possible. 

This is done by providing a functional user-friendly tool to allow and guide the user 

through inserting microarray data and information that is MIAME compliant. As it takes 

large amounts of time and effort to collect all the data and information required to make a 

microarray dataset MIAME compliant, the time and effort taken to use and understand 

the tool to manage the data with should not be too extensive. 

 

Since the system used at the moment for microarray data management is the BASE 

system, it could be possible that the system is simply too cumbersome for someone with 

no knowledge of the system, i.e. that the learning curve for the BASE system is too steep. 

One of the major design principles of the FunGIMS microarray module was to keep the 

system as simple as possible while still maintaining MIAME compliance. Since the 

system was MIAME compliant given its design criteria (based on the MIAME checklist 

[46]), the user friendliness of the system could determine its success as a microarray data 

management system. Since the BASE system is currently underutilized, a comparison 

based on the ease of use of both systems was done to determine which system was more 

likely to be used. 
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4.2.2 Methods 

Two volunteers were given both systems side by side in a browser and given the task to 

enter microarray data into the system. The volunteers were not regular users of either of 

the two microarray data management systems, and the speed with which the managed to 

master both systems would give a good indications as to the relative efficiency of the 

systems.   

 

The questionnaire used for the comparison of the FunGIMS microarray module and the 
BASE microarray data management system. 
 
1. Go to the Main Menu of the Microarray data management systems and rate the 
following 
 
User Interface:  1 2: 3: 4: 5: 
 
Easy to understand: 

 
1: 

 
2: 

 
3: 

 
4: 

 
5: 

 
2. Add a new loop design microarray experiment with one hybridisation and rate the 
following 
 
User Interface:  1 2: 3: 4: 5: 
 
Easy to understand: 

 
1: 

 
2: 

 
3: 

 
4: 

 
5: 

 
3. Add experimental design information 
 
User Interface:  1 2: 3: 4: 5: 
 
Easy to understand: 

 
1: 

 
2: 

 
3: 

 
4: 

 
5: 

 
4. Add Biosource/material information - Add a test and reference sample 
 
User Interface:  1 2: 3: 4: 5: 
 
Easy to understand: 

 
1: 

 
2: 

 
3: 

 
4: 

 
5: 

 
5. Add array design and dimension information - add an array with the following 
dimensions: 2 columns, 2 blocks, 6 rows per block and 22 features per row 
 
User Interface:  1 2: 3: 4: 5: 
 
Easy to understand: 

 
1: 

 
2: 

 
3: 

 
4: 

 
5: 
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6. Add Hybridisation information - Add one hybridization event where the test and 
reference samples are hybridized on the array described in the previous step 
 
User Interface:  1 2: 3: 4: 5: 
 
Easy to understand: 

 
1: 

 
2: 

 
3: 

 
4: 

 
5: 

 
7. Add Measurement and Data Analysis information 
 
 Add the following information 
  
 7.1 Add Raw data 
   

User Interface:  1 2: 3: 4: 5: 
 
Easy to understand: 

 
1: 

 
2: 

 
3: 

 
4: 

 
5: 

 
7.2 Add Image analysis results 

   
User Interface:  1 2: 3: 4: 5: 
 
Easy to understand: 

 
1: 

 
2: 

 
3: 

 
4: 

 
5: 

 
  
 

7.3 Add Normalised Information 
   

User Interface:  1 2: 3: 4: 5: 
 
Easy to understand: 

 
1: 

 
2: 

 
3: 

 
4: 

 
5: 

 
8. Update the experimental design information entered in step 3 
   
User Interface:  1 2: 3: 4: 5: 
 
Easy to understand: 

 
1: 

 
2: 

 
3: 

 
4: 

 
5: 

 
9. Find the experimental design protocol that should have been submitted along with the 
experimental design information 
   
User Interface:  1 2: 3: 4: 5: 
 
Easy to understand: 

 
1: 

 
2: 

 
3: 

 
4: 

 
5: 
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The volunteers were given question sheets based on the MIAME checklist, and asked to 

insert microarray information into the two systems. The MIAME checklist defines 5 

different “categories” of microarray data. These are Experimental Design information, 

Bio-source information, Array design information, Hybridisation information and 

Measurement and Data analysis information. The volunteers were to enter information 

about each of these categories. After information was entered, the volunteers were asked 

to edit some of the data entered into the systems, as well as retrieve some information. 

The users were asked to create a new experiment in the particular management system 

and then to enter experimental data into the system to determine the ease of use and the 

learning curve required. They were then to comment on the ease of the process, if it was 

easy to find help if something was not understood, and to score each of these questions 

out of 10. The free-form user comments are attached in Appendix B.  

 

4.2.3 Results 

The questionnaire (Appendix B) had 2 scores per question, and these were combined to 

give the final score as shown in Table 4.1. At first glance, the volunteers felt that the user 

interfaces of both systems were similar in their design in terms of a pleasing layout, but 

when people started to work with the systems the BASE system seemed less intuitive to 

use as is evident by the drop in scores for the BASE system from question 2 onwards 

(Table 4.1). The first task was to create a new experiment inside each system where new 

data could be entered (Question 2, Appendix B). This proved difficult with the BASE 

system, with one volunteer commenting that the controls seemed to be “hidden away”. 

From the start it was also evident that the help files next to the fields and buttons in the 

FunGIMS microarray module was well received. The volunteers rated it much simpler to 

find help with the FunGIMS system than the BASE system. 
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Table 4.1: These are the results of each of the questions as shown in the questionnaire as submitted 
by the volunteers. 
Question Number Score for BASE  

(out of 10) 

Score for FunGIMS  

(out of 10) 

1 8 8 

2 5 10 

3 4 9 

4 4 9 

5 3 4 

6 4 9 

7.1 4 10 

7.3 3 9 

7.3 3 10 

8 5 9 

9 3 6 

Total (out of 110) 46 93 

 

The remainder of the survey consisted of several tasks the users were required to perform 

using each system. The FunGIMS microarray system was designed based on the MIAME 

checklist, and since the questionnaire was based on that checklist it may have given the 

FunGIMS microarray module an advantage to some extent, but the MIAME checklist 

may be regarded as the gold standard. The volunteers found the FunGIMS microarray 

module easier to use for data submission in each of the categories.  It was interesting to 

see the perceived lack of help provided by the BASE system. Since the BASE system is 

MIAME compliant, each of the categories in the MIAME checklist should have 

corresponding entry points in the BASE system. Since the system design was so different 

from the checklist it is meant to implement, there should possibly have been more easily 

accessible help documentation for the system according the volunteers. 

 

Each of the data entry steps (for each of the 5 MIAME categories) were scored by the 

volunteers based on the data management system’s ease of use, and whether or not help 

was easy to find if something was unclear. The overall score for the BASE system in 
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terms of its ease of use was significantly lower than that of the FunGIMS microarray 

module. There were, however, two areas in which the FunGIMS system received a low 

score comparable to that of BASE. The first was where a new array had to be entered into 

the system. The FunGIMS system gave an unhandled exception and the Array could not 

be added by one of the volunteers. This exception was experienced with only one 

implementation of the FunGIMS system. On another platform the system performed 

flawlessly. The other area where the scores were comparable was in the retrieval of the 

protocol information, in which the FunGIMS system did not provide an adequate data 

retrieval mechanism. 

 

4.2.4 Discussion 

The reason for the significant difference in the overall scoring of the two microarray data 

management systems is most probably the steep learning curve for the BASE system. The 

volunteers commented that it was frequently not possible to find the location in BASE to 

enter the microarray data for a specific MIAME category in the allocated time, while all 

the places to enter the information could be found in less than the allocated time in the 

FunGIMS microarray module. The lack of adequate help documentation that was easily 

accessible was also highlighted as one of the most severe shortcomings of the BASE 

system.  

 

Another shortcoming highlighted was the fact that the information entry for different 

information types all looked exactly the same, and that there was no distinctive factor 

about any of the data types. Some volunteers found this confusing when using the BASE 

system. The BASE systems did perform better in some aspects than the FunGIMS 

microarray module. The volunteers found the FunGIMS data entry interface lacking 

where compulsory information was not indicated. The one overall task in which the 

BASE system did perform better than the FunGIMS microarray module was the retrieval 

of information. Since it had a search interface it was easy to retrieve the entered protocol 

information whereas volunteers could not retrieve the information in the FunGIMS 

microarray module as no search interface has yet been implemented.  
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The overall feeling in the test group was that the FunGIMS system was easier to use and 

much more user friendly than the BASE system. It was, however, noted that some of the 

extra features found in the BASE system such as group control and access permission 

control was something the FunGIMS microarray module could not compete with at the 

current stage. 

 

4.2.5 Conclusions 

According to the volunteers the FunGIMS microarray module was much simpler to use 

than the BASE system. Since the system is designed to be compatible with the MIAME 

checklist, presumably used by researchers to determine their experiments’ MIAME 

compliance, it was simple for people who were not familiar with microarray data 

management systems to enter microarray data into the system. The BASE system seems 

to have a very steep learning curve when a user is not familiar with it, and help 

documentation is not always readily at hand.  

 

The relatively steep learning curve for BASE might be the reason for the fact that no 

MIAME compliant microarray datasets exist inside the system at the local installation. 

Since MIAME compliance is the most important aspect of microarray experimental data 

for publishing, all efforts should be made by software designers to ensure that the process 

of getting MIAME compliant microarray experimental data is as painless as possible for 

researchers. 

 

Researchers want to spend as little time as possible on learning new tools to manage their 

data and as much time as possible on generating more, analysing it and making new 

discoveries. This is where the FunGIMS microarray module seems to succeed. Even if it 

does not yet have all the additional features of mature, well supported systems like BASE 

it gives researchers an efficient interface in which to manage MIAME compliant 

microarray experimental data. 
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Chapter 5 

 

Concluding Discussion 
The FunGIMS microarray module is a functional tool for the management of microarray 

data, which attempts to improve over existing systems in terms of user friendliness and 

functionalities. When comparing this system with existing systems there are several areas 

where the new system offers several novelties that can be very useful to users of the 

system: 

 

Data Structure 

When comparing the data structure to more complex ones based on literal MAGE-OM 

implementation such as that of ArrayExpress [53], the data structure of the FunGIMS 

microarray module is simple and easy to understand and interpret. This is a very 

important design characteristic, given the fact that the module would have to be 

integrated with the rest of the FunGIMS system. With different developers involved with 

the creation of the FunGIMS system, simple and easy to understand data structures will 

make the task of integrating data from within the different modules a much simpler task. 

Even if simple data structures such as this can bring into question extensibility of the 

system (especially with the inclusion of other array type data [53]), the benefits of having 

simple data structures for the initial role-out phase of the FunGIMS project outweighs the 

difficulties that might be encountered later on. 

 

User interface 

The user interface is deemed a strong point of this system. It is laid out in a fashion that 

will be familiar to scientists using microarrays. It also provides help and additional 

information on each aspect of the uploading process, reducing the need for researchers 

submitting data to go elsewhere to find meanings of terms or descriptions of data 

requirements.  The interface and data structure also allows the submission of files as part 

of protocol data submission. Since many different protocols are available as files, this 

eliminates the need for scientists to truncate complicated protocols for submission as text 
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in a text box. It also makes retrieval of the protocols easy for people querying the data in 

the database, since the text of protocols would not have to be extracted from the web 

interface in some way. A potential problem that might arise is if protocols are uploaded in 

file formats that are not frequently used. This issue is one that has been addressed in the 

“Future Work” section of the previous chapter, and is one of great urgency.  

 

MIAME compliance 

The MIAME compliance of the system is one of the most important aspects. With the 

MIAME standards finding widespread support in the scientific community, the 

encouragement of its use by providing tools for the storage of microarray experimental 

data in MIAME compliant formats is essential. This will ensure that microarray 

experiments done locally and utilising the system for data management is compliant with 

international publishing norms and standards and will ensure participation in the 

international microarray community.  

 

User friendliness 

The system was tested by volunteers and compared to the BASE microarray data 

management system. The users found the FunGIMS microarray module to be much more 

user friendly in nearly every aspect, owing to the fact that the learning curve for the 

FunGIMS  microarray module is much lower than that of the BASE system.  

 

Creating this system, however, is just a part of the bigger task. The remainder is the 

education of molecular scientists that must use their precious time inserting their data into 

the system. The adaptation of the MIAME standards for microarray data management is 

by no means a condition of participation in the international research community yet. The 

absolute necessity of standardisation of data for sharing is however a well accepted fact 

in the scientific community and with ever more effort being made to share scientific data 

this will continue to become even more important. This will make adhering to some 

standard for data management as important in future as good laboratory practice is for 

laboratory accreditation [54].  
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There are several challenges that must be addressed. The MIAME standards require 

substantial time investment on the part of researchers if all data needed for adherence is 

to be included. It is therefore critical to educate researchers on the necessity of adopting 

these good practices, even if they are not yet compulsory.   

 

With the final integration of the FunGIMS microarray module with the rest of the system 

the true benefits of integrated data management will become apparent in terms of 

functional genomics data integration. As sequence, protein and genotypic data are used to 

enrich microarray experimental data, this too may serve as incentive for researchers to 

give up more of their precious research time for accurate, correct and standardised 

microarray experiment data management. 
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Summary 

FunGIMS is a Functional Genomics Information Management System that will consist of 

several different modules. Each of the modules will be designed to manage different data 

types, and the data types in the different modules will be integrated providing a very 

useful tool for researchers with diverse research experimental data. The primary aim of 

this work was to create a MAGE-compliant microarray module for FunGIMS, utliamtely 

enabling efficient integration of functional genomics data from various experimental 

types. This system had to be created locally, since it is to be integrated with the rest of the 

FunGIMS system, and no existing system was compatible with the FunGIMS 

implementation framework. The system was developed in the Struts development 

environment and creating a novel data structure based on the MIAME standards for 

microarray data publishing, and the data standard was made as simple as possible while 

still being functional. The system was tested by requesting two sets of microarray 

experimental data, and inserting the data into the system. The system performed well, but 

there were several areas in which the system would need to be updated. At the same time 

the microarray experimental data were evaluated regarding their MIAME compliance, 

and neither of the experiments was 100% MIAME compliant. This is cause for worry, 

since the MIAME standards for microarray experimental data publication is such a 

widely used and accepted standard, and steps should be taken to encourage the adoption 

of the MIAME standards in the management of microarray experimental data. The 

system was also validated by enlisting volunteers to compare the FunGIMS system to the 

widely-used BASE system. The volunteers reported the FunGIMS system to be much 

more user friendly, and this fact could help with the low MIAME compliance associated 

with microarray experiments since the data management task would be easier using the 

FunGIMS system. 
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27. PostgreSQL track record description http://www.postgresql.org/about/ 

28. Java http://java.sun.com 

29. The Java Struts Environment http://struts.apache.org/ 

30. The Eclipse Integrated Development Environment http://www.eclipse.org  

31. Exadel Studio Pro Development environment 

http://www.exadel.com/web/portal/products/ExadelStudioPro 

32. Tomcat Web Server http://tomcat.apache.org 

33. JavaBeans http://java.sun.com/products/javabeans/ 

34. The MVC design pattern  

http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html  

35. Struts development Environment Custom tags  

http://struts.apache.org/struts-action/userGuide/building_view.html 

36. The R programming language http://www.r-project.org/ 

37. Bioconductor http://www.bioconductor.org  

38. HTML Tutorial 

http://www.htmlcodetutorial.com/forms/_INPUT_TYPE_HIDDEN.html 

39. Javascript http://www.javascript.com/ 

40. GenePix Array file format description 

http://www.moleculardevices.com/pages/software/gn_genepix_file_formats.html  

41. Bioconductor Vignettes 

https://phssec1.fhcrc.org/secureplone/bioconductor.org/docs/vignettes.html 

42. SJava – Interface between R and Java http://swik.net/sjava 

43. M vs A plot http://verjo19.iq.usp.br/xylella/microarray/Xylella/m-a-plot.htm 

44. MySQL http://dev.mysql.com/ 

45. Oracle http://www.oracle.com/index.html 

46. Perl http://www.cpan.org 
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47. Apache Web Server http://httpd.apache.org/ 

48. PHP http://www.php.net/ 

49. C++ http://www.cplusplus.com/ 

50. Swissprot http://www.expasy.org/sprot/ 

51. Biojava http://www.biojava.com 

52. Firefox http://www.mozilla.com/firefox/ 

53. Affymetrix http://www.affymetrix.com/ 

54. ISO17025 Laboratory Accreditation 

http://www.pqa.net/ProdServices/ISO/ISO17025.html 

55. ArrayExpress Usage Statistics  

http://www.ebi.ac.uk/arrayexpress-old/Help/stats/dbstat_052006.html 

56. MIAME 1.0 http://www.mged.org/Workgroups/MIAME/miame_1.0.html 
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Appendix A 
 
Table 1 – A summary of all the permanent tables in the FunGIMS microarray module database. 
 

General Tables 

Name Description 

security This table contains information on two types of ‘entities’ 

in the system, namely users, and experiments. Since this 

table will be substituted a detailed description of its 

aimed functionality is not warranted, but it must be 

mentioned that the experiment permission level (private 

or public) is stated in this table. 

securitygroup This table is meant to house information regarding 

research groups. This table would have been used to link 

multiple users via one security ID to an experiment in 

the form of a research group. 

person This table would house personal information of a user, 

e.g. name and last name. 

organisation This table would house information regarding the 

organisation a user is affiliated with, such as organisation 

name. 

contact This table would house the contact information of both 

individuals and organisations, e.g. telephone number, 

email address and postal address 

login_info This table would hold username and password 

information and link it to individual users 

Inter-modular tables 

Name Description 

audit This table is meant to serve as a log for any database 

communication, be it insertion, edit or delete operations. 
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It registers which user performed an event, and registers 

a time stamp, making it possible to track and evaluate 

past events should the need arise. 

description Several module elements, especially in the 

‘Experimental Design Information’ module must be 

described to give it meaning. This is true for example for 

the quality control steps followed during experimental 

design. This table stores descriptive information about 

these different entities 

fileupload For reasons to be discussed later, files can be uploaded 

into the system. Information regarding these files are 

stored in this table. Information for all file upload actions 

over all the modules are stored in this table. 

protocol In all the modules descriptions of the protocols followed 

for the various experimental procedures are required. 

This table stores all the various information for these 

protocols. 

publicprotocols This table stores the experiment id, protocol type, 

protocol id and the status (public or private) of each 

protocol. This table is used in the ‘Viewing’ module 

when all public protocols are retrieved for viewing by 

anybody. 

Modular tables 

Name Description 

Experimental Design Information 

experiment This is the central table for the storage of Experimental 

Design Information. It not only stores information, but 

also acts as the link between the other tables for this 

module. 
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experimentdesign This table stores specific information about the 

experimental design of the experiment, including the 

type of experiment, experimental factor and quality 

control steps taken. 

experimentreferencelink This table stores information regarding reference links 

(URL’s) that may be provided to better describe certain 

aspects of the experimental design.  

 

experimentreferencecit This table stores id’s to the bibliographic reference 

information and also id’s for the actual reference articles 

that might have been uploaded. 

bibliographicreference This table stores the actual reference information, 

including the name of the author, journal, and the 

publication date 

Bio-source/material Information  

sample_info This table stores the information about the sample name, 

as well as the ID’s of all the various protocols followed 

throughout this experiment. 

biosource This table stores information on the source of the 

biological material used during the experiment. This 

includes the organism the material was isolated from, 

developmental stage of the organism (if applicable) and 

what genetic modifications, if any, the organism 

underwent prior to the sample isolation. 
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biomatmanipprcl This table stores information related to the treatments the 

biological sample underwent prior to experimentation. 

This includes descriptions of growth conditions and 

descriptions of any in vivo or in vitro treatments the 

biological sample underwent.  

hybridextrprtcl This table stores information related to the extraction of 

the genetic material (in the case of a cDNA microarray 

experiment) that would be used for the hybridisation 

experiment. This includes the extraction protocol, as well 

as the amplification method used for preparation of the 

experimental sample. 

labellingprtcl This table stores information regarding the labelling of 

the hybridisation extract described above. It includes 

information on the amount of sample labelled, the label 

used and the protocol followed during the procedure.  

extcontrolsprtcl This table will store information on spike controls added to 

the experiment for assessing the quality of the experimental 

data. This information will include the type of control used, 

the concentrations at which it was added, and which 

elements on the array the control elements are hybridised 

to. (The functionality for linking the external controls to 

specific array elements will be discussed in later chapters) 

Array Design Information 

slide_info In this system, arrays are linked to slides and one slide 

can have several arrays. This table will store the 

information regarding these slides and the arrays 

associated with them. Slides are given a name, and the 

number of arrays associated with these slides is also 

stored in this table.  
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arraydesign This table holds the dimension information for each 

array, including the number of columns, blocks, rows 

and features that are inserted. This is useful information 

to have when queries must be built up against the array 

database, or statistics regarding the array provided 

physicalarraydesign This tables stores information regarding the physical 

design characteristics of the array. This includes the 

physical dimensions, the platform type used, the 

substrate used, the surface type used for array 

construction and the attachment type employed for the 

reporter sequences spotted onto the array. 

array******** This is not so much a static table as it is a table type. For 

each new array inserted into the system, a new table is 

created which contains the exact dimensional 

information about the array layout. When this table is 

created, places are ‘reserved’ for various different ID’s 

and other information types that must be inserted. Each 

row in the table represents a feature or spot on the array. 

The features are numbered according to the same 

numbering system employed by the GenePix [40] 

software for array image analysis. 

reporter This table contains the information regarding the reporter 

sequence that is spotted onto the array to which the 

cDNA from the biological samples that are to be tested 

must anneal. This includes information on the type of 

reporter it is, the strandedness of the reporter, the 

name/unique identifier and the sequence of the reporter. 

ID’s to protocols used for the construction of the reporter 

sequence are also provided.   
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featuretypes This table contains information about the feature type. 

The feature is the physical spot seen on the array after 

spotting. Information stored here includes the feature 

dimensions and information on the type of attachment 

seen in the features on the array. 

compositesequence This table stores information related to the composite 

sequence. The composite sequences are the sequences 

from which the reporters are derived. Information stored 

here includes the name/unique identifier of the 

composite sequence as well as the sequence itself.  

Hybridisation Information 

hybridization This table stores information related to the hybridisation 

event during the experiment. This table is mainly a linker 

table to the information, meaning the table mainly stores 

ID’s to the various information locations inside the data 

structure. This table contains the ID’s of the reference- 

and test samples, as well as the arrays identified for the 

hybridisation procedure.  

hybevent This table stores the information regarding the 

hybridisation event, including the quantities of labelled 

targets used, the hybridisation instrument and the 

hybridisation conditions.  

 

 

hybsolution This table stores information regarding the post-

hybridisation washing procedure, including the blocking 

agent, type of washing agent used, concentration and the 

wash protocol followed 
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Measurement and Data Analysis Information  

in_silico This table will store ID information regarding the 

insertion of Measurement and Data Analysis information 

and data.  

rawdata This table will store information regarding the raw 

scanned data of the hybridised array. This information 

includes information regarding the scanner equipment 

used, as well as file ID’s for the actual scanned images.  

imganalysis This table will store information regarding the image 

analysis procedures followed during the experimental 

data analysis. This includes the software used for the 

purpose, as well as a protocol description. The image 

quantisation results (usually in the form of a spreadsheet 

file with spot intensities and ID’s) can also be uploaded 

after image analysis, and this table will store the file ID.  

normalized This table will store information regarding the normalised 

and summarised data of the experiment. This includes a 

description of the protocol followed, which must contain 

information on the software used, settings of software etc. 

The normalised results for the particular array can also be 

uploaded into the system, and the file ID will be stored in 

this table.  
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Table 2: The Three letter ID codes and descriptions of the data types they are meant to represent. 

General ID’s 

Three letter code ID Description 

PER:  Person ID 

ORG:   Organization ID 

SEC:   Security ID 

SGR:  Security group ID 

SGA:   Security group ID 

SGG:   Security group ID 

Experimental Design ID’s 

EXP:   Experimental ID 

EXD:   Experimental description ID 

EXR:   Experimental reference ID 

Bio-Source/Material  ID’s 

SPL:   Sample ID 

CIT:   Citation article ID 

FIL   File upload ID 

BMM:   BioMaterialManipulations protocol ID 

HBE:   Hybridization extraction protocol ID 

LBL:   Labelling protocol ID 

SPK:   External controls spikes protocols ID 

Array Design ID’s 

SLD:   Slide ID 

ARR:  Array ID 
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REP:   Reporter ID 

FTP:   Feature type ID 

CPS:   Composite sequence ID 

Hybridisation ID’s 

HYB:  Hybridisation ID 

HSL:   Hybridisation soloution ID 

HEV:  Hybridisation event ID 

Measurement and Data Analysis ID’s 

INS:   In Silico ID 

RWD:   Raw data ID 

IMA:   Image Analysis ID 

NRM:   Normalized ID 

Miscellaneous ID's 

DCR:   Description ID 

PCL:   Protocol ID 

NVT:   NameValueType ID (Additional Information ID) 
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Table 3: The results of the MIAME scoring for Experiment A.  
 
FunGIMS module Comments 

Experimental Design Data 

(Total = 9) 

Score achieved: 4/9 

Experimental Design 

Description (Total =8) 

No Experiment Name, No experiment type, Experiment 

factor not known, no quality control descriptions (3/8) 

Link- and Bibliographic 

data (Total = 1) 

No link or bibliographic reference given, link to 

Microarray website inserted (1/1) 

Biomaterial Information 

(Total = 35) 

Score Achieved: 31/35 

Sample Information (12) Sample provider unknown, sample type unknown, cell 

type used unknown (9/12) 

Biomaterial Manipulations 

Protocols (9) 

Separation technique of sample and infectious agent not 

specified (8/9) 

Hybridisation Extract 

Preparation Protocols (4) 

All information given (4/4) 

Labelling Protocol (4) 

 

Label used not specified for each sample  

(3/4) 

External Controls added 

Information (6) 

External controls not specified. Must then be assumed that 

no external controls were used. (6/6) 

Array Design Information 

(Total = 16) 

Score achieved: 8/16 

Array Design Information 

(7) 

Array dimensions not given, platform type used not 

specified, substrate specification unknown, surface 

specification unknown (2/7) 

Array Dimension 

Information (4) 

All array dimension information taken from GPR file 

(4/4) 

Feature Type Information 

(3) 

Feature dimension information not known, feature 

attachment type not known (0/3) 
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Reporter/Composite 

sequence Information 2 (If 

gene list is present, then it is 

acceptable. GAL and GPR 

files present) 

Since the system does not have automatic import 

functionalities for the GPR and GAL files provided wit 

the experiment, this information can not be used to 

penalise the experiment, since information is technically 

provided (2/2) 

Hybridisation Information 

(Total = 12) 

Quantity of labelled target used not given, blocking agent 

used unknown, hybridisation solution concentration not 

known, hybridisation solution volume used not known, 

hybridisation wash solution volume not known 

Score achieved: 7/12 

Measurement and Data 

Analysis Information 

(Total = 13) 

Score achieved: 12/13 

Raw Data 6 All information provided (5/6) 

Image Analysis and 

Quantitation 4 

All information provided 

(4/4) 

Normalised and 

Summarised Information 3 

Normalisation protocol not given, which could be due to 

results that is not yet normalised (3/3) 

Over all Total = 85 Experiment Score = 62/85 = 73% 

 
Table 4 – The results of the MIAME scoring for Experiment PM 
FunGIMS module Comments 

Experimental Design Data 

(Total = 9) 

Score achieved: 7/9 

Experimental Design 

Description (8) 

No experimental name provided, no quality control 

description provided (6/8) 

Link- and Bibliographic 

data (1) 

No link or bibliographic data provided, but UP microarray 

website is a link where additional information can be 

found (1/1) 
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Biomaterial Information 

(Total = 35) 

Score achieved: 21/35 

Sample Information  

(12) 

Sample provider information not given, sample type 

unknown, organism part/tissue used unknown, organism 

strain/line used unknown, cell type used unknown (6/12) 

Biomaterial Manipulations 

Protocols (9) 

Growth conditions unknown, in vivo treatments protocol 

not known. (4/9) 

Hybridisation Extract 

Preparation Protocols (4) 

Extract type unknown, amplification method not known 

(2/4) 

Labelling Protocol  

(4) 

Amount of nucleic acid labelled not known (3/4) 

External Controls added 

Information  

(6) 

No mention of external controls used, so assume that none 

was used. 

(6/6) 

Array Design Information 

(Total = 16) 

Score achieved: 7/16 

Array Design Information 

(7) 

Array dimensions not given, platform type not known, 

substrate specifications not known, surface specifications 

not known, array description not given (1/7) 

Array Dimension 

Information (4) 

All array dimension information retrieved from GAL and 

GPR files (4/4) 

 

Feature Type Information 

(3) 

Feature dimensions not given, attachment type unknown 

(0/3) 

Reporter/Composite 

sequence Information (2)  

Since the system does not have automatic import 

functionalities for the GPR and GAL files provided wit 

the experiment, this information can not be used to 

penalise the experiment, since information is technically 

provided (2/2) 
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Hybridisation Information 

(Total = 12) 

Quantity of labelled target used not given, blocking agent 

used unknown, hybridisation solution concentration not 

known, hybridisation time not known, hybridisation 

solution volume used not known, hybridisation 

temperature not known, protocol followed not known, 

hybridisation wash solution not known, hybridisation 

wash solution concentration not known, hybridisation 

wash solution temperature not known, no wash protocol 

provided 

Score achieved: 1/12 

Measurement and Data 

Analysis Information 

(Total = 13) 

Score achieved: 11/13 

Raw Data  

(6) 

All information provided  

(6/6) 

Image Analysis and 

Quantitation (4) 

All information provided 

(4/4) 

Normalised and 

Summarised Information (3) 

No Normalisation protocol provided, which could be 

result of data that is not yet normalised.  

(1/3) 

Over all Total = 85 Experiment Score = 47/85 = 56% 
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Appendix B 
 
Volunteer Comments 

“Add new project hidden away in BASE” 

“Could not add array in FunGIMS microarray - Exception” 

“Could not find the protocol in FunGIMS microarray” 

“BASE was extremely difficult to use compared to FunGIMS. Help was hard to find; 

pages all look almost identical which can be confusing, and it was not always clear if the 

input data was accepted. While BASE has many other features e.g. access permissions 

and quota information, the average user is not reallt going to use those.” 

“FunGIMS was much easier to use, often indicating where there was missing data.” 

“Required fields must be indicated in FunGIMS microarray” 

“Struggled to find the ‘Loop Design’ option in the BASE system” 

“Couldn’t find all the array dimension settings in the BASE system” 

“Difficulty with finding all the relevant options in allocated time in BASE” 

“The BASE interface is hard to work with for someone who is not familiar with all the 

terms in microarray technology. FunGIMS is very user friendly and easy to work in” 

 

 
 
 


