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Summary

Pathogenic bacteria are responsible for millions of deaths every year with an estimated
mortality of 70 million people by 2010 for Mycobacterium tuberculosis alone. Novel meth-
ods for identification of bacterial species in hosts, urban environments, water sources and
food stuffs are required to advance diagnosis and preventative medicine. Detection of bac-
terial species in environmental samples is a complex task since large numbers of bacteria
are present and are resistant to culturing. Therefore, the genetic content of the entire
sample has to be analysed simultaneously and this constitutes a metagenomic sample.

Commonly-used methods of bacterial identification focus on detection of specific ge-
nomic regions to determine species. Currently only one percent of a metagenomic sample
can be used for identification employing phylogenetic markers. This method is highly
inefficient. The search for more widespread markers within each genome is essential to
improve detection methods. Also, modern sequencing technologies used in these environ-
ments have short read lengths which prove difficult to assemble e.g. repeats can lead to
incorrect assembly.

The use of overrepresented oligonucleotides provides a solution to both of these dif-
ficulties. Overrepresented oligonucleotides (8-14bp in length) are utilised to differentiate
between species based on observed frequency of occurrence rather than presence or ab-
sence. They occur throughout the genome thereby increasing genomic coverage. Fur-
thermore, overrepresented oligonucleotides can be easily identified in a raw metagenomic
sample, bypassing the need for sequence assembly.

Raw oligonucleotide data was filtered, analysed and imported into a structured database.
A program, Oligosignatures, allowed for creation of species and phylogenetic lineage spe-
cific oligonucleotide markers dependent on the selection of species specified by the user.
For the purposes of this study, the context of bacterial identification in an unknown en-
vironment was selected. A similarity trial was then executed to determine if strains of
the same species can be separated from each other using overrepresented oligonucleotides.
Outcomes of this test provided a guideline for the creation of species and lineage specific
oligonucleotide markers. Each species and lineage was therefore described by a marker
profile which consisted of representative oligonucleotide markers. These marker profiles
were then tested against artificial and experimental data to determine their effectivity.
Two approaches were used for testing, namely Oligonucleotide frequency analysis and Se-
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quence read analysis. Oligonucleotide frequency analysis focused on the identification of
species dependent on the global frequencies of marker oligonucleotides within each marker
profile. Sequence read analysis attempted to assign metagenomic reads to a specific species
dependent on the number of marker oligonucleotides present within the read.

The final database contained 439 bacterial genomes from 22 different phylogenetic
lineages. Interpretation of the results obtained after strain similarity testing showed that
strains of the same species had highly similar markers and were not separable using this
approach. All strains of a species that conformed to this premise were reduced to a sin-
gle representative member. Similarly, species marker profiles demonstrated that closely
related species remained difficult to separate. Twenty-one of the 22 lineages showed suffi-
cient lineage specific markers for use in testing. This provides support for the abundance
of overrepresented oligonucleotides and their potential for use as a detection method.

In general, metagenomic testing of marker profiles showed that species specific deter-
mination was prone to interference, specifically, in closely related species. However, more
distantly related species could be separated using both methods. Lineage discrimination
generated more reliable results proving that lineage determination was possible in both ar-
tificial and experimental datasets. Oligonucleotide frequency analysis, the most sensitive
approach, showed the best results for lineage determination but poorer results for species
identification. Sequence read analysis provided a more effective method of determining
confidence using different thresholds for read classification.

In conclusion, the use of overrepresented oligonucleotides holds promise as a novel
method for bacterial identification in a metagenomic context. Although several obstacles
still prevent optimal utilization of these oligonucleotides, with further research the classi-
fication and identification of species and phylogenetic lineages from metagenomic samples
can become a reality.
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Chapter 1

Introduction and Literature Review

1.1 Introduction

Since the development of high throughput sequencing methods, genomic data has grown
exponentially with the result that hundreds of complete genome sequences exist for a
large number of prokaryotes and eukaryotes. This leaves the mammoth task of analyzing
and processing these sequences to extract usable information. That develops insight into
genomic processes and provides characteristics for identification and comparison of these
organisms with their relatives.

Bacterial disease forms a subgroup of infectious disease which is one of the leading
forms of mortality. It is estimated that by 2010 70 million people will die from My-
cobacterium tuberculosis alone (WHO, 2008). As pathogenic bacteria occur within varied
environments and can be present in drinking water, food stuffs and aerial environments,
early detection is vital to prevent their spread. This work proposes a novel method to
identify bacteria from environmental samples.

The investigation of bacteria and their environments have always been of great inter-
est to the scientific community. Bacteria play a crucial role in all aspects of ecological
interaction. Furthering the understanding of bacterial life and interactions can enhance
almost every aspect of human existence. Identification of the constituent bacterial species
within environmental (metagenomic) samples is a highly complex process whereby DNA
is extracted and analysed directly from the sample, avoiding difficulties in culturing bac-
terial species. This process however, creates difficulties in determining which fragments
belong to which species. Current forms of sequence and species identification have proved
inadequate within this context, as a large percentage of unique genomic signatures oc-
cur only within predefined regions. In order to overcome this, short overrepresented
oligonucleotides (2-4 base pairs in length) have been successfully used to identify species
fragments. However, the short lengths of the oligomers decrease specificity. The cur-
rent study aims to apply this technique to longer oligonucleotides that it will provide the
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CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 2

necessary increase in specificity to classify species reliably using shorter fragment lengths.
This review is divided into six main sections. The first section deals with bacte-

rial pathogenicity and the genomic component of pathogenicity, defining what makes a
bacterium pathogenic. Furthermore, the study and characterisation of bacteria in envi-
ronmental samples is discussed. The next section deals with the different types of DNA
signatures discovered within bacterial genomes. This includes coding signatures such as
codon usage bias as well as non coding signatures. Experimentally determined repeat se-
quence patterns provide an overview of longer sequences found within different bacterial
families, which in turn offer a background for the focus of the study, namely, overrepre-
sented oligonucleotides of intermediate length.

The third section addresses different methods for identifying pathogenic bacteria in a
metagenomic context using sequence data. The standard techniques for bacterial iden-
tification are reviewed (16S rRNA gene sequences and comparative genomics), followed
by short oligonucleotide frequency profiles and finally oligonucleotides of intermediate
length. The fourth section gives a brief overview of modern sequencing technologies and
the current difficulties with the use of short sequence fragments. Previous work on oligonu-
cleotide signatures is then briefly discussed in the fifth section, providing background on
past research into overrepresented oligonucleotides. Finally, the sixth section designates
the aims and problem statement of the current study in terms of identification of bacterial
species using overrepresented oligonucleotides.

1.2 Identification of bacterial pathogens in environmen-

tal samples

As bacterial pathogens cause millions of human deaths each year, the ability to control
and treat these diseases is focused on fast and accurate diagnosis of these pathogens.
Identification of pathogens in external environments is highly beneficial as preventative
medicine can be practiced. In order to identify pathogenic bacteria effectively, mechanisms
of pathogenicity and the existence of bacteria within an environmental context must be
understood.

This section discusses bacterial pathogens and the metagenomic context surrounding
the identification of bacteria. It focuses on the identification of bacteria within these
communities based on the different approaches used and the different types of environ-
ments currently under study. From this overview the need for intervention into identifying
pathogenic bacteria and the associated complexity of identification will become apparent.

1.2.1 Bacterial pathogenicity

The ability to induce disease is determined by the bacteria’s pathogenicity or virulence.

 
 
 



CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 3

There are three different categories of bacteria:

• Primary pathogens are bacteria whose function is to invade, infect and proliferate
within a host. They have evolved sophisticated methods to avoid host defenses.

• Opportunistic pathogens are those that only cause disease in weakened hosts with
depleted defense against such organisms.

• Non-pathogens form a group of bacteria without pathogenic effects on the host.
This can, however, change due to the dynamic ability of bacteria to alter their gene
expression and rearrange their genomic DNA.

In order to develop novel diagnostics, understanding the function and processes of pathogenic
bacteria is essential. There are two categories which the majority of these organisms share,
namely, invasiveness and toxigenesis (Baron, 1996; Todar, 2008). Invasiveness is the abil-
ity of the pathogen to gain entry and proliferate within the host organism. This involves
several steps namely colonization, production of invasins and evasion of host defense
mechanisms.

Toxigenesis is the ability of bacteria to produce and release toxic substances into
the host organism. These toxic substances are referred to as virulence factors and can be
divided into two families namely exotoxins and endotoxins. Exotoxins are soluble proteins
that are released into the host environment and act on targets distant from the bacteria.
These are generally specific to a particular bacteria and virulence is therefore dependent
on the release of these toxins. Endotoxins are lipopolysaccharides that adhere to the outer
membranes of some bacteria, participating in many essential functions for the bacteria
including growth and survival. The lipid component of the endotoxin is responsible for
the pathogenicity and is less potent and specific than the exotins but does not lose its
toxicity over time (Todar, 2008).

Although the underlying mechanisms have been briefly reviewed the genomic compo-
nent of these processes is essential to the understanding of the current study. The next
section will review the genetic basis of bacterial virulence.

1.2.2 Genetic and molecular basis of virulence: Pathogenicity is-

lands

Bacterial virulence is generally determined by several different processes which can be
divided into two gene classes. The first class consists of genes responsible for the survival
of the bacteria within or outside a host, these are also present in the non-pathogenic
strains of a bacterial species. The second class incorporates genes directly involved in the
bacteria’s virulence and these are unique to pathogenic strains (Groisman and Ochman,
1996).
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Virulence factors can be encoded in various places within the genome such as chromoso-
mal DNA, bacteriophage DNA, plasmids or transposons. It is also possible that virulence
factors may be mobile and found throughout the genome, as is the case for genome islands
e.g. pathogenicity islands (PAI’s) (Hacker et al., 1990; Knapp et al., 1986). These mobile
genetic elements play a crucial role in the virulence of pathogenic bacteria and loss of
a PAI can convert a pathogen to a non pathogen (Schmidt and Hensel, 2004). A large
proportion of genes associated with virulence are encoded by mobile genetic elements and
many of these are located inside PAIs.

PAIs often have complex control mechanisms that respond to specific environmental
stimuli allowing the bacterium to act in a versatile fashion when shifting between environ-
ments. These control mechanisms include regulators within pathogenicity islands as well
as within the core genome and other PAIs. It is well documented that PAI regulators can
act on the core genes within the genome. This gives an idea of the complexity of PAIs in
general and how they integrate themselves into existing genomes rather than remaining
as external factors (Schmidt and Hensel, 2004).

Although the focus of the current study is on pathogenic bacteria, it must be noted
that these organisms often occur in communities. For accurate detection the surrounding
environment must be considered. In the next section the analysis and characterization of
bacterial environments is explored in more detail.

1.2.3 Metagenomics: The study of organisms in environmental

samples

Metagenomics involves the study of communities of micro organisms occurring in their
natural environment. It combines the disciplines of genomics, bioinformatics and systems
biology to unravel the complex collection of heterogeneous DNA collected from natural
environments. Past studies focused on attempting to purify and culture bacteria inde-
pendently, while in metagenomics DNA is extracted directly from bacterial cells. This is
due to the fact that as much as 99% of all bacteria in an ecological environment cannot
be cultured in the laboratory (Mongodin et al., 2005).

One of the most exciting uses for metagenomics is that it can provide community-wide
assessment of metabolic and biogeochemical function. The best example of this is the acid
mine drainage system which is a simple setup of two dominant bacterial species found
in a low pH, high sulfur mine dump. In this example, the ecosystem was simple enough
to allow complete sequencing of one genome and a detailed annotation of its metabolic
functions (Tyson et al., 2004).

In an opposing example, the Sargasso Sea project involved an exceptionally complex
community of bacteria present in sea water. With over one billion base pairs sequenced,
there is still a staggering amount of data to be analysed - over 794,061 genes in con-
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served hypothetical protein groups remain to be identified (Venter et al., 2004). Although
environments can differ substantially, as demonstrated by these examples, the same pro-
cesses are involved in their analysis and these are described below. Metagenomic analysis
involves several initial steps:

• Isolating DNA from an environmental sample

• Cloning the DNA into a suitable vector

• Transforming the clones into a host bacterium and applying a specific screening
approach to the bacteria (Handelsman, 2004).

The screening approaches include using hybridization or multiplex PCR to identify phy-
logenetic markers (Stein et al., 1996), searching for expression of specific traits (Courtois
et al., 2003) or random sequencing (Tyson et al., 2004; Venter et al., 2004). These meth-
ods can be divided into two main approaches namely sequence-based metagenomics and
function-based metagenomics.

Function-based metagenomics is a laboratory process whereby randomly selected DNA
is taken from environments and inserted into bacteria that can be cultured in a laboratory.
These laboratory bacteria are then monitored for production of alien proteins and screened
for any unique properties. This method has identified novel antibiotics (Courtois et al.,
2003; Venter et al., 2004), antibiotic resistance genes (Diaz-Torres et al., 2003), sodium
transporters (Song et al., 2005) as well as several biocatalytic enzymes (Lorenz et al.,
2002). The benefit of this approach is that it does not require any sequence data and so
allows for the identification of novel classes of genes with new or known functions. One of
the weaknesses of this approach is the possibility that an alien gene will be incompatible
or incorrectly transcribed and expressed within a host bacterium. However, sufficient
success has been achieved with this approach that it still remains feasible and integral to
further research.

The sequence-based metagenomics approaches consist of two different methods. The
first involves laboratory screening of metagenomic fragments using phylogenetic markers
then sequencing only the resultant fragments that can be linked to specific family or taxa.
This was first proposed by Stein et al. (1996) and resulted in the discovery of a new
archeaon in their study performed on seawater. One of the most high impact discoveries
was that of proteorhodopsin, a retinal-binding integral membrane protein found in marine
bacterioplankton (Béjà et al., 2000).

The second sequence based method involves random sequencing of a sample of metage-
nomic DNA followed by screening for phylogenetic markers and attempting to identify
features of interest within the genomic fragment. This approach, applied on a large scale,
has allowed for further insights into linkage of traits, distribution and redundancy of func-
tions in community, genomic organization, and horizontal gene transfer. The approach
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has culminated in the reconstruction of uncultured bacterial genomes in an acid mine
drainage community analysis and creating new linkages between phylogeny and function
in complex environments (Tyson et al., 2004; Handelsman, 2004).

Phylogenetic markers fulfill an integral function within sequence-based approaches by
associating DNA fragments with specific species. The most widely used phylogenetic
markers are the 16S rRNA gene sequences which have enabled the identification of novel
bacteria and allowed for their classification by comparative genomics. However, as little
as 0.5-1% of the reads within a metagenome are identifiable using current marker systems
and the probability of finding a novel functional gene on these fragments is even more
unlikely. Fragment identification via laboratory techniques such as genome-walking is
possible if reads are large and overlap with 1-2kbp. GC content and codon usage have
also been used to classify fragments but have been found to be unreliable in complex
environments due to insufficient variation. Reasonable success has been obtained with
initial studies using tetranucleotide frequencies to identify metagenomic fragments but,
since modern sequencing technologies produce read lengths of only a few hundred base
pairs, the efficiency of this technique has yet to be proved in this context (Teeling et al.,
2004a). This study endeavors to contribute to the field by investigating a novel method
for identification of bacterial species using raw metagenomic fragments. The technique
can then be extended to the subsequent identification of genomic fragments.

An increasing number of metagenomes associated with human health are under study,
such as the human distal gut metagenome (Gill et al., 2006) and the human oral genome
(Dewhirst and Chen., 2008). Further related studies include the analysis of drinking water
(Schmeisser et al., 2003) as well as aerial metagenomes taken from various urban areas
such as shopping malls and hospitals (Tringe et al., 2008). Each of these environments
show the potential for metagenomic analyses to impact positively on human health.

Metagenomics opens new doors to the study of bacterial populations and their com-
plex interactions. Such studies will continue to have a profound effect on both scientific
knowledge and everyday life as the secrets of these organisms are utilised for biotech-
nological purposes. This is still an emerging discipline and as such current approaches
are incapable of keeping up with the amount of data available for analysis. This study
intends to add to this body of knowledge by providing a new method for organism iden-
tification and species fragment grouping. In the following section, different methods of
characterising bacteria using sequence information will be discussed.

1.3 Oligonucleotide signatures

Genomic data contains a wealth of information that describes the organism and its pro-
cesses completely. The most obvious and well studied aspect in this area are genes which
are often used as genomic markers due to their functional constraint. As more research
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has been carried out it has been found that genes alone do not encapsulate the complex-
ity of the organism - there remains a large proportion of unexplored data in non coding
regions. Some of the most notable of these include gene control regions such as promot-
ers and transcription binding sites as well as repeat regions created via transposition,
translocation, recombination or amplification.

In general the definition of a genomic signature is quite vague but can be described as a
signature sequence (or probe) which accurately distinguishes between a target genome or
set of genomes and all other background genomes. Phillippy et al. (2007) further refined
this definition by concluding that a signature sequence must not only be conserved among
a set of target genomes but also dissimilar to any sequence in the surrounding environment.

In the work presented by Tembe et al. (2007) a more formal criteria for the selection of
signatures was incorporated. This process depends on several features. Firstly, a decision
needs to be made on what is going to be identified: Will it be a single pathogenic strain,
a group of pathogens or multiple bacteria with or without phylogenetic relationship?
Secondly, all specifications must be met for the required technologies.

The first DNA signatures created to identify pathogenic bacteria were designed based
on sequences linked to genes assumed to be involved in the organism’s pathogenicity. This
approach, although successful in certain instances, failed in others where environmental
testing with multiple other bacteria yielded false positives, most often caused by the
selected genes not being unique to the organism as was assumed.

The process of finding a signature sequence that adequately describes a particular
genome is an involved process requiring many different criteria to be met. One of the
most important attributes in this respect is sequence length. Through simple calcula-
tion, the shorter the sequence length of a signature the more likely a sequence is to
occur randomly within several genomes. However, longer sequence lengths can become
incompatible with practical laboratory technologies. A delicate balance has to be struck
between the sensitivity, the number of genomes that contain this oligonucleotide and the
specificity, the number of genomes that do not contain this signature (Slezak et al., 2003).

In the current study a signature is defined by its difference in magnitude of occurrence
rather than its presence. The focus is not on identifying wholly unique oligonucleotides but
rather to determine frequency discrepancies between oligonucleotides in different genomes
and to exploit these characteristics to differentiate a bacterial species from its neighbours.

In the remainder of this section an overview will be given of several different genomic
signatures found in both coding and non-coding sequences and their utility as signatures
to differentiate organisms. Codon bias and its advantages and disadvantages will be
discussed first, followed by the properties of short oligonucleotide frequencies. An overview
will then be given of known repeats found within non-coding DNA and lastly a description
of overrepresented oligonucleotides and their application to the current study.
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1.3.1 Codon residues and codon bias

The most commonly used identifier for patterns in coding DNA is the codon. The codon
is a nucleotide triplet which is translated into an amino acid or acts as a terminus for
translation. There are 64 different combinations possible for the four nucleotides in a
triplet sequence, yet only 20 amino acids are coded from these codons. This implies
that more than one amino acid can be coded by more than one triplet. Codon usage
in most species is known to be highly biased to specific codons for each amino acid.
This is referred to as codon bias. As can be expected, closely related organisms seem to
share similar codon usage patterns while distantly related organisms have highly divergent
codon usage (Ikemura and Ozeki, 1983).

Codon bias has been attributed to several factors, namely, variations in tRNAs, trans-
lational accuracy and efficiency and codon or anticodon interaction strength. These factors
suggest that codon bias is an adaptation for better translational efficiency within a species
(Andersson and Kurland, 1990; Gouy and Gautier, 1982; Kanaya et al., 1999). Codon us-
age is also affected by mutational pressure, which depends on several different factors such
as: function of the gene, position within the genome and level of expression (Daubin and
Perrière, 2003). From these findings the conclusion was drawn that the unique codon bias
of an organism was determined by selection and mutation within the species. Therefore,
searching bacterial genomes will allow for the identification of foreign genes by means of
their highly divergent codon bias (Karlin et al., 1998). However, implicit in this theory
is the realisation that the newly transferred gene will adapt to its environment and be-
come indistinguishable from other genes. Codon bias is further limited by the discovery
that different positions of the genome experience different rates of mutation (Daubin and
Perrière, 2003). It was also found that certain highly expressed genes in bacteria had
highly divergent codon usage from the rest of the genes (Karlin, 1998a). This leads to
the conclusion that although codon bias is an informative tool it is not entirely reliable
or accurate under different circumstances.

Although coding sequence has proved to be informative it does not constitute the
entire genome as large regions of non-coding DNA are also present. The subsection that
follows therefore explores genome-wide signature sequences found largely within non-
coding regions.

1.3.2 Over and under representation of short oligonucleotides

Analysing genomes by utilizing the occurrence or absence of oligonucleotides was a step
forward from past methods which focused on localised areas rather than the entire genome.
It also departs from common methods of similarity detection such as alignment of homol-
ogous segments. It is an entirely new way of analysing the genome and its subsequent
features. The properties of di- and tetranucleotide frequencies will be discussed in detail
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below.

1.3.2.1 Dinucleotide frequencies

The over- or under-representation of certain dinucleotides in a genome is one of the most
used comparative measures, referred to as the genome signature. This genome signature
is defined as the ratios between observed dinucleotide frequencies, calculated from a spe-
cific genome, and the expected frequencies of the mononucleotide components randomly
associating with each other within the genome (Karlin and Burge, 1995).

Bacterial genomes are continuously changing through transposition, transduction and
recombination. Regardless of this fact, data strongly supports the presence of these
genome signatures (Karlin et al., 1997). The fact that fluctuations in GC content through-
out the genome does not have a drastic effect on genomic signature variability indicates
that this is indeed a stable characteristic (Karlin and Burge, 1995). Interestingly, these
dinucleotides (referred to as doublets) are not only highly stable but appear throughout
the genome in regions of varying complexity (Karlin, 1998b). The relative abundance of
certain dinucleotides also reflect structural features such as super coiling and it has been
noted that DNA and RNA binding proteins are affected by dinucleotide arrangements
(Travers, 1997).

This phenomenon is not restricted to coding regions and cannot be explained by codon
usage. This leads to the conclusion that these sequence features are the product of global
mechanisms such as repair and replication. Replication machinery has been known to
generate context-dependent mutations rates, hence generating these dinucleotides. Re-
pair machinery generally operates more effectively on specific sequences and therefore
preferentially selects these sequences.

Dinucleotide frequencies have also been utilized as an alternative to conventional meth-
ods of phylogenetic reconstruction. The primary advantage of this approach is the use
of the entire genome’s sequence data. Furthermore, the low variance present in genome
fragments of length 50kbp or greater effectively means that as little as 50kbp of sequence
can be used to generate a genomic signature for a species.

Other nucleotide frequencies such as tri- and tetranucleotides also show high correla-
tion and similar properties to dinucleotide frequencies. This indicates that DNA confor-
mational arrangements are determined by base-step dinucleotide arrangements. There-
fore, these dinucleotide arrangements allow for the prediction of longer oligonucleotides.
Tetranucleotide frequencies and their proposed benefits will be discussed next (Karlin and
Burge, 1995).
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1.3.2.2 Tetranucleotide frequencies

Tetranucleotide frequencies have been utilized quite successfully as a method to determine
evolutionary distance, generating phylogenetic trees similar to 16 rRNA gene studies.
The use of short oligonucleotides as a measure to describe genomes and their evolution-
ary distances has been identified as a feasible approach (Pride et al., 2003). Although
tetranucleotide frequencies have been shown to carry a phylogenetic signal, this signal
fades rapidly in moving from species level to higher order taxa and cannot be used to re-
solve distant relationships (Teeling et al., 2004a). This alludes to the further use of longer
oligonucleotides in order to unearth more species information needed for these differences.
The advantage of tetranucleotide frequencies over shorter di- and tri- nucleotide frequen-
cies rests on the increasing uniqueness of sequence. This fact has been exploited via the
creation of several statistical characteristics and advanced analyses discussed below.

Pattern skew (PS) is a tetranucleotide frequency statistic which focuses on the strand
symmetry of genome signatures. The collected data shows that all bacterial chromosomes
have a low PS. Interestingly, higher PS values were obtained when calculating local regions
within these bacterial chromosomes and the value was also high in conjugative genome
islands and in various bacteriophages. In addition, it was found that an increase in the
length of oligomers increased PS. Further research shows that oligonucleotides and their
reverse complements occur at similar frequencies throughout a bacterial genome as they
share structural features. This type of strand symmetry seems to be necessary for genome
stability as incorporation of foreign DNA is balanced by global shifts to minimize PS. In
conclusion, PS acts as an identifier of foreign DNA within an organism. Furthermore,
highly skewed PS values indicate the presence of sequence regions highly divergent from
the genomic core, such as ribosomal operons (Reva and Tümmler, 2004, 2005; Ganesan
et al., 2008).

Another characteristic of genome signatures is oligonucleotide usage variance (OUV).
This refers to the numerical variation in oligonucleotides in a 10kb region where a low
value can indicate a repeat region. OUV is strongly dependent on GC content and is
sensitive enough to indicate differences between organisms, although strains show similar
OUV. From these findings the conclusion is drawn that the higher the OUV, the less
random the sequence (Reva and Tümmler, 2004, 2005; Bohlin et al., 2008).

Di- and tetranucleotide frequencies have been identified as useful parameters for the
characterisation of bacteria. These characteristics show the versatility of nucleotide fre-
quencies as they enable identification of foreign DNA sequences within bacterial genomes.
These short signatures lay the foundation in the search for longer overrepresented nu-
cleotides that can provide more unique identifiers for each genome. In the current study
an attempt is made to elucidate more specific information from genomes by using the
same basic technique on longer oligonucleotides.
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In the search to identify longer oligonucleotides a brief review of the literature is
performed to determine known sequence features present within bacterial genomes. The
following section will encompass a more detailed analysis of longer sequence features
known to exist within bacteria.

1.3.3 Repeat sequence patterns

Repeated sequence patterns are oligonucleotides found reoccurring within the non-coding
DNA of bacteria. This subsection outlines the different types of repeats, their similarities
and differences, and the potential for use of these sequences in characterising bacteria.

Repeated sequence patterns can typically be found occurring within the non coding
regions of a large number of eukaryotes. These elements have been well categorized, one
of the best known is the alu element in humans. This element also occurs throughout
many different mammalian lines and have been used as a basis for the development of
PCR laboratory techniques to identify unique DNA sequences within different mammals
(Amariglio and Rechavi, 1993).

In general, prokaryotes contain a much smaller amount of non-coding DNA due, not
only to the smaller genome sizes, but also to selective pressures which result in efficient
nucleotide usage (Nesin et al., 1987). There are some extreme cases where genes’ open
reading frames overlap to conserve space (Suzuki et al., 1986). It seems counter intuitive
that patterns would be present throughout a bacterial genome, but researchers have found
that various short interspersed repeating units do exist in bacteria (Dimri et al., 1992;
Mancuso et al., 2007). Of these the most well known are repetitive extragenic palindromic
(REP) elements (Dimri et al., 1992) and the Enterobacterial Repetitive Intergenic Con-
sensus (ERIC) sequences (Hulton et al., 1991). These were first identified in Escherichia
coli and Salmonella typhimurium respectively.

REP elements identified as palindromic sequences were thought to be linked to reg-
ulatory function. The 38bp consensus sequence was used to identify further relations
between bacterial species. REP elements can be of any length between 21 and 65 bases
and have been linked to various functions including mRNA stability (Khemici and Car-
pousis, 2004), binding sites for various transciption factors including DNA Polymerase
I (Gilson et al., 1990), as well as DNA targets for the transposition of mobile insertion
elements (Tobes and Pareja, 2006).

ERIC sequences, roughly 126 bp in length, also contain a palindromic sequence within
their highly conserved consensus which appears to be unrelated to the REP elements (Hul-
ton et al., 1991). Both ERIC and REP elements seem to be related to Gram-negative
enteric bacteria and closely related species within the phyla. Their evolutionary conser-
vation suggests that their existence precedes the formation of the Gram-negative enteric
bacterial lineage (Versalovic et al., 1991).
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The reasons for the conservation of these sequences has been well researched. The first
is that there is a strong selective pressure due to the importance of these sequences in es-
sential protein interactions. An example of this is E.coli transcriptional machinery where
DNA Polymerase I binds to REP elements (Gilson et al., 1990). A second hypothesis
asserts that these sequences’ only function is rapid self-replication (referred to as ’selfish’
DNA) and that gene conversion may play a role in the evolution and maintenance of REP
sequences (Hulton et al., 1991).

Although REPs and ERICs have been well researched other types of repeats have
been identified in bacteria. Recently a group of repeats referred to as Short Regularly
Spaced Repeats (SRSRs) have been identified. These sequences are between 24-40 base
pairs in length and contain partial inverted repeats of roughly 11 base pairs in length
arranged evenly in clusters. These units seem to be widespread throughout different
phylogenetic groups, being present in the majority of Archaea and in several members
of the cyanobacteria and proteobacteria lineages. These sequences appear to be highly
similar within most genomes and between closely related species indicating a common
origin of these sequences (Mojica et al., 2000). Previously isolated occurrences of these
repeats have been well documented, one example in a study done on E.coli by Nakata
et al. (1989).

Furthermore, four to six base pair palindromic restriction sites were investigated for a
collection of different bacteria. It was found that these sites were highly variable within
bacteria but that there was a definite inverse relation between the presence of restriction
enzymes and the respective palindromic sites that they cut. Reference is also made to
these short palindromic sequences being part of longer binding sites, some as long as 14
base pairs (Karlin et al., 1992).

These findings emphasize the wealth of information present within each genome as the
diversity of repeat elements continues to expand with closer investigation. These examples
strongly support the hypothesis for the presence of longer overrepresented oligonucleotides
and their abilities to distinguish phylogenies as well as provide information on cellular pro-
cesses such as restriction enzyme systems. Against this background a formal introduction
to current research concerning overrepresented oligonucleotides of intermediate lengths
follows.

1.3.4 Overrepresented oligonucleotides of intermediate length

Overrepresented oligonucleotides are defined as oligonucleotides of intermediate lengths
(between 8 and 14 base pairs) occurring in high frequencies throughout bacterial genomes.
They are central to the current study which investigates the use of overrepresented oligonu-
cleotides in the identification of bacterial species by analysing frequencies of occurrence
of these oligonucleotides in metagenomic datasets and comparing observed results to ex-
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Table 1.1: Overrepresented oligonucleotides of 8-14bp in length were derived using sigma
cutoff values designated above for each length of oligonucleotide.

Oligomer Minimum number in 100kbp Corresponding Sigma value
8mer 20 15
9mer 15 24
10mer 12 36
11mer 8 52
12mer 6 78
13mer 6 78
14mer 6 78

pected values.
In earlier research a command line java application OligoCounter was utilized to iden-

tify overrepresented oligonucleotides from unannotated FASTA files obtained from the
NCBI FTP site in April 2007 (Benson et al., 2007). These files included over 738 bac-
terial strains including sequenced bacterial genomes, plasmids and partially sequenced
bacterial chromosomes (Davenport et al., 2008).

After analysing thirteen Pseudomonas strains, overrepresented oligonucleotides were
discovered for all strains at the stringent chi-squared threshold of 3000. This program
was then run on a randomly generated genome with GC content of 50% and no oligomers
were found at the same level of overrepresentation. This proves that there are indeed
highly overrepresented oligonucleotides of longer lengths within bacterial genomes and
that these oligonucleotides are usable for scientific research and exploitation (Davenport
et al., 2008).

For use with the current study overrepresented oligonucleotides were identified using
relaxed cutoffs to ensure the maximum data was available for analysis. This was done
using two different methods, sigma values and chi square statistics. Sigma statistics, which
are derived from an assumed normal distribution were determined empirically according
to the minimum number of oligomers expected to be found within 100kbp of sequence.
Due to the increasing specificity of longer oligonucleotides and their associated reduction
in frequency these values were adjusted accordingly to avoid bias. table 1.1 shows the
values used for each length of oligonucleotide.

The second method for determination of overrepresented oligonucleotides is chi square.
Chi square statistics involve the use of a zero order Markov model to derive expected
values of occurrence of an oligonucleotide. This value is dependent on the percentage GC
within the genome and the base composition of the oligomer. These expected values were
then compared against the observed frequencies using the chi squared formula and several
threshold values were then set based on empirical findings.

A java viewing program JCircleGraph was developed to visualise different statistics for
each genome including the overrepresentation of oligonucleotides. Figure 1.1 illustrates
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the genome of Psuedomonas aeruginosa and allows for an overview of all statistics present
within the diagram (Davenport et al., 2008).

Psuedomonas aeruginosa is a highly dynamic opportunistic pathogen capable of in-
fecting plants, animals and humans as well as several different tissue types within humans
(Campa and Friedman, 1993). This organism is well known for its metabolic flexibil-
ity and its antibiotic resistance that has lead to complications in medical treatment. P.
Aeruginosa has been shown to contain several pathogenicity islands that have been clas-
sified as adding to its ability to infect various tissue types and increase its pathogenicity
(Larbig et al., 2002).

Within the JCircleGraph visualization the thresholds are defined as three standard
deviations above and below the calculated mean values for each statistic. The statistics
start from the four innermost rings which are tetranucleotide parameters derived using
the program OligoWords (Ganesan et al., 2008). The next two outer rings show the
percentage occupancy of 5kbp regions of bases of 8-14mer oligonucleotides at different
chi squared thresholds (3000 and 7000 respectively). The outermost ring shows deviation
between the smaller 4mer oligos and the longer 8-14 mer oligomers. The deviation class
illustrates how much the class (i.e. colour) diverges between the OUV 4mer ring and the
8-14mer ring. If both have a value of 1 (pink or orange respectively) then there is no
deviation and grey will be printed (deviation of 0). The deviation ranges between plus
10 and minus 10. The above information is summarised below from the innermost to the
outermost ring:

• GC content

• Distance measure, the distance of a local 10kb pattern relative to genome pattern

• Pattern skew, the ratio of occurrence of a 4mer oligonucleotide and its reverse com-
pliment

• Oligonucleotide variance, the numerical variance of oligomers where a lower value
indicates a relatively small variety of tetrameters are used in the specific region in
the genome (for example in repeat regions)

• Percentage occupancy of the 5kbp regions bases by overrepresented 8-14bp oligos at
chi square level 3000

• Percentage occupancy of the 5kbp regions bases by overrepresented 8-14bp oligos at
chi square level 7000

• 4mer-8mer correlation class derived from rings 4 (OUV, 4mer) and 5(% occupancy,
8-14mers)
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Figure 1.1: The JCircleGraph (Davenport et al., 2008) graphic displaying all the discussed
genome features of Psuedomonas aeruginosa. Three pathogenicity islands are identified
in the diagram by arrows.

(Reva and Tümmler, 2004; Davenport et al., 2008)
It is interesting to note that several foreign DNA pathogenicity islands (PAIs) are

present within the P. Aeruginosa genome and are clearly visible in different locations
throughout the genome. They can be identified as bands radiating outward from the
innermost circle. All PAIs express several features described below:

1. Low GC content

2. High distance measure

3. Large discrepancy in pattern skew

4. Very low oligonucleotide variance

5. Low occurrence of oligomers found throughout the rest of the genome

6. A general deviation from 4mer to 8mer

From Figure 1.1 it is clear how interrelated the different statistics are and how the
intermediate oligonucleotides still exhibit the same discriminating characteristics as the
other statistics and will help add to the body of knowledge surrounding bacteria and their
genomic features.
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There have been various case studies that have found over- or underrepresented oligonu-
cleotides with different distributions throughout bacterial genomes (Robinson et al., 1995).
This has produced much speculation about the occurrences of these oligonucleotides, and
possible explanations for oligonucleotide distributions include that they are transcrip-
tion binding sites for common transcription factors, structural sequences or transposable
elements.

In the next section the methods and technologies used in identifying bacteria will be
discussed in more depth, including the use of the sequence features described within this
section.

1.4 Methods and technologies for identifying bacteria

using sequence data

The effective identification of pathogenic organisms using DNA sequence has become an
important mechanism in the diagnosis and treatment of pathogenesis. However, identi-
fication of pathogenic organisms has been complicated by the presence of several closely
related species which are impossible to distinguish via clinical signs, pathogenesis or sero-
reactivity. These organisms often infect similar hosts and share resistances and genetic
material making it very difficult to distinguish between them. In many cases control and
treatment of these organisms is often similar and distinguishing between them is merely
academic. In other cases where organisms are highly similar on a genomic level but dis-
play varied phenotypes, identification can be crucial to correct treatment. This is the case
with the Bacillus genus (Draghici et al., 2005).

B. anthracis, B. cereus, and B. thuringiensis are species so closely related that there
has been a proposal to name them as a single species (Helgason et al., 2000b), yet they
display highly divergent phenotypic properties. B. anthracis is a virulent pathogen for
mammals and has been used as a biological weapon (Check, 2004). B. cereus is a food
contaminant and an opportunistic human pathogen, while B. thuringiensis is used as a
biological pesticide (Helgason et al., 2000a). To distinguish these organisms their genomic
DNA must be closely inspected. There are a number of different methods that can be
employed towards this purpose.

There are two main approaches to identifying organisms using DNA sequences. The
first is laboratory assays. This includes several methods such as amplified fragment length
polymorphism (AFLP) (Ticknor et al., 2001), suppression subtractive hybridization (SSH)
(Diatchenko et al., 1996) and custom DNA microarrays (Kingsley et al., 2002). SSH is
a PCR based technique whereby DNA differences are determined by a process of sub-
traction of common sequences. This approach is limited in that created libraries apply
only to the driver and target populations and cannot be generalised to identify genomic
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signatures (Diatchenko et al., 1996). AFLP analysis is a fluorescence technique based on
identification of differences in fragment lengths that indicate polymorphisms in the DNA
sequence (Vos et al., 1995).

Laboratory processes have the advantage of not requiring the entire genomic sequence
to identify a specific species, both SSH and AFLP have been successfully used for such
purposes (Akopyants et al., 1998; Ticknor et al., 2001; Helgason et al., 2000b). The
disadvantage of these techniques is that they can only identify differences between two
organisms and cannot be used to identify global genome signatures.

The second approach to identifying organisms using DNA sequences centers on using
bioinformatics tools to analyse genomic sequence. This is done to determine unique
sequence features which can be used as markers. The most commonly used technique in
the identification of bacteria from sequence data is the identification of 16S rRNA genes
within the sequence. Criticism leveled against this and other common methods rests
on the low percentage of the genome used to create genome signatures and the sparse
selection that this technique provides.

An alternative method is comparative analysis which is widely used to identify unique
regions within genomes. Genomes are aligned to each other in order to isolate unique
regions of low similarity. These regions are then more closely inspected to identify highly
divergent sequences. In other cases, unique polymorphisms are identified from gene se-
quences and are used as markers to identify and distinguish between different species.
This technique, however, is computationally intensive and only identifies unique islands
of DNA (Draghici et al., 2005).

Recently, short oligonucleotide signatures of different lengths have also been used to
identify bacteria from unknown sequences. This offers a background to understanding
and building on the possibilities available for longer oligonucleotides and their advantages
over current techniques.

This section discusses the use of various techniques utilised in the identification of
bacterial sequences in a metagenomic context. Firstly, the use of 16S rRNA genes and
the current limitations of this approach will be discussed. This is followed by discussion
of the use of comparative genomic techniques for the creation of oligonucleotide signa-
tures, the use of short oligonucleotide frequency profiles and lastly the proposed use of
oligonucleotides of intermediate length for the identification of metagenomic fragments
and bacterial species.

1.4.1 16S rRNA identification

The gold standard in identifying organisms is the use of the small ribosomal subunit 16S
gene. This sequence seems to be conserved enough that it stays constant within a species
and varied enough that it makes identification between species possible. It is also unlikely
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to be transferred between species as it is part of the core genome and hence avoids false
positives.

Since the 1980’s many studies have been done using 16S rRNA genes to classify differ-
ent species via their evolutionary relationships (Fox et al., 1980). From this point onward
phylogenetic studies have used the 16S gene extensively to classify unknown organisms
into their appropriate phylogenetic groupings. Identification of organisms via their 16S
genes has become a standard in laboratory analysis, and lately extensive effort has been
put into developing rapid identification systems for bacteria. Zhang et. al (Zhang et al.,
2002) reported that there are large numbers of oligonucleotide signatures that can be cre-
ated from these gene sequences. The limiting factor for this method is the length of the
signatures as some are too short for use with modern technologies. Another drawback of
this system is that several organisms such as Bacillus anthracis cannot be differentiated
from their nearest neighbours using 16S genes, as their sequences are highly similar. As
a result the alternative laboratory method, Variable-Number Tandem Repeat (VNTR)
Analysis, was developed to overcome this difficulty (Keim et al., 2000).

In several cases organisms can have highly similar 16S rRNA genes and still be highly
divergent in genomic sequence and in functional roles (Jaspers and Overmann, 2004).
This leads to questioning of the overall validity of the use of this technique on a metage-
nomic sample. Further criticism is based on the fundamental principle that in order to
understand divergence of related living organisms one gene does not provide enough infor-
mation and does not compensate for the differences in evolutionary rates between different
parts in the genome (Koonin et al., 2000). This can lead not only to an organism being
incorrectly identified but also to the incorrect classification of novel bacteria.

As pointed out, there are several fundamental difficulties with this approach. The
most blatant is the low occurrence of the 16S gene, covering only 0.05% of the prokaryotic
genome. Therefore loss of this segment would result in loss of signal (Rodriguez, 2002).
Even in the partial presence of the gene, roughly half of the gene would be unusable as
a sizable portion of the sequence is lost when making an informative alignment (Karlin
et al., 1997).

An attempt has been made to avoid these difficulties by using oligonucleotides that
occur uniformly throughout the genome, allowing for identification regardless of partial
genome loss.

From the above discussion both the strengths and weaknesses of this approach can
be assessed. Although the approach is currently still widely used, an alternative will be
necessary as the complexity of bacterial environments increases. In this regard methods
will need to be found for generating new signature sequences. The next subsection there-
fore examines a common method for identifying bacterial signatures using comparative
genomics.
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1.4.2 Comparative genomics: genomic alignments

Comparative genomics is defined as the investigation of the relationship of genome struc-
ture and function across varied biological strains (Benson et al., 2007). In the context
of this study it refers specifically to the identification of similarity or difference in the
genomic sequence of two of more organisms. Comparative methods have been used ex-
tensively to identify unique regions within genomes that can be used to identify species in
a global context. The practical method used is that of sequence alignment, where genomes
are aligned to each other to isolate unique regions of low similarity. These regions are then
inspected more closely to identify highly divergent sequences. The alignment of genes is
another common method whereby unique polymorphisms can be identified and used as
markers (Draghici et al., 2005; Slezak et al., 2003; Phillippy et al., 2007).

In order to identify unique DNA signatures there has to be comparison between the
genome in question and all other genomes. This is a very computationally expensive
process and unfeasible at the present time. An alternative to this approach uses the phy-
logenetic background of the organism by searching for differences with only closely related
species. These differences are then tested against all other organisms. This approach pro-
vides an elegant solution as the largest similarities will be with nearest neighbours and
fewer similarities will be present with distant relatives. The significant reduction in com-
putation makes this a commonly used method in comparative genomics (Draghici et al.,
2005).

Modern comparative approaches attempt to decrease computation further by reducing
search space when looking for unique signatures. In the approach proposed by Slezak et al.
(2003) their first step was to find regions of high similarity between various organisms
and exclude these from further searches. This was done by whole genome alignment
against the target pathogen to determine which regions of the genome will be least likely
to contain unique sequences. This group then created an automated system used for
predicting pathogen DNA signatures using their comparative genomics approach. This
system is known as KPATH. The insignia signature identification system (Phillippy et al.,
2007) is an open source alternative to the KPATH system and performs similarly using
open source software and a web interface as a front end (Slezak et al., 2003).

Comparative genomics approaches have been successful in characterisation of unique
signature oligonucleotides. However, this method is expensive in both time and computa-
tional power. Furthermore, by focusing on regions of dissimilarity smaller sub regions are
overlooked. This results in signature sequences localized to specific areas on the genome,
and implies that the organism can only be identified if these regions are present, thereby
drastically reducing usability in a metagenomic context (Draghici et al., 2005).

Given this major disadvantage, an alternative method capable of using the entire
genome would be far more effective. In the following subsection the use of short oligonu-
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cleotide frequencies in the identification of bacterial sequences is reviewed.

1.4.3 Short oligonucleotide frequencies

Short oligonucleotide frequencies provide a method for complete genome characterisation
and analysis. This is done by incorporating information from oligonucleotides spread
throughout the genome rather than focusing on specific regions of importance. The dif-
ferent methods for identifying not only genomes but genomic features will be discussed in
this subsection.

Research on short oligonucleotide frequencies between 2-4 nucleotides in length have
found that they carry strong species specific signals (Karlin and Cardon, 1994; Kar-
lin, 1998b; Karlin and Burge, 1995). These signals were detected by a host of different
techniques namely neural networks (Abe et al., 2002, 2003), chaos game representations
(Goldman, 1993; Deschavanne et al., 1999) and naive Bayesian classifiers (Sandberg et al.,
2001).

In their study Abe et al. (2003) used an unsupervised neural network algorithm self
organising map (SOM). The SOM was used to analyse di-, tri- and tetranucleotide fre-
quencies in a large group of prokaryotes to attempt to identify species specific sequence
characteristics for these genomes. Their algorithm had success with identifying sequence
fragments as short as 1kb and attributing them to a specific species. This gives an indi-
cation of how relatively short sequences, present at any place within the genome can be
attributed reliably using oligonucleotide frequencies (Abe et al., 2003).

The Bayesian classifier used by Sandberg et al. (2001) used a principal component
analysis (PCA) of oligonucleotide frequency profiles to identify and visualise the differ-
ences in oligonucleotide frequencies between the species. PCA is a vector space transform
used to reduce the number of dimensions in a dataset. This enables the classification
of data using several of the best dimensions, which in turn reduces unnecessary noise
in the dataset. PCA was able to distinguish between 25 different species (Figure 1.2).
Sequences as short as 400bp could be correctly classified with an accuracy of 85%. Re-
markably, with 60bp sequences the classification accuracy was still able to identify nearly
half the fragments correctly with a score of 46%. It was also found that the performance
of the classifier and the accuracy with which it classifies largely depends on the length
of the oligonucleotide used for the signature. In their tests on oligonucleotide frequencies
of different lengths it was found that the longest oligomers, eight-mer and nine-mer gave
the best results (Figure 1.3). This leads to the conclusion that the use of longer oligonu-
cleotides can allow for even greater resolution to be attained and could potentially prove
a more effective solution.

Another conclusion drawn is that classification does not depend on a few species-
specific motifs, but rather on the whole set of motifs. This leads to the understanding
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Figure 1.2: Principal components analysis (PCA) was performed on the motif frequencies
of 25 genomic species. (Sandberg et al., 2001)

that the oligomers need not be entirely specific for one organism to be part of a functional
profile. Tests done to separate closely related strains and species sequences as short as
200 nucleotides, gave a 90% correct classification. This, however, is largely due to the
fact that oligomer motifs tend to define closely related species better and that only two
different classes need be discriminated (Sandberg et al., 2001).

One of the most promising features for the use of oligonucleotide frequencies rests
on the fact that accurate characterisation of the genomic oligonucleotide profile requires
only a portion of the genome. This is based on the assumption that intragenomic profile
differences are smaller than intergenomic differences (Karlin and Burge, 1995). In an
experiment preformed by Sandberg et al. (2001) genomic regions were excluded from
the training of their algorithm, and random portions of the excluded regions were then
used to assess the algorithm’s accuracy. The proportion of the excluded sequence was
then systematically increased. Surprisingly, when as much as 90% of the genome was
excluded, the classifier still produced reliable results (Figure 1.4). These results show
the flexibility and power of oligonucleotide profiles in their ability to be generated and
used on new, partially-sequenced bacterial species, as well as annotated and completely
sequenced species (Sandberg et al., 2001).

Tetranucleotide frequencies have also been employed in the task of identifying genome
fragments in a metagenomic context. This technique was tested against the standard
sequence methods of fragment identification such as differences in GC content, phyloge-
netic information and codon bias in functional genes. It was found that tetranucleotide
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Figure 1.3: The dependence of classification accuracy on oligomer length. (Sandberg
et al., 2001)

Figure 1.4: Lack-of-knowledge experiments performed by Sandberg et al (Sandberg et al.,
2001). The genomic percentage of the genome was reduced to only 10% which still pro-
vided an effective classifier.

frequencies outperformed these methods. Teeling et al. (2004b) stated that “the discrim-
inatory power of correlations of tetranucleotide-derived z-scores is by far superior to that
of differences in (G + C)-content ” (Teeling et al., 2004a). However, there are several
restrictions to this technique. The first is that the intragenomic variation within the
genome must be low. This is also one of the main criticisms against GC content. If the
GC content varies greatly within a genome it makes identification impossible. The second
restriction is in regard to the complexity of the dataset. If there are more than 100 or-
ganisms present at equal ratios it makes identification more difficult. However, in certain
metagenomic environments with a dominant minority, the noise may be low enough to
accurately identify fragments. Lastly, restrictions to this technique are widely affected by
fluctuations in base composition from foreign DNA recently incorporated into the genome
or highly polymorphic genomes (Teeling et al., 2004a).

This again shows the inherent power of oligonucleotide frequencies to identify organ-
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isms and the potential to solve some of the current difficulties in metagenomics. It is
also clear that several limitations are placed on the use of short oligonucleotides for this
purpose. In order to achieve a statistically significant result a sequence must be in excess
of 1kbp for tetramers or 400bp for nonamers and octamers. This is, however, not accu-
rate enough, as modern sequencing techniques generate raw sequence reads of only a few
hundred base pairs in length. This concludes in a search for longer oligonucleotides that
can be more effective in the classification of species via their metagenomic sequencing
fragments.

The current study attempts to build on the foundation created by research into short
oligomers by utilizing longer oligonucleotides which can be used to identify species specific
characteristics in shorter sequences. This method is also computationally inexpensive as
the bacterial genome is stored as a frequency table and does not require identification of
a specific position within the genomic sequence as is done in sequence alignment meth-
ods. It is also possible to generate oligomer profiles using only a portion of the target
genome (Sandberg et al., 2001). In the next subsection therefore use of overrepresented
oligonucleotides of intermediate lengths is discussed.

1.4.4 Overrepresented oligonucleotides of intermediate length

In the current study longer oligonucleotides, between 8 - 14 bp in length, are analysed to
find a solution to the specificity problems of shorter oligonucleotides. The use of overrep-
resented oligonucleotides provides an alternative approach to identifying bacteria within
metagenomic datasets. One of the major benefits of using overrepresented oligonucleotides
is that it does not require the investment of time or effort usually associated with the error
prone and unreliable task of sequence assembly. This method therefore allows for swifter
analysis than currently available methods and can thus provide more timely identifica-
tion of bacterial pathogens in situations where time-efficient detection is essential. The
sequencing technology necessary to utilize overrepresented oligonucleotides is discussed in
the next section.

1.5 Sequencing technologies

The sequencing of genomic DNA has always been one of the pivotal points in the furthering
of genetic studies. The demand for improvements in sequencing technology are greater
now than ever before. This section aims to provide a basic insight into sequencing and
the modern technologies currently used.

There are three types of sequencing approaches in use today namely Microelectrophoretic
sequencing, Hybridization sequencing and Cyclic-array sequencing on amplified molecules.

The best known of these methods is the Sanger method that falls within the Microelec-
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trophoretic sequencing approach. This method involves the creation of a complementary
strand of DNA from an existing template. The process uses normal nucleotides together
with fluorescent dideoxynucleotides which terminate strand synthesis. This allows for the
elucidation of sequence by electrophoresis of various lengths of the synthesized strands
with their fluorescent nucleotide markers (Sanger et al., 1977). Several improvements have
been made to the Sanger method in the following areas: Fluorescence detection, enzy-
mology, fluorescent dyes and capillary array electrophoresis (Metzker, 2005). Even with
the advances to this technology it is too expensive, labour intensive and time consuming
to meet the needs of modern researchers.

Hybridization sequencing involves the inferring of sequence by the extent to which a
large sample of short oligonucleotides bind the sequence. This can be used to obtain a
large amount of sequence data. The drawback to this approach is the possibility of cross-
hybridization caused by sequences with high numbers of repeats or chance occurrences
of similar sequence (Chan, 2005). This method, although promising, is not currently
commercially viable and has not been successfully employed with stringent statistical
reliability.

Lastly, the cyclic-array sequencing on amplified molecules method involves multiple
cycles of enzymatic reactions on a slide spotted with oligonucleotide features. This method
covers millions of features but only a few bases making it useful with multiplexing (Shen-
dure et al., 2004). One of the center pieces and the most successful technology developed
so far is pyrosequencing. This approach measures the release of inorganic pyrophosphate
from incorporated nucleotides as a proportional enzymatic release of light (Ronaghi et al.,
1996). Rather than introducing modified nucleotides that terminate DNA synthesis this
approach adds limited amounts of nucleotides, thereby controlling the speed of the reac-
tion. This is done by reintroducing new nucleotides using different enzymatic cycles. The
light recorded from the release of inorganic phosphate is then visualized as a set of peaks
referred to as a pyrogram. This corresponds to the order in which nucleotides were added
and identifies the underlying DNA sequence (Metzker, 2005).

The company 454 Life Sciences has created a commercialized sequencer capable of
whole genome sequencing by integrating pyrosequencing with the PicoTiterPlate platform.
The PicoTiterPlate platform is a fiber optic faceplate containing thousands of minuscule
wells each 40 micrometers wide. The reactions take place inside micro reactors consisting
of separose beads containing the DNA molecule and needed enzymes for the reaction. One
of the greatest difficulties with this approach centers on homopolymer repeats and the
inability of this technique to measure repeats of longer than 5 nucleotides. Another flaw
is the possibility of asynchronistic extensions resulting in highly error prone sequencing.

Cyclic-array sequencing on single molecules is a sub category of methods which involves
removal of the need for PCR amplification or cloning steps in sequencing. These methods
rely on the extension of a primed DNA template on a solid surface using special fluorescent
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nucleotides to allow for signal detection. Generally, these methods have very short read
lengths, roughly 20-50 base pairs in length (Illumina, 2008). The company Solexa has
created such a technique using reversible termination nucleotide bases. This technique
allows for continuous elongation of the DNA strand after each base has been read. A
drawback to this approach is the overall cycle efficiency which is largely dependent on the
chemistry of the reversible terminators being used. For an increase in sequence length
significant improvements will have to be made to these reversible terminators (Shendure
et al., 2004; Illumina, 2008).

At present the short read lengths (25-300bp) generated by modern sequencing tech-
nologies remain a pervasive problem. The modern sequencing approaches have sacrificed
read length for an increase in coverage of the base pairs being sequenced. The effect on
sequence assembly (without a clone map), however, is dramatic. The greatest difficulty in
assembly is the presence of repeat regions, specifically where these regions are longer than
the read lengths. As read lengths decrease there is also a higher possibility of finding two
highly similar reads from different regions in the genome which cannot be differentiated.
This can result in further errors in assembly (Whiteford et al., 2005; Chaisson et al.,
2004).

Repeats can result in fragmentation of the overlap-consensus sequence leading to a loss
of information and larger number of contig fragments being generated. Chaisson et al.
(2004) described these difficulties in connection with the assembly of a large, repeat rich
bacterial genome using only the sequenced fragments. They stated that “with short reads,
assembling a BAC became as complicated as assembling a bacterial genome with normal
reads, even when reads had no sequencing errors.” They conclude that “substantial (if
not prohibitive) finishing efforts are required for resolving entirely all but the simplest
of genomes [using short read lengths]” (Chaisson et al., 2004:2068). This outlines the
challenge faced by assembly of short reads in bacterial genomes.

Recently some success has been attained in assembling short read lengths, but this
remains tentative (Smith et al., 2008). Most modern assembly programs still require large
cloned inserts for mapping of short fragments. Although this is a step in the right direction
there is no simple solution to the assembly of short reads (Sundquist et al., 2007).

From these findings it is clear that one of the largest drawbacks to modern sequencing
techniques is the difficulty in assembly of the short read lengths. This study aims to use
raw sequence reads without the necessity of arranging them into contigs. This results
in a highly efficient system for the use of modern sequencing techniques and allows for
extraction of information without the effort of sequence assembly.

The current study centers on the development of new data-mining approaches to give
broader use to high-throughput techniques. Ultimately the goal is to scan raw sequence
reads for oligonucleotide signatures to determine which organisms are present within the
sample, rendering a marked decrease in computational time. A brief description of previ-
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ous work done in this field is given below.

1.6 Previous work on overrepresented oligonucleotide

signatures

Previous work on overrepresented oligonucleotide signatures has focused mostly on short
oligonucleotide sequences between two and four nucleotides in length. The development
and analysis of overrepresented oligonucleotide signatures of between 8-14 base pairs in
length is a novel approach which is currently limited to researchers collaborating in the
current study. However, Colin Davenport of the Hanover Medical School is the author
of several programs involved in overrepresented oligonucleotide discovery which will be
discussed below (Davenport et al., 2008).

1.6.1 OligoCounter and Oligoviz: Massively overrepresented oligonu-

cleotides

OligoCounter is a Java command line program which identifies overrepresented oligonu-
cleotides between 8-14 base pairs in length from DNA sequence by counting oligonucleotide
occurrences. This program and its methods of identifying overrepresented oligonucleotides
have been discussed in Section 1.3.4.

OligoViz and JcircleGraph are visualization techniques created to aid in the identifica-
tion and the comparison of global sequence features. OligoViz creates a graph showing the
presence or absence of a large number of oligonucleotides throughout the genome. This
is done using a dot representation to indicate presence or absence of an oligonucleotide
within a 10kb window. Patterns can then be identified as horizontal lines or bands within
Figure 1.5.

JcircleGraph creates a circular representation of different genome statistics. The four
innermost rings are tetranucleotide parameters with the remaining rings identifying char-
acteristics in overrepresented 8-14mers (Figure 1.1) (Davenport et al., 2008).

These programs provide evidence for the existence of overrepresented oligonucleotides
and further visual proof that they correlate well with other genomic sequence features.
This alludes to the further use of overrepresented oligonucleotides as a genomic signature
that will provide a reliable and sensitive diagnostic.

1.6.2 Conclusion

Pathogenic bacteria are still one of the leading forms of mortality in the world today.
Millions of deaths each year are connected with M. tuberculosis alone. Although there are
different mechanisms of pathogenicity and different degrees of virulence, the majority of
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Figure 1.5: The top 600 overrepresented oligos in the Mycobacterium avium K10. Overrep-
resented oligos are represented on the X-axis and sorted by descending overrepresentation
index (chi-squared), with genome position on the Y-axis. Note the absence of oligos
otherwise found distributed throughout the whole M. avium genome at 4.2MB. This cor-
responds to the position of strongly divergent GC content and may indicate a genome
island. Repeat regions are present as horizontal bands containing many similar oligos.
(Davenport et al., 2008)

pathogens have identifiable pathogenic sequence features. These are termed pathogenicity
islands (PAIs) and are found within their core genomes.

Pathogenic bacteria are present in diverse environments where non pathogenic bacteria
also reside. By analysing DNA taken directly from an environment, complications in
culturing bacteria can be avoided. However, this comes at the cost of having to sort
and filter different unknown genomic fragments. In order to improve diagnostic and
preventative measures as well as advance understanding of bacterial communities, new
ways of identifying bacteria using metagenomic sequence fragments must be discovered.

Bacterial genomes contain a vast diversity of sequence patterns and will take many
text books to describe comprehensively. Sequence patterns can be utilised to extract
a large amount of information from a genome. The simplest example is the bias each
species has for specific codons to code certain amino acids. However, sequence patterns
are present outside of coding regions and these can indicate genomic features such as
transcription binding sites or structural complexes. Short oligonucleotide frequencies (2-
4bp) are a pervasive and informative method of retrieving information about surrounding
sequence features and classifying genomes and their sequenced fragments. This study will
attempt to apply this process to longer oligonucleotides of 8-14bp in length in an attempt
to identify bacterial genomes within a metagenomic context.

Several different methods currently exist to identify bacteria from metagenomic data.
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The most well known method is the use of 16S rRNA phylogenetic gene markers. These
markers can be specifically attributed to a single species and allow for classification of un-
known organisms according to comparative analysis of the gene. Although this approach
has proved invaluable its disadvantages center around the reliance on the short localised
region that contains this gene. This is especially the case in a metagenomic context where
only 1% of the reads contain these sequences (Handelsman, 2004). It is clear that further
signatures must be sought in order to provide better genome coverage.

Comparative analysis is a common technique used to identify regions of similarity or
dissimilarity and has been used extensively to identify unique oligonucleotide signatures.
However, this approach suffers from the same disadvantage as the former. Signatures
are localised to specific regions of low similarity and hence do not provide the coverage
necessary for optimum identification in a metagenomic context.

Short oligonucleotide frequencies (2-4bp) are an alternative to these approaches. This
technique relies on sequence features maintained throughout the genome and considers
the combined occurrence of all oligonucleotides as a signature. Application of the tech-
nique results in a departure from a conventional definition of a genome signature. Instead
of relying on wholly unique sequences the profile of occurrence of several less specific
oligonucleotides is used. This sacrifices sensitivity for a much broader ability to identify
genomic fragments regardless of genomic position. The approach has been used success-
fully in the identification of species fragments from 1kb to as short as 400bp in length.
The limitation of this method, however, is the lack of specificity which can be seen in the
use of sequences shorter than 1kb.

With the evolution of sequencing, the decrease in cost and increase in the number
of bases being sequenced has greatly aided the feasibility of modern metagenomic tech-
niques. However, this exponential increase in speed and volume has come at the cost of
sequence length. At present the most modern sequencing technologies generate short se-
quenced reads between 25 to 300 base pairs in length. This leads to further complication,
in that for these reads to be useful they have to be attributed to a specific species or
assembled via sequence alignment techniques. This becomes problematic in the case of
repeats and highly similar sequences which can result in several different species fragments
being attributed to a single genome. This ultimately results in the incorrect assembly of
genomes.

The current study centers around the use of longer (8-14bp) overrepresented oligonu-
cleotides to recognise bacterial species in unknown sequence. The study proposes an
approach to identify bacteria within a metagenomic sample by optimum utilization of
modern sequencing technologies without the need for sequence assembly.

Having outlined the foundations upon which the current study has been based, this
chapter concludes by setting out the problem statement and aims of the study.
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1.7 Aims and problem statement

1.7.1 Problem statement

The identification of pathogenic bacteria within environmental samples is a complex and
laborious task. Sequencing of environmental samples results in a mixed bag of sequences
from different species with further constraints such as read length limitations hampering
attempts to separate and assemble these sequences. Current marker methods for this
purpose are deficient largely due to the localization of markers. There is no guarantee
that these markers are completely unique or accurate in identifying species as they refer
only to specific regions and cannot provide an overall assessment of the genome. It is
essential that alternative approaches are found which allow for identification of bacterial
species regardless of partial genome loss and will enable classification of the majority
of genomic fragments pertaining to a species. Overrepresented oligonucleotides (8-14bp)
provide a solution to this problem as they occur throughout the genome and can be used
without the need for sequence assembly.

1.7.2 Aims

In order to develop the proposed method for testing and analysis of bacterial genomes
within a metagenomic sample the following aims were set:

• To create and populate a structured, relational database, including parsing and
analysis of raw overrepresented oligonucleotide data (Chapter 2)

• To create a program for querying the database and performing analyses (Chapter
2)

• To identify overrepresented oligonucleotide marker profiles for the purpose of classi-
fying each bacterial genome in an unknown metagenomic sample (Chapter 2). This
aim includes the following objectives:

– To identify closely related strains of the same species using overrepresented
oligonucleotide data, thereafter, the identification of species and lineage specific
overrepresented oligonucleotide marker profiles

• To test species and lineage specific overrepresented oligonucleotides on artificial and
real metagenomic datasets (Chapter 3)

These aims will allow for the filtering and analysis of raw data to define the best overrepre-
sented oligonucleotide candidates for elucidation of species within a metagenomic context.
Furthermore, testing of overrepresented oligonucleotides using metagenomic data will help
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determine the usability of this approach. These results can then be used in further in-
vestigation into formal methods of identification and classification using overrepresented
oligonucleotides of intermediate lengths.

 
 
 



Chapter 2

Database development and
implementation

2.1 Introduction

In the previous chapter three main aims were presented for the development and imple-
mentation of a database and program in order to achieve the final objective of testing
overrepresented oligonucleotides on metagenomic datasets. The aims required to reach
this goal include: development of a structured database and subsequent creation of a
program and the identification of overrepresented oligonucleotide marker profiles to en-
able the classification of bacteria from an unknown metagenomic sample. This chapter
deals with the methods used to realize these aims and the outcomes associated with their
implementation.

The need for creation of a database and corresponding program was due to the na-
ture of the available data. Overrepresented oligonucleotide information was available for
a collection of species within each phylogenetic grouping. However, this information re-
mained in an unstructured form, containing not only species specific overrepresentation
but widespread overrepresentation. This information was not usable to identify bacterial
species because:

• Many overrepresented oligonucleotides were widely shared between species and there-
fore could not aid in the separation of species

• There was no measure in place to identify the extent to which each oligonucleotide
was uniquely overrepresented in a species

• No statistical measures were available to estimate the occurrence of an oligonu-
cleotide within a random metagenomic sample

• There was no way to define if a bacterial species is indeed present in a sample using
this data

31
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In order to address these obstacles well planned structures and methods must be put in
place to integrate and compare oligonucleotide information. In order to generate use-
ful results, the raw information was therefore analysed, filtered and stored. This not
only enabled recognition of candidates for species identification but allowed for efficient
searching methods as well as complex comparisons. In this chapter a program, OligoSig-
natures, for the discovery of species and phylogenetic-lineage specific oligonucleotides is
presented. Over 439 completely sequenced genomes are available for analysis in this sys-
tem’s database. The focus of the study is placed on species identification in unknown
metagenomic environments.

The first step in the process of database development was the parsing and handling
of raw data. This allowed for an evaluation of available information and calculation
of statistics to better describe each oligonucleotide. A database was then constructed,
containing 22 phylogenetic lineage tables, in order to provide an infrastructure for the
handling and integration of the parsed data. Further oligonucleotide discovery was then
implemented using genomic sequences as oligonucleotide data lacked consistency over
different species.

After population of the database it was possible to identify a list of overrepresented
oligonucleotide markers for species and lineage detection. A question was raised as to
the effect of different strains of the same species being present in the same lineage. This
would impact the statistics used to identify candidate markers not only within the species
but throughout the lineage group. A test was then performed to gauge the similarity in
oligonucleotide occurrence to quantify this hypothesized effect.

Species specific oligonucleotide markers were selected by calculation of a score for each
oligonucleotide within a species. From the score it was possible to examine how uniquely
overrepresented an oligonucleotide was in a lineage. To avoid redundancy, oligonucleotides
were checked for similarity to ensure that they did not form part of the same repeat region.

The next analysis done was the identification of lineage specific oligonucleotides. This
involved the identification of the most overrepresented oligonucleotides within the lineage.
The resultant oligonucleotides were then filtered to remove redundancy.

Although analyses performed were by no means extensive, they did allow for an insight
into the use of overrepresented oligonucleotides. The ability to identify species specific
overrepresented oligonucleotides provides an opportunity to explore a new method of
species identification. Furthermore, by identifying lineage specific oligonucleotides an
attempt can be made to identify a broader phylogenetic group within an environmental
sample. With the creation of the proposed program, these techniques can be readily
applied to any metagenomic situation to provide the researcher with the versatility needed
to discover methods for the identification of species using overrepresented oligonucleotides.
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2.2 Collection and input of raw data

OligoSignatures was constructed in Python 2.4.4. Each analysis was run under a central
class which allowed for customization of all parameters and returned information which
could be further manipulated or stored by the user. Every analysis could be run on a
standard personal computer (using either Linux or Windows operating systems), as part
of the central program or as a standalone program. The larger analyses were submitted
to BLART, a Linux server system with 8GB of RAM.

In this section, the initial creation and population of the database is discussed, begin-
ning with a description of the data followed by basic parsing and analysis methods used.
The construction of the database, its division into smaller tables and further analyses is
then explained.

2.2.1 Data source

The first step in creation of the database was to parse and analyse the raw information
received from OligoCounter (Davenport et al., 2008). These files consisted of overrepre-
sented oligonucleotides found within unannotated FASTA files obtained from the NCBI
FTP site in April 2007 (Benson et al., 2007). These files contained over 538 sequenced
bacterial genomes.

A new format was utilized for the representation of oligonucleotides namely denary
format. This format converted the letters of an oligonucleotide into easily stored decimal
numbers where the order of bits encodes the initial sequence. This was done to increase
the speed of database searches as digits are far more efficiently retrieved than characters.

Each OligoCounter output file contained: a FASTA heading, the overrepresented
oligonucleotide in normal text and in denary format, its frequency within the genome
and its positions of occurrence throughout the genome. This data was parsed into the
python script and imported into the database.

2.2.2 Data parsing

The initial step in database creation involved parsing and preliminary analysis of the data.
The raw OligoCounter files were parsed into a python script where the complements of
each oligonucleotide were identified and integrated into a single oligonucleotide entry, this
decreased redundancy within the database. For each oligonucleotide entry two statistics
were calculated, namely; expected value per 100kbp and coefficient of variation. The
expected value per 100 kilo base pairs (100kbp) (Algorithm 1) of an oligonucleotide was
an attempt to estimate the average occurrence of an oligonucleotide, for a particular
species, within 100 kbp of randomly selected genomic sequence. The following factors
were taken into account
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• The frequency of the oligonucleotide within the specified genome

• The spread of the oligonucleotide throughout the genome

Algorithm 1 Expected value per 100kbp.
Expected value per 100kbp = 100000√

µ̄2+σ2

µ̄ indicates the average fragment lengths
σ2 indicates the standard deviation of the fragment lengths

This algorithm relied on the positions of occurrence of each oligonucleotide by creating
genomic fragments that span from the start of one occurrence to the start of the follow-
ing occurrence. These fragment lengths were then used to determine the uniformity of
spread (the standard deviation of the fragment lengths) and the average distance between
fragments.

The coefficient of variation was then calculated and the formula is given in Algorithm
2.

Algorithm 2 Coefficient of variation.
Coefficient of variation =σ

µ

µ indicates the average fragment lengths
σ indicates the standard deviation of the fragment lengths.

This identified the amount of variation in fragment lengths and hence the spread
and uniformity of the oligonucleotide throughout the genome. This statistic allowed for
assessment of oligonucleotide distribution at a glance as large values indicate low spread
while smaller values indicate uniform distribution. Once the data had been parsed into
the python script and recomputed it was imported into the database.

2.2.3 Database creation

There are multiple applications for management and construction of a database. The
most commonly used systems include PostgreSQL, Oracle and MySQL. The database con-
structed in the current study was created using MySQL Enterprise Server 5.1. MySQL is
an open source SQL relational database management tool available at http://www.mysql.com/.
MySQL operates on all major operating systems and has a large community of users pro-
viding comprehensive support. MySQL has a number of interfaces to different program-
ming languages including Python.

In this study the database interface module SQLAlchemy 2.4.3 was used for the ma-
jority of communication with the MySQL database. This module enhances the usability
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Table 2.1: The number of genomes per lineage table.
Database Lineage Number Lineage Description Number of genomes

1 Acidobacteria 2
2 Actinobacteria 35
3 Alphaproteobacteria 54
4 Aquificae 1
5 Bacteroidetes/Chlorobi 10
6 Betaproteobacteria 36
7 Chlamydiae/Verrucomicrobia 11
8 Chloroflexi 2
9 Crenarchaeota 7
10 Cyanobacteria 19
11 Deinococcus-Thermus 4
12 Deltaproteobacteria 14
13 Epsilonproteobacteria 11
14 Euryarchaeota 23
15 Firmicutes 96
16 Fusobacteria 1
17 Gammaproteobacteria 100
18 Nanoarchaeota 1
19 Other Bacteria 1
20 Planctomycetes 1
21 Spirochaetes 9
22 Thermotogae 1

of databases by creating a simple and powerful interface that allows for dynamic and com-
plex queries in a simple and elegant manner. These feats are achieved through relational
mapping of the database to constructs created in Python.

Three tables were created to house all the data retrieved from OligoCounter, namely,
the Accessions table, Oligos table and Instances table. The Accessions table contained
information regarding characteristics of each genome such as genomic sequence length,
genome description and GenBank accession number. The Oligos table consisted of infor-
mation regarding oligonucleotide characteristics such as oligomer melting temperature and
GC content. The Instances table contained each oligonucleotide entry with its positions
of occurrence for all genomes within the database.

2.2.4 Database division, analysis and completion

Although the Instances table housed records for all genomes within the database further
division of data was required to allow for efficient access to information. The Instances
table was divided according to 22 phylogenetic lineages as identified by GenBank (Benson
et al., 2007). The description and the number of genomes within each lineage is listed in
table 2.1.
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The number of unique oligonucleotides in each lineage was referred to as the lineage
oligonucleotide template. To allow for effective comparison between species within the
lineage each species had to conform to the lineage oligonucleotide template. This template
was applied to each genome within the lineage so that each genome contained an entry
for each oligonucleotide found in the template. If an oligonucleotide was not present, the
genome file was searched for these oligonucleotides and entries were then appended to the
lineage table of the corresponding genome.

After completion of this process 22 lineage tables were present along with the two
additional general information tables, the Accessions and Oligos tables. The completed
structure of the database is shown in Figure 2.1. Each table will now be briefly described.

The Accessions table contained information relating to the genome such as: the gen-
bank accession number (Accession_number), the species description (Genome_description),
genome sequence length (Genome_length) and lineage in which the genome occurs (Lin-
eage_id).

Each Lineage table consisted of the following information: A number used to describe
each entry (Instance_id), the oligomer recorded in denary format (Oligomer_denary), the
positions of occurrence of the oligomer (instances), the accession_number of the genome
it originates from (Accession_id), the frequency of occurrence of the oligomer within
the genome (Frequency), the coefficient of variation (Coefficient_variation), the expected
value per 100kbp (Expectation_per_100kbp) and whether the reverse compliment had
been included in this entry (Reverse_compliment).

The Oligos table is comprised of the following information: the oligomer recorded in
denary format (Oligomer_denary) ,the oligomer recorded in normal characters (Oligomer_str),
the length of the oligomer (Oligo_length), a hash-table value for calculation of oligomer
neighbours differing by several nucleotides (descriptor), the GC content of an oligomer
(GC_content), the melting temperature of an oligomer according to two different meth-
ods, the Wallace rule (Melt_temp_wall) and the nearest neighbor method (Melt_temp_nn).
The Wallace rule (Wallace et al., 1979) was easily calculated but was only usable on 13-
20mers while the nearest neighbor method (Wetmur, 1991) could be used on all oligonu-
cleotides within the 8-14mer length range.

2.3 Approaches for database analysis

This section explains the statistical parameters and development of scoring mechanisms
for species specific and lineage specific oligonucleotide analysis. These statistics were
critical to the effective functioning of each analysis. A great deal of effort was invested
to find the most accurate and consistent methods for use in species and lineage specific
analysis.
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Figure 2.1: Structure of the created database. The Accessions table included all general
genome information while the Oligos table included the properties of each oligonucleotide
found within the database. There are 22 lineage tables containing information on over-
represented oligonucleotide frequency and positions of occurrence within each genome in
the lineage. The links between tables indicate the foreign keys.

2.3.1 Scoring function for calculation of species specific oligonu-

cleotides

In order to identify whether an oligonucleotide was species specific a score was assigned
based on its ability to separate one species from its lineage neighbours. This value aimed
to identify the degree of difference between the expected value of the oligomer in the
present genome and other expected values for that oligomer in the lineage in order to
rank oligonucleotides which are overrepresented in only a few species.

In an attempt to calculate this score the expected values of several oligonucleotides
were plotted from Actinobacteria (Lineage 2) (Figure 2.2). The resultant graph ap-
proached the shape of an exponential distribution. Nonetheless, the graph shapes were
inconsistent and after hypothesis testing it was concluded that the data did not fit any
standard distributions and an alternative statistic would have to be found.

Four candidate algorithms were evaluated to identify the best measure. The first two
measures (Algorithm 3) both relied on the variance of the data to differentiate between
candidates. This approach had several short comings in that the data was not normally
distributed and did not fit any standard distribution. The first algorithm (Algorithm 3,
Scoring function 1) favored datasets where several values were abnormally higher than the
others and so did not select the words which best described a small sample of genomes.
The second scoring function (Algorithm 3, Scoring function 2) tried to decrease the effect
of the standard deviation but ultimately provided poor results.

The third and fourth scoring functions (Algorithm 4) relied on a ratio based approach.
The selection criteria for these two functions worked correctly and awarded the most spe-
cific oligomers the highest score and the less specific oligomers with lower scores depending
on the number of species containing these abundant oligonucleotides. The fourth algo-
rithm (Algorithm 4, Scoring function 4), however, provided a statistical meaning which
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Figure 2.2: Expected value plots for two overrepresented oligonucleotides. Figure A and
B show the inconsistent shape of the dataset plots for oligonucleotides ”GCGCGCGCC”
and ”GCAGCGCGG” respectively. The X-axis shows the expected values for 35 genomes
within the Actinobacteria lineage sorted in ascending order. The Y-axis shows the nu-
merical value of the sorted expected values.

Algorithm 3 Species specific algorithm 1 and 2.

Scoring function 1 = Xj ×
(∑n

i=1
X2

N
−
(∑n

i=1
X

N

)2
)

Scoring function 2 = Xj ×

√√√√(∑n

i=1
X2

N
−
(∑n

i=1
X

N

)2
)

X indicates the expected value for a genome
Xj indicates the expected value for species j

Assume N is the number of species in each lineage
i indicates each species

could be used to help quantify results. In statistical terms this value denoted the differ-
ence in numerical value from the current expected value to the average expected value
calculated for the dataset.

2.3.2 Lineage specific oligonucleotide analyses

In order to identify oligonucleotides which occur abundantly within a single phylogenetic
lineage two criteria needed to be satisfied. Firstly, the most generally overrepresented
oligonucleotides needed to be identified. This was achieved using the inverse of Scoring
function 1 for species specific oligonucleotides and is shown in Algorithm 5.

The second criterion was to determine whether the most commonly overrepresented
oligonucleotides for a specific lineage were in fact highly overrepresented in other lineages.
For this purpose oligonucleotides were retrieved from all the lineage tables within the
database. A dataset of expected values was then created for each oligonucleotide in each
lineage, if the oligonucleotide did not occur zero values were added.

Several scoring functions were created to select the oligonucleotides which best repre-
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Algorithm 4 Species specific scoring function 3 and 4.

Scoring function 3 =

{∑n

j=1j 6=i

(
Xi

Xj+1

)}
n−1

Scoring function 4 =
Xi×

{∑n

j=1j 6=i

(
Xi

Xj+1

)}
n

X indicates the expected value for a genome
i indicates the species for which the score is being calculated

Assume N is the number of species in each lineage
j indicates a species with the lineage

Algorithm 5 Common oligonucleotide algorithm. This algorithm identifies oligonu-
cleotides that are wholly overrepresented in all genomes within the lineage. This algorithm
is not statistically significant and functions merely as an indicator as the data distribution
is not normal.
Common oligonucleotide algorithm = X̄∑N

j=1X2

N
−

∑N

j=1
X

N

2
+1

X indicates the expected value of an oligonucleotide in a specific species
X̄ indicates the average expected value of an oligonucleotide within the lineage

j describes all genomes in the lineage
N indicates the total number of values within each dataset

sented each lineage. The first two algorithms (Algorithm 6) were an attempt to utilize the
standard deviations of the expected values within one lineage and that of all the expected
values from all other lineages to provide an overall ratio (Algorithm 7). The first algo-
rithm proved inconsistent and could not provide well ranked results. This is due to the
overbearing effect of the standard deviation. In the second scoring function an attempt
was made to subdue this effect but results did not improve dramatically. The last two al-
gorithms (Algorithm 8) used closely resemble the ratio algorithms used to identify species
specific oligomers and use the average expected values for each lineage to determine the
most descriptive oligomers for each lineage. Scoring function 4 was therefore selected due
to similar reasons as in Section 2.3.1.

2.4 Database analyses

In this section the primary use of the database is discussed via different analyses each
performed with a different goal in mind. The first analysis was the confirmation of strains
of the same specie, via a euclidean distance approach. This endeavored to determine
whether strains belonging to the same species were similar enough in terms of overrep-
resented oligonucleotide data that only one representative member should be included
in further analyses. Another purpose of this analysis was to provide insight into the
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Algorithm 6 The standard deviation calculations.

A. σ2
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∑
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j=1
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σ2
i denotes the variance of the expected values in a specific lineage
σ2denotes the variance of all the expected values in all lineages

Assume m lineages
Assume lineage i has ni genomes

Xi denotes the the average of lineage i
Xijdenotes the expected value for genome i in lineage j

Algorithm 7 Lineage scoring function 1 and 2.
Lineage scoring function 1 = X̄i × σ2

σ2
i

Lineage scoring function 2 = X̄i ×
√

σ2√
σ2

i

X̄i denotes the average of lineage i
σ2

i denotes the variance of the expected values in a specific lineage
σ2denotes the variance of all the expected values in all lineages

limitations of overrepresented oligonucleotides to distinguish between species.
The second analysis performed was the determination of species specific oligonucleotide

candidates. This step required the information regarding representative strains from the
previous analysis to offer an unbiased estimate for all species within the lineage table.

The third analysis available was the determination of lineage specific oligonucleotide
marker candidates. This identified which oligonucleotides best described each lineage and
could therefore be used to distinguish lineage members from non-members. This approach
also provided insight into the most commonly used sequences within the lineage and this
in turn could hint at lineage specific sequences as a topic for further research. Each
analysis method is discussed below in more detail.

2.4.1 Strain distance analysis

Strain analysis was undertaken as the database contained multiple strains and several lin-
eages contained poorly labeled genomes which could not be identified as either separate
species or strains of the same specie. This method involved the determination of how
closely related the proposed strains in the database were to each other, thereby limiting
the burden of multiple strains decreasing word effectivity. This process focused solely on
the similarity of occurrence of overrepresented oligonucleotides between two species. It
also allowed for accurate selection of the most common strain on the basis of oligonu-
cleotide content. An initial preparation phase involved identification of all strains of the
same species (including poorly labeled strains) within the database and the analysis step
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Algorithm 8 Lineage scoring function 3 and 4.

Lineage scoring function 3 =

∑m

j=1j 6=i{X̄i−X̄j}
m−1

Lineage scoring function 4 =
Xi×

{∑m

j=1j 6=i

(
X̄i

X̄j+1

)}
m

Assume m number of lineages
X̄ior X̄j denote the the average of lineage i and j respectively

i denotes the lineage for which the score is being calculated

determined how similar these strains were using initial species specific oligonucleotide re-
sults. After a group of strains was confirmed, the most common strain was selected as
the species representative.

2.4.1.1 Analysis of strain similarity

For each lineage the following processes were executed: For each genome within the
lineage, the 1000 top overrepresented genome specific oligonucleotides (identified using
the species analysis method, Section 2.4.2) were selected as its oligonucleotide profile.
Each genome was then compared to every other genome to quantify the difference in
overrepresentation of their oligonucleotide profiles. This calculation was performed using
an euclidean distance measure.

The final selection list used to calculate the euclidean distance measure (Algorithm
9) was generated by selecting the top 500 oligonucleotides from the first genome’s oligonu-
cleotide profile. Following this, 500 oligonucleotides were selected from the second genome’s
oligomer profile, not present in the 500 oligonucleotides already selected. This process
allowed for an efficient assessment of similarity between two genomes’ oligonucleotide
profiles by including the best oligonucleotides from each genome.

Algorithm 9 Euclidean distance measure.

Euclidean distance measure=
∑

(XA−XB)2

1000

XAand XB indicate the expected values for an oligonucleotide
from organism A and B respectively.

For each lineage a table of distance measures was constructed (Table 2.2). This was
then visualized by plotting of scores using a python module, Rpy 1.1, which interfaced
with the statistical language R. These diagrams (Figures 2.3, 2.4,2.5 and 2.6) showed
the relation of strains to the background data enabling an accurate estimation of overall
distance. From the plots it is possible to visually identify how similar each genome pair is
based on their calculated distances. In the majority of cases strain distances were found
with a value lower than 50 distance units. For this reason the cutoff was set empirically at
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Table 2.2: A reduced example of a distance table for Chlamydiae/Verrucomicrobia. Strain
group 1 represents the Chlamydia trachomatis species. Strain group 2 represents the
Chlamydophila pneumoniae species.

Strain Group 1 Other Specie Strain Group 2 Strain Group 2
Strain Group 1 0 82.66353345 67.01371382 67.53690649
Other Specie 82.66353345 0 59.97550241 59.73495635

Strain Group 2 67.01371382 59.97550241 0 2.266643156
Strain Group 2 67.53690649 59.73495635 2.266643156 0

50 to distinguish whether genomes were in fact similar enough to remove for the purposes
of species identification.

2.4.1.2 Strain distance plots

For each lineage within the database a euclidean distance table was created. This table
enabled the visualization of the distances between strains as a one-dimensional graphical
plot where the Y axis was only used to distribute the data points for easy viewing. From
these plots it was possible to learn a great deal not only about the strains being studied
but about the relationships within the lineage as a whole.

Four plots are described in this section. Each plot contains several colored squares
indicating distances between strains of the same species IE. each colored square represents
a species. The interspecies distances are represented as red crosses in the data. The X-axis
displays the calculated euclidean distance values.

The strain plots for Chlamydiae/Verrucomicrobia (Figure 2.3) and Firmicutes (Figure
2.4) showed a clear distinction between strains and other species within the lineage. In
Chlamydiae/Verrucomicrobia there were 3 distinct levels of phylogeny present. Starting
from the left there was a concentrated collection of strains with values between 0-20
representing mainly intraspecies distances, followed by a main body of organisms from
40-90 and a minority of distantly related species around 250 representing interspecies
distances.

A similar pattern could be seen in Firmicutes (Figure 2.4) although the interspecies/intraspecies
separation was far more vague. This could be explained by the large difference in genome
count. The Chlamydiae/Verrucomicrobia lineage table contained only 11 genomes where
Firmicutes contained 96. There was still, however, a clear separation between the strains
from 0-40, the main body of species between 50 - 400 and the distant organisms between
500-800. An observed overlap in distances between intraspecies and interspecies could
be explained as closely related organisms or misidentified bacterial species. It was also
interesting to note the difference in distances between Chlamydiae/Verrucomicrobia and
Firmicutes. Firmicutes depicted almost treble the distance demonstrating a much larger
diversity of organisms.
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Figure 2.3: Plot of euclidean distance measures for strains in Chlamy-
diae/Verrucomicrobia. Colored squares indicate distances between strains of the
same species. The interspecies distances are represented as red crosses.

Figure 2.4: Plot of euclidean distance measures for strains in Firmicutes. Colored squares
indicate distances between strains of the same species. The interspecies distances are
represented as red crosses.
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Figure 2.5: Plot of euclidean distance measures for strains in Cyanobacteria. Colored
squares indicate distances between strains of the same species. The interspecies distances
are represented as red crosses.

However, the Cyanobacteria (Figure 2.5) and Gammaproteobacteria (Figure 2.6) strain
plots showed definite irregularities. Cyanobacteria displayed a confused representation of
strain and species data. This indicated that the proposed strains were clearly not closely
related enough and may not be strains of the same species. Therefore these genomes
could not be excluded from analysis. A note must be made of the magnitude of distances
present within this plot. Cyanobacteria contained only 19 species but showed almost
as much variation as Firmicutes with the general body of organisms between 150-500
and distant relatives with values as high as 700. Reasons for this can include the vast
taxonomic diversity of Cyanobacteria.

The plot describing Gammaproteobacteria showed no clear separation between strains
and the main body of species. This can be partially explained by the large number of
organisms present within this lineage. Furthermore, the lack of separation between intra-
and interspecies distances could also indicate several highly similar species were present
within this group such as Escherichia coli, Shigella flexneri and different Salmonella
species. Particular note should be taken of the length of the tail in the plot. There were
at least four groups of distantly related species clustering together. This could be further
highlighted by the excessive distance of the most distant group with values from 2000 to
2500. As the largest table in the database with over 100 genomes, it stands to reason
that this would also be the most cluttered and diverse. This diversity could be related to
the diverse environments and large variety of phenotypic traits held by different families
of these bacteria.
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Figure 2.6: Plot of euclidean distance measures for strains in Gammaproteobacteria. Col-
ored squares indicate distances between strains of the same species. The interspecies
distances are represented as red crosses.

2.4.2 Determination of species specific oligonucleotide markers

In order to identify species specific overrepresented oligonucleotides comparisons must
made with all species within the lineage table (Algorithm 4, scoring function 4). This
could provide an accurate insight into differences between members, allowing identification
of species within an unknown environmental sample.

The approach used in this analysis relied on the frequency and distribution of marker
occurrence to identify bacterial species in genomic sequences. This required that the
marker sequences be highly overrepresented in a given species over and above that ex-
pected in all other species in the lineage. Highly similar strains were removed from the
analysis to ensure the selection of oligomers were unbiased and the maximum number of
overrepresented oligomers were selected for each species.

The first step in identification of species specific markers involved scoring of each
oligonucleotide. The score for each oligonucleotide aimed to identify the degree of dif-
ference between the expected value for the oligomer in the present genome and expected
values for this oligomer in other genomes throughout the lineage. Several different scoring
functions were tested in this respect and were reviewed in Section 2.3.1. For a score, any
numerical value above zero indicated that this oligonucleotide was overrepresented within
a specific genome above the average value of all other expected values for this oligonu-
cleotide within the lineage. The magnitude of this difference was indicated by the value
of the score.

A scoring dictionary was created containing a score-based ranked list of all oligonu-
cleotides and their expected values for each specie. These values were then evaluated
based on several criteria. The first criteria was that the expected value of an oligomer
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must be well above the probability of finding this oligomer randomly within 100 kbp of
sequence. Algorithm 10 gave greater confidence in results and did not bias results as the
threshold value was calculated based on the word length and not an arbitrary value. The
calculated value was then doubled to correct for any discrepancies due to the incorrect
representation of nucleotide ratios as GC content in bacterial species varies greatly.

Algorithm 10 Expected value threshold. This algorithm shows the calculation of the
threshold for expected values for each oligonucleotide of different length to determine their
viability as overrepresented species specific candidates.

Expected value threshold =
(

1
4

l × 100000
)
×2

l indicates oligonucleotide length

The second criterion involved filtering highly similar oligonucleotides. This limit was
imposed due to the observation that several of the unfiltered oligonucleotide markers in a
genome had highly similar sequence patterns with only one or two nucleotide differences.
This could be caused by the oligonucleotide being part of a longer repeat region. This did
not suit the purposes of the current study as these oligonucleotides described the same
position within a region and were, in effect, the same oligomer. This threshold was applied
to increase the diversity of markers allowing for a greater probability of identifying each
genome as more regions were included in the marker set.

A progressive heuristic approach was used to check sub sequences within each oligonu-
cleotide against all other oligonucleotides. Oligonucleotides were identified as highly sim-
ilar if sub sequences matched. All highly similar oligonucleotides were removed from the
dataset. If an oligonucleotide formed part of a longer oligonucleotide, only the longer
oligonucleotide was kept.

Oligomers that met the above criteria were then recorded into two sets of files. The
first was a set of marker files for use with MarkerCounter, a program developed by col-
laborators in Germany. These marker files were generated according to a cumulative
expected value threshold, which was based on the sum of the expected scores of the best
oligomers. For each oligomer appended to the candidate marker list its expected value
was added to a total which had a threshold set at 500. The total was referred to as the cu-
mulative expected value threshold. In theory this quantified how many marker oligomers
were expected to be found per 100 kbp of sequence. Different sets of markers were then
calculated with different oligonucleotide length cutoffs. The first set incorporated all the
best 8-9mer oligomers and the second set included all the best oligonucleotides found from
10-14 base pairs in length.

A second set of marker files was generated displaying the score, expected value and
empirically determined frequency for each oligomer and for all genomes within the lineage.
The oligonucleotides were ranked according to the highest scoring oligonucleotides for a
specific genome, this allowed for comparison both programatically as well as visually.
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2.4.3 Determination of lineage specific oligonucleotide markers

The initial step in identification of lineage specific markers involves identifying and ranking
the most commonly overrepresented oligonucleotides within each lineage. This was done
with the use of a common oligonucleotide algorithm (Algorithm 5). The 1000 highest
scoring oligonucleotides were selected for a particular lineage while being checked for
similarity so as to avoid using highly similar oligonucleotides from the same repeat region.
The final, filtered oligonucleotide list was then used to retrieve all oligomers found within
each of the remaining 21 lineages.

From this data, the lineage specific scoring function (Algorithm 8, Scoring function
4) was used to rank the data, the highest ranked oligonucleotides indicated the greatest
lineage specificity.

The final list of lineage specific oligonucleotides was then created by summing all
expected values of the highest scoring oligonucleotides to the cumulative expected value
threshold of 500. All oligonucleotides that fell within this range were included as lineage
markers.

For each lineage within the database an output file was recorded, containing the se-
lected markers, their associated score and average expected value. Furthermore, the av-
erage expected values of all other lineages was also included to provide an opportunity to
visually inspect the results. Marker files were also generated for use with MarkerCounter.

2.5 Database evaluation and interface

2.5.1 Program interface

Both species and lineage analyses could be accessed and configured through the Python
command line application Oligosignatures. This application allowed for the editing of
parameters to generate custom marker lists for selected bacterial species. Figure 2.7 A
showed the main menu for Oligosignatures. From this menu the designated task and
the genomes to analyse could be selected. The two analyses available were: Signature
words and Lineage Oligo Analysis. Signature words and lineage oligo analysis refer to the
generation of species and lineage specific oligonucleotide markers respectively. In addition,
it is possible to perform both analyses at once. This could be done by selecting either
analyses and then selecting the appropriate option in a following menu (Figure 2.7 B).
Furthermore, genomes could be added or removed from the analysis and the location of the
database could be changed. Lastly, the database could be searched for oligonucleotides of
interest. This allowed for investigation into specific oligonucleotides and their occurrences
throughout the database. Signature words, lineage oligo analysis and database searching
are described below in more detail.
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Figure 2.7: The main menu for Oligosignatures. Figure A shows the main screen view of
Oligosignatures. Figure B shows the menu after task selection with options for multiple
analyses.

2.5.1.1 Species marker analysis

Figure 2.8 shows the steps in the creation of species specific oligonucleotide markers using
the Oligosignatures interface. Figure 2.8 A shows the main menu for Oligosignatures
where the Signature words analysis has been selected. Two genomes have been added
for analysis. These genomes are from different lineages, this program has the capacity
to analyse genomes from the same as well as different lineages. In the case of different
lineages a temporary table is created. This can allow for a personalized environment to
be generated for creation of unique marker lists.

After confirming the genomes to be used the parameters for the selection of species
specific oligonucleotide markers is addressed in Figure 2.8 B. Each of the menu options
is discussed briefly. A score threshold may be set to determine specificity of markers.
Markers can then be filtered to remove highly similar oligonucleotides. For this purpose
a limit can then be set on the number of oligonucleotides to be returned if time is of the
essence. The cumulative expected value threshold can also be adjusted, this allows for
further correction of the stringency of marker oligonucleotides by decreasing or increasing
the size of final marker list.

Following completion of the analysis, a general menu for visualization and saving of
the processed data is viewed (Figure. 2.8 C ). From this menu the selection can then be
printed to screen (Figure. 2.8 D) or saved to a file.

2.5.1.2 Lineage marker analysis

In order to create lineage specific marker oligonucleotides the task must be selected and
the lineage name must be input (Figure. 2.9 A). Parameters can then be edited to filter
oligonucleotides based on similarity and the number of markers to be returned can then
be described (Figure. 2.9 B). There is also an option to edit the cumulative expected
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Figure 2.8: Interface parameters and options for the generation of species specific oligonu-
cleotides.
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Figure 2.9: Interface parameters and options for the generation of lineage specific oligonu-
cleotides.

value threshold to increase or decrease the number of markers included.
Finally, the results can be viewed or saved and the resultant output is displayed in

Figure 2.9 C.

2.5.1.3 Database searching

Database searching offers insight into the presence of specific oligonucleotides within the
database and retrieves expected values for all genomes containing this oligomer. Different
parameters can then be set for each search (Figure 2.10 A). The reverse compliment can
be included, as can all oligonucleotides of the same length with a single permutation
(known as horizontal neighbours). In addition, all longer oligonucleotides containing this
sequence (upper neighbours) and all shorter oligonucleotides containing a sub sequence
of this oligonucleotide (lower neighbours) can be searched. Finally the output for this
analysis can be printed or saved. The printed output is described in Figure 2.10 B.
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Figure 2.10: Searching the database for an oligonucleotide or other highly similar variants.
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2.5.2 Lineage identification

Each of the 22 lineage tables processed using lineage specific analysis yielded varying
results. Several lineages showed very few lineage specific oligonucleotides and others
showed large numbers (Table 2.3). This was to be expected as several bacterial families
have been found to contain far less global repeats than others. The comparison was
hampered by the significant differences in genome number for each lineage. Thus, the
lineages with the least number of organisms often had the lowest scores. This form of
bias was ascribable to the decrease in power of the statistical test due to the insufficient
length of the dataset. This was not the only reason for the low number of overrepresented
oligonucleotides. In the Chloroflexi lineage, species within the lineage showed very few
specific oligonucleotides. One of the central limitations of this approach could therefore
be seen as the lack of sequenced genomes in certain lineages. Certain characteristics of
lineage species such as richness in genomic repeats could impose further limitations.

From an attempt to include 8mer oligonucleotides in lineage analysis it was seen that
specificity was too low and lineages could not be distinguished. This lead to the exclusion
of 8mer oligonucleotides in lineage marker lists. Furthermore, results showed that many
lineages did not contain sufficient oligonucleotides for lengths 10-14mer, in this instance
9mer oligonucleotides were included to enable lineages to reach the desired cumulative
threshold.

The number of marker oligonucleotides to be included per lineage was calculated by
using the cumulative expected value threshold. This value was selected as several lin-
eages did not contain enough oligonucleotide entries for a combined expectation of more
than 500. Furthermore, several lineages contained an extremely large number of oligonu-
cleotides with low expectation values. This resulted in a large increase of non-specific
data as slightly overrepresented oligonucleotides were included within the marker lists to
attempt to reach the desired threshold.

One of the lineages, Chloroflexi (Lineage 8) did not contain sufficient oligonucleotides
even once the threshold was reduced and therefore could not be used for analyses. Inter-
estingly, Gammaproteobacteria has one of the longest marker lists (over 500 markers), this
could be due to the wide diversity of species within the lineage causing a lack of specificity.
Furthermore, Nanoarchaeota (Lineage 18) contained only 35 markers but scores for these
oligonucleotide markers were very high indicating a sizable distance between this lineage
and all others.

2.5.3 Species identification

Interesting features and observations from looking at many different species examples
showed that several bacteria contain a relatively small number of species specific overrep-
resented oligonucleotides, between 40-60. This indicated that a very high occurrence
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Table 2.3: Number of markers identified per lineage. * indicates lineages without sufficient
overrepresented oligonucleotides to complete analysis.

Lineage Number Lineage Description Number of Markers

1 Acidobacteria 113
2 Actinobacteria 118
3 Alphaproteobacteria 169
4 Aquificae 60
5 Bacteroidetes/Chlorobi 133
6 Betaproteobacteria 110
7 Chlamydiae/Verrucomicrobia 96
8 Chloroflexi 55 *
9 Crenarchaeota 165
10 Cyanobacteria 205
11 Deinococcus-Thermus 76
12 Deltaproteobacteria 178
13 Epsilonproteobacteria 73
14 Euryarchaeota 203
15 Firmicutes 127
16 Fusobacteria 48
17 Gammaproteobacteria 525
18 Nanoarchaeota 35
19 Other Bacteria 121
20 Planctomycetes 115
21 Spirochaetes 84
22 Thermotogae 65

of each oligonucleotide was expected within a genome, indicating a repeat abundant
genome. However, when an exceptionally large number of oligonucleotides was found,
each oligonucleotide was present infrequently and at low frequency, indicating a genome
with few repeats. This could result in the inability to identify these genomes due to their
lack of specific markers which can result in a large number of false positives. This ap-
proach was clearly more effective on certain genomes as is evidenced by this selection of
oligonucleotides.

Several examples of species specific oligonucleotides were given in the tables below.
The oligonucleotide markers were selected based on the identification of species within
an unknown sample. Four pathogenic bacterial strains were selected, Mycobacterium
tuberculosis CDC1551 (NC_002755.2), Bacillus anthracis str. Ames (NC_003997.3),
Pseudomonas aeruginosa UCBPP-PA14 (NC_008463.1) and Salmonella enterica subsp.
enterica serovar Typhi Ty2 (NC_004631.1).

Each table contains a selection of species specific overrepresented oligonucleotides for
a bacterial pathogen. The calculated score (Algorithm 4, scoring function 4) for each
oligonucleotide is shown as is the expected value for the pathogenic species and several
closely related species. From these tables it is clear that each oligonucleotide was effec-
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tive at discriminating among only a few of the shown species. As all oligonucleotides
have different characteristics for discrimination of species the profile created attempted
to combine their discriminative power.

For Mycobacterium tuberculosis (Table 2.4) relatively high scores were obtained for the
best oligonucleotides. However, within closely related species the expected values were
highly similar. This indicated that although M.tuberculosis may be distinguished effec-
tively within the lineage its highly similar neighbours will remain difficult to differentiate.
M.bovis and M.avium had highly similar expected values to M.tuberculosis and will likely
be the most difficult to distinguish.

As the lengths of the oligonucleotides increase there was a decrease in score and ex-
pected values. The expected value for M.tuberculosis did not differ substantially from
its closest neighbours for these longer oligonucleotides. However, more distantly related
genomes were easily separable as they now have much lower expected values, tending
towards zero. This gave an indication of the power of including longer oligonucleotides in
this approach to improve identification of a bacterial species.

From the data below it was possible to recognise that several oligonucleotides share
a strong similarity. For example, ”TGGCCGCGGC” and ”CGGTGGCGCC” were highly
similar and appear to be from the same repeat sequence. Identification of these similarities
was a highly complex and computationally intensive task. Although the best efforts were
made to limit this effect several such oligonucleotides remain within each dataset.

The species specific oligonucleotides generated for Bacillus anthracis (Table 2.5) show
a similar picture. As is expected B.thuringiensis and B.cereus both show high similarity
to B.anthracis and will be difficult to distinguish. From the oligonucleotides selected it
can be seen that a large number seem to originate from homopolymer repeats of adenine
and thymine. This indicates that these sequences can be integral to the species and genus
as they are widespread and highly conserved within B.anthracis as well as B.thuringiensis
and B.cereus. B.subtilis and B.licheniformis show the most difference in oligonucleotide
expected values from B.anthracis but remain highly similar with several oligonucleotides.
Scores for the oligonucleotides indicate the difficulty in separating B.anthracis not only
from its nearest neighbours but also throughout the Firmicutes lineage.

The next dataset contained Pseudomonas aeruginosa (Table 2.6) and several of its
closest relatives. Much like the Mycobacterium dataset, these oligonucleotide markers
had higher GC content than the Bacillus genus. Here P.aeruginosa could be differen-
tiated far more easily than the last two pathogens. The closest genomes, P.fluorescens
and P.entomophila remained dissimilar on a number of oligonucleotides indicating that
Pseudomonas aeruginosa may be more easily separable than the previous groups. It was
noted that the scores for this pathogen were much higher than the previous scores. This
could be attributed to the lack of similarity with closely related species and the diversity
of the lineage, thereby increasing the score.

 
 
 



CHAPTER 2. DATABASE DEVELOPMENT AND IMPLEMENTATION 55

Ta
bl

e
2.

4:
A

se
le

ct
io

n
of

id
en

ti
fie

d
m

ar
ke

r
ol

ig
on

uc
le

ot
id

es
fo

r
M

yc
ob

ac
te

ri
um

tu
be

rc
ul

os
is

.
T

he
fir

st
co

lu
m

n
sh

ow
s

th
e

ol
ig

on
uc

le
ot

id
e

fo
llo

w
ed

by
th

e
sc

or
e

in
th

e
se

co
nd

co
lu

m
n

fo
r

th
at

ol
ig

on
uc

le
ot

id
e

w
it

hi
n

th
e

ge
no

m
e.

T
he

fo
llo

w
in

g
co

lu
m

ns
co

nt
ai

n
ex

pe
ct

ed
va

lu
es

fo
r

se
ve

ra
lc

lo
se

ly
re

la
te

d
or

ga
ni

sm
s

(n
ot

al
lo

rg
an

is
m

s
in

th
e

lin
ea

ge
ar

e
re

pr
es

en
te

d
in

th
e

ta
bl

e)
al

lo
w

in
g

fo
r

as
se

ss
m

en
t

of
effi

ci
en

cy
.

*
C

al
cu

la
te

d
us

in
g

(A
lg

or
it

hm
4,

sc
or

in
g

fu
nc

ti
on

4)
M

.t
u
be

rc
u
lo

si
s

M
.t
u
be

rc
u
lo

si
s

M
.l
ep

ra
e

M
.a

vi
u
m

M
.u

lc
er

an
s

M
.v

an
ba

al
en

ii
M

.b
ov

is

S
co

re
*

G
G

C
G

G
C

A
A

C
G

11
.4

2
5.

00
0.

92
2.

11
4.

03
2.

13
4.

91

T
G

G
C

C
G

C
G

G
C

7.
76

4.
82

1.
62

5.
54

3.
78

3.
91

4.
83

C
G

G
T

G
G

C
G

C
C

4.
68

3.
58

1.
18

3.
31

3.
49

3.
30

3.
51

T
T

G
G

C
C

G
C

C
G

4.
64

3.
00

1.
25

2.
43

2.
61

1.
73

3.
05

T
G

C
T

G
G

C
C

G
G

4.
48

3.
44

1.
70

4.
91

2.
95

2.
70

3.
45

C
G

T
C

A
C

C
G

C
C

4.
30

3.
53

0.
77

3.
69

2.
64

3.
29

3.
53

G
C

C
G

C
C

A
G

C
G

4.
22

3.
41

1.
10

3.
68

3.
27

2.
86

3.
51

G
G

C
G

A
T

C
A

C
C

4.
20

3.
35

1.
48

4.
98

2.
84

3.
68

3.
29

T
C

G
G

C
C

A
G

C
A

4.
18

3.
37

1.
61

4.
97

2.
68

3.
61

3.
37

A
C

C
G

C
C

G
G

C
G

4.
05

3.
16

0.
93

3.
12

2.
01

1.
92

3.
10

G
G

C
G

G
G

G
C

C
G

G
C

G
G

2.
97

1.
84

0.
00

0.
16

0.
04

1.
92

1.
92

G
C

C
G

T
T

G
C

C
G

C
C

G
2.

73
1.

84
0.

11
0.

31
0.

29
1.

91
1.

91

 
 
 



CHAPTER 2. DATABASE DEVELOPMENT AND IMPLEMENTATION 56

Ta
bl

e
2.

5:
A

se
le

ct
io

n
of

id
en

ti
fie

d
m

ar
ke

r
ol

ig
on

uc
le

ot
id

es
fo

r
B
ac

ill
us

an
th

ra
ci

s.
T

he
fir

st
co

lu
m

n
sh

ow
s

th
e

ol
ig

on
uc

le
ot

id
e

fo
llo

w
ed

by
th

e
sc

or
e

in
th

e
se

co
nd

co
lu

m
n

fo
r

th
at

ol
ig

on
uc

le
ot

id
e

w
it

hi
n

th
e

ge
no

m
e.

T
he

fo
llo

w
in

g
co

lu
m

ns
co

nt
ai

n
ex

pe
ct

ed
va

lu
es

fo
r

se
ve

ra
l

cl
os

el
y

re
la

te
d

or
ga

ni
sm

s
(n

ot
al

lo
rg

an
is

m
s

in
th

e
lin

ea
ge

ar
e

re
pr

es
en

te
d

in
th

e
ta

bl
e)

al
lo

w
in

g
fo

r
as

se
ss

m
en

t
of

effi
ci

en
cy

.
*

C
al

cu
la

te
d

us
in

g
(A

lg
or

it
hm

4,
sc

or
in

g
fu

nc
ti
on

4)
B
.a

n
th

ra
ci

s
B
.a

n
th

ra
ci

s
B
.s

ub
ti
li
s

B
.l
ic

he
n
if
or

m
is

B
.t
hu

ri
n
gi

en
si

s
B
.c

er
eu

s

S
co

re
*

C
T

T
T

T
T

T
T
A
T

3.
66

3.
70

3.
55

2.
76

3.
95

4.
19

T
T

C
T

T
T

T
A

C
A

3.
43

2.
60

1.
49

0.
87

2.
34

3.
23

A
A
T

G
A

A
A

G
A

A
3.

33
2.

75
1.

65
1.

38
2.

57
3.

31

A
T

T
T

C
T

T
C

T
T

3.
15

3.
05

1.
50

1.
39

3.
09

3.
09

G
A

A
G

A
A

A
A

A
G

2.
88

2.
93

2.
36

2.
49

2.
66

2.
76

C
T

T
C

T
T

T
T
A

C
2.

82
2.

30
1.

36
0.

78
2.

26
2.

80

T
A

A
A

G
T

G
A

A
A

2.
69

2.
09

0.
55

0.
75

2.
15

2.
69

G
A

A
A

G
A

A
A

A
T

2.
53

2.
27

1.
51

0.
82

2.
34

3.
12

A
T

G
A

A
A

G
A

A
A

2.
52

2.
39

1.
55

1.
58

2.
48

2.
64

C
T

T
C

T
T

C
T
A

A
2.

52
2.

35
0.

49
0.

39
2.

33
2.

84

G
A

A
A
T

G
A

A
A

A
2.

51
2.

37
1.

84
1.

57
2.

43
2.

61

T
A
T
A

A
A

A
G

A
A

2.
49

2.
35

1.
14

0.
99

2.
12

2.
17

A
T
A

G
A

A
G

A
A

A
2.

47
2.

22
1.

01
0.

64
1.

83
1.

83

A
A

A
A

G
C

A
A
T

T
2.

44
2.

58
1.

11
1.

00
2.

48
2.

29

A
A

G
A

A
A

A
A

G
G

2.
21

2.
30

2.
13

2.
21

2.
33

1.
94

T
G

A
A

A
T

T
G

A
A

1.
39

1.
90

1.
25

1.
04

1.
77

1.
63

 
 
 



CHAPTER 2. DATABASE DEVELOPMENT AND IMPLEMENTATION 57

Ta
bl

e
2.

6:
A

se
le

ct
io

n
of

id
en

ti
fie

d
m

ar
ke

r
ol

ig
on

uc
le

ot
id

es
fo

r
P
se

ud
om

on
as

ae
ru

gi
no

sa
.

T
he

fir
st

co
lu

m
n

sh
ow

s
th

e
ol

ig
on

uc
le

ot
id

e
fo

llo
w

ed
by

th
e

sc
or

e
in

th
e

se
co

nd
co

lu
m

n
fo

r
th

at
ol

ig
on

uc
le

ot
id

e
w

it
hi

n
th

e
ge

no
m

e.
T

he
fo

llo
w

in
g

co
lu

m
ns

co
nt

ai
n

ex
pe

ct
ed

va
lu

es
fo

r
se

ve
ra

lc
lo

se
ly

re
la

te
d

or
ga

ni
sm

s
(n

ot
al

lo
rg

an
is

m
s

in
th

e
lin

ea
ge

ar
e

re
pr

es
en

te
d

in
th

e
ta

bl
e)

al
lo

w
in

g
fo

r
as

se
ss

m
en

t
of

effi
ci

en
cy

.
*

C
al

cu
la

te
d

us
in

g
(A

lg
or

it
hm

4,
sc

or
in

g
fu

nc
ti
on

4)
P
.a

er
ug

in
os

a
P
.a

er
ug

in
os

a
P
.p

ut
id

a
P
.fl

uo
re

sc
en

s
P
.e

n
to

m
op

hi
la

P
.s

yr
in

ga
e

S
co

re
*

C
G

C
C

G
G

C
G

G
C

73
.5

8
10

.0
0

1.
72

3.
70

2.
50

0.
53

C
C

T
G

G
C

C
G

G
C

43
.0

0
7.

39
3.

25
4.

52
4.

93
0.

69

C
C

A
G

G
C

C
G

G
C

35
.4

3
6.

69
3.

19
4.

24
4.

38
0.

73

G
C

C
G

C
C

G
A

G
G

28
.9

8
6.

19
1.

49
2.

24
2.

44
0.

66

C
G

C
C

G
A

G
C

T
G

25
.4

4
5.

92
2.

36
2.

94
3.

52
1.

71

T
C

G
C

C
G

C
C

G
A

23
.5

3
5.

88
1.

52
2.

29
2.

90
1.

51

C
C

T
C

G
G

C
C

A
G

22
.5

2
5.

41
3.

25
4.

58
5.

20
1.

23

C
C

G
G

C
G

C
C

G
C

22
.1

2
5.

39
3.

21
4.

22
4.

84
0.

36

C
G

C
C

G
A

G
G

G
C

21
.9

8
5.

24
2.

23
2.

86
3.

49
0.

80

C
G

C
C

G
G

C
A

G
C

21
.8

1
5.

44
1.

30
2.

86
2.

33
0.

80

T
C

G
G

C
C

T
G

C
T

21
.7

6
5.

48
1.

16
1.

64
1.

85
1.

66

A
G

G
C

C
G

G
C

G
A

21
.1

2
5.

12
2.

09
2.

94
2.

68
0.

58

C
C

T
G

G
C

G
C

G
C

20
.3

4
5.

18
1.

85
2.

25
2.

58
0.

83

G
G

C
G

T
C

G
G

C
G

17
.0

7
4.

84
1.

19
2.

17
2.

89
4.

84

G
G

C
G

T
C

G
C

C
G

13
.4

4
4.

16
0.

76
1.

09
1.

29
4.

16

T
C

G
G

C
G

A
G

C
A

11
.4

6
3.

91
1.

09
0.

89
1.

95
3.

91

 
 
 



CHAPTER 2. DATABASE DEVELOPMENT AND IMPLEMENTATION 58

The final table contained species specific oligonucleotides for Salmonella enterica (Ta-
ble 2.7). This dataset showed that several oligonucleotides could distinguish this organism
from Shigella flexneri and Escherichia coli although the numerical difference was small.
Several oligonucleotides seemed to have highly similar values for all organisms in the
dataset and was ineffective in separation of these species. The scores for these oligonu-
cleotide markers were lower than the Pseudomonas dataset but higher than the Bacillus
dataset partially due to their ability to separate closely related species more reliably.

2.6 Discussion

The current study centers on the conversion of raw information into a structured and com-
plete database which allows for comparisons to be easily made between species. These
comparisons have allowed for the identification of species and lineage specific oligonu-
cleotide markers, although the program and interface developed have been effectively
used to this end it still provides a versatile tool for further research. The creation of
custom environments and the selection of smaller subgroups of species can provide more
specific results depending on the needs of the researcher. This allows for a dynamic and
flexible system which can be used to analyse oligonucleotides under different situations.

From inspection of the number of organisms in each lineage (Table 2.1) it was clear
that the first appearance of bias was the variation in genome counts between the dif-
ferent lineages. This phenomenon could be partially explained by global research focus
determining which organisms and phylogenetic groups get the most attention.

The analyses performed on small lineages bias the data and made results unreliable
due to the small datasets and resultant lack of statistical power. Furthermore, separation
of species using phylogenetic lineage may not be the best approach. Some lineages con-
tained a vast diversity of species which could confound results. Species specific markers
from smaller lineages gained an advantage in score over those in larger lineages but in
actual fact were at a disadvantage due to the lack of specificity. This could be overcome
by identifying an alternative method for species separation although this would require
further constraints and research into the topic to ensure a consistent result.

The current study incorporates several statistical algorithms involved in the determi-
nation of species or lineage specific oligonucleotides. The expected value plays a central
role as the main statistical parameter describing each oligonucleotide and highlighting
its desired properties. This however, does not provide a strictly statistical definition of
expected value and cannot be considered a statistically significant parameter. The focus
of this parameter on the need for an evenly distributed oligonucleotide can provide skewed
results. An oligonucleotide which is highly localised but occurs with large frequency may
affect results by appearing to be largely overrepresented if this region is sequenced. This
variation cannot be controlled for but emphasizes the experimental nature of this approach

 
 
 



CHAPTER 2. DATABASE DEVELOPMENT AND IMPLEMENTATION 59

Ta
bl

e
2.

7:
A

se
le

ct
io

n
of

id
en

ti
fie

d
m

ar
ke

r
ol

ig
on

uc
le

ot
id

es
fo

r
Sa

lm
on

el
la

en
te

ri
ca

.
T

he
fir

st
co

lu
m

n
sh

ow
s

th
e

ol
ig

on
uc

le
ot

id
e

fo
llo

w
ed

by
th

e
sc

or
e

in
th

e
se

co
nd

co
lu

m
n

fo
r

th
at

ol
ig

on
uc

le
ot

id
e

w
it
hi

n
th

e
ge

no
m

e.
T

he
fo

llo
w

in
g

co
lu

m
ns

co
nt

ai
n

ex
pe

ct
ed

va
lu

es
fo

r
se

ve
ra

l
cl

os
el

y
re

la
te

d
or

ga
ni

sm
s

(n
ot

al
lo

rg
an

is
m

s
in

th
e

lin
ea

ge
ar

e
re

pr
es

en
te

d
in

th
e

ta
bl

e)
al

lo
w

in
g

fo
r

as
se

ss
m

en
t

of
effi

ci
en

cy
.

*
C

al
cu

la
te

d
us

in
g

(A
lg

or
it
hm

4,
sc

or
in

g
fu

nc
ti
on

4)
S
al

m
on

el
la

en
te

ri
ca

S
al

m
on

el
la

en
te

ri
ca

S
hi

ge
ll
a

fl
ex

n
er

i
E
sc

he
ri

ch
ia

co
li

S
co

re
*

C
G

C
T

G
G

C
G

C
A

5.
94

3.
09

1.
73

2.
03

T
C

G
C

C
A

G
C

G
C

5.
66

2.
96

1.
73

1.
77

C
G

C
T

G
G

C
G

G
A

5.
34

2.
75

1.
60

1.
53

C
T

G
G

C
G

C
A

G
C

5.
14

2.
90

1.
76

1.
79

C
C

A
T

C
C

G
G

C
A

4.
38

2.
32

0.
70

0.
65

A
G

C
G

C
C

A
G

C
A

3.
69

2.
52

2.
08

1.
84

G
G

C
G

G
C

G
C

G
G

3.
65

2.
36

0.
97

1.
04

G
C

T
G

G
A

A
A

A
A

3.
60

2.
50

2.
67

2.
29

A
C

G
C

C
A

G
C

G
C

3.
57

2.
29

1.
05

1.
32

C
C

G
C

T
G

G
C

G
G

3.
44

2.
29

1.
65

1.
41

G
A

C
G

C
T

G
G

C
G

3.
28

2.
17

1.
53

1.
38

C
G

C
C

T
G

C
G

C
C

3.
26

2.
29

1.
47

1.
52

G
C

T
G

G
C

G
A

A
A

3.
25

2.
16

1.
97

1.
60

C
A

C
G

C
T

G
G

C
G

3.
16

2.
12

0.
92

1.
00

T
T

C
C

A
G

C
G

C
C

3.
01

2.
16

2.
09

2.
22

G
G

C
C

G
G

A
T
A

A
G

2.
75

1.
73

1.
09

1.
25

C
G

C
C

A
T

C
C

G
G

C
A

2.
47

1.
63

0.
20

0.
20

G
T
A

G
G

C
C

G
G

A
T
A

A
G

1.
68

1.
33

1.
00

1.
05

 
 
 



CHAPTER 2. DATABASE DEVELOPMENT AND IMPLEMENTATION 60

and the need for an oligonucleotide profile rather than single marker oligonucleotides.
The central difficulty when creating scores and thresholds was that data under ob-

servation did not conform to a standard distribution. In this case statistical significance
was sacrificed in an attempt to create a logical estimation. Although several different
algorithms were used the ratio based approaches provided the best results. From Sec-
tion 2.5.3 it was clear that the species specific scoring algorithm was effective at scoring
oligonucleotides dependent on expected value. However, this algorithm was biased to-
wards shorter sequences and preferably incorporates shorter oligonucleotides due to their
higher frequency. For this reason a minimum of 10mer oligonucleotides was used in species
identification. In order to provide a more permanent solution an improved algorithm
should be created that could accurately determine effective longer oligonucleotides on a
more statistical criterion. This would not only increase signature diversity but improve
specificity.

The ability to identify strains as highly similar using overrepresented oligonucleotides
was an important result. This offered an estimation of the discriminative ability of overrep-
resented oligonucleotides by testing the visible differences between two theoretical strains.
This gave an indication that strains with such low variation were not separable using over-
represented oligonucleotides due to their minute frequency discrepancies. Furthermore,
this approach opened a new opportunity in the analysis and determination of phylogeny.
From the strain plots it was possible to see how organisms within a lineage could be sep-
arated into distinct groups. Closely related strains, a central body of species and several
distantly related groups could be identified in each strain plot. The range of distances
present within each plot could also be taken into account to estimate diversity within
each lineage. With further research it may be possible to increase resolution to classify a
bacterial species by analysis of its overrepresented oligonucleotides.

Although the strain analysis incorporated mostly 8mers in its identification of closely
related genomes these oligonucleotides were insufficient to separate species. From further
analysis it was determined that these were unusable in species identification due to the
general overrepresentation in all species regardless of the relatively large differences in
frequency.

From the examples given in Section 2.5.3 the diversity of overrepresented oligonu-
cleotides can be highlighted. The Bacillus genus contained homopolymer AT rich oligonu-
cleotides while other genus’ had markers with higher GC contents. It was also possible to
estimate the ease of identification of a species by inspection of the oligonucleotide scores
and the subsequent expected values of closely related species.

One of the greatest setbacks with determination of species words was the identification
of unique oligonucleotides that do not form part of the same repeat region. Determina-
tion of sequence identity generally requires sequence alignment which is computationally
expensive. In decreasing computational time heuristic methods are available but these
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remain error prone. When sequence identity thresholds are too high useful data can also
be excluded. Therefore removal of redundant markers requires an indepth analysis into
the positions of occurrence as well as the sequence identity. This was beyond the scope
of this project and would increase statistical complexity and computational time. This
remained one of the pitfalls of identifying species and lineage specific oligonucleotides
as a percentage of oligomers occurring within the database were highly similar due to
polymorphisms.

If a more robust method for similar sequence identification were uncovered it would
greatly enhance the effectivity of this approach. However, it could be expected that this
would be computationally intensive and require highly specialized algorithms.

In the analysis of lineage specific oligonucleotides the threshold set for species spe-
cific oligomers at 10-14mer did not apply as far fewer oligonucleotides were included in
this analysis. The threshold was therefore reduced to include 9mer oligonucleotides to
provide a greater selection. All lineages were found to contain large numbers of lin-
eage specific oligonucleotides with the exception of Chloroflexi (lineage 8). This lineage
contained only two species both of which contained small numbers of overrepresented
oligonucleotides. Another interesting find was the low scores of lineage specific oligonu-
cleotides for Gammaproteobacteria. This suggested that not only were the species in this
lineage highly diverse but they shared common sequences with a large number of other
lineages. Inversely, Nanoarchaeota (Lineage 18) contained only 35 lineage specific oligonu-
cleotides showing the distance of their relation to other bacterial species. This indicated
how diverse each lineage was and how much information could be gathered from a single
analysis.

From lineage specific oligonucleotides a deeper insight was gained into oligonucleotides
commonly found throughout a lineage. These sequences could then be investigated to
determine whether they form part of specific structural or control features to determine
the reasons for such widespread overrepresentation.

2.7 Conclusion

The creation of the program OligoSignatures and its database provides an opportunity to
investigate the use of overrepresented oligonucleotides in identification of species and their
lineages. The application in this context is the identification of species in an unknown
sample. However, this program allows for manipulation of data to create a custom envi-
ronment according to the needs of the researcher. This provides a flexible and dynamic
system which can create oligonucleotide markers according to specific criterion and can
therefore be used to uncover further trends and identify bacterial species within different
contexts.

The initial steps in the creation of this program involved the processing and analy-
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sis of raw oligonucleotide data before importing it into a database. This database was
then further analysed and divided to produce 22 lineage tables containing comprehensive
oligonucleotide information for its different members. The comprehensive oligonucleotide
information could then be used in the confirmation of strain groups to determine whether
strains of the same species where closely related enough to be removed and represented
by a single genome. These results provided valuable insight into the limitations of us-
ing overrepresented oligonucleotides as well as the use of oligonucleotides in determining
phylogeny.

Secondly, species specific oligonucleotides were identified using the strain conformation
results. The species specific oligonucleotide results showed that (with a few exceptions)
the majority of species contained overrepresented oligonucleotides. These oligonucleotides
differed substantially from genus to genus, and highly similar species tended to share a
large percentage of overrepresented oligonucleotides. The scores calculated for oligonu-
cleotides provided insight into the uniqueness of the oligonucleotide within the genome
and an estimation of ease of identification in an environmental context.

Lastly, lineage specific oligonucleotides were identified. It was found that the majority
of lineages had sufficient oligonucleotides for analysis, with the exception of the Chloroflexi
lineage (lineage 8). Different properties can be determined through the analysis of lineage
specific oligonucleotides. The number of oligonucleotides included in the lineage profile can
indicate how widespread the oligonucleotides were and hence the relation of a lineage to
other lineages. From these beginnings a further investigation can be made into annotation
of candidate oligonucleotides and their function within the genome can be determined.

In conclusion, the program OligoSignatures provides an opportunity to investigate the
effectiveness of oligonucleotides in the identification of bacterial species in a metagenomic
context. This context has been formalized to identifying bacteria within an unknown
sample. This does not describe all contexts where overrepresented oligonucleotides can
be used for species identification. OligoSignatures can be used in many different contexts
to determine marker profiles. It provides a powerful tool that can be used under different
situations to identify species and lineage specific oligonucleotide markers.

 
 
 



Chapter 3

Metagenomic implementation

3.1 Introduction

Identification of bacterial species and their resultant fragments within a metagenomic
sample has proved an overwhelming hindrance to the furthering of metagenomic stud-
ies. Experimental research show that as little as 1% of metagenomic fragments contain
identifiable phylogenetic markers. This implies that 99% of the metagenome remains
unexploited. This highlights the need for more robust and flexible approaches to be
unearthed to improve genomic coverage.

The identification of closely related strains and their representation by a single rep-
resentative member was the first step in determining the limitations of overrepresented
oligonucleotides and subsequently how to remove unnecessary complexity from further
calculation. The identification of species specific oligonucleotides was then undertaken.
The resulting marker profiles, based on scores, showed the expected ease of differentiating
these species from their relatives within the same lineage. Furthermore, lineage specific
markers were identified as commonly overrepresented oligonucleotides within the lineage
that appear at low frequency throughout the other lineages. This revealed that although
each lineage has specific properties the majority of lineages contained overrepresented
oligonucleotides at a satisfactory level to allow for an accurate analysis to be undertaken.

With the uncovering of species and lineage specific oligonucleotides a further step
must be taken to validate their functionality in an experimental context. This chapter
aims to identify how effectively overrepresented oligonucleotides can be used within a
metagenomic context to identify bacterial species.

For the purpose of experimentation, four different case studies were selected based on
the examples used in Chapter 2 Section 2.5.3. These are focused on the pathogenic bac-
terial strains, Mycobacterium tuberculosis CDC1551 (NC_002755.2), Bacillus anthracis
str. Ames (NC_003997.3), Pseudomonas aeruginosa UCBPP-PA14 (NC_008463.1) and
Salmonella enterica subsp. enterica serovar Typhi Ty2 (NC_004631.1). Each case study
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incorporated the pathogenic bacteria, its closely related relatives and distantly related
species.

The initial step in this process was the creation of artificial metagenomic samples for
each case study. After creation of the datasets, experimental testing of oligonucleotide
marker profiles could be undertaken. This was done via two different approaches, oligonu-
cleotide frequency analysis and sequenced read analysis.

Two modern sequencing methods were simulated here, namely, Solexa and 454 se-
quencing. Solexa sequencing technology generates very short read lengths which will be
used primarily for the identification of bacterial species using global oligonucleotide fre-
quencies within the metagenome. 454 pyrosequencing technology, with longer read lengths
(roughly 250bp in length), will be used to identify bacterial species by the attribution of
metagenomic fragments to specific species. This method is referred to as sequenced read
analysis.

Oligonucleotide frequency analysis is a method for detection of bacterial species within
a metagenome based on the global overrepresentation of marker oligonucleotides. Each
marker oligonucleotide forms part of a marker profile. A marker profile indicates the
number of oligonucleotides found within a 100kbp region to achieve a cumulative frequency
of 500 oligonucleotide occurrences. In order to make a comparison of this value to different
species, an error value must be calculated. The error value is an estimation of the average
false positive result that can be expected for each marker profile. This value then allows
for an assessment of presence or absence of this bacterial specie. A flow diagram describing
the basic steps in this approach can be seen in Figure 3.1.

Differentiating species using sequenced read analysis employs a different premise. In
sequenced read analysis the focus is on each short fragment (referred to as a ”read”) within
the metagenomic library. Sequenced read analysis attempts to identify oligonucleotides
occurring within these fragments that can attribute them to a specific marker profile.
Different thresholds are set for the number of oligonucleotides required in each read to
classify the read to a specific species (referred to as a ”hit”). Specificity was then increased
further by including only the unique markers for each specie. Figure 3.1 shows a flow
diagram depicting basic functioning of this approach. Following this introduction a brief
overview of methods used in each approach is given.

3.1.1 Analysis of oligonucleotide frequency profiles

Method

This approach centered on the summation of marker oligonucleotide frequencies found
within 100kbp of sequence. This resulted in a score which can be used to determine
presence or absence of the oligonucleotide within a metagenomic sample.

The first step in this procedure involved retrieval of marker profiles for each species and
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Figure 3.1: Flow diagram describing the processes for oligonucleotide frequency analysis
and sequence read analysis respectively.

all lineages involved. Each marker profile was tested against every artificial metagenome
created within each case study. This was done by applying a search function to identify
every oligonucleotide occurrence within the metagenome for all oligonucleotides markers.
A species profile value was calculated to describe the cumulative frequency of markers
identified within each metagenome (Algorithm 11).

All species profile values for each metagenome were then compiled into an output file.
This yielded easy readability of results and comparison amongst different species.

In order to test the effectivity of results, an error value was calculated for each species
(Algorithm 12). This error value was determined by testing a species profile against a
metagenomic sample of every species within the database. All species within the database
had 100kbp metagenomes created and these were used for calculation.

Determination of an error value then allowed for calculation of a final species profile
value. This value identified the presence of a species within a metagenome by comparing
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Algorithm 11 The species profile value describes the cumulative value for a set of markers
for each specie.
(Species profile value) s =

∑n
i=1 i

Assume n number of oligonucleotide markers for each specie
i indicates the frequency of occurrence of each oligonucleotide within the metagenomic

dataset

Algorithm 12 Species profile error value. This algorithm determines the average value
of a species profile tested against all other species within the database.

(Species profile error value) ε =
∑n

i=1
i

n

Assume n is the number of species within the database
i indicates the species profile value for a particular metagenome

the error value to the results obtained. A value close to one indicated an insignificant
result while a value greater than one indicated a species signal. However, this approach did
not provide statistical significance and was considered an estimation. A further correction
was made to this algorithm when dealing with an experimental metagenome as the sample
contained a far larger amount of genetic material. The normalization used is indicated in
Algorithm 14.

Algorithm 13 Final species profile value. This algorithm describes the presence or
absence of a species within a metagenomic sample. A value less than or close to 1 indicates
random noise while a value greater than one indicates a species signal.
(Final species profile value) f = s

εs

Assume sindicates the species profile value
εsindicates the error value for species profile s

3.1.2 Analysis of sequenced reads

Method

Analysis of longer sequenced reads was undertaken with the aid of the java based program
MarkerCounter. MarkerCounter uses a suffix-tree based approach to search for thousands
of markers from different species within a metagenome. MarkerCounter attempted to rel-
egate sequence fragments within a metagenome to a specific species or lineage profile.
A fragment was associated to a profile (referred to as a “hit”) if a predefined number of
oligonucleotide markers from a profile occurred within the fragment (referred to as the
“oligos per fragment” threshold). MarkerCounter attempted to identify unique oligonu-
cleotides for each species from the input marker list and used these to identify species
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Algorithm 14 Final species profile value for an experimental metagenome.
(Corrected species profile value) sc = s÷ l

100000

(Final species profile value) f = sc

εs

l indicates the length of the experimental metagenome
Assume sc indicates the corrected species profile value

εs indicates the error value for species profile s

fragments within a metagenomic context. Two different sets of marker profiles were used
in this approach, lineage and species profile markers. Each is discussed below.

Species profile markers

The first step in analysis of sequenced reads was retrieval of species profiles from tem-
porary marker files generated by species and lineage analyses. These profiles were then
concatenated into a general marker file containing all species within the case study. The
number of oligonucleotides needed to attribute a read to a profile (referred to as the “oli-
gos per fragment” threshold) was then varied, in order to determine the different levels
of significance at which reads can be attributed to a specie. For artificial case studies,
threshold values from two to five were applied. In the experimental metagenome, thresh-
old values from three to nine were used to compensate for the longer read lengths. Finally,
MarkerCounter was executed using the general marker file on all metagenomes in each
case study. A separate run was performed for each oligonucleotide threshold.

Of concern to this approach was that different numbers of markers are utilized by
each species profile. The number of markers per profile is dependent on how many unique
markers can be attributed to each profile. In order to correct for the discrepancy in number
of markers per profile a score was calculated. This score was based on the number of reads
attributed to the species compared to the number of markers used (Algorithm 15).

Algorithm 15 Hits per marker score. This score normalizes the number of reads at-
tributed to a species by the number of markers used by the species profile.
(Hits per marker score) hp = hs

ms

hs indicates the number of reads attributed to a species
msindicates the number of markers in the species profile

The resulting scores from this algorithm were then visualized using line graphs which
create a concise representation of results and allow for further identification of trends.

Lineage profile markers

Lineage profiles are run using the same process as species profiles. However, the number
of lineage profiles included in the general marker file was reduced after each execution.
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Table 3.1: Bacterial Species Present in Case Study 1. * Indicates a more distant species
within the same lineage. ** Indicates a species from a different lineage

Accession Number Species Description

NC_008595.1 Mycobacterium avium 104
NC_008769.1 Mycobacterium bovis BCG str. Pasteur 1173P2
NC_002755.2 Mycobacterium tuberculosis CDC1551
NC_002677.1 Mycobacterium leprae TN
NC_008596.1 Mycobacterium smegmatis str. MC2 155
NC_008611.1 Mycobacterium ulcerans Agy99
NC_008726.1 Mycobacterium vanbaalenii PYR-1
NC_004307.2 Bifidobacterium longum NCC2705*
NC_003450.3 Corynebacterium glutamicum ATCC 13032*
NC_007512.1 Pelodictyon luteolum DSM 273**
NC_000922.1 Chlamydophila pneumoniae CWL029**

An initial analysis was done using all lineage markers for each case study but in order to
avoid bias, further tests were done by removing all lineages containing less than 5 species
from the general marker list. If further resolution was required, the general marker list
was reduced further by removing all lineages with no score based on previous results.

3.2 Metagenomic datasets

3.2.1 Artificial metagenomic datasets

3.2.1.1 Implementation

Artificial metagenomic datasets were created for testing of species and lineage specific
oligonucleotides. A Java based metagenomic simulation program, ReadSim was used in
the creation of each metagenome (Schmid and Huson, 2006). This program randomly
selects fragments from a target genome sequence while incorporating errors to simulate
sequencing using the respective technologies. Each metagenome was created to contain
an estimated 100kbp of sequence. In a metagenome containing more than one species
each genome was given an equal portion of sequence.

In order to allow for accurate and topic-specific testing four case studies were cre-
ated. Each case study contained pathogenic bacteria, their closely related relatives and
randomly selected species from within the same lineage and from different lineages. The
species present in each case study and their respective lineages are listed in tables 3.1,
3.2, 3.3, 3.4.

The creation of metagenomes for each case study followed the same process:

• A single species metagenome were created for each species in the case study.
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Table 3.2: Bacterial Species Present in Case Study 2. * Indicates a more distant species
within the same lineage. ** Indicates a species from a different lineage

Accession Number Species Description

NC_003997.3 Bacillus anthracis str. Ames
NC_006274.1 Bacillus cereus E33L
NC_006270.2 Bacillus licheniformis ATCC 14580
NC_008600.1 Bacillus thuringiensis str. Al Hakam
NC_000964.2 Bacillus subtilis subsp. subtilis str. 168
NC_002162.1 Ureaplasma parvum serovar 3 str. ATCC 700970*
NC_007907.1 Desulfitobacterium hafniense Y51*
NC_008609.1 Pelobacter propionicus DSM 2379**
NC_008009.1 Acidobacteria bacterium Ellin345**

Table 3.3: Bacterial Species Present in Case Study 3. * Indicates a more distant species
within the same lineage. ** Indicates a species from a different lineage

Accession Number Species Description

NC_008463.1 Pseudomonas aeruginosa UCBPP-PA14
NC_004578.1 Pseudomonas syringae pv. tomato str. DC3000
NC_008027.1 Pseudomonas entomophila L48
NC_004129.6 Pseudomonas fluorescens Pf-5
NC_002947.3 Pseudomonas putida KT2440
NC_007204.1 Psychrobacter arcticus 273-4*
NC_008570.1 Aeromonas hydrophila subsp. hydrophila ATCC 7966*
NC_003098.1 Streptococcus pneumoniae R6**
NC_002578.1 Thermoplasma acidophilum DSM 1728**

Table 3.4: Bacterial Species Present in Case Study 4. * Indicates a more distant species
within the same lineage. ** Indicates a species from a different lineage

Accession Number Species Description

NC_007946.1 Escherichia coli UTI89
NC_004631.1 Salmonella enterica subsp. enterica serovar Typhi Ty2
NC_004741.1 Shigella flexneri 2a str. 2457T
NC_007204.1 Psychrobacter arcticus 273-4*
NC_005126.1 Photorhabdus luminescens subsp. laumondii TTO1*
NC_008277.1 Borrelia afzelii PKo**
NC_007298.1 Dechloromonas aromatica RCB**
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Table 3.5: Parameters used in creation of metagenomic datasets for Solexa and 454 py-
rosequencing technologies.

Solexa sequencing 454 pyrosequencing

Minimum fragment length 20 200
Maximum fragment length 35 350

Mean fragment length 25 250
Read length model Uniform Uniform

Number of fragments 4000 400

• Each species within the case study was classified into a phylogenetic grouping. The
first grouping included the pathogenic species and all close neighbours. The sec-
ond included distantly related species within the same lineage. The third included
randomly selected species from different lineages and the fourth included a random
genome. These groups were then used to randomly select species for the combined
metagenomic datasets. Each combined metagenome contained a prescribed number
of each group.

A random genome consisting of randomly generated sequence reads was also included.
This provided a benchmark denoting the score that can be expected under random con-
ditions.

Two different metagenomic datasets were created for each case study to simulate Solexa
sequencing and 454 pyrosequencing technologies. The parameters for these datasets is
shown in Table 3.5.

3.2.2 Experimental metagenomic datasets

In order to estimate the functionality of this approach in an actual environment an ex-
perimental dataset was tested. A metagenomic sample taken from the Deep Mediter-
ranean was selected (Martín-Cuadrado et al., 2007). This metagenome, a relatively small
and well annotated example provided a useful benchmark. The sequenced reads in this
metagenome are long reads between 400-700bp in length. Although not optimal to test-
ing this approach the availability of raw sequence for well annotated metagenomes are
generally present in sanger sequencing or assembled contigs, making acquisition of raw
sequenced reads a difficult matter.

From the work of Martín-Cuadrado et al. (2007) a list of the most dominant bacterial
species within the deep Mediterranean metagenome was assembled. Table 3.6 shows an
overrepresentation of a large number of Alphaproteobacteria as well as Acidobacteria. In
order to validate the developed identification approaches a small group of bacterial species
were randomly selected that do not occur within the metagenome and do not belong to
lineages present in the sample (Table 3.7).
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Table 3.6: Dominant bacterial species identified in the Deep Mediterranean metagenomic
project.

Species
number

Species description Lineage Number of
BLAST hits*

1 Mesorhizobium loti
MAFF303099

Alphaproteobacteria 112

2 Mesorhizobium sp. BNC1 Alphaproteobacteria 84
3 Rhodopseudomonas palustris

BisA53
Alphaproteobacteria 27

4 Candidatus Pelagibacter
ubique HTCC1062

Alphaproteobacteria 84

5 Solibacter usitatus ElLineage
6076

Acidobacteria 56

6 Dehalococcoides sp. CBDB1 Chloroflexi 42
7 Magnetospirillum magneticum

AMB-1
Alphaproteobacteria 36

8 Pseudomonas aeruginosa
UCBPP-PA14

Gammaproteobacteria 36

9 Acidobacteria bacterium
ElLineage 345

Acidobacteria 32

10 Burkholderia sp. 383 Betaproteobacteria 32

Table 3.7: Additional species, not found in the metagenome, added to the Deep Mediter-
ranean dataset.

Species number Species description Lineage

1 Chlamydophila pneumoniae CWL029 Chlamydiae/Verrucomicrobia
2 Pelodictyon luteolum DSM 273 Bacteroidetes/Chlorobi
3 Bifidobacterium longum NCC2705 Actinobacteria
4 Thermobifida fusca YX Actinobacteria
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3.3 Analysis of oligonucleotide frequency profiles

3.3.1 Results from oligonucleotide frequency analysis

3.3.1.1 Species specific analysis

Each of the pathogenic species profiles were tested against the collection of metagenomes
within each case study to produce the results in Figures 3.2, 3.3, 3.4 and 3.5.

In general, the final scores for all species profiles tested against a single metagenome
were above one. The species profiles clearly struggled to differentiate effectively between
closely related neighbours. These results could be predicted by the difficulties in sepa-
rating closely related species based on marker results from Section 2.5.3 in Chapter 2.
Furthermore, the score magnitudes for each case study differed, with case study 1 (Figure
3.2) containing the highest values. This suggests the need for further corrections to be
made to the score. Moreover, the presence of a large number of repeats within these
genomes can help explain the difficulty in separation of these species and the inflated
values in case study 1.

Pseudomonas aeruginosa (Figure 3.4) and Salmonella enterica (Figure 3.5) can be
differentiated more reliably from their relatives, however, the relative’s scores remain
above one. An improved result can be expected as species within these case studies are
more distantly related.

An anomaly in case study 4 was the score for Dechloromonas aromatica (Figure 3.5)
which was much higher than expected. This supplied an example where species from
different lineages may share a large number of overrepresented oligonucleotides, this will
need to be taken into consideration in further research. Interestingly, Ureaplasma parvum
(Figure 3.3), a species within the same lineage as Bacillus anthracis, seems to have shared
a large number of repeat sequences with this specie. From this observation, a repeat rich
genome such as Ureaplasma parvum can confuse results when identifying bacterial species
using oligonucleotide frequencies.

In terms of combined metagenomes lower scores for species profiles were generally
obtained compared to single species metagenomes. Combined metagenomes, containing
distantly related species or a random metagenome showed a significant decrease in score
(Figure 3.3, metagenome 13). This indicated that signal can be easily diluted when
different species are present at equal ratios. Another common discrepancy is that the
presence of several closely related species found in the same metagenome can boost the
signal of a closely related species profile regardless of its presence or absence. The chance
of incorrectly identifying a species as one of its relatives is a definite possibility. Therefore
this method cannot be reliably implemented under current conditions.

In case study 4 (Figure 3.5 B), metagenomes 17 and 18 provided an interesting insight
into the testing of metagenomic sequence. Both metagenomes rely on the same three
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Red bars indicate metagenomes containing the organism being searched for
* Indicates a more distant species from the same lineage
** Indicates a species from a different lineage
^ Score calculated using Algorithm 13
Error value used is 96.06

Figure 3.2: The use of the Mycobacterium tuberculosis species profile on single (Figure
A) and combined metagenomes (Figure B). Score for each metagenome is plotted on the
X-axis.
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Red bars indicate metagenomes containing the organism being searched for
* Indicates a more distant species from the same lineage
** Indicates a species from a different lineage
^ Score calculated using Algorithm 13
Error value used is 224.68

Figure 3.3: The use of the Bacillus anthracis species profile on single (Figure A) and
combined metagenomes (Figure B). Score for each metagenome is plotted on the X-axis.
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Red bars indicate metagenomes containing the organism being searched for
* Indicates a more distant species from the same lineage
** Indicates a species from a different lineage
^ Score calculated using Algorithm 13
Error value used is 77.07

Figure 3.4: The use of the Pseudomonas aeruginosa species profile on single (Figure A)
and combined metagenomes (Figure B). Score for each metagenome is plotted on the
X-axis.
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Red bars indicate metagenomes containing the organism being searched for
* Indicates a more distant species from the same lineage
** Indicates a species from a different lineage
^ Score calculated using Algorithm 13
Error value used is 182.35

Figure 3.5: The use of the Salmonella enterica species profile on single (Figure A) and
combined metagenomes (Figure B). Score for each metagenome is plotted on the X-axis.
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genomic species, however, the results differ substantially. This showed the inherent vari-
ability in this approach and the difficulty in estimating presence or absence of bacterial
species (Figure 3.2, metagenome 15).

The conclusion from these findings is that this method could only differentiate species
that are rather distant in terms of phylogeny. Furthermore, in a combined metagenome,
signal is either disproportionately increased or decreased due to low marker specificity,
therefore, no reliable conclusions could be drawn.

3.3.1.2 Lineage specific analysis

A lineage analysis for each case study was performed using the most prominent lineage
in the case study. The figures displaying these results are 3.6, 3.7, 3.8 and 3.9.

In the majority of case studies these results showed high scores for all bacterial species
within the lineage, however, there remain a few exceptions. This was due to the sizes of the
lineages and the compromise in identifying a consensus list. This process resulted in the
exclusion of certain oligonucleotides which may describe certain species more accurately.
Distantly related species had profile scores close to one, indicating their distance from the
current lineage and providing further support for this method.

The results from Figures 3.8 and 3.9 showed the scores for the Gammaproteobacteria
lineage profile. All bacterial species within these case studies carried little or no signal
for the Gammaproteobacteria lineage. The pathogen and all related species displayed
scores well below one with only P. syringae (Figure 3.8 A, metagenome 4) showing a
value slightly above one. This suggested that this lineage profile does not accurately
describe these families of bacteria. The presence of a false positive score for Borrelia
afzelii (Figure 3.9, metagenome 6) equal to that of other species present in case study
4, confirmed the poor discriminating power of this lineage profile. This reiterated the
findings in Section 2.4.1.2, Chapter 2. From Figure 2.6 a large variation in species can be
seen within the lineage with distances reaching up to 2500 units. Creation of a consensus
list for such a diverse lineage is often not satisfactory for a significant portion of members,
as is evidenced by these results.

In terms of the combined metagenomes the lineage profile results looked positive.
The number of species within the data strengthened or weakened the score dependent on
their relation to the lineage. In case study 1 (Figure 3.6 B) metagenome 16 provided an
example where two bacterial species from different lineages prevented the identification
of a single species from the Actinobacteria lineage. This yielded an indication of the
sensitivity of this method. Therefore if the majority of species are from different lineages
the signal weakened considerably. In Figure 3.6 B metagenomes 13 and 18 included a
single species from an alien lineage where a high score was still given. This indicated
that in an environment where a lineage is represented by half of the metagenome (50kbp)
detection was possible. The combined metagenomes for case study 3 (Figure 3.8 B) and 4
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Green bars indicate single metagenomes with species not present in the lineage
* Indicates a more distant species from the same lineage
** Indicates a species from a different lineage
^ Score calculated using Algorithm 13
Error value used is 174.76

Figure 3.6: Lineage profile for case study 1. This case study was evaluated using the
Actinobacteria lineage profile. Figures A and B show single and combined metagenomes
respectively. Score for each metagenome is plotted on the X-axis.
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Green bars indicate single metagenomes with species not present in the lineage
* Indicates a more distant species from the same lineage
** Indicates a species from a different lineage
^ Score calculated using Algorithm 13
Error value used is 127.76

Figure 3.7: Lineage profile for case study 2. This case study was evaluated using the
Firmicutes lineage profile. Figures A and B show single and combined metagenomes
respectively. Score for each metagenome is plotted on the X-axis.
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Green bars indicate single metagenomes with species not present in the lineage
* Indicates a more distant species from the same lineage
** Indicates a species from a different lineage
^ Score calculated using Algorithm 13
Error value used is 410.52

Figure 3.8: Lineage profile for case study 3. This case study was evaluated using
the Gammaproteobacteria lineage profile. Figures A and B show single and combined
metagenomes respectively. Score for each metagenome is plotted on the X-axis.
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Green bars indicate single metagenomes with species not present in the lineage
* Indicates a more distant species from the same lineage
** Indicates a species from a different lineage
^ Score calculated using Algorithm 13
Error value used is 410.52

Figure 3.9: Lineage profile for case study 4. This case study was evaluated using
the Gammaproteobacteria lineage profile. Figures A and B show single and combined
metagenomes respectively. Score for each metagenome is plotted on the X-axis.
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Table 3.8: The number of markers usable by MarkerCounter for species in Case Study 1.
Species Number of Markers

Mycobacterium avium 48 markers
Mycobacterium bovis 10 markers

Mycobacterium tuberculosis 14 markers
Mycobacterium leprae 640 markers

Mycobacterium smegmatis 82 markers
Mycobacterium ulcerans 242 markers

Mycobacterium vanbaalenii 34 markers
Bifidobacterium longum* 237 markers

Corynebacterium glutamicum* 664 markers
Chlamydophila pneumoniae** 644 markers

Pelodictyon luteolum** 546 markers

Table 3.9: Markers usable by MarkerCounter for species in Case Study 2.
Species Number of Markers

Bacillus anthracis 22 markers
Bacillus cereus 10 markers

Bacillus licheniformis 144 markers
Bacillus thuringiensis 22 markers

Bacillus subtilis 118 markers
Ureaplasma parvum* 103 markers

Desulfitobacterium hafniense* 103 markers
Pelobacter propionicus** 514 markers
Acidobacteria bacterium** 623 markers

(Figure 3.9 B) showed a lack of confidence, even in the cases where all organisms originated
from the Gammaproteobacteria lineage. It is clear that the Gammaproteobacteria lineage
profile is not sufficient for the detection of lineage species using oligonucleotide frequencies.

3.4 Analysis of sequenced reads

3.4.1 Results for the analysis of sequenced reads

3.4.1.1 Species profile results

Marker tables for case studies

On inspection of Tables 3.8 and on the current page the first signs of bias can be detected.
A large fluctuation in the number of markers used by each species in the case studies is
present. As a result the pathogens, Mycobacterium tuberculosis and Bacillus anthracis,
and their closely related species all contain a very limited number of markers. Mark-
erCounter removed all oligonucleotide markers that occurred in more than one species
profile. Therefore, the most closely related organisms were most severely affected as their
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Table 3.10: Markers usable by MarkerCounter for species in Case Study 3.
Species Number of Markers

Pseudomonas aeruginosa 126 markers
Pseudomonas syringae 382 markers

Pseudomonas entomophila 65 markers
Pseudomonas fluorescens 91 markers

Pseudomonas putida 174 markers
Psychrobacter arcticus* 125 markers
Aeromonas hydrophila* 152 markers

Streptococcus pneumoniae** 437 markers
Thermoplasma acidophilum** 646 markers

Table 3.11: Markers usable by MarkerCounter for species in Case Study 4.
Species Number of Markers

Escherichia coli 445 markers
Salmonella enterica 274 markers

Shigella flexneri 472 markers
Psychrobacter arcticus* 125 markers

Photorhabdus luminescens* 215 markers
Borrelia afzelii** 163 markers

Dechloromonas aromatica** 461 markers

marker counts were significantly reduced. Nonetheless, the removal of all shared mark-
ers dramatically decreased the false positives in the results and thereby improved signal
quality.

The fluctuation in markers present within these tables also showed several species
with exceptionally high numbers of markers. These were generally species that were
distantly related to the pathogenic species as they do not share markers with any other
organisms within the dataset. Secondly, a large number of markers could indicate a repeat
poor species where hundreds of oligonucleotides were required to achieve the cumulative
expected value threshold (please see Section 2.5.3 for further information). This provided a
different form of bias as there was an increased probability of encountering these markers
by chance. In an attempt to correct for this the hits per marker score was calculated
(Algorithm 15).

On inspection of Tables 3.10 and 3.11 more balanced marker profiles were viewed.
Each species within the case studies featured a much larger selection of markers, this gave
an indication that marker bias will be minimized.

Single species metagenomes

From Figures 3.10 and 3.12 the species profiles tested displayed that both Mycobacterium
tuberculosis and Bacillus anthracis could not be detected effectively. This is attributed
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Figure 3.10: Case Study 1 species profiles. Figures A and B show marker results against
metagenomes containing Mycobacterium tuberculosis and Chlamydophila pneumoniae re-
spectively. Figure C shows marker results against a combined metagenome of species
Mycobacterium ulcerans,Mycobacterium leprae and Pelodictyon luteolum.

Figure 3.11: Species profile for a random metagenome taken from Case Study 1.
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Figure 3.12: Case Study 2 species profiles. Figures A and B show marker results against
metagenomes containing Bacillus anthracis and Ureaplasma parvum respectively. Figure
C shows marker results against a combined metagenome of species Bacillus anthracis,
Bacillus licheniformis, Ureaplasma parvum and Bacillus subtilis.
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Figure 3.13: Case Study 3 species profiles. Figures A and B show marker results against
metagenomes containing Pseudomonas aeruginosa and Pseudomonas entomophila. re-
spectively. Figure C shows marker results against a combined metagenome of species
Aeromonas hydrophila,Pseudomonas aeruginosa and Thermoplasma acidophilum.
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Figure 3.14: Case Study 4 species profiles. Figures A,B and C show marker results
against single species metagenomes containing Salmonella enterica, Shigella flexneri and
Escherichia coli respectively.
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to the lack of viable markers. The false positive detection of all species distant from the
study indicate that there was a definite bias towards these species. The calculation to
normalize the number of markers per hit clearly was not effective in preventing this bias.

From Figure 3.10 B (case study 1) a very specific signal was present as Chlamydophila
pneumoniae was represented with complete certainty. It must be taken into account that
no other species from this lineage was included in this case study. This also gives a clear
indication of how a large number of markers could amplify a score, this phenomenon was
present in every case study. Interestingly, in Figure 3.12 B (case study 2), Ureaplasma
parvum also indicated a strong hit. This specie, falling within the same lineage as Bacillus
anthracis, was clearly exceptionally rich in repeat regions and confirmed results obtained
in oligonucleotide frequency analysis.

Figures 3.13 and 3.14 described the species profiles for Pseudomonas aeruginosa and
Salmonella enterica. There was a clear signal showing the presence of these pathogens
with only mild interference from closely related species. This provided support for the
differentiation of species from their neighbours on the condition that a sizable set of
markers could be identified. In Figure 3.14 B Shigella flexneri was clearly not easily
identifiable as Escherichia coli produced a more distinctive signal. In contrast to Figure
3.14 C where Escherichia coli was easily identified over and above Shigella flexneri. This
shows that the differentiation of Shigella flexneri from Escherichia coli was clearly far
more problematic and could imply that Shigella flexneri could not be identified effectively
using the current method.

Combined species metagenomes

Generally the combined metagenomes for each case study show that the majority of species
could be detected, however, there was significant interference. All species distant from
the pathogen and its relatives were detected regardless of presence in the metagenome.
There was also a pronounced decrease in the score of the results in combined metagenomes
compared to the single species metagenomes. This could be expected as less signal from
each species is present.

As identified in Figure 3.10 C (case study 1) the false positive appearance of Mycobac-
terium tuberculosis in the dataset was due to the presence of highly similar sequence from
both Mycobacterium leprae and Mycobacterium ulcerans, this result was clearly not highly
significant, as it was only obtained at the ”2 oligos per fragment” threshold.

Figure 3.18 A (case study 4) offered an example of the effectivity of this method. Under
conditions where species markers were relatively well balanced and species within the
metagenome were not highly similar a clear result could be obtained. The multiple species
metagenome in Figure 3.18 A showed an optimal situation where all species present in the
metagenome were identified without any background noise. However, the astronomical
value for Borrelia afzelii (Spirochaetes lineage) indicated that the markers for this genome
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Figure 3.15: Case Study 1 lineage profiles. All Figures show the lineage profile results
of Mycobacterium tuberculosis (Actinobacteria lineage). Figure A shows the full lineage
profile for Mycobacterium tuberculosis. Figure B shows the reduced lineage profile. Figure
C shows the further selection of several lineages with the highest scores.

were not specific. This emphasized that creation of a species profile from a small lineage
could dramatically increase the number of poorly selected oligonucleotides.

3.4.1.2 Lineage profile results

Single species metagenomes

Figure 3.15 showed the results of different lineage profiles tested against a Mycobacterium
tuberculosis (Actinobacteria lineage) metagenome. Figure 3.15 A showed the complete
lineage profile containing all lineages. This figure displayed a great deal of background
interference and no clear signal identifying the Actinobacteria lineage. Figure 3.15 B
displayed a reduced lineage profile, only including lineages containing 5 or more species.
This greatly improved score and produced a pronounced peak. This implied that small
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Figure 3.16: Case Study 2 lineage profiles. All Figures show the lineage profile results
of Bacillus anthracis (Firmicutes lineage). Figure A shows the full lineage profile for
Bacillus anthracis. Figure B shows the reduced lineage profile.

Figure 3.17: Case Study 3 lineage profiles. All Figures show the lineage profile results of
Pseudomonas aeruginosa (Gammaproteobacteria lineage). Figure A shows the full lineage
profile for Pseudomonas aeruginosa while Figure B shows the reduced lineage profile.

 
 
 



CHAPTER 3. METAGENOMIC IMPLEMENTATION 91

Figure 3.18: Figure A and B show marker results against a combined metagenome
of species. Metagenome A contains Dechloromonas aromatica, Borrelia afzelii and
Salmonella enterica. Metagenome B contains Shigella flexneri, Photorhabdus luminescens
and Salmonella enterica. Figure C shows the full lineage profile for Salmonella enterica
(Gammaproteobacteria lineage).
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Figure 3.19: Combined metagenomes from Case Study 1, analysis is done using lineage
profiles. Figure A shows a combined metagenome containing Mycobacterium leprae and
a random metagenome. Figure B shows a combined metagenome containing Mycobac-
terium tuberculosis,Mycobacterium smegmatis,Mycobacterium leprae and Chlamydophila
pneumoniae.

lineages caused bias which could skew results and were subsequently removed from further
analysis. The same general trend was experienced in the majority of case studies. A
further step was taken to improve resolution by removing all lineages with no score from
Figure 3.15 B. From Figure 3.15 C it was clear that the Actinobacteria lineage remains
the most prominent.

From Figures 3.17 A identified that the Gammaproteobacteria lineage profile did not
effectively identify Pseudomonas aeruginosa. After reducing the number of lineages no
improvement was visible (Figure 3.17 B). Despite this, the Salmonella enterica metage-
nomic sample achieved a surprisingly good result from the lineage profile (Figure 3.14 C).
This indicated that the Gammaproteobacteria lineage profile could adequately describe
this species using sequence read analysis.

Combined species metagenomes

The identification of the lineages present within a multiple species metagenome is now
explored. From Figure 3.19 A it was clear that although the correct lineage peak was
identified background noise was substantial. Furthermore, the scores for the lineage had
decreased compared to the single species metagenomes. In Figure 3.19 B a more com-
plicated metagenome, containing three species from the Actinobacteria lineage and one
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species from the Chlamydiae/Verrucomicrobia lineage is shown. The increase in numbers
of species has resulted in a dramatic increase in interference. Although the Chlamy-
diae/Verrucomicrobia lineage was present it does not peak above the background noise
and hence could not be reliably identified. This reiterated the findings in Section 3.3.1.2
showing that lineage profiles could not be reliably identified unless species within the
lineage are abundant within the metagenome.

3.4.2 Experimental Data Results

3.4.2.1 Results for the analysis of sequenced reads

From inspection of Table 3.12 it could be noted that all species in the full dataset have
sufficient markers with the exception of Dehalococcoides sp. CBDB1. Furthermore, the
differences in marker sizes between species in the full and reduced dataset showed that the
species added to the core dataset had a minor effect on the number of markers for each
core specie. The balanced marker profiles reduced the chance of marker bias affecting
these results.

Figure 3.20 showed the scores for species profiles tested against the deep Mediterranean
metagenome. The first identifiable feature in Figure 3.20 A was the astronomical value
of Chlamydophila pneumoniae, a genome not present within this dataset. This provided
yet another example of bias due not only to high marker count but unspecific marker
selection.

Chlamydophila pneumoniae was then removed from the data. Figure 3.20 B displayed
a scenario where a large number of false positives were still present. The highest peaks
present in the data belonged to species not known to be present within the metagenome
(Pelodictyon luteolum and Bifidobacterium longum). Several of the species found within
the metagenome do have relatively high scoring values, however, these proved inconclusive.

An attempt was made to determine how accurately the core species within the metagenome
can be identified (Figure 3.21). Figure 3.21 A displayed the overrepresentation of Candi-
datus Pelagibacter ubique within the metagenome. This species was shown to be present
at high levels within the metagenome and this described a true positive. However, the
excessive values associated with the species implied that the species profile may be am-
plified by other sequences within the metagenome. Candidatus Pelagibacter ubique was
subsequently removed to provide a more detailed view of the remaining species.

Figure 3.21 B demonstrated the occurrence of several bacterial species found within the
metagenome. Nonetheless, only several of these species (Solibacter usitatus, Acidobacteria
bacterium, Magnetospirillum magneticum and Mesorhizobium sp. BNC1 ) appeared to
provide significant values at higher thresholds.

Figure 3.22 displayed the results of testing several lineage profiles against the deep
Mediterranean metagenome. The study by Martín-Cuadrado et al. (2007) showed Al-

 
 
 



CHAPTER 3. METAGENOMIC IMPLEMENTATION 94

Figure 3.20: Marker results for the full deep Mediterranean metagenomic dataset includ-
ing additional species (Figure A). Figure B shows the full dataset with the removal of
Chlamydophila pneumoniae.

phaproteobacteria,Acidobacteria,Deltaproteobacteria and Betaproteobacteria as the most
dominant lineages within the metagenome. Figure 3.22 correctly identified the majority
of these lineages and other lineages present in the data. This signal seemed dispropor-
tionate to the expected result for Alphaproteobacteria which would surely have been even
greater as the majority lineage. A reason for the lack of signal could be the absence
of several dominant Alphaproteobacteria species within the constructed database. Hence
the lineage profile would not incorporate these species into its consensus and would not
describe them effectively.

3.4.2.2 Results from oligonucleotide frequency analysis

From Table 3.13 the same confused image can be seen as with Figures 3.20 and 3.21. In
this table there was no clear pattern of identification indicating a separation between true
positives and false positives. Final scores assigned are all close to one, this showed a lack
of conviction in the predictions made. This lack of conviction could be expected due to
the large amount of data and dilution of signal present.

From the inspection of Table 3.14 the results appeared to indicate that identification
of lineages within a metagenomic sample may be a possibility. No false positives were
found in this dataset, however, the values of the true positive results were generally close
to one implying a lack of significance. Further statistical corrections will have to be put
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Figure 3.21: Marker results for the core species of the deep sea Mediterranean metage-
nomic dataset (Figure A). Figure B shows the core species with the removal of Candidatus
Pelagibacter ubique.

in place in order to accurately estimate presence or absence of lineages in this sample.
On further inspection only two false negatives were found within the dataset and these
belong to minority lineages.

3.5 Discussion

3.5.1 Oligonucleotide frequency analysis

3.5.1.1 Species specific analysis

Oligonucleotide frequency analysis cannot separate closely related species effectively based
on score or numerical difference. Furthermore, the scoring function did not provide con-
sistent results for each case study. Scores appeared to be relative to specific families and
their inherent genomic characteristics.

Moderate success was gained in the differentiation of more distantly related species
which could be identified based largely on numerical difference in scores. There were
several exceptions to this rule. Repeat rich genomes such as Ureaplasma parvum in case
study 2 closely mimicked the profile for Bacillus anthracis. This needs to be taken into
account in future experimentation. One solution may be to identify repeat rich genomes
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Figure 3.22: This Figure shows the full lineage profile for the deep Mediterranean
metagenome. Prominent lineages found within the metagenome include; Alphapro-
teobacteria, Acidobacteria,Deltaproteobacteria, Gammaproteobacteria,Betaproteobacteria
and Cyanobacteria.

first in order to correct for their affects on other species. A further exception was that
distantly related species can still share common oligonucleotides. An example of this
was Dechloromonas aromatica (Figure 3.5) with high similarity to Salmonella enterica, a
species in a different lineage. The error value for Dechloromonas aromatica (121.1) did
not provide any further hints as to this phenomenon. This cautions the assumption that
each species or genus has highly unique signatures based on lineage comparison.

The analysis of multiple species in combined metagenomes highlighted further diffi-
culties. Combined metagenomes were created containing several species with the total
100kbp sequence shared equally amongst them. This demonstrated a highly conserva-
tive test as a very limited amount of information was present for each species. Results
for combined metagenomes showed that identification of species within this context was
unreliable. A common occurrence was that two closely related species occurring in the
metagenome will boost the score of a third related species absent from the metagenome.
Furthermore, the dilution of signal by including foreign species greatly reduced signal and
increased non-specific interference.

Combined metagenomes were highly variable. As different regions within the genomes
were selected for sequencing, the different characteristics of these regions could bias results.
This provided a conservative estimate of actual data where there was no guarantee for
the presence of the entire genomic sequence.

In order to provide an average false positive rate for a species profile the error value
was created. Nonetheless, this score is limited by the number of genomes within the
database and therefore could provide skewed estimates under certain conditions.

In the final analysis of the deep Mediterranean metagenome no clear trends were
visible. Large numbers of false positives and negatives were present in the results. The
scores for the true positives remained close to one, indicating a lack of confidence.
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3.5.1.2 Lineage specific analysis

The lineage analysis of metagenomes using oligonucleotide frequencies demonstrated a far
more stable picture than that for species identification. Species within two of the four
case studies were identified as belonging to their respective lineages. There were several
difficulties when using this approach. The most notable was creation of a consensus that
accurately described all species. This was a highly complex and often impossible task
when a large group of diverse species was involved. For each case study there was a
lineage profile which inadequately described a particular specie. This culminated in the
Gammaproteobacteria lineage profile being unable to identify Pseudomonas aeruginosa.
In this case, Gammaproteobacteria, a highly diverse and densely populated lineage, proved
very difficult to describe using a lineage profile.

Positive results were obtained in the identification of lineages present in combined
metagenomes. Several insights into the limitations of this approach and its ability to
effectively detect lineages was made. Firstly, metagenomic signal seemed to be detectable
when the sequence ratio is above 50%. Below this value, signal was too diluted for a
positive result. In general, the score decreased and increased proportional to the number
of species present within that lineage.

Testing of this method on the deep Mediterranean metagenomic dataset produced
a far better result than species identification. Only one false positive was found with
several false negatives. The majority of lineages were correctly identified although values
remained close to 1 indicating low confidence in results. Nonetheless, a higher score was
expected for the dominant Alphaproteobacteria lineage. This discrepancy could be due to
a number of factors. The failure of the database to contain a number of species present in
this environment could decrease the capacity of the lineage profile to detect these species.

Lineage specific analysis clearly provided far more promise than the species specific ap-
proach using oligonucleotides frequencies. However, further investigation will be required
to produce optimal results.

3.5.2 Sequenced read analysis

3.5.2.1 Species analysis

The most limiting factor in sequenced read analysis was the number of markers desig-
nated for each specie. Case study 1 and 2 both showed the pathogen and closely related
species deficient in markers. This deficiency lead to poor detection within metagenomic
sequence and rendered these species profiles ineffective. Furthermore, species distantly
related to the pathogen were subject to bias as their marker sets were much larger and
chance occurrence of markers becomes more likely. In an attempt to control this bias
the hits/marker statistic was calculated. This attempted to normalize the number of hits
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against the number of markers in the species profile but did not control adequately for
the bias and results were skewed towards the distant species.

Case study 4 provided an example where markers for all species profiles were well bal-
anced and within an acceptable range. The majority of species could be easily identified in
this case study. However, Escherichia coli produced a more distinctive signal against the
Shigella flexneri metagenome. The species profile of one closely related species affecting
another was a common occurrence. This indicated, beyond the number of markers per
specie, that closely related species remained difficult to separate. This is an inherent flaw
and directly hinders the effective use of overrepresented oligonucleotides in distinguishing
between closely related species.

The miss-identification of Escherichia coli in this situation could also be due to the
high number of markers. This could cause sufficient interference among closely related
species that a stronger signal may be presented for the incorrect specie. This lead to the
conclusion that a fine balance must be struck between these two extremes in order to
produce the optimal number of markers. Careful moderation on distant species was also
essential to minimize bias. A further concern was that the removal of shared markers by
MarkerCounter was not controlled and no intelligent selection was involved. If this process
was done more thoroughly, markers could be selected depending on specific characteristics
as well as sequence identity.

The analysis of reads within multiple species metagenomes highlights all the points
discussed above as each effect is amplified. Through this technique added confidence
could be gained using each oligonucleotide threshold. Although interference from a species
profile is highly likely this interference generally appeared only within the ”2 oligos per
fragment” threshold. Nonetheless, for distantly related species the bias was often too
great and these appeared at higher thresholds. This confounded the accurate detection
of species. Multiple species metagenomes displayed a much higher rate of background
interference which made detection of species unreliable.

From tests performed on the deep Mediterranean metagenome no well defined results
were obtained. Several species profiles not present in the metagenome showed significant
signal. This indicated that in a highly complex environment the rate of false positives is
very high due to the interference between marker profiles. From these results it was clear
that marker profiles lack specificity for accurate detection in such a complex environment.
Further steps will have to be taken to moderate marker number as well as marker identity.

3.5.2.2 Lineage analysis

The analysis of sequenced reads using lineage profiles suggested a far more effective ap-
proach than the species specific analyses. Initial tests performed using all lineages resulted
in exceptionally high interference, dwarfing the true positive signal. This lead to the real-
isation that lineages were not consistent, due to the variation in species number. A small
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species number implied that species specific oligonucleotides were selected rather than
a general lineage consensus. This could detract from another lineage which successfully
described an oligonucleotide as generally overrepresented. Secondly, a very large number
of species per lineage could result in such high variation that inadequate consensus can
be reached. This produced an inaccurate selection of oligonucleotides which may describe
only a minority of species within the lineage effectively. These difficulties all center on
the issue of species separation. Although this was an essential process to enable easy
computability and accurate classification it was a far more complex task than previously
expected. As identified earlier, an alternative method for separating species into families
or smaller phylogenetic units may improve results greatly.

In further analysis all small lineages, containing less than 5 species, were removed
from the marker list. The results of these tests showed dramatic improvement, enabling
reliable identification of lineages. If interference was still too prominent the marker list
was reduced further.

These results lead to similar conclusions found in oligonucleotide frequency analysis.
Both Actinobacteria and the Firmicutes lineages showed sufficient consensus to be capable
of identifying their respective species adequately. The only significant improvement on
this method was the effective use of the Gammaproteobacteria lineage profile in case study
4. Results displayed that this profile was indeed able to accurately identify Salmonella
enterica and related species.

When testing lineage profiles against combined metagenomes noise increased substan-
tially. Identification was clearly only possible when the lineage species were abundant in
the metagenome. As mentioned before these experiments test the lower bounds of infor-
mation as lineages could be accurately identified in as little as 50kb of shared metage-
nomic sequence. On inspection of the results obtained from the deep Mediterranean
metagenome, several of the lineages featured were well described using this method. How-
ever, the absence of the majority lineage, Alphaproteobacteria created some concern about
the accuracy of this approach. An explanation provided in Section 3.5.1.2 identified that
species present in the metagenome may be missing in the database which could decrease
the effectiveness of the lineage profile in identifying these members.

3.6 Conclusion

Two approaches are tested in this chapter. The first focused on the use of global fre-
quencies in a metagenome to identify bacterial species and lineages. The second approach
focused on classification of raw sequenced reads to marker profiles. Both of these tech-
niques experienced similar results throughout testing and these will be summarised below.

In the identification of species within artificial metagenomes, differentiation of closely
related species was unreliable. While differentiation of more distant species showed
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promise, there were exceptions. Repeat rich genomes caused interference with related
species making separation problematic. Unspecific species profiles created in small lin-
eages confused results further and created a large number of false positives.

Species analysis in combined metagenomes amplified the above mentioned irregular-
ities and made separation on a species level highly unlikely. From the analysis of the
experimental deep Mediterranean metagenome a similar result was obtained. No con-
sistency was present in the results. Furthermore, large numbers of false positives and
false negatives occurred making detection of species unreliable using current methods.
Sequence read analysis had marginally more success in the differentiation of species in
combined metagenomes. In case studies 3 and 4 a more defined distinction can be made
between species and characterisation of these metagenomes proves more accurate.

In the detection of lineages within artificial metagenomic samples lineage profiles ap-
peared to accurately distinguish lineage members from non-members with some excep-
tions. Relatively low scores were obtained for certain lineage members, this was due to
consensus sequences tending to describe certain species better than others. A definite
irregularity was the poor results obtained from the Gammaproteobacteria lineage profile.
This profile clearly failed to describe species adequately and results for both case studies 3
and 4 were relatively poor. This lineage is by far the most diverse and densely populated
in the database and difficulties can therefore be anticipated with the accurate description
of species in this instance. However, analysis of sequenced reads using lineage profiles
proved more reliable in this context. After removal of lineages containing a small num-
ber of species the accurate identification of case study 4 using the Gammaproteobacteria
lineage profile was possible.

Overall, the evaluation of combined metagenomes using lineage profiles indicated pos-
itive results. Signal for a particular lineage increases and decreases dependent on the
ratio of species from said lineage present in the sample. However, lineage profiles were
unable to detect signal in less than 50% of the metagenome. This can be expected as
too little information is present for identification. In the analysis of the deep Mediter-
ranean metagenome an accurate description of lineages presented within the sample was
obtained. However, on closer inspection oligonucleotide frequency analysis produced a
superior result by identifying more lineages correctly than sequenced read analysis.

In general, oligonucleotide frequency analysis was a far more sensitive approach than
sequenced read analysis. However, this implied that it was also more susceptible to
interference as was witnessed in species identification. This could be attributed to the
inclusion of a larger number of oligonucleotides which ensured that the best possible score
for each species is obtained, sometimes to the detriment of the analysis.

Analysis of sequenced reads provided an alternative approach which identified lo-
cal trends within sequenced fragments rather than the global profile of a metagenome.
This approach differed from oligonucleotide frequencies by its exclusion of shared markers
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between species. This was a necessary step in reducing the excessive number of false
positives. Nonetheless, this approach could also significantly reduce the ability to detect
a species when too many markers were removed and hampered accurate identification
in some respects. Results using this method showed that highly similar species reduced
each others marker profiles dramatically, and it was clear that a more intelligent marker
reduction system must be created.

One of the major advantages to sequenced read analysis was the added confidence
given by the varied threshold of oligonucleotides per fragment required for a hit. At a
glance this allowed for description of marker profiles not only by score but by appearance
of hits at higher thresholds. This provided a significant advantage over oligonucleotide
frequencies.

A further benefit was the ability to decrease marker lists hence increasing resolution
for lineages present in the dataset. This could provide a powerful approach in future to
aid in lessening interference within the results and showed that analyses were far more
effective on a smaller target population.

In summary, the number and specificity of marker profiles was of crucial importance
to the accuracy of sequenced read analysis. This approach carries great potential in its
ability to provide added confidence for results, and with further investigation and research
an accurate method of identification could be unearthed.

In conclusion, the identification of species within a metagenomic context is a formidable
task. Both oligonucleotide frequency and sequenced read analysis are currently not ca-
pable of accurately distinguishing between species in an unknown metagenomic sample.
However, lineage analysis appears to be a definite possibility as both analytical methods
provided positive results in artificial as well as experimental metagenomes. Formalized
use of either of these approaches will require further research. Against the background of
the results obtained in this study, the potential for use of overrepresented oligonucleotides
in identification within a metagenomic environment appears to be an as yet elusive but
attainable goal.
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Table 3.12: Markers usable by MarkerCounter for species in the deep Mediterranean
dataset. The “Marker number (full dataset)” column describes the number of markers
achieved by each genome in the dataset containing both species present and absent from
the experimental metagenome. The “Marker number (core species dataset)” column con-
tains the number of markers achieved only by species present within the experimental
dataset.

Species Marker number
(full dataset)

Marker number
(core species

dataset)

Bifidobacterium
longum

293 n/a

Burkholderia sp.
383

201 215

Dehalococcoides sp.
CBDB1

1 1

Acidobacteria
bacterium

356 398

Candidatus
Pelagibacter ubique

116 171

Chlamydophila
pneumoniae

589 n/a

Magnetospirillum
magneticum

145 177

Mesorhizobium loti 100 114
Mesorhizobium sp.

BNC1
312 326

Pelodictyon luteolum 483 n/a
Pseudomonas
aeruginosa

95 123

Rhodopseudomonas
palustris

84 96

Solibacter usitatus 179 183
Thermobifida fusca 341 n/a
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Table 3.13: Identification of species in the deep Mediterranean metagenome using oligonu-
cleotide frequencies. Total frequency count indicates the total sum of oligonucleotides
found for each species profile. * indicates lineages identified within the metagenome by
Martín-Cuadrado et al. (2007). ^ calculated using Algorithm 14

Species Total frequency count Error Value Final score^
Burkholderia sp. 383 4447 58.91 1.03*

Thermobifida fusca YX 6446 72.85 1.21
Mesorhizobium sp. BNC1 11176 151.89 1.01*

Candidatus Pelagibacter ubique 5609 116.49 0.66*
Chlamydophila pneumoniae 21801 483.10 0.62
Rhodopseudomonas palustris 5705 75.85 1.03*

Magnetospirillum magneticum 5355 62.38 1.18*
Dehalococcoides sp. CBDB1 0 0.00 0.00*
Pseudomonas aeruginosa 5634 77.07 1.00*

Solibacter usitatus 9400 144.40 0.89*
Pelodictyon luteolum 14716 172.41 1.17

Acidobacteria bacterium 14470 215.21 0.92*
Bifidobacterium longum 10073 116.95 1.18

Mesorhizobium loti 8209 97.85 1.15*

Table 3.14: Identification of phylogenetic lineages in the deep Mediterranean metagenome
using oligonucleotide frequencies. Total frequency count indicates the total sum of
oligonucleotides found for each lineage profile. * indicates lineages identified within the
metagenome by Martín-Cuadrado et al. (2007). ^ calculated using Algorithm 14

Lineage Total frequency Error Value Final Score^
Cyanobacteria 30233 394.33 1.05*

Epsilonproteobacteria 11443 203.06 0.77
Deltaproteobacteria 23872 254.41 1.29*

Firmicutes 19314 216.22 1.22*
Euryarchaeota 30084 424.33 0.97*

Gammaproteobacteria 34342 410.52 1.15*
Spirochaetes 14256 244.60 0.80

Crenarchaeota 20805 386.44 0.74*
Acidobacteria 15463 206.90 1.02*

Alphaproteobacteria 20854 246.48 1.16*
Actinobacteria 15379 174.76 1.21

Bacteroidetes/Chlorobi 20871 354.45 0.81
Chlamydiae/Verrucomicrobia 16555 290.15 0.78

Betaproteobacteria 12162 126.23 1.32*

 
 
 



Chapter 4

Concluding discussion

4.1 Conclusion

Bacterial pathogens claim millions of lives each year and new mechanisms of identifying
these bacteria in their natural environments as well as in their hosts have to be discov-
ered. The current study contributes to this field by investigating a novel method for
the identification of bacterial species from raw metagenomic fragments using overrepre-
sented oligonucleotides as signature sequences. Identification of bacterial species within
a metagenomic sample is a crucial step in medical diagnosis as well as in the prevention
of infection.

Several complexities exist in the identification of bacteria within a metagenomic con-
text. Currently identification of bacteria is limited to phylogenetic markers which utilize
only 1% of metagenomic sequence. Furthermore, modern sequencing technologies pro-
duce reads of short length. Assembly of short reads is both computationally intensive and
error prone. This study proposes a solution to these difficulties through the use of over-
represented oligonucleotide markers. Overrepresented oligonucleotides (8-14bp in length)
are present throughout the genome and can be effectively employed in the identification
of bacterial species in metagenomic sequence without the need for sequence assembly.
Furthermore, the increased sequence length of the oligonucleotides over its predecessors
(short oligonucleotide frequencies, 2-4bp in length) provides increased specificity for use
on short sequence reads.

In order to identify overrepresented oligonucleotide markers for each specie, raw data
had to be analysed, extended and imported into a structured database. The structured
database provided a foundation for the creation of Oligosignatures, a program to inter-
face with the user and query the database. Oligosignatures allowed for manipulation of
analyses for use on any environmental context.

In the current study, the Oligosignatures program was applied to the identification
of bacterial species within unknown metagenomic samples. The first step involved the
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identification of closely related strains followed by their removal from further computation.
Species and lineage specific oligonucleotide profiles were then described. Further testing
was executed to determine the discriminating power of marker profiles. These tests were
performed on both artificial and experimental data. Testing focused on the use of two
approaches. Oligonucleotide frequency analysis employing global oligonucleotide marker
frequencies were used to identify the presence of bacterial species. Concurrently, sequenced
read analysis attributes metagenomic fragments to specific species using overrepresented
oligonucleotide markers.

Results show that species identification is not possible under current conditions. In-
terference and bias prevent the detection of closely related species within metagenomic
samples using both methods. However, identification of more distantly related organ-
isms proved more reliable, improvements in this area could make species identification a
distinct possibility. The determination of lineages within a metagenomic sample was far
more promising. Lineages could be detected in artificial and experimental datasets using
both approaches. These results, although not perfect, hint at the potential of species and
lineage detection using overrepresented oligonucleotides.

4.2 Critical evaluation

The creation of a structured database from raw data offers the opportunity to search
and compare data based on selected criteria. This database forms the foundation of the
program Oligosignatures. The division of the database into phylogenetic lineage tables
caused inaccuracies. Both exceptionally large and small lineages produce unreliable lin-
eage marker profiles. The division into lineages assumes that phylogenetic relationship
closely mirrors genomic similarity. There are exceptions to this rule that can confound
results.

Development of Oligosignatures allowed for the creation of marker oligonucleotide
profiles dependent on user defined contexts. Through Oligosignatures the opportunity
to thoroughly explore the properties and uses of overrepresented oligonucleotides is now
possible. The potential to identify various different uses for these oligonucleotides or to
combine their use with existing identification pipelines can lead to improved identification
methods within metagenomics. The identification of sequence fragments within metage-
nomic samples can also greatly aid research in metagenomics and is a potential future
outcome for this approach.

As a test environment the detection of bacterial species in unknown metagenomic sam-
ples was selected. The identification of species in both artificial and experimental data is
error prone. Closely related species cannot be reliably separated in this context. Distantly
related species, however, are more easily distinguishable. Nonetheless, the identification
of lineages in metagenomic samples showed promise. Results showed that lineages could
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be discriminated in the majority of metagenomic samples dependent on an effective lin-
eage profile. An effective lineage profile relies on an accurate consensus of the lineage
(determined by lineage constitution) and the amount of sequence present for the lineage
in the metagenome.

Two approaches were used to test the effectivity of overrepresented oligonucleotide
marker profiles, namely, oligonucleotide frequency analysis and sequenced read analysis.
The oligonucleotide frequency approach is clearly more sensitive than the sequenced read
approach. Although the score calculated requires further mathematical correction, the
magnitude differences in value hints that separation may indeed be possible with this
approach. Sequenced read analysis provides a far more effective measure of confidence
than oligonucleotide frequency by using multiple ”oligo per fragment” thresholds. This
approach holds great potential if the number and specificity of markers provided from
each profile can be improved.

4.3 Recommendations for further research

The application of Oligosignatures to different environmental contexts will prove invalu-
able in the exploration of the uses of overrepresented oligonucleotides. Applying this
program, the techniques employed for identification could then be improved to focus on
classification of genomic fragments, realizing the potential of this technique to greatly in-
crease the number of fragments identified within a metagenome. Overrepresented oligonu-
cleotides may also be researched in their ability to determine phylogeny. This may provide
a more robust method of classification than current approaches.

Due to the difficulties with the division of the database into lineages an alternative
method should be sought. A suggestion would be to cluster genomes based on their
overrepresentation of oligonucleotides. This approach would also allow for moderation
of group size. Creation of small, consistent groupings may prove to be an intermediate
between species and lineage identification enabling accurate classification.

Species specific methods tend to be too susceptible to interference. In future a filtering
system may be put in place to decrease search space. By first identifying lineages present
in the sample or the use of other exploratory methods the number of possible species with
the metagenome can be significantly decreased. These results can then be used to guide
species specific identification, reducing false positives.

The similarities discovered in overrepresented oligonucleotides amongst lineages or
species can be used to investigate the mechanisms causing the overrepresentation of these
oligonucleotides. These insights will be fundamental to further use of this approach and
understanding of mechanisms involved in generating these oligonucleotides.

In terms of methods for the identification of species or lineages in metagenomic datasets
the following improvements can be made. Sequence read analysis requires intelligent
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marker reduction. Removal of shared markers can be based on the importance of that
marker within the respective marker list. This can be further guided by the number of
markers within a specific marker profile to ensure a balanced distribution of markers.
Careful statistical adjustments will need to be made to the scoring system for oligonu-
cleotide frequency analysis. The effect of genomic characteristics on the number of false
positives needs to be taken into account when controlling for this phenomenon.
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