
Dissertation

A web application user interface
specification language based on

statecharts

by

Iwan Vosloo

September 2005

Submitted in partial fulfilment of the requirements for the degree Master of Science (Computer
Science) in the Faculty of Engineering, Built Environment and Information Technology, University

of Pretoria, Pretoria, South Africa

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

To Antoinette and Izak
(in recognition of a debt impossible to settle in the currencies of this world)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

A web application user interface specification language based on
statecharts

by Iwan Vosloo

Abstract

The Internet today has a phenomenal reach—right into the homes of a vast audience worldwide.
Some organisations (and individuals) see this medium as a good opportunity for extending the reach
of their computer systems.

One popular approach used for such endeavours is to run an application on a server, using web
technology for displaying its User Interface (UI) remotely. Developing such a web-based UI can be
quite tedious—it is a concurrent, distributed program which has to run in a hostile environment.
Furthermore, the platform on which it is implemented (the web) was not originally intended for
such usage.

A web framework is a collection of software components which provides its users with support for
developing and executing web-based UIs. In part, web frameworks can be seen as being analogous to
interpreters: given a specification of a UI using a specification technique dictated by the framework,
server components of the framework can present the UI using web technology.

Topics related to web frameworks are scarce in the academic literature, but abound in industry
and open discussion forums. Similarly, the designers of web frameworks seldom found their work
on existing theory in the literature.

This study is an attempt to bridge this gap. It is focused on two aspects of web frameworks:
the specification technique a framework mandates, and how such a specification can subsequently
be used to present a UI via web technology.

As part of this study, a survey was conducted of 80 open source web frameworks. Based on
the survey, a partial overview of the domain of web frameworks is given, covering what is seen as
being typically required of a web framework and covering specification techniques that are used
by existing frameworks. Two taxonomies are proposed of the strategies web frameworks use for
specifying two aspects of web UIs.

Using the web as platform implies adherence to certain (intended) architectural constraints. Web
framework designers often strain against these constraints. However, another point of view is to
recognise that the success of the web platform is made possible precisely because of its intended
architecture. (And the success of the web is surely the principal motivation for using it for remote
UIs in the first place.)

With the bias of this viewpoint, a specification technique is proposed for web-based UIs. This
technique is based on the well-known formalism of statecharts, with semantics explicitly defined in
terms of the intended architectural components and constraints of the web.

The design of a web framework for presenting a UI so specified is also proposed (based on the
theoretical background given, as well as two prototype implementations which have been developed).

Keywords: user interfaces, web applications, web frameworks, statecharts.

Degree: Magister Scientia

Supervisor: Prof. D. G. Kourie

Department of Computer Science

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

Acknowledgements

I would like to thank my supervisor, Prof. Derrick Kourie, who tends to bring not only
knowledge, but much-needed wisdom to the endeavours of his students.

Thanks to Dr Andrew Boake for the carefully aimed, encouraging personal propaganda
without which this study would never have started. I also thank Anton Malan who has had
to weather the most horrible first drafts of this document and provided important advice and
references, and Linda Weber for editing the final document.

Several programmers on informal forums and mailing lists have also provided valuable
input. Thank you all.

vii

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

Contents

Acknowledgements vii

List of Figures xiii

1 Introduction 1
1.1 Background . 1

1.1.1 Web applications . 1
1.1.2 Web frameworks . 2

1.2 An alternative . 3
1.3 Topics of particular interest . 4

1.3.1 REST . 4
1.3.2 The MVC design pattern . 5
1.3.3 Page flow . 6

1.4 Overview and scope . 7
1.5 Related work in brief . 8
1.6 This study contextualised . 9
1.7 Summary . 11

2 Web framework overview 13
2.1 Requirements . 14

2.1.1 Presentation . 14
2.1.2 Forms handling . 14
2.1.3 Validation . 15
2.1.4 Event handling . 15
2.1.5 Page flow . 15
2.1.6 Session state . 16
2.1.7 Authentication . 16
2.1.8 Concurrency . 17
2.1.9 Back-end integration . 17
2.1.10 Resource usage . 17
2.1.11 Miscellaneous . 18

2.2 Strategies for view concerns . 18
2.2.1 Programming-language-centric approaches 19
2.2.2 Plain code . 19

ix

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

Contents

2.2.3 Markup in code . 20
2.2.4 Component libraries . 21
2.2.5 Markup-centric approaches . 21
2.2.6 Embedded code . 22
2.2.7 Control flow analogies . 23
2.2.8 Page composition . 23
2.2.9 Discussion . 25

2.3 Strategies for control concerns . 25
2.3.1 Static files . 27
2.3.2 Dynamic content . 27
2.3.3 Mixed concerns . 28
2.3.4 Executable templates . 28
2.3.5 Published code . 28
2.3.6 Published objects . 28
2.3.7 Separated concerns . 29
2.3.8 Phased-request . 30
2.3.9 Action-response . 30
2.3.10 Event-listener . 30
2.3.11 Page-flow-centric . 31
2.3.12 Rule-based . 32
2.3.13 FSM-based . 32
2.3.14 Algorithmic approaches . 33
2.3.15 AJAX . 34
2.3.16 Discussion . 35
2.3.17 Notes on implementation . 36

2.4 Summary . 37

3 Harel 39
3.1 UML statechart diagrams . 39

3.1.1 Basic model . 40
3.1.2 Events, guards and actions . 41
3.1.3 Further details . 43

3.2 REST . 43
3.2.1 Basic model . 44
3.2.2 REST constraints (or architectural decisions) 44
3.2.3 Notes relating to web applications 46

3.3 Harel specified . 47
3.3.1 Abstract syntax and semantics . 48

3.3.1.1 Basic model . 49
3.3.1.2 Notes . 52
3.3.1.3 Extending the basic model 53

3.3.2 Comparison with UML statechart diagrams 55
3.3.3 A concrete syntax based on UML 57
3.3.4 Example . 60

x

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

Contents

3.4 Summary . 62

4 The design and implementation of a web framework for Harel 63
4.1 Overview of related standards . 63

4.1.1 Resource identifiers . 63
4.1.1.1 URL basics . 64
4.1.1.2 Relative and absolute URI 66

4.1.2 HTTP . 67
4.1.2.1 Background . 67
4.1.2.2 Overview . 68

4.1.3 State management in HTTP . 70
4.1.4 Authentication and security . 71

4.2 Current and recommended practices . 72
4.2.1 Session state . 73
4.2.2 Authentication and security . 75
4.2.3 The PRG pattern . 76
4.2.4 Dealing with optional extensions to the standards 77

4.3 A framework for Harel . 77
4.3.1 Components and the scope of the discussion 79
4.3.2 Core framework . 79

4.3.2.1 State of the UI . 79
4.3.2.2 The interpretation of requests 80
4.3.2.3 Representing and indexing the Harel model 80
4.3.2.4 Instances of locations and the call stack 83
4.3.2.5 Extension module framework 83
4.3.2.6 The request cycle and exceptions 84
4.3.2.7 Detail attributes and their inheritance 86

4.3.3 Options . 87
4.3.4 Page renderer . 88
4.3.5 Session tracker . 89
4.3.6 Authentication . 90
4.3.7 Back-end integration . 92
4.3.8 Other possibilities . 94

4.4 Configuration vs specification . 95
4.5 Deployment . 96
4.6 Summary . 98

5 Discussion and conclusion 99
5.1 Related work . 99

5.1.1 ArgoUWE and related approaches 99
5.1.2 OOHDM . 100
5.1.3 HySCharts and HMBS . 101
5.1.4 StateWebCharts . 101
5.1.5 Leung et al. [2000] . 102

xi

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

Contents

5.1.6 Gorshkova and Novikov [2004] . 102
5.1.7 Models for form-oriented analysis 103

5.2 Discussion . 104
5.3 Future work . 107
5.4 Conclusion . 108

Glossary 111

Abbreviations and acronyms 115

Surveyed frameworks and related projects 119

Bibliography 125

xii

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

List of Figures

2.1 A taxonomy of strategies for presentation concerns 19
2.2 An alternative arrangement . 26
2.3 A taxonomy of strategies for control concerns 27

3.1 A simple statechart for a traffic light . 41
3.2 Traffic light example with hidden decomposition of the composite state . . . 42
3.3 A state with internal transitions . 42
3.4 Harel abstract syntax . 48
3.5 A SimpleLocation . 58
3.6 A CompositeLocation . 59
3.7 A ReferredLocation . 60
3.8 Duke’s Bookstore—top level CompositeLocation 61
3.9 Duke’s Bookstore—the “checkout” CompositeLocation 62

4.1 A containment hierarchy . 81
4.2 A more complicated containment graph . 82

xiii

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

1 Introduction

1.1 Background

The web was conceived as a hyper linked network of information which is embedded in

documents using a simple document format that is easily editable and viewable on many

different platforms [Berners-Lee, 1996].

Since then, the web has enjoyed overwhelming success and plays host to many unan-

ticipated uses (and, it could be argued, abuses). The basic architecture supporting this

massively distributed system has matured with experience, guided by the Internet Engineer-

ing Task Force (IETF) and the World Wide Web Consortium (W3C). This architecture is

enabled by three primary standards: Hypertext Transfer Protocol (HTTP), Uniform Resource

Identifier (URI), and Hypertext Markup Language (HTML)1.

Some uses of the web require more than what is provided by traditional web standards.

Indeed, for many, the web has merely become the presentation tier of a multi-tiered con-

glomerate of systems [Ginige and Murugesan, 2001].

These applications are opportunistic attempts to exploit the large, standardised installed

base of the web in our heterogeneous world for the purpose of delivering the UI of a system

to a wide audience.

The specification of such “web applications” is core to this study. Two subsections now

follow. One deals with web applications and the other with web frameworks. Web frameworks

are executable architectural frameworks for implementing web applications—thus closely re-

lated to the structure and requirements of a web application.

1.1.1 Web applications

The term “web application” is now widely used to to distinguish a certain type of web site.

Several definitions exist—in this study a web application is taken to be a possibly complex

1The latter is increasingly being replaced by the newer Extensible Markup Language (XML) and Extended
Hypertext Markup Language (XHTML).

1

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

1 Introduction

server application that utilises web technology in order to deliver its user interface. (See

Conallen [1999] for an example of another definition.)

The end-to-end technical architecture of a web application needs to take into account a

fairly impressive range of problems (some of which are catered for by the web standards).

To name a few: since a web application is run in a hostile environment, it typically needs

security—both for the server and its clients. Often scalability is of importance, since the

potential audience is vast. Of course, the UI should be of acceptable quality and flexibility.

Even in the most degenerate case a web application is a concurrent, distributed application,

which, to make matters worse, depends on a completely stateless protocol (HTTP). Typically,

web applications need to be integrated seamlessly with several back-end systems (or at least

present a seemingly integrated front to them). Often database transactions and security

realms need to span several such system boundaries.

While solutions for each one of these problems exist, the particular implementation of

chosen solutions impact one another. Solving them simultaneously, elegantly, and in this

particular context, would not seem to be a simple task at all.

1.1.2 Web frameworks

Web standards have to cater for a wide variety of uses. Thus, from the point of view of

the web application architect, web standards standardise the specification of a least common

denominator of generic functionality that can be used as a platform for implementing a web

application.

To take this view of the standards is to have an agenda that fundamentally differs from

the original agenda followed by the authors of the web standards.

This dissertation is motivated by the perception that, owing to the complexity of web

applications, programmers need a combination of specification techniques and specialised

architectural building blocks geared for building web applications. (The next paragraph

presents some informal evidence for this perception.) These specification techniques need

somehow to be mapped down to the common denominator represented by the web standards.

In other words, execution environments need to be implemented that can present UIs as per

such specifications.

Ideas and arguments regarding these topics (architectural building blocks, specification

techniques and their implementation) abound in the form of thousands of programming

libraries for web development (colloquially known as web frameworks), informal blogs, news

groups and other unmoderated web-based discussion forums.

This proliferation of discussions and solutions is taken by some to be an indication that

2

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

the problem (of finding the right abstractions with which to design web applications) is not

satisfactorily solved in practice. It may also be that the problem just has a great number

of variable parts—strung together in different ways, depending on the context. (It is valid

to want the flexibility of utilising several small projects representing partial solutions of the

problem and use them together to solve a complete problem.)

Whatever the case may be, there does not appear to be a clear overview in the literature

of what is happening in this space. It would seem that the current development of the field

happens mostly as a process of evolution in the world of technical discussion forums and

projects.

The most tangible (and tested) form of ideas in this field is probably the architectural

frameworks that comprise higher level architectural constructs with which programmers can

specify an executable web application UI: web frameworks.

The next section briefly diverges from the main focus in order to define a closely related

alternative to web applications (which will be referred to later).

1.2 An alternative

Developing a traditional Graphical User Interface (GUI) application (as opposed to a web-

based application) that has to be installed on a number of client machines is cumbersome.

Applications depend on other applications and libraries—installing an application properly

requires that all its dependencies should be installed (at the correct versions) and configured

correctly. Managing all the different distributed versions of such an application is a major job.

If such an application is to run on many different operating system platforms, the problem

tends to grow significantly more difficult.

To a large extent, the popularity of web applications has been advanced by difficulties

associated with such traditional applications. Web applications adhere to standards that are

implemented on many platforms. They also run on a server—there is no need to install them

on clients—and upgrading a web application also happens once on the server, instead of at

each installed client location.

On the other hand, web applications cannot provide the rich UI experience users have

come to expect from traditional GUI applications. To overcome this barrier, another type of

application has been evolving: the Rich Internet Application (RIA). An RIA is an application

that runs on the client in a special environment. Users are required to access a web server

once, from which the RIA will be downloaded automatically and executed (often in a browser

or browser plugin). There is no need to install it (in the usual sense), or even to be connected

3

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

1 Introduction

constantly to its server of origin.

Prominent experiments in this direction include the MacroMedia Flash products, and Java

Network Launching Protocol, also known as Java Web Start (JNLP).

1.3 Topics of particular interest

Before proceeding to outline this dissertation, it would be appropriate to briefly introduce a

few topics that have an important contextual bearing on this work: namely the notions of

Representational State Transfer (REST), Model-View-Controller (MVC) and page flow.

1.3.1 REST

There is a tension between what implementors of web applications need and what the rest

of the web community is willing to allow the web standards to provide.

Web frameworks provide a high-level way in which to specify a web-based UI. They also

provide facilities for executing such a specification. Web frameworks often evolve informally

and seemingly without reference to academic literature.

The result is that this tension seems not to be consciously addressed and that web frame-

works often violate the architectural constraints specifically intended for the web standards

without taking the original intention of these standards into account. The result of this is

that web application frameworks often attempt abstractions that are complex to implement

using standard functionality and are difficult to scale.

However, this present research is inspired by the instinct that, in following one’s agenda,

to maximize synergy one ought to have the disposition of a guest who plays by the rules of

the host. If one pressurises to change or add to those rules, then it is important—if only as

a matter of courtesy—to understand them and to understand the reasoning behind them.

Web applications, representing a large portion of the web, do indeed exert such pressure

on the web standards.

In Fielding [2000], an account is given of the motivation governing the web standards and

their evolution. The “architecture of the web” is presented in the form of an architectural

style called REST. REST defines some architectural components on a high level, listing and

motivating the constraints they embody. (An overview of REST concepts is given in more

detail in Section 3.2.) These constraints (like the stateless nature of the HTTP protocol)

are often seen by web application implementors as limitations of HTTP for which they need

to provide workarounds [Fraternali, 1999, Belapurkar, 2004], instead of acknowledging them

4

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

as intended constraints and building on the intention motivating these constraints.

REST is important and prominent: formulating it grew out of the experience and lessons

learnt during the process of extending the web standards over a period of several years

[Fielding, 2000, p66, p74]. Also, according to Fielding, (one of the principal authors of

the HTTP standard), REST is used to guide the design of ongoing improvements of the

standards governing the modern web architecture.

The current web standards can be seen as an implementation of a REST architecture.

These standards dictate the rules that enable the heterogeneous mix of web browsers, web

servers and many intermediate components to all work together and present the web as we

know it.

This work is a balancing act: an attempt to cater for web application needs while striving

to adhere to the (often conflicting) intention put forward in the form of REST.

1.3.2 The MVC design pattern

The MVC architectural design pattern is mentioned throughout this dissertation. For a reader

who is unfamiliar with it, a brief overview follows.

MVC is an old architectural design pattern used for structuring an interactive program

[Gamma et al., 1995]. It is based upon the principle of separation of concerns. MVC

enumerates three distinct concerns in a UI intensive application: that of the model, the view,

and the controller. The model refers to the domain model embodied in a program. The

view refers to how this model can be presented to a user. The controller is concerned with

keeping the model and view(s) synchronised by relaying events and data between them, while

keeping them decoupled.

A model is kept independent of the possible views of it. There may be several different

views on the same model. Should an event occur in the model, the controller will update every

view to reflect the change; similarly, events generated by the user via a view are translated

into actions on the model.

In traditional GUI programs, quite complex interactions are possible between a domain

model and the views presented of it. The environment within which web-based applications

are deployed is more restrictive: web servers typically do not initiate updating what is being

displayed by web browsers—all events are initiated by the browser by sending HTTP requests

to the server. Hence, controller concerns are somewhat simplified to translating events into

actions on the model and deciding what view to display after an event occurred. (See Struts,

5

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

1 Introduction

for example2.

1.3.3 Page flow

In Chapter 2 an overview is given of a survey of web frameworks. Most of these recognise

that a web application is more than a dynamically generated web site—it presents a view on

a domain model and has to respond to dynamic UI events by interacting with this domain

model. Many frameworks attempt to separate these three different concerns along the lines

of the MVC design pattern.

However, most of them still focus on the problem of how a particular response is gener-

ated to an incoming HTTP request for a single page—a narrow focus for an architectural

framework which aims to specify and run a complete UI for a web application. In most of the

projects surveyed, a programmer cannot take a wider view and clearly specify the relationship

between different pages in a web site—the possible paths a user could use to traverse them.

Pages are linked to each other by HTML links or buttons (or similarly scoped mechanisms)

which are embedded into the specification of presentation of each individual, dynamically

generated page. The resulting structure between pages is difficult to visualise and often

quite chaotic.

Page flow is a colloquial term describing this relationship between the pages of a web site.

Page flow is analogous to control flow in programming languages.

Indeed, from the perspective of this study, the low-level page flow tools (buttons and links)

can be likened to the goto statement in programming languages: the Uniform Resource

Locator (URL) of a page is really its address. An HTML link on another page to this address

is to page flow what a goto statement is to control flow [Dijkstra, 1968]. In fact, it could be

judged as being slightly worse, since the concern of specifying dynamic behaviour is dispersed

between and embedded within the specification of several different web pages involved (the

presentation).

A higher-level construct seems to be needed to specify the page flow of a web application.

Few attempts at such specifications have been made by framework implementors, and only

recently (see Section 2.3.11).

Page flow is a colloquial term. Closely related to it is the concept of the navigational

model of a web application, which is widely discussed in the literature. (See, for example,

Winckler and Palanque [2003].)

Here, as with REST, web frameworks typically appear ignorant of formal literature.

2Note that this style of reference is used throughout the text for referring to framework projects which form
part of a survey (introduced later). Such surveyed projects are listed by name in a separate bibliography.

6

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

1.4 Overview and scope

This study focuses on the development of web applications.

The more ambitious RIAs have been mentioned, since these represent an honest and direct

attempt at an architecture promoting the real agenda underlying many web applications.

Although the RIA is an interesting topic in its own right, it is outside the scope of this study.

The primary interest of this study is to investigate ways of complying with the demands and

intention of web standards3, and yet still allow web application implementors to follow their

own more specialised agendas.

In the course of this dissertation, an overview will be given of how web applications can

be specified and how such a specification can be executed in a standards compliant, REST-

friendly way. This is done by focussing on web frameworks: what is required of them and

their strategies for providing solutions.

As input, a sample of 80 open source web frameworks were studied. The Java 2, Enterprise

Edition� (J2EE) family of specifications was also referenced extensively, since these represent

the thoughts of a fairly large and main-stream community of programmers, vendors and

thinkers in this arena—boosted by the financial benefits of being main stream and developed

according to a process involving public scrutiny [Sun Microsystems, 1005-2005].

Chapter 2 proposes a list of the perceived requirements for web frameworks, followed by

two taxonomies: one for strategies regarding the specification of presentation concerns, and

one for strategies concerning the specification of controller concerns (along the lines of the

MVC design pattern).

Program specifications depend heavily on two cornerstones: the higher-level control flow

specification methods introduced by structured programming and procedural abstraction

[Dahl et al., 1972].

In Chapter 3 a page-flow-centric specification technique is proposed for web-delivered

user interfaces based on these same programming principles, where semantics is related to

the intention of the web architecture as presented by REST. Instead of using the usual

control flow constructs of structured programming, a graphical notation is presented, based

on statecharts [Harel, 1987] as standardised by Unified Modelling Language (UML) [OMG,

2003]. A graphical notation may appeal to a larger audience when it comes to UI design.

The design of an implementation of this specification technique is described in Chapter 4,

touching on several implementation-related issues4—the intention being for it to serve as an

3The term “web standards” is used here to loosely refer to the main standards enabling the web as discussed
in Section 1.1.

4By “an implementation of this specification”, we mean a web framework that can execute the specification.

7

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

1 Introduction

example which demonstrates the general implementation issues, still with reference to the

intention presented by REST.

In Chapter 5 some related notations are discussed and a critical evaluation and conclusion

are presented.

The reader is also made aware of the short glossary provided (Page 111) in which terms

are defined which may be used with specific semantics in the context of this dissertation, or

terms which are used in the text assuming reader familiarity.

1.5 Related work in brief

Web frameworks are architectural frameworks which provide an execution environment for

web applications (often only for the UIs of such applications). Implicitly, these frameworks

also dictate certain low-level specification methods for the UI of a web application. The

topic of web frameworks is not well represented in the academic literature. (Examples

of where frameworks are mentioned or of papers aimed at the same level of abstraction

as web frameworks are Copeland et al. [2000], Chao et al. [2003], Hassan and Holt [2003],

Draheim and Weber [2005].). In contrast, topics related to the modelling of web applications

abound. Some of the more relevant categories are briefly exemplified below. (A more

detailed discussion of related work can be found at relevant locations during the course of

the dissertation and in Section 5.1.)

Reverse-engineering of web applications

Reverse engineering is a disciplined method of inferring the design models of the inner work-

ings of an artifact. Legacy software systems are often reverse-engineered in order to facilitate

their maintenance and further development. The same applies to web applications. Reverse-

engineering of web applications and web sites is interesting in the context of this study,

because it yields modelling techniques that are useful for visualising and modelling web ap-

plications. [Kienle and Müller, 2001, Huang, 2001, Lucca et al., 2002]

Web design tools

Some tools are presented with which web sites can be developed [Rode et al., 2004, Hel-

man and Fertalj, 2003, Shimomura, 2005]. Many of these are aimed at empowering non-

programmers to develop web sites. From such tool-based specifications, web sites are

generated. (The target of such generation is a specification in terms of an existing web

framework—such as JavaServer Pages� (JSP), Struts or Active Server Pages (ASP)—which

This is explained in more detail in Chapter 4.

8

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

is responsible for executing such a specification). The generation of such lower-level specifi-

cations is discussed for a few tools in Helman and Fertalj [2003].

Model driven development of web applications

Model driven development centers on the concept of building abstract models of a system, and

then generating the real system from the model in a particular implementation environment

[Mellor et al., 2003, Thomas, 2004]. Usually models are constructed on a high level, and then

transformed successively into lower-level models (with increasing detail) until a representation

is reached which can be executed. Model driven development is thus usually very tied to

an overall development process which covers a spectrum from requirements analysis up to

implementation.

Since the problems associated with web application development are seen as being related

to development process, many approaches are proposed for the model driven (or similar)

development of web applications and web sites [Ginige and Murugesan, 2001, Ceri et al.,

2000, Knapp et al., 2003, Güell et al., 2000, Winckler and Palanque, 2003, Schranz et al.,

2000, Koch and Kraus, 2002]. Again, these approaches are relevant to the present study

because of the specification techniques they employ.

1.6 This study contextualised

This study proposes a specification technique for web-based UIs, and a web framework which

renders such a specification directly executable. As such, this study attempts to bridge the

gap between the executable specifications of web application UIs (as expected by frameworks)

and the higher-level models used in, for example, model driven web application development.

An attempt is made to bring the thoughts and parlance of web framework authors into the

body of academic literature.

In Chapter 2, detailed taxonomies are proposed of the specification techniques supported

by existing web frameworks. A broad categorisation of tools for web development is given

in Fraternali [1999] and a small number of tools are surveyed in detail in Copeland et al.

[2000]. However, no detailed overview was found in the literature specifically regarding web

frameworks.

The specification technique proposed in Chapter 3 is heavily based on statecharts [Harel,

1987]. Statecharts are mentioned by several authors in relation to specifying user interfaces

[Horrocks, 1998], hypertext, and the navigational model of web sites and web applications

[Zheng and Pong, 1992, Sauter et al., 2005, Leung et al., 2000, Gorshkova and Novikov,

2004, Winckler and Palanque, 2003, Turine et al., 1999, Winckler et al., 2001]. Navigational

9

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

1 Introduction

models of web applications are very closely related to the MVC controller concerns in web

framework parlance, as well as the concept of page flow (Section 1.3.3) which is frequently

mentioned on informal forums in relation to web frameworks.

On a high level, the specification technique proposed in this dissertation differs from other

approaches in the literature in the following ways:

� The proposed specification technique uses a subset of statechart notation and seman-

tics, whereas most others extend the semantics and notation of UML. (This is true

for notations based on statechart diagrams and those based on class diagrams.) [Koch

and Kraus, 2002, Conallen, 1999, Turine et al., 1999, Winckler and Palanque, 2003]

� The proposed specification technique constrains the end result of what can be specified.

Many other approaches are more complicated, since they attempt to be able to model

everything that can be built with low-level web technology (Leung et al. [2000], for

example). The aim in this study is not to be able to model everything one could build,

but to be able to model a UI and be able to implement it using a subset of the building

blocks available.

� The proposed specification technique is meant to be directly executable by the frame-

work implementing it, without the need for generating a lower-level specification (re-

quired by all other approaches in the literature)—thus raising the level of abstraction

at which the framework operates5.

� The focus in this study is very specifically on the UIs of web applications, with the effect

that the specification technique need not cater for the more generic needs of general

web sites or hypertext systems, nor need it model other aspects of web applications

(such as the conceptual model, for example—Gómez et al. [2000]).

� Perhaps most importantly, the proposed specification is carefully mapped to (and con-

strained by) the architectural style of the web (REST) as presented in Fielding [2000].

To our knowledge this mapping is not done anywhere in the informal forums of web

frameworks, nor in the literature. In fact, sometimes the constraints of REST are

seen by authors as limitations of the HTTP protocol which need to be addressed (for

example Fraternali [1999, p239 and footnote 3]).

Perhaps most relevant to this study is the work done by web framework implementors.

However, this work is not well represented in the literature. Chapter 2 is an attempt to

5Some models in the literature are executable, but such executability is the seen only as useful for
prototyping—see, for example, Draheim and Weber [2005].

10

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

provide an overview of this informal domain, providing a context for the notation presented

in Chapter 3 and the design discussions of a framework in Chapter 4.

1.7 Summary

In this chapter the notions of a web application and a web framework are introduced (Sec-

tion 1.1). Background to the present study is also given regarding three notable topics which

influence the bias of this study in important ways: REST, MVC, and page flow (Section 1.3).

The dissertation is outlined and its scope is motivated in Section 1.4 (partly against the

background of an example alternative to web applications introduced in Section 1.2).

The chapter is concluded with a high-level overview of related work in the literature and

a contextualisation of the present study in terms of the work in the literature (Sections 1.5

and 1.6).

Chapter 2 gives an overview of the domain of web frameworks.

11

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

2 Web framework overview

A web framework is an architectural framework which provides an execution environment

for web applications or the UIs of web applications. Each framework offers its user some or

other specification mechanism so that the framework can present an application UI, once the

framework has been provided with a specification of the required application UI. Different

frameworks allow different strategies for specifying a UI1.

In this chapter, an overview is given of the thinking of web framework designers, as reflected

in their products. The overview is based on a survey of some 80 web frameworks (listed in

a separate bibliography at the end of this dissertation2). These frameworks are typically

expected to provide support for certain implementation-level functionalities—seen here as

what is required by a web application of a web application framework.

Section 2.1 enumerates the requirements typically expected of web frameworks.

Sections 2.2 and 2.3 address the strategies employed by web frameworks for specifying an

application’s UI. Categorised according to the MVC pattern, such strategies are needed for

two aspects of a UI: the view concerns (discussed in Section 2.2), and the control concerns

(discussed in Section 2.3).

Although many frameworks include support related to model concerns, these are excluded.

Strategies relating to model concerns tend towards solutions for the problems of transpar-

ently persisting data or providing mappings between programming language objects and the

relational databases in which they are sometimes stored. (One example is the Enterprise Java

Beans� (EJB) specification—DeMichiel [2003].) This is quite a large field in its own right

and peripheral to the focus of this study, hence the exclusion. View and controller concerns,

in contrast, are cornerstones in the design of a UI.

1Note that during the course of this dissertation references may be made to “the implementation of a
specification technique”. This usage is shorthand for: the implementation of a framework which can
present a UI specified using the said specification technique.

2In order to avoid confusion with the main bibliography of this dissertation, these frameworks are not cited
in the usual way. The names of these projects are merely used in the text and indicated with a telling
font as in the example: “the Smile framework”.

13

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

2 Web framework overview

2.1 Requirements

Although no comprehensive list of functional requirements has been found in the literature,

the following list has been gleaned from the survey of 80 frameworks. Some of the require-

ments will be seen to be more fundamental to the problem of designing web applications than

others. Their individual implementations tend to influence each another—the fundamental

model used by a web framework is often dictated by its combined solution to all of these.

2.1.1 Presentation

Presentation is perhaps the simplest and best understood functional requirement for which a

web framework should provide. It is the first requirement recognised—early web frameworks

focussed exclusively on presentation.

“Presentation” entails everything a web application needs to do in order to render its user

interface in a client’s browser, using HTML or a similar markup language. Typically, in order

to facilitate re-use, each page is not merely seen as a web page—it is viewed rather as a

window in a GUI, composed of different UI components. The difference between the UI

components in a web page and those used in a GUI is that the latter are usually available

as re-usable programming language components with behaviour linked to their presentation;

the former are mere low-level representations. The low-level representations on a web page

not only lack behaviour, but more complicated compositions of them cannot be made for

re-use.

2.1.2 Forms handling

User input on the web takes place through HTML forms that are submitted to the web server

by a browser. Forms are submitted to a particular URL on a web server, as an HTTP request.

“Forms handling” is a term often used to describe various tools which a programmer can use

to deal with forms—and especially to deal with the user input that has been received as part

of submitted forms.

For example: when user input is received via an HTTP request, it comes in the form of

named text strings. These can be marshalled to more useful typed programming language

objects. Errors can occur during this process which need to be reported to the end user.

Forms can also be submitted as a result of different buttons being clicked on the form. As

part of forms handling, a program needs to determine which button caused the submission

and needs to take appropriate action, depending on that information.

14

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

A web framework should provide tools to help a programmer deal with forms handling

tasks.

2.1.3 Validation

Validation is also related to user input and is often seen as part of forms handling. Validation

usually refers to checking user input against some constraints (a number may be required to

be within a certain range, or a string representing an email address can be required to match

a regular expression). However, validation might also be dependent on more sophisticated

domain knowledge which might have to be checked in a back-end system on another tier in

a multi-tier architecture (where domain-specific knowledge typically resides).

Provision needs to be made in a web framework for a programmer to easily specify what

validations need to be checked, how validation errors will be reported to the user, and what

influence such errors will have on the dynamic behaviour of the presented UI.

2.1.4 Event handling

Frameworks also need to react in response to events signalled from the browser (or the user).

An incoming request from a browser signifies that the user has triggered an event of

some kind—either by submitting a form, or by having clicked on a link. Such a request can

be interpreted in many ways. For example, it can be seen as notification that a UI event

occurred, or a batch of UI events can be derived from it. The design of a web framework

determines what constitutes an event, how events are triggered, how events relate to HTTP

requests, and how custom program code will be invoked in response to events.

Sometimes a request is simply mapped to a method call, for example. Other frameworks

have more complicated programming models for dealing with events.

2.1.5 Page flow

Page flow is of particular importance to this work and has been introduced in Section 1.3.3.

In summary: page flow is a description of the possible ways in which a user can traverse the

different logical locations (web pages) in a web based UI. It is to locations (or pages) in a

web UI what control flow is to statements in a programming language.

The implementation of page flow has implications for the client browser: typically, a

browser is based on the premise that a URL denotes such a location on a web site. The

browser adds functionality, such as the ability to bookmark a location and to go backwards

15

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

2 Web framework overview

and forwards along the path traversed by the user, based on the identification of locations

with URLs.

Frameworks should provide a means by which page flow can easily be specified.

2.1.6 Session state

HTTP is a stateless protocol. It provides little support for relating a particular request to

others in a lengthy conversation. Web applications, though, need some way of relating all the

requests from a particular user during a user session in order to be able to store information

between requests for a single user session. The information stored in the scope of a user

session is referred to as “session state”.

Session state is used, for example, when a user has provided input for several input items

on a form, has submitted the form and then expects that her input will subsequently still to

be shown on the form, even in the event of a validation error requesting her to change some

of the information. Such an interaction may span several requests to the web server. The

information supplied at the beginning in the submission of the form is needed to render, for

example, a half-completed form later on (possibly with an error message added).

Note that holding session state on the server is in direct conflict with REST.

2.1.7 Authentication

Authentication is related to session state. Web applications often need users to authenticate

themselves, for example, by means of a user name and password. Once authenticated, the

web application can modify its UI based on who the user is. Authentication, though, is

something that most web application designers prefer to happen only once during a user

session—to be stored by the application for the duration of the session. (The storing of such

information again relates to storing session state which may be in direct conflict with REST,

depending on how it is implemented.)

Of course, authentication needs to be implemented in a secure way—and in this case,

neither the client nor the transport mechanism can necessarily be trusted.

The HTTP protocol provides more than one authentication mechanism, which can be fur-

ther augmented with the use of HTTP over Secure Socket Layer (SSL). However, the problem

is exacerbated by the fact that many web browsers implement the standard incorrectly—

leading to complexities for a web server that has to cater for all browsers. (This is discussed

further in Sections 4.1.4, 4.2.2.)

16

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

2.1.8 Concurrency

Web-based applications are, almost by their very nature, accessed concurrently by several

users. Since servicing a single request may take a long time, a way is needed to service

requests in parallel. This can be done by maintaining a pool of processes, or a pool of

threads in a single process, or even a pool of machines with pools of processes on them.

Some servers also have an asynchronous model—they kick off processing (typically on a

back-end system) for each request as it is received, without blocking to wait for the processing

(which is often Input/Output (IO) intensive) to complete. The system can then alternatively

poll for results from such processing (and quickly send a response) or start more processing

for incoming requests (see Rushing [none], for example).

The particular concurrency model chosen has quite an impact on how many other require-

ments can be implemented. A näıve implementation of session state, for example, could keep

some information for a user in memory. But, generally, memory cannot be shared between

processes or machines, posing a problem in circumstances where subsequent requests from

the same user could be routed to another machine, or another process.

When using multi-threaded approaches, care needs to be taken that the programs and

libraries involved are all thread-safe.

2.1.9 Back-end integration

Usually, web applications are built using a multi-tier architecture, with their presentation tier

being web based. Web frameworks are concerned with such web-based presentation tiers.

In a degenerate case, this web tier would need some way of accessing a local database.

More often, it would need access to a remote database or application server. Such “back-end

systems” often need to be accessed within the boundaries of a single database transaction

or security realm.

A web framework should provide abstractions for a programmer that automatically deal

with these low-level technical concerns in a sensible way. Apart from the fact that web

programmers do not want to have to think about such low-level, complex, technical issues,

most UI programmers are not well versed in such matters.

2.1.10 Resource usage

A common thread running through many implementation discussions for web frameworks has

to do with the economical use of resources. Several scarce or expensive resources are used

17

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

2 Web framework overview

by web applications or web frameworks. Frameworks have to take care to use resources such

as the following in ways that remain performance efficient when scale-up occurs:

File descriptors are in limited supply on a machine, and web serving software uses them

for writing to log files, in writing to temporary files for persisting session state, and the

like.

Sockets (or ports) are also limited on each machine—limiting the number of network con-

nections that can be maintained at one time.

Connections to databases or other back-end systems are often only allowed in a limited

number, and creating a connection typically involves a performance overheads too

large to incur on every HTTP request. Thus, connections to back-end systems might

not be created for each request. Instead, a pool of connections is usually maintained

so that the total number of connections is centrally managed, and an already created

connection can quickly be allocated to the servicing of one request.

Memory cannot remain allocated to each particular user for the duration of her session,

given the number of concurrent users that has to be serviced.

Processes (and, to a lesser degree, threads) involve overheads to create and destroy. Thus,

they also are typically created in advance in a pool from which existing processes or

threads can be allocated to requests.

2.1.11 Miscellaneous

Miscellaneous requirements may be added to the important set explained thus far. For

example, web applications often need special support to enable them to be presented in

different languages, to work with different locales, or to use different character encodings

used for web pages [Spolsky, 2003, Dürst, 2005].

2.2 Strategies for view concerns

A taxonomy of strategies employed for handling presentation concerns of web frameworks is

proposed in Figure 2.1. The discussion of the taxonomy is structured as an ordered traversal

of the nodes in the taxonomy tree, with a description of each node provided—roughly ranked

in order of complexity or sophistication.

18

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

The basic problem is how web serving software can generate a response which a web browser

can display as part of the UI of an application. In practice today, this means generating a

textual document in a markup language such as HTML, XHTML or XML3. (We often loosely

talk of HTML for brevity where another markup language can be substituted which browsers

are able to display.)

presentation strategies

programming-language-centric

plain code
component libraries

markup-centric

markup in code

embedded code

control flow analogies

page composition

Figure 2.1: A taxonomy of strategies for presentation concerns

2.2.1 Programming-language-centric approaches

Programming-language-centric approaches to generating markup all consist of specifying a

program in a general-purpose programming language which generates the markup file.

Sections 2.2.2, 2.2.3, and 2.2.4 describe further specialisations of this category.

2.2.2 Plain code

The “plain code” strategy is the very simplest of all strategies for generating markup. Code

is invoked that either writes the markup as text to a file, or just returns it in a string. This

is the strategy used by Java Servlets� [Coward and Yoshida, 2003].

The Python [Python Software Foundation, 2005] programming language function provided

below illustrates the point:

3The interested reader is referred to Raggett et al. [1999], Yergeau et al. [2004], W3C HTML Working
Group [2002] in connection with the details of these standards.

19

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

2 Web framework overview

1 def foo():

2 print ’<body>’

3 for word in [’these’, ’are’, ’words’]:

4 print ’<p>Word: %s</p>’ % word

5

6 print ’</body>’

Note that the “print” statement in Python writes to standard output4. The function could

also have written to a different file, or have returned a string value.

2.2.3 Markup in code

Some systems augment a programming language with special semantics that enable one to

embed markup in the programming language. This can best be explained by an example.

Quixote is an extension to the Python programming language. An example of a Quixote

function can be seen in the following code excerpt (which returns the body of an HTML

document:

1 def foo [plain] ():

2 ’<body>’

3 for word in [’these’, ’words’]:

4 ’<p>Word: %s</p>’ % word

5

6 ’</body>’

A Quixote function always returns a string (even though no return value is explicitly

specified). This return value is automatically computed as follows: at first the string is

empty, but as each statement in the function is executed, its individual return value is

converted to a string and appended to the return value of the function. Quixote is helped

here by the fact that literal values in Python can be used as statements (with no side effects,

but themselves as return value). Return values of None are ignored5.

Hence, text can be embedded in a programming language with the programming language

used to govern the final text that will be returned. The example above will yield:

4Standard output is often used by scripts for returning output to a browser.
5In Python, a return value of None denotes a void return value.

20

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

1 ’<body><p>Word: these</p><p>Word: words</p></body>’

2.2.4 Component libraries

Some frameworks include a library of UI programming language classes similar to GUI frame-

work libraries. With these, a web page can be composed using the programming language

objects. Such a composition can then be rendered as markup.

As an example, here is a Java method returning a window (or page), using the Echo

framework. (The example is a stripped-down adaptation of their own “hello world” example.)

1 public Window init() {
2

3 Window window = new Window();

4

5 ContentPane content = new ContentPane();

6 window.setContent(content);

7

8 Label label = new Label("Hello, World!");

9 content.add(label);

10

11 return window;

12 }

2.2.5 Markup-centric approaches

Markup-centric approaches represent a broad category of strategies comprising a syntax with

which a template for an HTML document can be specified. Such a template can then be

rendered (or executed) to yield different actual markup documents depending on the context

and parameters with which the template was executed.

This category is further refined and exemplified by strategies in Sections 2.2.6, 2.2.7, and

2.2.8.

21

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

2 Web framework overview

2.2.6 Embedded code

As far as templates go, a template with embedded code is probably the simplest model to

understand. A special syntax is introduced with which programming language code can be

embedded in an otherwise normal HTML document. Early JSP is an example [Roth and

Pelegŕı-Lopart, 2003]6:

1 <body>

2 <% String[] words = "these", "are", "words";

3 for (int i = 0; i < words.length(); i+=1) {
4 %>

5 <p>Word: <% words[i] %></p>

6 <% } %>

7 </body>

Here, the brackets “<%” and “%>” are used to delimit Java code. Note that logically,

line 5 is in the body of the for loop started in line 3. The semantics is that a copy of line 5

would be included in the output for each iteration of the for loop, yielding:

1 <body>

2 <p>Word: these</p>

3 <p>Word: are</p>

4 <p>Word: words</p>

5 </body>

Some of these template languages employ the same semantics, but use their own, more

lightweight syntax. Here is an example of Cheetah:

1 <body>

2 #for $word in $wordList

3 <p>Word: $word</p>

4 #end for

5 </body>

6Note that specifications from the J2EE family are cited in this overview as if they were frameworks (notably,
JSP and JSF). Many implementations of these specifications are available, but citing the specifications
is preferred because of the prominent role of these specifications and because the strategies used by
individual implementations do not differ from the specifications.

22

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

2.2.7 Control flow analogies

Some markup-centric approaches are attempts to introduce the same semantics expressed

using the embedded code approaches (Section 2.2.6), but in a way (from the point of view

of the target markup language) that is less intrusive than embedding the code.

They extend the markup language’s own vocabulary with additional control flow state-

ments. The semantics of these statements is the same as those used to control flow in

conventional programming languages: if statements control the conditional inclusion of parts

of the template, and looping statements allow one to include a chunk of the template several

times.

The extension of the markup language is usually done either by introducing added tags to

the markup language, or by adding attributes to existing tags. The motivation behind this

seemingly cumbersome notation is that the source code of the template would then be valid

according to its markup language (usually some form of XML, such as XHTML), and thus be

editable in What You See Is What You Get (WYSIWYG) editors7. JSP restricted to its JSP

Standard Tag Library� (JSTL) is an example [Pierre Delisle, 2002, Roth and Pelegŕı-Lopart,

2003]:

1 <body>

2 <c:foreach var="item" items="wordList">

3 <p>Word: $item</p>

4 </c:foreach>

5 </body>

2.2.8 Page composition

Template languages based on control flow analogies alone (Section 2.2.7) suffer from the

weakness that the low-level control flow constructs used often obscure the intention of the

specification of a complex page. The intention is most often to compose a page from several

UI components analogous to widgets in GUIs.

Current page composition approaches also extend the vocabulary of a markup language by

adding to its tags or attributes. However, the aim is not to (only) introduce constructs on

7It should be noted that WYSIWYG editors will not display the page resulting from executing the template
being edited. They can only show the logical structure of the source code of the template itself (which
also happens to be valid XHTML). To get around this problem, some template languages are designed so
that their source looks like an example of what may be rendered, given some execution of the template.
This goal can of course not be wholly attained, since a template, by nature, does not evaluate to a static
document.

23

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

2 Web framework overview

a control flow level, but rather to allow a programmer to compose a page from a standard

(often extensible) set of UI components. These languages also retain the more basic control

flow level constructs, but their use is much rarer and the resulting template is more readable.

JSP serves as an example, but this time using the newer tag libraries provided by JavaServer

Faces� (JSF) [Roth and Pelegŕı-Lopart, 2003, Pierre Delisle, 2002]:

1 <%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

2 <%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

3

4 <html>

5 <head><title>Example</title></head>

6 <body>

7 <f:view>

8 <h:form id=’exampleForm’>

9 <h:inputText

10 id=’message’

11 value=’#MessageBean.message’/>

12 <h:commandButton

13 id=’changeMessage’

14 action=’success’

15 value=’Change’>

16 </h:form>

17 </f:view>

18 </body>

19 </html>

Lines 1 and 2 merely state that certain libraries of XML tags will be used further on in the

file (prefixed with “h” and “f”, respectively). The “f:view” tag contains the specification of

a whole window, composed of a form (“h.form”) which in turn contains a text input box

(“h:inputText”) and a button (“h:commandButton”).

Although the example uses very simple widget components, more advanced components

can be used that encapsulate logic usually coded with conditional and looping logic.

Taxonomies can be used to discover previously unknown strategies. It is interesting to

note that this taxonomy indicates a lack of examples of template languages with the same

basic goal of these page composition variants, but with a syntax that is external to the host

markup language.

24

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

2.2.9 Discussion

Sometimes it is difficult to draw hard and fast boundaries between presentation and other

concerns. For example, one can express how pages will be rendered in a componentised

way, using templates, while also specifying a mirror image of the same components with

programming language counterparts. The template is used to generate pages, but each

component in the template is somehow bound to its programming language counterpart.

This way, events emanating from a rendered component on the template can automatically

be mapped to event handlers on its programming language counterpart.

It is tempting to add another top-level category to the taxonomy called “hybrid models” for

such solutions. But the strategy of duplicating the logical component composition structure

of a display (specified with a template) by means of a programming language in order to be

able to handle events in a structured way, is really a controller issue—hence not applicable

to this taxonomy.

That said, some frameworks use such a programming language mirror for reasons other

than merely handling events—data received from components can be type checked and

converted to native data types, and validation can also be specified—the result is components

that are not only rendered, but that also have server side state and server side behaviour.

(JSF is an example of such a framework—see McClanahan et al. [2004].)

All of the strategies in the taxonomy are really some combination of two main choices:

Intention —the choice of whether the specification uses lower-level control flow-like con-

structs with which to specify templates, or whether it takes the higher-level approach

of composing a page from several (often nested) UI components.

Language —the choice referring to whether the language used to specify the presentation

is based on programming language code, or the target markup language.

The foregoing taxonomy lends the second choice more importance for historical reasons,

but in reality both dimensions are equally important. Without further explanation, and mostly

as an interesting aside, an alternative arrangement is shown in Figure 2.2.

2.3 Strategies for control concerns

Controller concerns deal with routing events between the presentation and the model, keeping

these two in sync, while taking care that the model and its presentation stay decoupled.

Controller concerns are thus core to the specification of the dynamic behaviour of a UI.

25

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

2 Web framework overview

presentation strategies

programming-language-centric

plain code

markup-centric

markup in code

component compositiontemplate generation primitives

embedded code

markup language with added tags or attributes

programming language component library

markup language with component tag library

Figure 2.2: An alternative arrangement

Traditionally, the MVC design pattern (as explained in Section 1.3.2) was especially useful

when a GUI program presented a particular model in several different ways simultaneously. For

example, a model could be specified without its specifications having to include information

regarding the different ways used to present it. Or, once a running presentation of the model

has indicated that it should be kept in synch with a model (via the controller), the display

(or equivalent) of the presentation component can be updated in response to changes in the

model (possibly initiated from other views, or from the model itself).

The client-server nature of a web-based UI is a more restrictive execution environment

than what is available to a normal GUI application.

It is assumed that the display in a web browser will only be updated by the browser polling

the model via the web server. Hence, controller concerns typically boil down to deciding

how to relay events generated in the browser to the model, and how to generate a web page

(presentation) in response. Page-flow-centric approaches (Section 2.3.11) expand the scope

of controller concerns in an important way to include the relationship between pages in a UI.

Figure 2.3 shown a proposed taxonomy of the strategies, used by web frameworks, for

controller concerns. The rest of this section is a discussion of the taxonomy, structured as a

particular traversal of each node.

At the top level, the taxonomy distinguishes four broad categories: static files (Sec-

tion 2.3.1), dynamic content (Section 2.3.2), page-flow-centric (Section 2.3.11), and AJAX

(Section 2.3.15).

26

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

controller strategies

static files

dynamic content

AJAX

separated concerns

page-flow-centric

event listener models

phased request action-response models

algorithmicrule based

finite state machine based

mixed concerns

published code

executable templates published objects

Figure 2.3: A taxonomy of strategies for control concerns

2.3.1 Static files

A traditional web server serving static files is the most elementary strategy for addressing

control concerns—to have no dynamic behaviour at all. The use of static files is mentioned

here for completeness.

A web server has access to a file system hierarchy containing HTML (and other) files. A

URL directly maps to a path in this hierarchy, ultimately leading to a file. Upon an HTTP

request, the server merely sends the file denoted by the request URL back to the client

browser.

2.3.2 Dynamic content

Most current web frameworks fall into this category. Returning a document in response to an

HTTP request is still the focal point. Here, however, the document sent back is generated

on the fly, and various ways are used to invoke other code in the process.

The category of dynamic content is divided into approaches that mix MVC concerns

(Section 2.3.3) and those that do not (Section 2.3.7).

27

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

2 Web framework overview

2.3.3 Mixed concerns

Strategies in this category do not provide formal support for a programmer to separate logic

to do with the generation of a dynamic page from logical actions and other code that have

to be executed as a result of user-triggered events.

More detailed examples of strategies with mixed concerns are presented in Sections 2.3.4,

2.3.5, and 2.3.6.

2.3.4 Executable templates

Languages like PHP and the early versions of JSP [Roth and Pelegŕı-Lopart, 2003] are often

used in this way. Instead of having static files, a collection of templates can be organised

in a file system (or similarly structured schema). Such templates are executable (some

interpreted, some compiled), and yield (possibly different) documents as a result of their

execution. Upon an HTTP request, the template file denoted by the URL is executed and

the resulting document is sent back to the browser in response.

The programmer should specify any other code using facilities provided by the particular

template language used, mingled with the presentation logic for which such templates are

geared.

2.3.5 Published code

Published code is very closely related to templates that are executed. Here, the URL is

mapped to a script or a function written in a programming language. Upon a request, the

corresponding code is invoked. Optionally, the script or function can declare a signature

specifying arguments with which it should be called. These named arguments would then

be extracted automatically from values submitted with the request, and would be passed to

the invoked code as normal parameters to the function. (There are several variations on this

theme of how the URL, and possibly a form, can be mapped to named and/or positional

arguments declared by a function or similar construct.) Such code will then either write text

to be returned to a file or return the text as a return value which the web server then can

send back to the client.

2.3.6 Published objects

A slightly more structured attempt is for a server to maintain a hierarchy of objects or classes

(in the Object Orientation (OO) sense) instead of a file system hierarchy. The URL of an

28

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

incoming request is then seen as a path along this object hierarchy leading to a particular

object. Objects usually have an inheritance hierarchy, but they could also be said to have a

containment hierarchy (via attributes or other method). Either of these hierarchies can be

used for mapping a request to an object8.

Depending on the system, a special method of the object (like render()) can then be called

by the request.

The URL can also be taken to denote a method of an object in the hierarchy—so that

each request results in a method call (as with published code approaches in Section 2.3.5).

Again method signatures can aid in specifying and type-casting request parameters for use

in the body of the method.

An object may have attributes other than methods and, although these are generally private

and thus not directly addressable via a URL, a method so invoked can access these private

attributes (some of which could be templates).

By using such an organised collection of methods and templates (and in fact many different

kinds of objects), a programmer has access to many tools that are available for structuring

the way in which a request is handled and for constructing a reply.

Note that objects have state (per user or application-wide). Thus, having to keep them

on a server cause potential conflicts with REST and poses interesting implementation issues

pertaining to physical deployment and concurrency of such systems.

2.3.7 Separated concerns

In contrast to these mostly unstructured approaches (Section 2.3.3), attempts have been

made to provide for a more structured way to specify presentation and other code separately.

Typically, “other code” is either vaguely defined by these approaches as being code that has

to do with “logic”, with “business logic”, or the model or controller in MVC.

This class in our the taxonomy represents such attempts—those that focus primarily on

the problem of generating a response to a single request, while keeping concerns separated.

Three sub-categories are discerned in this category of strategies: phased-request ap-

proaches (Section 2.3.8), action-response approaches (Section 2.3.9), and event-listener ap-

proaches (Section 2.3.10).

8For example: Zope uses a containment hierarchy, Cherrypy uses an inheritance hierarchy.

29

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

2 Web framework overview

2.3.8 Phased-request

Some approaches have a well-defined “request processing cycle” during which specific pieces

of code can be called at certain stages of handling the request. (For example, on entering

the page, or on displaying it.) Albatross is an example.

2.3.9 Action-response

Action-response models separately define presentation pages (often called views), controller-

specific code and other code. A URL is mapped to specific controller code (Actions in Struts,

for example). Upon a request, the invoked controller code should in turn invoke model code

and then decide, based on the outcome of such an invocation, which view to render in

response to the request. Instead of immediately returning a response, such controller code

can also instruct the browser to fetch a view from a different URL.

In the Java world, the basic models of “model 2 architectures” [Seshadri, 1999] roughly

operate in this way. A model 2 architecture includes Java programming language code

(some of which is used to handle controller concerns explicitly), and separate presentation

code (typically templates, such as JSP) for rendering HTML pages.

2.3.10 Event-listener

Event-listener models are abundant in the Java world. These provide “listener classes”—

classes which a programmer can subclass (or interfaces that can be implemented) to provide

custom implementations of special call-back methods. An instance of such a class (or an

instance of an implementor of such an interface) can register its interest in events of a

particular kind with a UI component, such as a button or selection box. If the UI component

detects the occurrence of that kind of event, it will call the appropriate call-back method of

the relevant listener instance, and so invoke the custom-supplied event handling code.

In web-based UIs, this means that one needs a programming-language-based model of the

components on a page on the server (such as used with component libraries—Section 2.2.4).

These should also be maintained in session scope, so that they can maintain their state

between different requests from a particular browser.

Incoming requests are then handled in one of two ways:

� The request is seen as the occurrence of a single event (usually a button having

been clicked, or JavaScript being triggered by the browser). The event is related

to the programming-language-based component to which it logically belongs, and that

30

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

component is notified that the event took place. The component can then call any

listeners for that event in response.

� A whole batch of UI events are inferred from a single request. An example best

illustrates the point. Assume a page has two components: a button and a selection

box. Upon its initial rendering, the components representing this logical layout can store

their initial values. If the user selects a different value in the selection box, the browser

does not generate any events to the server. But when the user eventually clicks on the

button also provided, it results in the whole form being submitted. Upon receiving this

request, the values held by each server-side programming language component can be

compared to the corresponding values in the submitted form, and multiple events can

be derived from the single request. In this example, the selection box can infer that

a “selection changed” event took place, since it can detect that the value submitted

as part of the form is different from the stored value previously selected. The button

can infer a “button clicked” event. And both events are handled separately by their

respective event listeners, but in one batch as a result of the submitted form.

2.3.11 Page-flow-centric

As mentioned in Section 1.3.3, page flow is a term used to describe how different logical

locations (or pages) in a UI relate to one another and how a user could traverse them. All

approaches discussed so far have left the specification of page flow up to the programmer,

leading to the problems discussed in Section 1.3.3—the chaotic way in which one has to

specify the relationship between pages, reminiscent of goto statements.

Page-flow-centric approaches recognise that controller concerns include the control of page

flow. They have explicit notations for composing a UI from different pages, specifying how

these can be traversed by a user.

Page-flow-centric approaches are significant because they allow a programmer to specify

a UI in its entirety, as opposed to specifying a UI as a loose collection of individual pages

(and other components) with interrelationships that are not made explicit.

Note that, although these approaches all specify page flow explicitly, they tend to deal

with a page abstractly as “a logical location in the UI”. Generally speaking, they do not map

this conception of “logical location” strictly to the URL displayed by the browser.

There are three kinds of page-flow-centric strategies: rule-based, finite state machine-

based, and algorithmic approaches. These are discussed in Sections 2.3.12, 2.3.13, and

2.3.14 respectively.

31

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

2 Web framework overview

2.3.12 Rule-based

Rule-based approaches (for example JSF—see McClanahan et al. [2004]) have a central set

of rules that state, for each location in the UI, all the paths to other locations.

In JSF, such locations are called views. Each view can be visited by a web browser,

and upon such a visit, application code is invoked. Such application code should return an

“outcome”: a string denoting the result of the execution. The rules can then state which

outcome leads to which successive view.

This sounds very similar to action-response models (Section 2.3.9). The difference is that

the rules here span several requests—when a request is received, the server tracks which view

the browser is at, and computes the next view based upon the combination of the current

view and the outcome of executing some business code. Maintaining the knowledge which

view is currently active is done for the programmer.

2.3.13 FSM-based

Some approaches model page flow as some form of Finite State Machine. The semantics

and types of the Finite State Machines (FSMs) vary, but generally states represent either an

action to be performed, a decision that has to be made on the server, or a view that has to

be presented via the browser. Transitions specify the valid paths in the UI between states

(the transition to be followed can be decided on the outcome of a state9, or a named event

that occurred).

Since this dissertation proposes a new approach in this category (Chapter 3), it is useful

to give a more detailed example of a close relative: SpringWebFlow allows specification of

site as a flow—a number of states that are interconnected with transitions. SpringWebFlow

defines five different kinds of state (listed below). One state in the flow is designated as the

starting point for the flow. Upon the application entering any of the states, an action of one

kind or another occurs, mostly yielding some sort of outcome for that state. This outcome

(or another method) is then used to determine what state to transition to next.

Action states. An action state is a state that, when visited, executes some application

code. This code should return a string which is interpreted as an outcome of the execution

of the action. This outcome is used to determine which transition should be followed to the

next state in the flow.

9States representing code executed on the server may be said to have an outcome. When the code finishes
executing, it returns a value which is interpreted as an outcome. This is also the time at which the
transition for that outcome is triggered.

32

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

View states. A view state, when visited initially, merely renders a page to the client

browser, causing the UI to pause in the view state, waiting for user input. Button clicks on

the rendered page result in a form submittal. During such a form submission, the name of

the actual button clicked is used as the outcome to use in determining which transition to

take next.

Decision states. A decision state works slightly differently, in that it is not coupled with

the concept of an outcome. It merely specifies which state should be transitioned to next,

depending on certain conditions.

Sub-flow states. A sub-flow state is a way of nesting another flow inside the current one:

transitioning to a sub-flow state means following the flow defined by it, starting from its start

state (each flow specifies which of its states is a start state). Sub-flow states facilitate re-use

of flows in a number of other “calling” flows.

End states. An end state itself denotes the outcome for a flow as a whole. Should a

transition be followed to an end state, the flow is said to terminate with the end state’s

identifier as a outcome. When used as a sub flow state, this would be the outcome of that

sub flow state, used by its parent flow to decide which transition to take next.

Another, different, example in this category is Expresso.

2.3.14 Algorithmic approaches

The same sort of specification expressed by an FSM or a set of rules can be expressed in an

algorithm using a programming language. Tasks in the Ada language may be regarded as

an analogy of what such algorithms will look like. The concept is best illustrated with an

example (using the Cocoon framework, in the JavaScript programming language):

33

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

2 Web framework overview

1 function example()

2 {
3 var result;

4

5 cocoon.sendPageAndWait("firstPage.html");

6 result = cocoon.request.get("someFormValue");

7

8 if (result == "a")

9 cocoon.sendPage("aPageForA.html")

10 else

11 cocoon.sendPage("aPageForOther.html")

12 }

Cocoon and similar approaches exemplify a programming language concept called “contin-

uations”. (The interested reader is referred to Strachey and Wadsworth [2000], Belapurkar

[2004]). When the function in this example is executed and it reaches line 5 (sendPageAnd-

Wait), the state of the program is saved (in session scope), and the specified page is sent

to a client browser. If the browser then submits a form in reply (the user having pushed a

button, for example), then the state of the program is restored and processing continues at

line 6.

All the powerful semantics of the host programming language constructs are thus available

(exception handling, for example) for specifying page flow.

CherryFlow is another such example, using the Python programming language.

It is interesting to note that the fundamental requirement of implementing these ap-

proaches is to keep session state information on the server—which is in conflict with REST.

2.3.15 AJAX

Asynchronous JavaScript technology and XML (AJAX) is a technique that does not really

represent a full solution (in comparison to the other strategies presented here). But it is a

novel technique that will probably give rise to a host of other strategies, hence its inclusion

here, and in such a prominent location in the taxonomy. (DWR is a framework for using

AJAX specifically.)

AJAX refers to the use of JavaScript together with the ability of modern browsers to change

an HTML document while it is already being displayed in the browser [Murray, 2005].

34

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

Using plain HTML (without JavaScript), events are only sent to the web server when a

form is submitted via a button click, or when a link is followed. JavaScript can attach code

to other UI elements on a form.

AJAX refers to the technique of using JavaScript to intercept such UI events on the

browser, and then making a request to a web server without disturbing the original document

being displayed (or the current state of the browser). Upon receipt of the response of this

background request, JavaScript is again used to change parts of the contents of the original

document—all while it is being displayed.

Such a background request is a request for more information from the web server, not for a

complete rendered page (since the page is already rendered, and just needs to be modified).

For this purpose, such requests usually request XML documents, which are nothing more

than containers for generic information which the AJAX code in the browser is able to make

use of. This information can be used to populate a selection box, for example, depending on

the current state of another radio button.

2.3.16 Discussion

At a first glance it may be difficult to see the distinction between some page-flow-centric

approaches (2.3.11) and those with separated concerns (2.3.7), particularly the action re-

sponse models (2.3.9). Many of these allow a programmer to specify which “view” should

be shown depending on, say, the result (or outcome) of some action. The difference, though

sometimes subtle, is important (as indicated by their respective positions in our taxonomy).

To a separated concerns (2.3.7) strategy (particularly the action-response models of 2.3.9),

the notion of “view” is basically “the template to be used to generate the resulting document

for the current request”. At base, these approaches attempt to generate a response for a

request, using a template—they just allow the programmer to specify code separately from

the template, and provide a means for that code to influence which template will be used (so

there is not a strict one-to-one mapping between the template used and the request URL).

These approaches are the most sophisticated, youngest descendents in the lineage of: static

files (2.3.1), executable templates (2.3.4), separated concerns (2.3.7).

A page-flow-centric strategy (2.3.11) sees a view more strongly as a logical location in the

UI and keeps track of where the user currently is: when a request comes in, the server will

have some way of knowing where the user is (in terms of its conception of logical location

in the UI). Its specification of page flow specifies not which template should be shown in

response to a request—it has a wider, higher-level scope: it states which logical location can

be transitioned to from others, depending on certain conditions.

35

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

2 Web framework overview

While strategies with separated concerns are essentially presented as techniques for spec-

ifying web sites with dynamic pages, page-flow-centric approaches are presented from the

important perspective of aiming to specify UIs which happen to be delivered via the web.

It is also interesting to note that the strategies presented here as distinct are often combined

in a web framework. For example, an implementation of a phased request (2.3.8) can be built

by having published objects (2.3.6), each of which is mandated to have methods named for

particular phases in the request. The appropriate method of the object denoted by the request

URL will then be called during the appropriate phase of the request. When categorising such

a combination of strategies, the differentiation is based on the basic intention of the whole

combination, not how that intention is achieved.

2.3.17 Notes on implementation

In the taxonomy, the focus is on strategies for specifying controller concerns and (by definition

of controller in this context) the relationship of controller concerns to other concerns in MVC.

While not discussed, the choices used in various framework projects for executing these

specifications are also significant. One issue is, for example, whether the notion of location

(or view) in the web UI corresponds with that of the browser. Browsers are built with the

assumption that a particular URL denotes a particular location. Standard browser function-

ality is built on this assumption: book marks can be placed for locations (by storing an URL)

and a user can go backwards and forwards along a traversal path of such locations. If an

framework implementation is ignorant of the notions of a browser in this respect, it renders

such basic browser functionality useless or confusing.

Many frameworks do not accommodate the perspective of the browser (and thus the

concepts in REST) very well in their basic models—thus they often have problems resulting

from such discrepancies. For instance, the very popular and well-known Struts as well as the

high-profile JSF do not correlate the “view” shown with the URL displayed by a browser.

The implementation of some strategies also depend on functionality in a client browser

that is not well standardised, if at all. This is an indication of the pressure that the use

of these strategies place on web standards—an important reason for web framework design-

ers to consider the motivations for constraints embodied by REST. Some strategies need

JavaScript10, some JavaScript with special extensions. AJAX needs support for the XML-

HttpRequest object in JavaScript which is not a part of the ECMAScript specification, but

10It should be noted that although the W3C does not officially have a standard for JavaScript, it is
standardised in the form of ECMAScript, standardised by European Computer Manufacturers Associ-
ation (ECMA).

36

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

supported by many modern mainstream browsers. Even in cases where such functionality

is standardised and widely available (like plain vanilla JavaScript), these are always optional

additions which can be disabled by users.

It is widely advocated on informal forums that such optional functionalities should be used

with care [Tobias, 2004, Korpela, 2002]. In particular, a web site should still be able to

function in the absence of such functionalities—albeit with a less rich UI. Implementations

of the basic controller strategy of a web UI that are dependent on such optional functionality

cannot degrade gracefully in the absence of such functionality—they just cease to be able to

operate.

2.4 Summary

In this chapter, an overview is given of the field of web frameworks.

First, requirements which are normally expected of a web framework are enumerated (Sec-

tion 2.1).

Apart from being responsible for presenting UIs, web frameworks also dictate how such UIs

are specified. The rest of the chapter provides an overview of present specification strategies

used, in the form of two taxonomies. A taxonomy is proposed for strategies regarding view

concerns of MVC (Section 2.2), and another taxonomy is proposed for strategies regarding

controller concerns of MVC (Section 2.3).

While an in-depth overview of how frameworks implement the execution of UIs so specified

is beyond the scope of this work, a few notable observations in this regard (roughly related

to controller concerns) are discussed in Section 2.3.17.

In Chapter 3, a simple language is proposed for specifying the UI of a web application. It

focuses on controller concerns and uses a page-flow-centric approach for these. The language

is designed so that it is extensible and can be used in conjunction with other approaches to

specify presentation concerns, among other things.

37

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

3 Harel

In this chapter a small, special-purpose language called Harel is proposed for the specification

of web-based UIs.

Harel is used to specify the protocol that dictates the way in which a user and a system

will interact. A Harel specification can be extended using other techniques to add more detail

regarding a UI—resulting in a specification from which an executable web-based UI can be

derived.

Harel concepts and notation naturally map to the concept of page flow (Section 1.3.3). It

thus addresses the controller concerns of a UI (in terms of the MVC pattern).

However, before describing Harel in detail, a brief overview is given of the concept of

statecharts (on which Harel is based) in their incarnation as UML statechart diagrams. An

overview is also presented of the architectural constraints of the web, as set forth by Fielding

[2000]. These are contextualised in terms of web applications.

3.1 UML statechart diagrams

Process algebras can be used to describe a dynamic process such as a protocol. FSMs are

of particular interest, since they usually have convenient graphical notations that are useful

for the particular application proposed in this chapter.

In Harel [1987], David Harel introduced statecharts—which added (among other embel-

lishments) the ability to nest states in a FSM. This allows for breaking up a large, flat

specification into a structured specification composed of smaller, manageable parts.

The Object Management Group (OMG) standardised what is mostly an adaptation of

Harel’s statecharts as part of the UML specification [OMG, 2003] in the form of statechart

diagrams. The standardised UML statechart diagrams include constructs whose semantics

relate to their use with objects. They are, for example, used to specify the order in which

methods of an object can be used—i.e. the protocol external entities should adhere to when

calling methods of an object. Traditional statecharts are concerned with a dynamic process

reacting to events as signals in global scope, not with the state of individual objects and

39

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

3 Harel

their parameterised methods. (A detailed discussion of the differences can be found in OMG

[2003, part 2, page 169].)

This dissertation is based on the statechart diagrams of UML [OMG, 2003] (thus indirectly

on Harel [1987]). But these are applied in an environment which needs to describe an overall

dynamic process in the spirit of traditional statecharts.

A detailed understanding of statechart diagrams is not necessary for this work. (The

interested reader is referred to OMG [2003] and Harel [1987].) The overview presented here

is simplified and of the relevant concepts only.

3.1.1 Basic model

A statechart diagram is a graph with nodes connected by directed arcs. The nodes denote

state vertexes, the arcs transitions between them. Usually, state vertexes represent states.

(There are also pseudo-states and other constructs which would clutter our brief overview.)

A state is defined in OMG [2003, part 3, page 137] as being “a condition during the life of

an object or an interaction during which it satisfies some condition, performs some action,

or waits for some event”.

Three kinds of states are defined:

Composite state A composite state is a state that is refined further by containing nested

states in its own, localised diagram. Every statechart diagram is a composite state.

Simple state A simple state is a state that does not contain further sub-states.

Submachine state A submachine state does not add any new semantics—it represents “the

invocation of a state machine defined elsewhere” [OMG, 2003, part 3, page 125]. As

such, it allows one to define several state machines in separate modules, so to speak,

and reference them from one another as submachine states.

An event is a significant occurrence, such as a condition that becomes true, or a method

being called. Events are atomic and treated as instantaneous. Events may lead to changes

in state.

Arcs represent transitions between states. Transitions are usually labelled. A basic label

indicates the name of an event. Should an event occur in the current state, and there is a

transition labelled for it leaving from the current state, the transition will “fire”: the state

will be changed to the target state as indicated by the transition.

Figure 3.1 shows a simplified statechart diagram for a traffic light.

40

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

traffic stopped

after 30 seconds
traffic allowed

vehicle and pedestrian traffic allowed

vehicles only allowed

after 10 seconds

after 15 seconds

warning

after 5 seconds

Figure 3.1: A simple statechart for a traffic light

At the top level in the example, there are two states: “traffic stopped” and “traffic

allowed”. The former is a simple state, the latter a composite state. The transition going

from “traffic stopped” to “traffic allowed” will fire when the event “after 30 seconds” takes

place. This is a special event indicating that the a certain time has elapsed since entering

the state. Other events could have been specified here, such as “pedestrian button pressed”.

The composite state “traffic allowed” has an initial “pseudo-state”, indicated with a filled

black circle. If entered by the transition from “traffic stopped”, the transition from the initial

state will immediately be followed. Similarly, the composite state has a final state, indicated

with a filled black circle which has another circle around it (a bull’s eye). When the final

state is entered, “traffic allowed” terminates and the transition leading from its bounding

box back to “traffic stopped” will fire.

The detail of how a composite state is decomposed into sub-states need not be shown

as depicted in Figure 3.1. Its decomposition can be hidden. A composite state with hidden

decomposition is depicted by a single rounded rectangle with a special icon in the bottom

right corner of its second compartment (as shown in Figure 3.2).

3.1.2 Events, guards and actions

According to OMG [2003, part 3, page 142], “An event is a noteworthy occurrence. For

practical purposes in state diagrams, it is an occurrence that may trigger a state transition”.

41

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

3 Harel

traffic stopped

after 30 seconds

traffic allowed

Figure 3.2: Traffic light example with hidden decomposition of the composite state

Statechart diagrams are used to specify dynamic behaviour in response to the occurrence

of events, governed by the state of the system. The reaction for a particular event can

be specified in different contexts, using the same textual notation: the name of an event,

followed by an optional parameter list, followed by an optional guard condition, followed by

an action expression. For example:

1 buttonClicked(location) [time < 12:00] / showWindow(location)

In the example, the event name is “buttonClicked” and it has a single parameter: “loca-

tion”. UML statechart diagrams closely relate events to method calls, hence the similarity

of this syntax to method calls. The guard condition is indicated by its being enclosed in

square brackets. An “/” indicates that an action expression follows. The semantics of such a

specification varies slightly depending on the context (explained below). Parameters declared

with the name of the event are available in the action expression (analogous to a method

signature and body).

A textual specification as described can be attached to a transition. Its semantics is then

as follows: if the named event occurs and the guard condition evaluates to true, the action

expression is executed and a transition is made to the target state of the transition.

A list of “internal transitions” can also be added to states (see Figure 3.3 for the notation).

Each internal transition is specified using the textual notation as described above. The

semantics in this context is that if the named event occurs in the state, the action expression

will be executed if and only if the guard condition evaluates to true. No state transitions are

made.

entry / switch to red
pedestrianButtonClicked(location) [traffic not heavy] / advanceTimer

traffic stopped

Figure 3.3: A state with internal transitions

42

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

The textual specification of an internal transition is said to consist of an action label and

an action. The action label specifies the circumstances under which the action is invoked

(the event name with its parameters and the guard condition). Several event names are

reserved and have special meaning in this context.

For example, “entry” actions are executed each time the state is entered via a transition

(including transitions to self, but excluding internal transitions). Similarly, “exit” actions are

executed when the state is exited via a transition.

3.1.3 Further details

UML embroiders this basic model extensively. For example, it adds the concept of concurrent

sub-states: composite states can be partitioned into several concurrent parts so that each

part is a composite state, but one state in each concurrent part is active at the same time.

Events are also more richly defined than portrayed in our overview—there are different kinds

of events (only one of which is shown here). There are a number of finer details with regard

to semantics which are carefully defined. For instance, a particular sub-state’s being active

is really a refinement of the fact that its parent state is active—implying, for example, that

while in the sub-state, events may trigger transitions specified on the parent.

Most of these richer semantics are not needed in the context of web UIs. Although some

of them can definitely be argued as relevant, most of them are excluded in this overview—

because the aim is to present and implement the most basic model which draws on these

ideas, but which solves a problem in a very different context. The more complete statechart

diagram semantics and notation can be drawn on in future, though, based on experience

gained in practice.

3.2 REST

As stated previously, the web is intended to be a hypermedia network of information [Berners-

Lee, 1996]. Web application authors have a different agenda: they aim to utilise the widely

deployed and standardised infrastructure of the web in order to deliver the UIs of systems.

As we all know, the web has come a long way since its inception. It is important to ac-

knowledge the architectural properties that aided this spectacular success story when building

on top of it. In order to understand the intended nature of the host of web applications, a

short overview is given of the architecture of the web (and the motivation for its being the

way it is).

43

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

3 Harel

A good account of this is given in Fielding [2000] where this knowledge is formalised as

an “architectural style” called REST (introduced in Section 1.3.1). REST is also used to

defend the web standards and guide their further development.

3.2.1 Basic model

A system adhering to the model put forth by REST has several communicating components.

These communicate with each other via connectors, using a simple, uniform interface. Chief

among the components are the origin server and the user agent.

The interface between components follows a simple, stateless request-response protocol.

A user agent initiates a request which is sent to the origin server. From the point of view of

a single request, the request flows though a pipeline of components (connected to each other

by means of connectors). Upon receipt of the request, the origin server sends a message in

response.

Central to REST is the notion of a resource, its representation, and its identifier. Näıvely

put, a resource is a named piece of information—or a named concept. (Its value may change

over time, but the concept it expresses does not change.) Requests indicate operations on

resources (the same small set of operations being supported for all resources) and, in response

to a request, a representation of the resource in question is returned. The intended effect

of sending a representation of a resource in response is that the onus of maintaining the

current state of a conversation is removed from the origin server and instead becomes the

responsibility of the user agent. From an architectural point of view, each request-response

interaction is independent of previous ones (and of the order of requests) and each message

contains all the information necessary to understand it.

These features are geared towards making components insensitive to contextual and other

information that may be difficult to provide on a large, distributed scale. Components thus

have a lot of freedom when it comes to how they can improve scalability, performance,

provide tunnels through firewalls, and the like.

3.2.2 REST constraints (or architectural decisions)

Any architectural decision is a trade-off decision, made for a reason. Many of the constraints

of REST are geared to allow properties of the web architecture such as: scalability, caching,

and tunneling through firewalls. In this section, the architectural constraints of REST are

briefly paraphrased from Fielding [2000], together with their trade-offs. (The reader in-

terested in clear definitions of the properties mentioned is referred to Fielding [2000, p28,

44

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

Section 2.3].)

Client-server

By being a client-server system, the web separates the concerns of a UI from other concerns,

giving the client the responsibility for the UI and thus also improving portability of the UI.

Note that UI here means presenting the representation of a single resource to a user—not

presenting the UI of a web application to a user.

Statelessness

Communication is stateless—each request contains all the information necessary to under-

stand it and is not allowed to take advantage of any stored context on the server. The

state of the client’s session with the server is kept entirely on the client. The statelessness

of REST improves visibility1, reliability and scalability. It is payed for, however, in increased

overheads (state that is not maintained on the server is sent to and fro from the client). The

application also becomes dependent on the correct implementation of multiple user agents.

Ability to cache

Responses are labelled as being cacheable or not. This allows an intermediary component or

a user agent to re-use a response for similar requests. Cacheable responses improve efficiency,

scalability and user-percieved performance at the cost of decreased reliability in the event of

stale cache data.

Uniform interface

All components in REST have a uniform interface: they use a standard for identifying re-

sources, define a small, uniform set of operations allowing the manipulation of resources

via their representations, use self-descriptive messages, and use hypermedia as the engine of

application state. This uniform interface simplifies the overall architecture and improves vis-

ibility and independent evolveability. Efficiency is decreased, since information is transferred

in a standardised form, instead of a form tailored to a specific application. It is important to

note that the interface is designed to be efficient for large-grain hypermedia transfer, thus

optimising for the common case of the web.

A layered system

Components do not have access beyond the immediate systems with which they interact.

This layering brings all the benefits of encapsulation and allows for the introduction of in-

termediaries that can provide a wide range of functionality (for example, load balancing or

1According to Fielding [2000, p36], “Visibility in this case refers to the ability of a component to monitor
or mediate the interaction between two other components”.

45

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

3 Harel

enforcement of security constraints). These benefits are traded for increased latency and

thus decreased user-percieved performance.

Code on demand

Clients can extend their standardised functionality in non-standard ways by downloading and

executing code from the server. This increases extensibility, but at the cost of visibility—a

cost considerable enough to make this constraint optional. The intention of such an optional

constraint is that a smaller subset of the system (such as within the boundaries of a single

corporate realm) could allow code on demand and so gain its advantages locally by paying

its cost locally.

3.2.3 Notes relating to web applications

It is interesting to relate each of the constraints of REST to current practices in the building

of web applications.

Most importantly, it is precisely the success of the separated UI of the web and its wide

availability in the form of standardised user agents that makes it so enticing as a host for

web applications.

The stateless nature of the web, and its intention of keeping application (or conversation)

state off the server and in the user agent has generally been ignored by web applications.

This is mostly seen as a hindrance and every web application framework provides one way

or another for keeping session state on the server. In fact, we have listed this as one of the

perceived requirements for a web framework (Section 2.1.6). Web application frameworks

have to provide complicated infrastructure in order to be able to scale when providing this

functionality which goes against the grain of the web architecture.

Most often it does not make sense to cache a response in request to a web application,

since the request is not independent of the context held on the server and because of the

high change velocity of resources published by web applications.

Layering allows for components like proxies and gateways which are instrumental in allowing

a web application to be hosted in a protected realm behind one or more firewalls.

Many properties of REST conspire to result in a relatively high latency of messages sent

between user agent and origin server. Web applications relate to this in terms of the user-

perceived responsiveness of their UIs. When considering the topic of user-perceived respon-

siveness, it is wise to bear in mind that the interface between REST components has been

specifically optimised for the transfer of large-grain hypertext messages. And several options

are provided in line with this decision to improve latency and user-percieved performance.

46

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

Retrofitting a conflicting model on top of the basic web protocols often results in unnecessary

complexity.

The code-on-demand constraint is actually a strange member of the REST family. It is

an optional constraint because it undermines one of the very basic properties that so much

of REST strives to protect: visibility. This raises a number of questions: has it perhaps

been retrofitted and incorporated precisely because of pressure from the camp of the web

application to provide a richer user experience? And how should a web framework handle its

presence, seeing that it is optional?

3.3 Harel specified

A UI relays an application-specific protocol governing the conversation between a user and

a system: a GUI window, for instance, is a representation of the current state of such a

conversation: by means of what it displays and the (visually depicted) state of the widgets

on it, it lays down the rules of what the user can do next to change the state of the

current conversation (i.e. valid methods in which the user can continue the conversation

from its current state). In like manner, a page that is being rendered by a web browser is

also a representation of the current state of the conversation—intentionally so, according to

Fielding [2000, page 103]

Users often talk of “being in a specific location” in a UI, particularly with regard to the

web. It is also common to talk of moving around from location to location in a UI. In fact, so

natural is the metaphor, that it is common and valuable to draw a map of it. This metaphor

has a natural mapping to a state-intensive protocol.

A graphical language, Harel, is proposed, with which a UI can be specified in terms of

this common metaphor. Harel’s semantics is defined in terms of the protocol that should be

followed during a conversation between a user and a system.

The notation used by Harel is a vast simplification of UML statechart diagrams. Harel’s

semantics will be seen below to be a subset of the intersection of statechart and REST

semantics.

The initial aim with Harel is to provide the simplest language based on REST and statechart

diagrams, together with a framework implementation which can present a UI via the web

according to a Harel specification. (The design of a framework is proposed in Chapter 4.)

Such a framework can thus be used to test the specification technique in practice. A great

deal of the richer notation and semantics defined as part of the UML statechart diagram

specification is thus excluded.

47

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

3 Harel

Implementing rich semantics in the distributed environment of the web also poses interest-

ing challenges, especially if the intention is to stick to the principles set forth by REST. Thus,

implementation constraints also preclude adding unnecessary rich notation and semantics.

The richer semantics excluded now can be drawn upon later as needed, guided by practical

experience and applicability.

The abstract syntax and semantics of Harel are discussed next (Section 3.3.1), followed

by a comparison to UML statechart diagram semantics in Section 3.3.2. A concrete syntax

is proposed in Section 3.3.3, followed by an example specification (Section 3.3.4).

3.3.1 Abstract syntax and semantics

The example of OMG [2003, page 2-142, Figure 2-25] is now followed by depicting the

abstract syntax of Harel graphically in Figure 3.4 as a UML class diagram, followed by a

more detailed discussion.

UserInterface

Location

SimpleLocation

CompositeLocation

ReferredLocation

InitialLocation

FinalLocation

Transition

Action

Guard

PseudoLocation

LocationVertex

source

target

Event
1

1

*

internal transitions

Detail

specifies

availableDetails

*

1

requires

Figure 3.4: Harel abstract syntax

A Harel specification of a UI is structured around the specification of the protocol followed

during conversation between a user and a system. This implies that it takes a controller-

concern-centric (in terms of MVC) approach to defining a UI as a whole. The specification

technique will also be shown to be page-flow-centric (Section 2.3.11).

There is a limit to the fineness of granularity at which Harel allows specification. Details

have to be provided by other tools. For example, many solutions are available for the

48

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

presentation concerns (view). Harel is also assumed to be used in conjunction with a general-

purpose programming language (referred to further on as the host programming language).

3.3.1.1 Basic model

UserInterface

A UserInterface is the specification of a state-intensive protocol to be followed during a

conversation between a user and a system. A UserInterface is specified by a single top-level

CompositeLocation.

Event

Events are signals triggered by the user. A UserInterface should allow the user to trigger

Events and should itself respond to such Events meaningfully (i.e. as per its specification).

An Event is triggered by an operation on a resource in REST terms.

Location

A Location in a UserInterface represents the current state of the protocol between user and

system.

SimpleLocation

The finest granularity at which Harel specifies state explicitly is a SimpleLocation. A Sim-

pleLocation represents a state that does not contain any further sub-states (a simple state).

CompositeLocation

A CompositeLocation is a coarse-grained state of a conversation, specified further in terms of

other Locations. It is a structured collection of other locations together with a specification

of how the occurrence of Events will cause transitions between sub-Locations. A Compos-

iteLocation can contain any other kind of Location. In other words, a CompositeLocation

maps to a composite state in a statechart diagram.

Transition

Transitions specify the reactions to Events that occur in a particular Location. A Transition

(except when it is an internal Transition, discussed later) has a source LocationVertex, and

a target LocationVertex and usually is labelled for a specific Event name. When that Event

occurs while the UserInterface is in the source Location of the Transition, the Transition may

be triggered. A Transition is said to “fire” when successfully triggered. Firing a transition

means to change the state of the conversation to the target location (or state) indicated by

the Transition.

49

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

3 Harel

Guard

Guards provide finer-grained control over when transitions may fire. A Guard is an expression

in the host programming language which can be associated with a Transition. The result

of the expression is interpreted as a boolean, hence amounting to a conditional test. When

the occurrence of an Event triggers a Transition, its Guard (if any) is first evaluated. If it

evaluates to true, the Transition will fire, otherwise not. Should more than one Transition

be triggered, and more than one of their Guards allow them to be fired, one is chosen

nondeterministically to fire.

Action

Actions provide a means by which model code (in terms of MVC) is invoked. An Action is

a statement in the host programming language. An Action can also be associated with a

Transition. When (and only if) a Transition fires, its Action (if any) is executed.

Internal Transitions

A SimpleLocation may have Internal Transitions. An Internal Transition is a Transition

(optionally with its Guard and Action) which does not lead to a change of state. Some event

names are reserved for use in this context to indicate the occurrence of special conditions

related to the SimpleLocation. At this stage, one name is reserved:

render In REST terms, a resource can be asked for its current default representation, without

specifying any actions on the resource. Should this happen, the render event is said to

occur.

PseudoLocation

Both InitialLocation and FinalLocation are PseudoLocations. PseudoLocations have a special

meaning in a CompositeLocation. Apart from their special semantics, PseudoLocations are

mostly used in a specification as normal Locations are: Transitions may use them as source

or target.

A CompositeLocation always contains a single InitialLocation and a single FinalLocation.

InitialLocation

Only one Transition is allowed from an InitialLocation. This Transition is a wildcard Tran-

sition denoting any Transition to the containing CompositeLocation. Any Transition to the

containing CompositeLocation thus implicitly targets the sub-Location indicated by this “ini-

tial transition”.

No Transitions are allowed with an InitialLocation as target.

50

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

FinalLocation

Any number of Transitions are allowed to target the FinalLocation of a CompositeLocation,

but no Transitions are allowed to leave from it. A Transition to the FinalLocation of a

CompositeLocation indicates that the CompositeLocation is completed. Upon completion

of a CompositeLocation, a Transition on the enclosing CompositeLocation, leading from the

completed CompositeLocation should fire.

ReferredLocation

A ReferredLocation maps to a submachine state in UML statechart diagrams. It serves as an

invocation of the top level CompositeLocation of a UserInterface which is defined elsewhere.

ReferredLocations facilitate re-use, whereas CompositeLocations cannot be re-used—they

are only used to improve the structure of a large diagram.

Analogy with structured programming

An analogy with structured programming is apt to explain the basic model presented so far.

A SimpleLocation is analogous to a statement, whereas a CompositeLocation is akin to a

subroutine. Transitioning to a CompositeLocation (and by implication a ReferredLocation)

then corresponds to the calling of a subroutine. Such a call is independent of the details in

the subroutine body, and the subroutine body is independent of the details of the context

within which it may be called. Calling a subroutine amounts to starting execution at the first

statement of the subroutine body. A CompositeLocation is similarly entered without reference

to its internal details (its body). The initial Transition of a CompositeLocation indicates

its starting Location without reference to the context from which it may be entered—the

starting Location so indicated is akin to the first statement in the body of a subroutine. The

FinalLocation of a CompositeLocation is analogous to a return statement in a subroutine.

When a subroutine returns to its caller, execution is resumed at the statement following its

invocation. When a CompositeLocation exits, the protocol resumes at the Location following

the exited CompositeLocation as indicated by a Transition leading from it.

Mapping to REST

A Location maps to a resource in REST terms (which implies that each Location has a REST

identifier that uniquely denotes it in its UserInterface).

A SimpleLocation, in particular, maps to a REST resource whose representation is a

hypertext document which, when rendered by a web browser (for example) would present

the current state of the user’s conversation with the system accurately and enable the user

to continue the conversation according to the specification. In order for the user to continue

the conversation, the representation of the SimpleLocation should allow the user to initiate

51

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

3 Harel

Events for which responses are defined in the current SimpleLocation. Note that over time,

different representations of the same SimpleLocation could vary (because of fine-grained

variations in state), but the conceptual location (or coarse-grained state) which a particular

SimpleLocation denotes should not vary.

PseudoLocations are not mapped to REST resources like Locations are.

3.3.1.2 Notes

Exceptions to Transition semantics

As mentioned, Transition semantics is influenced at the boundary to a CompositeLocation

where FinalLocations and InitialLocations come into play. This has an impact on how much

of a Transition needs to be specified, depending on the context in which it is used.

Labelling an initial Transition (the Transition leading from an InitialLocation) for example,

is not meaningful, since it denotes any Transition to the containing CompositeLocation.

Labelling a Transition leading from a CompositeLocation is also not meaningful, since it

is triggered upon completion of its source (no matter what Event triggered the Transition

causing its completion).

In these special circumstances where Transitions should not be labelled, they are also not

allowed Guards or Actions.

Should more than one Transition lead from a CompositeLocation, one of them will be

chosen nondeterministically upon completion of the CompositeLocation.

The scope of Events

The scope of Events upon which the UserInterface will react in any given state is restricted

to those Events for which Transitions are labelled, leaving from the current SimpleLoca-

tion. (This is a significant restriction of statechart diagram semantics, discussed further in

Section 3.3.2.)

REST identifiers

Locations map to REST resources—each of which needs to have an identifier. A particular

Location has an identifier that denotes it uniquely in its defining UserInterface. Since each

message in a protocol adhering to REST is addressed to a particular REST resource, each

message indicates the current state of the conversation between the user and the system—

without the need for storing session state on the server.

ReferredLocations have to be handled with care, though. A UserInterface can be composed

from several smaller units of UserInterface by the use of ReferredLocations. If the same

52

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

Location is referred to by means of more than one ReferredLocation in the same UserInterface,

each such referenced instance of that Location is seen as mapping to a distinct REST resource

in its own right, with its own unique identifier—because each referenced instance of the

Location represents a distinct state in the conversation. (The discussion as part of the

proposed framework in Section 4.3.2.3 serves as a motivating example.)

Context

From the moment the occurrence of an Event is detected, a context is created that is shared

by all Actions and Guards. This context is temporary and ceases to exist just before a new

Location is entered (but after all Actions on the firing Transition have completed). The

context is a dictionary which maps variable names to their values. Variable names in the

context are available for use in Guards and Actions. An Action can introduce a new variable

into the context simply by assigning to the (possibly new) name2.

Exceptions

Generally, if an exception is raised in the host programming language during execution of an

Action or Guard, it is taken as a serious error. A special type of exception (a UIException)

is handled differently.

A UIException can be raised inside an Action to indicate an invalid condition regarding

the event that was signalled by the user. Raising a UIException halts execution of the Action

where it is raised. The UserInterface does not transition to a new Location. Instead, it stays

at the Location where the fated event occurred and includes the exception instance as part

of the fine-grained detail of the current state of the UserInterface. This information can be

used by a presentation system to let the user know of the exception, and allow the user to

signal a different event (or supply more information).

3.3.1.3 Extending the basic model

The language discussed so far does not include sufficient detail to make it executable. For

this purpose it is necessary to add more detail to a Harel specification than allowed by the

model introduced thus far. These missing details more often than not fall outside the main

concerns of a Harel specification (controller concerns), but need to latch on to the framework

provided by Harel.

A generic, extensible way is provided by which more details can be added to a Harel

specification.

2This is analogous to how variables are declared by assignment in the Python programming language.

53

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

3 Harel

A DetailAttribute is defined as a type in Harel. Values of this type represent a chunk of

detailed specification—using a notation and semantics undefined by Harel. It is assumed

that the necessary information about a specific DetailAttribute type will be provided by a

module (possibly provided by an external tool). Such a module should provide the syntax,

semantics and implementation that go with that specific DetailAttribute type.

The concept of a type of foreign specification has been introduced and the suggestion

made that it can have a value. In order to incorporate such a type into the model introduced

so far, two concepts from OO are borrowed (with slight modifications): class attributes and

inheritance.

Statecharts are closely related to OO. States and sub-states form a hierarchy (of con-

tainment). Sub-states are refinements of their super-states, and they inherit behaviour from

their super-states.

Thus far, Locations have behaviour, but no data—and the inheritance of behaviour has

been specifically prohibited, contrary to the richer semantics of UML statechart diagrams.

A DetailAttribute is attached to a Location analogously to how a class attribute is attached

to a class in OO. A named, typed variable can be defined for a Location. The type of these

variables specifies the type of DetailAttribute, the values are chunks of additional specification

(which are opaque to Harel but defined by the type).

As with inheritance in OO, the DetailAttributes defined in a Location are inherited by

sub-Locations lower down in the containment hierarchy. A DetailAttribute so specified may

also be overridden lower down in the hierarchy by specifying a new value for a name already

used higher up in the hierarchy.

Note that ReferredLocations need special handling.

The hierarchy specified by SimpleLocations and CompositeLocations alone is a static speci-

fication analogous to static inheritance hierarchies in OO. A ReferredLocation, though, allows

such a static hierarchy (defined elsewhere) to be grafted onto many other different hierar-

chies. A ReferredLocation contains information about the context from which it refers, but

the UserInterface to which it refers is independent of the (possibly many) referring context(s).

Hence, a ReferredLocation cannot blindly inherit DetailAttributes like a CompositeLoca-

tion.

Each UserInterface includes the names and types of DetailAttributes it expects to inherit

from a possible referring context, similar to a subroutine defining a formal parameter list.

These are made available to be inherited by the top level CompositeLocation of the UserIn-

terface.

A ReferredLocation includes a specification of how the names present in its containing

54

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

Location map to the expected names as defined by the UserInterface it refers to—similar to

a call to a subroutine which provides actual parameters to a formal argument list.

3.3.2 Comparison with UML statechart diagrams

As mentioned before, the initial aim with Harel is to provide the simplest language based

on REST and statechart diagrams, together with a framework implementation that can be

tested in practice. A lot of the richer notation and semantics defined as part of the UML

statechart diagram specification are therefore excluded.

In order to provide a more complete picture of the relationship between Harel and state-

charts, some of the more pertinent differences between the two are now highlighted.

According to statechart diagrams, if a sub-state is active, the state it is contained in is

implicitly also active. The sub-state’s being active is in effect a further refinement of the

parent state’s being active. This means that transitions leading from a composite state

are relevant for all of its sub-states too—should an event happen while in a sub-state of

the composite, and a transition departing from its containing composite state is labelled for

that event, that transition will fire. (This is how behaviour of super-states is inherited by

sub-states.)

In Harel, some of the same semantics applies for Locations: being in a sub-Location of

a CompositeLocation amounts to being in the CompositeLocation. However, the scope of

events that have defined reactions is restricted to Transitions (internal and external) related

to the current SimpleLocation only. As a consequence of this, SimpleLocations are the only

Locations for which internal Transitions can be specified.

Events in Harel lean more towards traditional Harel statechart events in that they are not

parameterised. An Event, being triggered as an operation on a resource in REST terms,

is accompanied by the representation of a resource (such as a form submit). Although not

specified anywhere, the information accompanying the occurrence of an event is required to

be available to Guards and Actions in Harel, just as event parameters are available to the

action expressions of statechart diagrams. Exactly how this information is made available to

Actions and Guards is left to depend on a specific implementation.

According to UML the handling of some events may be deferred. In Harel, this is excluded,

since the event loop cannot be easily controlled in a distributed, REST environment—any

execution happens as a direct result of some user action on a user agent such as a web

browser. The origin server cannot initiate events and cannot keep track of the state of the

current conversation.

In statechart diagrams, the name of a state is optional; in Harel the name of a Location is

55

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

3 Harel

required. In statechart diagrams, it is undesirable to specify the same state twice on a single

diagram; in Harel it is not allowed at all. (It also follows that two distinct states with the

same name in the same CompositeLocation are not allowed either.)

With UML statecharts, the transition from an initial pseudostate can be labelled for the

event that creates the object (whose statechart the state depicts). In Harel such a label (or

Guards and Actions) will be ignored if specified. The same is true for Transitions leaving

CompositeLocations.

Whereas UML statechart diagrams allow a Transition’s target and source state to be the

same state, this is not allowed in Harel for the simple reason that accommodating such

Transitions in a GUI editor for the graphical notation (defined later) is more difficult. Much

the same effect can be obtained by using Internal Transitions.

Harel only defines one type of Event; UML statechart diagrams discern between several

different event types (such as conditions becoming true).

The basic structure of the abstract syntax of Harel differs from that of UML statechart

diagrams in subtle ways (see OMG [2003, page 2-142, Figure 2-25]):

� UML statechart diagrams define a richer hierarchy of StateVertixes, especially Pseu-

doStates.

� In UML statechart diagrams, SubmachineState is defined as being a kind of Compos-

iteState, in Harel ReferredLocation is completely distinct from CompositeLocation.

� In Harel, both FinalLocation and InitialLocation are seen as PseudoLocations; in UML

a FinalState is a State, and an InitialState is one of several types of PseudoState.

UML also defines some composite states to be concurrent—a concept excluded in Harel.

Whereas UML statechart diagrams specify behaviour only for a state, Harel allows both

behaviour as well as data—the latter in the form of DetailAttributes.

In UML statechart diagrams, a submachine state is seen as a kind of a macro expansion

[OMG, 2003, part 2, page 148]. This implies that behaviour is inherited across this boundary

uninhibited, leading to the strange side-effect that a state machine can inherit different

behaviour in each different state it is referred to (or, more correctly, included and expanded

in). In Harel, the inheritance of DetailAttributes is controlled across this boundary in the

same manner as parameter passing is controlled between a subroutine and a call to it.

UML also defines the concept of chained transitions. A chained transition can, for example,

be constructed by chaining together the transition leading to the final state of a composite

state and the transition leading from that composite state on its containing diagram. The

56

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

individual transitions in a chain could have, for example, actions specified which would all be

executed in order if the chain fires. UML needs this for other sophisticated elements in its

abstract syntax related to its numerous pseudo-states. This is not necessary in Harel, and

thus excluded—resulting in the prohibition of Guards, Actions and event labels on Transitions

leading from InitialLocations or CompositeLocations.

In the next section, a concrete syntax for Harel is proposed.

3.3.3 A concrete syntax based on UML

UML statechart diagram notation can be used as basis for a concrete syntax for Harel. Such

a graphical notation is useful in UI design.

The details of a CompositeLocation is shown as a graph, with nodes that are connected

by directed arcs. The nodes represent various Locations and LocationVertexes, the arcs

represent Transitions between them.

On such a graph, all Locations are shown as rounded rectangles with one or more compart-

ments. The compartments are separated by horizontal lines. The following compartments

are available:

Name compartment The name compartment simply contains the name of the Location.

Internal transitions compartment A compartment for specifying a list of internal Tran-

sitions (textually) for a SimpleState.

DetailAttributes compartment Should a Location have DetailAttributes attached, they

are specified here, similar to internal Transitions.

Sub-structure compartment A compartment for indicating when a Location has further

internal structure.

Referred compartment A compartment used by ReferredLocations for stating which UI it

refers to, and how actual DetailAttributes map to formal DetailAttributes.

A SimpleLocation is shown as a rounded rectangle with the following compartments: a

name compartment, a DetailsAttribute compartment, and an internal transitions compart-

ment.

Figure 3.5 shows an example.

The list of internal Transitions is a number of text lines (one per Transition) in the internal

transition compartment. Each line has the form:

57

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

3 Harel

userList

authenticationDetail := AuthenticationSpec(authenticationRequired)

render / userManagement.getUserList()
addUser [userManagement.nameIsUnique()] / userManagement.addUser()

Figure 3.5: A SimpleLocation

1 <event name> [<guard>] / <action>

Where:

<event name> is a text string denoting the name of the event for which the Transition is

labelled;

<guard> is an optional boolean expression in the host programming language, delimited by

“[“ and “]” if it is present; and

<action> is an optional statement in the host programming language, preceded by “/” if

present.

DetailAttributes are also shown as lines of text, one per line, in the DetailAttributes

compartment. A DetailAttribute line has the form:

1 <variable name> := <detail attribute type>(<specification summary>)

Where:

<variable name> is the name of the DetailAttribute instance attached here;

<detail attribute type> is the type of DetailAttribute; and

<specification summary> is some textual summary of the value of the DetailAttribute.

As Harel is a graphical language, it is assumed that a graphical tool will provide a

way for a user to edit the foreign specification somewhere else—this short summary is

merely a convenient visual summary of it.

58

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

A CompositeLocation is represented by a rounded rectangle with a name compartment,

a DetailAttributes compartment, and a sub-structure compartment. The DetailAttributes

compartment looks similar to that for a SimpleLocation; the sub-structure compartment is

an empty compartment with a small symbol in its bottom-right corner—the symbol used

with UML composite states to show that their decomposition is hidden.

Figure 3.6 is an example (note that there are no DetailAttributes specified in it).

manageUsers

.

Figure 3.6: A CompositeLocation

The figure for a ReferredLocation looks like one for a CompositeLocation (including the

decomposition icon), but it has a referred compartment. The referred compartment starts

with a line of text indicating which UI the ReferredLocation refers to.

The text line has the form:

1 include / <included UI>

Where:

include is a special keyword; and

<included UI> is the file name (relative to the current UI) of the UI referenced.

Subsequent lines in the referred compartment indicate how DetailAttributes in the scope in

which the ReferredLocation is placed (actual DetailAttributes) map to the DetailAttributes

expected by the UI referred to (formal DetailAttributes). These lines have the form:

1 <formal detail attribute> := <actual detail attribute>

Where:

<formal detail attribute> is the name of a formal DetailAttribute expected by the UI

referred to; and

<actual detail attribute> is the name of a DetailAttribute in the current scope which will

be inherited by the UI referred to as indicated by the formal DetailAttribute.

59

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

3 Harel

adminInterface

include / adminInterface.ui
pageRenderer := page

.

Figure 3.7: A ReferredLocation

Figure 3.7 shows an example (again with an empty DetailAttribute compartment).

An InitialLocation is denoted by solid black circle, and a FinalLocation by a circle sur-

rounding a solid black circle (a bull’s eye).

Transitions between Locations are denoted by directed arcs with arrows pointing to the

target Location. The arcs can have textual labels using exactly the same syntax as internal

Transitions in a internal Transition compartment, as discussed above.

3.3.4 Example

In the official J2EE tutorials [Armstrong et al., 2005] from Sun MicroSystems� (Sun), a

simple and well-known example application is used, called “Duke’s Bookstore”.

The Duke’s Bookstore application is a simple online bookstore that allows a user to browse

a catalogue of books, and add books to a shopping cart. At some stage during this process,

the user can proceed to a checkout counter where the accumulated books in the shopping

cart can be paid for.

As an illustration of Harel notation, a version of the Duke’s Bookstore example follows.

The example is not complete—it is merely sufficient to illustrate the notation introduced in

this chapter.

Figure 3.8 shows the top level composite location representing the Duke’s Bookstore UI.

It contains a composite location called “checkout”, which is shown in Figure 3.9.

If a user visits the bookstore, she will enter at “bookstore”, since it is indicated as the

starting location for the top level composite location of the entire UI. Upon entering here,

“catalogue.getPromoDetails” is called, which fetches all the necessary information for dy-

namically generating a web page. This page displays some information about a book which is

on promotion. The page provides a link to an URL where the book’s details may be viewed.

60

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

shop / cart = getCart()

shop / cart = getCart()

details

details

showcart shop

checkout

checkout

bookStore

render / cat.getPromoDetails()

catalogue

render / cat.getBookLists()
add / cart.addToCart(book)

bookDetails

render / cat.getBookDetails()
add / cart.addToCart(book)

shoppingCart

render / cart.getCartDetails()
remove / cart.removeFromCart(book)

clear / cart.clear()

checkout

.

Figure 3.8: Duke’s Bookstore—top level CompositeLocation

It also provides a link to where the entire catalogue can be browsed.

Supposing the user now clicks on the link leading to the catalogue, she will see a new web

page which has a list of books on it. To be able to show this page, “cat.getBookList” is first

called upon visiting the page. Each book is listed with a button or link next to it, labelled

“add to cart”. If the user now clicks on “add to cart” next to a particular book, she stays on

the same page, but the book is added to her shopping cart (as indicated on the new rendition

of the same logical page). This is implemented by the internal transition which handles the

“add” event by calling “cart.addToCart”.

Assume the user then clicks on another link labelled “proceed to checkout”. The catalogue

location responds by following the transition to the checkout composite location. As specified

in Figure 3.9, this lands our user in the cashier location, where a web page is shown where

she can enter a creditcard number and details to finalise the order. Upon completion, she can

click a “submit” button, which will take her to a location showing a receipt (also creating

the order when the transition fires).

If, for example, the user neglected to specify all the necessary details for payment at the

61

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

3 Harel

cashier

.

submit / createOrder

receipt

.

Figure 3.9: Duke’s Bookstore—the “checkout” CompositeLocation

cashier, the code invoked by “createOrder” could have thrown a UIException. This would

have had the effect of re-rendering the cashier page, but with an error message on it indicating

that the user should specify additional details.

3.4 Summary

In this chapter, Harel is introduced as a language for specifying web-based UIs. Harel is

heavily based on the well-known formalism of statecharts, in its incarnation as statechart

diagrams in UML. In an effort to adhere to the intentional architecture of the web (which is

seen as being critical to the success of the web), the semantics of Harel is defined in terms of

the architectural concepts guiding the present-day web standards—as defined by the REST

architectural style [Fielding, 2000].

In Harel, the notion of “location” is substituted for that of a state in statecharts. Such a

location is defined as a coarse-grained state in the conversation between a user and a system.

A Harel location is also mapped to a REST resource. Transitions between locations represent

the possible paths a user could take between locations. Guard conditions allow fine-grained

control over when transitions may fire. Actions allow the UI to invoke operations on the

system to which a UI is presented, or to query such a system.

A concrete syntax is proposed for Harel, based on the graphical notation of UML statechart

diagrams.

Having defined Harel, a system of sorts is needed on which to run it. Such a system can

be seen as a framework for executing web UIs that are specified in Harel. Chapter 4 presents

a discussion of issues to be addressed in designing and implementing such a framework.

62

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

4 The design and implementation of a

web framework for Harel

In this chapter, topics related to the design and implementation of a framework are discussed.

The main responsibility of this framework is to execute Harel specifications. Executing a Harel

specification in this context means to present a UI via a web server as per the specification.

First an overview is given of related standards in terms of which the framework is im-

plemented (Section 4.1), followed by a discussion of some relevant current practices (Sec-

tion 4.2).

The design of a framework for Harel is proposed in Section 4.3, including some implemen-

tation considerations.

Some important observations and further related topics are also mentioned regarding the

role of configuration (Section 4.4) and the impact of typical deployment options (Section 4.5).

4.1 Overview of related standards

To be able to implement a framework for Harel, it is necessary to understand the underlying

REST implementation serving as the platform for executing a Harel specification. For that

reason, this section presents a brief overview of important web standards that implement

REST. This overview is not intended to be complete—it merely highlights the essence of

what is needed with regard to the implementation of a framework for Harel1.

4.1.1 Resource identifiers

Several standards exist for identifying resources (in REST terms) on the web. Reports,

recommendations and standards regarding these can be found in Mealling and Denenberg

Eds. [2002], Berners-Lee et al. [1998], T Berners-Lee [1994], Fielding [1995], Moats [1997]

and Daigle et al. [2002].

1Note that standards more related to presentation—HTML, XML, XHTML, CSS and XSLT are seen as
outside the scope of this work.

63

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

4 The design and implementation of a web framework for Harel

Our interest is mostly with Berners-Lee et al. [1998] and the older T Berners-Lee [1994],

which discuss Uniform Resource Identifiers (URIs) and Uniform Resource Locators (URLs),

respectively.

Generically speaking, resources on the web are identified by URIs. URLs are a subset of

URIs which identify a resource by its primary access mechanism (i.e. its location on the

network) [Berners-Lee et al., 1998, p3].

URIs (and thus URLs) are very visible in that each web browser displays (and allows a user

to type in and change) a URI in some text area at the top. (Interestingly enough, this bar is

called the “location bar” by some browsers.)

What follows in this section is an overview of URLs, and implicitly some concepts that are

more generically defined for URIs.

4.1.1.1 URL basics

A URL is a string of text of the form:

1 <scheme>://<authority><path>?<query>

Where:

<scheme> identifies the URI scheme according to which the rest of the identifier should

be parsed2;

<authority> specifies the naming authority responsible for allocating the resource its iden-

tifier;

<path> is a hierarchical identifier assigned to the resource; and

<query> is a string containing information to be interpreted by the resource.

The path consists of a list of segments concatenated by a slash character (“/”), repre-

senting a path from the root of a possible hierarchical name space, such as commonly found

in file systems.

The path can be empty, in which case it is a single “/”. The query can be omitted, in

which case the literal question mark (“?”) delimiting it is omitted.

URLs using the “http” scheme further define the query string to be a collection of (name,

value) pairs. Each pair is a text string of the form:

2Several different schemes are defined; only one is covered here—http.

64

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

1 <name>=<value>

The pairs are separated from each other by ampersand (“&”) characters. Names, here,

are not unique: more than one instance of a name can each map to a different value. Here

is an example:

1 searchString=swim&allowedLanguage=en&allowedLanguage=fr

For “http” (and other schemes using an Internet Protocol (IP) based protocol to a server

in the Internet), the authority part has the form:

1 //<userinfo>@<host>:<port>

Where:

<userinfo> is a string specifying user authentication information;

<host> is an IP, version 4 (IPv4) address, or a Domain Name Service (DNS) host name;

and

<port> is the IP port to connect to.

The userinfo part and the port are optional. When omitting the userinfo part, the literal

“@” delimiting it is also omitted; similarly the literal “:” delimiting the port, when the port

is omitted.

An example should look familiar:

1 http://www.google.co.za/search?q=goggle

Here:

http is the scheme;

www.google.co.za is the authority, in the form of a DNS host name;

/search is the path to the search function on that particular Google host; and

65

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

4 The design and implementation of a web framework for Harel

q=goggle is a query string the search function understands. (In this case, it is asked to

search for the word “goggle”.)

A distinction is also made between a URI and a URI reference. A URI reference is how

URI are commonly referred to (what you type into a browser, write on a serviette, or use as

a hypertext link). A URI reference may include extra information apart from the URI itself,

in the form of a fragment identifier. This, however, is not useful in the present discussion

(the interested reader is referred to Berners-Lee et al. [1998, p15]).

4.1.1.2 Relative and absolute URI

URIs are sometimes used in a shared context. A collection of web pages arranged in a

common hierarchy, for example, may refer to each other. In such a case it is useful to specify

partial URIs that are relative to the common root of the hierarchy—making it possible to

move the collection of pages, etc.

For this reason, some URIs are absolute, and some relative. In Section 4.1.1.1 absolute

URLs are described. An absolute URL identifies a resource, independently of context.

A relative URL is the subset of a full URL starting with the hierarchical path part (or the

tail end of that path), towards the end.

A relative URL, being a subset of an absolute URL, needs a base URL from which the

missing information can be derived.

How this base is determined is fully specified in [Berners-Lee et al., 1998, p18]. For our

discussion, it is sufficient to know that in a typical web page retrieved by URL, if nothing else

is specified, the base URL for relative URLs used in referencing capacity in the document

(such as a relative link in an HTML document) would be the URL used to retrieve the

document.

An empty relative URL reference is seen as a reference to the document itself.

The absolute forms of relative-path-references (the commonest form of references to rel-

ative URLs—see [Berners-Lee et al., 1998]) are computed by appending the relative URL to

the base URL from which the last path segment (and everything after it) has been removed.

For example, given the base URL http://a/b/c.html?as=df, the relative reference x.html

is resolved to http://a/b/x.html.

A dot (“.”) and double dot (“..”) can be used as segments in the path of a relative URL.

These have an analogous meaning to their use in common file system paths: “..” means one

level up in the hierarchy; “.” means the current level in the hierarchy.

66

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

4.1.2 HTTP

HTTP is an application-level protocol used by the Word Wide Web (WWW) global informa-

tion initiative since 1990. HTTP is a generic protocol, though, which can be used for other

purposes than by the WWW [Fielding et al., 1999, p1].

4.1.2.1 Background

The success of the WWW can lead to a subtle confusion of the WWW with its host, the

Internet. The Internet consists of physical components (hardware) and supporting software

(protocol suites) that enable basic communication between systems.

The Internet is thus what gives computers globally the ability to talk to one another.

HTTP is an application-layer protocol for such communication, on top of basic facilities

provided by the Internet. Web applications are applications that utilise HTTP specifically in

order to present their user interfaces to the wide audience of the WWW.

There is a tension between the needs of web applications and what HTTP provides for

them in order to implement those needs. The rise of RIA spearheads the agenda of web

applications architects, for example. A very valid question at this point is: why exactly do

web applications use HTTP, if they could just use their own protocol built on top of IP and

Transmission Control Protocol (TCP)?

The answer probably has a lot to do with how well each protocol scales. Fielding [2000, p69]

mentions “anarchic scalability” as part of the requirements of the WWW. Briefly, “anarchic

scalability” is concerned with the fact that the system is not under control of one entity

or organisation: the WWW (as embodied by HTTP) extends across technical, political and

security trust boundaries. The web needs to operate flawlessly under unanticipated load, or

when given malformed or maliciously constructed data.

The components participating in an HTTP conversation include proxies, caches and gate-

ways. A lot of improvements since early deployments of HTTP have been towards enabling

HTTP to work well with these components—and they are all geared towards enabling the

WWW to scale in its anarchic environment. (See Fielding [2000, p71] regarding such prob-

lems with early HTTP.)

Of these components, gateways and proxies are probably the most visible in everyday

organisations, since these enable HTTP to penetrate fire walls (inward bound and outward

bound respectively)—an ability the lack of which has severely limited the applicability of

other protocols that could be competitors to HTTP for some applications (such as Internet

Inter-ORB Protocol (IIOP) used by Common Object Request Broker Architecture (CORBA)

67

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

4 The design and implementation of a web framework for Harel

and EJB).

Importantly, HTTP is also able to do content negotiation: a server can negotiate with its

client as to the format in which it should return data. This allows a wide variety of clients

to evolve independently of the server, in a heterogeneous environment.

4.1.2.2 Overview

Again, the overview of HTTP presented here is not intended to be complete. In fact, it does

not cover mature elements of HTTP which enable important properties such those needed

for anarchic scalability. The presentation is limited to an understanding of the essentials,

from the point of view of implementors of web applications. The interested reader is referred

to Fielding et al. [1999].

HTTP is a standard for a protocol adhering (mostly) to REST [Fielding, 2000]. It thus is

a simple request-response protocol: a user agent sends a request message to an origin server

(possibly passing through intermediaries such as proxies or gateways). The origin server sends

a response message back. No conversation state is kept by the server.

Each HTTP message has a message body containing its payload (some kind of representa-

tion of a resource), and is accompanied by headers used for communicating meta-information

about the message. The headers of a message comprise a list of name to value mappings;

HTTP standardises the particular names and values used and their meaning.

An HTTP request message is a request to perform one of a few defined “request methods”

on a particular resource as identified by a URI (or part of a URI) included with the request,

and other meta-information.

The following request methods are defined:

options is a request for information about the communication options available along the

chain of components traversed by a normal request to the resource indicated;

get requests the retrieval of a representation of the targeted resource;

head is similar to get, but it only retrieves the meta-information that would have accom-

panied a complete response to a get request;

post requests include the representation of a resource with them, which can be used by the

server to perform some kind of action, this action being parameterised by the resource

representation that was included in the request;

put requests ask the server to store the enclosed resource representation under the URI

supplied in the request;

68

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

delete requests the deletion of the resource identified by the request URI;

trace is used to trigger a remote application layer loop-back of the request message for

testing purposes; and

connect is a special method used by some proxies.

Important to note is that in the HTTP specification, implementors are explicitly reminded

of the fact that the software involved represents users in their interactions over the Internet.

Thus, “[implementors] should be careful to allow the user to be aware of any actions they

might take which may have an unexpected significance to themselves or others” [Fielding

et al., 1999, p51].

For this reason, some methods are said to be safe, others idempotent. Safe methods

should have no meaning other than retrieval (and thus no side effects). Idempotent methods

have the property that the side effects of N > 0 identical requests is the same as that of a

single request.

Although the HTTP protocol cannot enforce these properties, implementors should take

note of the distinctions made and use the methods accordingly.

For the purposes of implementing Harel, only the get and post methods are fundamental.

The get method is designated as safe (and therefore implicitly idempotent too); the post

method is neither safe nor idempotent.

The response sent as a result of a particular request includes an (optional) representation

of a resource and a status code (as well as meta-data as with all messages). The status

code either reports the meaning of the server’s response to the request (which can be a

number of different kinds of successful results, warnings, error conditions) or it directs the

client elsewhere.

Status codes may be, for example:

2xx Successful Several codes in the numeric range 200-206 are used to report success,

depending on the request method;

3xx Redirection Codes in the range 300-306 direct the client in some way or another to

issue a new request, possibly using a different method, different URI, or both. Code 303

(See Other) is of particular importance to our implementation. According to Fielding

et al. [1999, p63] (defining its semantics): “The response to the request can be found

under a different URI and SHOULD be retrieved using a GET method on that resource.

This method exists primarily to allow the output of a POST-activated script to redirect

the user agent to a selected resource.”

69

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

4 The design and implementation of a web framework for Harel

4xx Client errors Codes in the range 400-417 indicate error conditions apparently caused

by the client.

5xx Server errors Codes in the range 500-505 indicate error conditions arising in the server

during its attempt to service the request.

Caching in HTTP is seen as a significant way of improving performance and of softening

the blow of high loads. Integral to, and inextricable from, the HTTP protocol are a number

of elements that specify and improve the effectiveness of caching. While it is unnecessary to

delve into the details, the following should at least be noted:

� Responses to a get request may be cached, depending on some conditions;

� Responses to a post request are not allowed to be cached; and

� Any response with status code 303 (See Other) is not allowed to be cached.

Separate extensions to HTTP have been proposed for dealing with keeping session state,

and for dealing with security. Each of these are important topics, discussed next in Sections

4.1.3 and 4.1.4.

4.1.3 State management in HTTP

In Kristol and Montulli [2000], an optional addition to HTTP is proposed, known as the

“Cookie”. This idea was first introduced in a proprietary way by Netscape [Netscape, 1999],

but lately most participants implement the proposed standard [Kristol and Montulli, 2000].

Cookies are an attempt at establishing a larger context within which requests can be sent

to a server: that of a session. A Cookie is a named piece of data, opaque to the protocol and

user agent, but meaningful to the server which set it. A server can start a session by asking

that the user agent store a Cookie on its behalf. This is done by including a special header

containing the Cookie and some meta-information about it as part of a response. From then

on, a client should include the Cookie with each subsequent request to the site whose server

set the Cookie. This is done again by sending the Cookie in a special header as part of the

meta-data of the request message. Thus, since each client request includes the Cookie, the

server will always have access to the session state stored in it.

According to Fielding [2000, p130], the Cookie extension is inappropriate and violates the

architectural constraints of REST. This is mainly because it imposes an implicit ordering

of requests—requests sent before the Cookie was sent are handled differently from requests

70

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

sent after the Cookie was set. So, for example, if a user clicked on the back button of the

browser after the Cookie was set to go to a location visited before the Cookie was set, the

request could be interpreted differently than the first time it was issued, since the second

time it was issued was within the context of the state held in the Cookie.

Cookies are also a security concern, since they have been used inappropriately, for example,

to track the browsing habits of a user covertly [Whalen, 1996, Perkins, 2000].

Nevertheless, Cookies are widely in use for storing session state in spite of their problematic

nature. User agents usually allow one to disable Cookies, or modify how they manage the

Cookies that they receive.

4.1.4 Authentication and security

Most serious web applications have several security-related requirements. Security in itself

is a large topic which falls outside the scope of this dissertation. Suffice it to say that user

agents and origin servers often want to authenticate themselves to one another and ensure

that sensitive data cannot be seen or modified by eavesdroppers. Often, servers also need to

authenticate the user at a particular user agent and grant different access to resources based

on the identity of a user.

These security considerations are not very well supported by HTTP at the moment.

HTTP includes two mechanisms for authenticating a user with the aim of controlling

access to resources based on the identity of the user. These are called basic and digest

access authentication [Franks et al., 1999].

Both the basic and digest authentication schemes assume that a request is made to a

server as usual, but that the server can refuse to grant access and instead challenge the

client to authenticate its user. The server does this by returning a special status code in

response. The user agent can then resubmit its request, including authentication information

in the headers of the request (after presumably having asked its user for a user name and

password, for example).

Basic authentication was first introduced and is widely implemented by clients. It has a

serious flaw, though, in that it sends the user name and password in clear text over the

network.

Digest authentication was introduced as a fix to this problem. While digest authentication

does its job well, many older browsers do not implement it.

Although the standard includes a way for the server to state its preferences as to which

authentication method should be used by a user agent, many user agents do not implement

71

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

4 The design and implementation of a web framework for Harel

the specification accurately. The result is that in practice today, a server cannot be sure that

it circumvents the flaws of the basic authentication scheme when challenging a client.

Apart from these failings of the native authentication mechanisms of HTTP, they do not

cover other important security requirements, such as authenticating the end points of the

conversation or providing protection against eavesdroppers.

Netscape, being an early advocate of many web-related technologies, introduced several

solutions to such problems (which may be judged by some to have been rash, in hindsight).

One such solution to the security problem was the SSL standard [Freier et al., 1996], and

the use of HTTP over SSL. The modern incarnation of this solution is to use HTTP over

Transport Layer Security (TLS) (the successor to SSL). TLS is documented in Dierks and

Allen [1999] and Blake-Wilson et al. [2003], and the use of HTTP over TLS in Rescorla

[2000].

TLS is a transport layer protocol, similar to (but built on top of) TCP. Whereas TCP

ensures that data is sent accurately, TLS adds security. It allows clients and servers of its

connections to authenticate each other, and can sign and encrypt data sent—thus potentially

providing complete protection from problems such as eavesdroppers and man-in-the-middle

attacks.

For all other purposes, TLS appears to HTTP as its usual transport layer partner, TCP.

Thus it is relatively easy to use HTTP over TLS instead of TCP.

HTTP over TLS (HTTPS) is widely in use today, and seems to be accepted colloquially

as the de facto solution to providing for security requirements on the web.

However, work is in progress to incorporate security features into HTTP, in the form of

Secure HTTP (S-HTTP) [Rescorla and Schiffman, 1999]. This is still experimental, though,

and thus irrelevant for current practical application.

A brief explanation of some common and recommended implementation practices using

these standards follows in Section 4.2, before a framework for Harel itself can be discussed

in Section 4.3.

4.2 Current and recommended practices

Many informal information sources on the web document so-called best practices for web

site design. These are very important when designing web sites, since testing what a web

site actually looks like is practically impossible—there are just too many permutations of

browsers, browser versions and user preferences that play together in order to create the

look (and partially, the behaviour) of a website in the context of a particular user. The best

72

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

practices for web design really are heuristics for handling this diverse environment. It seems

appropriate to draw from this experience, rather than to blindly trust that a site would look

acceptable in all environments because the site looks acceptable in the few environments

with which a programmer is familiar. Most of these fall outside the scope of this work, being

largely related to presentation concerns. Some, however, concern our implementation, and

are thus discussed here.

Similarly, some requirements of web applications are generally implemented in typical ways.

These are not best practices (indeed, some of them are discouraged), but are current practices

that are important to note, and are also discussed under the current heading.

4.2.1 Session state

Many web applications need to store information between multiple requests from the same

user. A famous example of this is the “shopping cart” that online stores often provide. The

cart is analogous to a real-life shopping cart into which items can be placed while browsing—

for later perusal or so that they can be bought in batch.

Session state is also kept for the purpose of controlling page flow (Section 1.3.3)—a flag

can be set by one page, to be used for deciding the behaviour of later pages. This kind of

session state is perhaps best illustrated by implementations of the algorithmic approaches

(Section 2.3.14).

Considerable session state is also kept by some web frameworks in an attempt to implement

more powerful ways of UI specification. For example, JSF [McClanahan et al., 2004] is a

page-flow-centric approach (Section 2.3.11) that also derives a number of more traditional

GUI events from each incoming request (Section 2.1.4). A JSF framework has to maintain a

relatively large amount of data as part of session state: for each view it stores (in JSF terms)

the UI components on that view, and the last-specified user input to each view. Having

access to this information means that the framework can infer a number of events from a

single request, allowing for the handling of UI events in the style of event-listener models.

(This technique is explained in Section 2.3.10.)

Web frameworks can easily tend towards favouring a programmer’s perspective when it

comes to session state. Programmers would like to be able to specify a UI using the full power

of variables that can be set in so-called “session scope”, not always consciously considering

the implications of this specification feature.

Seeing that REST expressly prohibits the storage of session state on the server, it is perhaps

wise to be careful about how, when, and how much session state is kept. Moreover, when

proposing a specification technique, care should be taken to consider its demands in terms

73

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

4 The design and implementation of a web framework for Harel

of session state.

Web UIs cannot be realistically specified without keeping session state. However, note that

REST does not prohibit the notion of session state—it merely mandates that session state

should be held on the client as opposed to the server in order (chiefly) to enable scalability.

In line with these facts, it would seem wise to limit the amount of session state information:

small amounts of session state information can easily be kept on the client entirely, by using

Cookies (Section 4.1.3), by simply adding the state as parameters to URLs embedded in a

particular page, or by other similar methods. These methods keep session state information

off the server (as originally intended), even though there are some problems with Cookies,

per se. (The interested reader is referred to Fielding [2000, p130].)

Cookies and request parameters cannot handle large amounts of data. Frameworks that

keep a lot of session state (despite the recommendations of REST) and that use one of these

techniques, therefore usually do no more on the client side than set a unique session id at

the browser.

Upon a request, the server can then use the session id thus stored to identify the required

session, and then, based on that information, query a database of sessions kept by the server

itself. (That is, such frameworks keep just enough session state information on the client to

be able to keep heavy-weight session state information on the server.)

Note, however, the complexity involved when a server maintains its own database of

sessions. (An example of this is the implementation of clustering of the Apache Tomcat

Servlet/JSP container—explained in Penchikala [2004].) One strategy for doing this is to

keep a list of sessions in memory. However, apart from the fact that this would use valuable

memory for each client concurrently in communication with the server, it also presents prob-

lems when more than one machine is used to serve requests (often the case for large sites).

For example, a client’s first request may be routed by load-balancing software to machine A

where its session is stored in memory. The next request may be routed to machine B which,

being a separate machine, does not share memory with A, and will have no session state for

the user. Of course, this problem can also be solved—one solution is to implement a way for

servers to broadcast requests for session state to each other.

While it is possible to implement such functionality in conflict with REST, it may be

unnecessarily complex to do so. The reason is that REST constrains an architecture in

specific ways, one of the reasons being precisely to make the solution easily scalable in

the Internet environment. Hence, it is wise for framework designers to critically evaluate

the functionality provided by a framework—possibly choosing to exclude functionality whose

implementation would be in conflict with REST. If certain functionality is deemed absolutely

74

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

necessary, a framework designer should investigate the option of supporting it in a weakened

form. Thus, if storage of session state information is deemed desirable, one should look to

storing the smallest quantity of session state information possible.

4.2.2 Authentication and security

Often, web applications require their users to be authenticated. The common procedure

is to use a user name and a password. The problems with basic and digest authentication

(Section 4.1.4) mean in practice that when these are used, they have to be used in conjunction

with HTTPS in order to ensure proper security.

Many designers also do not use the built-in authentication mechanisms at all, preferring

rather to perform a user login via a normal page with an HTML form. Reasons for this

decision are, for example, that with a custom-built page, one has more control over what

the login page looks like (whereas with the built-in mechanisms of HTTP one is left to the

disparate devices of a wide range of web browsers). This method also allows for ways of

authentication other than specifically using a user name and password prompt. For example,

some sites show a graphic with distorted letters on it that are difficult to parse by computer,

but easily recognisable by humans. The idea is then for a human user to type the letters

seen in the graphic in a separate box, in addition to a user name and password. So doing,

access is restricted to human users only.

Whatever the case may be, the name of the currently authenticated user is then usually

held as part of session state.

Note, however, that this is not strictly speaking necessary when using the built-in mech-

anisms of HTTP: user agents can store the user name and password supplied by a user

upon a challenge from a server. When a new request is made to the server, a user agent

may subsequently include this authentication information or supply it automatically upon a

challenge from the same server without disturbing the user again.

Hence, saving the name of the authenticated user as part of session state (when using

the built-in mechanisms of HTTP) is an optimisation: the server does not need to verify

the same user name and password combination upon each request in a user session, and the

extra round-trip implied by a challenge upon each request is avoided. (Note that these issues

are being addressed by Rescorla and Schiffman [1999].)

75

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

4 The design and implementation of a web framework for Harel

4.2.3 The PRG pattern

When user input is needed on a web page, it is sent to the server as an HTML form which

is submitted as part of a post request. And true to the nature of a post request, such user

input usually results in the server performing an action that may have side effects and is not

idempotent or safe (Section 4.1.2.2).

So far, this practice does not pose any problems. It is common, however, to return a new

page for display by the user agent in response to such a request. This is problematic because

of the semantics of a post request.

The HTTP protocol states that a get request should be a simple retrieval operation

without side effects. A user agent can thus remember a trail of URI so visited and, for

example, allow a user to go back along this trail to places previously visited. Visiting such

an “old” location is implemented by the user agent issuing the original request for that URI

again. Doing so is not problematic for well-behaved get requests, since they should be safe.

Post requests, on the other hand, cannot be repeated automatically, because they may have

side effects each time they are executed by the server. For example, a user who was previously

on a page where she clicked on a button in order to make a payment, would not want the

request that was sent by clicking the button inadvertently to be repeated.

In order to deal with this issue, web browsers typically do not repeat a post request

automatically—they will notify the user that a post request is about to be repeated and ask

for confirmation before proceeding. This, however, is confusing to an end-user, and the risk

is high that the user would make the mistake of allowing another request to be made. Web

browsers can ensure that the user is accountable, but that does not solve the core problem.

In response to this problem, some have been promoting a design pattern, called the Post-

redirect-get, also known as Redirect after post (PRG) pattern [Jouravlev, 2004]. The PRG

pattern states that the server should never send a response which is intended to be rendered

back to a client upon a post request. Instead, it should always respond by redirecting the

client to a new URI where it can use the get method again in order to retrieve the results

of the action effected by the post. It follows that the results may be retrieved repeatedly,

without side effects.

Using the PRG pattern has the result that the browser only ever displays (and therefore

keeps track of) get requests. And a user can safely navigate recent browsing history with

the back and forward buttons of the browser (since the browser only paused to display get

requests).

Browsers also allow users to bookmark the locations they visit (the pages displayed by a

browser). Bookmarks are similarly implemented—the browser stores the URI of a request

76

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

and issues that request again in order to visit a marked place. The PRG pattern ensures

that these basic functionalities of browsers work in an intuitive manner without confusing

the user—by sensibly dealing with the semantics of the various request methods as defined

by HTTP.

4.2.4 Dealing with optional extensions to the standards

A system is said to degrade gracefully if it continues to operate in the face of failures of

some of its parts, losing functionality in proportion to the quantity of failures.

Some of the extensions to standards mentioned so far (and others not mentioned) are

features that are “optional”. It may be that in certain environments they are not available,

or it may be that a user can explicitly disable them. Well known examples of these are

Cookies and JavaScript.

Web site design pundits advocate that when such features are used by frameworks, the

absence of an optional feature should not make the web site unusable [Tobias, 2004, Korpela,

2002]. In other words, a web framework which takes advantage of such optional extensions

should degrade gracefully in situations where they are not available. For example, the lack of

JavaScript should merely make a site less responsive, or less aesthetically pleasing, or disable

a few non-core features instead of causing the site to cease operation entirely.

A web framework should thus deal with the absence of optional extensions by degrading

gracefully—its basic model should not be based on such an optional feature.

In the next section (Section 4.3) a design is proposed for a framework for Harel, based on

the standards and (some of the) practices explained.

4.3 A framework for Harel

This section outlines a proposal for how a web application framework based on Harel could

be implemented. It is based upon the theoretical considerations discussed up to this point,

as well as on experience drawn from two prototype implementations that have already been

developed: one in Java and one in Python. Both prototypes are functional, but some of

their details differ from what is presented in this section3. The proposal given below, once

fully developed, will be an improvement of the prototypes—both in terms of adhering more

strictly to the Harel specification as described in this work, and in the structure of the software.

What is presented here represents the design of the next versions of the prototypes. Their

3The Java prototype is incomplete—it does not include support for actions.

77

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

4 The design and implementation of a web framework for Harel

development is part of an ongoing project, undertaken by the author, but is seen as beyond

the scope of a single-year research project, which is what this dissertation represents.

Although the presented design is different from that of the prototypes, most functional-

ity covered is implemented using the same techniques. The odd instance where presented

functionality is not implemented in prototype form is pointed out in the text.

The prototype implementations differ from what is presented in this section in the following

ways:

� The notation used in the prototypes is incomplete and not based on the UML standard,

but has the same semantics as presented here.

� In the prototypes, actions and guards are not statements and expressions (respectively)

as defined in this work. These are specified in the prototypes as methods to be called

on named instances of DomainAdapters. The methods specified for guards should

return a boolean value. In line with this, the prototypes implement a slightly different

concept of the context which is used by actions and guards during a request (but which

fulfills the same function).

� The prototypes do not allow the declaration of formal detail attributes expected by a

UI, nor do they allow the specification of how actual detail attributes in a hierarchy

map to these expected formal detail attributes (Section 3.3.1.3). The equivalent of

DetailAttributes in the prototypes are inherited across the boundary of a composite

location without these controls.

� The prototypes are not modularised—all functionality presented here as part of exten-

sion modules is intertwined with the core framework.

� Instead of making use of Spyce for handling presentation, the prototypes support

Quixote (the Python version) and Velocity (the Java version). The particular use of

these products in the prototypes also differs from how the use of Spyce is presented in

Section 4.3.4: the prototype implementation is an experiment to provide a new method

of specifying presentation by composing pages using inherited detail attributes. This

experiment is excluded from the work presented here, but cited in Section 5.3 as a

possible direction for future work.

� The prototypes use the term “state” instead of “location”—the use of location was

seen as being more UI-designer-friendly, but has been defined with exactly the same

semantics. Also, the term “attribute” is used in the prototypes instead of “detail

attribute”.

78

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

4.3.1 Components and the scope of the discussion

The proposed framework for Harel would comprise4:

� A GUI tool with which diagrams can be drawn adhering to the Harel notation. This

tool has a built-in web server which allows a programmer to surf to the application

UI under development. (In the following discussion this tool is referred to as “the

development environment”.)

� The core framework itself, which is an object-oriented programming language library

roughly correlating with the abstract syntax of Harel. It can be thought of analogously

as an interpreter for Harel (henceforth referred to as “the core framework”).

� A number of extension modules. The extension modules provide, for example, tools to

use for the actual generation of pages or to keep track of session state.

The core framework and the extension modules are intended to be deployed separately

from the development environment in a production environment served by a heavyweight web

server such as Apache [The Apache Software Foundation, 2005]. (This is also implemented

as such in the prototypes.)

The details of the development environment are not important for the purposes of this dis-

sertation. Neither is the precise detailed design of the core framework. Instead, the framework

is presented on a higher, conceptual level—focusing on how a Harel model is executed—in

terms of the important design decisions (and conventions used) and explanations of how

some important extension modules would be implemented5.

4.3.2 Core framework

The core framework can be reduced to a server component which is invoked upon an HTTP

request to which it should generate a response. The core framework is now discussed in terms

of how incoming requests are interpreted and responded to. The discussion is applicable to

the prototype implementation (or the improved design thereof where the latter is different).

4.3.2.1 State of the UI

Each request pertains to a particular resource—mapping to a particular location as defined

by Harel. Since each location has an identifier (its URL), and this identifier accompanies each

4In the prototype implementations, the last two items listed are merged into one.
5The reader is reminded that most of the functionality of extension modules is implemented using the same

techniques, but using a less clear, monolithic design.

79

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

4 The design and implementation of a web framework for Harel

request, the server implicitly has access to the state of the conversation (at the granularity

of locations), without having to keep any state information. Note that this is a direct result

of Harel semantics that maps locations to REST resources, and the result is in line with the

intention of REST architectures.

4.3.2.2 The interpretation of requests

An HTTP get request (which is supposed to be safe) is always interpreted by the framework

as a request to render the contents of the particular location that it targets. An HTTP post

request signals the occurrence of an event in the location it targets.

Thus, should the framework receive a get request for a simple location, it returns a

rendition of that location in a format which the user agent can use to display a page which

represents that location to the user.

When the user initiates an event from a page (such as clicking on a button), a post

request is sent to the location which that current page represents. Upon receipt of a post

request, then, the framework can check what transitions are available at the location which

received the post request, and fire one (whose guard evaluates to true). (In order for a

post request to be generated to the location represented by the currently displayed page,

the generated page should follow the convention that its HTML form be submitted to the

same URL where the page was fetched from.)

Firing a transition consists of first executing its action, and then replying with an HTTP

status code 303 (Use Other) which directs the user agent to issue a get request for the

target location of the firing transition. Internal transitions are treated as though they target

the location in which they are defined. This response to post requests is in adherence of the

PRG pattern (Section 4.2.3).

Note that, since events are only handled by simple locations, post requests only have

defined responses for simple locations. Get requests for a composite or referred location

are implemented by redirecting the user agent to the first location of the implied composite

location (as indicated by its initial transition).

4.3.2.3 Representing and indexing the Harel model

The framework maintains a model of the UI specification. This internal model can mirror

the abstract syntax of a Harel specification of the UI—thus an abstract syntax tree. A URL-

based naming scheme is needed to identify locations, and the model should be organised in

such a way that it is indexed with the aim of quickly being able to find a location, given its

80

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

URL.

Seen as a whole, a UI specified in Harel consists of location nodes, related by means of

containment and transitions.

For implementation purposes, the containment relationship can be taken as the main

point of view: locations form a hierarchy of containment. The leaves of this graph are simple

locations; intermediary nodes are composite states.

Figure 4.1 shows the containment hierarchy of the example Harel specification in Sec-

tion 3.3.4.

DukeExample

bookstore

cashier

bookDetails

shoppingCart

catalogue

receipt

checkout

Figure 4.1: A containment hierarchy

The node named “DukeExample” is the top-level composite location of the entire book-

store. The “checkout” node is the only other composite location in the simple example.

The use of referred locations transform such a containment hierarchy into a containment

graph. Figure 4.2 shows a more complicated containment graph with referred locations.

In Figure 4.2, nodes are labelled for their types: CL denotes a composite location, SL a

simple location, and RL a referred location. Some nodes also include names in brackets so

81

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

4 The design and implementation of a web framework for Harel

CL (r)

SL

CL (b)
CL (a)

SL

SL (x) RL (c) RL (d) SL

SL (f) SL (g)

CL (e)

Figure 4.2: A more complicated containment graph

they can be referred to later on in the text. The hierarchy in the dashed box is a UI defined

separately. Note that it is being referred to by two different referred locations (c and d).

URLs include a hierarchical path element, and define semantics for relative URLs in terms

of this.

The containment graph of locations is a hierarchical name space: each node in the graph

is uniquely identified by the path to it from the root of the graph. Since each node has a

name, a node can be identified by the sequence of names of nodes along the path to it in

the containment graph, starting at the root.

For example, the sequence of names: [r, a, x] identifies the simple location named x.

Similarly, [r, a, c, e, f] identifies the location f in its capacity as referred to by c, whereas [r,

b, d, e, f] identifies f in its capacity as referred to by d.

The path segment of a URL can be constructed from such a sequence of names by

concatenating all the names with a slash (”/”) character, “/” on its own indicating the root

of the graph: “/r/a/x” or “/r/b/d/e/f” are examples.

Upon receipt of a request, the containment graph can thus be traversed quickly along the

path specified in the URL to find the intended location.

82

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

Note that the state of the conversation in f, in its capacity as being reached via c, is

different from f in its capacity as being reached via d. Hence, these are seen as mapping to

two distinct resources, each with a unique identifier. (This example may clarify the abstract

explanation of REST identifiers in Section 3.3.1.2.)

4.3.2.4 Instances of locations and the call stack

A URL, with a path as defined in the preceding discussion, also doubles in our implementation

to fulfil the function of a call stack in the runtime system of a conventional programming

language6. The function of a call stack is to keep track of where a specific call to a subroutine

was made from in order for the runtime system to be able to return to the correct caller—all

the while keeping the subroutine itself independent of such information. A framework also

needs to be able to compute the “caller” of a composite location (or referred location),

so that the correct transition can be fired upon its completion. This information could be

inferred from the fact that the implementation has access to the complete model, and the

current location is indicated by a request. However, the same information is conveniently

stored in the URL: it encodes a call stack—the bottom of the stack being the start of the

list represented by the URL. For example, the name of the “caller” of “/a/b/c” is “/a/b”

(the last element is popped from the stack).

A distinction is made by the framework between a location and the instance of a location.

A location is the definition of a state of the UI—an instance of it is created by the framework

when a request is received and destroyed after the request has been replied to. Such an

instance keeps track of the location it represents and the context in which it is currently

used: the current request, the context, and the current call stack.

The framework keeps a call stack of location instances which it constructs for each request,

according to the path in the URL: upon a request, the path in its URL is traversed in order

to find the targeted location. During this traversal, an instance of each location along the

path is created and placed on the stack.

4.3.2.5 Extension module framework

An implementation of Harel must be extensible by external modules which contribute detail

attribute types.

Although the current prototype implementations are not extensible by modules, the planned

design for such modular extensibility is presented here.

6Remember that composite locations (and similarly, referring locations) are analogous to invocations of
subroutines (Section 3.3.1.1).

83

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

4 The design and implementation of a web framework for Harel

Each module can be represented by a programming language class implementing a standard

interface (for extension modules) which the framework can use to query the module and

invoke its functionality. Some methods so provided can be used to query the module for

the detail attribute types it provides. Other methods can be called at certain phases during

the request-handling process in order to invoke the functionality provided by the extension

module. (These methods are named for particular phases during the request cycle—see

Section 4.3.2.6 for their names and when they are to be invoked.) The core framework

would keep a list of modules as part of its configuration.

Modules would operate by populating the context with special objects before guards and

actions are executed. Since the context is available to actions and guards, elements so

introduced would be available to them.

A module could also have module-specific configuration associated with it—settings and

options that are applied site-wide.

Some extension modules will be provided as part of the standard framework, but a user

could write modules as custom extensions. Example modules that should be provided by

the standard framework are discussed in Sections 4.3.4–4.3.7 (most of this functionality is

implemented in the prototype implementations).

4.3.2.6 The request cycle and exceptions

The request cycle is the sequence of steps followed upon each request.

The request cycle described here is different from that used in the current prototype

implementations. The request cycle used by the prototypes makes no reference to extension

modules, since this concept is not implemented in the prototypes. The particular functionality

implemented by the proposed modules (Sections 4.3.4–4.3.7) is, however, invoked in a non-

generic fashion during the request cycle of the prototypes. The request cycle presented here

is based on the prototype version—it is essentially a cleaned-up version of the prototype

version, with provision for generic invocation of extension module functionality.

During the request cycle, access will be provided to special objects. These are used during

processing of the request cycle to influence the eventual response in some way, or to query

the contents of the request or the request method.

The request cycle should have the following phases:

1. Instantiation: Instantiate the requested location (constructing the call stack of in-

stances in the process).

2. Context: Create the context.

84

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

3. Begin modules: On each extension module, request begin is called.

4. Determine event: From the request method and other data in the request, determine

which event it signals.

5. Determine transition: Determine which transition to take (by evaluating guards and

comparing the event to transition labels).

6. Fire transition: Fire the transition (this should execute its action and note what the

response should be).

7. (optional) Render a page: In case of a get request the representation of a resource

should be generated to send back to the user agent. So, only in the case of a

get request should this phase be executed. Since the specification of this detailed

task is outside the scope of a Harel specification, this phase should consist of calling

request render on all the extension modules. One of them should add a variable

“rendered” into the context which should be returned to the user agent at the end of

the request cycle.

8. End modules: On each extension module, request end is called.

9. Finalise modules: On each extension module, request finalise is called.

10. Send response: Return a response.

Note that events (as signalled by post requests) are triggered by, for example, a user

clicking on an HTML button. This results in a post request. A post request is accompanied

by data which is organised as a list of name to value mappings. The button clicked in our

example would show up as part of the data of the post request—its name would be one of

the names in the data of the post request.

In order to infer the event signalled by the post request, the names of its data are compared

to the event names on the labels of all transitions that can legally be triggered from the

current location. There should be one (and only one) match—the event.

Note also that firing the transition results in executing the transition action and that the

framework then should “note what the response should be”. In the case of post requests,

the response is to redirect the user agent to the target location of the transition (assuming

no exceptions occurred during execution of its action). This can be “noted” by setting

appropriate headers in the response to indicate the new location, and by setting the status

code that would be sent back to 303 (See Other).

85

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

4 The design and implementation of a web framework for Harel

In the case of a get request, redirection is not done, so the transition should not do

anything. Rendering should occur in the (optional) next step, discussed below.

Exceptions may happen during the request cycle. These may be domain exceptions (as

per their definition by Harel). Domain exceptions can occur during the action of a firing

transition. Thus, when a domain exception occurs, the firing transition would take note of

the exception and ensure that the user agent does not leave the current location by redirecting

the user agent to the source location of the transition, instead of the target location. The

exception data is added as an extra query parameter—thus the exception becomes part of

the fine-grained state of the location, without the need to be stored on the server.

Any other exception would cause the request cycle to be interrupted, only to resume at

the “finalise modules” phase in order to allow the modules to gracefully clean up in spite

of the exception. And a response (error or otherwise) is needed regardless of whether an

exception occurred or not.

Modules could prevent normal request processing by raising a PreemptException7. A

PreemptException should halt the request cycle where it is raised and should specify what the

response should be—pre-empting the response that would have been computed by following

the normal request cycle. PreemptExceptions should be used by modules that need some

control over the user agent or that implement access control on a resource.

4.3.2.7 Detail attributes and their inheritance

In the prototype implementations, detail attributes are inherited uncontrolled by name from

higher-up in the containment graph. The result of this is that the same UI referred to

from two different referred locations may inherit different detail attributes, depending on the

referring context.

The specification of expected “formal detail attributes” and the mapping of actual detail

attributes to formal detail attributes in Harel (Section 3.3.1.3) are meant to provide a cleaner

solution to the inheritance of detail attributes. The design for executing this cleaned-up

notation is now presented.

To a location, a detail attribute is just a typed, named piece of data. The framework

would need to ensure that detail attributes are inherited correctly (especially across referred

location boundaries). Further handling of detail attributes should be done by the modules

themselves: the intention is that at each stage of the request cycle, when module code is

invoked, the module can check what detail attributes pertaining to it are specified for the

7The prototype implementations do not include the concept of a PreemptException, which accompanies
the concept of extension modules.

86

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

current location and activate the functionality it provides accordingly.

Modules (or other elements) should be able to query a location for detail attributes by

name. The detail attributes defined locally to the location would be found immediately, but

inherited detail attributes should be searched for at locations upwards in the containment

hierarchy. Each location should also be able to be queried for detail attributes that can be

inherited from it. For the sake of discussion, these are called exported detail attributes. In

the event of a location being queried for the name of a detail attribute, and that name not

being found locally, it should query its parent location for an exported detail attribute by

that name.

An exported detail attribute name should be searched for differently, depending on which

kind of location the query is made on. Composite locations should merely query themselves

for detail attributes by name as per usual. Referred locations should behave differently: a

referred location specifies by name which detail attribute in its containing location may be

inherited, and under which name it is inherited (the actual detail attribute and formal detail

attribute, respectively). Thus, when a referred location is queried for an exported detail

attribute by name, it should first check to see whether such a name is part of its formal

inherited detail attributes. If not, the name is assumed not to be found. Otherwise (i.e. if

the name is indeed part of its formal inherited detail attributes) the referred location should

query itself for a detail attribute with the actual name which maps to the specified formal

detail attribute name.

In the remainder of Section 4.3, implementations are explained of specific modules that

provide functionality necessary by most real-world solutions.

4.3.3 Options

Before each extension module is discussed, a brief aside: some of the modules in the frame-

work export very simple detail attribute types. The framework includes a syntax (and editor

for it) shared by many modules for such simple detail attributes, called options.

Options are collections of named data values. A module can state that the specification

of a detail attribute is a set of options. In this case, the module also has to name the options

that are elements of the set, and it has to provide default values for these elements, where

appropriate.

An editor is also provided for detail attributes that are specified using options. The editor

allows the programmer to change the default values of an option (or set of options) and to

87

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

4 The design and implementation of a web framework for Harel

save the detail attributes as part of the specification8.

4.3.4 Page renderer

In the prototype implementations, a more complex experimental solution is implemented

for rendering pages. This experimental solution is an attempt at a novel technique for

specifying presentation which leverages the particular semantics of Harel. A simpler, more

conventional solution to the problem of page rendering is proposed in this section. The

prototyped technique could also be re-implemented in the form of an extension module,

but the topic of presentation is outside the scope of this study, hence the simpler solution

presented here.

A Harel specification itself does not provide a mechanism for specifying how a page should

be rendered in order to represent a particular simple location upon a get request. The

intention is that an extension module should provide this functionality, using one of the

many solutions available for dynamically generating a page (Section 2.2).

One such existing solution is the Spyce project. Spyce is a Python-based framework which

has strong page rendering capabilities. The page rendering module discussed here would

depend on the mature Spyce for generating web pages.

Spyce stores its executable page templates in files with a “.spy” extension. Spyce can exe-

cute these templates—executing a template amounts to interpreting the template (including

embedded code), resulting in a dynamically generated page. (Spyce templates fall into the

“page composition” category, as discussed in Section 2.2.8.)

The page renderer module would provide a detail attribute type called “SpycePage”. A

SpycePage detail attribute is defined in terms of options (as discussed in Section 4.3.3), but

it comprises an empty set of options. It is meant to modify the containing Harel specification

by its presence or absence.

The page renderer module should provide code invoked during the optional page rendering

step of the request cycle. At this point, the module should check for the presence of a detail

attribute named “page” in the current location. Only when such a detail attribute is found,

should the module assume responsibility for generating a rendition of the current location

and adding the rendition as the value of a variable (named “rendered”) to the context.

This proposed page renderer module is extensible itself. Depending on the type of detail

8Note that, although options are introduced here as being used by modules, the concept of options (and
the generic option editor) is implemented in the prototypes—where options are used for exactly the same
purpose, albeit not in a modularised way.

88

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

attribute used, it may use a different method of generating the rendered page9. SpycePage

in particular should act as follows: it should compute a file name for a “.spy” file, based

on the name of the current location and then would invoke Spyce to execute the template

stored in that file. The resulting dynamically generated page should then be added to the

context as the value of the “rendered” variable.

The file name of the Spyce template can be computed as follows: each Harel UI is stored

in a file (the UI file, for the sake of this discussion). The example page renderer module

follows the convention that a directory should exist in the same directory as the UI file with

the same name as the UI file, but with a “.templates” extension added. This is taken to

be the directory in which all “.spy” files for that specific UI should be placed (called the

templates directory for the UI).

The templates directory for a UI should then contain a directory hierarchy corresponding

to the containment hierarchy in the UI—each directory corresponding to (and named for) a

composite location. Referred locations are ignored. Simple locations should be represented

by Spyce templates in “.spy” files. The name of the template for a particular simple location

is defined as the name of the location with a “.spy” extension appended. The “.spy” file for

a simple location should be located in the directory of its containing composite location.

The SpyceFile detail attribute could thus compute the name of a Spyce template file for

each simple location, relative to the UI templates directory.

4.3.5 Session tracker

In Harel, session state is not part of the language, but can be implemented in an extension

module. This design leaves the language independent of specific session state requirements,

and a project could choose at what level of sophistication session state should be held

and how that is implemented. The session tracker module discussed in this section is not

implemented in prototype form, but serves as an example of how session tracking could

be implemented as an extension module. (The functionality of the authentication module

presented in Section 4.3.6 is implemented in prototype form, however, and it follows the

same implementation strategy.)

The example session tracker module would simply assign a unique identifier to a particular

connected user agent—allowing an implementation to have access to the user session which

pertains to the current request.

This can be achieved by making use of Cookies. In the request cycle, just after the

9Remember that a DetailAttribute in Harel is like a type: is has both data and behaviour (Section 3.3.1.3).
SpycePage has no data (since it has an empty set of options), but it does have behaviour.

89

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

4 The design and implementation of a web framework for Harel

context has been created, begin request would be called on the session tracker module.

The module then would inspect the current request. If the user agent did not include a

Cookie identifying its session with the server, the module would assume that a new session

should be started. So, it could compute a unique identifier for the session and set a Cookie

containing the identifier (which will accompany the response when it is sent). However, if the

request already included a session Cookie, the module would merely read the unique session

identifier from the Cookie.

In either case, the module would add a “sessionid” variable to the context with a variable

called “sessionid”, which contains the unique session identifier that will be available to actions

and guards during the handling of the request.

This module need not export any detail types.

The session tracker module can specify as part of its configuration the name that is to be

used at user agents for its Cookie.

4.3.6 Authentication

Some applications need a user to be authenticated. Typically, this is done by asking the user

for a user name and password which the system can verify. If the user name and password

combination is successfully verified, the user name of the authenticated user is stored as part

of session state.

An implementation of such functionality has been done in the prototype form. The tech-

niques used in the proposed authentication module below have thus been successfully imple-

mented.

Authentication can be done using HTTP basic authentication to challenge a user for a

password, and an encrypted Cookie to store the name of the authenticated user on the user

agent for the duration of a session.

The assumption is that this will only ever be used over HTTPS, hence the pitfalls of the

basic authentication scheme can be safely ignored.

Not all locations require that visitors be authenticated. Some way is needed to specify

which locations need authentication. This can be done by using a detail attribute. The

authentication module will export a detail attribute type, “AuthConfig”, which contains a

boolean option, “needsAuthentication”. An AuthConfig detail attribute can be attached to

a location using the name “authConfig”. The detail attribute then applies to all locations

where it is specified and inherited.

The authentication module would detect whether authentication is needed for a location

by searching for an AuthConfig detail attribute named “authConfig” at the location. It would

90

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

assume authentication is only needed if such a detail attribute is found and its “needsAuthen-

tication” flag is set. Only when authentication is needed should the module do any further

processing.

An incoming request can fall into one of three categories:

� The request is new and the user is not authenticated (a new request);

� The request is a replay of a previous request which now includes a response to a basic

authentication challenge from the server (a challenge-response request); or

� The request is part of a session for which the user has already been authenticated (an

authenticated request).

If authentication is needed, then the module should process requests based on which of

these categories they fall into.

New requests should not be allowed to continue normal request handling—the server

immediately should respond by returning a basic authentication challenge to the user agent

(interrupting the request cycle with a PreemptException). The user agent would react to

such a challenge by prompting the user for a user name and password, and then re-issuing

the same request—this time accompanied by the user name and password in special headers.

This results in a challenge-response request. Upon a challenge-response request, the

module should extract the supplied user name and password from the basic authentication

headers included in the request and should verify that the password is correct. If not, the

challenge should again be issued, else the user should be “logged in” (an authorised session

should be successfully established).

Logging a user in should be done by the module by setting an authentication Cookie on

the user agent. The authentication Cookie contains the user name of the authenticated user

and a time stamp indicating when the Cookie was set. The contents of the Cookie should

be encrypted using an encryption key which is a secret of the server, so that malicious user

agents cannot fake a login without a password.

Authenticated requests can be detected by the presence of an authentication Cookie in

the request. If such a Cookie is found, its time stamp should be checked. If the Cookie is

too old, its presence should be ignored and the request is further handled as if it were a new

request. But fresh Cookies are meant to be used to determine the name of the currently

logged-in user (and indicate a successful continuation of an authorised session).

The authentication module should set a new authentication Cookie upon each successful

continuation or login. In the case of a successful login, this is needed in order to start

91

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

4 The design and implementation of a web framework for Harel

keeping track of the authenticated session. In the case of a successful continuation, it should

be done in order to refresh the time stamp on the authentication Cookie held for the current

authenticated session by the user agent. Hence, a user who is active enough (i.e. generates

requests to the server frequently enough) will stay logged in (since the time stamp on the

Cookie is continually refreshed), whereas inactive users will automatically be logged out.

Upon a successful login or a successful continuation of a logged-in session, the authen-

tication module should insert a variable (“authenticatedUser”) into the context, containing

the user name that has been authenticated.

A UI that requires its user to be authenticated could thus use the authentication module

and be developed without concern for how the authentication is actually accomplished. Its

actions and guards will always have access to a variable (“authenticatedUser”) which is

guaranteed to contain the user name of the user who issued the current request.

The authentication module would need to be configured by two parameters. The secret

key (private to the authentication module) to use for encrypting and decrypting the Cookie,

and the maximum age of an authentication Cookie.

4.3.7 Back-end integration

Harel specifies the UI of a system only. A Harel specification can communicate with the

system to which it provides the UI via guards and actions on transitions: actions (and

guards) can invoke methods of objects that provide an interface to the system10. However,

the context used by actions and guards needs to be populated with such interface objects.

This example back-end integration module would comprise a framework of Connectors

and DomainAdapters (again, such functionality is implemented in prototype form, albeit

not as a generic extension module). A Connector is a singleton class which implements

the functionality of establishing connections to systems or databases11. Since establishing a

connection is usually time-consuming, a Connector instance manages a pool of connections.

A number of connections are established at system startup. Upon a request, an existing

connection can be allocated from the pool and released again afterwards.

DomainAdapters are objects that provide domain-specific methods that can be called in

order to manipulate or poll a system. (Such methods are sometimes called mutator and

accessor methods respectively.) These methods are what guards and actions are expected to

call. Each DomainAdapter is instantiated with a connection allocated for its use from the

10Of course, these could call any method on any arbitrary available object, but used in this way, they provide
a means to manipulate and query the system to which a UI is presented.

11A singleton class can only ever have one instance [Gamma et al., 1995].

92

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

connection pool held by a Connector.

Upon a request, the back-end integration module would first allocate a connection from

the connection pool held by the configured connector. It would then proceed to instantiate

a number of DomainAdapters (as per detail attribute specification), all using that same

connection, and then it would proceed to populate the context with these instances.

A programmer is thus freed from the technical programming concerns usually involved

in connecting and transaction handling—guards and actions can merely call methods on

connected instances of DomainAdapters.

After handling a request, the module would destroy the DomainAdapters it instantiated and

the module would release the connection back to the connection pool held by the Connector.

The back-end integration module would implement several kinds of Connector classes for

different back-end systems. Extending it to be able to communicate with a new database or

middleware system amounts to writing a new type of connector class. A lot of functionality

for accomplishing this task would already be available for re-use in the framework provided

in the back-end integration module.

The current prototype implementation of the functionality provided by the back-end inte-

gration module described here only allows a single Connector to be configured per site, but

it is conceivable to implement the module in such a way that more than one Connector (to

different back-end systems) could be used concurrently.

Support for starting, committing or aborting transactions associated with connections can

also be built into the module12. This ability is not critical at the moment, since only a single

action is ever executed per request (many guards may be executed, but they are not supposed

to have side effects). Without such transaction handling functionality, the assumption is that

an action would trigger code in a back-end system which automatically handles transaction

semantics.

Note that when a back-end system provides defined interfaces such as done by EJB or

CORBA, generic DomainAdapters can be written that merely translate a local method call

into an EJB or CORBA call. Other systems will need DomainAdapters to be written which

can translate every method call on them to, for example, database queries or calls to stored

procedures, etc. An entire application could also be run in the address space provided by the

UI server by running all of its code from DomainAdapters.

The configuration of the back-end module should specify which Connector should be used

and which options it needs to be able to connect to its specific back-end system. The

configuration should also specify a name to type mapping of DomainAdapters. The module

12In fact, such functionality is part of the prototype implementations.

93

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

4 The design and implementation of a web framework for Harel

would use these mappings to determine which type of DomainAdapter it should instantiate

and what the name of this instance should be.

It would be wasteful, however, to instantiate every configured DomainAdapter for every

incoming request (this what is done in the prototype implementations). Hence, the back-

end integration module could export a detail attribute type, “DomainAdapters”, which can

be used to specify which of the configured DomainAdapters should be instantiated at a

particular location. A DomainAdapters detail attribute should include a list of names of

DomainAdapters which should be a subset of the names of configured DomainAdapters.

Upon a request, the back-end integration module can check for a detail attribute named

“domainAdapters” at the current location. Such a detail attribute should be of type Do-

mainAdapters and the module need only instantiate DomainAdapters whose names are listed

in the detail attribute found. In the absence of such a detail attribute, it is assumed that the

list is empty.

4.3.8 Other possibilities

The extension module implementations discussed so far exclude some features that are typical

of web frameworks13. These exclusions were made based on the fact that they are not strictly

speaking necessary and are in conflict with REST.

However, should it be deemed necessary, these could be added as further extension mod-

ules.

For example, one can easily implement a module which maintains a dictionary for general

variables in session scope. Such a module can create a dictionary object (named, “session”,

say) in the context upon each request—populating the dictionary by querying a database at

the start of the request cycle and saving its contents to a database at the end of the request

cycle. Since such data is private to a particular user session, the module would need to keep

track of sessions—this can be implemented in a similar fashion to the session tracker module

implementation presented earlier (Section 4.3.5).

It is possible to also implement more interesting types of session state. For example, one

may wish to have variables that are visible in the scope of a particular composite location

only (analogous to local variables in a subroutine). If a sub-location is entered, those vari-

ables would not appear in the session dictionary, but all requests in the same session in the

same composite location would have access to the variables set in this scope. This can be

implemented as explained in the previous example, with added semantics as to which variable

13The prototype implementations also exclude such functionality.

94

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

is stored in the session, depending on the current location.

4.4 Configuration vs specification

Care should be taken when adding another extension module. Modules usually need some

configuration data, and allow one to extend a Harel specification in a module-specific way.

In such a case it is worthwhile to carefully distinguish the added information as being either

configuration data or specification data. Specification data should be seen as part of the UI

specification in the form of detail attributes. Configuration data is not part of the specification

and is stored externally to the specification.

For example, the authentication module needs a specification of:

� how to name its authentication Cookie on a user agent;

� what secret key to use for encryption of the Cookie;

� how old Cookies can become before they expire; and

� which locations need authentication.

Of these bits of information, only the last it taken to be part of the specification of a UI. The

other information is not really interesting from the level of abstraction of the specification—

these information items concern details regarding how the authentication functionality is

implemented. From a specification point of view, it is more interesting to state where

authentication is needed. Furthermore, the information in the first three items on this list

may change depending on the environment where the UI is deployed. Not every site where

a particular system is deployed should use the same secret key, for example.

In the prototype implementation of back-end integration functionality, the careful dis-

tinction between configuration and specification items has a useful side effect. Since the

mapping between names and types of DomainAdapters is specified as part of configuration,

it is possible to use a special configuration in a testing environment which supplies stub

DomainAdapters for a system. This allows unit testing of the UI of a system without the

need for a real system backing it. The ability to substitute DomainAdapters for stub Do-

mainAdapters (and vice versa) is an extremely useful feature in a large development team,

or a development team with diversely skilled developers.

95

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

4 The design and implementation of a web framework for Harel

4.5 Deployment

The core framework discussed so far can be used in different environments. The development

environment provided by the current prototype is one such an environment (it also acts as a

web server for the UI under development); a production environment running a heavyweight

web server is another.

The deployment environment and how it is configured can have a drastic impact on the UI.

This is a topic in its own right, which is outside the scope of this work. This section provides

a quick glance at the topic of deployment environments, in order to show its relevance.

Typically, web server software is geared towards serving high volumes of mostly static

data. Web servers usually allow powerful extensions that, for example, let a site use TLS

or extensions that allow re-mapping of requested URL by pattern-matching. They typically

also provide for plug-ins that would, instead of serving a static file, treat a file as a template

which is executed by an interpreter, yielding a dynamically generated page instead.

Typically, web application frameworks have complicated processing requirements and are

developed separately from web servers. But they still need some of the functionalities provided

by traditional web servers. So, generally a web server is run and configured to forward requests

to a web application framework.

There are different ways of doing this, and there are different ways of configuring the web

server itself.

For example, the Apache web server [The Apache Software Foundation, 2005] can be

configured to either:

� run a single process, handling concurrent requests in concurrent threads (which it keeps

in a pool);

� run a pool of single-threaded processes that concurrent requests are farmed out to; or

� run a pool of multi-threaded processes—a combination of the previous options.

Added to that, such an installation can be duplicated on several machines.

One of the prototyped web frameworks, providing the run time implementation of Harel,

is implemented in Python. Python is an interpreted language. Using an Apache plugin

module[Trubetskoy, 2005], one can run a Python interpreter inside an Apache process.

In such a scenario, the Apache configuration impacts the design of the UI—at least with

regard to how some modules are implemented.

The back-end integration functionality, for example, contains implementations of Connec-

tors that open connections to databases. If a Connector implementation needs to open a file

96

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

exclusively, but several instances of it are being run concurrently in several distinct processes

on the same machine, only one will be able to lock the opened file.

Also, it would be wasteful to let each Connector keep a pool of database connections

open if it is deployed in a number of single-threaded Apache processes—one connection per

process would be sufficient, since only one request will be handled at a time per process. In

effect, the pool of processes (each with a Connector which keeps only one connection) play

the role of a pool of connections.

Code in multi-threaded processes need to be thread-safe. While the presented implementa-

tion is meant to be thread-safe, code supplied in DomainAdapters should also be thread-safe

if they are to be deployed in a multi-threaded environment.

A module implementing session state needs to carefully evaluate its possible deployment

environment. It could not keep session state in memory when deployed in several processes

(or in local files when deployed across several machines), since a new request in the same

session can be routed by load-balancing software to another process, or another machine

entirely which may not share memory, or a file system with the process that handled the first

request.

Another deployment option in Apache is to start a multi-threaded process (which runs

a framework) separately to Apache. Apache can then route requests to it from its various

processes. Several standards for this kind of communication also exist, the most well known

of these probably being the Fast CGI (FCGI) [Brown, 1996] protocol.

The deployment options far exceed the few mentioned here, but these should give the

reader the general idea. The topic is broad and the concurrency model best used by a scalable

web server is widely debated. For example, how much sense does it make to run an Apache

web server as several processes, but funnel all request handling to a single multi-threaded

process running a web application framework? Or, which is the best concurrency model:

many single-threaded processes, or a single multi-threaded process? A small number of web

servers also claim superior performance using an asynchronous polling model, mentioned in

Section 2.1.8.

Performance and scalability are directly influenced by the particular system under scrutiny—

its own design as well as the deployment options of its web-based UI. It is difficult (and

dangerous) to argue generally about these topics, outside the context of a specific system.

Suffice it to say that a particular implementation should be very flexible when it comes to

supporting several different deployment options.

The proposed implementation (and the implemented prototypes) can be deployed using

mod apache, FCGI, and a proprietary web server built into the GUI tool.

97

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

4 The design and implementation of a web framework for Harel

4.6 Summary

In this chapter, it is shown how a framework could be implemented which supplies an ex-

ecution environment for Harel specifications. In order to do this, some background is first

provided: relevant web standards are explained which provide the REST-compliant platform

of the web (Section 4.1); and several current or recommended practices for implementing

common functionality provided by web frameworks are also explained (Section 4.2).

With that important information as background (as well as the defined semantics of Harel

from Section 3.3), the design of a framework is proposed for executing Harel specifications

(Section 4.3). The designs of some extension modules which would provide functionality

expected of a realistic framework are discussed in Sections 4.3.3–4.3.8.

Sections 4.4 and 4.5 briefly provide overviews of related topics outside the scope of this

work—the role of configuration and specific deployment environments, respectively.

The design presented in this chapter is heavily based on two prototype implementations

that have been developed (one in Java, and one in Python). Many insights presented have

been gained via the iterative development process of the prototype implementations (and

experiments in using the prototypes).

In Chapter 5, a more detailed overview is given of related work in the literature. A critical

discussion of the present study is given within this context, and a conclusion is presented.

98

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

5 Discussion and conclusion

The purpose of this chapter is to contextualise and assess the work discussed in previous

chapters. It begins (Section 5.1) with an overview of related work that has not been intro-

duced thus far. This is followed by a discussion of Harel within the context of such related

work in Section 5.2. In Section 5.3, problem areas and opportunities which warrant more

work are highlighted. Finally, a conclusion is presented in Section 5.4.

5.1 Related work

Perhaps the work most closely related to this study is the work pertaining to web frameworks

and their implementation. Since descriptions of these frameworks are not well represented

in the formal academic literature, a detailed overview of web frameworks was given in Chap-

ter 2—the result of a survey of some 80 of these frameworks.

Other closely related work has been introduced at the relevant times during the course of

this dissertation.

In this section, a brief overview is given of some work related to the modelling of web

applications, with a focus on work that employs statecharts (or similar notations).

5.1.1 ArgoUWE and related approaches

UML-based Web Engineering (UWE) is an example of a methodology for the systematic

development of web applications, supported by a Computer Aided Software Engineering

(CASE) tool, ArgoUWE in this case. An overview of the former is given in Koch and Kraus

[2002], the latter is presented in Knapp et al. [2003]. UWE is a model driven approach to web

application development. UWE defines the notation and specific models that are specified

during development, as well as the process and relationship between the models. ArgoUWE

provides the tool support with which those models can be built and transformed. ArgoUWE

eventually can generate a web application semi-automatically.

99

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

5 Discussion and conclusion

For the navigational model of a web application, UWE follows roughly the same strategy

as Conallen [1999]. This discussion of UWE serves as an example of such a strategy.

UML can be extended by the addition of stereotypes, tagged values and constraints.

A stereotype in UML is a named classification that can be attached to an existing UML

modelling element (such as a class). A stereotype adorns the element to which it is attached

and provides that element with additional semantics. A stereotype thus provides a means to

further refine the semantics of an existing element in the UML meta-model. Tagged values

are key-value pairs that can be attached to a modelling element. Constraints are rules that

can be used to further specify semantics and well-formedness of a stereotyped model. (These

methods of extending UML are discussed in the present context in Conallen [1999] and in

more detail in Koch and Kraus [2002]. The interested reader is also referred to OMG [2003].)

For the purposes of this study, it is adequate to understand that using these intended

extension mechanisms of UML, UWE provides an extension to UML class diagrams in order

to be able to model the navigation of a web application. (In fact, two navigational models

are proposed.) Several stereotyped classes are defined, representing (amongst others) the

logical locations in a web site between which a user could navigate. Stereotyped relationships

between such classes indicate possible navigation paths a user could take. Such a stereotyped

class diagram results in a directed graph.

The navigational models of UWE are not intended to model dynamic aspects of the web

application. In Koch and Kraus [2002], statecharts are also explored for specifying more

dynamic aspects of a web application. (The authors also explore the use of activity diagrams

and collaboration diagrams for this purpose.) Statecharts are used to model “web scenarios”,

not entire web sites. In such a model, states are also named after presentation classes that

would be displayed in a web browser. From Koch and Kraus [2002], it is unclear how this

model would contribute to the eventual generation of the web application.

Although not an extension of UML, Ceri et al. [2000] propose a similar type of navigational

model as part of WebML. Here also, a number of different nodes are defined representing a

number of entities. Some of these entities are web pages displayed to a user, some related

to certain processing steps, for example. Directed edges between nodes represent possible

navigational paths.

5.1.2 OOHDM

Object-Oriented Hypermedia Design Model (OOHDM) is also a model-based approach for

developing web applications.

100

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

In Güell et al. [2000], derivations of statecharts are used in “Abstract Data View (ADV)-

charts” and “navigational charts”.

ADV-charts specify more details regarding the appearance and behaviour of, for example,

a particular node in the navigational model (i.e. a logical location in the web site).

Navigational charts add to the navigational schema by allowing sets of navigational nodes

to be active at the same time. (For example, a user may visit two logical locations simul-

taneously by viewing them in separate frames in a browser. Statechart notation can also be

used to specify how such concurrently displayed locations should be synchronised.)

Both ADV-charts and navigational charts extend statechart semantics extensively for their

very specialised domains.

5.1.3 HySCharts and HMBS

Hyperdocument Model based on Statecharts (HMBS) is a “statechart-based, navigation-

oriented model for hyperdocument specification” [Turine et al., 1999]. With the tool, Hy-

perdocument System based on StateCharts (HySCharts), HMBS models can be created and

a user can also use HySCharts to browse the hyperdocument represented by such a model.

HMBS models use a simplification of statechart notation, with states mapped explicitly

to pages, and transitions to navigational links between states. HMBS is not geared for

web applications per se, but for hyperdocuments that may be viewed using HySCharts.

Hence, the notation does not include support for triggering actions while traversing such a

hyperdocument. It has no notion of a server or an application that needs to be executed,

the aim being that of specifying a hyperdocument which can be browsed and navigated. An

HMBS model can be used to generate static HTML web pages with navigation implemented

as HTML anchors.

5.1.4 StateWebCharts

StateWebCharts (SWC) is a statechart-based formalism for specifying the navigational model

of web applications [Winckler and Palanque, 2003]. SWC is presented as an abstract navi-

gational model of web applications without reference to how such a model is to be executed.

SWC is an extension of traditional statecharts. Different kinds of states are introduced—

some, for example, representing a page displayed in a browser and some representing an

operation that is performed by the application. A distinction is also made between different

kinds of transitions—depending on the agent (user or system) that triggered the event which

caused a transition.

101

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

5 Discussion and conclusion

This strategy of extending statechart notation and semantics is similar to the approach

followed by an existing framework—SpringWebFlow (as discussed in some detail in Sec-

tion 2.3.11).

5.1.5 Leung et al. [2000]

In Leung et al. [2000], the authors indicate how statecharts can be used to specify the

navigational model of web applications in the same vein as Turine et al. [1999].

The web technology available today provides web application builders with a large number

of building blocks. For example, Java applets can be used in a client browser, a browser can

display more than one frame at a time, or platform-dependent technology such as ActiveX

can be embedded into web pages.

In Leung et al. [2000] an attempt is presented to model the navigational aspects of a

web application that may potentially use any such technologies and/or methods. States

are mapped to the pages that are displayed by a web browser, and concurrent sub-states

depict multiple pages or parts of a page that are concurrently displayed by a browser. The

emphasis is on a navigational model, so transitions are directly related to hyperlinks (or

similar mechanism). No mention is made of triggering actions on the server.

5.1.6 Gorshkova and Novikov [2004]

Another statechart-based approach to the navigational modelling of web applications is given

in Gorshkova and Novikov [2004]. Statechart semantics is extended by introducing different

kinds of states, but all of them are related to what can be displayed at a client browser.

(Other approaches that extend statechart notation and semantics usually also include types

of states depicting server-side operations and concepts not related to what is being displayed

at a client browser.) A distinction is also made between events based on which agent (the

user or the system) initiated the event.

In contrast to other statechart-based approaches, in Gorshkova and Novikov [2004] the

UML notation for statechart diagrams is followed strictly, and stereotypes are used for the

extension of UML as is done with class diagrams in Koch and Kraus [2002].

Although Gorshkova and Novikov [2004] recognise the availability and, to some extent,

usefulness of actions in statecharts, actions are explicitly excluded because of the focus being

navigational modelling and not dynamic behaviour.

102

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

5.1.7 Models for form-oriented analysis

Form-oriented analysis is a “holistic approach for engineering form-based, submit/response

style systems” [Draheim and Weber, 2005]. As part of this approach, several modelling

techniques are proposed. In Draheim and Weber [2005], a proposal is made for modelling

“form-based UI”, using screen diagrams, form storyboards and formcharts.

Screen diagrams are very similar to Harel, in that they depict pages shown to a user as

nodes, with transitions between them indicating how a user could move between such pages.

Screen diagrams do not use statechart notation—they include no concept of composite states,

guards or actions. What is interesting, though, is that they include the notion of “conditional

transitions”. Conditional transitions are transitions that branch—based on a condition they

would lead to one of several target locations (analogous to an if statement).

Form storyboards have two kinds of state: a state representing a page presented to a

user, and a state representing a server-side operation. Form storyboards also do not make

use of statechart concepts, such as guards and actions. In order to be able to decompose

a large model into manageable, smaller parts, the notion of sub-storyboards is introduced.

Sub-storyboards are storyboards that contain a subset of the states and transitions of the

final UI. Such a sub-storyboard is a named entity which is meant to describe a conceptual

part of the whole UI. A final UI is composed by the unions of the node and edge sets of all

the sub-storyboards it comprises. A shorthand notation is also introduced for showing several

states as one node, in order to be able to specify one transition leaving or targeting all of

the states in the set represented by the “state set”.

Both form storyboards and screen diagrams are proposed as informal notations used in

facilitating various stages during design discussions and the like. Given this background,

a set of related models are proposed which are meant to provide a rigorous specification

of a software system: formcharts, an information model of data, and the user message

model. Explaining the details of these models would not be productive here—it is enough to

know that formcharts are basically form storyboards with some information removed. This

information is then specified more completely in the user message model.

What is interesting, though, is that although form storyboards are presented as an informal

notation, the authors provide a textual language, called Angie, with which form storyboards

can be expressed. Using a compiler-like tool (part of Angie), an executable web UI can be

generated from an Angie specification in terms of JSP pages and Java Servlets.

103

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

5 Discussion and conclusion

5.2 Discussion

In Section 1.6 the most important high-level differences are pointed out between the present

work and related work in the literature. Although very relevant at this stage, it will not be

repeated here—the interested reader is referred back to Section 1.6. However, some more

detailed differences can now be pointed out.

Several authors distinguish between more than one kind of event based on how an event

is initiated—events initiated by the user, or by the system. In this work, no such distinction

was made. The execution environment presented by the web is quite specialised. Execution

can occur on a client in a browser (when using JavaScript), or on the server. The latter

can only take place upon a request from the client browser. Hence, a server cannot initiate

events; only a user can, by clicking on buttons or links rendered by a browser—these result

in requests to the server upon which processing can take place. The implication is that only

one type of event is necessary: those initiated by a user.

To allow for more than one type of event seems unnecessarily complex. This complexity

is necessitated in many approaches by their policy of representing server side operations as

states (or components of states). (See the following paragraph for a motivation of this

statement.) In the approach proposed in this study, states always represent pages presented

to a client and actions correspond to server-side operations. Events are always initiated by a

client and triggered by the server receiving a resulting request.

To see how representing server-side operations as states cause the necessity for an addi-

tional complication in the form of a second type of event, consider the following scenario.

Assume a specification with three states: A, B and C. A and C are pages to be displayed

to the user, B is a server side operation. Assume further that there is a transition from A

to B for the event “submit”, and a transition from B to C for the event “success”. The

scenario starts with page A being displayed to the user. The user now clicks on a button

which results in the “submit” event being triggered. The web browser thus has to make

a request to the server indicating that this event has taken place. In response to such a

request, the web server can do some processing, but ultimately has to produce the next

page that should be displayed. So, in our scenario, the server should execute the operation

B and then respond with instructions to the browser to display C (assuming the execution

of B was successful). This is done by interpreting the result of executing B (often called

an outcome by framework designers) as an event—the event that B has completed, with a

particular result. Depending on the result of the operation, then, the server can infer which

page to display in response to the request. A model needs to include a specification of which

104

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

page to display after having done an operation—with operations as states, it seems logical to

model this information using another transition (from the operation to the next page to be

displayed). But, according to the semantics of statecharts, a transition is triggered upon the

occurrence of an event. This is why the completion of an operation is modelled as an event,

and this is the source of the “server initiated” events. (Examples of modelling operations

as states and the completion of operations as events can be seen in Gorshkova and Novikov

[2004, Figure 3, p48] and Winckler and Palanque [2003, Figure 8].)

Approaches that model server-side operations as states provide a flexibility to modellers

that is not currently catered for in Harel. In the latter, the result of an operation that was

triggered in response to an event initiated by the user does not determine the page to which

a transition is to be made—this decision is already made when a transition is chosen to fire

(i.e. before the an action is executed). By depicting a server-side operation as a state, the

decision as to which page should be shown next can be deferred and made based on the

outcome of the operation.

What is provided by Harel in its present form is intentionally restricted by a conservative

policy: the first aim is to finalise a complete framework for the simplest notation based on

statecharts and REST. Further complexities can be added later, based on experience gained.

The flexibility mentioned here can also be catered for in Harel using notation and semantics

from UML statechart diagrams. For example, “dynamic choice points” can be used together

with guards to specify transitions that branch depending on certain conditions [OMG, 2003,

part3, p151]. (Dynamic choice points are an example of “choice pseudostates”, defined in

OMG [2003, part2, p146].)

Apart from states representing displayed pages and server-side operations, authors often

define other kinds of states (for example, Winckler and Palanque [2003]). The proposal in

this study strictly maps states to REST resources (Section 3.3.1.1) (informally, thus, logical

locations in a web UI). The preceding discussion motivates this decision to some degree.

Another reason why this was done, however, was that it has been the specific aim of the

work presented in this study to remain aligned with the intention of the web standards as

put forth by Fielding [2000].

Several authors also use more detailed elements of statechart notation and semantics for

specifying the contents of a page, as opposed to merely indicating the relationship between

pages. A prime example of such usage is when concurrent sub-states (in UML parlance) are

used to show components of a particular page or pages shown concurrently in different frames

[Leung et al., 2000, Gorshkova and Novikov, 2004, Turine et al., 1999]. The present study is

only concerned with the relationship between pages and the dynamic behaviour that can be

105

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

5 Discussion and conclusion

specified at this level. It does not attempt to model the contents of a page—deferring those

details to other well-developed specification techniques (such as JSP). Statecharts would

appear to be about modelling dynamic behaviour, not presentation. Without an extension

like JavaScript, HTML (the essence of a page) does not have any dynamic behaviour. Hence,

the practice of using, for example, concurrent sub-states for modelling the contents of a page

is slightly suspect (except where these use Javascript and influence behaviour). It is, however,

tempting to suggest a means of modelling the contents of a page, using another technique

which can take advantage of the statechart model. This, as well as taking a closer look at

when statechart notation is applicable and when not, are directions for future work.

The focus of most related proposals in the literature is on the navigational modelling of a

web application (or hyperdocument). Two effects of this focus are that: dynamic behaviour

of the web application is excluded; and transitions are strongly correlated with hypertext links.

The proposal in this study is specifically aimed at specifying dynamic behaviour—hence the

liberal use of actions and guard conditions. Also, transitions are not as strongly related to

hypertext links. The specification of the URL to which a form will be submitted, for example,

is required by Harel to be the location (state) which contains the form.

When submitted, an event is inferred and the transition then chosen to fire indicates which

next page to display to a user and which action to execute. The transition is thus effected

by means of server-side execution semantics, not by HTML links. Links can also be used

to provide a user with a means to cause a transition to another page. Such a transition,

however, does not need server intervention in order to fire—the browser merely requests the

new page. The effect of this is that the server cannot govern the firing of the transition

using guard conditions, and no actions can be executed. This suggests that Harel could be

extended with a new type of transition which explicitly embodies such constrained semantics.

The explicit mapping in this study to concepts of REST has several desirable effects. For

example, the built-in operations of browsers which are based on the semantics of HTTP

and the URI specification stay functional, whereas with other frameworks these are often a

problem1. The properties induced in the web by the constraints of REST (like scalability)

are extended to the web application UI. For example, the fact that little information—if

any at all—needs to be held in “session state”, delegates issues relating to the scaling of a

web application to an application or database server. By adhering to REST, Harel’s basic

model is standards-based, meaning that it will work with the most basic set of standards

available. Designers can thus use optional technologies such as JavaScript, but within the

1Related to this, some may criticise Harel’s adherence to the PRG pattern for the extra round-trip that it
implies. However, the PRG pattern was leveraged precisley in order to implement REST semantics. Its
use is the price one pays in order to adhere to REST.

106

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

framework provided by Harel, resulting in a UI that degrades gracefully in the absence of

optional technologies.

5.3 Future work

As is evident from the discussion in Section 5.2, the specification technique presented in this

study is a novel (and simple) application of statechart notation and semantics towards spec-

ifying a dynamic, web-based UI. The discussion in Chapter 4 shows that such a specification

can be rendered executable in the environment of the web.

There are many possibilities for improvement and further work, though. Many of these

possibilities can be explored more effectively once Harel has been tested on real-world appli-

cations.

� Transitions are not mapped to hypertext links. Instead, they represent more generic

ways of navigating between pages, such as a decision made by a server as to which

page to display next upon receipt of a UI event. However, some transitions may

be implemented as links—implying that their semantics should be weaker, since such

transitions cannot have guard conditions or actions. A possibility is that a second type

of transition can be added to explicitly model these transitions.

� No mention is made of how the UI would be different for different kinds of users

(users with different roles). This is a requirement of many web applications (often

not explicitly modelled). Several possibilities exist for adding this dimension to the

specification. For example, the Harel specification as described in this work can be

seen to reflect a complete site map. Separate masks for each user role could be defined

which would restrict this map depending on the roles of different users. Depending

on the technology used for generating individual pages, pages can also be rendered

differently for different users. (For instance, what one user sees as a text input box,

another may see as static text.)

� In this study the specification of how each dynamic page would be generated is explicitly

excluded. Although many techniques are available for this purpose, novel ways are

possible within the framework and semantics provided by statecharts. It could be

interesting to venture into this domain and explore such options. (In fact, the prototype

frameworks include such experiments already.)

107

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

5 Discussion and conclusion

� The Harel notation does not include a means to specify the “formal details” expected

by a UI (Section 3.3.1.3). The specification of this aspect of a UI is currently done (i.e.

in the prototype implementations) by means of a window presented by the editing tool.

The incorporation of this aspect in the notation is not a mere oversight—incorporating

it is difficult to do elegantly, since the notation does not include syntax for UIs. Further

work is needed to solve this problem.

� Modularisation is currently done by packaging a composite location as a UI. Users of

that UI can only use the single top-level composite location of such a UI. It may be

productive to allow more entry points to such a UI—for example to let users call sub-

locations directly. (UML statechart diagrams include notation for this kind of usage.)

Another possibility is to package more than one composite location together on the

same level in a module.

� As explained in the preceding discussion (Section 5.2), practical experience with Harel

may show that more flexibility is needed in the form of transitions that can branch to

different states, depending on certain conditions. It may then be necessary to investi-

gate the addition of UML statechart diagram notions, such as the choice pseudostate

with which dynamic conditional branches can be specified for transitions [OMG, 2003,

part2, p146].

� Connections to back-end systems can be explored further. It may be useful to allow

several connectors concurrently to different back-end systems, thus allowing the UI to

be an integrated UI to many back-end systems. In line with this, transaction handling

may be controlled implicitly from the web UI.

� More support can be added for development activities, such as automated testing or

refactoring of UIs.

� The use of AJAX techniques can decrease the number of necessary web pages in

an application and result in a more responsive UI. It is worthwhile to investigate the

incorporation of such techniques into the current Harel proposal.

5.4 Conclusion

The widespread availability of the Internet has made it appealing as a medium by which

organisations (or individuals) can extend the reach of their systems to a vast audience at

108

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

remote locations—often into the homes of users. Many architectures are possible for such

systems, ranging from fat clients and peer-to-peer systems to thin clients with responsibilities

restricted to presenting a user interface for a client at a remote location.

Web applications leverage the widely deployed and standardised infrastructure of the web

to deliver their UIs. These applications have enjoyed widespread success in recent years.

However, using web technology as a UI for a general application has its drawbacks. The

presented UI is constrained by what can be presented via HTML (or newer, related standards)

and by the somewhat peculiar characteristics of the HTTP protocol. This results in UIs that

are not as rich as traditional GUIs and are often seen as unresponsive. Moreover, the web

was not originally intended to be used as a UI delivery mechanism for applications—the effect

is that such web development tends to be complex.

These difficulties may prompt one to ask why designers concern themselves with the

awkward platform (from the perspective of a UI designer) provided by the web standards.

Other approaches are available with which a UI can be delivered at a remote location. For

example, Rich Internet Applications (RIAs) is an emerging form of application, the evolution

of which is driven by the need to be able to execute part (or more) of an application at a

client without the tedium related to installing an application at many clients, while presenting

a more traditional GUI. The X Window system� has been remotely delivering full-featured

GUIs on UNIX� systems for years. Why, then, do so many choose to solve this problem

using the web despite its peculiar UI capabilities and different intention?

The answer may well lie in the fact that the web has proven to be operating well (and

scaling well) in the environment represented by the current Internet. Participants in the web

span not only several different platforms, but also different organisational boundaries. The

widespread availability of web browsers implies a vast audience. The web has triumphed

in this hostile, anarchic environment with its particular solutions to issues such as security,

congestion, scalability and reliability.

Web frameworks dictate the low-level specification of web-based UIs. They are responsible

for executing such UIs using the web as platform. However, it would seem that such frame-

works are not well represented in the literature. Moreover, application designers wishing to

exploit the web for delivering the UIs of their applications tend to be more concerned with

what they need in order to be able to present good UIs, and less concerned with why they are

using the web standards (which are “awkward” from a UI point of view) in the first place.

Many web framework designers appear to be ignorant of the philosophical underpinnings of

the web standards and often strain against the implicit constraints. In this study a different

view is explored—that the constraints of the web standards should be embraced and built

109

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

5 Discussion and conclusion

upon, since they are the concrete result shaped by the intention behind the web standards.

And this intention is the driving force behind the success of the web—the very reason for

the choice of delivering a UI via the web in the first place.

With this particular bias, this study makes the following contributions:

� In Chapter 2, topics related to web frameworks—that have escaped the academic

literature—are discussed. In Section 2.1, an enumeration of what is typically seen as

being required of a web framework is presented. The rest of Chapter 2 is devoted to

an overview of specification techniques employed by web frameworks in the form of

two taxonomies of the strategies used.

� In Chapter 3, a proposal is made to apply the well-known formal notation and semantics

of statecharts towards specifying the dynamic behaviour of web-based UIs. Although

not yet empirically tested in the field, the prima facie case has been made that the

resulting graphical language will simplify the development of web-based UIs and that

it will greatly improve the visualisation of a web-based UI design.

� Contrary to other approaches, the semantics of this application of statecharts is care-

fully mapped to the architectural concepts put forth as REST, resulting in a specifi-

cation with semantics that is consciously informed by the motivating intention behind

the architecture of the web.

� In Chapter 4, an explanation is given of how such a statechart-based specification can

be executed on the platform provided by the web, serving as a priori evidence that this

approach is realistically implementable.

The particular architectural solutions used by the web have been proven in the challenging

environment of the present-day Internet. Web application designers have the benefit of being

able to build on this foundation. The aim of this study has been to derive a realistically

implementable system that is consistent with the sound philosophical underpinnings guiding

the architecture of the web.

Building on prior experience gained during the development of prototype systems, as well

as on information gleaned during this study, the short term goals for this work are to provide

a fully operational framework with the aforementioned philosophical bias, to test it on a

number of real-life applications, and then to release it as an open source product.

110

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

Glossary

Note that the glossary is constrained to terms that are used in the text with the (possi-
bly erroneous) assumption of reader familiarity, or terms that are used with specialised mean-
ing in the context of this dissertation. Terms introduced during the course of this disser-
tation are not listed in the glossary, since they can be explained far better in the text.

blog The term blog is a shortened form of web log: an online publication on which short
articles can be posted. Blogs are often used by individuals in the computer industry to
publish their own opinions and knowledge.

call back method Programming libraries, such as web frameworks, sometimes need to in-
voke user-supplied code at predefined locations in their execution. One approach for
doing this is to supply the library with a method (supplied by an application program-
mer) which library code would call, for example, upon the occurrence of a particular
event. Such supplied methods with user code are called call back methods.

control flow Control flow refers to how the order of execution of individual statements in
a program is controlled. Statements can typically follow one another sequentially, be
repeated, or a program can execute different statements depending on the value of one
or more expressions.

dynamic content Dynamic content is a term often used by web developers to refer to web
pages (or parts of them) that are generated upon request by a web server.

form The term form, as used in this dissertation, refers to an HTML form (or equivalent).
Forms are presented by browsers as web pages on which a user can supply input using
a variety of methods. When such input has been supplied, a form can be submitted to
a web server for processing.

graceful degradation A system is said to degrade gracefully if it continues to operate in the
face of failures of some of its parts, losing functionality in proportion to the quantity of
failures. In the web context, graceful degradation is often used to describe the ability
of a web site to continue operation even though it depends on optional extended
components (such as JavaScript). In the absence of such optional components, a site
which degrades gracefully would merely lose some of its characteristics and not cease
working entirely.

locale A locale is a set of user preferences, such as language, currency and time zone, which
can be used by UIs to provide a presentation tailored to a particular user.

111

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

Glossary

name space A name space is an abstract container for identifiers which represent entities
of some kind. In this dissertation, the term is used in connection with identifiers for
REST resources. A hierarchical name space is a name space that allows structuring
identifiers in a tree.

navigation model The navigation (or navigational) model of a web site is a model repre-
senting how a user can navigate between the hypertext pages of the site using hypertext
links and similar methods.

page flow Page flow is a colloquial term used to refer to the relationship (often naviga-
tional in nature) between different pages of a web-based UI. The term is analogous to
control flow (which concerns the relationship between different programming language
statements).

regular expression A regular expression is a pattern which describes or matches a set of
strings. Regular expressions are often used to search bodies of text for certain patterns.

security realm The term security realm refers to an area for which certain security restric-
tions apply. For example, a web site could be a security realm—a user can log into
the site as a whole with a single user name and password and be granted access to all
pages in the site based on that initial authorisation. Security realms sometimes span
collections of systems.

session scope A user session with a web server usually spans several HTTP requests to the
server. Session scope refers to a server side context, which persists across multiple
HTTP requests, and in which variables private to a particular user are stored.

session state Session state refers to all the information stored in session scope for a user.

socket The term socket, as used in this dissertation, refers to a programming abstraction
introduced by the BSD operating system and widely in use in network programming.
A Berkeley socket is a file-like abstraction denoting one endpoint in a TCP connection
(or the address of sender or receiver of UDP packets).

standard output Standard output is a communications channel wrapped in a file-like ab-
straction for programming language usage. Many operating systems supply a standard
output (opened for writing) to processes. Output written to the standard output of a
process would then be handled in a predefined way: for example, the standard output
of a program run on a terminal in Linux would be written to the terminal as output
for the user.

statechart The formalism of statecharts can be used to describe the dynamic behaviour of
a system, based on a FSM. State charts were introduced by Harel [1987].

stateless In this dissertation, the HTTP protocol is often described as being stateless. It may
seem strange to call any protocol stateless: what is meant is that state is not maintained
between different requests to a server. Every new request is independent of others.

112

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

(The alternative would be to require one kind of request—such as a handshake—to
happen before another kind of request is allowed in a conversation.)

transaction The term transaction is used in this text to mean an atomic transaction: a
number of actions that either occurs completely, or not at all.

user agent A user agent refers to a web browser or similar program which acts on behalf
of the user as the one endpoint in an HTTP-based conversation.

web application A web application is defined in this dissertation as an application that
presents its UI via the web.

web framework A web framework is an architectural framework which provides an execution
environment for web applications or the UIs of web applications. Such an architectural
framework usually comprises server components as well as supporting programming
language libraries (which also aid users of the framework in their development task).

web standards The term web standards is used in the text to refer to the main standards
enabling web technology: HTTP, URI and HTML (or similar).

web UI The term web UI is used to mean a UI which is presented via the web.

113

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

Abbreviations and acronyms

BSD Berkeley System/Software Distribution

AJAX Asynchronous JavaScript technology and XML

ECMA European Computer Manufacturers Association

FSM Finite State Machine

Sun Sun MicroSystems�

JSP JavaServer Pages�

JSF JavaServer Faces�

JSTL JSP Standard Tag Library�

J2EE Java 2, Enterprise Edition�

JNLP Java Network Launching Protocol, also known as Java Web Start

EJB Enterprise Java Beans�

PHP PHP Hypertext Preprocessor

PRG Post-redirect-get, also known as Redirect after post

IETF Internet Engineering Task Force

IP Internet Protocol

IPv4 IP, version 4

DNS Domain Name Service

URL Uniform Resource Locator

URI Uniform Resource Identifier

URN Uniform Resource Name

HTTP Hypertext Transfer Protocol

S-HTTP Secure HTTP

115

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

Abbreviations and acronyms

HTTPS HTTP over TLS

HTML Hypertext Markup Language

XHTML Extended Hypertext Markup Language

XML Extensible Markup Language

CSS Cascading Style Sheets

XSLT eXtensible Stylesheet Language Transformations

UI User Interface

GUI Graphical User Interface

MVC Model-View-Controller

RIA Rich Internet Application

REST Representational State Transfer

SSL Secure Socket Layer

TLS Transport Layer Security

IO Input/Output

WYSIWYG What You See Is What You Get

W3C World Wide Web Consortium

WWW Word Wide Web

OMG Object Management Group

OO Object Orientation

UML Unified Modelling Language

TCP/IP TCP over IP

TCP Transmission Control Protocol

IP Internet Protocol

UDP User Datagram Protocol

IIOP Internet Inter-ORB Protocol

ORB Object Request Broker

116

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

CORBA Common Object Request Broker Architecture

FCGI Fast CGI

CGI Common Gateway Interface

WSGI Python Web Server Gateway Interface???

ASP Active Server Pages

UWE UML-based Web Engineering

ADV Abstract Data View

OOHDM Object-Oriented Hypermedia Design Model

HySCharts Hyperdocument System based on StateCharts

HMBS Hyperdocument Model based on Statecharts

SWC StateWebCharts

CASE Computer Aided Software Engineering

117

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

Surveyed frameworks and related
projects

Note that the projects surveyed are to a large extent open source projects (precisely for the reason
that the designs of these are easily accessible). The effect is that authoritative information on these
projects is web based. In this bibliography of surveyed projects, the project web site (or equivalent)
of each project is listed by project name. Each entry in the list contains the title of the referenced
web site. This is followed by one of: the copyright holder or author of the project; or, the copy-
right holder of the web page (if such information is available). Each entry ends with the URL of the
project web site. All these URLs have been referenced within the period of January to August 2005.

ActionServlet ActionServlet. Petr Toman and Mark D. Anderson.
http://www.actionframework.org

Albatross Albatross—a Toolkit for Stateful Web Applications. Object Craft P/L.
http://www.object-craft.com.au/projects/albatross

AppServer Faces AppServer Faces. Dataosoft.
http://www.dataosoft.com/asf

Aquarium Aquarium.
http://aquarium.sf.net

ASPy ASPy—Active Server Python. Bradley Schatz.
http://archive.dstc.edu.au/aspy

Barracuda Barracuda Presentation Framework.
http://barracudamvc.org

Beehive Beehive. The Apache Software Foundation.
http://incubator.apache.org/beehive

Bento Bentodev.org—Home of the Bento Language. bentodev.org.
http://www.bentodev.org

Bishop Bishop. Johan Redestig.
http://bishop.sourceforge.net

Castalian Castalian. Stuart Langridge.
http://www.kryogenix.org/code/castalian

Cheetah Cheetah—The Python-Powered Template Engine. Tavis Rudd.
http://www.cheetahtemplate.org

119

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

Surveyed frameworks and related projects

CherryFlow CherryFlow.
http://subway.python-hosting.com/wiki/CherryFlow

CherryPy CherryPy—a pythonic, object-oriented web development framework. CherryPy
team.
http://cherrypy.org

Chrysalis Chrysalis. Paul Strack.
http://chrysalis.sourceforge.net

Cocoon The Apache Cocoon Project. The Apache Software Foundation.
http://cocoon.apache.org

DWR DWR—Easy AJAX for Java. Joe Walker and Getahead.
http://www.getahead.ltd.uk/dwr

Echo NextApp . Echo. NextApp Incorporated.
http://www.nextapp.com/products/echo

ECS Jakarta ECS—Element Construction Set. The Apache Software Foundation.
http://jakarta.apache.org/ecs

EmPy EmPy. Erik Max Francis.
http://www.alcyone.com/software/empy

Expresso Expresso Framework Project. Jcorporate Limited.
http://jcorporate.com/expresso.html

FormKit dAlchemy — FormKit : A webware form library. dAlchemy, Incorporated.
http://dalchemy.com/opensource/formkit

FreeMarker FreeMarker. The FreeMarker Project.
http://freemarker.sourceforge.net

HTMLgen HTMLgen. Robin Friedrich.
http://starship.python.net/crew/friedrich/HTMLgen/html/main.html

Jaguar Jaguar for Python: lean, fast and mean. Terrel Shumway.
http://jaguar.sourceforge.net

JBanana JBanana. JBanana.
www.jbanana.org

JonPy Jon’s Python modules. Jon Ribbens.
http://jonpy.sf.net

JPublish JPublish. Anthony Eden.
http:///www.jpublish.org

120

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

JSPWidget SPWidget Open Source Project.
http://edu.uuu.com.tw/jspwidget/default.jsp

Jucas Jucas object oriented pull MVC Web-Framework. Jucas.
http://jucas.sourceforge.net

Karrigell Karrigell. Pierre Quentel.
http://karrigell.sourceforge.net

Keel Keel Framework. Keel Groups Limited.
http://www.keelframework.org

Maverick Maverick. Infohazard.org.
http://mav.sourceforge.net

Melati Melati—Java SQL Website Development Engine. PanEris.
http://www.melati.org

Millstone Millstone—Free Open Source Web UI Library and Reusable Components for J2EE
and Java. IT Mill Limited.
http://millstone.org

Nevow Nevow: A Web Application Construction Kit. Donovan Preston.
http://www.divmod.org/projects/nevow

Niggle Niggle Web Application Framework. Jonathan Revusky.
http://niggle.sourceforge.net

Myghty Myghty—High Performance Python Templating Framework. Michael Bayer.
http://www.myghty.org/index.myt

PEAK.web PEAK—The Python Enterprise Application Kit. Phillip J. Eby.
http://peak.telecommunity.com

PHP PHP: Hypertext Processor. The PHP Group.
www.php.net

PMZ PMZ—Poor Man’s Zope. Andreas Jung.
http://pmz.sourceforge.net

PSP Python Server Pages (PSP). Angell Enterprises, Inc.
http://www.ciobriefings.com/psp

PyHP Python Hypertext Preprocessor. Lethalman and Christopher A. Craig.
http://freshmeat.net/projects/pyhp

PyML PyML—Python HTML Pre-Processor. David Snopek.
https://gna.org/projects/pyml

121

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

Surveyed frameworks and related projects

PyServ PyServ—a servlet-like engine for Python. Steve Purcell.
http://pyserv.sourceforge.net

Python Pages Ramu’s Python Page. Ramu Chenna.
http://www.embl-heidelberg.de/~chenna/pythonpages

pyWeb pyWeb HOME. David McNab.
http://www.freenet.org.nz/python/pyweb

PyWX PyWX: Python for AOLserver.
http://pywx.idyll.org

Quixote Quixote. Corporation for National Research Initiatives.
http://www.mems-exchange.org/software/quixote

RIFE RIFE: About. The RIFE team.
http://rifers.org

Roadkill Roadkill—embedded Python.
http://roadkill.sourceforge.net

RubyOnRails Ruby on Rails. David Heinemeier Hansson.
http://rubyonrails.com

Seaside Seaside. Avi Bryant.
http://seaside.st

Sitemesh SiteMesh. OpenSymphony.
http://www.opensymphony.com/sitemesh

SkunkWEB SkunkWEB — News. Drew Csillag et al.
http://skunkweb.sf.net

Smarty Smarty : Template Engine. New Digital Group, Inc.
http://smarty.php.net

Smile Smile, the open source JavaServer Faces implementation. Dimitry D’hondt, Edwin
Mol and Steve van den Buys.
http://smile.sourceforge.net

Snakelets SNAKELETS—Python Web Application Server. Irmen de Jong.
http://snakelets.sourceforge.net

Sofia Sofia—JSP GUI Java Development Framework. Salmon LLC.
http://www.salmonlcc.com/sofia

Spring Spring Framework.
http://www.springframework.org

122

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

SpringWebFlow Spring Web Flow. Ervacon.
http://www.ervacon.com/products/springwebflow

Spyce Spyce—Python Server Pages (PSP). Rimon Barr.
http://spyce.sf.net

Struts Struts. The Apache Software Foundation.
http://jakarta.apache.org/struts

Subway Subway.
http://subway.python-hosting.com

Swinglets Javelinsoft. Javelin Software.
http://www.javelinsoft.com/swinglets

Tapestry Jakarta Tapestry. The Apache Software Foundation.
http://jakarta.apache.org/tapestry

Teaservlet Tea Trove Project. Walt Disney Internet Group.
http://teatrove.sourceforge.net

Tiles Tiles. Cedric Dumoulin and The Apache Software Foundation.
http://www.lifl.fr/~dumoulin/tiles

Turbine Jakarta Turbine. The Apache Software Foundation.
http://jakarta.apache.org/turbine

TwistedMatrix Twisted Matrix Laboratories.
http://twistedmatrix.com

TwistedWeb Overview of Twisted Web.
http://twistedmatrix.com/projects/web/documentation/howto/web-overview.

html

Velocity Velocity. The Apache Software Foundation.
http://jakarta.apache.org/velocity

VRaptor VRaptor—Simple Web MVC Framework. Arca.
http://www.vraptor.org

Wasp Wasp Documentation. Robin Parmar.
http://www.execulink.com/~robin1/wasp/readme.html

WebMacro Web Macro. Semiotek Inc.
http://www.webmacro.org

WebOnSwing WebOnSwing—Multi environment application framework. Frebes.
http://webonswing.sourceforge.net

123

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

Surveyed frameworks and related projects

Webware Webware For Python Wiki. .
http://wiki.w4py.org/

Webwork Webwork. OpenSymphony.
http://www.opensymphony.com/webwork

Wicket Wicket. Wicket developers.
http://wicket.sourceforge.net

wingS wingS—LGPL Open Source.
http://wings.mercatis.de

Woven Woven.
http://twisted.sourceforge.net/TwistedDocs-1.2.0rc3/howto/woven.html

Zope Zope.org. Zope Corporation.
http://www.zope.org

124

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

Bibliography

OMG. Unified Modelling Language v1.5. OMG, March 2003.

E. Armstrong, J. Ball, S. Bodoff, D. B. Carson, I. Evans, D. Green, K. Haase, and E. Jendrock.
The J2EE�1.4 tuturial. http://java.sun.com/j2ee/1.4/docs/tutorial/doc, June
2005. (last accessed August 2005).

A. Belapurkar. Use continuations to develop complex web applications: A programming
paradigm to simplify MVC for the web. http://www-128.ibm.com/developerworks/

library/j-contin.html, December 2004. (last accessed August 2005).

T. Berners-Lee. WWW: Past, present, and future. Computer, 29(10):69–77, 1996. ISSN
0018-9162.

T. Berners-Lee, R. Fielding, and L. Masinter. Uniform resource identifiers (URI): Generic
syntax. Internet Engineering Task Force, August 1998. RFC2396.

S. Blake-Wilson, M. Nystrom, D. Hopwood, J. Mikkelsen, and T. Wright. Transport layer
security (TLS) extensions. Internet Engineering Task Force, June 2003. RFC3546.

M. R. Brown. FastCGI specification. http://www.fastcgi.com/devkit/doc/fcgi-spec.
html, April 1996. © Open Market, Inc. (last accessed August 2005).

S. Ceri, P. Fraternali, and A. Bongio. Web modeling language (WebML): a modeling language
for designing web sites. In Proceedings of the 9th international World Wide Web conference
on Computer networks : the international journal of computer and telecommunications
networking, pages 137–157, Amsterdam, The Netherlands, The Netherlands, 2000. North-
Holland Publishing Co.

L. Chao, H. Keqing, L. Jie, and Y. Shi. Some domain patterns in web application framework.
In Computer Software and Applications Conference, 2003. COMPSAC 2003. Proceedings.
27th Annual International, pages 674–677, November 2003.

J. Conallen. Modeling web application architectures with UML. Communications of the
ACM, 42(10):63–70, 1999. ISSN 0001-0782.

D. Copeland, R. Corbo, S. Falkenthal, J. Fisher, and M. Sandler. Which web development
tool is right for you? IT Professional, 2(2):20–27, March/April 2000.

125

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

Bibliography

D. Coward and Y. Yoshida. Java� Servlet 2.4 Specification. Sun Microsystems, Inc., Novem-
ber 2003.

O. Dahl, E. Dijkstra, and C. Hoare. Structured programming. Academic Press, Inc, Orlando,
FL, USA, 1972.

L. Daigle, D. van Gulik, R. Iannella, and P. Faltstrom. Uniform resource names (URN) names-
pace definition mechanisms. Internet Engineering Task Force, October 2002. RFC3406.

L. G. DeMichiel. Enterprise JavaBeans� Specification, Version 1.2. Sun Microsystems, Inc.,
November 2003.

T. Dierks and C. Allen. The TLS protocol version 1.0. Internet Engineering Task Force,
January 1999. RFC2246.

E. W. Dijkstra. Letters to the editor: go to statement considered harmful. Communications
of the ACM, 11(3):147–148, 1968. ISSN 0001-0782.

D. Draheim and G. Weber. Modelling form-based interfaces with bipartite state machines.
Interacting with Computers, 17(Issue 2):207–228, March 2005.

M. J. Dürst. The HTTP charset parameter. http://www.w3.org/International/

O-HTTP-charset.html, February 2005. (last accessed August 2005).

R. Fielding. Relative uniform resource locators. Internet Engineering Task Force, June 1995.
RFC1808.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. Hy-
pertext transfer protocol – HTTP/1.1. Internet Engineering Task Force, 1999. RFC2616.

R. T. Fielding. Architectural Styles and the Design of Network-based Software Architectures.
PhD thesis, University of California, Irvine, 2000.

J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and L. Stewart.
HTTP authentication: Basic and digest access authentication. Internet Engineering Task
Force, June 1999. RFC2617.

P. Fraternali. Tools and approaches for developing data-intensive web applications: A survey.
ACM Computing Surveys, 31(3):227–263, September 1999.

A. O. Freier, P. L. Karlton, and P. C. Kochner. The SSL protocol, version 3.0. http:

//wp.netscape.com/eng/ssl3, November 1996. (last accessed August 2005).

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of reusable
object-oriented software. Addison-Wesley, Reading, Massachusetts, 1995.

A. Ginige and S. Murugesan. Web engineering: an introduction. IEEE Multimedia, 8(1):
14–18, January-March 2001.

126

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

Bibliography

J. Gómez, C. Cachero, and O. Pastor. Extending a conceptual modelling approach to web
application design. In CAiSE ’00: Proceedings of the 12th International Conference on
Advanced Information Systems Engineering, pages 79–93, London, UK, 2000. Springer-
Verlag. ISBN 3-540-67630-9.

E. A. Gorshkova and B. A. Novikov. Use of statechart diagrams for modeling of hypertext.
Program. Comput. Softw., 30(1):47–51, 2004. ISSN 0361-7688.

N. Güell, D. Schwabe, and P. Vilain. Modeling interactions and navigation in web applica-
tions. In ER ’00: Proceedings of the Workshops on Conceptual Modeling Approaches for
E-Business and The World Wide Web and Conceptual Modeling, pages 115–127, London,
UK, 2000. Springer-Verlag. ISBN 3-540-41073-2.

D. Harel. Statecharts: A visual formalism for complex systems. Sci. Comput. Program., 8
(3):231–274, 1987. ISSN 0167-6423.

A. Hassan and R. Holt. Migrating web frameworks using water transformations. In 27th
Annual International Computer Software and Applications Conference, 2003. COMPSAC
2003, pages 296–303, Washington, DC, USA, November 2003. IEEE Computer Society.

T. Helman and K. Fertalj. A critique of web application generators. In Proceeding of the
25th International Conference on Information Technology Interfaces (ITI), 2003. ITI 2003.,
pages 639–644, June 2003.

I. Horrocks. Constructing the User Interface with Statecharts. Addison Wesley, 1998.

S. Huang. Evaluating the reverse engineering capabilities of web tools for understanding site
contents and structure. Master’s thesis, University of California Riverside, March 2001.

M. Jouravlev. Redirect after post. http://www.theserverside.com/articles/article.
tss?l=RedirectAfterPost, August 2004. (last accessed August 2005).

H. M. Kienle and H. A. Müller. Leveraging program analysis for web site reverse engineer-
ing. In WSE ’01: Proceedings of the 3rd International Workshop on Web Site Evolution
(WSE’01), page 117, Washington, DC, USA, 2001. IEEE Computer Society. ISBN 0-7695-
1399-9.

A. Knapp, N. Koch, F. Moser, and G. Zhang. ArgoUWE: A CASE tool for web applications.
In Proceedings of the First International Workshop on Engineering Methods to Support
Information Systems Evolution (EMSISE03), September 2003.

N. Koch and A. Kraus. The expressive power of UML-based web engineering. In D. Schwabe,
O. Pastor, G. Rossi, and L. Olsina, editors, Second International Workshop on Web-
oriented Software Technology (IWWOST02), pages 105–119, June 2002.

J. Korpela. Augmentative authoring—a different look at ”graceful degradation” in web
authoring. http://www.cs.tut.fi/~jkorpela/html/augm.html, August 2002. (last
accessed August 2005).

127

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

Bibliography

D. Kristol and L. Montulli. HTTP state management mechanism. Internet Engineering Task
Force, October 2000. RFC2965.

K. R. P. H. Leung, L. C. K. Hui, S. M. Yiu, and R. W. M. Tang. Modeling web navigation
by statechart. In COMPSAC ’00: 24th International Computer Software and Applications
Conference, pages 41–47, Washington, DC, USA, 2000. IEEE Computer Society. ISBN
0-7695-0792-1.

G. A. D. Lucca, A. R. Fasolino, and P. Tramontana. Towards a better comprehensibility of
web applications: Lessons learned from reverse engineering experiments. In WSE ’02: Pro-
ceedings of the Fourth International Workshop on Web Site Evolution (WSE’02), page 33,
Washington, DC, USA, 2002. IEEE Computer Society. ISBN 0-7695-1804-4.

C. McClanahan, E. Burns, and e. Roger Kitain. JavaServer� Faces Specification, v1.1. Sun
Microsystems, Inc., February 2004.

M. Mealling and R. Denenberg Eds. Report from the joint W3C/IETF URI planning in-
terest group: Uniform resource identifiers (URIs), URLs, and uniform resource names
(URNs): Clarifications and recommendations. Internet Engineering Task Force, August
2002. RFC3305.

S. Mellor, A. Clark, and T. Futagami. Model-driven development - guest editor’s introduction.
Software, IEEE, 20(5):14–18, September-October 2003.

R. Moats. URN syntax. Internet Engineering Task Force, May 1997. RFC2141.

G. Murray. Asynchronous JavaScript technology and XML (AJAX) with Java 2 platform, en-
terprise edition. http://java.sun.com/developer/technicalArticles/J2EE/AJAX,
June 2005. (last accessed August 2005).

Netscape. Persistent client state: HTTP cookies. http://wp.netscape.com/newsref/

std/cookie_spec.html, 1999. (last accessed August 2005).

S. Penchikala. Session replication in tomcat 5 clusters. http://www.onjava.com/pub/

a/onjava/2004/11/24/replication1.html, November 2004. (last accessed August
2004).

S. Perkins. Internet cookies: Security implications. http://citeseer.ist.psu.edu/

cachedpage/307950/1, May 2000.

e. Pierre Delisle. JavaServer Pages� Standard Tag Library. Sun Microsystems, Inc., June
2002.

Python Software Foundation. Python programming language. http://www.python.org,
2005.

D. Raggett, A. L. Hors, and I. Jacobs. HTML 4.01 Specification. W3C, December 1999.
W3C Recommendation.

128

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

Bibliography

E. Rescorla. HTTP over TLS. Internet Engineering Task Force, May 2000. RFC2818.

E. Rescorla and A. Schiffman. The secure hypertext transfer protocol. Internet Engineering
Task Force, August 1999. RFC2660.

J. Rode, M. B. Rosson, and M. A. Perez-Quinones. End-users’ mental models of concepts
critical to web application development. In VLHCC ’04: Proceedings of the 2004 IEEE
Symposium on Visual Languages - Human Centric Computing (VLHCC’04), pages 215–
222, Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7803-8696-5.

M. Roth and E. Pelegŕı-Lopart. JavaServer Pages� 2.0 Specification. Sun Microsystems,
Inc., November 2003.

S. Rushing. Medusa: A high-performance internet server architecture. http://www.

nightmare.com/medusa/medusa.html, none. (last accessed August 2005).

P. Sauter, G. Vögler, G. Specht, and T. Flor. A model-view-controller extension for pervasive
multi-client user interfaces. Personal and Ubiquitous Computing, 9(2):100–107, 2005.
ISSN 1617-4909.

M. W. Schranz, J. Weidl, K. M. Gschka, and S. Zechmeister. Engineering complex world
wide web services with JESSICA and UML. In HICSS ’00: Proceedings of the 33rd Hawaii
International Conference on System Sciences-Volume 6, page 6068, Washington, DC, USA,
2000. IEEE Computer Society. ISBN 0-7695-0493-0.

G. Seshadri. Understanding JavaServer Pages model 2 architecture: Exploring
the MVC design pattern. http://www.javaworld.com/javaworld/jw-12-1999/

jw-12-ssj-jspmvc.html, November 1999. (last accessed August 2005).

T. Shimomura. Visual design and programming for web applications. Journal of Visual
Languages and Computing, 16(3):213–230, June 2005.

J. Spolsky. The absolute minimum every software developer absolutely, positively must know
about unicode and character sets (no excuses!). http://www.joelonsoftware.com/

articles/Unicode.html, October 2003. (last accessed August 2005).

C. Strachey and C. P. Wadsworth. Continuations: A mathematical semantics for handling
fulljumps. Higher Order Symbol. Comput., 13(1-2):135–152, 2000. ISSN 1388-3690.

Sun Microsystems. Community development of java technology specifications. http://www.
jcp.org/en/introduction/overview, 1005-2005. (last accessed August 2005).

M. M. T Berners-Lee, L Masinter. Uniform resource locators (URL). Internet Engineering
Task Force, December 1994. RFC1738.

The Apache Software Foundation. Apache. http://www.apache.org, 2005.

D. Thomas. MDA: revenge of the modelers or UML utopia? Software, IEEE, 21(3):15–17,
May-June 2004.

129

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

Bibliography

D. R. Tobias. Dan’s web tips: Graceful degradation. http://webtips.dan.info/

graceful.html, April 2004. (last accessed August 2005).

G. Trubetskoy. Mod python: Apache/python integration. http://www.modpython.org,
2005.

M. A. S. Turine, M. C. F. D. Oliveira, and P. C. Masiero. HySCharts: A statechart-based en-
vironment for hyperdocument authoring and browsing. Multimedia Tools and Applications,
8(3):309–324, 1999. ISSN 1380-7501.

W3C HTML Working Group. XHTML� 1.0 The Extensible HyperText Markup Language:
A reformulation of HTML in XML 1.0. W3C, second edition edition, August 2002. W3C
Recommendation.

D. Whalen. Cookies FAQ. http://www.cookiecentral.com/faq, 1996. (last accessed
August 2005).

M. Winckler, C. Farenc, P. Palanque, and R. Bastide. Designing navigation for web inter-
faces. In Joint d’Interaction Homme-Machine and Human-Computer Interaction Confer-
ences (IHM-HCI), September 2001.

M. Winckler and P. Palanque. StateWebCharts: A formal description technique dedicated
to navigation modelling of web applications. In Interactive Systems. Design, Specification,
and Verification: 10th International Workshop, DSV-IS 2003, Funchal, Madeira Island,
Portugal, June 11-13, 2003. Revised Papers, volume 2844/2003 of Lecture Notes in Com-
puter Science, pages 61–76, GmbH, December 2003. Springer-Verlag.

F. Yergeau, J. Cowan, T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler. XML 1.1.
W3C, February 2004. W3C Recommendation.

Y. Zheng and M.-C. Pong. Using statecharts to model hypertext. In ECHT ’92: Proceedings
of the ACM conference on Hypertext, pages 242–250, New York, NY, USA, 1992. ACM
Press. ISBN 0-89791-547-X.

130

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– VVoosslloooo,, II ((22000066))

	FRONT
	Title page
	Dedication
	Abstract
	Keywords:
	Acknowledgements
	Contents

	CHAPTER 1
	1.1 Background
	1.2 An alternative
	1.3 Topics of particular interest
	1.4 Overview and scope
	1.5 Related work in brief
	1.6 This study contextualised
	1.7 Summary

	CHAPTER 2
	2.1 Requirements
	2.2 Strategies for view concerns
	2.3 Strategies for control concerns
	2.4 Summary

	CHAPTER 3
	3.1 UML statechart diagrams
	3.2 REST
	3.3 Harel specified
	3.4 Summary

	CHAPTER 4
	4.1 Overview of related standards
	4.2 Current and recommende practices
	4.3 A framework for Harel
	4.4 Configuration vs specification
	4.5 Deployment
	4.6 Summary

	CHAPTER 5
	5.1 Related work
	5.2 Discussion
	5.3 Future work
	5.4 Conclusion

	Glossary
	Abbreviations and acronyms
	Surveyed frameworks and related
	Bibliography

